Agent Architecture Modelling at the Knowledge Level

Carlos A. Iglesias
Departamento Ingenieria de Sistemas Telematicos, Universidad Politécnica de Madrid
E.T.S.I. Telecomunicacién, Ciudad Universitaria s/n, 28040 Madrid, Spain
cif@gsi.dit.upm.es

And

Andres Escobero
Sun Microsystems Ibérica S.A.
Torre Picasso - Planta 27, 28020 Madrid, Spain
Andres.Escobero@Spain. Sun.COM

ABSTRACT

The definition of an agent architecture at the knowledge level makes emphasis on the knowledge role played
the data interchanged between the agent components and makes explicit this data interchange. This makes eas
the reuse of these knowledge structures independently of the implementation.

This article defines a generic task model of an agent architecture and refines some of these tasks using inferen
diagrams.

Finally, a operationalisation of this conceptual model using the rule-oriented language Jess [5] is shown.

Keywords: Agent Oriented Software Engineering, knowledge level, agent architecture, knowledge engineering

1. INTRODUCTION

This article deals with knowledge modelling of a generic agent architecture. The purpose of this work is to apy
a principled approach to the definition of a generic conceptual agent architecture.

This work is part of a general framework, the agent-oriented methodology MAS-CommonKADS [7], [9].
particular, this article deals with the Ezpertise Model of the methodology.

The remainder of the paper is organised as follows: Section 2 presents a short introduction to the Knowledge Moc
of CommonKADS, that is used for defining a generic agent architecture at the knowledge level. Section 3 preser
a task decomposition model of generic agent architecture. Sections 4, 5 and 6 presents a constructive approa
to define inference structures for the previously presented task model, showing how this framework is general a
extensible for defining agent architectures. Section 7 describes how this conceptual model can be operationalis
using the rule oriented language Jess.

2. INTRODUCTION TO KNOWLEDGE MODELLING WITH CoOMMONKADS

The CommonKADS knowledge model [16]! is used for modelling the reasoning capabilities of the agents to car
out their tasks and achieve their goals. Usually, several instances of the expertise model should be develope
modelling inferences on the domain (i.e. how to identify a situation); modelling the reasoning of the agent (i
problem solving methods to achieve a task, character of the agent, etc.) and modelling the inferences of t
environment (how an agent can interpret the event it receives from other agents or from the world).

The knowledge model has three parts: domain knowledge, inference knowledge and task knowledge.

Domain knowledge represents the static domain-specific knowledge of the problem, modelled as a set of concep
properties, expressions and relationships, similar to the object model of UML (Unified Modelling Language) [10]
Inference knowledge represents the basic inference steps that we want to make using the domain knowledge. It
represented with inference diagrams where a functional decomposition is carried out. The basic predefined knowled
functions are called inferences and are shown as ellipses. The inputs and outputs of these inferences are call
knowledge roles, that can be static (not modified by the inferences) or dynamic, and are shown as squared boxes
Task knowledge represents how to achieve a goal, and the decomposition of this goal into sub-tasks, being t
inferences the leaves of this decomposition. For defining this decomposition, tasks are described and problem solvi
methods (PSMs) are defined. The PSMs define how to decompose a task into sub-tasks (or goals).

3. AGENT ARCHITECTURE SKELETON

The purpose of this analysis, based on Interrap conceptual agent model [15], is to define a framework for studyi
systematically the components of a generic agent architecture and their relationships.

1Previously defined as expertise model [18], [12] in CommonKADS

agent control

1. stimuli 2. beliefs 3. situation 4. goal 5. action 6. action

% marm recognition activation planning yuting\}

1.1.sensors 1.2. mailbox 1.3.user 2.1.beliefs 2.2. beliefs 5.1. reactive 5.2. deliberative 6.1. actuators 6.2. messages 6.3. user
management management input mng revision generation action action management sending output mng

Fig. 1. Task model of a general agent architecture

The main tasks of this task analysis [3] is shown in figure 1 and are described below.
Stimuli management the agent receives the stimuli through its sensors, mailbox and user input.
Beliefs management deals with beliefs generation and updating taking as an input the perceived stimuli.
Situation recognition the agent extract structured situation from the unstructured agent beliefs. This situati
recognition allows the identification of the need to start an activity.
Goal activation determination of which goals are relevant to the identified situation.
Action planning determination of which actions must be carried out to fulfil the identified goals and the order
these goals.
Action performing this task consists of executing the planned action, and can be programmed.

The main domain concepts have been captured above help guiding the knowledge acquisition process. T
following domains can be identified:
Own agent reflexive knowledge about the agent itself. This knowledge allows the agent to reason about its abilit
and its reasoning process.
Rest of agents The agent should know what agents it knows, their relevant characteristics and possible inference
Environment In order to interpret the sensor data, the agent must know what are the possible objects of t
environment and their characteristics.
Application The agent must know the relevant concepts of the application domain.

4. Basic REACTIVE AGENT ARCHITECTURE AT THE KNOWLEDGE LEVEL

In order to follow a constructive approach, we will start by studying a simple reactive agent that decides wh
action to do (task 6) depending on the observables (task 1), as shown in Figure 2. Once the inference structure h
been built, the domain model can be completed. In this case, the observables of the domain and the allowed actio
should be identified, and the rules to match these observables into actions.

Observables % Actions

Fig. 2. Inference structure of a basic reactive agent

For example, for the Robocup domain [13], the observables from the environment are the Ball, the Goals, t
Corner, etc., and the actions are Turn, Dash, etc. The characterisation of these concepts makes up the age
ontology. In order to identify the reactive situations, the so-called reactive cases of the UER technique [8] can
used.

This inference structure can be easily extended for considering the transformation of observables into beli
(Figure 3) or considering a basic self-conscience of the agent (Figure 4).

Observables

l

Beliefs % Actions

Fig. 3. Inference structure of a basic reactive agent with beliefs

The transformation of observables into beliefs can be trivial if we consider symbolic sensors, but can be furth
refined as a complex function with situation recognition as shown in Figure 5. This knowledge task of situati

Observables % Actions

Agent state

Fig. 4. Inference structure of a basic reactive agent with basic self-conscience

recognition has been modelled at the knowledge level in [2]. The agent model is a set of relevant agent properti
These agent properties depend on the application domain. For example, for the Robocup domain, some of the
relevant properties are the agent position and its stamina.

Observables

@ Agent state
Beliefs —> Actions
Recognised

—= . .
Situation

Known
Situations

Fig. 5. Inference structure of a basic reactive agent with beliefs and situation recognition

5. BAsic DELIBERATIVE AGENT ARCHITECTURE AT THE KNOWLEDGE LEVEL

While the previous section dealt with reactive agents, this section will consider how the activation of goals a
the planification task of the generic task model (section 3).

Basic BDI agent architecture

In order to illustrate the use of the knowledge model for specifying agent architectures at the knowledge lev
the inference process of the well-known BDI (Belief-Desire-Intention) architecture [19] is shown in Figure 6. In tl
architecture, an example of how to perform the general tasks of Beliefs Management and Goal Activation (section
is shown.

A simpler example of goal activation without considering desires is shown in Figure 7. In this example, the age
communication abilities have been modelled considering the received messages from other agents. The beliefs of t
agent can be of the agent itself, its environment other agents or application domain concepts.

Action Planning Task

The task action planning (section 3) can be considered a KADS basic inference [17] (see Figure 8).

This knowledge task has also been decomposed through Problem Solving Methods in [1]. A practical example
a simple planner [11] is shown in Figure 9.

Inside the JAEN project [14], taking as a generic model MAS-CommonKADS [7], the planning process is defin
through PSMs (Problem Solving Methods) as shown in Figure 10.

The P5Ms define the way to decompose a goal into subtasks. Two general types of PSMs are defined: autonomo
PSMs and cooperative PSMs. While the resulting subtasks are executed by the agent itself using an autonomous PS]
some of these subtasks can be carried out in cooperation with other agents using cooperative PSMs. For examp
given a goal such as Finding the best price of an article, depending on its state, an agent can use an autonomo
PSM such as Go-to-all-the-shops-and-compare or a cooperative PSM such as Subcontract-task-to-other-agent.

Observables

Current
generate Beliefs
Beliefs
generate)< |rc1:tg;1r§grt1$
Desires
-]
Intentions H.%

Fig. 6.

Observables

Mailbox

V J
=

N

/!

Beliefs Message
Recognised
compare 2
situation
Known
Situations

Actions

Inference structure of a general bdi agent architecture

Objective

Fig. 7. Simple Inference structure for goal activation

Initial State

N

World Model

—

Fig. 8.

Goal State

Plan

Plans

Inference structure of a planning function [17]

Objective % Subobjective
Emﬁg”@ Action e Subaction
Actions Subactions
order order
Fig. 9. Inference structure of a basic planner [11]

Agent state Beliefs

Selected
PSMs PSM
Goal ﬁ Action
Fig. 10. Inference structure for action planning based on PSMs

6. COOPERATIVE AGENTS

In the previous section, cooperation has been introduced through cooperative PSMs.

This section shows how two simple functions for handling the mailbox (task 1.2, sec. 3) can be defined at t
knowledge level.

When an agent wants to request some service from other agent, the agent should determine which protocol to u
from the known protocols, as shown in Figure 11.

Current
Beliefs

Goal select)——= Protocol

Known
Protocols

Fig. 11. Inference structure for selecting a protocol
The second function is how to decide if a service request is attended or not. As shown in Figure 12, it is need
to characterise the service request, the service policy and, as a result, a commitment is done.

7. OPERATIONALISATION OF THE ARCHITECTURE WITH JESS

The previously presented generic agent model has been operationalised using Jess as target language [14], [6].

As a simple example, initial knowledge about the known ontologies, protocols and knowledge representati
languages is shown in Figure 13.

Goals and PSMs can also be defined using Jess templates, and how a PSM decomposes a goal into subtas
or subgoals, as shown in Figure 14. Here, one goal (FindArticle)is defined and two available PSMs for this go
The PSM AutonomousPSM decomposes the goal into two tasks, go-shops and compare, while the cooperative PS
CoopPSM decomposes it into one task, ask-help-broker.

The final tasks which do not need further decomposition are operationalised as rules. As actions, communicati
acts of FIPA [4] can be used in a natural way, as shown in Figure 15, where an agent sends a request to anoth

Service
Policy

Service H Commitment

Agent
State

Fig. 12. Inference structure for attending a service request

(deffacts ExampleInializations
(known-ontologies (ontologies
(create$ fipa-agent-management
fipa-acl DefaultOntology)))
(known-protocols (protocols
(create$ fipa-request)))
(known-languages (languages
(create$ JESS))

Fig. 13. Example of operationalisation of knowledge about agent capacities

agent (whose name is BrokerAgent@shop.com) asking the service FindShops.

8. CoNcLUsIONS AND FUTURE WORK

In the paper, we have tried to illustrate how an agent architecture can be defined at the knowledge level in
easy way.

The knowledge description of agent architectures makes easier their acquisition and operationalisation. Knos
edge modelling determines the relationships between the different agent components and the required relationshi
between them, i.e. temporal relationships between goals, required knowledge for selecting emergent goals, etc. T
definition of agent components at the knowledge level makes easier their reuse.

In addition, the knowledge description of agent architectures makes explicit the role the domain concepts play
the reasoning process and provides a good starting point for achieving a reflexive behaviour.

Finally, this theoretical work has been operationalised in an extension of the rule-based language Jess [5].

Future work will focus on extending the presented framework for providing a library of agent architecture co
ponents defined at the knowledge level and operationalised. This work 1s complementary of our current work
building agent-oriented CASE tools.

ACKNOWLEDGEMENTS
This research is funded in part by the Spanish Government under the CICYT project JAEN TEL99-0925.

(goal (name FindArticle))

(PSM (name AutonomousPSM)(goal FindArticle)
(tasks (create$ go-shops compare))

)

(PSM (name CoopPSM)(goal FindArticle)
(tasks (create$ ask-help-broker))

)

Fig. 14. Example of operationalisation of PSMs and task decomposition

(defrule CollaborativeTask

=>

(task (name ask-help-broker)

(goalid 7goalid) (input 7input))

(request :receiver BrokerAgent@shop.com

:protocol fipa-request
:language JESS
:reply-with wanted
:content "(service
(name FindShops)
(input " ?input "))"
:goal-related 7goalid

[13]

[14]

Fig. 15. Example of operationalisation of a Task

9. REFERENCES

V. R. Benjamins, Leliane Nunes de Barros, and Valente Andre. Constructing planners through proble:
solving methods. In B. Gaines and M. Musen, editors, Proceedings of the 10th Banff Knowledge Acquisition |
Knowledge-Based Systems Workshop, volume 1, pages 14-1/20, Banfl, Canada, November 1996. KAW.
Dolores Canamero. A Knowledge-Level Approach to Plan Recognition. In Proceedings of the IJCAI’95 Worksh
on Plan Recognition, Montreal, Canada, August 1995.

C. Duursma. Task model defintion and task analysis process. Technical Report Technical report KAD
IT/M5/VUB/TR/004/1.1b ESPRIT Project P5248, Free University Brussels, 1993.

FIPA. Foundation for Intelligent Physical Agents. Agent Communication Language. FIPA Spec 2. Technic
report, FIPA. Foundation for Intelligent Physical Agents, 1999.

Ernest J. Friedman-Hill. Jess, The Java Fzpert System Shell. Distributed Computing Systems, Sandia Natior
Laboratiories, Livermore, CA, version 4.1 edition, June 1998.

Pablo Haya Coll. Diseno de Métodos de Coordinacién entre Agentes dentro del Desarrollo de un Sister
Personal de Informacién. Master’s thesis, E.'T.S.I. de Telecomunicacién. Universidad Politécnica de Madr
September 1999.

Carlos A. Iglesias. Definition of a Methodology for the Development of Multi-Agent Systems. PhD thes
Departamento de Publicaciones, E.T.S.I. Telecomunicacién, Universidad Politécnica de Madrid, February 19¢
In Spanish.

Carlos A. Iglesias and Mercedes Garijo. UER Technique: Conceptualisation for Agent Oriented Developme:
In Nagib Callaos and Michel Torres, editors, Proceedings of the 3rd World Multiconference on Systemics, C
bernetics and Informatics (SCI’99) and 5th International Conference on Information Systems Analysis a
Synthesis (ISAS5°99), volume 5, pages 535-540, Orlando (USA), August 1999.

Carlos A. Iglesias, Mercedes Garijo, José C. Gonzélez, and Juan R. Velasco. Analysis and design of mult
gent systems using MAS-CommonKADS. In M. Wooldridge, M. Singh, and A. Rao, editors, INTELLIGEN
AGENTS IV: Agent Theories, Architectures, and Languages, volume 1365, pages 313-329. Springer-Verlz
1998. (A reduced version of this paper has been published in AAAI’97 Workshop on Agent Theories, Archit
tures and Languages.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Development Process. Addisc
Wesley: Reading, MA, 1999.

J. K. Kingston, N. Shadbolt, and A. Tate. CommonKADS models for knowledge based planning. In Proceedur
of AAAI-96, Portland, Oregon, August 1996. AAAI.

John Kingston. Building a KBS for health and safety assessment. In Applications and Innovations in Ezpe
Systems IV, Proceedings of BCS Expert Systems 96, pages 16-18, Cambridge, December 1996. SBES Public
tions. Also published as technical report: ATAI-TR-202, Artificial Intelligence Applications Institute, Universi
of Edinburgh.

Alvaro Martinez Reol. Desarrollo de un sistema multiagente integrando jess y java para la robocup. Maste
thesis, E.T.S.I. de Telecomunicacién. Universidad de Valladolid, May 2000.

Juan Luis Mulas Platero. Desarrollo de una arquitectura de agente inteligente multiservicio con la plataforr
Javamast. Master’s thesis; E.T.S.I. de Telecomunicacién. Universidad de Valladolid, February 1999.

[15] Jorg P. Miiller. An Architecture for Dynamically Interacting Agents. PhD thesis, Germain AT Research Cent
(DFKI GmbH), Saarbriicken, 1996.

[16] A. Th. Schreiber, J. M. Akkermans, A. A. Anjewierden, R. de Hoog, N. R. Shadbolt, W. Van de Velde, a
B. J. Wielinga. Knowledge Engineering and Management: The CommonKADS Methodology. MIT Press, 19¢

[17] A. Valente. Planning models for the commonkads library. ESPRIT Project P5248 KADS-IT KAD
I1/M2.3/UvA/56/1.0, University of Amsterdam, 1993.

[18] B. J. Wielinga, W. van de Velde, A. Th. Schreiber, and H. Akkermans. Expertise model definition doc
ment. deliverable DM.2a, ESPRIT Project P-5248 /KADS-1I/M2/UvA/026/1.1, University of Amsterda;
Free University of Brussels and Netherlands Energy Research Centre ECN, May 1993.

[19] Michael Wooldridge. Intelligent agents. In Gerhard Weiss, editor, Multiagent Systems. A Modern Approach
Dustributed Artificial Intelligence. MIT Press, 1999.

