
PROYECTO FIN DE CARRERA

T́ıtulo: Prototipo de un Sistema de Análisis de Sentimientos Basado

en Algoritmos de Ensemble para la Combinación de Técnicas

de Aprendizaje Automático Profundas y Superficiales

T́ıtulo (inglés): Prototype of a Sentiment Analysis System Based on Ensem-

ble Algorithms for Combining Deep and Surface Machine

Learning Techniques

Autor: Óscar Araque Iborra

Tutor: J. Fernando Sánchez Rada

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Tomás Robles

Vocal: Mercedes Garijo

Secretario: Joaqúın Salvachúa

Suplente: Francisco González

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE MÁSTER

Prototype of a Sentiment Analysis System

Based on Ensemble Algorithms for Combining

Deep and Surface

Machine Learning Techniques

Óscar Araque Iborra

Junio de 2016

Resumen

Las técnicas de aprendizaje profundo para el Análisis de Sentimientos se han vuelto muy

populares. Estas técnicas proveen de capacidades de extracción de caracteŕısticas au-

tomáticas, aśı como representaciones más ricas y de mejores prestaciones que las técnicas

basadas en caracteŕısticas tradicionales. Estos enfoques superficiales y tradicionales están

basados en caracteŕısticas complejas extráıdas manualmente, siendo este proceso de ex-

tracción una pregunta fundamental en los métodos basados en aprendizaje a partir de

caracteŕısticas. Dichos enfoques largamente establecidos pueden producir sólidos sistemas

de referencia, al igual que sus capacidades de predicción pueden ser usadas en conjunto con

los métodos incipientes basados en aprendizaje profundo.

Este trabajo de fin de máster busca mejorar el rendimiento de las nuevas técnicas de

aprendizaje profundo, integrándolas con enfoques superficiales basados en caracteŕısticas

extráıdas manualmente. Las contribuciones de este trabajo de fin de máster son siete.

Primera, hemos desarrollado un clasificador de sentimientos basado en aprendizaje au-

tomático usando un modelo de word embeddings y un algoritmo de aprendizaje automático

lineal. Este clasificador nos sirve como referencia con la que comparar resultados posteriores.

Segunda, proponemos dos técnicas de ensemble que agregan nuestro clasificador de referen-

cia con otros clasificadores ampliamente usados en el campo del Análisis de Sentimientos.

Tercera, también proponemos dos modelos que combinan tanto caracteŕısticas superficiales

como profundas con el objetivo de unir información proveniente de distintas fuentes. Como

cuarta contribución, introducimos una taxonomı́a que clasifica los distintos modelos encon-

trados en la literatura, al igual que los modelos que proponemos. Quinta, llevamos a cabo

varios experimentos que comparan el rendimiento de estos modelos en comparación con la

referencia de aprendizaje profundo. Para llevar esto a cabo, empleamos cinco conjuntos de

datos públicos que fueron extráıdos del dominio del microblogging. Sexta, como resultado,

un estudio estad́ıstico confirma que el rendimiento de los modelos propuestos supera el de

la referencia original en F1-Score. Finalmente, un caso de estudio adicional se ha llevado

a cabo con la finalidad de aumentar el alcance de la evaluación de los modelos propuestos.

Este caso de estudio introduce dos grandes cambios en la evaluación. Por un lado, el do-

minio es distinto, ya que el análisis se realiza en el dominio de las cŕıticas de usuarios. Por

V

otro lado, la granularidad con la que el análisis se realiza es mayor, siendo éste el nivel de

análisis de sentimientos basado en aspectos.

Palabras clave: Combinación de clasificadores, Aprendizaje Profundo, Análisis de

Sentimientos, Aprendizaje Automático, Procesado de Lenguaje Natural

Abstract

Deep learning techniques for Sentiment Analysis have become very popular. They pro-

vide automatic feature extraction and both richer representation capabilities and better

performance than traditional feature based techniques. Traditional surface approaches are

based on complex manually extracted features, and this extraction process is a fundamen-

tal question in feature driven methods. These long-established approaches can yield strong

baselines on their own, and their predictive capabilities can be used in conjunction with the

arising deep learning methods.

This master thesis seeks to improve the performance of new deep learning techniques

integrating them with traditional surface approaches based on manually extracted features.

The contributions of this master thesis are seven-fold. First, we develop a deep learning

based sentiment classifier using a word embeddings model and a linear machine learning

algorithm. This classifier serves us as a baseline with which we can compare subsequent

results. Second, we propose two ensemble techniques which aggregate our baseline classifier

with other surface classifiers widely used in the field of Sentiment Analysis. Third, we also

propose two models for combining both surface and deep features to merge information from

several sources. As fourth contribution, we introduce a taxonomy for classifying the different

models found in the literature, as well as the ones we propose. Fifth, we conduct several

experiments to compare the performance of these models with the deep learning baseline.

For this, we employ five public datasets that were extracted from the microblogging domain.

Sixth, as a result, a statistical study confirms that the performance of these proposed models

surpasses that of our original baseline on F1-Score. Finally, an additional case study is

developed in order to broaden the scope of the proposed models evaluation. This case

study introduces two major changes in the evaluation. On the one hand, the domain is

different, making the analysis on the review domain. On the other hand, the granularity of

the analysis is increased, as it is performed at the aspect based sentiment analysis level.

Keywords: Ensemble, Deep Learning, Sentiment Analysis, Machine Learning, Natural

Language Processing

VII

Agradecimientos

El desarrollo de este trabajo de fin de máster ha sido un camino largo, que probablemente

no hubiera sido posible sin mucha gente que me ha apoyado, a veces de manera sorpren-

dentemente incansable.

Quiero dar gracias a mis padres, que desde que comencé la carrera (hace ya seis largos

años) siempre me han apoyado y me han animado a seguir. Nunca han dejado de creer en

mı́, y siempre han sido una fuente de confianza a la hora de enfrentarme a los distintos retos

que se me han presentado a lo largo de este satisfactorio periodo. En conjunto a mis padres

se encuentran muchos miembros de mi familia, que han estado ah́ı en caso de necesidad.

Mis abuelas, t́ıos y t́ıas, etcétera.

Sin duda Cristina se merece una mención especial en estas páginas, ya que ha tenido que

escuchar muchas horas de eternas dudas, disyuntivas acerca del futuro y devaŕıos varios.

Gracias por estar siempre ah́ı, y darme ese empujoncito que a veces necesitaba.

Por supuesto, doy las gracias a Carlos Ángel, cuya perseverancia ha ayudado en gran

parte al desarrollo del trabajo, y finalmente a llevarlo a buen puerto. Sin su gúıa no habŕıa

llegado donde he llegado.

También quiero dar gracias a mis compañeros de laboratorio. A J, que me ha ayudado a

lo largo de todo este año, aconsejándome y guiándome donde yo poco o nada sab́ıa: gracias

por dedicarme ese tiempo. A Álvaro, que ha sido un tercer tutor. Y a todos los compañeros

(tanto del GSI como de clase) que, de alguna manera u otra, han compartido este viaje

conmigo: Silvia, Adrián, Iván, Verónica, Jose, Pablo, Carlos, Nacho, Constan, Enrique,

Ganggao, Shengjing, y muchos más.

A todos vosotros, ¡gracias!

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XV

List of Tables XVII

1 Introduction 1

1.1 Goal . 5

1.2 Task description . 6

2 State of the Art 9

2.1 Surface approaches . 11

2.2 Deep techniques . 13

2.3 Ensemble methods . 18

2.4 Ensemble taxonomy . 21

3 Sentiment Analysis Models 25

3.1 Deep Learning classifier (MG) . 28

3.2 Ensemble of classifiers (CEM) . 28

XI

3.2.1 Fixed rule model . 30

3.2.2 Meta classifier model . 30

3.3 Ensemble of features (MSG and MGA) . 30

4 Evaluation 33

4.1 Evaluation Setup . 35

4.1.1 Datasets . 35

4.1.2 Evaluation metrics . 37

4.1.3 Baseline training . 41

4.1.4 Ensemble of classifiers . 42

4.1.5 Ensemble of features . 43

4.2 Analysis . 45

4.2.1 Performance of the base classifiers 45

4.2.2 Classifiers and features classifiers performance 46

4.2.3 Statistical analysis . 46

4.3 Other experiments . 48

4.3.1 Scaling Word2Vec . 48

4.3.2 Sentiment seeding . 50

4.3.3 Sentiment lexicon clusters . 51

5 Case Study 55

5.1 Setup . 57

5.1.1 Datasets . 57

5.1.2 Sentiment Analysis system . 59

5.2 Context Detection . 61

5.3 Training . 65

5.4 Evaluation . 68

5.4.1 Performance of individual classifiers 69

5.4.2 Performance of ensemble classifiers 69

5.4.3 Statistical analysis . 70

6 Conclusions and future work 73

6.1 Conclusions . 75

6.2 Future Work . 76

A Scientific Python environment 79

A.1 Numpy . 80

A.2 Pandas . 81

A.3 Scipy . 82

A.4 Matplotlib . 82

A.5 IPython . 82

A.6 Scikit-learn . 83

A.7 Gensim . 84

B Linear Regression 87

C Principal Component Analysis (PCA) 91

Bibliography 94

List of Figures

2.1 Example of dependency parsing and Part Of Speech (POS) tagging. 12

2.2 CBOW and Skip-gram architectures. 15

2.3 GloVe weighting function. 16

2.4 2D projections of the regularities between word vectors. (a) Male-female; (b)

verb tenses; (c) country and capital. 17

2.5 Ensemble architecture, where f(·) can be a fixed rule or a meta learner algo-

rithm. 20

3.1 Schematic representation of the deep learning baseline model, MG. In this

figure, the word embeddings are combined into a single vector through one

convolutional function, and the fed to a linear algorithm, which determines

the polarity of the document. 27

3.2 Diagram of how the different classifiers and features are combines in the

CEMSG, MSG and MGA models. 29

4.1 Distribution of the number of words by sentiment polarity and aggregated

for SemEval2013 (a) and SemEval2014 (b). 38

4.2 Number of words distribution by sentiment polarity and aggregated for Vader

dataset. 39

4.3 Number of words distribution by sentiment polarity and aggregated for STS

dataset. 40

4.4 Number of words distribution by sentiment polarity and aggregated for the

Sentiment140 dataset. 41

4.5 Sentiment analysis errors types scenario. 42

XV

4.6 Exploration of the number of estimators hyper-parameter of the Random

Forest algorithm. 45

4.7 Word2Vec scaling performance tests: (a) accuracy and f1 score in sentiment

analysis, (b) memory occupied by corpus and model vectors -the vertical axis

is in logarithm scale- and (c) training time in seconds. 49

4.8 Sentiment seeds and their 20 more close neighbors in the d-dimensional space.

In this plot, the seeds are excellent (positive in green) and horrible (negative

in red). 52

4.9 Lexicon word vectors represented in a two dimensional plane, reduced using

Principal Component Analysis (PCA). Positive sentiment is showed green,

while negative is red. 53

5.1 Extraction from the dataset of phone reviews. In bold, the aspects of the

document and their polarity: green for positive, red for negative. 58

5.2 Distribution of the number of words in the collected review dataset by sen-

timent polarities: positive (a), and negative (b). 60

5.3 Number of words distribution in the collected review dataset. 61

5.4 Mixed opinions in a same sentence, one referring to phone design, and other

to battery life. 61

5.5 Dependency tree of a simple sentence. 62

5.6 Context of the target aspect phone, and the aspects buy and battery life. . . 65

5.7 Number of words distribution by sentiment polarity and aggregated for mo-

bile phone 1 (a) and mobile phone 2 (b). 67

A.1 Example of the IPython interface, and its clean integration with matplotlib. 83

B.1 Decision boundary computed by a logistic regression algorithm trained on

the data points. 89

C.1 Example of how the PCA algorithm reduces the dimensionality of the blue

data points, resulting in the green data points. 93

List of Tables

2.1 Fixed rules and their combination functions. 20

2.2 Proposed taxonomy for ensemble of surface and Deep features. S represents

surface features, G and A stand for generic word vectors and affect word

vectors, respectively. The combination of the features and/or word vectors is

indicated with ‘+’. We consider the combination No ensemble/S+G+A not

possible in the terms of this taxonomy. 22

4.1 Statistics of the SemEval2014/2014, Vader, STS-Gold and Sentiment140

datasets. 37

4.2 Effectiveness of the convolutional functions on the development dataset. . . 43

4.3 Macro averaged F-Score of all the sentiment classifiers. Bold metrics are the

best in the test dataset. Besides, the last row shows the result of the Fried-

man test, in bold the two best models. (Legend) sent140: sentiment140,

CoreNLP: Stanford CoreNLP, WSD: Sentiment WSD, TB: TextBlob. . . 44

4.4 Critical values for the Bonferroni-Dunn test. The number of classifier includes

the control classifier. 47

4.5 Friedman average ranks Rj for all proposed studied models. 47

5.1 Aspect Based Sentiment Analysis (ABSA) datasets statistics and collected

Amazon dataset. 58

5.2 Macro averaged F-Score of all the sentiment classifiers in the phone reviews

test datasets. Bold metrics are the best in each test dataset. 68

5.3 Friedman average ranks Rj for the models relevant in this case study. . . . 70

XVII

CHAPTER1
Introduction

This Chapter introduces the concept of sentiment analysis, one of the most important

tasks in Natural Language Processing, providing a brief introduction of its context in

both the academic and business environments. Given the context of the sentiment

analysis problem and its main approaches, the goal of this master thesis is drafted.

As part of this goal, we propose three questions that will be answered during the

development of this work.

1

CHAPTER 1. INTRODUCTION

2

Sentiment analysis deals with the computational analysis of human opinions, sentiments,

attitudes and emotions towards entities and their attributed expressed in text. The enti-

ties are very varied, and can be products, services, organizations, topics, events and their

attributes.

This field have experimented a growth with those of social media on the Web -reviews,

forum discussions, blog, microblogs, social networks-, because for the first time in human

history, we have a huge volume of data with opinion content in digital form, making possible

the advance of the field.

In fact, there was almost no research on sentiment analysis from either the linguistics

or the Natural Language Processing (NLP) community before the year 2000 (1). This is

partly because of the lack of opinionated text data in digital form. With the growth of the

web, since early 2000, sentiment analysis has grown to be one of the most important fields

of Natural Language Processing (NLP), and it is also widely studied in data mining, text

mining and web mining. Besides, it has spread from computer science to social sciences

and management sciences due to its importance to business and society as a whole. In the

industrial environment, sentiment analysis has also thrived, with many startups emerging.

To sum up, sentiment analysis has found its applications in almost every social domain and

business (2).

The growth of user-generated content in web sites and social networks, such as Twitter,

Amazon, and Trip Advisor, has lead to an increasing power of social networks for expressing

opinions about services, products or events, among others. In this context, many Natural

Language Processing (NLP) tasks are being used in order to analyze this massive informa-

tion.

Sentiment analysis is very interesting to businesses and organizations because they al-

ways want to find about consumer of public opinions about their products and services.

It is also relevant to government, as for example, when they have the necessity of finding

public opinions about policies. Besides businesses, governments and organizations, indi-

vidual consumers also want to know the opinions of other about products, services, and

event political candidates before purchasing the products, using the services and making a

political decision.

Opinionated data not only exists on the web, but many organizations have internal data,

such as customer feedback collected from e-mails, internals polls or surveys conducted by

the organizations. It is usually very important to analyze both kinds of data in order to

correctly summarize customer opinions.

3

CHAPTER 1. INTRODUCTION

In recent years, hundreds of companies have appeared that work in sentiment analysis,

both start-ups and established corporations, that have build or are in the process of building

their own solutions (1). Added to these companies, applications are also widespread in

government agencies. These agencies use social media to discover public opinions and

citizen concerns. Externally, intelligent services find about issues being discussed in the

social debate of other countries by monitoring the social media of these countries.

Apart from this applications, sentiment analysis is also very present in the research

community, with many papers published regarding this field. Sentiment analysis techniques

have been used successfully in many contexts (1). For example, using sentiment information

to predict success of films and box-office revenue. Also, sentiment analysis was proved to

correlate with presidential approval, in the context of political elections. All this analysis

were made using a great variety of data sources, such as Twitter, blogs and news articles.

Another popular area in sentiment analysis is market prediction. Sentiment analysis has

been used to predict the movement of stock market indices, finding interesting correlations

on some of them.

These classical applications aside, sentiment analysis has been also used to rank products

and merchants through product reviews. Also, certain relationships between the National

Football League betting data and public opinions in blogs and on Twitter were studied,

as well sentiment flow patterns. Besides, sentiment analysis has been used to characterize

social interactions.

The dominant approaches in sentiment analysis are based on machine learning tech-

niques (3), (4), (5). The more traditional approach consist on combining the Bag Of

Words (BOW) model with some other features, such as the syntactical analysis of the

text (Sec. 2.1). Besides, normally this traditional approaches of sentiment analysis involve

the use of a sentiment lexicon as source of sentiment knowledge (6), and the addition of

this data to the previously mentioned features.

Generally, these techniques require complex hand-crafted features, being the process of

obtaining the features a work intensive one. Besides, these techniques also need for very

domain dependent datasets as lexicons, as many words can be either positive or negative,

depending on the context they are used. As it is true that these characteristics are usu-

ally difficult to surpass, they also provide the resulting models with an interesting high

specialization capacity, as well as the need for relatively low amounts of data.

As an alternative of the traditional approaches, some deep learning algorithms have

shown excellent performance results in NLP tasks including Sentiment Analysis (7). In these

deep learning techniques, the main idea is to learn complex features extracted from data

4

1.1. GOAL

with minimum external contribution (8) using deep neural networks (9). These algorithms

do not need to be passed manually crafted features from the data: they learn automatically

complex features by themselves. Nevertheless, a characteristic feature of deep learning

approaches is that they need large amounts of data to perform well (10). Both automatic

feature extraction and availability of resources are very important when comparing the

traditional machine learning approach and these deep learning techniques.

However, it is not clear that the domain specialization capacity of traditional approaches

can be surpassed with the generalization capacity of deep learning based models, or if it is

possible to successfully combine these two techniques in a wide range of applications.

Goal

In this master thesis, we seek to improve the existing deep learning methods by combining

some of this deep techniques and traditional approaches. In this way, our main objective is

to augment the available information that the sentiment analysis models have, and verify

that this data augmentation effectively improves the performance of the traditional and

deep techniques separately.

For achieving this objective, we propose to combine these two main sentiment analysis

approaches through several ensemble models in which the information provided by many

kinds of features is aggregated. In particular, this work considers an ensemble of classifiers,

where several sentiment classifiers trained with different kinds of features are combined,

and an ensemble of features, where the combination is made at the feature level. In order

to study the complementarity of the proposed models, we use four public test datasets of

the Twitter domain, and compare, through a statistical study, the results of these ensemble

models in comparison to a deep learning baseline we have also developed. Besides, we

present a taxonomy that classifies the models found in the literature and the ones proposed

in this work.

With this work, we seek to answer the following questions, using the empirical results

we have obtained as basis:

1. Which are the current ensemble approaches for deep and traditional techniques in

sentiment analysis? How are they organized?

2. Can sentiment analysis performance of a deep learning based analyzer be improved

when using the proposed ensemble and feature combination models?

5

CHAPTER 1. INTRODUCTION

3. Among the proposed models, which ones can be selected to improve the sentiment

analysis performance of a deep learning based analyzer?

In addition to this, in this master thesis we also present a case study where the proposed

sentiment analysis models are used in a different context. In this case the sentiment analysis

is made in the review domain, not in the Twitter domain. Also, the sentiment analysis is

targeted to aspects, and so a context detection algorithm has been included in the analysis.

This subsystem is an added step in the preprocessing of the data.

These new characteristics pose some challenges that do not appear in the previous study.

In order to address these new problems, some additional techniques are used.

Task description

This section describes the task of sentiment analysis. Generally, sentiment analysis research

has been mainly carried out at three levels of granularity: document level, sentence level

and aspect level. Here, we introduce them briefly (1).

Document level. The task at the document level consists on classifying whether

a whole document expresses a positive or negative sentiment. For example, given

a product review, the system must determine whether the document expresses an

overall positive or negative opinion. This type of analysis assumes that each document

expresses its opinion towards a single entity (e.g., a single product or service). Thus,

it is not applicable to documents that compare two or more aspects or entities.

Sentence level. This next level is to determine whether each sentence in a document

expresses a positive or negative (sometimes neutral polarity is included in the analysis)

opinion. This analysis is more detailed than the previous document-level analysis,

but it is also not appropriate for reviews that compare different entities in the same

sentence.

Aspect level. Neither document nor sentence level analysis reveal what people like

and dislike exactly. Concretely, they do not discover what each opinion is targeted to,

that is, what is the target of the opinion. This level of analysis is also called feature

level. Instead of looking at the documents or sentences, this analysis looks directly

into which the opinions are, and which are their targets. Descending into the level

of aspect level gives a much better understanding of the sentiment analysis problem.

In this example: “I really liked the meal, but the service was slow ’, the sentence has

6

1.2. TASK DESCRIPTION

a positive orientation, but it is not possible to affirm that the sentence is entirely

positive. In fact, we can only say that the sentence in completely positive about the

meal, but still, it is negative regarding the service. In this way, the goal if this analysis

level is to discover sentiments on entities or aspects. This way, a summary of opinions

towards each entity can be displayed.

In this master thesis, we center our attention to sentence-level sentiment analysis from

Chapters 2 to 4, and to aspect level sentiment analysis in Chapter 5.

The rest of the thesis is organized as follows. Chapter 2 shows previous work on tradi-

tional and deep learning approaches, as well as ensemble techniques. Besides, this chapter

also describes the proposed taxonomy for classifying ensemble methods that merge surface

and deep features. Furthermore, Chapter 3 addresses the proposed classifier and ensemble

models. In Chapter 4, we describe the designed experimental setup, and also the experi-

mental results are presented and analyzed in this Chapter. Continuing, Chapter 5 describes

the motivation of the case study and its results. To finalize, Chapter 6 draws conclusions

from the previous results and outlines for the future work in this regard.

7

CHAPTER 1. INTRODUCTION

8

CHAPTER2
State of the Art

This Chapter offers a brief review of the main ideas and techniques that support the

master thesis, as well as some of the related published works found in the literature.

We first describe some traditional techniques used in sentiment analysis. After this,

some insight is given on the new deep techniques, with a special emphasis on word

vectors representations. Continuing, the main ensemble techniques are summarized,

and some of they key characteristics are discussed. To finalize, this chapter also

covers a key contribution of this master thesis: an ensemble taxonomy that classifies

the models found in the literature, and also the ones proposed in this work.

9

CHAPTER 2. STATE OF THE ART

10

2.1. SURFACE APPROACHES

The approaches tackling the sentiment analysis challenges are very diverse, and make

use from a wide range of fundamental fields, such as machine learning and linguistics.

Regarding this work, we can identify two main families of sentiment analysis techniques:

surface and deep approaches. Surface techniques are based on superficial aspects of the

natural language such as distribution of syntactical elements and appearance of certain

tokens. Furthermore, deep approaches base their functioning in the semantic meaning of

the text, and for that goal different text representations are used.

In this chapter, we will review the main techniques and trends that exist within sentiment

analysis research. The traditional techniques are briefly reviewed, as they are relevant for

this work, while the deep approaches will be more detailed, due to this work is heavily

based on these. Also, other important techniques for this work are described, such as the

ensemble of classifiers. Finally, it is also presented a taxonomy that classifies the different

approaches found in the literature and the ones proposed in this work.

Surface approaches

Generally, sentiment analysis is considered as a text classification problem (2). Since it is a

classification problem, any existing supervised learning method can be applied. In fact, the

dominant approaches in sentiment analysis are based on machine learning techniques (3),

(4), (5). Traditional approaches use a variation of the BOW model, where a document is

mapped to a feature vector, and then is classified by machine learning techniques. The most

basic version of BOW is the one-hot vector, which represents each word w as an IR|V |×1

sparse vector with all 0s and one 1 at the index of w in the sorted vocabulary V , being |V |
the vocabulary size. Word vectors representing through this type of encoding would appear

as follows:

wa =

1

0

0

...

0

, wat =

0

1

0

...

0

, . . . , vzebra =

0

0

0

...

1

Although the BOW approach is simple and quite efficient, a great deal of the information

from the original natural language is lost (11), word order is disrupted and syntactic struc-

tures are broken. Added to that, this representation represents each word as a completely

11

CHAPTER 2. STATE OF THE ART

independent entity, not giving any notion of word similarity:

(wmonkey)Twwall = (wmonkey)Twape = 0

Accordingly, features with a more extensive understanding of the natural language are

used. Instead of restricting to BOW (unigrams), higher order n-grams can be used, such as

bigrams or trigrams (12).

Another kind of feature that can be used is POS information, which is a basic form of

syntactic analysis, as described in (13). In this last work the effectiveness of POS features

is very noted, in contrast to the analysis discussed in (14) where the utility of these POS

features in the microblogging domain -such as Twitter- is questioned. POS and many tasks

intimately related with POS, such as dependency parsing, have been studied in depth, and

continuous progress is being made. Dependency parsing represents the syntactic relation-

ships between words in a sentence, and can be represented by a dependency tree. Figure 2.1

shows an example of a result of dependency parsing and POS tagging 1. In (15), a POS

tagger and dependency parser is described that surpasses the previous state-of-the-art is

presented, and is based on a feed-forward neural network.

Figure 2.1: Example of dependency parsing and POS tagging.

Added to this, many machine learning techniques involve gathering a sentiment lexicon

as a source of subjective sentiment knowledge, as in (6), where this knowledge is added

to the previously described features (16), (17). Besides, many lexicon-based approaches

take into account linguistic context (18), which involves mechanisms such as shifting the

sentiment valence (19) with techniques like intensification (very bad) and negation (not

happy). Nevertheless, lexicon-based approaches have many drawbacks: the necessity of

labeled data that is consistent and reliable (18), the existence of expressions that vary

1http://googleresearch.blogspot.com.es/2016/05/announcing-syntaxnet-worlds-most.html

12

2.2. DEEP TECHNIQUES

significantly among different domains, and the fact that lexicons can not be automatically

translated for multilingual use. These disadvantages make hard to maintain a domain

independent sentiment lexicon (20).

Due to the numerous research that has been done, many other features and learning

algorithms have been tried. Like other supervised machine learning applications, the key

aspect for sentiment analysis is the engineering of a set of effective features. Some of the

many examples enumerated in (2) are:

Sentiment words and phrases. Sentiment words are words that are used to express

either a positive or negative sentiment. Most sentiment words are adjectives and

adverbs (e.g., good, bad, terrible), but nouns (e.g., rubbish) and verbs (e.g., hate, love)

can also contain sentiment information. Apart from this, there are also some idioms

that express sentiment, e.g., can’t make an omelette without breaking eggs.

Sentiment shifters and intensifiers. These can be words that totally change the sen-

timent orientation, e.g., form positive to negative and vice versa. For example, “I

don’t like this food” is negative, and the sentiment shifter is don’t. As for sentiment

intensifiers, some examples are very, many and few.

An interesting example where many hand-crafted features are extracted in order to

obtain a good performance in sentiment analysis is (21), where the domain is the Twitter

realm. The features are: word n-grams, with n from 1 to 4; character n-grams, with n rang-

ing from 3 to 5; number of words appearing in upper case; Part Of Speech tagging; number

of hashtags; several scores based sentiment lexicons; characteristics about the punctuation,

e.g., number of exclamation marks; presence of absence of emoticons, e.g., ‘:)’; number of

elongated words and the appearance of negations words. As it can be seen, this set of

feature is fairly complex, and is totally domain-dependent.

In general, extracting non-simple features from the text and figuring out which features

are relevant or not, as well as selecting a classification algorithm, are fundamental questions

in machine learning driven methods (22), (23), (24). Traditional approaches rely on manual

feature engineering which is time consuming.

Deep techniques

Continuous representations of words as vectors has proven to be an effective technique in

many NLP tasks, including sentiment analysis (25). One of the most relevant algorithms in

13

CHAPTER 2. STATE OF THE ART

the field of deep learning for NLP are the DBOW and Skip-gram models, generally called

Word2Vec models (10). These algorithms compute continuous vector representations of

words form very large datasets. The extracted word vectors contain a huge amount of

syntactic and semantic regularities present in the language, expressed as relation offsets

in the vector space (26). These word-level embeddings are encoded by column vectors in

an embedding matrix W ∈ IRd×|V |, where |V | is the size of the vocabulary. Each column

Wi ∈ IRd corresponds to the word embeddings vector of the i -th word in the vocabulary.

The transformation of a word w into its word embedding vector rw is made by using the

matrix-vector product:

rw = Wvw

where vw is an one-hot vector of size |V | which has value index at w and zero in the

rest. The matrix W components are parameters to be learned, and the dimension of the

word vectors d is a hyper-parameter to be chosen. The knowledge contained in the vector

representations can result very effective when performing the task of Sentiment Analysis

(27).

In deep learning for Sentiment Analysis (SA), an interesting approach is to augment

the knowledge contained in the embedding vectors with other sources of information. This

added information can be sentiment specific word embedding as in (25), or as in a simi-

lar work, a concatenation of manually crafted features and these sentiment specific word

embeddings (28). Another approach that incorporates new information to the embeddings

is described in (29), in which Deep Learning is used to extract sentiment features in con-

junction with semantic features. (30) describe an approach where distant supervised data

is used to refine the parameters of the neural network from the unsupervised neural lan-

guage model. Also, a collaborative filtering algorithm can be used, as is detailed in (31),

where the authors add sentiment information from a small fraction of the data. In the line

of adding sentiment information, in (32) is portrayed how a sentiment Recursive Neural

Network can be used parallel to another neural network architecture. In general, there is a

growing tendency which tries to incorporate additional information to the word embeddings

created by deep learning networks. An interesting work is the one described in (33), where

both sentiment-driven and standard embeddings are used in conjunction with a variety of

pooling functions, in order to extract the target-oriented sentiment of Twitter comments.

In deep learning, word are predominantly represented as vectors through the word2vec

technique (10). The two main models that support this tool are Skip-gram and CBOW

(Continuous Bag Of Words). While the Skip-gram model predicts surrounding words w(t−

14

2.2. DEEP TECHNIQUES

2), w(t − 1), w(t + 1), w(t + 2) given a word w(t), the CBOW model predicts a word w(t)

given the surroundings (Figure 2.2). In both models, the surrounding words are past and

future words.

Figure 2.2: CBOW and Skip-gram architectures.

In the case of Skip-gram, the learning objective function can be expressed as the maxi-

mization of the average log probability (34):

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt)

where c is the size of the training context, or window. Larger c values can result in higher

accuracy, but at the expense of training time. For the sake of completion, the basic formu-

lation of Skip-gram defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp(vTwO

vwI)∑|V |
w=1 exp(v′wvwI)

where vw and v′w are the ‘input’ and ‘output’ vector representations of w. Each word is

associated with an input and output vector, that is averaged to obtain the final word vector.

This last formulation is impractical due to cost of computing 5p(wO|wI) is proportional to

|V |, which is often very large (around 105). In practice, more complex formulation is used,

based on the hierarchical softmax.

As an extension of the Skip-gram model, the GloVe (Global Vector for Word Repre-

sentation) model has been presented (35). This efficiently leverages statistical information,

taking advantage in a better manner of this concurrence information that the Skip-gram

15

CHAPTER 2. STATE OF THE ART

0 20 40 60 80 100 120 140

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2
f(

x)
GloVe weighting function

Figure 2.3: GloVe weighting function.

model. In short, this model introduces a weighting function to the original Skip-gram for-

mulation that allows reducing the noise introduced by low occurrence tokens, augmenting

the weight with the occurrence ratio. The function formulation is as follows:

f(x) =

(x/xmax)α if x ≤ xmax

1 otherwise

with α and xmax being hyper-parameters. Figure 2.3 shows a typical realization of this

function, with α = 3/4 and xmax = 100.

A very interesting characteristic of these word vector representations is that the word

vectors can be combined using vector addition operations. These operations manifest the

information that the vectors contain. For example, computing the operation wking−wman is

approximately equal to operating wwoman −wqueen. Observing these results, many authors

conclude (34) that the offsets obtained with addition (and subtraction) operations represent

the underlying concept. In the case of the example, the offset would represent the concept

“kingly”.

Another complex information is usually embedded into the continuous word vector repre-

16

2.2. DEEP TECHNIQUES

(a)

(b)

(c)

Figure 2.4: 2D projections of the regularities between word vectors. (a) Male-female; (b)

verb tenses; (c) country and capital.

17

CHAPTER 2. STATE OF THE ART

sentations, such as verbal tenses (wfall−wfallen w wdraw−wdrawn) and even country-capital

relationships (wjapan − wtokyo w wfrance − wparis). This last type of offset is not syntactic,

but mostly semantic. That is, these representations contain both types of information.

Moreover, it is possible to visualize the word vectors by projecting their values to a 2D

plane. Although much information contained in the vectors is lost, the general structure

is often visible. Any dimension reduction technique can be used. Normally, Principal

Component Analysis (PCA), an Singular Value Decomposition (SVD) based algorithm, is

used (9).

Alternatively, another newer visualization technique can be used: t-SNE (t-Distributed

Stochastic Neighbor Embedding) (36). This technique is well-suited for the visualization of

high-dimensional datasets. In some applications, t-SNE is better at preserving certain not

linear characteristics of the data.

Nevertheless, it is worth mentioning that, in dimension reduction techniques, the re-

sulting reduced dimensions do not have any direct meaning. For example, in PCA these

dimensions are the ones that retain the most variance, and consequently information, of all

the transformed ones.

It is worth mentioning that in the literature and in this work there is a distinction of two

types of word vectors: generic and affect word vectors. Generic vectors, often referred to

as pre-trained vectors, are word representations that have not been trained with an specific

purpose or task. For example, training Skip-gram model on a Wikipedia dataset will result

on pre-trained vectors, as this training has not been done with a specific task as objective.

On the contrary, affect word vectors are those that have been trained for capturing sentiment

infomation. This can be achieved by the use of neural networks that have in their objective

function a metric of how well the produced vectors represent sentiment information. In this

work, both types of word vectors are used.

Ensemble methods

In the field of ensemble methods, the main idea is to combine a set of models (component

classifiers) in order to obtain a more accurate and reliable model in comparison with what

a single model can achieve. In general, an ensemble model can be understood as

yi = f(d1i, d2i, ..., dLi)

where dji is the prediction of the j-th of L component classifiers in the i-th example of

18

2.3. ENSEMBLE METHODS

the dataset, f(·) the ensemble function, and yi the prediction of the ensemble.

The methods used to model combination are many, and a categorization is presented

in (37). This classification is based on two main dimensions: how predictions are combined

(Rule based and Meta learning), and how the learning process is done (Concurrent and

Sequential).

Regarding the first dimension, on the one hand, in rule based approaches predictions

from component classifiers are treated by a fixed rule, such as majority voting, with the aim

of averaging their predictive performance. On the other hand, meta learning techniques use

predictions from component classifiers as features for a meta-learning model.

In general, the fixed rule model combines multiple classifiers by computing their predic-

tions d with a combination function f(·). The simplest way to combine multiple classifiers

is the voting scheme, which corresponds to taking a linear combination of the learners (9):

yi =

L∑
j=1

wjdji

where wj ≥ 0,
∑

j wj = 1, yi is the prediction for the i-th example and dji is the prediction of

the j-th classifier for the i-th example. This technique is also known as linear opinion pool.

In the simplest case, all learner are given equal weight, and the result would be equivalent

to taking an average. Nevertheless, computing a weighted averaged is one the of many

possibilities of combination rules. An extensive set of fixed rules is showed in Table 2.1.

Meta-learning or stacked generalization models extends fixed rule models in that the

output of the component classifiers is combined into another system, f(·|Φ), which is

yet another learner, and its parameters Φ are trained (9). The output is given as y =

f(d1, d2, ..., dL|Φ). An important fact is that the meta-learner should not be trained on the

training data used for the component classifiers because then, these classifiers may memo-

rize the data set. In fact, the meta learner should see the learner make errors. Therefore,

the meta learner should be trained on training data unused in the process of training the

component classifiers. In this models, f(·) has no restrictions, and can be a non linear

function. Figure 2.5 shows the general architecture of an ensemble model.

As explained in (38), rule based ensembles can be quite effective in the task of senti-

ment classification. Besides, these fixed ensemble models can be added with extra subjective

knowledge, as illustrated in (39), where a POS-based rule based ensemble model is proposed,

obtaining quite good results in the task of cross-domain sentiment classification. Another

rule-based ensemble approach is the one in (40), where a fixed rule based on the geometric

19

CHAPTER 2. STATE OF THE ART

Rule Combination function f(·)

Sum yi = 1
L

∑L
j=1 dji

Weighted sum yi =
∑

j wjdji, wj ≥ 0,
∑

j wj = 1

Geometric mean yi =
∏
j d

αk
ji , 0 ≤ αk ≤ 1

Median yi =medianjdji

Minimum yi = minj dji

Maximum yi = maxj dji

Product yi =
∏
j dji

Table 2.1: Fixed rules and their combination functions.

mean is used. Also, in (38) a meta-classifier ensemble model is evaluated, obtaining perfor-

mance improvements as well. An adaptive meta-learning model is described in (41), which

offers a relatively low adaptation effort to new domains.

d1 d2 dL...

f(·)

Figure 2.5: Ensemble architecture, where f(·) can be a fixed rule or a meta learner algorithm.

As for the second dimension, concurrent models divide the original dataset into sev-

eral subsets from which multiple classifiers learn in a parallel fashion, creating a classifier

composite. On the contrary, sequential approaches do not divide the dataset but there is

an interaction between the learning steps, taking advantage from previous iterations of the

20

2.4. ENSEMBLE TAXONOMY

learning process to improve the quality of the global classifier.

The most popular technique that processes the samples concurrently is bagging (37).

An example of bagging performance in the sentiment analysis task can be found in (42),

where bagging and other classifications algorithms are used to show that sentiment and

stock value are closely related. Bagging consists on building several instances of a black-

box estimator on random subsets of the original training set, and then aggregate their

individual predictions to form a final prediction. These methods are usually used as a

way of reducing the variance of a complex classifier (e.g., a decision tree), by introducing

a randomization factor and then combining the result. As they provide a way to reduce

overfitting, bagging methods work best with strong and complex models. A weak learner

has error probability less that 1/2, which makes it better than random guessing on a binary

class problem, while a strong learner has a arbitrarily small error probability.

Regarding both concurrent and sequential approaches, a work by (43) shows that bag-

ging and boosting (a sequential method) techniques can be very useful when dealing with

large and noisy data. Another study (44) shows a comparison between bagging and boosting

on a standard opinion mining task.

As opposed to bagging, boosting works by fitting a sequence of weak learners on repeat-

edly modified versions of the data. The predictions from all of them are then combined

through a weighted majority vote to produce the final prediction. In boosting, the next

learner in the chain is trained with the errors of the previous learner. In order to achieve

this, the data modifications at each boosting iteration consist on applying weights w1, w2,

..., wN to each of the training examples. Initially, those weights are set to wi = 1/N , and

so the first learner trains on the original data. For each successive iteration, the weights

are modified and the learning algorithm is applied again to the weighted data. In this way,

the incorrectly classified examples are weighted higher, and the correctly classified ones are

given a lower weight.

Nevertheless, these works also show that ensemble techniques not always improve the

performance in the sentiment analysis task, and there is not a global criteria to select a

certain ensemble technique.

Ensemble taxonomy

This section presents the proposed taxonomy for ensemble techniques applied to Sentiment

Analysis in both surface and Deep domains. This classification intends to summarize the

21

CHAPTER 2. STATE OF THE ART

S S+G G G+A A S+G+A

No

ensemble

(3)(4)

(5), (12) (7)

(13), (14) (29), (31) (45) (30) (25) -

(6),(18) MG

(20), (16)

(17)

Classifier

ensemble

(38), (39),

(40), (41), CEMSG CEMSGA

(37), (42),

(43),(44)

Feature

ensemble

(22), (23) MSG, (28) MSA MSGA

(11) (32), (33)

Table 2.2: Proposed taxonomy for ensemble of surface and Deep features. S represents sur-

face features, G and A stand for generic word vectors and affect word vectors, respectively.

The combination of the features and/or word vectors is indicated with ‘+’. We consider

the combination No ensemble/S+G+A not possible in the terms of this taxonomy.

22

2.4. ENSEMBLE TAXONOMY

work found in the literature as well as to compare these models with the ones we propose.

Also, with this, we respond to the first question raised in Sec. 1.1 regarding how the different

combination techniques can be classified.

The taxonomy can be expressed as combination of two different dimensions. On the

one hand, considering which features (i) are used in the model, that can be either surface

hand-crafted features, generic automatic word vectors, or affect word vectors specifically

trained for the sentiment analysis task. On the other hand, attending to how the different

model resources (ii) are combined: using no ensemble method at all, utilizing a classifier

ensemble, or taking advantage of a feature ensemble (where the features are combined and

fed to a learning algorithm). Table 2.2 shows a representation of this taxonomy, where the

two dimensions appear as rows and columns. We have classified all the reviewed work in

this paper using the proposed taxonomy, obtaining a visual layout of the techniques used

in relation with ensembling methods with surface and deep features. The layout of the axis

of the different ensemble approaches is shown next:

• No ensemble. This category includes analyzers based on surface features and not

using any ensemble technique. Instead, it is considered that the models that fit in

this category make use only of one type of feature.

• Classifier ensemble. Here are the tradition approaches that are based on ensemble

techniques (2.3). This category considers that the combination is made between clas-

sifiers, hence the name classifier ensemble.

• Feature ensemble. This category contains the approaches that make use of surface

feature combination techniques. Examples of this can be combining BOW with other

kind of features, such as POS features, but also word vectors.

As for the axis that represents which features are used, there are several options:

• S. Surface features, such as BOW, POS or sentiment lexicons (2.1).

• G. Generic word vectors, such the ones obtained through the training process of the

Skip-gram model (2.2).

• A. Affect word vectors that were specifically trained for embedding sentiment infor-

mation.

• Combinations. This axis also takes into account the combination of different types of

features: S+G (surface features combined with generic word vectors), G+A (gener-

ics word vectors with affect embbedings), and S+G+A (all three types of features

23

CHAPTER 2. STATE OF THE ART

combined in the same model). The combination S+A is not represented, as well as

the blank spaces in the taxonomy because of, to the extent of our knowledge, such

techniques has not been studied, and so they represent work that can be addressed in

the future.

24

CHAPTER3
Sentiment Analysis Models

This master thesis explores the combination of surface and deep features. In order

to successfully combine all these different types of information, it is necessary to take

advantage of some aggregation methods. In this Chapter, the proposed combining

models are presented. Firstly, the more straightforward approaches that ensemble

several classifiers trained with different features. After this, the ensemble of features

models are presented. These approaches combine different types of features -surface,

generic and affect words- in order to augment the knowledge provided to the classifier.

25

CHAPTER 3. SENTIMENT ANALYSIS MODELS

26

This Chapter presents the sentiment analysis models we propose for sentiment analysis.

These models have been validated in the Twitter domain (Sec. 4.1). First we describe

the developed deep learning based analyzer used as baseline for the rest of the paper, and

after this we detail several proposed ensemble models. These models are: ensemble of

classifiers and ensemble of features. Regarding the ensemble of classifiers, we tackle two

main approaches in further experiments: fixed rule and meta-learning models.

As for the ensemble of features, many combinations are studied: surface and generic

embeddings, generic and affect embeddings, and the global combination of these three

types.

Word
Embeddings

w1 w2 w3 w4

z

Figure 3.1: Schematic representation of the deep learning baseline model, MG. In this

figure, the word embeddings are combined into a single vector through one convolutional

function, and the fed to a linear algorithm, which determines the polarity of the document.

27

CHAPTER 3. SENTIMENT ANALYSIS MODELS

Deep Learning classifier (MG)

Generic word vectors, also denoted as pre-trained word vectors, can be captured by word

embeddings techniques such as word2vec (10) and GloVe (35). Generic vectors are extracted

in an unsupervised manner, not being trained for a specific task. These word vectors contain

semantic and syntactic information, but do not enclose any specific sentiment information.

Nevertheless, with the intention of exploiting the information contained in these generic

word vectors, we have developed a sentiment analyzer model based on deep word embedding

techniques for feature extraction, in order to compare it to other approaches in the task of

Sentiment Analysis. This approach makes use of word embeddings and a linear algorithm.

The model composites a vector that represents the whole tweet, obtained through the

min, average and max convolutional functions. These functions may be combined through

the concatenation of its resulting vectors. Generally, let w1, w2, ..., wN be the N words of

the tweet, and

z(w1, ..., wN) = [fmax(w1, ..., wN), fmin(w1, ..., wN), favg(w1, ..., wN)]

the vector representing the whole tweet. The combination of n of these functions produces

a vector of nd dimensions, being d the word vectors original dimension. For example, when

only using the average function for representing the tweet, then n = 1 and z has a dimension

of d.

A diagram of this model is showed in Figure 3.1. We refer to this model as MG, with

the G standing for generic word vectors.

Ensemble of classifiers (CEM)

Our objective is to combine the information from surface and deep features. The most

straightforward method is to make the combination at the classification level. In this way,

we propose an ensemble model which combines classifiers trained with deep and surface

features. We denote surface features as the ones extracted using hand-crafted methods or

sentiment lexicons, as they rely on the surface of the text. In this way, knowledge from

the two sets of features is combined, and this composition has more information than its

base components. This model combines several base classifiers which make predictions

from the same input data. These predictions can be subsequently used as new data for

extracting a single prediction of sentiment polarity. Accordingly, this ensemble model is

28

3.2. ENSEMBLE OF CLASSIFIERS (CEM)

 Surface feature

 Generic word vector

 Affect word vector

(a) CEM
SG

(b) M
SG

 (c) M
GA

Classifier 1 Classifier 2 Classifier n. . .

Ensemble

Word
Embeddings

Word
Embeddings

Word
Embeddings

Figure 3.2: Diagram of how the different classifiers and features are combines in the CEMSG,

MSG and MGA models.

29

CHAPTER 3. SENTIMENT ANALYSIS MODELS

aimed to improve the sentiment classification performance that each base classifier can

achieve individually, obtaining better performance. The combination technique can be any

treatment of the base classifiers predictions that outputs a sentiment polarity. Also, any

number of base classifiers can be combined into this ensemble model. A schematic diagram

of this proposal is illustrated in Figure 3.2.

We denote this model as CEM, which stands for Classifier Ensemble Model. The sub-

script indicates the types of features its base classifiers have been trained with, like in

CEMSG, where the ensemble combines classifiers trained with surface features and generic

word vectors.

Next, the two ensemble techniques used in this ensemble model in further experiments

are described.

Fixed rule model

This model seeks to combine the predictions from different classifiers using a simple fixed

rule. Consequently, this ensemble does not need to learn from examples. The rules used

in this approach can be any fixed rule used in ensembling models. In this work the rule

used for the experiments’ ensemble is the voting rule by majority. This rule counts the

predictions of component classifiers and assigns the input to the class with most component

predictions. In case of a match, a fixed class can be selected as the predicted by the model.

Meta classifier model

In the meta-classifier technique, the outputs of the component classifiers are treated as

features for a meta-learning model. This approach has the advantage that can learn, so

adapt, to different situations. As for the selection of the learning algorithm of this approach,

there is not an indicative of which one should be used. In this work, we select the Random

Forest algorithm, as it can achieve high performance metrics in sentiment analysis (46).

Ensemble of features (MSG and MGA)

This model is proposed with the aim of combining several types of features into a unified

feature set and, consequently, combine the information these features give. In this way, a

learning model that learns from this unified set could achieve better performance scores

that one that learns from a feature subset.

30

3.3. ENSEMBLE OF FEATURES (MSG AND MGA)

In this sense, we can distinguish two types of ensembles of features: ensemble of features

that combines both surface and Deep Learning features, and an ensemble of features that

were completely extracted using Deep Learning techniques. In this last type of ensemble of

features, we stress the relevance of combining generic word vectors and affect word vectors.

We refer to affect vectors as the result from training a set of pre-trained word vectors for

an specific task, which in this case it would be SA.

The combination of features and/or word vectors is made by concatenation of the vectors

into a unified feature vector, that is then fed to a linear algorithm. For example, for curating

the feature vectors for the MSG model, the zG ∈ IRdG word vector (Sec. 3.1) is used in

combination with the vector zS ∈ IRdS resulting from the surface features extraction from

the text:

zSG = [zG, zS]

and zSG ∈ IRdG+dS , where dG is the dimension of the generic word vectors, and dS the

dimension of the feature vector extracted trough surface techniques.

In the same manner, the model MGA uses the concatenation of the generic word vectors

and the affect word vectors. As it is described in Sec. 3.1, the affect vector representing a

tweet is composed using three convolutional functions, min, max and average. And so, the

composition of the zGA vector is made as:

zGA = [zG(wG1, ..., wGN), zA(wA1, ..., wAN)] ∈ IRdG+dA

with zG being the same generic vector as in Sec. 3.1 that represents a single tweet, and zA

the affect vector that represents, also, a single tweet composed by N words,

zG(wG1, ..., wGN) = [fmax(wG1, ..., wGN), fmin(wG1, ..., wGN), favg(wG1, ..., wGN)]

zA(wA1, ..., wAN) = [fmax(wA1, ..., wGN), fmin(wA1, ..., wAN), favg(wA1, ..., wAN)]

where wGi is the generic word vector of the i-th word in a tweet, and wAi is the affect word

vector of the i-th word in a tweet.

As for the MSGA, the model is the same, combining the three types of features:

zSGA = [zS , zG, zA] ∈ IRdG+dS+dA

31

CHAPTER 3. SENTIMENT ANALYSIS MODELS

We address to this first model type as MSG, as it combines surface features and generic

word vectors. In the same way, the second is referred as MGA, combining both generic and

affect word vectors. Lastly, an architecture where surface features, generic word vectors

and affect word vectors are combined is denoted by MSGA. A diagram representing two

instances of the model is shown in Figure 3.2.

32

CHAPTER4
Evaluation

In this chapter, the evaluation of the proposed models is made. The evaluation is

based on several experiments made on Twitter datasets that aim to characterize the

sentiment classification performance of this master thesis different models. Also, this

evaluation makes use of the Friedman statistical test, using it to characterize the

different models in a rank. As the statistical results imply, the proposed models sig-

nificantly improve the baseline. Besides, two models stand out in this improvement.

33

CHAPTER 4. EVALUATION

34

4.1. EVALUATION SETUP

Evaluation Setup

This section describes the experiments conducted in order to answer the questions for-

mulated in the introduction (Sec. 1.1). These experiments are aimed to evaluate the

performance between the deep learning baseline we have developed (MG) and the proposed

ensemble models. Each performance experiment is made with three different datasets,

widely used by the community of Sentiment Analysis. All the performance metrics have

been obtained using K-fold cross validation, with folds of 10.

Some proposed experiments are also aimed to characterize the sentiment analysis perfor-

mance for each individual classifier, including our own approach, so later it can be compared

to the ensemble models. For this purpose, we have collected several sentiment analyzers for

composing a classifier ensemble.

As for the sentiment analysis of the natural language, it is conducted at the tweet level,

so it is not necessary to split the input data into sentences. The classifiers label each

comment as either positive or negative.

Datasets

The datasets used for testing are SemEval 2013, SemEval 2014 (47), Vader(48) and STS-

Gold (49). These datasets are uniquely used for testing purposes, so they are not used

for training any algorithm. Also, we use the Sentiment 140 (50) dataset for developing

our deep learning baseline, MG. These datasets are described next, and some statistics are

summarized in Table 4.1.

Also, the distribution of the number of words for each dataset is showed through and

histogram for both aggregated and separated in sentiment polarities. In these graphics, the

mean value in each case is represented by a vertical line. When showing the distributions

by sentiment polarity, the green symbolizes positive, while the red represents the negative

sentiment. These graphics help to gain insight about the dataset contents, and the possible

differentiation by sentiment polarity.

The SemEval 2013 test corpus is composed if 8,987 English comments extracted from

Twitter on a range of topics: several entities, products and events. Similarly, we have also

use the SemEval 2014 test dataset. In both SemEval datasets, the data is not public but

must be downloaded from the web first. As some users have already deleted their comments

online, we have not been able to recover the original datasets, but subsets of it. Besides,

as the development dataset contains only binary targets (positive and negative), we have

35

CHAPTER 4. EVALUATION

made an alignment processing of the SemEval datasets, filtering other polarity values.

Figure 4.1 shows the distribution of the number of words in each tweet of the SemeE-

val2013 and 2014 datasets. It is worth mentioning that the two SemEval datasets are very

similar, with both number of words distribution alike. Also, the mean values of these dis-

tributions are very close, nearly 20 words per tweet. The differences between positive and

negative tweets in the distributions do not seem relevant.

The Vader dataset contains 4,200 tweet-like messages, originally inspired by real Twitter

comments. A subset of these messages is specifically designed to test some syntactical and

grammatical features that appear in the natural language.

For this dataset, word distribution is showed in Figure 4.2. Vader dataset has a different

distribution that the SemEval datasets. The mean value of the word count is lower, around

15 word per comment. Also, there are some differences in the distributions for positive and

negative polarities. Nevertheless, the mean value is practically equal for both sentiment

polarities.

The last dataset used for testing is the STS-Gold dataset for Twitter, which has been

collected as a complement for Twitter sentiment analysis evaluations processes (49).

For this last test dataset, the word count distributions are showed in Figure 4.3. It

is interesting to note that the aggregated distribution of the STS and the Vader datasets

are very similar, unlike the sentiment-dependent distributions. Also, their mean values are

close to 15 words per comment/tweet. While the word count distributions help to describe

a dataset, they do not give any insight regarding how well a certain classifier performs when

analyzing the sentiment of that dataset. Proof of this can be found when attending how

similar the distributions between the Vader and STS datasets are, and how different is the

performance of the same models (with no additional training) on these datasets.

As for the training data of our baseline model, the selected dataset is the Sentiment

140 dataset, containing 1,600,000 Twitter messages extracted using a distant supervision

approach (50). The abundance of data in this dataset is very beneficial to our deep learning

approach, as it requires large quantities of data to extract a fairly good model, as pointed

out by (10).

The word count histograms of this dataset are gathered in Figure 4.4. The Sentiment140

dataset has a unique word count distribution, very different to that of the rest of datasets.

One would expect the distributions of the SemEval and Sentiment140 datasets to be alike,

as these datasets are completely composed of user-generated tweets. Nevertheless, their dis-

tributions are very different. While the SemEval datasets have a bell-shaped distributions,

36

4.1. EVALUATION SETUP

Dataset Positive Negative Total

SemEval2013 2,315 861 3,176

SemEval2014 2,509 932 3,441

Vader 2,901 1,299 4,200

STS-Gold 632 1,402 2,034

Sentiment140 800,000 800,000 1,600,000

Table 4.1: Statistics of the SemEval2014/2014, Vader, STS-Gold and Sentiment140

datasets.

the Sentiment140 dataset has not that shape. This fact could be explained attending at

how the Sentiment140 dataset was collected: through distant supervision (50). Only the

tweets that contain a emoji, such as :), ;) and :(were included in this dataset. In fact, the

distant supervision comes from using this emoji information to label each tweet as either

positive or negative.

Evaluation metrics

In sentiment analysis, as in many information retrieval tasks, the accuracy score is not

always a good indicator of the performance of a system. We can define the accuracy score

as the number of correct predictions made divided by the total number of predictions made.

This score is interesting when the test dataset is balanced, that is, there is approximately the

same number of examples in all the classes (e.g., in a binary sentiment prediction dataset, the

number of positive examples is similar to the number of negative examples). Nevertheless,

when the dataset is not balanced, the accuracy score can be misleading. For example, is a

dataset that has the 90% of its examples labeled as positive, a dummy system that predicts

only positive sentiment would obtain a accuracy score of 90 %, and the accuracy score would

not be a good indicator of this system’s performance.

For this reason, the metric used in this work is the macro averaged F1-Score, a met-

ric that can acknowledge for imbalanced datasets. This metric is the harmonic mean of

two values, precision and recall. For defining these two values, the analysis task must be

understood. Figure 4.5 shows a typical sentiment analysis scenario. For example, when

accounting for documents with positive sentiment:

37

CHAPTER 4. EVALUATION

0 10 20 30 40 50

Number of words

0

50

100

150

200

250

300
All

0 10 20 30 40 50

Number of words

0

50

100

150

200

250
Positive

0 10 20 30 40 50

Number of words

0

10

20

30

40

50

60

70

80

90
Negative

(a)

0 10 20 30 40 50

Number of words

0

50

100

150

200

250

300
All

0 10 20 30 40 50

Number of words

0

50

100

150

200

250
Positive

0 10 20 30 40 50

Number of words

0

10

20

30

40

50

60

70

80
Negative

(b)

Figure 4.1: Distribution of the number of words by sentiment polarity and aggregated for

SemEval2013 (a) and SemEval2014 (b).

38

4.1. EVALUATION SETUP

0 10 20 30 40 50

Number of words

0

50

100

150

200

250
All

0 10 20 30 40 50

Number of words

0

20

40

60

80

100

120

140

160

180
Positive

0 10 20 30 40 50

Number of words

0

10

20

30

40

50

60

70

80
Negative

Figure 4.2: Number of words distribution by sentiment polarity and aggregated for Vader

dataset.

True positives are the documents correctly classified as positive.

True Negatives are the document with negative sentiment that have been correctly

classified as negative.

Type I errors (or false positives) are negative documents that have been incorrectly

classified as positives.

Type II errors (or false negatives) are positive documents that hava been incorrectly

classified as negative.

Once this scenario has been defined, we can define precision and recall as:

Precision. Number of correct positive results divided by the number of all positive

results.

39

CHAPTER 4. EVALUATION

0 10 20 30 40 50

Number of words

0

20

40

60

80

100

120
All

0 10 20 30 40 50

Number of words

0

10

20

30

40

50
Positive

0 10 20 30 40 50

Number of words

0

20

40

60

80

100
Negative

Figure 4.3: Number of words distribution by sentiment polarity and aggregated for STS

dataset.

P =
TP

TP + FP

Recall. Number of correct positive results divided by the number of positive results

that should have been predicted.

R =
TP

TP + FN

The F1-Score can be interpreted as a weighted average of these two values, reachinh its

best score at 1, and worst at 0. The expression for the F-Score is:

F1 =
2

1
P + 1

R

= 2
P ·R
P +R

being P and R the precision and recall, respectively. In this way, the F-Score combines

40

4.1. EVALUATION SETUP

0 10 20 30 40 50

Number of words

0

10000

20000

30000

40000

50000

60000

70000

80000
All

0 10 20 30 40 50

Number of words

0

5000

10000

15000

20000

25000

30000

35000

40000
Positive

0 10 20 30 40 50

Number of words

0

5000

10000

15000

20000

25000

30000

35000

40000
Negative

Figure 4.4: Number of words distribution by sentiment polarity and aggregated for the

Sentiment140 dataset.

the precision and recall values into a single value, giving information of the performance of

a classification system in a numerical piece of information.

Baseline training

For the implementation of the MG model we have utilized the popular Word Embeddings

model known as word2vec (10). We use the implementation of the Word2Vec algorithm of

the gensim library (51).

The dimension of the vectors generated by word2vec is 500. We used a recursive fea-

ture selection algorithm implemented in scikit-learn (52) to discover the optimal dimension

for the downstream application of Sentiment Analysis once the pre-trained word vectors

were obtained. The dimension which achieves the best performance is 5001. For higher

1The result of the feature selection algorithm is 497 dimensions, but for simplicity of the implementation

we choose all 500 dimensions, as this does not have an impact on the classification performance.

41

CHAPTER 4. EVALUATION

Type II

Type ITrue
Positive

True
Negative

Error

Error

Figure 4.5: Sentiment analysis errors types scenario.

dimensions, the performance improvement is not relevant.

As for the word2vec model training, we use 1,280,000 tweets randomly selected from

the Sentiment 140 dataset. Once this model is extracted, we feed a linear regression model

(implementation from scikit-learn) with the vectors of each comment and the labels from

the original dataset. We split the sentiment 140 dataset using the ratio 80/20 for training

and development set, respectively.

With respect to the convolutional functions, we have conducted an effectiveness test

of the max, average and min functions on the development set. The results are showed in

Table 4.2. As can be seen, the avg function is very close to the performance of the complete

set of functions max, avg and min. Consequently, we select the avg function as the one

used for further experiments, as it provides very good results compared to the rest, and it

also reduces the computational complexity of the experimentation.

Regarding the preprocessing of the natural language, we tokenized the input data and

removed punctuation, excepting the most common (‘.,!?’). We also transformed URLs,

numbers and usernames (@username) into especial characters, with the aim to normalize

the data. The preprocessing is applied to all the texts before generating the word vectors.

Ensemble of classifiers

In order to improve the performance of the Deep Learning baseline, we have built an en-

semble composed of this analyzer and six different sentiment classifiers. Following, a list of

each of these classifiers is shown:

• sentiment140 (50)

• Stanford CoreNLP , (53)

42

4.1. EVALUATION SETUP

Convolutional function F-Score

max 74.82

avg 77.53

min 74.99

max + avg 77.63

max + min 76.7

avg + min 77.70

max + avg + min 77.73

Table 4.2: Effectiveness of the convolutional functions on the development dataset.

• Sentiment WSD (54)

• Vivekn (55)

• pattern.en (56)

• TextBlob Sentiment Classifier (57)

We have built ensemble classifiers using two combining techniques in the CEMSG model:

a rule based method and a meta learning approach, both using the predictions of the

classifiers composing the ensemble as features for the next step. For the meta-learning

approach, we use the implementation of scikit-learn of the Random Forest algorithm. For

this algorithm we have used 500 as a number of estimators, as in the experiments the value

of this parameter did not make any relevant change to the classification performance in the

range from 50 to 1,000. This exploration can be seen in Figure 4.6.

Ensemble of features

For the implementation of the surfaces features, we used the following, based on the work

by (21): Wordnet-Affect lexicon values (58), number of exclamation, interrogation and

hashtags marks ‘!?#’, numer of positive, neutral and negative words, number of words that

are all in caps and number of words that have been elongated ‘gooooood’.

43

CHAPTER 4. EVALUATION

SemEval2013 SemEval2014 Vader STS-Gold

sentiment 140 78.92 60.67 78.76 75.07

CoreNLP 46.95 42.95 60.19 59.68

WSD 76.18 75.35 77.75 75.35

vivekn 72.14 59.97 63.54 69.61

pattern 82.50 71.86 85.98 82.86

TextBlob 82.51 71.92 85.71 68.27

MG 85.34 86.16 87.71 83.43

CEMVo
SG 87.78 84.16 87.92 83.52

CEMMeL
SG 87.87 87.63 88.85 84.56

MSG 86.36 87.03 88.07 84.73

MGA 87.54 88.05 88.89 85.27

MSGA 86.26 86.94 88.89 85.26

CEMVo
SGA 86.26 85.90 89.52 87.08

CEMMeL
SGA 86.97 88.07 89.48 85.59

Table 4.3: Macro averaged F-Score of all the sentiment classifiers. Bold metrics are the best

in the test dataset. Besides, the last row shows the result of the Friedman test, in bold the

two best models. (Legend) sent140: sentiment140, CoreNLP: Stanford CoreNLP, WSD:

Sentiment WSD, TB: TextBlob.

44

4.2. ANALYSIS

0 200 400 600 800 1000

n estimator

0.84

0.85

0.86

0.87

0.88

0.89
F1

 S
co

re
Random Forest number of estimators explorations

sts

semeval14

vader

semeval13

michigan

Figure 4.6: Exploration of the number of estimators hyper-parameter of the Random Forest

algorithm.

As for the MGA model, we use the word vectors obtained by (25). More specifically, we

use the vectors extracted using the SSWEr neural model. These vectors have been extracted

for learning sentiment-specific word vectors but not general semantic information, so we use

them as affect word vectors.

Analysis

The experiments we conducted show the sentiment classification performance of each base

classifier separately (including our deep learning baseline) on each of the three test datasets,

as well as the metrics for the ensemble of classifiers and several ensembles of features. In this

section, the experimental results are shown and discussed. The results of all the experiments

are gathered in Table 4.3.

Performance of the base classifiers

The better F-score performance is achieved by TextBlob in SemEval2013, by the WSD

classifier with an important difference over TextBlob in SemEval2014; while pattern.en has

45

CHAPTER 4. EVALUATION

a slightly better performance than the rest in the Vader dataset and has also the better

performance in the STS-Gold dataset by far. Furthermore, the classifier with the lower

performance is CoreNLP in all four test sets. The CoreNLP low performance in these

experiments can be due to the fact that this classifier is not well adapted to the short

reviews and comments such the ones found in the Twitter domain.

The mean accuracy performance for the base classifiers is 73.02, 63.79, 75.32 and 71.81

% in the SemEval2013, SemEval2014, Vader and STS-Gold datasets respectively.

Classifiers and features classifiers performance

CEM models gather the predictions from MG baseline and the other six base classifiers whose

classification performance has been analyzed. The voting and meta-learning techniques are

used as ensembling techniques. It can be seen in the Table 4.3 that these ensemble models

surpass the baseline, as well as all the other base classifiers. In fact, the best performance

for all the test sets are achieved by these CEM classifiers.

As for the feature ensemble models, they also push the performance further than the

baseline. The MGA ensemble is very close to the best metrics in both SemEval datasets,

and is relatively close to the best performance in the Vader dataset. Also, it seems that

MSGA is suffering overfitting, as the combination of all three types of features decreases the

performance when comparing to MGA model.

Moreover, as an another observation, it can be seen that the better improvements are

achieved by CEMSGA
Vo and CEMSG

MeL models, with 3.65 and 2.53 % of performance gain in

STS-Gold and SemeEval2013 datasets respectively.

Statistical analysis

In order to compare the different proposed models in this work, a statistical test has been

applied on the experimental results. Concretely, the Friedman test with the corresponding

Bonferroni-Dun post-hoc test, that are described by (59). These test are specially oriented

to the comparison of several classifiers on multiple data sets.

Friedman test is based on the rank of each algorithm in each dataset, with the best

performing algorithm gets the rank of 1, the second best gets rank 2, etc. Ties are resolved

by the average of the ranks. rij is the rank of the j-th of the k algorithms and on the i-th of

N datasets. Friedman test uses the comparison of average ranks Rj = 1
N

∑
i r
j
i , and states

that under the null-hypothesis (all the algorithms are equal so their ranks Rj are equal) the

46

4.2. ANALYSIS

Friedman statistic, with k − 1 degrees of freedom, is:

χ2
F =

12N

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

Nevertheless, (59) shows that there is a better statistic that is distributed according to

the F-distribution, and has k − 1 and (k − 1)(N − 1) degrees of freedom:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

#classifiers 2 3 4 5 6 7 8 9 10

q0.05 1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.724 2.773

q0.1 1.645 1.960 2.128 2.241 2.326 2.394 2.450 2.498 2.539

Table 4.4: Critical values for the Bonferroni-Dunn test. The number of classifier includes

the control classifier.

If the null-hypothesis of the Friedman test is rejected, post-hoc tests can be conducted.

In this work we employ the Bonferroni-Dunn test, as it allows to compare the results of

several algorithms to a baseline. In this case, all the proposed models are compared against

MG. This test can be computed through comparing the critical difference (CD) with a

series of critical values (qα), summarized in Table 4.4 (59). The critical difference can be

computed as:

CD = qα

√
k(k + 1)

6N

MG CEMVo
SG CEMMeL

SG MSG MGA MSGA CEMVo
SGA CEMMeL

SGA

7.5 6 3.75 5 2.875 4.75 3.875 2.25

Table 4.5: Friedman average ranks Rj for all proposed studied models.

For the computation of both tests, the ranks have been obtained. The average ranks

(Rj) are showed in Table 4.5. The α values is set to 0.1 for the following calculations. With

those averages, the Friedman statistics:

χ2
F =

12 · 4
8 · 9

(
(7.52 + 62 + 3.752 + 52 + 2.8752 + 4.752 + 3.8752 + 2.252)− 8 · 92

4

)
= 13.48

47

CHAPTER 4. EVALUATION

FF =
3 · 13.48

4 · 7− 13.48
= 2.78

and the critical value F (k − 1, (k − 1)(N − 1)) = 2.02. As FF > F (7, 21) (59), the null-

hypothesis is rejected and the post-hoc test can be conducted. According with this, the qα

in this case is 2.45, and the critical difference

CD = 2.45 ·
√

8 · 9
6 · 4

= 4.24

Continuing with the Bonferroni-Dunn test, the difference between the average ranks of

the baseline and the j-th model is compared to the CD and, if greater, we can conclude

that the j-th algorithm performs significantly better than the baseline.

Friedman test has pointed the CEMMeL
SGA and the MGA models as the two best classifica-

tion models, followed by the CEMMeL
SG and CEMVo

SGA models. Following, the Bonferroni-Dunn

test finds that CEMMeL
SGA and MGA models perform significantly better that the baseline. As

for the rest of the models, it is not possible to reach a conclusion with the current data.

On top of this, an interesting result of these experiments is that the performance of

the meta learning approach is higher that one of the fixed rule scheme. While the meta

learning ensemble with all types of features (SGA) is significantly better than the baseline,

the voting model is not. This could be caused by the learning capabilities of the meta-

classifier technique, feature that the fixed ensemble methods like voting rule do not have.

Other experiments

This section describes additional experiments made in this master thesis. These experiments

were made in order to explore the utility of the word vectors generated by the word2vec

word embedding tool (10) for sentiment analysis, as well as the scaling performance of the

word2vec implementation used (51). Concretely, we delve into the capabilities of these

embeddings to represent sentiment information while also retaining all the characteristics

detailed in Sec. 2.2. In fact, the results of these explorations could be useful for the sentiment

analysis.

Scaling Word2Vec

As described in (10), the Skip-gram model improves its quality, and also its utility for

sentiment analysis, as the size of the training corpus augments. In this experiment we

48

4.3. OTHER EXPERIMENTS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Corpus size 1e6

0.3

0.4

0.5

0.6

0.7

0.8

Accuracy
F1-Score

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Corpus size 1e6

10-1

100

101

102

103

104

Model memory
Vecs memory

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Corpus size 1e6

0

20

40

60

80

100

120

140
Train time (s)

(c)

Figure 4.7: Word2Vec scaling performance tests: (a) accuracy and f1 score in sentiment

analysis, (b) memory occupied by corpus and model vectors -the vertical axis is in logarithm

scale- and (c) training time in seconds.

49

CHAPTER 4. EVALUATION

explore this property by feeding the model with a corpus in a iterative process, increasing

the training size. The corpus of the experiment is the Sentiment140 corpus. We use the

whole 1,600,000 tweets. At each step several metrics are computed: the 10-fold accuracy

and f1 score in the sentiment analysis task with the MG model 3.1; memory occupied by the

vectors computed from the dataset; memory occupied by the Skip-gram model; and time

of training. The experiment results are shown in Figure 4.7.

Regarding the effect of the corpus size in the sentiment analysis performance, it can be

seen that, indeed, the increase on the corpus size improves the performance. It is interesting

to see that when the training corpus is small, the accuracy is much higher than the f1 score.

Nevertheless, these two metrics reach the same value around the 100,000 examples in the

training dataset, and then they do not diverge. Besides, around the 400,000 exaples in the

trainig dataset, these two metrics start stabilize. In other words, the growth of the model

performance slows down. That said, the model performance continues to grow, thought

more slowly. In fact, the growth does not stop in all the experiment.

Respecting the memory used by both the model vectors and the corpus vectors, it can

be seen that these last vectors consume between 1 and 2 orders of magnitude more that

the model vectors. In reality, this result indicates that the number of words in the model

vocabulary and the number of examples in the dataset are related by the same factor. As

the vertical axis of the Figure 4.7b is in logarithmic scale, the vectors of both the model

and the dataset grow linearly with the training corpus size.

Lastly, the timing profile of the training process in shown in Figure 4.7c. This result

clearly indicates that the training time of this word embeddings model behaves linearly

with the corpus size.

Sentiment seeding

It is well known that the word embeddings generated by models such as word2vec retain

many semantic and syntactic knowledge on the language they are trained on, and this

information can be even be aligned to perform language translations (26; 60). In an attempt

to discover similar relations between the word vectors and their sentiment characteristics,

we designed an experiment in which we search for similarities in the vectors with similar

sentiment meaning.

In these word embeddings, one could expect two words with similar semantic meaning

to be close on the d-dimensional space, such as cat and dog. In the same manner, two

words with very different semantics should be more afar from each other, like computer and

50

4.3. OTHER EXPERIMENTS

cheese. In the same manner, we could expect these relations in a sentiment form: the word

good could be close to the word exceptional, but farther away from the word bad.

In order to discover this relations, we have used a seeding technique, where two seeds

were chosen to be the representatives of each sentiment polarity. So, we selected the word

excellent for being the seed for the positive sentiment, and the word horrible as the negative

sentiment seed. Once the word were selected, we extracted the 20 word vectors more close

to each seed, obtaining 21 positive words vectors, and the same amount for the negative

vectors. As for the model used for obtaining the word vectors, we used the public word2vec

model trained on 100 billion word of the Google News dataset 2.

The metric which measures the closeness of two word vectors in the d-dimensional space,

we used the cosine similarity metric, as outlined in (60). This metric can be written as

cos(θ) =
v · w

||v|| · ||w||

with the result varying from -1, meaning completely opposite, to 1, which means exactly

the same. When this metric results in 0, it means orthogonality (or decorrelation).

As mentioned in Sec. 2.2, the word vectors can be visualized in a 2D plane, and still retain

enough information regarding the original non-compressed vectors to draw conclusions from

them. In this experiment, we have used the PCA algorithm to reduce the word vectors from

d = 300 to d′ = 2.

The result of the seeding and dimensionality reduction can be seen in Figure 4.8. It is

immediately seen that these two clusters of words are arranged separately, attending to the

positive or negative sentiment of each word. Once it has been verified that the word vectors

retain some sentiment information, this ‘sentiment clusters’ could be used in sentiment

analysis systems.

In fact, this technique has already been used in (61), where the highest consine similarity

is used as a feature for a sentiment classifier.

Sentiment lexicon clusters

Continuing with the exploration analysis of the word embeddings capabilities showed in

Sec. 4.3.2, another study was made on the word vectors. This experiment follows a different

approach: using a sentiment lexicon in order to search for sentiment similarities between

the words of this lexicon.
2https://code.google.com/archive/p/word2vec/

51

CHAPTER 4. EVALUATION

Figure 4.8: Sentiment seeds and their 20 more close neighbors in the d-dimensional space.

In this plot, the seeds are excellent (positive in green) and horrible (negative in red).

Concretely, the approach taken in this experiment is, given a already generated word

embeddings models, to extract all the words vectors of a lexicon, and to reduce their di-

mensionality to 2D using PCA. In this way, it can be rapidly checked whether the word

embeddings have sentiment simialarities or not. For this experiment, we use the same

word2vec model used in 4.3.2, and the sentiment lexicon described in (62). This lexicon

contains 2006 positive words, and 4783 negative words.

The result of the experiment is shown in Figure 4.9. It can be observed that the word

vectors arrange in two different clusters, corresponding to the two sentiment polarities.

The result is not as clear as the seeding experiment (4.3.2), but the clusters can be easily

detected.

52

4.3. OTHER EXPERIMENTS

Figure 4.9: Lexicon word vectors represented in a two dimensional plane, reduced using

PCA. Positive sentiment is showed green, while negative is red.

53

CHAPTER 4. EVALUATION

Still, this is an interesting result, as it shows that word vectors trained with no objec-

tive, in a unsupervised manner, retain sentiment information. Thus, we think that these

characteristics can be used in sentiment analysis tasks as additional information.

Also, the quality of these word embeddings in the sentiment detection can surpass that of

the lexicons, as pointed out in (25), where a quality experiment is carried out. In this work,

specific sentiment word vectors (affect word vectors) had more quality that the pre-trained

word embeddings, and than the sentiment lexicons.

In is worth mentioning, as made in Section 2.2, that the specific word embeddings are

learned automatically, with hardly any human intervention, while the sentiment lexicons

are manually curated in a work-intensive process.

54

CHAPTER5
Case Study

This Chapter describes the case study oriented to aspect based sentiment analysis on

the domain of Amazon reviews. The challenges raised by the change of domain and the

highest granularity in the analysis pose new challenges, that must be addressed with

additional techniques to the ones already presented. In this regard, in this Chapter we

present a context detection algorithm that aims to detect the set of words that relate

to a certain aspect. This algorithm is based on the extraction of the dependency tree.

That is, the syntactical structure of a document. Moreover, this Chapter also presents

the experimental results from the analysis in this alternative domain.

55

CHAPTER 5. CASE STUDY

56

5.1. SETUP

This chapter aims to describe selected use case. This study is not a thorough evaluation

of the models proposed in Chapter 3 but a prototype, a measure of how well the proposed

models perform in a sentiment analysis task of a different domain. Besides, this chapter

also describes an algorithm used in ABSA tasks, which has been implemented in this master

thesis.

The goal of this case study is to test the proposed models in a completely new domain,

very different from the original one. While the proposed models are general, that is, they

are not specially adapted to a certain domain, in Chapter 4 the evaluation is made only

in the Twitter domain. In order to address this potential deficiency in the evaluation, in

this chapter we take these models to a new domain, the review of products. This is an

important step in the evaluation of the models, as the Twitter and the reviews domain are

very different.

Regarding the sentiment analysis task, in this chapter we descend a level further in the

classification of sentiment analysis (Sec. 1.2), and study the proposed techniques in the

Aspect Based Sentiment Analysis realm. The proposed models in this master thesis have

been designed for sentiment analysis at document and sentence level. In fact, in Chapter 4

we considered the tweets as a document, but they could also be treated as sentences, due to

its length limitations (140 characters each tweet). But in this case study, we use the models

differently, in the context of the aspect level.

Also, in this study, we combine the proposed models with a context detection algorithm.

This algorithm detects, in a sentence review, the words that are related to an aspect. In this

way, this context is then passed to a sentiment analysis model. With this, the sentiment

analysis of an aspect is made only related to the words regarding that aspect.

Setup

This section describes the case study setup. First, the used datasets are described. After

this, the context detector is described, including its use with sentiment analysis models.

Datasets

In relation to the domain of the analysis, we selected the reviews of phones. Concretely,

the review of two Nokia mobile phones. The dataset used for this is the one found in (63).

This dataset is a ABSA benchmark, as is annotated with positive and negative sentiment

polarity.

57

CHAPTER 5. CASE STUDY

there is much which has been said in other reviews about the features

of this phone , it is a great phone , mine worked without any problems

right out of the box . but after several years of torture in the hands

of at&t customer service i am delighted to drop them , and look

forward to august 2004 when i will convert our other 3 family-phones

from at&t to t-mobile !

i have had the phone for 1 week , the signal quality has been great in

the detroit area (suburbs) and in my recent road trip between detroit

and northern kentucky (cincinnati) i experienced perfect signal and

reception along i-75 , far superior to at 38; t ’s which does not work

along several long stretches on that same route . but i spent hours

setting up the stations (accepts about 13-14 , i believe) , though the

reception is unpredictable .

Figure 5.1: Extraction from the dataset of phone reviews. In bold, the aspects of the

document and their polarity: green for positive, red for negative.

Figure 5.1 shows an extract of the phone reviews dataset. In these sentences, the aspects

(in bold) can be seen. When applying sentiment analysis techniques to these documents,

the contexts of the different aspects must not be mixed, as it would affect the sentiment

analysis quality.

The phone dataset is divided in two datasets. The first dataset, mobile phone 1, is

composed of reviews about certain products. In this case, the products are mobile phones

and its accessories. As for the second dataset, it is a constructed dataset that ensures that

each review combines both positive and negative sentiment. The statistics of the dataset

are shown in Table 5.1. As it can be seen, the polarity labels are equally distributed in the

two datasets.

Dataset Positive Negative Total

Mobile phone 1 43 43 86

Mobile phone 2 62 62 124

Cell phone and accesories 148,657 24,343 173,000

Table 5.1: ABSA datasets statistics and collected Amazon dataset.

58

5.1. SETUP

Added to this public datasets, we have collected a subset of the Amazon product data

(64; 65). In concrete, we have extracted the review texts from all the reviews referring to

cell phones and accesories. As for the polarity labeling, we have made use of the Amazon

rating system, where each review has associated a value between 1 to 5, where 1 express

the lowest satisfaction with the product, and 5 the highest. We have considered the reviews

labeled with 4 or 5 stars as positive, and the ones with 1 or 2 to be negative. In Table 5.1

the statistics of this dataset are summarized.

Figure 5.3 shows the distribution of the number of words in the collected Amazon

dataset. Also, the mean value is expressed by a vertical in this same Figure. Figure 5.2

shows this distribution separated by sentiment polarity. These distributions express that

the majority of reviews has around 300 words. Also, there reviews that are longer (the tail

of the distribution extends beyond 2,000 words). Moreover, there is a minority of reviews

that have 200 or less words. As for the separation between sentiment distributions, there

is not a relevant difference.

Sentiment Analysis system

In the sentiment analysis system, we can distinguish two main components: the context

detector and the sentiment analysis analyzer. The context detection algorithm is in charge

of detecting the context of the document aspects, which are then passed to the sentiment

analyzer, that classifies the aspects’ contexts.

In this case study, the aspect detection task is not addressed. The aspects are detected

through the dataset. In this way, only the performance of the combination of the aspect

context detection algorithm and the sentiment analyzer is measured.

59

CHAPTER 5. CASE STUDY

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000

6000
Number of words distribution

(a)

0 500 1000 1500 2000
0

100

200

300

400

500

600

700
Number of words distribution

(b)

Figure 5.2: Distribution of the number of words in the collected review dataset by sentiment

polarities: positive (a), and negative (b).

60

5.2. CONTEXT DETECTION

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000

6000
Number of words distribution

Figure 5.3: Number of words distribution in the collected review dataset.

Context Detection

This module is in charge of detecting the context of the aspects in the review documents.

The context of an aspect is the set of words that refer an opinion to the target aspect. This

capacity becomes very relevant when analyzing the sentiment of mixed opinions, where a set

of sentences, or even one sentence express the opinion of different aspects, and potentially,

these opinions are different. As an example, Figure 5.4 shows two mixed opinions in the

same sentence. It can be seen that these opinions are totally opposed, and that they are

referring to different aspects.

I like the looks of the phone, but the battery life is really bad.

Figure 5.4: Mixed opinions in a same sentence, one referring to phone design, and other to

battery life.

An interesting solution to the opinion detection in the context of mixed sentiments is

context detection. In this master thesis, we have implemented the algorithm proposed in

61

CHAPTER 5. CASE STUDY

(63). This algorithm extracts the opinion words referring to the target feature using the

dependency relations between words in a sentence. The dependency relations are those that

relate two words, involving a syntactical meaning. An example of a dependency parsing is

shown in Sec. 2.1.

Once the dependency tree has been extracted, it offers a measure of distance between

words attending to number of arcs that link each word in the dependency graph, when

going from one word to another. In other words, the distance d(wi, wj) between two words

wi and wj is the number of arcs, or edges, connecting them in the shortest path.

my dog also likes eating sausage

nmod:poss

nsubj

advmod
xcomp dobj

Figure 5.5: Dependency tree of a simple sentence.

Besides, the distance between two words wi and wj can be expressed as a sum of the

distances of these words to an intermediate word, wk.

d(wi, wj) = d(wi, wk) + d(wk, wj)

where wk is a intermediate word in the dependency tree, not in the natural order of the

sentence.

The intuition behind these distances is that more closely related words come together to

express an opinion about an aspect (63). If there are n aspects of a product in a sentence,

then the word that are more close (in terms of these dependency distances) to an aspect i

will come together to express some opinion about it, rather than about another aspect j,

to which they are not so close.

Besides, the dependency tree can be expressed more compactly as a graph matrix G. In

this matrix, the rows and columns represent the words of the sentence, and its contents the

distance to each other. The matrix obtained directly from parsing the dependency tree is

not complete useful, as many relations are not specified. Continuing with the example in

62

5.2. CONTEXT DETECTION

Figure 5.5, the matrix associated to that tree is expressed as:

G =

my dog also likes eating sausage

my 0 1

dog 1 0 1

also 0 1

likes 1 1 0 1

eating 1 0 1

sausage 1 0

Note that G is a symmetric matrix, with the diagonal elements all zero. That is, Gi,j = 0

if i = j. Besides, as it is symmetric, Gi,j = Gj,i for all indices i and j.

The rest of the elements of G, those that are no assigned a value when parsing the

dependency tree, are considered to have a infinite value (∞). Nevertheless, in order to

correctly express all the relations in the graph, the matrix must be changed, so that it ex-

pressed all the shortest paths. In this way, we select the Dijkstra’s algorithm for computing

the shortest paths in the dependency graph. After applying the Dijkstra’s algorithm, the

graph resulting is

G =

my dog also likes eating sausage

my 0 1 3 2 3 4

dog 1 0 2 1 2 3

also 3 2 0 1 2 3

likes 2 1 1 0 1 2

eating 3 2 2 1 0 1

sausage 4 3 3 2 1 0

After this, the distances in the graph can be obtained attending to the elements of G.

For example, the distance between the words dog and sausage is expressed in the matrix as

Gdog,sausage = G2,6 = 3.

At this step, we have a graph represented by a matrix G, and a set of aspects. The

goal of this algorithm is not to detect, given a sentence, which word or words represent the

aspects, and so in this discussion that information is supposed to be already given. We

denote this set of aspects as A, and the graph of relations as R.

In general, as detailed in (63), there are n aspects where n is the dimension of A. The

63

CHAPTER 5. CASE STUDY

algorithm for extracting the set of words wi ∈ S that express any opinion about the target

aspect at proceeds as follows:

Algorithm 1 Dependency extraction algorithm

(i) Initialize n clusters Ci∀i = 1..n

(ii) Make each ai ∈ A the clusterhead of Ci. The target aspect at is the clusterhead of

Ct. Initially, each cluster only consists of the clusterhead.

(iii) Assign each word wj ∈ S to cluster Ck s.t.

k = arg mini∈nd(wj , ai)

(iv) Merge any cluster Ci with Ct if d(ai, at) < θ where θ is some threshold distance.

(v) The set of words wi ∈ Ct expresses the opinion regarding the target aspect at.

In other words, n clusters are initialized, each cluster Ci corresponding to each feature

ai ∈ A, being ai the clusterhead of Ci. Then, each word wi ∈ S is assigned to the cluster

whose clusterhead is closest to it. After this, any cluster is merged with the cluster whose

clusterhead is the target aspect if the distance between their clusterheads is lower than a

threshold θ. Finally, the set of words in the cluster Ct give the opinion about the aspect at.

For example, when detecting the contexts for the aspects in the sentence “I like the

looks of the phone and it is a great buy, but the battery life is really bad”). In this sentence,

the aspects could be phone, buy and battery life, and the target aspect is phone. In order

to extract the contexts of these aspects, the dependency parsing must be done, obtaining a

dependency tree. With the graph constructed from the tree, we compute the graph matrix

G. Once the graph matrix is obtained, the next step is to apply the Algorithm 1. In this

case the Algorithm detects the following clusters for all the aspects:

phone→ i like the looks of the phone and

buy→ it is a great buy, but

battery life→ the battery life is really bad

As the target aspect is phone, the algorithm tries to merge the clusters with the cluster

of the target feature is the distance between their clusterheads is less than θ. As indicated in

(63), an optimal value for this threshold is 3, as he obtained in an experimental evaluation.

64

5.3. TRAINING

In this way, the algorithm merges the cluster associated with phone and the one whose

clusterhead is buy, as their clusterhead distance is 2. Finally, the obtained set os words are:

I like the looks of the phone and

buy︷ ︸︸ ︷
it is a great buy but︸ ︷︷ ︸

phone

,

the battery life is really bad︸ ︷︷ ︸
battery life

.

Figure 5.6: Context of the target aspect phone, and the aspects buy and battery life.

To sum up, the context detection algorithm makes use of the graph of dependencies in

order to calculate the set of words that express an opinion regarding an aspect. As the

words that are detected by the algorithm are very syntactically close to the aspect, there

are less noise introduced in the posterior sentiment analyzer, as word that are not related

to the aspect are discarded.

Training

In relation to the training of the sentiment analysis models, we have used a different ap-

proach as the one in Chapter 4. In this use case, we use the collected dataset from the

Amazon review data, described in 5.1. The difference relies in the length of the dataset.

Normally, the tweets consists of one or two short sentences. Nevertheless, in this review

dataset, the documents are normally longer. As the convolutional functions used to created

the document vector could not work well with longer documents, we split the reviews into

sentences. In this way, we train the models with this sentences. As for the polarity, we use

the original Amazon rate from the dataset.

For the training of the word2vec model, we use the unlabeled data from this Amazon

collected dataset.

The distribution of the number of words of the detected contexts (Sec. 5.2) is illustrated

in Figure 5.7. This Figure shows the histogram for the two mobile phone datasets, for each

sentiment and also for the aggregated. Also, the average value is represented a by a vertical

line. We can observe that the context of the reviews are generally short, and that the mean

value for the number of words is 13. That is, each context is composed, in average, by 13

words. In this way, we can observe that the length of the contexts detected from the review

65

CHAPTER 5. CASE STUDY

datasets and the length of the Twitter comments are similar. This fact helps in order to

adapt the proposed models into this new context.

66

5.3. TRAINING

0 5 10 15 20 25 30 35 40

Number of words

0

5

10

15

20

25
All

0 5 10 15 20 25 30 35 40

Number of words

0

2

4

6

8

10

12
Positive

0 5 10 15 20 25 30 35 40

Number of words

0

1

2

3

4

5

6

7

8

9
Negative

(a)

0 5 10 15 20 25 30 35 40 45

Number of words

0

5

10

15

20

25
All

0 5 10 15 20 25 30 35 40 45

Number of words

0

2

4

6

8

10

12

14
Positive

0 5 10 15 20 25 30 35 40 45

Number of words

0

2

4

6

8

10

12

14
Negative

(b)

Figure 5.7: Number of words distribution by sentiment polarity and aggregated for mobile

phone 1 (a) and mobile phone 2 (b).

67

CHAPTER 5. CASE STUDY

Evaluation

Regarding the evaluation of the sentiment analysis system, we have utilized as test datasets

the ones described in Section 5.1. These datasets, consequently, have not been used for

training purposes. The metric used for the evaluation is the same as the used in Chapter 4,

the macro averaged F1-Score. And, in the same way we described in that Chapter, the im-

provement against the baseline is measured, verifying whether the proposed models surpass

this performance or not. Table 5.2 shows the F scores for each classifier in the test datasets.

The results are discussed, firstly, in relation to the base classifiers in Sec. 5.4.1, and then

with regards to the proposed models (Sec. 5.4.2). Also, in Sec. 5.4.3 a statistical analysis is

applied to the results.

Mobile phone 1 Mobile phone 2

sentiment 140 45.33 46.51

CoreNLP 65.93 61.26

WSD 67.39 62.32

vivekn 62.07 64.57

pattern 67.96 72.85

TextBlob 67.98 75.67

MG 70.27 69.18

CEMVo
SG 72.16 73.47

CEMMeL
SG 51.60 63.57

MSG 73.27 69.74

MGA 59.09 60.50

Table 5.2: Macro averaged F-Score of all the sentiment classifiers in the phone reviews test

datasets. Bold metrics are the best in each test dataset.

68

5.4. EVALUATION

Performance of individual classifiers

In general, the performance of the base classifiers has decreased. While in the previous

experiment the mean performances by dataset were 73.02, 63.79, 75.32 and 71.81 %; in this

case study the mean performances are 62.78 and 63.86 % in the Mobile phone 1 and Mobile

phone 2 datasets respectively. That is, a mean F score of 70.98 (Chapter 4) against 63.32

%.

This decrease can be due to the bad adaptation of the majority of the base classifiers

to the new domain. A clear example is the sentiment140 classifier: it has been trained

specifically for the Twitter domain (50), and consequently it performs badly on the phone

review domain. Nevertheless, the CoreNLP improves its performance compared to that of

the previous experiment. In the phone reviews domain, this classifier has a mean F score

of 63.59 %, while in the Twitter domain its mean performance is 52.44 %. That is, a mean

improvement of 11.15 %. The better F score performance among the base classifiers is

achieved by TextBlob in both test datasets.

Performance of ensemble classifiers

In this case study the proposed ensemble of both classifiers and features effectively surpass

the performance of the deep learning baseline. Nevertheless, in this experiment there are

two differences: the affect word vectors and the meta learning ensemble.

As it has been described in Chapter 4, the selected affect word embeddings are trained

specifically for the sentiment analysis task on the Twitter domain. In this study, we use

them for the reviews domain, resulting in poor results from the ensemble methods that

involve this type of feature. In this way, we have omitted the results from the classifiers

that rely on the ensemble of classifiers and features which use affect word vectors, as we

consider them not relevant. We have, although, included the most basic affect vector model

performance results, in order to illustrate the poor adaptation capacity of these vectors.

With respect to the meta learning approach, Table 5.2 shows that it performs poorly

than the voting scheme based ensemble. This situation can be explained attending to the

size of the meta learner train dataset, as it is lower than the used in the Twitter domain

experiment. In the previous experiment, we used a subset of the Sentiment140 dataset to

train this meta classifier, while in this case study a subset of the collected train dataset is

used.

69

CHAPTER 5. CASE STUDY

Statistical analysis

The Friedman ranks can be computed on the results from the previous section. This rank

can be used to compare the relative performance of these approaches. They are summarized

in Table 5.3.

MG CEMVo
SG CEMMeL

SG MSG MGA

3 1.5 4.5 1.5 4.5

Table 5.3: Friedman average ranks Rj for the models relevant in this case study.

In this study, the α value is set to 0.05. Attending to the ranks, the Friedman statistic

χ2
F =

12 · 2
5 · 6

(
(32 + 1.52 + 4.52 + 1.52 + 4.52)− 5 · 62

4

)
= 7.2

FF =
1 · 7.2

2 · 4− 7.2
= 9.0

and the critical value F (k − 1, (k − 1)(N − 1)) = 6.39. As FF > F (4, 4), we can reject the

null-hypothesis. That is, not all the classifiers are the same.

Unfortunately, with the current data it is not possible to apply the Bonferroni-Dunn

post-hoc test, due to that the critical difference is too high (CD = 2.241 ·
√

5·6
6·2 = 3.54).

Consequently, we cannot statistically assure than any of these models perform significantly

better than the baseline.

Nevertheless, we can attend to the Friedman ranks and observe that these values align

with the previous conclusions. Firstly, affect word vectors cannot be directly used in new

domains. Secondly, that the meta learning model needs relatively high data volume to

perform well. Finally, the voting scheme and the combination of surface and generic features

surpass the performance of the baseline. This can be because of the surface based models

adapt better to different contexts, as the characteristics they extract do not differ much in

cross domains applications. For example, the word bad is, with high probability, a negative

word in any domain.

Still, there are word that cannot be directly adapted from one domain to the other.

As an illustration of this situation, in two similar domains, drink review and food review,

the cold word can have different sentiment polarities. In the context of cold coke, it has a

70

5.4. EVALUATION

positive sentiment, while in the context of cold pizza it has a negative connotation. These

characteristics are difficult to transfer from one domain to other. Usually, as indicated in

Sec. 2.1, this type of information is manually crafted in a work intensive process.

71

CHAPTER 5. CASE STUDY

72

CHAPTER6
Conclusions and future work

This final chapter presents the conclusions of this master thesis, as well as the future

work that can be initialized from this work. The conclusions offer a brief summary of

the work developed during this master thesis, pointing out the main results that were

obtained. As for the future work, some lines of research are outlined, with special

attention to the neural network field, in which many of this master thesis’ work is

inspired.

73

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

74

6.1. CONCLUSIONS

This chapter presents the conclusions of this master thesis. After the conclusions, which

include the answers to the questions arisen in Chapter 1, the future lines of work that this

master thesis leaves open are briefly described.

Conclusions

This master thesis proposed several models where classic hand-crafted features are combined

with automatically extracted embedding features, as well as the ensemble of analyzers that

learn from these varied features. The different types of combinations aim to effectively

aggregate the information captured by the different features and/or classifiers, obtaining a

more robust model than the isolated component approaches. The proposed models can be

very different, with many elements in its architecture, and some sort of classification can

result interesting.

In this way, in order to classify these different approaches, we also proposed a taxonomy

that defines two dimensions with which to structure the ensembles of classifiers and features.

The classification attends to two main characteristics that the proposed models and many

in the literature have in common. That is, the ensemble strategy and the type of features

involved. With these two axis, the taxonomy can be represented in a table, as in Table 2.2.

We have classified both the proposed models and the ones found in the literature.

Furthermore, with the aim of evaluating the proposed models, a deep learning baseline

was defined, and classification performances were compared with the one of the baseline.

With the intention of conducting a comparative experimental study, four public datasets

were used for the evaluation of all the models, as well as six public sentiment classifiers.

Finally, we conducted a statistical analysis in order to empirically verify that combining

information from varied features and/or analyzers is an adequate way to surpass the senti-

ment classification performance. Besides, we also conducted several additional experiments

that are aimed to verify the utility of the word embeddings, and the performance of model

that computes the word vectors. Trough this evaluation, we empirically verified that the

proposed models significantly surpass the baseline performance.

Added to this, this master thesis also presented a case study where the proposed models

are tested in a different domain: reviews oriented to the opinion about a certain product.

Also, in this line of work, a new level of sentiment analysis was briefly explored: Aspect

Based Sentiment Analysis. Given these new characteristics of the analysis, it has been

necessary to add a new technique. That is, context detection of given aspects. This new

technique was tackled by the use of an algorithm based on the dependency tree of the

75

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

sentence and the computation of distances in the resulting graph. In this way, in this case

study we combined the context detection algorithm with the proposed sentiment models in

a sentiment analysis case with more granularity, and in a different domain. We empirically

verified that the proposed models, combined with the context detection algorithm, perform

fairly well in this new domain and sentiment analysis level.

Regarding the first question at the beginning of the paper, we asked whether there is an

existing approach to ensemble traditional and deep techniques, and how such an approach

would work. To the best of our knowledge, our proposal of a taxonomy and the resulting

implementations are the first work to tackle this problem for sentiment analysis.

The second question is whether the sentiment analysis performance of a deep classi-

fier can be leveraged when using the proposed ensemble of classifiers and features models.

Observing the scores table and the Friedman ranks (Table 4.3), we see that the proposed

models generally improve the performance of the baseline. This indicates that the combi-

nation of information from diverse sources such as surface features, generic and affect word

vectors effectively improves the classifier’s results in sentiment analysis tasks.

Lastly, we raised the concern of which of the proposed models stand out in the improve-

ment of the deep sentiment analysis performance. In this regard, the statistical results

point out the CEMMeL
SGA and MGA models as the best performing alternatives. As expected,

this models effectively combine different sources of sentiment information, resulting in a

significant improvement with respect to the baseline. We remark the MGA model, as it

does not involve an ensemble of many classifiers, but only a classifier that is trained with

an ensemble of deep features.

Future Work

An important aspect of the proposed models is the efficient use of the features, and their

dependency with these features. For example, the models that use affect word vectors

heavily depend on the capacity of those vectors to retain sentiment information originally

present on the represented text. Of course, this fact can be extrapolated to all kinds of

features. In consequence, feature quality should be improved in order to increase model

performance. In this line of thinking, we believe that many lines of future work lie in

the generation of affect word vectors through the use of deep neural networks. The set of

techniques related to neural networks allows to automatically obtain the features that will

be used as features.

76

6.2. FUTURE WORK

Besides, we are also interested in integrating the proposed models into a unified model

that can be expressed in terms of a neural network. In this way, both the feature generator

and the classifier model will be united into a single, more robust model.

Moreover, we also are interested in applying the proposed models to the task of aspect

based sentiment analysis, in other domains that the one studied in this master thesis. In this

way, we intend to generalize the proposed techniques into more complete sentiment analysis

frameworks that will perform well in a big variety of domains and sentiment analysis levels.

Furthermore, we intend to extend the domain of the proposed models to other languages,

the majority of the work found in this are is in the English language. In special, we would

like to expand the work of this master thesis to Spanish.

Finally, an additional future work is the extension of the proposed models to a new task:

Emotion analysis. Emotion analysis is an important subtask of opinion mining where the

sentiment is not the objective, but the emotions are. That is, the aim of emotion analysis

is to discover the emotions enclosed in a text. Some emotions that are usually considered

are: joy, feat, anger and sadness. The adaptation to emotion analysis would require major

changes in the way the models are trained, but not in the models architecture itself.

77

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

78

APPENDIXA
Scientific Python environment

Throughout all this master thesis, the programming language used for the implementation

of the processes, models and algorithms is Python 1. This Appendix gives an overview of

the datascience Python environment, briefly describing all main components of this software

ecosystem.

The main components used in this master thesis are (all these libraries will be described

next):

• Numpy

• Pandas

• Scipy

• Matplotlib

• IPython

• Scikit-learn

• Gensim

1https://www.python.org/

79

APPENDIX A. SCIENTIFIC PYTHON ENVIRONMENT

Numpy

Numpy2 is the fundamental package for scientific computing with Python. It is used by the

majority of the rest of libraries. Numpy offers:

• Support for n-dimensional array objects.

• Broadcasting functions that transparently adapt dimensions between arrays.

• Integration of C/C++ and Fortran code.

• Utilities enclosed in linear algebra, Fourier transform and random number capabilities.

As many machine learning algorithms, the ones used in this master thesis can be ex-

pressed as operations between vectors and matrixes. For this reason, numpy has been

of the utmost utility. The numpy capabilities of managing vectors, matrices and higher-

dimensional arrays, as well many commonly used operations are basic for this work.

Many frequently used operations in this master thesis can be expressed in numpy with

one or a few lines. For example, in order to compute aggregation of features through the

convolutional functions (Sec. 3.1), the code can be written as follows.

Listing A.1: ”Computing convolutional functions”

import numpy as np

w is the array the contains

the word vectors of a certain document

np.concatenate((np.max(w,axis=0),

np.min(w,axis=0),

np.average(w,axis=0)))

2http://www.numpy.org/

80

A.2. PANDAS

Pandas

Pandas3 is a library that provides high-performance, easy-to-use data structures and data

analysis tools. Pandas is aimed to be used in data analysis and modeling. In this mas-

ther thesis, pandas is used to structure the datasets into unified arrangements, as well as

performing high performance operations over whole datasets.

Some of the highlights of the pandas libraries are:

• A DataFrame object that allows fast and efficient data manipulation with indexing

capabilities.

• Tools for writing and reading data in a huge variety of formats (CSV, Excel, SQL,

HDF)

• Intelligent data alignment and reshaping of data.

• Index and label-based sciling, indexing and subsetting of large datasets.

• High performance merging and joining of data sets.

Pandas has been useful in this master thesis when applying operations on whole data

sets, or when working with multiple data sets in the same environment. As a brief example,

a textual data set can be easily processed in pandas with the following code. This code

realizes a basic cleaning and tokenization of text.

Listing A.2: ”Basic text munging”

import pandas as pd

df is a dataframe that has preprocessed text

in the column name text

df[’text’].str.strip().apply(lambda x: x.split())

3http://pandas.pydata.org/

81

APPENDIX A. SCIENTIFIC PYTHON ENVIRONMENT

Scipy

SciPy4 is a Python-based ecosystem of open-source software for mathematics, science, and

engineering. Also, scipy is a library that offers fundamental software for scientific computing.

In this section we refer to that last meaning of scipy.

Scipy is a collection of mathematical algorithms and convenience functions built on

numpy. A python session with scipy becomes a data processing and system prototyping

environment rivaling such as MATLAB, Octave and R.

In this master thesis, scipy has not been as intensely used as numpy and pandas, but it

has been very important for some key functionalities.

Matplotlib

Matplotlib5 (66) is the 2D plotting basic library which produces publication quality figures.

This library offers a complete environment for plotting. Matplotlib can generate plots,

histograms, power spectra, bar charts, errorcharts, scatterplots, etc.

On top of matplotlib, there is an additional library called seaborn6. Seaborn provides a

high-level interface for drawing attractive statistical graphs. Also, it supports both numpy

and pandas, as well statistical routines from scipy.

In this master thesis all the plots shown have been generated using matplotlib and

seaborn. The integration of both matplotlib and numpy has been specially useful when

plotting word vectors and vectors that represent the evolution of a certain performance

metric with a hyper-parameter.

IPython

IPython7 provides a rich framework for interactive computing, allowing the user to execute

short black of code and see the results in the same window. IPython is highly integrated

with the rest of the scientific python stack, and it is usually use in conjunction. This library

also offers an interactive shell, the use of GUI toolkits, and easy to use parallel computing.

4https://www.scipy.org
5http://matplotlib.org/
6https://web.stanford.edu/ mwaskom/software/seaborn/
7http://ipython.org/

82

A.6. SCIKIT-LEARN

Also, IPython is part of a bigger project called Jupyter8. Jupyter offers the Notebook:

a web application that allows to create and share documents that contain live code, equa-

tions, visualizations and explanatory text. Between the uses of the Jupyter notebooks, we

can find data cleaning and transformation, numerical simulation, statistical modeling and

machine learning. Finally, Jupyter allows the use of other languages, not only python.

Some examples are Ruby and Julia.

Figure A.1: Example of the IPython interface, and its clean integration with matplotlib.

Scikit-learn

Scikit-learn9 is a machine learning library for python. It has all the common algorithms

and techniques used in machine learning analysis, all under a unified and consistent inter-

face. Scikit-learn implements both regression and classifications algorithms, pre-processing

techniques, cross validation methods, etc. Scikit-learn is:

• Simple and efficient tools for data mining and data analysis.

• Accessible to the public, and reusable in different contexts.

• Build on numpy, scipy and matplotlib.

• Open source.

8https://jupyter.org/
9http://scikit-learn.org/

83

APPENDIX A. SCIENTIFIC PYTHON ENVIRONMENT

This library has been used intensively during all the development of the project. With

scikit-learn, we have implemented all the proposed models. In particular, we have used

very frequently the implementation of the logistic regression algorithm, the cross valida-

tion techniques, the performance metrics computation and the reduct of dimensionality

algorithms.

The unified interface makes this library very easy to use. For example, all algorithms

that need to be trained implement the fit method, which takes as parameters the data (and

the labels if necessary) to train the algorithm. This methods is implemented independently

if is the case of a classifier or a dimensionality reduction algorithm.

Gensim

Gensim10 (51) is a topic modelling library for humans. Gensim claims to offer scalable

statistical semantics, to be able to analyze plain-text documents for semantic structure,

and to retrieve semantically similar documents. Also, gensim is scalable and has an efficient

implementation.

In this project, gensim has been used because of its implementation of the word2vec

algorithm. Thanks to the several optimizations made to this implementation, gensim’s

word2vec performance is close to the original C implementation11. This implementations

makes and efficient use of multi-core machines, which is a huge feature. In the following

listing, an example of how a word2vec model can be trained on a collection of words, and

how an example of its similarity computing capacities are shown.

Listing A.3: ”Basic text munging”

train the word2vec model

model = Word2Vec(sentences, size=100, window=5, min_count=5,

workers=4)

example of king - man + woman

model.most_similar(positive=[’woman’, ’king’],

negative=[’man’])

10https://radimrehurek.com/gensim/index.html
11http://rare-technologies.com/parallelizing-word2vec-in-python/

84

A.7. GENSIM

[(’queen’, 0.50882536), ...]

85

APPENDIX A. SCIENTIFIC PYTHON ENVIRONMENT

86

APPENDIXB
Linear Regression

In classification, the goal is to use an object’s characteristics (or features) to identify which

class it belongs to. A linear classifier achieves this by obtaining a linear decision boundary,

based on the value of a linear combination of the features input features. These features

values can be represented as feature vectors

x(i) ∈ IRn

being n the number of features. The data set is given as a set of feature vectors

{(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))}

where m is the number of examples in the data set. Each label is a real value y(i) ∈ {0, 1},
which represents the two different classes (in a binary classification problem).

In this type of classification, the input feature vector x is fed to the classifier, obtaining

an output hθ(x;θ, b). This hθ function is the hypothesis, and it estimates the probability

for each class:

hθ(x;θ, b) = P (y = 1|x;θ)

87

APPENDIX B. LINEAR REGRESSION

taking into account that

P (y = 1|x;θ) + P (y = 0|x;θ) = 1

Normally, the hypothesis function is expressed as

hθ(x;θ, b) = σ(θTx + b)

where the g function is the sigmoid function

σ(z) =
1

1 + exp−z

and θ is a real vector of weights. The weight vector is learned from the set of labeled

training samples. Finally, the class can be decided by applying the following rule:

y =

1 if hθ(x) ≥ 0.5

0 if hθ(x) < 0.5

The θ parameters are learned by gradient descent, and a common cost function used in

this type of classifiers is

m∑
i=1

L(y(i), hθ(x;θ, b)) + λR(θ)

where L is the loss function and R is the regularization term. The regularization term

is used (67) for avoiding overfitting. In this way R controls the complexity of the fitted

function. The expression used can be different, but a common realization of the loss and

regularization terms are

L(y(i), hθ(x;θ, b)) = − 1

m

[
m∑
i=1

y(i) log hθ(x)(1− y(i)) log(1− hθ(x)

]

R(θ) =
1

2m
θTθ

The process of fitting a linear function of the logistics regression can be also be seen as

computing the decision boundary as the set of x for which P (y = 1|x) = P (y = 1|x) = 0.5.

This is given by the hyper plane

xTθ + b = 0

On the side of the hyper plane for which xTθ + b > 0, inputs are classified as 1’s, and

on the opposite side they are classified as 0’s. The bias parameter b shifts the decision

88

boundary on a fixed amount. If b = 0, the decision boundary goes through the coordinate

origin. In n dimensions, the space of vectors that are perpendicular to θ occupy a n − 1

dimensional hyper plane.

As an example of how the logistic regression works, Figure B.1 shows en example of

a dataset linearly separable, and the decision function of a logistic regression algorithm

trained on this dataset. As can be seen, the algorithm successes on obtaining a decision

function that separates the two classes. The decision function obtained is:

θTx + b = 0

−1.713x1 + 1.655x2 − 0.105 = 0

With the θ vector being the orthogonal vector to the decision function.

2 3 4 5 6 7 8

x1

2

3

4

5

6

7

8

x
2

θ

Figure B.1: Decision boundary computed by a logistic regression algorithm trained on the

data points.

89

APPENDIX B. LINEAR REGRESSION

90

APPENDIXC
Principal Component Analysis (PCA)

In many machine learning problems data is often high dimensional, and it can be useful to

reduce said dimensionality. This reduction can be necessary in order to improve the time

performance of a classification algorithm. Or, as is our case, a dimensionality reduction is

mandatory for drawing the data in a low dimensional space humans can observe.

If data lies close to a linear subspace, we can accurately approximante each data poiny

by using vectors that span the said linear subspace (67). In this cases, the goal is to dis-

cover a low-dimensional coordinate system in which the original data can be approximately

represented. Generally, the approximation for datapoint x is expressed as

x(i) ≈
k∑
j=1

z
(i)
j b(j) ≡ z(i)

Here the i-th vector is approximately represented by the linear combination of the basis

vectors bj that span the linear subspace (also known as “principal components”). The

combination parameters z
(i)
j are the lower dimension vector components of the i-th low-

dimensional approximation. For a dataset of dimension n, the goal is to describe the data

using only a lower number m << n of coordinates z.

The routine for PCA is based on the Singular Value Decomposition (SVD) method, and

91

APPENDIX C. PRINCIPAL COMPONENT ANALYSIS (PCA)

it is described in Algorithm 2. In this description of the algorithm, X ∈ IRm×n is the data

matrix.

Algorithm 2 Dependency extraction algorithm

(i) Compute co-variance matrix:

C =
1

m
XT X

(ii) Compute the SVD of C

C = UΣVT

where UTU = Im, the columns of U are the eigenvectors of C and Σ is a diagonal

matrix whose values are the eigen values of C.

(iii) The k first columns of U are selected, composing the matrix Ureduced ∈ IRn×k.

(iv) The lower-dimensional representation of the i-th data point x(i) is given as:

z(i) = UT
reducedx

(i)

(v) The approximate reconstruction of the original datapoint is:

x(i)
approx ≈ Ureducedz

(i)

(vi) The averaged squared projection error over all the training data made is:

1

m

m∑
i=1

||x(i) − x(i)
approx||2 = (n− 1)

m∑
j=k+1

λj

where λk+1 . . . λm are the eigenvalues discarded in the projection.

Typically, in order to choose a k value, the total variation in the data is considered:

1

m

m∑
i=1

||x(i)||2

The rule taken is to select the smallest k value so that

x
(i)
approx||2

1
m

∑m
i=1 ||x(i)||2

≤ 0.01

allowing to retain a 99% of the variance of the original data.

92

In Figure C.1 a realization of the PCA algorithm is showed. The original two-dimensional

data (blue) is transformed into a one-dimensional data (green), using the eigenvector rep-

resented as a big arrow. The orthogonal and smaller arrow is the discarded eigenvector. In

this example, the total variance retained with the approximation is 94.9%.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure C.1: Example of how the PCA algorithm reduces the dimensionality of the blue data

points, resulting in the green data points.

93

APPENDIX C. PRINCIPAL COMPONENT ANALYSIS (PCA)

94

Bibliography

[1] B. Liu, Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge University

Press, 2015.

[2] B. Liu, “Sentiment analysis and opinion mining,” Synthesis lectures on human language tech-

nologies, vol. 5, no. 1, pp. 1–167, 2012.

[3] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment classification using machine

learning techniques,” in Proceedings of the ACL-02 conference on Empirical methods in natural

language processing-Volume 10, pp. 79–86, Association for Computational Linguistics, 2002.

[4] J. Read, “Using emoticons to reduce dependency in machine learning techniques for sentiment

classification,” in Proceedings of the ACL student research workshop, pp. 43–48, Association for

Computational Linguistics, 2005.

[5] S. Wang and C. D. Manning, “Baselines and bigrams: Simple, good sentiment and topic clas-

sification,” in Proceedings of the 50th Annual Meeting of the Association for Computational

Linguistics: Short Papers-Volume 2, pp. 90–94, Association for Computational Linguistics,

2012.

[6] T. Nasukawa and J. Yi, “Sentiment analysis: Capturing favorability using natural language

processing,” in Proceedings of the 2nd international conference on Knowledge capture, pp. 70–

77, ACM, 2003.

[7] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural

language processing (almost) from scratch,” The Journal of Machine Learning Research, vol. 12,

pp. 2493–2537, 2011.

[8] Y. Bengio, “Learning deep architectures for ai,” Foundations and trends R© in Machine Learning,

vol. 2, no. 1, pp. 1–127, 2009.

[9] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations

in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[11] R. Xia and C. Zong, “Exploring the use of word relation features for sentiment classification,” in

Proceedings of the 23rd International Conference on Computational Linguistics: Posters, COL-

ING ’10, (Stroudsburg, PA, USA), pp. 1336–1344, Association for Computational Linguistics,

2010.

95

BIBLIOGRAPHY

[12] A. Pak and P. Paroubek, “Twitter as a corpus for sentiment analysis and opinion mining.,” in

LREc, vol. 10, pp. 1320–1326, 2010.

[13] K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein, M. Heilman, D. Yo-

gatama, J. Flanigan, and N. A. Smith, “Part-of-speech tagging for twitter: Annotation, fea-

tures, and experiments,” in Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies: Short Papers - Volume 2, HLT ’11,

(Stroudsburg, PA, USA), pp. 42–47, Association for Computational Linguistics, 2011.

[14] E. Kouloumpis, T. Wilson, and J. D. Moore, “Twitter sentiment analysis: The good the bad

and the omg!,” Icwsm, vol. 11, pp. 538–541, 2011.

[15] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev, S. Petrov, and M. Collins,

“Globally normalized transition-based neural networks,” CoRR, vol. abs/1603.06042, 2016.

[16] P. Melville, W. Gryc, and R. D. Lawrence, “Sentiment analysis of blogs by combining lex-

ical knowledge with text classification,” in Proceedings of the 15th ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, KDD ’09, (New York, NY, USA),

pp. 1275–1284, ACM, 2009.

[17] S. Kiritchenko, X. Zhu, and S. M. Mohammad, “Sentiment analysis of short informal texts,”

Journal of Artificial Intelligence Research, pp. 723–762, 2014.

[18] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, “Lexicon-based methods for

sentiment analysis,” Computational linguistics, vol. 37, no. 2, pp. 267–307, 2011.

[19] L. Polanyi and A. Zaenen, Computing Attitude and Affect in Text: Theory and Applications,

ch. Contextual Valence Shifters, pp. 1–10. Dordrecht: Springer Netherlands, 2006.

[20] G. Qiu, B. Liu, J. Bu, and C. Chen, “Expanding domain sentiment lexicon through double

propagation.,” in IJCAI, vol. 9, pp. 1199–1204, 2009.

[21] S. M. Mohammad, S. Kiritchenko, and X. Zhu, “Nrc-canada: Building the state-of-the-art in

sentiment analysis of tweets,” CoRR, vol. abs/1308.6242, 2013.

[22] A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau, “Sentiment analysis of twitter

data,” in Proceedings of the workshop on languages in social media, pp. 30–38, Association for

Computational Linguistics, 2011.

[23] T. Wilson, J. Wiebe, and P. Hoffmann, “Recognizing contextual polarity: An exploration of

features for phrase-level sentiment analysis,” Computational linguistics, vol. 35, no. 3, pp. 399–

433, 2009.

[24] A. Sharma and S. Dey, “A comparative study of feature selection and machine learning tech-

niques for sentiment analysis,” in Proceedings of the 2012 ACM Research in Applied Computa-

tion Symposium, pp. 1–7, ACM, 2012.

96

BIBLIOGRAPHY

[25] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, “Learning sentiment-specific word

embedding for twitter sentiment classification.,” in ACL (1), pp. 1555–1565, 2014.

[26] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in continuous space word repre-

sentations.,” in HLT-NAACL, pp. 746–751, 2013.

[27] D. Zhang, H. Xu, Z. Su, and Y. Xu, “Chinese comments sentiment classification based on

word2vec and svm perf,” Expert Systems with Applications, vol. 42, no. 4, pp. 1857–1863, 2015.

[28] D. Tang, F. Wei, B. Qin, T. Liu, and M. Zhou, “Coooolll: A deep learning system for twit-

ter sentiment classification,” in Proceedings of the 8th International Workshop on Semantic

Evaluation (SemEval 2014), pp. 208–212, 2014.

[29] Z. Su, H. Xu, D. Zhang, and Y. Xu, “Chinese sentiment classification using a neural network tool

word2vec,” in Multisensor Fusion and Information Integration for Intelligent Systems (MFI),

2014 International Conference on, pp. 1–6, Sept 2014.

[30] A. Severyn and A. Moschitti, “Twitter sentiment analysis with deep convolutional neural net-

works,” in Proceedings of the 38th International ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 959–962, ACM, 2015.

[31] J. Kim, J.-B. Yoo, H. Lim, H. Qiu, Z. Kozareva, and A. Galstyan, “Sentiment prediction using

collaborative filtering.,” in ICWSM, 2013.

[32] C. Li, B. Xu, G. Wu, S. He, G. Tian, and Y. Zhou, “Parallel recursive deep model for sentiment

analysis,” in Advances in Knowledge Discovery and Data Mining (T. Cao, E.-P. Lim, Z.-H.

Zhou, T.-B. Ho, D. Cheung, and H. Motoda, eds.), vol. 9078 of Lecture Notes in Computer

Science, pp. 15–26, Springer International Publishing, 2015.

[33] D.-T. Vo and Y. Zhang, “Target-dependent twitter sentiment classification with rich automatic

features,” in Proceedings of the Twenty-Fourth International Joint Conference on Artificial

Intelligence (IJCAI 2015), pp. 1347–1353, 2015.

[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of

words and phrases and their compositionality,” in Advances in neural information processing

systems, pp. 3111–3119, 2013.

[35] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation.,”

in EMNLP, vol. 14, pp. 1532–1543, 2014.

[36] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning

Research, vol. 9, no. 2579-2605, p. 85, 2008.

[37] L. Rokach, “Ensemble methods for classifiers,” in Data Mining and Knowledge Discovery Hand-

book (O. Maimon and L. Rokach, eds.), pp. 957–980, Springer US, 2005.

[38] R. Xia, C. Zong, and S. Li, “Ensemble of feature sets and classification algorithms for sentiment

classification,” Information Sciences, vol. 181, no. 6, pp. 1138 – 1152, 2011.

97

BIBLIOGRAPHY

[39] R. Xia and C. Zong, “A pos-based ensemble model for cross-domain sentiment classification.,”

in IJCNLP, pp. 614–622, Citeseer, 2011.

[40] G. Mesnil, T. Mikolov, M. Ranzato, and Y. Bengio, “Ensemble of generative and discriminative

techniques for sentiment analysis of movie reviews,” CoRR, vol. abs/1412.5335, 2014.

[41] A. Aue and M. Gamon, “Customizing sentiment classifiers to new domains: A case study,” in

Proceedings of recent advances in natural language processing (RANLP), vol. 1, pp. 2–1, 2005.

[42] V. Sehgal and C. Song, “Sops: Stock prediction using web sentiment,” in Data Mining Work-

shops, 2007. ICDM Workshops 2007. Seventh IEEE International Conference on, pp. 21–26,

Oct 2007.

[43] J. Prusa, T. Khoshgoftaar, and D. Dittman, “Using ensemble learners to improve classifier

performance on tweet sentiment data,” in Information Reuse and Integration (IRI), 2015 IEEE

International Conference on, pp. 252–257, Aug 2015.

[44] M. Whitehead and L. Yaeger, “Sentiment mining using ensemble classification models,” in

Innovations and advances in computer sciences and engineering, pp. 509–514, Springer, 2010.

[45] H. Shirani-Mehr, “Applications of deep learning to sentiment analysis of movie reviews,” 2012.

[46] K. Zhang, Y. Cheng, Y. Xie, D. Honbo, A. Agrawal, D. Palsetia, K. Lee, W.-k. Liao, and

A. Choudhary, “Ses: Sentiment elicitation system for social media data,” in Data Mining

Workshops (ICDMW), 2011 IEEE 11th International Conference on, pp. 129–136, IEEE, 2011.

[47] S. Rosenthal, “Semeval 2014 task 9 description.” http://alt.qcri.org/semeval2014/

task9/, 2014. Accessed on May 30, 2016.

[48] C. Hutto, “Vader sentiment github repository.” https://github.com/cjhutto/

vaderSentiment, 2015. Accessed on May 30, 2016.

[49] H. Saif, M. Fernandez, Y. He, and H. Alani, “Evaluation datasets for twitter sentiment analysis:

a survey and a new dataset, the sts-gold,” 2013.

[50] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using distant supervision,”

CS224N Project Report, Stanford, vol. 1, p. 12, 2009.

[51] R. Řeh̊uřek and P. Sojka, “Software framework for topic modelling with large corpora,” in

Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, (Valletta,

Malta), pp. 45–50, ELRA, May 2010. http://is.muni.cz/publication/884893/en.

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.

98

http://alt.qcri.org/semeval2014/task9/
http://alt.qcri.org/semeval2014/task9/
https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment

BIBLIOGRAPHY

[53] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky, “The

Stanford CoreNLP natural language processing toolkit,” in Association for Computational Lin-

guistics (ACL) System Demonstrations, pp. 55–60, 2014.

[54] P. Kathuria, “Sentiment wsd github repository.” https://github.com/

kevincobain2000/sentiment_classifier/, 2015. Accessed on May 30, 2016.

[55] V. Narayanan, I. Arora, and A. Bhatia, “Fast and accurate sentiment classification using an

enhanced naive bayes model,” CoRR, vol. abs/1305.6143, 2013.

[56] T. De Smedt and W. Daelemans, “Pattern for python,” The Journal of Machine Learning

Research, vol. 13, no. 1, pp. 2063–2067, 2012.

[57] S. Loria, “Textblob documentation page.” https://textblob.readthedocs.org/en/

dev/index.html, 2016. Accessed on May 30, 2016.

[58] C. Strapparava, A. Valitutti, et al., “Wordnet affect: an affective extension of wordnet.,” in

LREC, vol. 4, pp. 1083–1086, 2004.

[59] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” The Journal of Ma-

chine Learning Research, vol. 7, pp. 1–30, 2006.

[60] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting similarities among languages for machine

translation,” arXiv preprint arXiv:1309.4168, 2013.

[61] A. Alghunaim, A Vector Space Approach for Aspect-Based Sentiment Analysis. PhD thesis,

Massachusetts Institute of Technology, 2015.

[62] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in Proceedings of the tenth

ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 168–177,

ACM, 2004.

[63] S. Mukherjee and P. Bhattacharyya, “Feature specific sentiment analysis for product reviews.,”

vol. 7181 of Lecture Notes in Computer Science, pp. 475–487, Springer, 2012.

[64] J. McAuley, R. Pandey, and J. Leskovec, “Inferring networks of substitutable and comple-

mentary products,” in Proceedings of the 21th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 785–794, ACM, 2015.

[65] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, “Image-based recommendations on

styles and substitutes,” in Proceedings of the 38th International ACM SIGIR Conference on

Research and Development in Information Retrieval, pp. 43–52, ACM, 2015.

[66] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In Science & Engineering,

vol. 9, no. 3, pp. 90–95, 2007.

[67] D. Barber, Bayesian reasoning and machine learning. Cambridge University Press, 2012.

99

https://github.com/kevincobain2000/sentiment_classifier/
https://github.com/kevincobain2000/sentiment_classifier/
https://textblob.readthedocs.org/en/dev/index.html
https://textblob.readthedocs.org/en/dev/index.html

BIBLIOGRAPHY

100

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	Introduction
	Goal
	Task description

	State of the Art
	Surface approaches
	Deep techniques
	Ensemble methods
	Ensemble taxonomy

	Sentiment Analysis Models
	Deep Learning classifier (MG)
	Ensemble of classifiers (CEM)
	Fixed rule model
	Meta classifier model

	Ensemble of features (MSG and MGA)

	Evaluation
	Evaluation Setup
	Datasets
	Evaluation metrics
	Baseline training
	Ensemble of classifiers
	Ensemble of features

	Analysis
	Performance of the base classifiers
	Classifiers and features classifiers performance
	Statistical analysis

	Other experiments
	Scaling Word2Vec
	Sentiment seeding
	Sentiment lexicon clusters

	Case Study
	Setup
	Datasets
	Sentiment Analysis system

	Context Detection
	Training
	Evaluation
	Performance of individual classifiers
	Performance of ensemble classifiers
	Statistical analysis

	Conclusions and future work
	Conclusions
	Future Work

	Scientific Python environment
	Numpy
	Pandas
	Scipy
	Matplotlib
	IPython
	Scikit-learn
	Gensim

	Linear Regression
	Principal Component Analysis (PCA)
	Bibliography

