
MÁSTER UNIVERSITARIO EN

INGENIERÍA DE TELECOMUNICACIÓN

TRABAJO FIN DE MASTER

Design and Implementation of a ChatOps Environment using
the Framework Rasa

IGNACIO CERVANTES VILLALÓN

2020

TRABAJO DE FIN DE MASTER

T́ıtulo: Diseño e Implementación de un Entorno ChatOps mediante

el Framework Rasa

T́ıtulo (inglés): Design and Implementation of a ChatOps Environment us-

ing the Framework Rasa

Autor: Ignacio Cervantes Villalón

Tutor: Carlos Ángel Iglesias Fernández

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE MASTER

Design and Implementation of a ChatOps Environment using
the Framework Rasa

Enero 2021

Resumen

En la actualidad, es habitual interactuar con una máquina a traves de una aplicación de

chat para solicitar servicios como asistencia técnica o información sobre un pedido. La

mensajeŕıa por Internet se ha convertido en parte de nuestro d́ıa a d́ıa, especialmente en la

actualidad donde la interacción personal está limitada. La sociedad se está acostumbrando

a comunicarse a través de dispositivos electrónicos tal y como hacemos en persona.

A la vez que avanza la inteligencia artificial y ofrece respuestas cada vez más humanas,

interactuar con una máquina se reconoce como una herramienta útil e incluso deseable en

algunos casos. Comunicarse con una inteligencia artificial tal y como haŕıamos con una

persona ofrece nuevas posibilidades, y acerca aplicaciones complejas a los usuarios. En este

contexto, los llamados Chatbots, que consisten en una inteligencia artificial capaz de simular

una conversación humana, pueden ofrecer una interfaz amigable para automatizar tareas

complejas.

Por otra parte, en los últimos años las compañ́ıas de tecnoloǵıas de la información se

enfrentan a una revolución. Metodoloǵıas como DevOps han introducido innovaciones en el

desarrollo y operación de estas empresas, brindando a los desarrolladores de nuevas formas

de trabajar. Incluso si estas innovaciones aumentan la automatización y fiabilidad, requieren

especialización por parte del usuario para poder utilizarlas.

El objetivo de este TFM es desarrollar un caso de estudio de un chatbot integrado en

un entorno DevOps, lo que se conoce como ChatOps. Para ello, se propone un caso práctico

haciendo uso del chatbot de código abierto Rasa. Mediante técnicas de Machine learning

para entrenar sus modelos de conversación, el objetivo será permitir la gestión del entorno

DevOps a través de la conversación con el chatbot. Para conseguirlo, se va a desplegar un

entorno DevOps instalado en contenedores y conectado con el chatbot.

El desarrollo se va a llevar a cabo mediante Rasa para implementar el chatbot, Python

3 como el principal lenguaje de programación, Jenkins para gestionar el entorno DevOps y

Docker para desplegar el entorno de contenedores.

Palabras clave: ChatOps, Chatbot, Rasa, Machine Learning, DevOps, Python, Jenk-

ins, Docker.

VII

Abstract

Nowadays, it is common to interact through instant messaging with a machine to request

services such as technical attention or information about an online order. Chatting online is

an essential part of our day, especially in times like today when personal interaction is lim-

ited. We are getting used to communicating through devices like computers or smartphones

just like we do in person.

As Artificial Intelligence advances and offers human-like responses, interacting with a

machine is recognized as a useful tool and even desirable in some cases. Talking to an AI

bot as if it is a person can offer new ways to work, and closes the gap between complex

applications and users. In this context, the so-called Chatbots, consistent in an AI capable

of simulating a human-like conversation, can offer a friendly user interface to automatize

complex tasks and make them simpler.

Moreover, Information Technology companies are confronting a revolution in recent

years. Methodologies like DevOps introduced innovations in development and operations,

focusing on giving the developers the independence and freedom to work in more flexible

ways. Even if these changes bring automation and reliability to the previous workflows,

they also come with complex tools and processes that require specialization.

The objective of this thesis is to develop a case study of a chatbot integrated into a De-

vOps environment, which is commonly known as ChatOps. In order to do this, we propose

using the open-source chatbot framework Rasa. By using machine learning techniques to

train its conversation models, the objective is to provide a way of operating a DevOps envi-

ronment through conversation with the chatbot. To achieve this, a state-of-the-art DevOps

environment will be deployed. This environment will consist in a containerized environment

connected with the chatbot, which will sent orders based on the user messages.

The development will be done using Rasa as the chatbot framework to make the use

case, Python 3 as the main scripting language, Jenkins to manage the DevOps environment

and Docker to build a containerized environment.

Keywords: ChatOps, Chatbot, Rasa, Machine Learning, DevOps, Python, Jenkins,

Docker

IX

Agradecimientos

Quiero agradecer a todos los que me han acompañado en la realización de este Máster.

Empezando por los profesores y el personal de la Escuela, que desde el primer d́ıa me han

hecho ir ilusionado a estudiar. También quiero agradecer a mis compañeros de clase, ahora

amigos, que hicieron más llevaderas las jornadas de prácticas y biblioteca.

Muchas gracias a mi tutor Carlos Ángel Iglesias por orientarme y motivarme en la

realización de este proyecto. Tu apoyo ha sido fundamental para seguir adelante y poder

estar escribiendo estas lineas.

A mi familia, por apoyarme y creer en mı́ desde la distancia, aunque todav́ıa no haya

sido capaz de hacerles entender en qué consiste este proyecto (especialmente a Rocko).

Muchas gracias a mis amigos y a Marta por haber estado siempre ah́ı y haber servido

de apoyo en estos tiempos extraños. Quiero agradecer especialmente a Fernando, a Jose

Lúıs y a Abraham, que han sido tan distractivos como fundamentales estos meses.

Gracias también al lector por tomarse el tiempo de leer este Trabajo de Fin de Máster,

que me ha hecho crecer como ingeniero.

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XVII

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.3 Structure of this document . 2

2 State of Art 5

2.1 Introduction . 6

2.2 Development cycle . 6

2.2.1 Development methodologies . 7

2.2.1.1 Waterfall model . 7

2.2.1.2 V-model . 8

2.2.1.3 Scrum . 9

2.2.2 DevOps . 10

2.3 Cognitive computing . 13

XIII

2.3.1 Cognitive computing properties . 13

2.3.2 Use Case of Cognitive Systems . 14

2.4 Chatbots . 15

2.4.1 Chatbot Design Techniques . 16

2.4.2 Chatbot examples . 17

2.4.2.1 Hubot . 18

2.4.2.2 Errbot . 18

2.4.2.3 Rasa . 19

2.5 ChatOps . 19

2.5.1 ChatOps examples . 20

2.5.1.1 IoT environment . 20

2.5.1.2 A classroom chatops environment 22

2.6 Use case: A ChatOps development environment 23

2.7 Conclusions . 24

3 Enabling Technologies 27

3.1 Introduction . 28

3.2 Automation tools . 28

3.2.1 Telegram . 29

3.2.2 Rasa . 30

3.2.3 Gitlab . 33

3.2.3.1 Git . 34

3.2.4 Docker . 35

3.2.5 Jenkins . 36

3.3 Conclusions . 38

4 Architecture and Methodology 39

4.1 Introduction . 40

4.2 User interactive side . 42

4.2.1 Telegram . 42

4.2.2 RASA Open Source . 45

4.2.2.1 ChatOps Agent . 46

4.2.2.2 RASA NLU . 48

4.2.2.3 Rasa Core . 53

4.2.2.4 Action server . 60

4.3 Backend side . 65

4.3.1 Jenkins . 67

4.3.2 Deploy agent . 71

4.3.3 Development server . 81

4.4 Conclusions . 83

5 Case study 85

5.1 Scenario overview . 86

5.2 Development server deploy . 87

5.3 Package installation . 90

5.4 Conclusions . 93

6 Conclusions 95

6.1 Introduction . 96

6.2 Conclusions . 96

6.3 Achieved Goals . 97

6.4 Problems faced . 98

6.5 Future work . 98

A Project impact 101

A.1 Context . 102

A.2 Social Impact . 102

A.3 Economic Impact . 102

A.4 Environmental Impact . 103

A.5 Ethical Impact . 103

B Project budget 105

B.1 Hardware Expenses . 106

B.2 Software Expenses . 106

B.3 Payroll Expenses . 106

B.4 Indirect Expenses . 106

B.5 Total expenses . 107

Bibliography 108

List of Figures

2.1 Waterfall model . 8

2.2 V-model stages . 9

2.3 Generic DevOps cycle diagram [62] . 11

2.4 Person using Microsoft Hololens [57] . 15

2.5 Conversation between a person and ELIZA [76] 16

2.6 Generic components of a chatbot [1] . 17

2.7 Hubot logo [19] . 18

2.8 Errbot logo [21] . 18

2.9 IoT system architecture [50] . 22

2.10 Architecture of LTKA-Bot [62] . 23

2.11 High level design of the use case . 24

3.1 Telegram logo [80] . 29

3.2 Rasa logo [44] . 30

3.3 Incoming message processing [37] . 32

3.4 Gitlab logo [20] . 33

3.5 Typical local Git workflow [56] . 34

3.6 Docker logo [31] . 35

3.7 Jenkins logo [48] . 37

4.1 Architecture of the project . 40

4.2 Telegram web user interface . 43

XVII

4.3 Telegram webhook message flow [85] . 44

4.4 Interaction between Rasa components. 45

4.5 Detailed Rasa architecture [40] . 46

4.6 Ngrok console user interface . 48

4.7 Representation of vector space used to classify the intents [66] 52

4.8 Steps taken by Rasa to respond a message 54

4.9 Interactive learning user interface . 56

4.10 Representation of two iterations of TED policy [84] 59

4.11 Sequence diagram for the Python Jenkins build job process. 64

4.12 Backend section of the architecture . 66

4.13 Jenkins web user interface. 68

4.14 Configuration flow from Rasa Action server towards Development Server. . 83

5.1 Search made to found ChatopsAgent bot . 88

5.2 Chat box used to send messages. 88

5.3 Message used to launch the development server. 89

5.4 Intent recognition from the user message. 89

5.5 Jenkins interface after executing deploy server 90

5.6 Message replied by Rasa . 90

5.7 Checking server status . 90

5.8 Response from Rasa after installing pytest 91

5.9 Package list after installing pytest . 92

5.10 Installed packages checked in development server. 93

CHAPTER1
Introduction

1.1 Context

Nowadays, it is common to interact through instant messaging with a machine to request

services such as technical attention or information about a brand. Chatting online is an

essential part of our day to communicate with our friends, family or work partners, especially

in times like today when personal communication is restricted. We are getting used to

communicating through devices like computers or smartphones just like we do in person.

As Artificial Intelligence (AI) advances and offers human-like responses, interacting with

a machine is recognized as a useful tool and even desirable in some cases [83]. Talking to

an AI chatbot as if it is a person can offer new ways to work, and closes the gap between

complex applications and users.

Related to this, Information Technology (IT) companies are confronting a revolution in

recent years. Methodologies like DevOps [8] changed the rules of development and oper-

ations, focusing on giving the developers the independence and freedom to work in more

flexible ways. Even if these changes bring automation and reliability to the previous work-

flows, they also come with complex tools and processes that require specialization [52].

1

CHAPTER 1. INTRODUCTION

In this scenario, approaching complex environments with easy to use tools is desir-

able, as it may reduce the points of failure and improve productivity. This is the goal of

ChatOps [3], a new paradigm that incurs in interacting with complicated environments via

an AI through chatting. Among the advantages of this approach, allowing the users to

manage an environment from a chat accessible everywhere is revolutionary.

In this project, we try to offer a wide vision of how a ChatOps environment is composed

by developing a use case based on a typical IT company workflow. This will incur in

building an operative DevOps environment managed by a chatbot that interacts with the

user to perform operations over the environment.

1.2 Project goals

This project aims to build a state-of-the-art ChatOps environment using some of the most

used technologies in the current IT business scenario. To do so, this project will be formed

by a Natural Language Understanding (NLU) [73] chatbot capable of extracting information

from the user messages, an automation server that centralizes the management of services

and a container platform with a development server. Through the integration of these

modules, we will build a functional solution that depicts a current ChatOps environment,

where the chatbot offers an interactive interface with the backend components.

The main goals to achieve this project are the following:

• Design an operative ChatOps environment.

• Design and train a NLU assistant robot accessible from a public application.

• Deploy a corporate-like DevOps backend.

• Implement an end-to-end operative solution managed through conversation with the

assistant.

1.3 Structure of this document

In this section we provide a brief resume of the chapters included in this project. The

structure is the following:

Chapter 1 provides an introduction to the context of this project. It exposes the

current status of ChatOps and sets the goals to achieve in the project.

2

1.3. STRUCTURE OF THIS DOCUMENT

Chapter 2 focuses on describing some terms that are treated in this project and exposes

the state of the art of some paradigms developed afterward.

Chapter 3 describes the main technologies used in this thesis. It will focus on explain-

ing the features of these tools and the reason to choose them to develop the project.

Chapter 4 depicts the project itself by providing the architecture of the project. It

gives an insight into the configuration of each component and how the interaction between

them. Furthermore, we will provide an explanation of the developments made for each one

of the elements of the project.

Chapter 5 describes some use cases of specific interactions between the user and the

ChatOps environment.

Chapter 6 gathers the conclusions found throughout the fulfillment of this project and

gives some future lines of work to extend the functionalities of the environment.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
State of Art

This chapter offers information about some of the concepts that are treated in this project.

To elaborate on these concepts, several solutions that use chatbot-integrated development

environments are going to be described and explained, focusing on the architecture. Finally,

a high-level design of the use case is depicted.

5

CHAPTER 2. STATE OF ART

2.1 Introduction

Nowadays, software development is more than ever an iterative process. In an ever-changing

environment, developing state-of-the-art applications that run in different systems such as

smartphones, Internet of Things (IoT) [74] devices or the traditional computers require a

fast adaption and continuous updates to keep complex services up. It is more important

than ever keeping pace with the changes in the market and the appearance of bugs in

projects that may have hundreds of developers.

In this context, the methodology of work is essential to get the results fast and as error-

free as possible. In recent years, many new techniques in project planning and development

became popular due to the results and scalability of their solutions.

In this chapter, we are going to explain how software development evolved from the be-

ginning to the newer ways of development. First of all, we will take a look at the traditional

approach of software development, taking focus on its flaws and problems.

Secondly, we are going to analyze the modern approach of development and maintenance

of software, known as DevOps. To picture this, we are going to take a deeper look into the

different parts of it and its advantages.

In third place, we are going to focus on the main theme of this project: the imple-

mentation of a chat robot into a DevOps environment. To do so, we are going to give a

brief resume on cognitive systems and chat robot technology, explain the implementation

of some solutions already deployed and functional, and how the bot helps to manage the

environment.

Finally, we will propose a use case that will be developed in the execution of this project.

2.2 Development cycle

As complex as software development is, the Software Development Life Cycle (SDLC) [55]

always has been discussed and studied. It is vital to follow practices and models that are

sustainable and allows the developer to not lose precious developing time and resources.

In this section, we are going to explain some of the most used methodologies by their

advantages and flaws, from the more simple models to the state-of-the-art ones. Based on

this, we are going to deepen in the basics of the most modern models that we are going to

use.

6

2.2. DEVELOPMENT CYCLE

The objective of this section is to provide a wider vision about the evolution of the SDLC

techniques, show some examples and how choosing the right methodology for a project can

affect the final application.

2.2.1 Development methodologies

When developing software, planning turns out to be as important as having the right re-

sources. Since software development is a complex process with many steps, in the last

decades a significant effort has been invested in finding good methodologies to achieve the

most efficient development.

As software development and engineering evolved over the years, many new method-

ologies appeared and offered new ways of planning. We can differentiate over two different

categories:

1. Classical software engineering methodologies: These methodologies can be described

as monolithic and heavy plan-driven. Classic techniques require a heavy upfront

requirements definition, documentation and planning, as they are based on phases

that require to be completed before passing to another.

2. Agile methodologies: Often called light-weight or agile, these methodologies follow the

12 agile principles described by Cockburn [24]. These methodologies adapt quickly to

changes in requirements and are based on constantly reviewing and delivering results.

To compare these two main approaches of development models, we will describe some

of the most recognized. This way, we can see the differences between them and see how the

methods evolved from the older ones to the most modern techniques.

For the classic SDLC techniques, we will explain the Waterfall model and its evolution,

V-model. For agile methodologies, we will introduce Scrum. Then, we will show how modern

approaches led to the DevOps paradigm.

2.2.1.1 Waterfall model

The Waterfall model [63] is a classical methodology that consists of several linear and

sequential phases, where each phase depends on the produced deliverables of the previous

task.

This model dates from 1956 when Herbert D. Benington described the usage of these

7

CHAPTER 2. STATE OF ART

phases in software engineering, but it was formally described for the first time in 1970 by

Winston W. Royce [65].

Figure 2.1: Waterfall model

The Waterfall model needs to define clearly all the requirements before passing to the

next phase of design, which makes this model very straight and easy to implement and not

very resource-requiring. Also, as documentation is made before passing to the next stage,

the quality of the development is ensured.

On the other hand, the linearity of this model makes it not very adaptable to changes

in requirements, forcing them to be applied in another development workflow. Also, as

testing is made only in a phase after the development phase, many errors and bugs in the

development may be detected late, which makes them harder to manage.

2.2.1.2 V-model

The V-model (from Validation & Verification model) [49] is a traditional model that consists

of an extension of the waterfall model. Even if their characteristics and stages are similar

and both are sequential, the v-model is heavily focused on testing and every stage has its

testing part.

The model’s first stages are similar to the ones in the waterfall model before reaching

8

2.2. DEVELOPMENT CYCLE

Figure 2.2: V-model stages

the coding step. After coding, there are several testing stages instead of the unique testing

phase that the waterfall model has. Each of these testing phases is related to another phase

before coding, so if there are any problems detected in one of the testing stages there is a

counterpart to solve it instead of doing the whole process again. This way, the development

is dependant on testing and makes it more adaptable to errors and requirement changes.

The counterpart of this model is that is more complex than waterfall, and even if it is

more adaptable it is still very rigid. Also, like waterfall, this model has periodical reviews

and documenting after each stage, so holding more phases makes necessary to have more

resources and people to deliver the results fast [7].

2.2.1.3 Scrum

Scrum [77] is an agile framework based on roles and steps to manage and control the software

development process. It can be designed as a combination of an iterative model and an

incremental one, as the builds of the software are successive and incremental in content. It

is one of the most popular SDLC technique based on agile, but its characteristics make it

a model not suitable for every occasion [72].

Scrum’s workflow consist of the collaboration between various agents involved in the

development:

• The Product Owner, that manages the results and takes the decisions about the prod-

uct.

9

CHAPTER 2. STATE OF ART

• The Scrum Manager, who leads the development team and eliminates the impediments

on the development

• The Scrum team, consisting of a multi-functional team formed by developers, testers

and experts in various fields required in the development.

These agents work in time units called sprints. A sprint lasts from 1 to 3 weeks, and

the tasks for the sprint are noted on the sprint backlog and can’t be modified. At the end

of the day, a daily scrum takes place to talk about the progress for that day. At the end

of the sprint, the objective is to have a potentially deliverable product. That product is

shown to the product owner in a sprint review, where the problems faced in the sprint to

get a retrospective vision.

Scrum highlights are the communication between the team and the planning schedules,

which gives developers the freedom to discover different ways to get to the solution. Also,

as it is based on daily meetings and iterative releases, if requirements change they can be

adapted in the next sprint.

However, Scrum is a complex methodology that requires specialization. The main roles

must have people formed in agile methodologies and Scrum to be effective, and the devel-

opment team should have notions to follow the whole process. Also, it is most functional

in bigger teams, and not so worthy in smaller teams where simpler SDLC techniques could

be easier to implement [68].

2.2.2 DevOps

In the last section, we talked about some of the different SDLCs and how they manage

the different phases of development. We noticed that the traditional approach of software

development was linear and has separated functions with separated teams performing each

task, differentiating development and testing clearly.

Furthermore, we also commented on the agile SDLC by talking about Scrum, which im-

plied a more homogeneous development team with shorter development cycles, integrating

into each cycle continuous testing and decision-taking with the upper layers of the team

that lead to faster releases.

Nowadays, the software development tendency is to use this second approach. Devel-

opment is shorter in time and has continuous incremental releases. To achieve this, testing

and deployment must be fast enough to keep up with the development. These necessities

lead to the paradigm shift that is DevOps [54].

10

2.2. DEVELOPMENT CYCLE

DevOps can be described as “a set of practices intended to reduce the time between

committing a change to a system and the change being placed into normal production, while

ensuring high quality” [8]. These practices are associated with including new technologies,

automation and faster testing in the current development cycles.

Figure 2.3: Generic DevOps cycle diagram [62]

As DevOps can be seen as a culture shift towards performance [14], integrating the

new methodologies into the current development workflow can be challenging. Some of the

principal challenges that a DevOps project faces are the following:

• Breaking complex architectures into smaller independent pieces.

• Maintaining an environment that provides visibility to what is deployed, with its

versions and dependencies.

• Keeping a pre-staging development environment and production environment.

• Link the traditional figures of development and operations.

The objective behind fulfilling these challenges is to offer continuous integration

and continuous delivery (CI/CD). This is achieved by automation and pipelines to

test, deploy and monitor each new release automatically.

To achieve CI/CD, the usage of tools is mandatory. These tools meet different goals, such

as allowing teams to work coordinated, enabling continuous delivery through automation of

processes and maintain reliability in the software. However, the tools are not the main core

of DevOps but a way for the team to facilitate the development efficiency and sustainability.

11

CHAPTER 2. STATE OF ART

As the tools available have different characteristics and functions, we will differentiate

them by their usage [52]. The tools categories are the following:

• Tools for knowledge sharing: As DevOps focuses on different departments sharing

knowledge, tools that make this knowledge reachable are essential. These tools focus

on letting developers communicate and work together in common resources without

having to manage conflicts. Some of these tools are Trello [2], which allows users

planning projects or chats like Rocket Chat [10].

• Tools for source code management: Also known as Version Control System (VCS),

these tools intend to allow collaboration among developers when writing code. To do

so, these tools allow each developer to develop their own code and facilitate pulling

together the code by solving conflicts. They also manage the difference in versions to

keep the code sustainable. The most important examples are Git and platforms that

wrap it, like Gitlab [20] or GitHub [35].

• Tools for the build process: The goal of these tools is to enable the Continuous in-

tegration/Continuous delivery concepts by giving information and automation to the

developer. Some of the functions that implement is performing unit-test on the code,

check the code quality or give the user a graphical environment to perform the build

of the projects. Examples of these tools are SonarQube [47] or Maven [17].

• Tools for continuous integration: These tools orchestrate actions that allow imple-

menting deployment pipelines, that consist of stepped executions to perform a full

deployment of a system. Generally, a user interface is given that simplifies the pro-

cess and gives logging about how the process went. The most important tools of this

kind are Jenkins or Gitlab CI [34].

• Tools for deployment automation: These tools focus on providing continuous delivery

to the DevOps environment. They allow the developers to execute frequent and reli-

able deployments by giving them platforms to deploy and give additional features such

as high availability or redundancy. In this category, we count with platforms such as

Docker [31], which allows users to make containerized deployments, or Openstack [45].

• Tools for monitoring: To keep track of operation, monitoring tools provide informa-

tion such as stress metrics, log management or give alerts about performance. Some

examples of these tools are Nagios [15] or Prometheus [4].

12

2.3. COGNITIVE COMPUTING

2.3 Cognitive computing

As artificial intelligence and new ways of programming grow, the principal companies have

found new advantages in their usage. IBM, Microsoft or Facebook are making a great

investment in these technologies to make their companies more relevant, and take a leap

to cognitive applications. Cognitive computing is a term that has been in the sector for

years with different definitions. As stated by the Cognitive Computing Consortium [12], a

cross-disciplinary group of experts, cognitive computing may be defined as:

Cognitive computing makes a new class of problems computable. It addresses complex

situations that are characterized by ambiguity and uncertainty; in other words, it handles

human kinds of problems. In these dynamic, information-rich, and shifting situations, data

tends to change frequently, and it is often conflicting. The goals of users evolve as they learn

more and redefine their objectives. To respond to the fluid nature of users’ understanding

of their problems, the cognitive computing system offers a synthesis not just of information

sources but of influences, contexts, and insights. To do this, systems often need to weigh

conflicting evidence and suggest an answer that is best rather than right.

Unlike current computing paradigms, the cognitive computing model infers some data

that is out of scope for basic computing. This way, cognitive computing makes context com-

putable, taking account and using some state-of-the-art technologies like machine learning,

natural language processing or feature engineering. In other words, as the Cognitive Com-

puting Consortium states, cognitive computing applications saysuggest an answer that is

best rather than right.

To sum up, cognitive computing aims to endow computer systems with the faculties

of knowing, thinking and feeling [22] to close the gap between people and the informatics

environment. For this reason, it is the basis of technologies like virtual assistants or chatbots.

However, it is thought that new applications of cognitive computing will appear in other

fields of knowledge.

2.3.1 Cognitive computing properties

As the Cognitive Computing Consortium states, there are some features that a cognitive

system has to fulfill:

• Adaptive: They must be capable of learning as information and goals evolve. They

must resolve ambiguity and tolerate unpredictability. Also, they must be engineered

13

CHAPTER 2. STATE OF ART

to feed on dynamic data in real-time, or near real-time.

• Interactive: A cognitive system must be easy to interact with, so the users can define

their needs and requirements in a simple way. They may also be capable of interact

with other actors and devices as other users, Cloud services or online applications.

• Iterative and stateful: They must be capable to aid the user in defining a prob-

lem by asking questions or finding additional source input if a problem statement is

ambiguous or incomplete. They must take into consideration previous interactions in

a process and return information that is suitable for the specific application at that

point in time

• Contextual: They must be capable of understanding and extract contextual elements

of the information, such as meaning, syntax or time. Also, they may be able to obtain

information from various sources, structured or not, as well as sensory inputs if the

system supports them.

2.3.2 Use Case of Cognitive Systems

As cognitive systems advance, more and more applications that uses them appear and their

relevance rises. Some of the most relevant use cases are:

• Virtual Private Assistant (VPA): VPAs [51] are Artificial Intelligence applica-

tions that assist the user utilizing their devices. They act as an “human-like” interface

to perform some tasks, launched by the user by giving orders to the assistant via voice

or text.

Most VPAs are present in several devices and offer services such as access to device

functions as making a phone call or writing a message, appointment management or

domotic control, and they are linked to personal accounts to take into consideration

user’s profile and preferences. Some of the most popular are Apple’s Siri, Google

Assistant, Microsoft’s Cortana or Amazon Alexa.

• Augmented reality: Augmented Reality (AR) [71] technology is a variation of vir-

tual environments where the user is able to see the real world with virtual objects

composited in it. Therefore, AR saysupplements reality, rather than replacing it [6].

AR applications take information from cameras to put into the captured images 3D

models or layers of information that are reactive to the environment and are capable

of adapt to it. These applications can run on various devices, being the most typical

14

2.4. CHATBOTS

smartphones or Head Mounted Devices (HMD) such as Microsoft Hololens [58]. Some

of the applications of this technology are engineering, 3D design or video games, and

are usually consumed by smartphone apps.

Figure 2.4: Person using Microsoft Hololens [57]

• Face recognition: Face recognition allows systems to make use of images captured by

a camera to identify a person’s face. These systems recognize patrons in faces through

AI to identify unequivocally a person. This technology is widely used in biometric

security authentication systems, such as Apple’s Face ID [27], or in social networks

like Facebook to tag users automatically by identifying their faces in photographs

uploaded by their contacts.

2.4 Chatbots

Since the beginning of domestic computers, there was always an interest in giving the user

a friendly interface to use the computational resources. Investing in a clear user interface

or designing an attractive and simple website makes the user want to use these resources.

As the number of people that use computers rose, it turned out to be a necessity that may

decide if an application success or fails. In this context, giving the user a natural language

interface to interact with is desirable.

As speech is one of the main forms of communication between humans, the researchers

aimed to be inspired by it. Speech interaction is gaining interest in the past few years, as

can be seen from developments from Google, Apple or IBM.

15

CHAPTER 2. STATE OF ART

Chatterbots (or, from now, chatbots) [13] are applications designed to imitate human-

like conversation. From the simplest models to modern AI-powered, the goal is to offer a

more friendly way to the user to interact with a digital system.

The first recognized chatbot was ELIZA [9], a program created by Joseph Weizenbaum

at MIT in 1966, that communicated with humans based on hand-crafted scripts. The

conversation scope was limited as it was designed using pattern recognition, but enough to

keep a realistic conversation, as can be seen in the Fig. 2.5:

Figure 2.5: Conversation between a person and ELIZA [76]

Another milestone in chatbot history was Parry, a chatbot developed by Colby designed

to have a paranoid behavior in conversation. Parry was the first chatbot that passed the

Turing test, which means that it showed indistinguishable behavior from a human [69]. It

was also ruled-based as ELIZA, but Parry had a better language understanding capabilities

and models that allowed it to mimic human emotions. For example, it was capable of

showing hostility if the anger level in conversation was high.

2.4.1 Chatbot Design Techniques

To be able to give suitable responses to user inquiries, some programming skills and tech-

niques must be used to program a chatbot. In this section, we are going to briefly explain

them, as well as giving insight to the different parts of a chatbot to understand its functions.

16

2.4. CHATBOTS

As chatbots evolve into more realistic conversational partners, the complexity in pro-

gramming them also multiplies. For this reason, designing a chatbot require identifying its

main parts. A chatbot can be classified into three main parts [1]:

• Responder: This part acts as the interface between the bot logic and the user. Its

goal is to pass the data from the user to the next step and controlling the inputs and

outputs of the system.

• Classifier: This layer connects the responder and the graphmaster, and is able to

filter and normalize the inputs from the user to pass it to the graphmaster. It also

processes the output of the graphmaster if needed.

• Graphmaster: This part is in charge of the logic of the chatbot. It keeps the storage

and performs the operations needed to determine the response (i.e. pattern matching)

Figure 2.6: Generic components of a chatbot [1]

To design a chatbot, some programming techniques and skills are needed. Some of the

most important are:

• Parsing: Analysing the input text received from the user and manipulate it (i.e.

morphemes recognition) with NLP functions.

• Pattern matching: Detecting patterns in the user messages to catch the meaning

or the sentiment of them, and respond in consonance.

• Markov Chain: It is a stochastic model widely used in chatbots to give responses

taking account of previous responses, which means that the next state probability is

conditioned by the previous states.

2.4.2 Chatbot examples

As it is a technology in bloom and new applications proliferate, there are many chatbots

available. As automation is a topic present in all kinds of environments, there are many

companies developing chatbots to rule over complex systems.

17

CHAPTER 2. STATE OF ART

To get a global view of the chatbot industry, in this section we will list some of the most

relevant options. The following chatbots, however, are focused on helping teams to work

together and manage automation flows instead of chatbots designed primarily to interact

with the consumer, as it is the scope of this project.

2.4.2.1 Hubot

Figure 2.7: Hubot logo [19]

Hubot [19] is a chatbot framework developed by GitHub. First developed for internal

use only, Hubot was rebuilt as an open-source project and available online, so developers

can include it in their personal projects.

Hubot is a node.js application. It has some built-in functions such as posting images,

interacting with different languages or integration with popular apps, but these functions

can be expanded by the user. The user can write their own scripts in CoffeeScript to

expand the functionalities of the chatbot. As it can be deployed on a high variety of chat

applications, it is one of the most popular options for deploying a chatbot.

2.4.2.2 Errbot

Figure 2.8: Errbot logo [21]

Errbot [21] is an open-source chatbot framework based on Python [16]. Among its

advantages are the capacity to deploy new scripts without to re-deploy the chatbot service

and the capacity to script functions using Python, one of the most used scripting languages.

18

2.5. CHATOPS

2.4.2.3 Rasa

Rasa [44] is an open-source Artificial Intelligence (AI) chatbot framework based on Natural

Language Processing (NLP). Rasa offers a complete framework to develop and deploy

chatbots, with a Natural Language Understanding (NLU) module, dialogue policies and an

agent to operate the environment.

Compared with the chatbots mentioned before, Rasa functionality is based on the

context of the conversation. Unlike first pattern-recognition chatbots, where the engine

searched for specific word sequences to give a response but did not take in consideration the

surrounding information of the conversation, contextual assistants can handle a conversa-

tion in a more human-like way, making the correct questions to get the information needed

to fulfill more complex needs. Rasa will be further explained in Sect. 3.2.2

2.5 ChatOps

In the Sect. 2.2.2, we explained how DevOps introduced changes into the development

culture towards a modern and resilient environment where automation is key. We listed the

different tools that allowed the developers to communicate between them, make sustainable

code, test and deploy efficiently.

However, even if there are loads of tools available, mastering a DevOps environment is

a challenge. Additionally to the required knowledge in development and deployment, each

tool requires specific knowledge to use it and are complex to operate. To manage a DevOps

environment, users must have knowledge over various fields that not every developer has.

To ease the entry barrier, one of the solutions is to give users a more friendly interface

to interact with the environment instead of a console or an administrator site. The solution

we are going to cover is adding a conversational artificial intelligence capable of managing

the environment by chatting with the user, named ChatOps.

ChatOps (from Chat and Operations) is a paradigm that consists of interacting by

talking to a conversational robot (or ChatBot) to operate with the environment. That

chatbot is deployed in a chat application and connected with typical DevOps tools such as

deployment or logging tools to allow users to perform tasks such as deploy or shut down a

process by chatting.

Providing a friendly user interface gives the environment more flexibility and allows it

to be used by many different user roles. Moreover, it comes with other benefits:

19

CHAPTER 2. STATE OF ART

• As the operation is made through conversation with the bot, it simplifies the operation

by giving users access to powerful processes without having to deal with complex tools.

• Chatbot operations have to be programmed beforehand, which allows the developers

to choose which operations are supported. This way, interacting with the environment

is safer as users can’t use the tools in an unintended way.

• Gives transparency to operation, as conversations with the bot can be tracked and

logged.

• It is versatile, as the chatbot can be reached by different platforms. A user may control

a deployment or check the environment by chatting with the boy with a smartphone,

without the need of connecting through a PC.

These advantages allow software development companies to improve the efficiency and

reliability in the operation, increasing productivity rates [23]. Furthermore, the improve-

ment in transparency and communication allows the team to interact more by using a

unified interface and to work in the same direction with ease.

2.5.1 ChatOps examples

In the last section, we explained the characteristics and advantages of a ChatOps envi-

ronment, and how it can improve the efficiency of a DevOps environment by improving

transparency and communication.

In this section, we are going to examine some ChatOps examples. This will allow us

to depict how a working environment functionalities, and how the chatbot simplifies the

operation of the previous implementations.

2.5.1.1 IoT environment

The following environment is a service built around IoT devices [50]. These devices, majorly

sensors and cameras, require connection with a backend server to store and process the data,

so downtime must be as low as possible to keep the integrity of the recordings.

Before applying the ChatOps paradigm to the environment, the deployment was done

by hand with a script to update the server package over a single server. As the environment

has several servers that the cameras connect to, it was common for the cameras to timeout

to the server they were connected to as it was deploying, and trying to reconnect to another

updating server, causing long breaks in the data history.

20

2.5. CHATOPS

Some of the problems deployments had been that the newly upgraded servers joined

the production environment immediately, so there was no staging to test that new versions

worked without any issues. If any problems happened, the server would have to be stopped

and rolled back to the previous version, which inquired in more downtime and more lost

data.

To improve the workflow of the environment, the objective was to automate the de-

ployments to lessen the time and errors while having control of them. The final solution

introduced the following tools:

• Moved the backend of the environment to a cloud service. This way, it was possible

to have a pre-production stage to test the new versions before implementing them in

the production environment. The new releases would be deployed as new instances,

and a load balancer would point to them making them instantly available.

• Introduced an automation tool for managing and configuring new instances. The

chosen tool is Ansible [64], an open-source software developed by Red Hat.

Ansible uses YAML scripts to describe the configuration that is going to be applied

to new instances, allowing to automatize deployments using simple directives.

• To manage and govern the deployment, a ChatBot was included. The chosen bot

was Hubot. Hubot works listening to messages in a chat and performs actions when

a message matches a listener, a previously defined pattern. Also, Hubot supports

middleware to intercept messages before acting, allowing for example different user

authorization to interact with the bot.

In this environment, Hubot was integrating with the instant messaging application

Flowdock [79].

With these tools, the deployment of the environment consists of two phases. The first

one is to create a mirror of the instances currently running by Ansible scripts. With these

instances created, the new server package is deployed with an SSH utility and tested to

check that the new version works the intended way.

The second phase is pictured in Fig. 2.9. If it passes the tests, the new environment is

taken into use by redirecting the load balancer to the new instances. The old environment

would be deleted after two hours after taking this step to give time for a possible rollback

if the version is faulty.

In this environment, the new ChatOps environment allowed the team to increase the

number of updates and the reliability of them. The inclusion of the chatbot gave the

21

CHAPTER 2. STATE OF ART

Figure 2.9: IoT system architecture [50]

environment several improvements, such as allowing team members to work from different

locations and interact with the environment on the go and gave a common deployment

interface that got all the team informed of changes.

2.5.1.2 A classroom chatops environment

Chatops methodology can be applied to different environments and not only in software

development, as the automation and simplicity in operations can be useful in different

situations.

This is the case of LTKA-Bot [60], a chatbot developed in the Institut Teknologi of

Bandung. This chatbot is designed to assist the work of the teachers and educators in the

college, but not to replace them for teaching. As the authors claim, LTKABot is not meant

to replace real teaching assistants by doing free-form conversation with or answering subject

matter questions from the students, but it does provide services related to course activities.

These services cover many aspects, ranging from group or task management for students to

automatic document generation for reporting and accreditation purposes.

LTKA-Bot covers 4 kinds of functionalities: planning, instruction-related activities,

assessment-related activities and administrative tasks. These activities are available for

different kinds of roles such as student, lecturer or administrator and offer them different

functionalities depending on them, such as delivering docs or submitting a test as a student

or review them as a lecturer. The system architecture is showed in Fig. 2.10:

22

2.6. USE CASE: A CHATOPS DEVELOPMENT ENVIRONMENT

Figure 2.10: Architecture of LTKA-Bot [62]

The chatbot, based on Hubot, is deployed behind a reverse proxy and reached by the

chat application Telegram [80], available on a wide range of platforms. The bot access to

internal web services to persist data, and connects to a static webserver to host images and

documents. Also, the bot connects to other services such as Github or Google Docs to get

some of the data.

LTKA-Bot is currently in use and under active development, giving the teachers the

capacity to perform typical tasks in university schools by using a friendly interface like a

chat application, and the teachers to automate tasks that usually takes a dedicated platform.

2.6 Use case: A ChatOps development environment

As we have seen in this chapter, ChatOps is a paradigm that can be applied in different

kinds of environments to benefit from the automatism and reliability of having an interface

between users and the environment. The examples given in the previous section focused

on how the chatbot allowed the environments to be more accessible and reliable by giving

users a way to operate with the tools from different places and run the commands needed

without the complexity of these tools.

23

CHAPTER 2. STATE OF ART

In this section, we will describe the use case that will be developed in the document.

The objective of this is to show how a ChatOps environment is developed from scratch,

what it can perform and the problems faced before reaching the final solution.

The proposed use case pictures a usual use case in development. The user uses a

development machine and connects to it to develop software. This machine is prepared

with the needed development tools and versions required to perform the job. The machine

is maintained by the company and users can access it by their usual computer. As it is a

machine needed to perform its job, the maintenance of this machine is critical, and error in

updates or deployments may cause the workflow to stop until it’s fixed.

To keep the maintenance as simple as possible, the company decides to update the

current environment and implement a ChatOps approach. The idea is to allow the user to

check the status of the environment, run the machine if it is not and manage the installed

packages by chatting with a bot. The high-level architecture can be seen in Fig. 2.11:

Figure 2.11: High level design of the use case

The user would chat with the chatbot by a chat application. The chatbot would rec-

ognize patterns and intents from the user to perform several actions. Then, with the in-

formation got from the conversation, the bot would launch automation flows using DevOps

tools like the ones explained in the Sect. 2.2.2. These tools, connected to the development

server, would perform the desired operations on it and give information about the changes

to the chatbot. Then, it will return the user that information via the chat app.

2.7 Conclusions

In this chapter, we introduced some of the terms and concepts that will be used in the

development of the project. We pictured the traditional development cycle and paradigms

by studying some of the most popular models. After that, we introduced DevOps by

detailing its characteristics, tools and advantages over the previous models.

Then, we introduced cognitive computing systems, one of the bases of chatbots. We

24

2.7. CONCLUSIONS

described their properties and use cases. Based on this, we detailed some of the key concepts

of chatbots design and continued explaining some of the most popular chatbots and their

features.

Moreover, we introduced the ChatOps paradigm and the peculiarities of this model. We

described some ChatOps developments to study their components, how do they work and

the problems that they solve. Finally, we proposed the environment that will be developed

in this project to represent a real-world necessity.

25

CHAPTER 2. STATE OF ART

26

CHAPTER3
Enabling Technologies

This chapter offers a brief review of the main technologies that have made possible this

project. First, a brief summary of the software selected is shown. The following sections

explain the fundamentals of these packages and others that are used in the execution of this

project.

27

CHAPTER 3. ENABLING TECHNOLOGIES

3.1 Introduction

To develop this project, many technologies are involved that need to be described in order

to comprehend the architecture. In this chapter, we are going to analyze and explain some

of them to offer a wider vision of how the project is achieved.

First of all, we are going to list the types of applications and services needed to get to

the solution proposed in the last chapter. This will allow us to decide which tools adapt

better to the needs of this project.

Then, information about the applications chosen and how do they work will be served.

We will focus on their behavior and their main characteristics to understand how they can

help to achieve the objectives of the project.

Finally, we are going to give conclusions about the decision taken and how they will

affect the following chapters.

3.2 Automation tools

As we stated in the Chap. 2, modern development environments based on DevOps need

tools in order to be deployed. The goal of these tools is to give the user power through

automation to perform complex tasks by themselves, from coding to deploying the final

solution.

In the previous Sect. 2.2.2, we listed some of the categories where we can group DevOps

tools by their characteristics. With these categories, the tools can be chosen using the

criteria of what the project needs or the features that the environment will implement.

As the objective of this project is to implement the environment depicted in the Sect.

2.6, some services and tools will be required to fulfill the requirements:

• To interact with a ChatOps environment, the first software the user reach is the

chat application. To chose one that is available on different platforms will make our

environment more reachable and portable. Because of this, the chat application chosen

is Telegram.

• The chatbot framework is the key part of our solution. It has to be capable of

connecting with the environment to perform the actions demanded by the user and

to communicate with the user by chatting to get the information needed.

28

3.2. AUTOMATION TOOLS

As there are many solutions in the market it is important to select one that fits the

needs of the environment. For this project, we have chosen Rasa because it is based

on Natural Language Processing (NLP), allowing the bot to interact with the user

with human-like conversational behavior. Also, as it is open-source and allows the

user to write their own scripts and code, it will fit the requirements needed for this

project.

• As a ChatOps environment is a cross-technology environment, the project will have

different kinds of coding and the development will take time, keeping it safe and man-

aging the versions is important, so source code management will need to be covered.

The most used VCS is Git for its simplicity, so in this project we will use GitLab as

the platform to manage code.

• Also, as the chatbot has to be capable of deploying and managing the environment,

an easy-to-deploy platform is relevant to achieve this. The environment will consist

of different micro-services, so a light-weighted solution based on containers would fit.

The chosen platform is Docker, as it is one of the most extended container-based

platforms.

• To govern these containers, a continuous integration tool must be put in between the

chatbot and the environment. This tool has to be able to operate with these containers

to deploy them or to connect with them to manage the services. As there are many

solutions to implement automatic pipelines to deploy, we will choose Jenkins for its

simplicity and for being one of the most popular solutions.

To get a better understanding of how the environment works, the following sections will

describe the main features of these tools. This will allow us to comprehend the decisions

taken at choosing the tools.

3.2.1 Telegram

Figure 3.1: Telegram logo [80]

29

CHAPTER 3. ENABLING TECHNOLOGIES

Telegram [80] is a free messaging cloud service based on open source. Initially launched

for iOS [28] in 2013, nowadays there are available apps for Android [39], iOS, Windows [59],

macOS [29] and Linux, and accessible via the website [82].

Among its main features, Telegram offers end-to-end encryption that gives the user

security in the communications. It also allows creating broadcast channels without user

limits, and groups up to 200.000 users. Unlike other chatting services, Telegram allows

identifying users by nickname, so their privacy is preserved.

The messages are synced up with a private cloud, so the information is backed up and

the chat history can be accessed from different applications. This allows the user to chat

from different platforms indistinctly.

One of the key features is the bot integration [81] in Telegram. There is an available bot

API that allows us to deploy a chatbot in Telegram, and integrate it in a chat to interact

with it. This way, telegram can be an interesting ChatOps tool as it can be accessed

everywhere, and allow the team to interact with the environment from everywhere.

As Rasa supports Telegram by default, it will be the chat application chosen to interact

with the chatbot. This decision will also make the environment more accessible by giving

the user a trusted chat application available in a variety of operative systems.

3.2.2 Rasa

Figure 3.2: Rasa logo [44]

Rasa [44] is a conversational AI framework for building contextual assistants. Unlike

IBM Watson or Google Dialogflow, Rasa is an Open Source alternative, which allows devel-

opers to deploy it on a diverse set of platforms and tune it to the user needs. Rasa offers a

paid “Enterprise plan” with analytics and support from the company, but the user can get

full functionality with the free version.

As we introduced in the Sect. 2.4.2.3, Rasa conversational functionality is based on

the context of the conversation. Unlike first pattern-recognition chatbots, where the engine

30

3.2. AUTOMATION TOOLS

searched for specific word sequences to give a response but did not take into consideration the

surrounding information of the conversation, contextual assistants can handle a conversation

in a more human-like way, making the correct questions to get the information needed to

fulfill more complex needs.

Rasa architecture is modular, allowing to easily integrate with other systems. As it is

coded in Python and makes use of standard libraries such as scikit-learn or spaCy, its parts

can be reused in other projects and implementations. Also, Rasa allows the user to override

the built-in libraries and scripts used and use their own, giving assistants more flexibility

in the development than their competitors.

The main components of Rasa are the following:

• Rasa Agent: The agent acts as an interface of the rest of the modules. When a

message arrives at the system, it will reach the agent which will send it to the NLU

module to begin the processing. It also implements methods to train the models used

by the rest of the components. Moreover, the agent is also capable of receiving and

replying to other chat systems supported by Rasa.

• Rasa NLU: Natural Language Processing module used in the interpreter. It is the

part where the messages sent from the user are processed. It can be trained in any

language by modifying the components used to train the model. Operations like

tokenisation, Parts Of Speech (POS) annotation or featurizing are executed by these

components in order to process the entry. These operations are performed through a

predefined pipeline that the user can configure to its need.

Rasa NLU extracts the intent that matches the message received from the user. It

also extracts the entities if there are any. The message recognition made by Rasa

NLU is the first step performed when a message arrives, and the detected intents will

be used to decide the next steps performed by the chatbot.

• Rasa Core: The core component is the dialogue engine used for building AI assis-

tants. It is built based on machine learning models trained with conversations to

decide the actions to perform, instead of classic programming if/else statements.

It is based on stories, which are representations of a conversation between the user

and the assistant. The stories relate the intents with specific actions that Rasa can

perform. These stories will be used to train the conversational model and the dialogue

policies used to decide the action to take after an intent is detected. Like other

assistants, Rasa can also connect with external services and events.

31

CHAPTER 3. ENABLING TECHNOLOGIES

Aside from using stories to train the model, the administrator can also train it inter-

actively. This is achieved by conversating with the chatbot through the command line

or by using Rasa X [42], a toolkit with a user interface. These conversations consist

of the developer sending a message to the bot, which will try to detect an intent and

asks the user for confirmation. When the conversation ends, Rasa will build training

data.

The whole message processing is shown in Fig. 3.3:

Figure 3.3: Incoming message processing [37]

The steps followed in processing the message are:

• The message is received and passed to the Interpreter, or NLU module. It performs

several transformations and operations to convert it into a dictionary with the original

text, the intent and entities found in it.

• The object that keeps track of the conversation state is the Tracker, which receives the

info that a new message has arrived. This tracker will also keep a log of the detected

intents and actions performed by the bot.

• The trained policy receives the current state of the tracker, and in consequence chooses

decides which action to take next.

• The chosen action is logged by the tracker, and then sent to the user. This action can

be either a message or executing an operation.

The development made to train the different Rasa components is explained in 4.2.2.

There, the components and how they interact will be further explained.

32

3.2. AUTOMATION TOOLS

3.2.3 Gitlab

Figure 3.4: Gitlab logo [20]

Gitlab [20] is an open-source DevOps lifecycle tool based on Git protocol. It gives

the developers not only the habitual Version Control System (VCS) features, but also gives

the teams the capability to automate Continuous integration/Continuous delivery (CI/CD)

workflows within the platform.

GitLab offers many capacities to deploy a DevOps environment by itself:

• Works as a VCS based on Git, allowing several developers to work over the same code,

keeping versions and facilitating merging each code into a release version.

• Give insight and metrics about the releases and software delivery lifecycle. For ex-

ample, it can give track of how many issues were created, resolved by whom and the

average time of resolution.

• Offers planning management to teams, with tools like kanban boards to help teams

organize and align the tasks.

• Allows configuring pipelines to work on the code. For example, GitLab can automate

the builds of the code, the integration or perform automated testing. This is configured

through pipelines that the user can configure to execute as needed.

• Provides security testing integrated into the platform. By itself, GitLab can per-

form security automated auditory with Static Application Security Testing (SAST)

or Dynamic Application Security Testing (DAST).

As in this project we will use it as a GIT code repository to get certain files used during

deployments, we are going to introduce Git to comprehend its benefits.

33

CHAPTER 3. ENABLING TECHNOLOGIES

3.2.3.1 Git

Git [11] is a free and open-source distributed Version Control System created by Linus Tor-

valds in 2005. It is based on tracking the state of files, primarily source code, to coordinate

cooperative code development.

Git is based on taking snapshots of the files in a state determined by the user, called

commits. These commits have information related to them, such as the user that made

it, the time or a describing message. Also, each commit has its own unique identifier that

identifies it in the whole project.

Figure 3.5: Typical local Git workflow [56]

To differentiate between different development stages, Git implements a branching

model. Each branch is created from a commit and allows the user to develop the code

from that commit without affecting the original branch. This allows each user to have their

own development without conflicts, and when the development is done allow them to merge

it signaling the differences to avoid conflicts.

The typical workflow when working with git can be seen in Fig. 3.5. Each user has a local

repository, composed of its workspace with the local data, an intermediate staging stage and

the local git repository with branches. The user adds the files from its current workspace

to the staging stage, which allows storing the changes into a commit to its local branch.

34

3.2. AUTOMATION TOOLS

That local branch is linked with a remote branch located in the Git repository, where the

code can be accessed, and the user can push the changes into the remote repository to make

them available there. Then, the other users can pull or clone the changes into their local

repositories to have them.

In our project, the code for all the services deployed is available at the Grupo de Sis-

temas Inteligentes (GSI) GitLab server. It allowed us to keep versions of the code while

development was going and store it securely. Also, it is used by some of the tools of the

environment to get files needed for the use cases.

3.2.4 Docker

Figure 3.6: Docker logo [31]

As computing grows in capabilities and complexity, new technologies emerge to supply

the crescent computing necessity. Virtualization allows building complex systems within a

single computer, giving the user the capacity to create virtual networks and interconnected

systems quickly.

In this context, container technology make a profound impact on development environ-

ments. While virtual machines focus on giving abstraction at the hardware level, containers

virtualize the operating system. This difference makes containers a much more lightweight

virtualization technology, allowing quick deployments, modifications and rebuilds of ser-

vices.

Docker [31] is a Platform-as-a-Service (PaaS) virtualization service that allows building

a standardized unit of software, called containers. Released in 2013, it meant an evolu-

tion from other virtualization technologies like LXC [53] or virtual machines, primarily for

the possibility of packing into a container a fully functional service with all the needed

dependencies.

To manage the containers, the Docker platform integrates an API for managing the

35

CHAPTER 3. ENABLING TECHNOLOGIES

execution and creation. This allows developers to simplify the process of deploying a service

and give additional features such as automation or high availability. Some of the advantages

of using docker are:

• Allows to rapidly deploy applications, as containers include the minimal runtime re-

quirements. This let to reduce the size and simplifies the architecture.

• Containers are portable, as all the dependencies are bundled into them independently

of where they are running. This means that a container image can be deployed in

another machine using Docker and executed in the same terms.

• Docker facilitates the sharing of images via Docker Hub [33], a free-to-use library with

thousands of images. This makes it easier to pull commonly used containers.

To deploy a Docker container, there are several options. Users can pull an image from

a repository like the mentioned Docker Hub or personalize it via configuration files called

Dockerfiles. These files define how a docker image is built, from the parent image to the

commands to run at launch, the files that must be copied to the container volume or the

ports to expose to the host. Building these files to an image allows Docker to deploy a

container with the options described in the file.

As containers are lightweight and support quick deployments, they allow to deploy

services in high availability and quickly deploy replicated instances of a service in case of

errors. To do so, there are tools like Docker swarm [32] or third-party orchestrating tools

like Kubernetes [5] or the Red Hat service Openshift [46], that allows checking the health

of containers to keep a high availability environment.

In the use case, we use Docker as the platform to deploy the whole backend side of the

environment. We will deploy containers to run the Jenkins instance, a deployment slave

managed by Jenkins and the development machine where we will perform the changes and

updates the user specifies by the chatbot. Docker allows us to make the solution portable

and replicate it, independently of the operative system or the machine where it is deployed.

3.2.5 Jenkins

As development environments get more complex and involve more services, operations like

an update may be delicate. A failure in the process may incur long times of rollback to

a functional version and redeployment, with losses in time and service. Tools that enable

continuous integration can help in providing a reliable way of automating deployments.

36

3.2. AUTOMATION TOOLS

Figure 3.7: Jenkins logo [48]

Jenkins [48] is a self-contained open source automation server that can be used to auto-

mate tasks related to building, testing and delivering software. Originally named Hudson,

it is available in Windows, Linux, macOS or running it in a Docker container.

Jenkins allows incorporating continuous integration in a DevOps environment by launch-

ing automatic operations over it. It is based on jobs, where the user indicates the operations

to be run. These jobs, also called freestyle jobs, can be automatically triggered by exter-

nal sources such as changes in a Version Control System server or changes in the state of

services, which allows the environment to quickly adapt to changes.

To ensure that the automation processes are running as expected, Jenkins offers logging

about the operations performed, and metrics about the results. It is also capable of sending

alerts to the users in case of errors in the realization of the tasks, allowing different user

roles (like developer or administrator) to get the needed information depending on them.

To perform the jobs, Jenkins offers different tools that can be extended with the instal-

lation of plugins. Out of the box, Jenkins allows different functions. For example, it can use

SSH to configure machines or to perform tests over the code collected from VCS, but by

installing plugins it can acquire functions like creating Docker containers to perform tasks.

Apart from jobs, Jenkins allows configuring pipelines, consisting of several tasks per-

formed in order. These pipelines can also be triggered by external changes, and unlike

freestyle jobs, allow to break out tasks into smaller stages. Jenkins offers information and

logging from each stage and can alter the workflow depending on stage results, making them

more adaptable and allowing them to perform more complex tasks keeping the information

flow with the user.

Pipelines can be described using a Jenkinsfile. These files describe the different stages

of a pipeline, how are they called and what they perform. Jenkinsfile also indicates which

37

CHAPTER 3. ENABLING TECHNOLOGIES

agent should run the pipeline, whether it may be any available agent or specify one of a

cluster of them. Jenkinsfile allows creating a single source of truth for the pipeline, easing

the creation of a sustainable environment where the deploying or testing steps can be tracked

and replicated.

Among the benefits of using pipelines, we may highlight the versatility that pipelines

give with options like pausing the execution until an action is performed, the information

given to users in each stage and the ease of writing a script to automate a whole DevOps

environment deploy.

In this project, Jenkins is used within a Docker container. It will communicate with

Rasa to perform the actions requested by the user. This will allow us to add an intermediate

layer between the chatbot and the environment, with logs and a history of the executions

which will help us to simplify the environment.

It will be responsible for performing the operations asked by the user and processed

by the chatbot application. To do so, Jenkins will use a deploy agent machine deployed

beforehand. This agent will contact the machine and perform the changes or deploy it if

needed, simplifying the architecture and allowing us to reduce the time of execution by

reusing the same agent instead of deploying them on-demand. The details of the agent will

be detailed in the following chapters, as well as the configuration made in Jenkins.

3.3 Conclusions

In this chapter, we have introduced some of the main technologies used in this project and

the motivation behind choosing them. As there are many options in the DevOps market,

we made our decision by how the tools can inter-operate and how they helped us to reach

the objectives fixed in the Chap. 2.

The understanding of the tools depicted in this chapter is necessary to work with the

environment proposed in this project. We detailed some of the most important features and

characteristics of the main tools to give an insight into the different parts of the environment,

which will be described in the following chapters.

Also, we introduced some key concepts of these tools that will be used in the use case.

The details given in the previous section will allow getting to know how the environment

works at a lower level while keeping an end-to-end vision of the objectives.

38

CHAPTER4
Architecture and Methodology

This chapter presents the methodology used in this work. It describes the overall architec-

ture of the project, with the connections between the different components involved in the

development of the project.

39

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

4.1 Introduction

The main purpose of this chapter is to explain the architecture of the solution developed

in this project. To do so, we are going to cover the design of each component, its function,

and how it is implemented. Firstly, we will display a diagram to show the different parts

of it and how they interact. Then, we will focus on how that modules work in this project

and their functions.

In this section, we will present the global architecture of the project, defining the different

parts and components that conform the whole system. The system consists of a chatbot

developed using the RASA Open Source framework that provides ChapOps functionalities

in a DevOps environment. As shown in Fig 4.1, the DevOps environment consists of a

dockerized development server managed by a Jenkins instance. In particular, the messages

processed by Rasa will trigger operations performed on the development server by Jenkins.

End users (i.e. DevOps developers and operation responsible users) can access the ChatOps

functionality through the Telegram messaging system. A more detailed description of these

components is provided below:

Figure 4.1: Architecture of the project

• Telegram client: The application chosen to connect with the chatbot environment.

It can be run on different devices, depending on the user’s needs.

40

4.1. INTRODUCTION

• Conversation system: This system is responsible for managing the conversation

with the user and processing its inquiries to interact with the backend part of the

system, making it the center of the ChatOps environment. Among its functions, we

can highlight the user intention recognition, the entity extraction from the information

given by the user or the action launch based on the user necessities.

It is implemented using the Rasa open source chatbot framework, which offers a

ChatOps agent that interconnects its different modules. These modules are the Rasa

NLU, used to recognize the intents in the conversation with the user, Rasa Core,

which allows processing the conversation and implements the methods to train the

conversation models, and the action server, used to launch code depending on the

conversation flow.

• Jenkins server: This server implements a Jenkins instance. Jenkins allows the en-

vironment to have Continuous integration/Continuous delivery automated workflows,

accessible for the Rasa action server and the user. To simplify its deployment and

maintenance, this server is containerized on a Docker container.

• Deploy agent: This server, managed by Jenkins, holds the methods to manage

the Development server. Jenkins connects to it to perform the changes required by

the user. The agent has control over the Docker socket, allowing it to deploy the

development server and launch commands in it.

• Development server: This server is the one that is managed by the ChatOps envi-

ronment. It is a Python development environment, with Pip managing the packages

installed, accessible for the users via SSH with the user “developer” and use the server

shell remotely. This server is managed by the deploy agent via Docker to deploy it

and execute commands on it. It also can communicate with GitLab to update the

packages list obtaining it from the remote server.

All the services displayed in the architecture, excepting the Telegram client and Gitlab,

are deployed in a virtual machine running Ubuntu 18.04. This allows us to work with some

of these services with more control over the processes and replicate the environment in case

of need.

To simplify the architecture description, we are going to separate it into two parts.

Firstly, the user interactive side, composed by the Telegram client and the conversation

system, and the textbfbackend side with the development server and the tools used to

manage it. This way, we can differentiate the part that interacts with the user from the

part used to deploy and maintain the server.

41

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

4.2 User interactive side

As the architecture is based on the ChatOps paradigm, it is divided into components that

interact with the user and components not meant to be managed by the user. This separa-

tion allows the user to operate a complex DevOps environment interacting with a cognitive

system that offers a more human-like interface through conversation, simplifying the oper-

ation.

In this section, we are going to introduce the modules that conform the conversation

system used in this part of the architecture. It will be formed by two modules, Telegram as

the chatbot application to connect with the chatbot through HTTP webhooks and RASA

as the chatbot module holding the conversation system and connected with the backend

side of the architecture.

4.2.1 Telegram

At the time of deciding the technologies used in a ChatOps environment, the chat application

used is one of the first decisions to take. It will be the access point of the system, so

accessibility is important. Also, it is important to take account of allowing the users to

access from different places and platforms to make the environment more flexible. To fulfill

these necessities, we decided to use Telegram as the chat application to communicate with

the environment.

Telegram offers to integrate a bot into the platform to chat with it, either in a private

chat or integrating the bot in a group chat. The integration is supported by the bot API,

which allows the developers to connect their bots to Telegram system. A Telegram bot is

a special type of account that does not require a telephone number to set up. Instead of

that, they are created by registering it in Telegram.

This is achieved by chatting with a special bot account made by Telegram, “Botfather”.

To create a bot, the developer must give Botfather a name which will be displayed in the

chat window and a username, used to search it in the Telegram users directory and that

must end in “bot”. The developer can also adjust some settings of the generated chatbot,

such as giving it a profile picture or change the behavior of the bot in a group chat. When

the configuration is finished, a unique authorization token is provided.

This authorization token will be used to communicate with the Telegram bot API.

This is achieved by using a “webhook”, consisting in HTTP request to an API endpoint

given by Telegram that contains the unique token. The URL of the endpoint will have the

42

4.2. USER INTERACTIVE SIDE

Figure 4.2: Telegram web user interface

form https://api.telegram.org/bot<token>/method name. The supported HTTP methods

to communicate with the endpoint are GET and POST, and the responses contain a JSON

object with the result of the operation in the bot and the data returned. An example of a

message towards the API is displayed in the List. 4.1:

Listing 4.1: HTTP petition example towards the api

POST /webhooks/telegram/webhook HTTP/1.1

Host: 5b8678613052.ngrok.io

Content-Length: 278

Accept-Encoding: gzip, deflate

Content-Type: application/json

X-Forwarded-For: 91.108.6.95

X-Forwarded-Proto: https

{

"update_id":838224377,

"message":{

"message_id":80,

"from":{

"id":1125860467,

"is_bot":false,

"first_name":"Ignacio C",

"username":"nasio13",

43

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

"language_code":"es"

},

"chat":{

"id":1125860467,

"first_name":"Ignacio C",

"username":"nasio13",

"type":"private"

},

"date":1609095880,

"text":"hi!"

}

}

The chatbot also communicates with the Telegram API endpoint defined with the token

to communicate with the user. The bot posts the response with HTTP methods towards

the endpoint, which sends it to the user. This response can send additional data aside from

text, like images, buttons or even stickers. A diagram showing the flow is shown in the

following Fig. 4.3:

Figure 4.3: Telegram webhook message flow [85]

44

4.2. USER INTERACTIVE SIDE

The messages sent by users through the client pass to intermediary servers that encrypts

the messages and communicates with the Bot API server managed by Telegram. This server

has some limitations in terms of processing messages in short periods or in large groups.

To avoid these limitations, Telegram offers the code to deploy a local Bot API server, that

allows extending the functionalities and offers more control over the communication. For

our project, we will use the default Telegram Bot API Server as any of the extended options

are necessary for achieving our objectives.

4.2.2 RASA Open Source

RASA Open Source, or from now Rasa, will allow us to develop a machine learning assistant

capable of chatting with a user in natural language to manage a DevOps environment. Due

to the functions and customization that RASA offers, it fits in the middle of the proposed

environment, where plenty of services must be interconnected.

As it is the main service to be implemented in this project, we are going to take a closer

look at the different components of RASA and how they interact. To visualize the parts

that compound the RASA module, we are going to show the interactions of these parts in

Fig. 4.4:

Figure 4.4: Interaction between Rasa components.

45

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

As Rasa functionality is achieved by the interaction of its components, we are going to

explain the implementations on them and how they impact the use of the chatbot.

4.2.2.1 ChatOps Agent

Rasa is a complex chatbot service, composed of many components interconnected. These

components have different functions, from dialogue processing to Natural Language Pro-

cessing model training and recognition.

The Rasa Agent allows the user to interact with these components by providing an

interface to the most important Rasa functionality. In Fig. 4.5 we can see how the agent

acts as an essential interface in the different Rasa components:

Figure 4.5: Detailed Rasa architecture [40]

The agent is implemented in Python like the rest of the components, and running an

instance of it will build a functional Rasa chatbot with the existing data. By launching

the Rasa agent with the command “rasa run”, the agent performs the following actions to

deploy the service:

• Check the endpoints and credentials files to check the outbound connections config-

ured.

46

4.2. USER INTERACTIVE SIDE

• If there are connections to webhooks, check the health of the endpoints and the con-

nections.

• Load the latest Natural Language Understanding (NLU) model generated.

• Connect to the Rasa Core services Tracker store and Lock store

• Build TensorFlow prediction graph based on the NLU model.

For the current project, the Telegram integration is checked at the first steps of the ser-

vice deployment. To connect to the Telegram Bot API, we have to specify some parameters

in the credentials.yml file with the following format:

Listing 4.2: Telegram integration in Rasa

telegram:

access_token: "<telegram_api_token>"

verify: "ChatopsAgentbot"

webhook_url: "https://<rasa_url>:5005/webhooks/telegram/webhook"

The values configured in this project were the Telegram Bot API authorization token

created in the Sect. 4.2.1, the chatbot name “ChatopsAgentbot” defined in the creation

and the URL of the Rasa server. As this project is deployed in a local virtual machine, port

5005 where Rasa is listening to HTTP methods is not reachable from external networks.

Therefore, Telegram is not able to communicate directly with our Rasa server. To allow

communication, we used the service Ngrok. Ngrok [61] allows us to expose a local port to

a specific protocol calls to the Internet, and allow communication with remote servers.

Ngrok assigns a URL to the specified port and protocol, forwarding the petitions to it

while the daemon is running. It offers different billing plans as well as a free plan, which is

enough for our requirements. The console user interface of the Ngrok daemon can be seen

in Fig. 4.6, which offers information about the requests and the URL that forwards to the

local direction:

Moreover, the Rasa agent also exposes a method that allows training the policies en-

semble by using the command “rasa train”. It creates training data from the user stories

and the NLU intents data and creates a model that will be used by the assistant to answer

the user. The data used in this training will be detailed in the following sections, as well as

the components that conform the pipelines used to train the model.

47

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

Figure 4.6: Ngrok console user interface

4.2.2.2 RASA NLU

Rasa NLU is an open-source natural language processing tool used for intent classification,

entity extraction and response retrieval. Rasa NLU is part of the Rasa Open Source frame-

work, but it also can be used to generate structured data to build other chatbot solutions.

Rasa NLU distinguishes from other Natural Language Processing (NLP) solutions like

Microsoft’s LUIS in the customization. As Rasa is open source and all their tools are ac-

cessible to the developer and customizable, the flexibility of the training to get the needed

models is ensured. Also, the training data used with the bot is only handled by the devel-

oper, so this data stills private.

The NLU module main functionality is to detect intents, which consist in utterances

given by the user that the bot should be able to categorize into a predefined model, and

entities, which consist of chunks of specific information that the bot should be able to

recognize. This model will be trained with a list of user utterances categorized by intent.

The sentences will be processed with Natural Language Processing tools defined in a pipeline

to build the model that will be used to talk with the user. An intent definition example

can be seen in the List. 4.3:

Listing 4.3: Intent format example

- intent: greet

48

4.2. USER INTERACTIVE SIDE

examples: |

- hey

- hello

- hi

- hello there

- good morning

- good evening

- moin

- hey there

- let’s go

- hey dude

- goodmorning

- goodevening

- good afternoon

For this project, we have defined 12 different intents. With these, we aim to provide

the user with the capability of managing a development server through conversation using

natural language. We can organize the intents using the following criteria:

• General intents used to catch usual user interactions. These intents will launch

responses with a short message.

– Greetings from the user, such as “hi” or “hello”.

– Thank you messages.

• Support intents used to guide the user. They catch messages that ask about the

chatbot.

– Asking who the user is talking to, with sentences like “are you a robot?” or “who

are you”.

– Asking for help with the usage, for example “what can you do?”.

• DevOps intents. These intents will be used to detect the operations the users want

to perform on the development server. These intents can include entities to give the

bot additional information, such as the package to install.

– Asking for the server current state, with sentences like “is the server up?”.

– Launch the development server (i.e. “deploy the server”).

– Delete the current development server instance, with utterances like “delete the

server instance”.

– Asking for installation of a specific package, for example “install scipy==1.0.0”.

49

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

– Asking for removing a package, using “uninstall pandas”.

– Listing the installed packages, for example “show me the installed packages”.

– Update the installed packages, saying “update the packages”.

– Get from Gitlab the packages defined in the requirements file, using sentences

like “get the changes from git”

These intents are defined in a YAML file called “nlu.yml”, located in the data folder of

the project. Each of the intents has a list of sentences with examples with the format shown

in List. 4.3, used to train the model. It is important to build a corpus of examples to improve

the results of the intent recognition, so at least 5 examples per intent are recommended and

10 may be sufficient for simple sentences. For training the NLU model, we used a minimum

of 10 examples for each intent.

It is important to highlight that the bot should be able to get some additional infor-

mation for some of these intents. For example, when installing a package, the bot should

be able to recognize the package and the version that the user wants to install to perform

the action. To do so, these intents catch the entity “package”, that is passed to the ac-

tions launched by the intents to apply the changes. The List. 4.4 shows the recognition

of the intent “install package” and the entity “package” when the user uttered ”install

scipy==1.0.0” to the bot:

Listing 4.4: Entity extraction example

Received user message ’install scipy==1.0.0’ with intent ’{’id’:

-2441886824623672267, ’name’: ’install_package’, ’confidence’:

0.999893069267273}’ and entities ’[{’entity’: ’package’, ’start’: 8, ’

end’: 20, ’confidence_entity’: 0.9992488026618958, ’value’: ’scipy

==1.0.0’, ’extractor’: ’DIETClassifier’}]’

The entities that the developer wants to be recognized by the NLU should be tagged in

the training data. These tags consist of surrounding the example entity with box brackets

symbols and indicating the name of the entity between parentheses. The training data

for the intent “install package” is shown in Lst. 4.5. Note how we gave several examples

of packages with different formats to allow the chatbot to extract the entity with the two

expected formats, with the version and without it.

Listing 4.5: Entity extraction example

50

4.2. USER INTERACTIVE SIDE

- intent: install_package

examples: |

- i want to install [numpy==2](package)

- install the package [test==1.0.0](package)

- install [testpy==0.2.0](package)

- can you install [pip==2.0.1](package)

- install the package [pandas==3.0.2](package)

- install [scipy==3.5.1](package)

- install the package [cowsay](package)

- install [standalone](package)

- install [pytest](package)

- install the package [scipy==1.0.0](package)

As we mentioned before, to train the NLU model, Rasa allows the user to build a pipeline

of Natural Language Processing tools. The tools cover different kinds of natural language

processing tools that allow the developer to tune the pipeline to its needs, and allow for

example to load pre-trained models to enrich the corpus.

As the intents and examples used in this project are intendedly low on numbers, we will

use the default NLU pipeline as they offered good results at predicting the intents. The

components used to train the model in the project are executed in the following order:

• WhitespaceTokenizer: Component that tokenizes whitespaces as a separator for

words.

• RegexFeaturizer: This module creates a vector representation of user message using

regular expressions. Used to extract entities in the components DIETClassifier and

CRFEntityExtractor.

• LexicalSyntacticFeaturizer: Featurizer that creates lexical and syntactic features

for a user message to support entity extraction. Moves with a sliding window over

the tokens to create the features.

• CountVectorsFeaturizer: This component creates a bag-of-words representation of

user messages, intents and responses using the sklearn CountVectorizer module.

• DIETClassifier: Dual Intent Entity Transformer (DIET) [67] is a transformer archi-

tecture that can handle both intent classification and entity recognition. It consists

of a multi-task architecture capable of predicting entity labels through a Conditional

Random Field (CRF) layer and getting the intents through comparing the intent la-

bels embedded through a single semantic vector space with the target label. It can

take as input different features:

51

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

– Dense features from pre-trained embeddings, such as Spacy models.

– Sparse features from the training data, like the features provided by the compo-

nent CountVectorsFeaturizer.

The DIET classifier can take both types of features or just one of them. In this

project, as we count with a low number of intents, we will just use the sparse features

provided by CountVectorsFeaturizer. A representation of the vector space showing

the intent detection is shown in Fig. 4.7:

Figure 4.7: Representation of vector space used to classify the intents [66]

To classify the entities in the data, DIET uses the tags in the training data, as shown

in Lst. 4.5. To evaluate if a word should be tagged with an entity, the classifier

will look a the features of the word being evaluated, but also the preceding and the

following words. This way, it will take into consideration the use of connectors and

prepositions to decide if a word is an entity.

The behavior of the classifier can be tuned to adjust to the bot necessities. The

developer can adjust the number of times that the training goes through the data by

changing the epoch value, with a default value of 100. In our case, we left it at the

default value as increasing it may incur in overfitting the model to the training data.

It also can be adjusted to only recognize intents or entities, in case the developer

wants to use other classifiers.

• EntitySynonymMapper: Module that maps synonymous entity values to the same

value. It requires to define previously the synonyms in the training data.

• ResponseSelector: Component that chooses the predicted response. It is only used

in training data with retrieval intents, a special type of intent that can be divided into

52

4.2. USER INTERACTIVE SIDE

sub-intents.

• FallbackClassifier: This module classifies a message with the intent “nlu fallback”

if the classification scores are ambiguous. This allows, if the fallback action is imple-

mented, to handle uncertain NLU predictions in the user stories.

To train the NLU model, we use the method “rasa train” introduced in Sect. 4.2.2.1 that

creates a model by processing the information located in the file nlu.yml. This file contains

the generated corpus with the intents and the entities that will be recognized along with

the examples used for training the model. To create the model, the training data will be

processed by the pipeline presented earlier in this section. This model will be used by Rasa

NLU to recognize the intents and entities in the messages that the Agent receives. The

information extracted from the user messages will be passed to Rasa Core, which we will

introduce in the following section.

4.2.2.3 Rasa Core

By now, we reviewed the Rasa agent and NLU module. As we saw, the agent represents an

interface to communicate the user with the different modules that compose Rasa, and the

NLU module is the one in charge of recognizing the user messages patterns to reply in an

expected way.

Taking a look into Fig. 4.5, that references the Rasa architecture, we do not find the

Rasa core as a single module. Instead, the Rasa core is composed of different modules

and services, and is responsible for choosing the right actions to take when a user message

arrives at the chatbot. In this section we will explain the role of these modules, as well as

explain how core components decide the next steps in conversation.

To introduce the core decision-taking, Fig. 4.8 presents a simplified view of the message

processing flow. When a message from the user arrives, it is passed to the NLU interpreter

introduced in the previous section. It will extract the intent and entities based on the

trained model generated with the NLU pipeline. That data then is stored in a tracker

object, that keeps a registry of the conversation state with information such as the previous

intents and actions taken. That tracker state is then passed to the policy, which decides

the next step action to take based on the stories. When the next action to take is decided,

the tracker is updated with that action and the response is delivered to the user.

As seen in the message flow, the tracker makes a relevant part in decision making. It

keeps tracking of the user intents recognized by the NLU module and the actions taken

53

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

Figure 4.8: Steps taken by Rasa to respond a message

when those intents were detected. This allows the policy to decide which action should be

taken next. In the List. 4.6 the information stored in the tracker is shown:

Listing 4.6: Tracker information example

2020-12-30 04:28:41 DEBUG rasa.core.policies.rule_policy - Current

tracker state:

[state 1] user intent: greet | previous action name: action_listen

[state 2] user intent: greet | previous action name: utter_greet

[state 3] user intent: list_package | previous action name: action_listen

[state 4] user intent: list_package | previous action name:

action_inform_user

[state 5] user intent: list_package | previous action name:

action_list_package

Each conversation with the bot generates a unique tracker. It is linked to a unique

conversation ID, as well as a ticket lock. This ticket lock mechanism ensures that incoming

messages from the same conversation are processed in the intended order, locking conver-

sations while messages are actively processed. As seen in Fig. 4.5, there are stores for

trackers and locks, that enable running multiple Rasa servers in parallel to replicate the

service and offer high availability. However, for this project we deploy a single Rasa server

so we will use the default tracker store and lock stores, known as InMemoryTrackerStore

and InMemoryLockStore respectively.

To train the dialogue management model, Rasa uses stories. A story is a representation

54

4.2. USER INTERACTIVE SIDE

of a conversation between the bot and a user, where the user messages are represented by

the intents and entities that match the message and the bot responses are expressed by

the action names. The List. 4.7 represents a story used in this project to install a specific

package in the development server:

Listing 4.7: Story that describes a package installation

- story: install_package

steps:

- intent: install_package

entities:

- package: "scipy==1.0.0"

- action: action_inform_user

- action: action_install_package

This story begins when the user utters that it wants to install a package, with an

example entity to help train the model. Then, a custom action called “action inform user”

is launched, sending a message to the user to advise of the action taken. Finally, the action

that performs the changes in the server is launched. In this example, the action installs the

requested package and replies to the user with the console output from the operation to

inform it.

There are many additional options to refine the stories. For example, the developer can

add checkpoints to simplify the training data processing, and “OR” statements to handle

multiple intents in a single story. Nevertheless, as stories are meant for training purposes,

the action server is not called and the assistant dialogue management model is unaware of

the events that a custom action will return. Because of this, events that may be launched

by actions such as slot setting or managing forms have to be explicitly indicated in the

story. However, in this project neither of these additional options is needed to fulfill our

objectives.

Aside from stories, rules are another training data for the dialogue manager. Unlike

stories, they strictly determine the conversation path with the defined steps instead of gen-

eralizing to unseen conversations. Rules allow simplifying complex conversation models

through defining rules that apply to intents that don’t need context or additional informa-

tion. However, in multiple-turn interactions, it is recommendable to define a story. To give

an example of rule usage, a simple rule used in the project to reply to a thank message is

shown in the following List. 4.8:

55

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

Listing 4.8: Rule to reply to thank you messages

- rule: Reply to the thank you messages

steps:

- intent: thank

- action: utter_welcome

For training the assistant, we generated the training files stories.yml and rules.yml. The

stories file contains 11 stories like the one shown in List. 4.7, which relates the intent passed

by Rasa NLU module with the actions to perform. For our chatbot, they always trigger the

action “action inform user” first, which sends the user a message to inform it that which

action the chatbot is running, and an action that performs the operation related to the

intent. In the rules file, we have the rule shown in the List. 4.8.

Figure 4.9: Interactive learning user interface

Aside from the manually generated stories, we also trained the dialogue policies by using

the interactive learning [43] module. This module allows the developer to write stories

by talking to the chatbot and correct the predictions made in real-time. To launch the

interactive learning, the developer should run “rasa interactive” in the shell. This launches

a conversation with the assistance and asks the user to make an input. After each input, the

chatbot will predict the intent in the message received with the NLU classification model,

56

4.2. USER INTERACTIVE SIDE

just as in a normal conversation, but will ask the user for confirmation about the predicted

intent as shown in Fig. 4.9. If the intent predicted by the assistant is not correct, the user

can select the correct intent. After the training is complete, the story created from the

conversation with the bot will be added to the stories.yml file as shown in Lst. 4.9, and

considered when building the conversational model.

Listing 4.9: Story generated from interactive learning

- story: interactive_story_1

steps:

- intent: greet

- action: utter_greet

- intent: install_package

entities:

- package: cowsay

- action: action_inform_user

- action: action_install_package

- intent: install_package

entities:

- package: standalone

- action: action_inform_user

- action: action_install_package

- intent: install_package

entities:

- package: pytest

- action: action_inform_user

- action: action_install_package

- intent: install_package

entities:

- package: scipy==1.0.0

- action: action_inform_user

- action: action_install_package

- intent: list_package

- action: action_inform_user

- action: action_list_package

- intent: delete_package

entities:

- package: cowsay

- action: action_inform_user

- action: action_delete_package

- intent: delete_package

entities:

- package: scipy

- action: action_inform_user

57

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

- action: action_delete_package

- intent: launch_server

- action: action_inform_user

- action: action_launch_server

To train the dialogue policies, Rasa creates training data from the stories and rules

created by the developer and trains a model on that data. Then, the policies decide which

action to take based on that model. These policies are determined in the same file where

the NLU training components pipeline were, “config.yml”. For our project, we used the

default policies to determine the actions based on the model created by the stories we have

defined. These policies are the following:

• Memoization Policy: This policy is based on the memoization technique, which

consists of saving the results of computations so that future executions can be omitted

when the same inputs repeat [78]. The policy checks the stories taken from the training

data. If the current conversation matches the stories that we have defined, it will

predict the next action from the matching stories with a confidence of 1. If there is

not any matching conversation, it will predict “None” with a confidence equal to 0.

A max history hyperparameter defines the maximum number of “turns” (a message

sent by the user and any actions performed by the bot before waiting for the next

user message) to take into consideration for deciding the next actions. By default, it

takes into account 3 turns.

• Rule Policy: It handles the rules that the developer has defined in the “rules.yml”

file. After training, it can check if there are no contradicting rules or loops that may

affect the operation of the assistant.

• TED Policy: The Transformer Embedding Dialogue (TED) policy is a multi-task ar-

chitecture that allows to predict next action and recognize entities. Based on machine

learning, it performs the following operations [41] to get the confidence:

1. Concatenate features from intents and entities, previous bot actions and slots,

and put it into an input vector to the embedding layer before the dialogue trans-

former.

2. Feed the embedding of the input vector into the dialogue transformer encoder.

3. Apply a dense layer to the output to get embeddings of the dialogue.

4. Apply a dense layer to create embeddings for system actions.

5. Calculate the similarity between the dialogue and system actions embeddings.

58

4.2. USER INTERACTIVE SIDE

6. Concatenate the output of the user sequence transformer encoder with the output

of the dialogue transformer encoder for each time step

7. Apply Conditional Random Field (CRF) algorithm to predict entities for each

user text input.

The steps performed to calculate the similarity through two dialogue turns can be

seen in Fig. 4.10:

Figure 4.10: Representation of two iterations of TED policy [84]

In the case that two policies predict with equal confidence, Rasa will take the policy

with a higher priority. The default priorities are 6 for Rule Policy, 3 for Memoization Policy

and 1 for TED Policy. For example, as Memoization and Rule Police may predict with

confidence 1, if a story and a rule both match with the model, the action performed will be

decided by the rule. To create the model used by the dialogue policies, the developer should

launch the “rasa train” method, which is also used to train the NLU module. This will

build a model using the policy pipeline defined in the config.yml file and the training data

located in the stories.yml and rules.yml, and will be used to decide which actions should

be launched after recognizing an intent.

59

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

Finally, as Rasa handles data used by different components, it is important to have a

file where the whole chatbot data is accessible. That file is “domain.yml”, which defines

the whole environment where the assistant operates. In this file, the intents, entities, slots,

responses, forms and actions that the bot can perform are listed, as well as chat session

configuration. The responses are displayed in the format shown in the List. 4.10:

Listing 4.10: Response section in domain.yml

responses:

utter_greet:

- text: "Hey! How are you today?"

- text: "Hi! Let’s get some work done today!"

utter_who_are_you:

- text: "I am a ChatBot connected to a DevOps environment to help you

manage it, which is called ChatOps! I’m part of a TFM defense

developed by Ignacio Cervantes Villalon."

utter_help_me:

- text: "Ask me to perform operations on the environment in natural

language and I will keep you informed about the results. For example,

you can ask me for the server status, to install a PIP package, or

to initialize the environment."

utter_welcome:

- text: "You are welcome!"

- text: "No problem!"

These responses will be launched as an action when the policy predicts a rule or story

that fits. These actions send the user a message with the text detailed in the response,

picking randomly one of the “text” values if there is more than one to vary the responses

given.

4.2.2.4 Action server

By now, we have reviewed the components used to build up the models to converse with the

user. First, we talked about how Rasa NLU allows extracting the user intents and entities

and continued with Rasa core components that allow choosing the right response to the

information collected from the user messages. After showing how we used these tools in our

project, the next step is to explain how Rasa replies to the user.

60

4.2. USER INTERACTIVE SIDE

Actions are the processes that the bot runs in response to user input. They are predicted

by the policies, which decide based on the dialogue model what the bot should perform after

catching a certain intent. There are different kinds of actions that Rasa could perform:

• Default actions: These actions are built into the dialogue manager by default. Most

of them are automatically predicted based on conversation situations. Some of the

most important are “action listen”, launched to make the assistant wait for the next

user message, “action restart”, used to reset the conversation with the user, or “ac-

tion default fallback” to ignore the last user message and utter a message indicating

that the bot did not understand the received message.

• Utter actions: Send a message to the user. These actions are also built in the

dialogue manager, and are defined in the bot domain file as shown in the List. 4.10.

• Custom actions: These actions can run any code. Custom actions should be defined

in the domain file, and they are executed in an action server that communicates with

the agent through an endpoint specified in the “endpoints.yml” file that listens for

calls.

The logic used to connect Rasa to the DevOps environment shown in the architecture

diagram is implemented with custom actions and executed via a Rasa Action server. The

server is deployed in the local Ubuntu machine where the whole environment is implemented.

To execute the action server, use the command “rasa run actions”. That command will

start the server, that will register the custom actions located in the file “actions.py” and

make available the endpoint where Rasa will communicate to execute the actions when the

policy predicts them. The endpoint in this project is http://localhost:5055.

When a custom action is predicted by the Rasa Core, an HTTP request is sent to the

endpoint. The request includes in the payload the following information:

1. A name action field with the name of the action to be executed.

2. The sender id, a unique identifier of the user having the conversation with the chatbot.

3. The conversation tracker object content, which reflects the conversation state at the

point of launching the action. It contains the messages, intents, entities and previous

actions performed.

4. The chatbot domain, extracted from the “domain.yml” file.

61

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

Until the action is completed, the chatbot will not be responding to the user. When

the action is completed, the server replies to the Rasa agent with a dictionary with two

objects: an events entry with the changes on the conversation slots if they were changed

and a responses entry with the messages that will be sent to the user. Then, the Rasa

action server will change into an idle state and wait for the next calls to custom actions.

As long as it implements procedures to get the calls in the endpoint and reply to the

agent, the Rasa action server can be developed in every language. However, the default

Rasa action server and the SDK is implemented in Python, as well as the default custom

actions file “actions.py”. To explain the main parts of a custom action, in the List. 4.11

the code for “action list package” is shown:

Listing 4.11: Code for custom action action list package

class action_list_package(Action):

def name(self) -> Text:

return "action_list_package"

def run(self, dispatcher: CollectingDispatcher,

tracker: Tracker,

domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

jenkins_server = _get_server_client()

job_name = ’get_package_list’

Log the action execution in the action server console

print(’Accesed the action ’ + self.name())

current_job = _get_current_execution_number(jenkins_server,

job_name)

_launch_jenkins_job(job_name)

job_console_results = _get_job_results(jenkins_server, job_name,

current_job)

dispatcher.utter_message(text="Execution finished! Console output:\

n" + job_console_results)

return []

Each custom action must be defined as a class that extends the Action class, and must

have two methods. The action.name method defines the action name. This name is used by

the Rasa agent to call the action, and it must match the name used in the bot domain file.

The method action.run executes the code of the action. It has the following parameters:

62

4.2. USER INTERACTIVE SIDE

• The dispatcher, used to send back messages to the user.

• The tracker with the state of the current user conversation. It implements methods

to get the last message, slots or entities of the conversation.

• The bot’s domain.

The developed code is inside the method run. This action is used for getting the list of

packages of the development server. To do so, it calls a function get server client to get the

jenkins server object that will perform the configuration. Then, it gets the job number with

the method get current execution number and launches the job with launch jenkins job in

the Jenkins server. When it is finished, it will retrieve the console output with the method

get job results, to finally utter the formatted console results to the user.

To simplify the action part and delegate the deploying tasks to Jenkins, the rest of the

actions that call Jenkins have a similar similar structure and call to the same methods

that start with an underscore, meant to simplify the actions and reuse the code that uses

Jenkins methods. The 9 custom actions implemented in this project to manage the DevOps

environment are the following:

• Action inform user: Auxiliary action used to give information to the user about

the next action to be executed. It gives feedback to the user about the action that the

action server is about to perform, as the server blocks until the action is complete. It

checks the last intent found in the tracker and gives a fitting response.

• Action server state: Calls the Jenkins job “check server state”. Checks the devel-

opment server’s health and replies to the user with the current state of the server.

• Action launch server: Calls the Jenkins job “deploy server”. This action initializes

the development server, and if it is already created, destroys the current container and

deploys a new one with the default configuration. If it is stopped, the server would be

started again without affecting the configuration. Replies the user with the operations

performed and the result.

• Action stop server: Calls the Jenkins job “stop server”. This action will stop the

docker container, but it will not affect the content of the development server. Replies

the user with the result of the operations.

• Action install package: Calls the Jenkins job “install package”. This action gets

the entity package from the tracker of the conversation and installs the package in the

development server. Replies the user with the result.

63

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

• Action delete package: Calls the Jenkins job “delete package”. Gets the entity

package and removes the package from the development server. Replies the user with

the result.

• Action list package: Calls the Jenkins job “get package list”. It gets a list of the

packages installed and utters it to the user.

• Action update packages: Calls the Jenkins job “update packages”. Updates all

the packages installed in the development server to the latest version available.

• Action get from git: Calls the Jenkins job “get from git”. It downloads the pack-

age list to be installed in the server from GSI GitLab and proceeds to install them.

When it is done, utters the user the packages gotten from GitLab and the results of

the installation.

The Jenkins integration is based on the library Python Jenkins [18]. It allows the action

server to connect to a Jenkins service by its URL, in our project http://localhost:8080, and

perform operations in the instance such as creating jobs or checking their results.

Figure 4.11: Sequence diagram for the Python Jenkins build job process.

Fig. 4.11 shows the interaction between the Rasa action server and the Jenkins instance.

This is achieved by using the Python Jenkins library, imported in our actions.py file, which

64

4.3. BACKEND SIDE

is used by the actions that call Jenkins jobs. The steps taken when an action that calls a

Jenkins job is predicted by the dialogue policies are the following:

• First, the action calls an internal method “ get current execution number” that calls

the Jenkins instance and retrieves a JSON with information from the job that is going

to be launched. From that JSON, a variable with the next build number, current job

is stored.

• Then, the internal method “ get current execution number” is launched. It sends an

HTTP POST request to the URL with the job name to be built and the parameters

if the job needs them (i.e. the package to be installed in the “install package” job).

Jenkins returns an “OK” message with the queue number assigned to the job.

• To check if the build is completed, the action will poll the job information with the

method “ get job results”. This method checks if the build number stored before,

current job, is equal to the JSON field “”last completed build””. If it is equal, it

means that the build has finished, and a final GET petition is sent to retrieve the

console output.

• Finally, the console output is processed to remove the build information. The post-

processed console output is then uttered to the user, ending the custom action.

4.3 Backend side

In this section, we are going to introduce the components that perform the changes in the

Development Server, as well as the server itself. The objective of this side of the architecture

is to automatize the operations on the development server and to communicate with the

chatbot module to convert the messages of the user into operations on the environment.

The backend side of the architecture is fully deployed in Docker containers, running in

the Ubuntu virtual machine where the Rasa chatbot is executed. The decision of using

Docker to deploy the main components of the backend is based on the following points:

• It allows us to quickly replicate the environment in case of need, as the images are

built from dockerfiles developed by us that can be ported to launch the containerized

services in other systems.

• As the services are containerized, the developed solution is system agnostic. This

means that the modules can be run on different platforms that can run Docker. For

65

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

example, it can be run in other operative systems like Microsoft Windows, Mac OS

or even in cloud platforms like RedHat Openshift.

• As Docker allows to forward the ports of the containers and expose them, it sim-

plifies the management of the network connections needed to develop the ChatOps

environment.

The modules that compose the backend side of the architecture can be seen in Fig. 4.12.

These components are the following:

Figure 4.12: Backend section of the architecture

1. A Jenkins instance connected with the RASA action server. It will perform the

changes over the Development server by launching jobs whenever the action server

triggers them.

2. A Deploy agent, managed by Jenkins. It will be in charge of executing the changes

ordered by Jenkins over the Development server.

3. The Development server that is configured and managed by the user messages.

66

4.3. BACKEND SIDE

4. The GSI GitLab, used by the Development server to pull information when the user

demands it.

In the following sections, we are going to describe the configuration of these modules

and how they interact with each other.

4.3.1 Jenkins

When setting up a DevOps environment, automation is one of the most important pillars.

Having automation flows simplifies managing a complex environment with many tools that

interact with each other. As DevOps environments grow in functionalities and complexity,

automation tools get more relevance in the scene.

As we introduced in the Sect. 3.2.5, Jenkins is an automation server that allows au-

tomating tasks, simplifying the implementation of Continuous integration/Continuous de-

livery (CI/CD), one of the milestones of a DevOps environment. It allows the developer to

automate tasks like deploying the environment, running tests and build pipelines to run a

series of tasks while having control of the operations made.

In our project, Jenkins makes the central part of the backend side of the architecture.

It is the connection point between the chatbot module, in charge of talking to the user and

process the conversation, and the development server, the objective to be managed by the

environment. From the petitions of the user, Jenkins launches automation jobs that execute

the changes requested.

Using Jenkins in our environment provides several key features that make possible the

consecution of this project. Some of the most important characteristics are the following:

• Using the official Jenkins Docker image, deploying a new Jenkins instance can be

done fast.

• Jenkins offers a web user interface that allows us to quickly configure the server

and personalize it to the environment needs.

• As the python library we introduced in the Sect. 4.2.2.4 exists, using it we could

develop methods to communicate the Rasa Action Server with the Jenkins server

directly.

• Jenkins offers a history of executions and logs that makes it easier to administrate

the environment.

67

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

• The developer can extent the Jenkins out-of-box functionalities using plugins.

To run the Jenkins instance, the following command must be launched:

Listing 4.12: Command to deploy Jenkins container

docker run --privileged -d -p 50000:50000 -p 8080:8080 -v jenkins-data:/var

/jenkins_home -v /var/run/docker.sock:/var/run/docker.sock --name

jenkins-master myjenkins

This command launches the container and exposes the port 8080 where the webhook is

deployed, the port 50000 for Java API and passes the docker socket to the container to allow

Jenkins to operate with Docker. In the project, this container is launched in the Ubuntu

virtual machine, along with the other services.

To manage the server, Jenkins offers a web user interface at “http://localhost:8080”.

There, the user can create jobs and pipelines, install plugins or configure the instance. The

portal also gives information about the status of the jobs and pipelines, such as the last

successful build, the duration of the last failed build. Fig. 4.13 shows a snapshot of the

user portal:

Figure 4.13: Jenkins web user interface.

Jenkins automates tasks by executing previously defined activities. These activities

68

4.3. BACKEND SIDE

may be jobs or pipelines, which are multi-stepped jobs defined by a text file that defines

the operations to perform called Jenkinsfile. In this project, we decided to implement one

job per operation to perform in the Development server to minimize the complexity of the

builds and offer a lesser response time as possible.

Jobs are created via the web user interface. At the job creation, the user can adjust

some of the parameters like inserting a description, take objects from Git or allow automatic

triggers. However, the main part of a job configuration is the “build” step. There, the user

can specify what the job does. It has options like invoking scripts, operations over docker

clouds or simply execute commands in the shell. In this project, all jobs use the build step

execute shell, which allows running a command in the Jenkins agent executing the job.

To perform the changes in the development server, we created a job for each custom

action in Rasa Action server that makes changes in the server. The jobs developed are the

following:

• Check server state: Checks the state of the Development server.

• Deploy server: Initializes the development server or resets its content if it is already

running. If it is stopped, it resumes its execution.

• Stop server: Stops the development server.

• Install package: Install a package passed from the Action server.

• Delete package: Removes a package passed from the Action server.

• Get package list: Get a list with the installed packages.

• Update packages: Updates the packages installed in the server.

• Get from git: Downloads the package list from GitLab and installs the packages

These jobs are triggered by the Rasa Action server when the actions described in the

Sect. 4.2.2.4 are predicted by the dialogue policies. When an action is triggered, it is

assigned to a Jenkins agent that performs the commands specified in the “build” step

defined at the creation. The results of the jobs are visible from the Jenkins web interface by

clicking on the job name. There, in the left column a history with the builds can be found.

The user can also get information about a specific build by clicking on it in the build

history column. Jenkins offers information such as the time it took to complete, which agent

executed the job or when it was launched. The user can also get the console output generated

69

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

when the job was built. In the List. 4.13, the console output for a “install package” build

is shown:

Listing 4.13: Console output for a ”install package” build

Started by user admin

Running as SYSTEM

Building remotely on deploy-agent in workspace /home/jenkins/workspace/

install_package

[install_package] $ /bin/sh -xe /tmp/jenkins8609956344400738137.sh

+ sudo python /home/jenkins/scripts/manage.py -m install_package -p

standalone==1.0.1

Collecting standalone==1.0.1

Downloading standalone-1.0.1.tar.gz (2.0 kB)

Collecting django

Downloading Django-3.1.4-py3-none-any.whl (7.8 MB)

Collecting asgiref<4,>=3.2.10

Downloading asgiref-3.3.1-py3-none-any.whl (19 kB)

Collecting sqlparse>=0.2.2

Downloading sqlparse-0.4.1-py3-none-any.whl (42 kB)

Collecting pytz

Downloading pytz-2020.5-py2.py3-none-any.whl (510 kB)

Building wheels for collected packages: standalone

Building wheel for standalone (setup.py): started

Building wheel for standalone (setup.py): finished with status ’done’

Created wheel for standalone: filename=standalone-1.0.1-py3-none-any.whl

size=2715 sha256=

ee6482fe6accbbf39380a54e0deb02f0ed45b80ce4873d32f9394707e1edc1d1

Stored in directory: /root/.cache/pip/wheels/da/7f/c8/6

c62017267ee50e6dec22b0152178daabbd1752b9bebfd3b5b

Successfully built standalone

Installing collected packages: sqlparse, pytz, asgiref, django, standalone

Successfully installed asgiref-3.3.1 django-3.1.4 pytz-2020.5 sqlparse

-0.4.1 standalone-1.0.1

Finished: SUCCESS

The console output also gives information about the build. In the List. 4.13, we can see

that the job was launched by user “admin”, which is the one configured in the Rasa Action

server to call Jenkins, the agent that executed the job or the command launched. This

console output will be gotten by the Action server through calls to the Python API, and

after processing, will be uttered to the user to give the result of the requested operation.

For executing all the jobs, we created a Jenkins agent that will be responsible for executing

70

4.3. BACKEND SIDE

a Python script to make the changes into the Development server.

4.3.2 Deploy agent

To perform jobs, Jenkins can either execute them by itself or delegate the task to an agent.

Using agents as job executors have many advantages, such as balancing the charge between

different nodes instead of the Jenkins server or allowing to specialize the agents to improve

the performance. As Jenkins gives information about the load in the agents, temporary

agents could be created on-demand when orders arrive to fulfill the demand.

For this project, we decided to build a custom deploy agent to simplify the logic of the

Jenkins jobs. This is achieved by using the same agent with a unique Python script to

perform all the changes in the development server. This allows us to configure once the

agent with the needed dependencies, packages and permissions and delegate all the logic

into it, instead of making all these configurations in the Jenkins server.

The Deploy agent is a docker container based on an Ubuntu 18.04 docker image. This

agent is meant to be accessed by Jenkins to execute the jobs that the Rasa Action server

triggers by launching custom actions. To deploy the agent, we wrote a dockerfile that can

be seen in the List. 4.14:

Listing 4.14: Dockerfile for the Deploy agent

FROM ubuntu:18.04

Make sure the package repository is up to date.

RUN apt-get update && \

apt-get -qy full-upgrade && \

apt-get install -qy git && \

apt-get install -qy sudo && \

apt-get install -qy vim && \

Install a basic SSH server

apt-get install -qy openssh-server && \

sed -i ’s|session required pam_loginuid.so|session optional

pam_loginuid.so|g’ /etc/pam.d/sshd && \

mkdir -p /var/run/sshd && \

Install jdk-8 to configure as Jenkins build agent

apt-get install -qy openjdk-8-jdk && \

Cleanup old packages

apt-get -qy autoremove && \

Add user jenkins to the image

adduser --quiet jenkins && \

71

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

Set password for the jenkins user (you may want to alter this).

echo "jenkins:jenkins" | chpasswd && adduser jenkins sudo &&\

mkdir /home/jenkins/.m2

Install python

RUN apt-get update \

&& apt-get install -qy --force-yes python3-pip python3-dev \

&& cd /usr/local/bin \

&& ln -s /usr/bin/python3 python \

&& pip3 install --upgrade pip \

&& pip3 install docker-py

#ADD settings.xml /home/jenkins/.m2/

Copy ssh keys

COPY .ssh /home/jenkins/.ssh

Copy scripts and development machine deployment data

COPY scripts /home/jenkins/scripts

COPY development_server /home/jenkins/development_server

RUN chown -R jenkins:jenkins /home/jenkins/.m2/ && \

chown -R jenkins:jenkins /home/jenkins/.ssh/

Standard SSH port

EXPOSE 22

CMD ["/usr/sbin/sshd", "-D"]

This dockerfile is used to generate a docker image ready to be launched with some

previous configuration:

• Install the packages git, sudo and vim, used to perform configurations in the agent

after the deployment in case of need.

• Install an ssh server to access the agent from Jenkins.

• Install openjdk-8 to configure this container as a Jenkins build agent.

• Add a “jenkins” user to the container.

• Install Python 3 and docker-py package to execute the script used to manage the

Development server.

• Copy files from the project to the container, such as the Development server dockerfile,

scripts and ssh keys.

72

4.3. BACKEND SIDE

• Expose the port 22 and run the ssh service as a daemon.

Then, we build the image and run it with the command “docker run -p 22222:22 -v

/var/run/docker.sock:/var/run/docker.sock deploy-agent”, that forwards the port 22222 of

the virtual machine with the port 22 of the container and mounts the docker socket as a

volume to allow the agent to make changes on containers.

To make this container a Jenkins build agent, some configuration must be performed

through Jenkins’ web interface. The developer must register the agent as a “Node”, and

give information such as the connection method to the agent or the availability policy for

the agent, aside from having Java JDK installed. For our deploy agent, we called the node

“deploy-agent” and specified to connect with Jenkins using SSH at the port 22222 and with

the user “jenkins”. Also, we modified the jobs created in Jenkins to always be executed by

this build agent.

The deploy agent uses a Python script to perform all the changes. This file, called “man-

age.py”, is meant to implement all the methods to interact with the Developer server con-

tainer through the Python Docker API [30]. The script, located in /home/jenkins/scripts,

is executed by the Jenkins jobs with the following command:

Listing 4.15: Command used to launch the script ”manage.py”

sudo python /home/jenkins/scripts/manage.py -m "mode" -p "package"

The “mode” parameter in the command indicates the script the operation to be per-

formed. Each one of supported modes are introduced in the “build” step of the jobs, de-

pending on which job is executed. The relation between Rasa actions, Jenkins job launched

and the mode selected is shown in the Table 4.1:

Therefore, the manage.py script is in charge of performing the changes in the Develop-

ment server. As it is the main actor in the Development server configuration, we are going

to describe the code structure and use. The script is structured in three main blocks of

methods:

1. Inner methods used to retrieve information about the Development server container

state.

2. Containers manipulation methods, used to perform changes over the Develop-

ment server container.

3. The main method which is executed when the script is called by the job.

73

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

Rasa Action Job name Mode

action server state check server state state

action launch server deploy server init

action remove server delete instance remove server

action update packages update packages update packages

action get from git get from git get from git

action install package install package install package

action delete package delete package delete package

action list package get package list get packages

Table 4.1: Relation between Rasa action, Jenkins job and manage.py mode.

As we stated before, the interaction with the Development server will be achieved via the

Docker python library. The inner methods are auxiliary functions that primarily focus on

retrieving information from the Docker platform about the Development server container.

These methods are the following:

• argument parser(): It allows to add arguments to the command, such as the -m

argument used to set the mode or -p in case of a package is passed by the action

server, for example, to install a package asked by the user.

• get container id(client): Loops through the running containers and returns the id

of the container with the “development-server” tag. This id will be used by other

commands to operate on the container.

• get image(client): Checks if an image with the name ’development-server’ exists in

the Docker platform, and returns True or False depending on it. This will be used in

tasks like initializing the development server.

The code for these methods can be seen in the List. 4.16:

Listing 4.16: Inner methods in the script ”manage.py”

74

4.3. BACKEND SIDE

Parser for arguments at script launch

def _argument_parser():

parser = argparse.ArgumentParser()

Add long and short argument

parser.add_argument("--mode", "-m", help="set command mode")

parser.add_argument("--package", "-p", help="package name")

Read arguments from the command line

args = parser.parse_args()

return args

Returns the ID of a container if it’s running. If it can’t be find,

return False

def _get_container_id(client):

for container in client.containers():

if ’development-server’ in container[’Image’]:

found_container = True

running_container = container[’Id’]

return running_container

running_container = ’NONE’

return running_container

Returns true or false if the image for the given environment exists

def _get_image(client):

image_name = ’development-server’

if image_name in str(json.dumps(client.images())):

print(image_name + ’ image found’)

return True

else:

print(image_name + ’ image not found’)

return False

Using these methods, we can get information to operate with the Development server

docker. The container manipulation methods are in charge of interacting with the Docker

platform to operate with the Development server. The methods developed are listed below:

• build image(client, dockerfile path): Given the dockerfile path, executes the Docker

build method, which generates a Docker image of the Development server tagged

“development-server”. Uses the Docker method build, equivalent of running “docker

build path/to/dockerfile -t development-server”

• run container(client): Creates and runs the Development server container. The cre-

ated container will have the name ’development-server’ and will forward port 22 to

75

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

the virtual machine port 22000. It uses the Docker method start, equivalent to the

bash command “docker run -p 22000:22 development-server”.

• remove previous instance(client): Using the inner method get container id, checks

if there is any Development server container running. If it finds any, kills the con-

tainer and removes it. It uses the remove container method, equivalent to “docker

rm *container id*”.

• delete image(client): Using the inner method get image, search for a “development-

server” image to delete it. If it finds it, checks if there is any running container to

remove it with the method remove previous instance. Uses the method remove image,

which is equivalent to running “docker rmi development-server” in the console.

• execute commands(client, command, workdir): Using the container id, launches the

passed command in the container. If a workdir is passed as an input, the command

will be launched at the given location inside the container. It is equivalent to using

“docker exec *container id* *command*” in the console.

The code for these commands is shown in the List. 4.17:

Listing 4.17: Container manipulation methods implemented in the script ”manage.py”

Generates a docker image from a provided dockerfile

def build_image(client, dockerfile_path):

Append the datetime of the last build

_append_datetime(deploy_env)

Build the image

print(’Building image, this may take some time...’)

response = [line for line in client.build(

path=dockerfile_path, rm=True, tag=’development-server’

)]

Format of last response line expected: {"stream":"Successfully built

032b8b2855fc\\n"}

print(’Dockerfile build result: ’ + str(response[-1].decode(’utf-8’)))

Creates and runs a docker container

def run_container(client):

Export port for ssh

exposed_port = 22000

container = client.create_container(

image=’development-server’,

name=’development-server’,

76

4.3. BACKEND SIDE

detach=True,

ports=[22],

host_config=cli.create_host_config(port_bindings={

22:exposed_port

})

)

client.start(container=container.get(’Id’))

return 0, exposed_port

Stops and removes a container

def remove_previous_instance(client):

running_container = _get_container_id(client)

if running_container != ’NONE’:

print(’Killing local container’)

client.kill(running_container)

print(’Removing container’)

client.remove_container(running_container)

return 0

else:

print(’No previous containers found.’)

Deletes the existing image of a container

def delete_image(client):

if _get_image(client):

if _get_container_id(client) == ’NONE’:

print(’No running containers found, deleting image...’)

client.remove_image(’development-server’)

else:

print(’Found running containers, deleting image...’)

remove_previous_instance(client)

client.remove_image(’development-server’)

print(’Image succesfully deleted’)

return True

else:

print(’Image "development-server" not found’)

return False

Execute commands towards the development server

def execute_commands(client, command, workdir=’’):

Get the ID of the container

container_id = _get_container_id(client)

if container_id != ’NONE’:

Create exec instance with a directory if it is passed.

if workdir:

exec_id = client.exec_create(container_id, command, workdir=

77

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

workdir)

else:

exec_id = client.exec_create(container_id, command)

Launch exec

command_result = client.exec_start(exec_id)

else:

command_result = ’Container not found. {} was not launched’.format(

command)

return command_result

After listing the auxiliary methods used to interact with the Docker platform, we will

describe the main method. This method is run when a Jenkins job executes the script.

Firstly, it defines a variable cli, which instantiates a Docker client and is used by any method

that communicates with docker. This allows the script to communicate with the Docker

platform and is created with the base url field with value unix://var/run/docker.sock. This

is the Docker socket running in our virtual machine, which is mounted as a volume when the

Deploy agent is launched. Executing the commands over the shared Docker socket allows us

to have all the Docker containers running on the same platform, easing the communication

between them.

The next step would be to check the arguments used to launch the script. As shown

in the Table 4.1, every job uses a different -m mode parameter. This simplifies the logic

of the main method and use if statements depending on the mode to perform the actions

required. The code of the main method is available in the List. 4.18.

Listing 4.18: Main method of ”manage.py”

if __name__ == ’__main__’:

cli = Client(base_url=’unix://var/run/docker.sock’)

Argument parsing

args = _argument_parser()

deploy_mode = args.mode

if deploy_mode == ’install_package’ or deploy_mode == ’delete_package’:

package = args.package

if deploy_mode == ’status’:

if _get_container_id(cli) != ’NONE’:

print(’Development server is running!’)

else:

print(’Development server is not currently running.’)

if deploy_mode == ’init’:

Clean up older images

78

4.3. BACKEND SIDE

delete_image(cli)

Build new images

build_image(cli, ’/home/jenkins/development_server’)

Create and run new container

result, exposed_port = run_container(cli)

print(’Created container with the image development-server,

exposing ssh at port {}’.format(str(exposed_port)))

elif deploy_mode == ’remove_server’:

remove_previous_instance(cli)

print(’Removed development-server instance’)

elif deploy_mode == ’update_packages’:

print(execute_commands(cli, "pip list --outdated --format=freeze |

grep -v ’ˆ\-e’ | cut -d = -f 1 | xargs -n1 pip install -U").

decode(’utf-8’))

elif deploy_mode == ’get_from_git’:

print(execute_commands(cli, "sh bash_git_clone.sh", workdir=’/home/

developer’))

print(’Successfully installed packages from GitLab’)

elif deploy_mode == ’install_package’:

print(execute_commands(cli, ’pip install {}’.format(package)).

decode(’utf-8’))

elif deploy_mode == ’delete_package’:

print(execute_commands(cli, ’pip uninstall -y {}’.format(package)).

decode(’utf-8’))

elif deploy_mode == ’get_packages’:

print(execute_commands(cli, ’pip freeze’).decode(’utf-8’))

else:

print(’Unsupported mode {}’.format(deploy_mode))

The commands and methods invoked in the main method are listed in the Table 4.2. It

is important to note that the majority of the options can be fulfilled by launching a com-

mand in the Development server container with the method execute commands. Another

important detail is that, as the Development server is meant to be a Python development

machine, the package management is made via Pip and the actions that manage packages

are implemented using it.

However, the “init” mode, launched when the Jenkins job “deploy server” is executed,

inquires in cleaning up the previous execution with execute commands, build a fresh Devel-

opment server docker image and run the container. The other exception is the get from git

mode. This mode, launched when the Jenkins job “get from git” is requested by the Ac-

tion server, gets from GitLab a requirements file with a package list and installs it in the

Development Server. In this case, as it is necessary to execute several commands, the ex-

ecute commands method was not ideal. To perform this task, we created a bash script,

79

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

Script mode Methods invoked Parameters

init delete image

build image

run container

Docker client, docker-

build path = /home-

/jenkins/develop-

ment server

remove server remove previous instance Docker client

update packages execute commands Docker client, command

= TODO

get from git execute commands Docker client, command

= sh bash git clone.sh,

workdir = /home/de-

veloper

install package execute commands Docker client, command

= pip install package

delete package execute commands Docker client, command

= pip uninstall package

get packages execute commands Docker client, command

= pip freeze

Table 4.2: Commands launched for the supported modes.

bash git clone.sh. This script is copied to the Development machine when the Docker image

is built, and allows to clone the development requirements.txt file from the GitLab server

and install it in the server via “pip install -r development requirements.txt”. The content

of the bash script is shown in the List. 4.19:

Listing 4.19: Content of ”bash git clone”

#! /bin/bash

Cleanup old files

echo ‘rm -f requirements.txt‘

echo ‘rm -rf tfm-ignaciocervantes‘

Clone the repo and checkout the development requirements file

80

4.3. BACKEND SIDE

echo ‘git clone -n http://icervillalon:$TOKEN@lab.gsi.upm.es/TFM/tfm-

ignaciocervantes.git --depth 1‘

echo ‘git --git-dir /home/developer/tfm-ignaciocervantes/.git checkout HEAD

development_requirements.txt‘

echo ‘pip install -r development_requirements.txt‘

The results of executing any of the manage.py will be printed in the mentioned Jenkins

“console output” section of the corresponding job. That information will also be replied to

the user, as the actions implemented in the Rasa Action server extracts the results from

the console output to build the response.

4.3.3 Development server

In a corporate environment, it is usual to divide the accesses and management between

different departments. This allows each team to specialize in their tasks and accelerate

the possible problems that may appear. For example, in an IT company it is common to

have development teams with limited access to the operational tools and give them just the

permissions needed to operate, while the maintenance and development of these tools rely

on other teams. In that kind of environment, giving the users tools to work while assuring

that the tools are safe is an important feature.

The ChatOps paradigm, and therefore this project, aim to this objective. In our project,

we implemented the Development server as the component that the whole environment is

meant to manage by processing the user messages in a chat app. This emulates a usual

corporate environment, where a machine used to execute code is given to the developers

but managed externally, so the developer only gets limited access to management methods

like installing packages or getting the status.

The designed Development server is a Python 3 development machine based on an

Ubuntu 18.04 Docker image. To describe its functionalities, the dockerfile used to build the

container is shown in the List. 4.20:

Listing 4.20: Dockerfile used to deploy Development server container

FROM ubuntu:18.04

Make sure the package repository is up to date.

RUN apt-get update && \

apt-get -qy full-upgrade && \

apt-get install -qy git && \

81

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

Install a basic SSH server

apt-get install -qy openssh-server && \

sed -i ’s|session required pam_loginuid.so|session optional

pam_loginuid.so|g’ /etc/pam.d/sshd && \

mkdir -p /var/run/sshd && \

Cleanup old packages

apt-get -qy autoremove && \

Add user developer to the image

adduser --quiet developer && \

Set password for the developer user

echo "developer:developer" | chpasswd && \

mkdir /home/developer/.m2

RUN apt-get update \

&& apt-get install -qy --force-yes python3-pip python3-dev \

&& cd /usr/local/bin \

&& ln -s /usr/bin/python3 python \

&& pip3 install --upgrade pip

#ADD settings.xml /home/developer/.m2/

Copy authorized keys

COPY .ssh /home/developer/.ssh

Copy bash script to get git changes

COPY bash_git_clone.sh /home/developer/bash_git_clone.sh

Standard SSH port

EXPOSE 22

CMD ["/usr/sbin/sshd", "-D"]

The dockerfile will build an image following the steps below:

• Install git to get the packages from GSI GitLab.

• Install an SSH server, that will be used by the developers to access to the server

remotely.

• Create a “developer” user.

• Install Python 3 and Pip as the package manager.

• Copy the .ssh folder that contains the public key to connect with the server and the

bash git clone.sh shell script used to retrieve the package list from GitLab.

82

4.4. CONCLUSIONS

• Expose the port 22 of the container.

These steps will allow the server to have the needed packages and make the server

accessible for the developer user using SSH. This dockerfile is meant to be built by the deploy

agent when the Jenkins job deploy server is executed, as well as running the container. After

running the container, it will publish the port 22 in the virtual machine port 22000, so the

machine could be reachable using the command “ssh -p 22000 developer@localhost:22000”.

The complete backend side flow to make operations in the development server can be

seen in Fig. 4.14. After an action is predicted by the Rasa dialogue policies, the custom

action calls to a Jenkins job. That job will launch the script manage.py using the command

shown in the List. 4.15 with a specific mode and package if the Rasa action passed it. Then,

the Deploy agent will connect to the Development Server through the Docker socket and

apply the changes using Docker methods depending on the desired changes.

Figure 4.14: Configuration flow from Rasa Action server towards Development Server.

4.4 Conclusions

In this chapter, we described the architecture of the solution developed for this project.

First, a diagram with the architecture is shown to give a global vision of the development

and how the components interact with each other.

From the architecture, we examined the components one by one showing the develop-

ments made for each one. To simplify the explanation, we divided the architecture into

the user interactive side, consisting of the Telegram and Rasa implementations, and the

backend side with Jenkins, the deploy agent and the Development server.

For the user interactive side, we detailed the Telegram integration for our chatbot. For

Rasa Open Source, we examined the parts involved in the conversation with the user and

83

CHAPTER 4. ARCHITECTURE AND METHODOLOGY

exposed the work made to train the chatbot Natural Language Understanding module, the

dialogue policies and the actions performed in the Action server.

Finally, we described the backend side of the architecture. To do so, we covered how

the chatbot could reach the Jenkins instance to configure the rest of the components. Also,

we described the code used to manage the Development server, as well as the configuration

needed to deploy each one of the containers used to build the environment.

84

CHAPTER5
Case study

In this chapter, we are going to describe a real-world use scenario of the project. To do so,

the interactions between the agents and tools will be explained, as well as the steps which

are taken to perform a use case of the environment.

85

CHAPTER 5. CASE STUDY

5.1 Scenario overview

The proposed scenario is an Information Technology consultancy company. This company

is a medium-sized business that offers software solutions to its clients. The software devel-

oped vary in characteristics and languages, so there are several teams focused on different

technologies to specialize and offer short delivery times. This company embraces some of

the state-of-the-art development paradigms like DevOps, and has a wide set of automation

tools available for the teams and managed by an IT organization department. These tools

range from automation servers to servers to test the developments locally before releasing

them. As these tools are managed by the IT department, the developers must pass through

the IT crew to validate the changes and apply them to the systems, which slows the releases.

To accelerate the time to market, the IT department wants to implement some tools to

give the developers more independence to the development teams. To do so, they choose to

implement a ChatOps environment. With it, the IT department aims to provide developers

a bounded interface with the operation tools that can be accessed from different systems

and can be extended in the future to provide further functionality. The objective is to allow

the developers to reach the development servers used to test the packages via a chatbot that

can perform a limited set of operations determined by the IT team, so some of the tickets

that had to be managed by them can be automated.

After talking with the development teams, they determined some of the key features

that the ChatOps environment should have. First, the chatbot should be reachable from

a chat application, so it could be integrated into the team conversations easily. Also, the

chatbot should be able to reset the environment and to install the packages requested by

the user. Finally, it would be desirable to allow the chatbot to install packages retrieved

from the company Git server.

After exposing the case study, we will list the actors implied in the scenario in Table 5.1.

The developer is a member of a Python development team that uses a development server

managed by the IT department. Before the new ChatOps environment, the developer had

to open a ticket to IT to perform operations like installing a package in the server. The

second actor is the chatbot deployed by the IT department. It is meant to interact with the

ACT-1 to allow it to make some operations into the development server without the action

of the IT team to accelerate the developer workflow.

The modules implied in the scenario are the following:

• A Telegram client. Could be used in any app or operative system, but for this case

86

5.2. DEVELOPMENT SERVER DEPLOY

Actor Role Description

ACT-1 Developer

Representative of a development

team. Uses the automation tools

provided by the IT team to test the

code before the release.

ACT-2 Chatbot

AI conversational assistant devel-

oped by the IT team. Connects the

developers with the DevOps tools by

conversation through a chat applica-

tion by launching pre-defined meth-

ods.

Table 5.1: Actors involved in the scenario.

study we will use the web client.

• The Rasa Open Source framework, deployed in an Ubuntu 18.04 virtual machine.

• The Jenkins instance deployed in a Docker container.

• The Development Server, also deployed in a Docker container.

In this scenario, we will describe some use cases that involve the agents shown in the

Table 5.1 and use the ChatOps environment developed in this project. To show how the

operations are done, we will attach screen captures to picture the user experience.

5.2 Development server deploy

The IT department has finished the development and implementation of the new ChatOps

environment. Now, they want the development team to start using it to deploy the devel-

opment server used to test the code, instead of the former servers. To make the First Office

Application (FOA), the IT department asked the Python development team to deploy the

server and perform an initial configuration. This first execution involves checking the cur-

rent status of the server to see if any instance exists. As the environment has not been used

yet, the developer should launch a new instance of the development server.

87

CHAPTER 5. CASE STUDY

As we mentioned, this FOA will involve a developer and the chatbot environment. The

first step that the developer must take consists of beginning a conversation with the chatbot.

To do so, the developer should use a Telegram account to log in to it from the preferred appli-

cation, in our case, the web UI accessible from the URL https://web.telegram.org/. There,

the user should search from the chatbot using the Telegram search engine by “Chatop-

sAgent”, as seen in Fig. 5.1:

Figure 5.1: Search made to found ChatopsAgent bot

By clicking on the ChatopsAgent user in the list and clicking on the ”Start” button in the

right column, a new conversation with the bot will be launched, and the conversation will

be shown in the right column of the interface. There, a “\start” message is automatically

launched by Telegram to initialize the bot if it is not already launched in their API. Now,

the developer can communicate with the chatbot using the chat box shown in Fig. 5.2,

found at the bottom of the right column.

Figure 5.2: Chat box used to send messages.

Once the conversation is open, the developer will launch the development. To do so,

it sends a message asking for it in natural language. In this case, as seen in Fig. 5.3,

the message was “launch the server”, but using other words like “deploy the development

88

5.2. DEVELOPMENT SERVER DEPLOY

server” or “launch the server instance” would be equally recognized by the Natural Language

Understanding (NLU) module as the intent launch server.

Figure 5.3: Message used to launch the development server.

This message arrives at the Rasa Agent via the configured endpoint in the configura-

tion. Then, the Rasa NLU classifier predicts the intent of the message by using the model

created with the training data. As seen in the Fig. 5.4, it correctly predicted the intent

“launch server”. Then, the Rasa core will predict the action to take based on the training

data used to train the core. In this case, it launched the action “action inform user” to

inform the developer that the server was being launched, as operations performed may take

a while. After this message, the chatbot will be busy and will not respond to the user until

the operation is finished or get timed out.

Figure 5.4: Intent recognition from the user message.

Then, the action “action launch server” is executed. This action, performed by the Rasa

Action server, calls the Jenkins instance to perform the operation requested. In this case,

the action called the Jenkins job “deploy server”. This job is executed by a deploy agent,

which launches a python script to do the configuration using Docker commands.

When the Jenkins Job is finished, a console output can be seen through the Jenkins

web interface as shown in Fig. 5.5. This console output offers information about the

operations performed to deploy the development server. This output is replied to the Rasa

action petition and used to compose the message sent back to the developer after the job

execution ended.

When the Rasa action server gets the response from Jenkins, ends the action by dis-

patching a message to the developer. This message is delivered by the Rasa Agent, which

sends the message to the Telegram Bot API. Then, the API delivers the message to the

developer with the execution results.

This message, shown in Fig. 5.6, offers the console output from the Jenkins job. Its

89

CHAPTER 5. CASE STUDY

Figure 5.5: Jenkins interface after executing deploy server

content states the steps taken to deploy the server and a port where the developer can

connect to the development server. To check that everything went as expected and the

server is correctly running, the developer sends a message to check the status of the devel-

opment server. As Fig. 5.7 shows, by sending the message “check the server”, the action

“action server state” is launched by Rasa and triggering a job in Jenkins that checks the

health of the server. The response “Development server is running!” means that the server

is correctly deployed and running.

Figure 5.6: Message replied by Rasa Figure 5.7: Checking server status

5.3 Package installation

As presented in the subsection 5.2, the developer has deployed the server and checked that

it was running. However, the Development server that was deployed only has installed Git,

an SSH server, Python 3 and the Pip package manager. To use it, the developer needs to

install packages such as pytest to check the code quality before releasing it. To do so, the

IT department developed methods to allow the chatbot to manage the packages installed in

the development servers. By requesting it to the chatbot, the developer can install, remove,

list or even get from Git the packages that it needs.

90

5.3. PACKAGE INSTALLATION

To show the interactions for managing the packages, in this section we will show how the

developer can install a package and list the installed packages to check that the package is

correctly installed. The developer wants to install the testing suite pytest in the development

server. To do so, it sends the message “install pytest” to the ChatopsAgent via Telegram.

In this case, the intent caught from the message received is “install package”. In this

case, Rasa NLU also caught the entity package with the value “pytest”. This information

will be passed by the dialogue policies to the action “action inform user” to inform the

developer that the operation is being performed and “action install package”, which will

call a Jenkins job to install the package detected in the message received from the user. In

this case, the response to the developer will consist of the console output as if the developer

itself installed the package, as shown in Fig. 5.8. As the figure shows, the command installed

the package required, as well as all the dependencies needed.

Figure 5.8: Response from Rasa after installing pytest

91

CHAPTER 5. CASE STUDY

After receiving the response from the chatbot, the developer wants to know which

packages are installed in the development server. To obtain the list, the developer sends the

message “list the packages”. As the other messages, it is processed by Rasa and Jenkins to

get the information from the development server. When the Jenkins job finishes, it sends

the list with each package installed and their versions as presented in Fig. 5.9:

Figure 5.9: Package list after installing pytest

Finally, the developer wants to access the server via SSH to test if the server is reachable

and the packages were successfully installed. To connect with the development server, as

seen in the response message shown in Fig. 5.6, port 22000 is exposed. At deployment, the

user developer is created inside the server, and the developer’s SSH public key is copied.

To access the development server with his user, the developer launches the command “ssh

-p 22000 developer@172.17.0.1” and introduces his password.

92

5.4. CONCLUSIONS

Once connected with the development server, the developer prints the installed package

list to check if the list retrieved by the chatbot is correct. As shown in Fig. 5.10, the

package list is correct and the package pytest 6.2.1 is installed:

Figure 5.10: Installed packages checked in development server.

5.4 Conclusions

In the case study, we have detailed the implementation of the current project inside a

software development environment, concretely an AI consultancy company that wants to

improve the efficiency. We show how the implementation of the ChatOps architecture

developed offers new ways to manage a DevOps environment by giving use cases that

perform operations usual in a real-world development team.

The scenarios presented proved the swiftness of the automatism developed versus deploy-

ing and maintaining a DevOps environment manually. The proposed examples performed

93

CHAPTER 5. CASE STUDY

the tasks intended within seconds, in comparison with opening a ticket to ask as it is usual

in a company that may take hours. The modular architecture used in the project also allows

extending the functionalities supported with ease. Moreover, as the systems and platforms

deployed are based on virtualization and containerized, the solution can be quickly deployed

and replicated in other environments. Further conclusions will be exposed in the following

chapter.

94

CHAPTER6
Conclusions

To conclude this project, we will resume the principal concepts that are detailed in this

document by evaluating the achieved goals, review the problem faced and setting some future

work lines to expand the development made for this master thesis.

95

CHAPTER 6. CONCLUSIONS

6.1 Introduction

In this chapter we will expose the conclusions extracted from this master thesis. We will

discuss the goals achieved, the problems faced and give insight into future work.

6.2 Conclusions

To conclude this thesis, we are going to summarize some of the keys to the project developed.

We have designed a complete ChatOps environment by integrating the natural language AI

framework Rasa into a state-of-art DevOps platform. The selected chatbot agent allowed

us to develop a flexible assistant that can be accessed from different operative systems, and

easy to interact with by using natural language.

The chatbot framework election allowed us to build an adaptable environment based

on processing the messages sent by the user instead of launching fixed commands. This

makes a difference with other ChatOps implementations where the interaction is made by

sending specific commands, as the bot allows to be flexible with the user to achieve the same

objectives without having to learn the concrete methods. This way, our design softens the

interaction with the ChatOps environment by offering a human-like interface to the user.

Furthermore, the environment design allows being personalized in order to be integrated

into different applications, as the systems used rely on public APIs and technologies like

REST. Moreover, as all the solutions used are open source, the services themselves can also

be tweaked to fit in a wide variety of applications. This also facilitates implementing this

project in different environments without the necessity of acquiring licenses.

All the system architecture is meant to be adaptable to different platforms and environ-

ments in terms of deployment. The decision of implementing most of the components in

Docker containers was made with the idea of deploying the solution swiftly. This allows the

developers to launch this environment in other contexts such as cloud computing platforms

like Kubernetes or Amazon Web Services.

Additionally, the environment is designed to be easy to extend its functionality. The

components used in the architecture make use of easy to read files like YAML and Python

as the main coding language. Also, the inclusion of Jenkins facilitates the automation, and

gives the developer logs and a history of the operations made which simplifies the debugging.

Finally, the complete development presents a detailed architecture that implements

an innovative environment, with a state-of-art Natural Language Understanding assistant

96

6.3. ACHIEVED GOALS

accessible from a wide variety of systems which connects with a functional DevOps envi-

ronment, extending the current paradigms used in the IT sector with a trained AI.

6.3 Achieved Goals

The achieved goals for this project are the following ones:

Implement an AI open source assistant able to interact with the user to automatize

tasks using natural language instead of commands.

Develop a functional ChatOps environment based on the AI assistant and DevOps

tools. This environment will be oriented to manage a development server to reflect a

common IT company environment.

Investigate the software development paradigms to get an insight into how the

DevOps tools should be picked and how they impact the results.

Analyse the state-of-the-art chatbots and their main features to choose the solution

that fits our environment, finally choosing Rasa Open Source as the framework for its

flexibility and possibilities.

Create the DevOps side of the architecture by selecting the tools needed to connect

with the assistant. The selected tools were Jenkins as the automation server and

Docker as the platform to deploy the services.

Configure the components to interact with each other by the use of webhooks and

REST API.

Develop the services used to fulfill the objectives marked for this project. This incurred

in developing custom actions for Rasa chatbot and scripts used by Jenkins agents to

deploy the development server.

Train the chatbot with Machine Learning techniques to allow the intent and en-

tities extraction from the messages received by the user, which is used to trigger the

automation methods developed.

Make the chatbot available from different platforms by integrating the chatbot with

Telegram Bot API. This gives the environment more flexibility as it can be reached

seamlessly from a PC or a mobile device.

97

CHAPTER 6. CONCLUSIONS

6.4 Problems faced

Despite reaching the proposed objectives, we reached some difficulties in the realization of

this project. In this section we will list some of the challenges faced, as well as how we

overcame them:

• The use of an AI chatbot instead of a command-based assistant. As using a Natural

Language Understanding chatbot benefits the environment by making it more flexible

and easy to use, the intent recognition and entity extraction required more work than

coding a set of commands without worrying about the message processing. However,

the developed chatbot offers a satisfactory recognition of intents thanks to the training

data we generated and used to train the models.

• While the realization of this project, Rasa Open Source released a major update of the

framework to the 2.0 version. This update introduced enhancements and functions

that simplify the development of bots but required to modify some of the files such

as the training data or the pipelines we had already created.

• As the development was made in a local virtual machine, exposing the chatbot to

Internet to make it available from a chat application required some investigation.

The final solution was to use Ngrok, a solution that exposes local services through

NAT and offers a URL forwarding the petitions to the local servers. This allowed us

to integrate our chatbot with Telegram and connect with its API.

6.5 Future work

As this project was built with the idea of simplifying future extensions in its functionalities,

there are some lines of work that can be followed in order to expand the development:

• Deploy the environment in a cloud platform such as Amazon Web Services or Azure.

This would allow to make the environment available 24/7, and simplify implementing

desirable features like redundancy or load balancing.

• Extend the functionalities implemented in the project to achieve a higher grade of au-

tomation. Some of the possible functions would be automatically pulling the changes

from Git, integrate unitary testing of the code or the support of different users inside

the development server with different roles and permissions.

98

6.5. FUTURE WORK

• Add support to different languages in the chatbot. This feature is supported out of

the box by Rasa but requires creating new training data and configure the machine

learning training pipeline components to adapt to the languages.

• Integrate our chatbot into more chat applications and services, such as Whatsapp or

Slack. This would give the environment more flexibility to adapt to the users by giving

them more options.

• Include the option to use voice inputs to talk to the assistant. As most of the chat

applications integrate voice messaging, it would require to develop a speech-to-text

component that would produce a message to be processed by the current Rasa imple-

mentation. Based on this, a text-to-speech component could also be included to give

audio responses and emulate a voice conversation.

• Rearrange the current environment to other applications. As the architecture is mod-

ular and the components communicate with each other using common protocols, the

service managed and the functions performed could adapt to many applications. For

example, the ChatOps environment created would be used to manage a computing

cluster by adding methods to create several instances, launch services in them and

processing the results.

• Adapt the development to be part of a subject in the Máster Universitario en In-

genieŕıa de Telecomunicación. As the project covers topics from Machine learning

to virtualized services, the development made in this project would fit a practi-

cal application in subjects like Ciencia de Datos y Aprendizaje automatico en la

Web de datos (CDAW) or Computacion en Nube y Virtualizacion de Redes y servi-

cios (CNVR).

99

CHAPTER 6. CONCLUSIONS

100

APPENDIXA
Project impact

This appendix describes the social, economic, environmental and ethical impact related to

the project.

101

APPENDIX A. PROJECT IMPACT

A.1 Context

This project is a proposition from the Intelligent System Group (GSI) of the Polytechnic

University of Madrid (UPM), with the purpose of implementing a ChatOps environment,

consisting of an Artificial Intelligence (AI) chatbot which manages a DevOps environment

through conversation. This project has been fully developed by the author, with the assis-

tance of a member of the department, Carlos Ángel Iglesias.

The following sections will expose the impact of this thesis on diverse topics.

A.2 Social Impact

The social impact caused by this project is the automation of the process of managing a

DevOps environment, which is one of the most used software development paradigms. As

the environment developed in this thesis is based on real-world use cases, implementing it

in Information Technology companies would have a positive impact in terms of efficiency.

Therefore, the development shown in this thesis would have a positive impact to re-

duce costs in companies, as it would allow the employees to save time operating with the

environment.

A.3 Economic Impact

Following the analysis of the previous section, the implementation of this environment in a

company would incur automatizing tasks that are done by employees. This may cause the

dismissal of employees in charge of the management of the development environments, as

the solution would automate the operations made on them. Therefore, the implementation

of the solution detailed in this project may save costs for companies.

However, the environment developed in this project requires a specialized team to deploy

and maintain, as well as developing new automatisms. This would create new jobs and

opportunities, allowing companies to grow while creating jobs.

102

A.4. ENVIRONMENTAL IMPACT

A.4 Environmental Impact

Regarding the environment. As this project is designed to be light-weight and easily ported

to different platforms, the environmental impact is low. During the development, this im-

pact was caused by the energy consumption from my personal computer and two monitors,

but in a real-world scenario the energy consumption would be lower deploying the environ-

ment in a cloud service.

A.5 Ethical Impact

The ethical impact concerns were mentioned in the previous sections as they affected the

economic and social impact. The main concern is the fact that substituting human tasks

for artificial intelligence to improve efficiency may cause the destruction of jobs.

However, as the deployment and management of environments like the one developed

in this project require human interaction, new jobs would be created.

103

APPENDIX A. PROJECT IMPACT

104

APPENDIXB
Project budget

This appendix covers the expenses derived from this project.

105

APPENDIX B. PROJECT BUDGET

B.1 Hardware Expenses

For the development of this project, the main hardware requirement is a computer capable

of running the developed environment, as well as the editors used to code and write this

thesis. The computer used is an Asus laptop, with an Intel i5 6300hq processor, 8 GB

RAM and 1 TB SSD Hard Disk. To optimize the work, an AOC monitor was used aside

from the laptop screen.

B.2 Software Expenses

In terms of software, we used Windows 10 as the operative system that hosted the virtual

machine where we deployed the environment, which ran Ubuntu 18.04. The rest of the

components are open-source and free to use.

B.3 Payroll Expenses

To calculate the expenses related to the development time, we will use the European Credit

Transfer and Accumulation System (ECTS), the European standard used to calculate the

workload in education. As a Master thesis has 30 ECTS credits, with one credit being equal

to 30 working hours, following this standard the hours associated to develop this project

are 900. A person working 8 hours per day, 22 working days per month, would take about

six months of work. Based on a regular payroll of a junior engineer of 24.000 euros per year,

the expenses would be 12.000 euros.

B.4 Indirect Expenses

As indirect expenses, we will consider some of the bills associated with the development

done. For this project, we will consider:

• The Internet bill for a 100 Mbps line, costing 40 euros per month. As the Master

thesis is meant to take 6 months, the total cost would be 240 euros.

• The electricity bill, which a cost of 0.1199 kWh. The average consumption of the

computer and peripherals used in this project is about 500 watts, which taking into

consideration the hours cost about 54 euros.

106

B.5. TOTAL EXPENSES

B.5 Total expenses

The summary of the project budget is shown in the Tab. B.1:

Element Cost (euros)

Laptop 700

Monitor 200

Windows 10 license 145

Payroll 12.000

Internet bill 240

Electricity bill 54

Total 13.339

Table B.1: Actors involved in the scenario.

107

APPENDIX B. PROJECT BUDGET

108

Bibliography

[1] Sameera A Abdul-Kader and JC Woods. Survey on chatbot design techniques in speech conver-

sation systems. International Journal of Advanced Computer Science and Applications, 6(7),

2015.

[2] Atlassian. Trello, 2020 (accessed November 24, 2020). https://trello.com/.

[3] Atlassian. What is ChatOps? A guide to its evolution and adoption, 2020 (ac-

cessed November 8, 2020). https://www.atlassian.com/blog/software-teams/

what-is-chatops-adoption-guide.

[4] Prometheus Authors. Prometheus - Monitoring system & time series database, 2020 (accessed

December 1, 2020). https://prometheus.io/.

[5] The Kubernetes Authors. Kubernetes, 2020 (accessed November 19, 2020). https://

kubernetes.io/.

[6] Ronald T. Azuma. A survey of augmented reality. Presence: Teleoperators and Virtual Envi-

ronments, 6(4):355–385, 1997.

[7] S Balaji and M Sundararajan Murugaiyan. Waterfall vs. v-model vs. agile: A comparative

study on sdlc. International Journal of Information Technology and Business Management,

2(1):26–30, 2012.

[8] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A software architect’s perspective. Addison-

Wesley Professional, 2015.

[9] Jack Cahn. Chatbot: Architecture, design, & development. University of Pennsylvania School

of Engineering and Applied Science Department of Computer and Information Science, 2017.

[10] Rocket Chat. Rocket.Chat - The Leading Communication Hub, 2020 (accessed November 24,

2020). https://rocket.chat/.

[11] Software Freedom Conservancy. Git, 2020 (accessed December 5, 2020). https://git-scm.

com/.

[12] Cognitive Computing Consortium. Cognitive Computing Defined

– Cognitive Computing Consortium, 2020 (accessed December 10,

2020). https://cognitivecomputingconsortium.com/resources/

cognitive-computing-defined/#1467829079735-c0934399-599a.

[13] Menal Dahiya. A tool of conversation: Chatbot. International Journal of Computer Sciences

and Engineering, 5(5):158–161, 2017.

109

https://trello.com/
https://www.atlassian.com/blog/software-teams/what-is-chatops-adoption-guide
https://www.atlassian.com/blog/software-teams/what-is-chatops-adoption-guide
https://prometheus.io/
https://kubernetes.io/
https://kubernetes.io/
https://rocket.chat/
https://git-scm.com/
https://git-scm.com/
https://cognitivecomputingconsortium.com/resources/cognitive-computing-defined/#1467829079735-c0934399-599a
https://cognitivecomputingconsortium.com/resources/cognitive-computing-defined/#1467829079735-c0934399-599a

BIBLIOGRAPHY

[14] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. Devops. Ieee Software,

33(3):94–100, 2016.

[15] Nagios Enterprises. Nagios - The Industry Standard In IT Infrastructure Monitoring, 2020

(accessed December 1, 2020). https://www.nagios.org/.

[16] Python Software Foundation. Welcome to Python.org, 2020 (accessed November 18, 2020).

https://www.python.org/.

[17] The Apache Source Foundation. Maven – Welcome to Apache Maven, 2020 (accessed November

27, 2020). https://maven.apache.org/.

[18] Willow Garage. Python Jenkins — Python Jenkins 1.1.1.dev1 documentation, 2020 (accessed

December 12, 2020). https://python-jenkins.readthedocs.io/en/latest/.

[19] Inc Github. HUBOT / Hubot is your friendly robot sidekick. Install him in your company

to dramatically improve employee efficiency., 2020 (accessed November 16, 2020). https:

//hubot.github.com/.

[20] GitLab. What is GitLab? / GitLab, 2020 (accessed December 5, 2020). https://about.

gitlab.com/what-is-gitlab/.

[21] Nick Groenen Guillaume Binet, Tali Davidovich Petrover. Errbot — Err 9.9.9 documentation,

2020 (accessed November 16, 2020). https://errbot.readthedocs.io/en/latest/.

[22] J. O. Gutierrez-Garcia and E. López-Neri. Cognitive computing: A brief survey and open

research challenges. In 2015 3rd International Conference on Applied Computing and Infor-

mation Technology/2nd International Conference on Computational Science and Intelligence,

pages 328–333, 2015.

[23] Jason Hand. ChatOps essential guide: The basics, benefits, and challenges / TechBea-

con, 2020 (accessed November 9, 2020). https://techbeacon.com/enterprise-it/

chatops-essential-guide-basics-benefits-challenges.

[24] Jim Highsmith and Alistair Cockburn. Agile software development: The business of innovation.

Computer, 34(9):120–127, 2001.

[25] IBM. The DeepQA Research Team - IBM, 2020 (accessed December 1, 2020). https://

researcher.watson.ibm.com/researcher/view_group.php?id=2099.

[26] IBM. Watson Assistant for customer self-service, 2020 (accessed December 2, 2020).

https://www.ibm.com/watson/assets/duo/pdf/190905_WatsonAssistant_

ChildPagePDF_CSS_.pdf.

[27] Apple Inc. Usar Face ID en el iPhone o iPad Pro - Soporte técnico de Apple, 2020 (accessed

December 3, 2020). https://support.apple.com/es-es/HT208109.

[28] Apple Inc. iOS 14 - Apple (ES), 2020 (accessed November 21, 2020). https://www.apple.

com/es/ios/ios-14/.

[29] Apple Inc. macOS Big Sur - Apple (ES), 2020 (accessed November 21, 2020). https://www.

apple.com/es/macos/big-sur/.

110

https://www.nagios.org/
https://www.python.org/
https://maven.apache.org/
https://python-jenkins.readthedocs.io/en/latest/
https://hubot.github.com/
https://hubot.github.com/
https://about.gitlab.com/what-is-gitlab/
https://about.gitlab.com/what-is-gitlab/
https://errbot.readthedocs.io/en/latest/
https://techbeacon.com/enterprise-it/chatops-essential-guide-basics-benefits-challenges
https://techbeacon.com/enterprise-it/chatops-essential-guide-basics-benefits-challenges
https://researcher.watson.ibm.com/researcher/view_group.php?id=2099
https://researcher.watson.ibm.com/researcher/view_group.php?id=2099
https://www.ibm.com/watson/assets/duo/pdf/190905_WatsonAssistant_ChildPagePDF_CSS_.pdf
https://www.ibm.com/watson/assets/duo/pdf/190905_WatsonAssistant_ChildPagePDF_CSS_.pdf
https://support.apple.com/es-es/HT208109
https://www.apple.com/es/ios/ios-14/
https://www.apple.com/es/ios/ios-14/
https://www.apple.com/es/macos/big-sur/
https://www.apple.com/es/macos/big-sur/

BIBLIOGRAPHY

[30] Docker Inc. Docker SDK for Python — Docker SDK for Python 4.4.1 documentation, 2020

(accessed December 12, 2020). https://docker-py.readthedocs.io/en/stable/

index.html.

[31] Docker Inc. Why Docker? / Docker, 2020 (accessed December 7, 2020). https://www.

docker.com/why-docker.

[32] Docker Inc. Swarm mode overview / Docker Documentation Containers, 2020 (accessed Novem-

ber 18, 2020). https://docs.docker.com/engine/swarm/.

[33] Docker Inc. Docker Hub, 2020 (accessed November 19, 2020). https://hub.docker.com/.

[34] Github Inc. About continuous integration - GitHub Docs, 2020 (accessed December 1,

2020). https://docs.github.com/es/free-pro-team@latest/actions/guides/

about-continuous-integration.

[35] Github Inc. GitHub: Where the world builds software · GitHub, 2020 (accessed November 24,

2020). https://github.com/.

[36] Google Inc. Dialogflow use cases, 2020 (accessed December 2, 2020). https://dialogflow.

com/case-studies/dominos/.

[37] Google Inc. Dialogflow / Google Cloud, 2020 (accessed December 2, 2020). https://cloud.

google.com/dialogflow.

[38] Google Inc. Fulfillment / Dialogflow Documentation / Google Cloud, 2020 (accessed December

2, 2020). https://cloud.google.com/dialogflow/docs/fulfillment-overview.

[39] Google Inc. Android / La plataforma que ampĺıa los ĺımites de lo posible, 2020 (accessed

November 20, 2020). https://www.android.com/.

[40] Rasa Technologies Inc. Rasa Architecture Overview, 2020 (accessed December 11, 2020).

https://rasa.com/docs/rasa/arch-overview.

[41] Rasa Technologies Inc. Policies, 2020 (accessed December 12, 2020). https://rasa.com/

docs/rasa/policies.

[42] Rasa Technologies Inc. Improve your contextual assistant with Rasa X, 2020 (accessed December

2, 2020). https://rasa.com/docs/rasa-x/.

[43] Rasa Technologies Inc. Writing Conversation Data, 2020 (accessed January 8, 2021). https:

//rasa.com/docs/rasa/writing-stories/#using-interactive-learning.

[44] Rasa Technologies Inc. AI assistants that go beyond basic FAQs. - Rasa, 2020 (accessed Novem-

ber 3, 2020). https://rasa.com/product/why-rasa/.

[45] Red Hat Inc. Open Source Cloud Computing Infrastructure - OpenStack, 2020 (accessed De-

cember 1, 2020). https://www.openstack.org/.

[46] Red Hat Inc. Red Hat OpenShift, the open hybrid cloud platform built on Kubernetes, 2020

(accessed November 20, 2020). https://www.openshift.com/.

111

https://docker-py.readthedocs.io/en/stable/index.html
https://docker-py.readthedocs.io/en/stable/index.html
https://www.docker.com/why-docker
https://www.docker.com/why-docker
https://docs.docker.com/engine/swarm/
https://hub.docker.com/
https://docs.github.com/es/free-pro-team@latest/actions/guides/about-continuous-integration
https://docs.github.com/es/free-pro-team@latest/actions/guides/about-continuous-integration
https://github.com/
https://dialogflow.com/case-studies/dominos/
https://dialogflow.com/case-studies/dominos/
https://cloud.google.com/dialogflow
https://cloud.google.com/dialogflow
https://cloud.google.com/dialogflow/docs/fulfillment-overview
https://www.android.com/
https://rasa.com/docs/rasa/arch-overview
https://rasa.com/docs/rasa/policies
https://rasa.com/docs/rasa/policies
https://rasa.com/docs/rasa-x/
https://rasa.com/docs/rasa/writing-stories/#using-interactive-learning
https://rasa.com/docs/rasa/writing-stories/#using-interactive-learning
https://rasa.com/product/why-rasa/
https://www.openstack.org/
https://www.openshift.com/

BIBLIOGRAPHY

[47] SonarSource Inc. Code Quality and Security / SonarQube, 2020 (accessed November 26, 2020).

https://www.sonarqube.org/.

[48] Jenkins. Jenkins User Documentation, 2020 (accessed December 8, 2020). https://www.

jenkins.io/doc/.

[49] Conny Johansson and Christian Bucanac. The v-model. IDE, University Of Karlskrona, Ron-

neby, 1999.

[50] Markus Juopperi. Deployment automation with ChatOps and Ansible, 2020 (accessed

November 15, 2020). https://www.theseus.fi/bitstream/handle/10024/

127446/Deployment%20automation%20with%20ChatOps%20and%20Ansible.

pdf?sequence=1&isAllowed=y.

[51] Lorenz Cuno Klopfenstein, Saverio Delpriori, Silvia Malatini, and Alessandro Bogliolo. The

rise of bots: A survey of conversational interfaces, patterns, and paradigms. In Proceedings of

the 2017 Conference on Designing Interactive Systems, DIS ’17, page 555–565, New York, NY,

USA, 2017. Association for Computing Machinery.

[52] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles. A survey of

devops concepts and challenges. ACM Computing Surveys (CSUR), 52(6):1–35, 2019.

[53] Canonical Ltd. Linux Containers, 2020 (accessed November 18, 2020). https://

linuxcontainers.org/.

[54] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. Dimensions of devops. In International

conference on agile software development, pages 212–217. Springer, 2015.

[55] M Mahalakshmi and Mukund Sundararajan. Traditional sdlc vs scrum methodology–a compar-

ative study. International Journal of Emerging Technology and Advanced Engineering, 3(6):192–

196, 2013.

[56] Diego C. Mart́ın. Tutorial de Git. Manual básico con ejemplos, 2020 (accessed November 26,

2020). https://www.diegocmartin.com/tutorial-git/.

[57] Microsoft. Microsoft HoloLens, 2020 (accessed December 1, 2020). https://www.

microsoft.com/en-gb/hololens.

[58] Microsoft. Microsoft HoloLens / Mixed Reality Technology for Business, 2020 (accessed De-

cember 1, 2020). https://www.microsoft.com/en-gb/hololens.

[59] Microsoft. Explora el sistema operativo, los equipos, las apps y más con Windows 10 / Microsoft,

2020 (accessed November 21, 2020). https://www.microsoft.com/es-es/windows/.

[60] Eueung Mulyana, Rifqy Hakimi, et al. Bringing automation to the classroom: A chatops-based

approach. In 2018 4th International Conference on Wireless and Telematics (ICWT), pages

1–6. IEEE, 2018.

[61] Ngrok. ngrok – documentation, 2020 (accessed December 11, 2020). https://ngrok.com/

docs.

112

https://www.sonarqube.org/
https://www.jenkins.io/doc/
https://www.jenkins.io/doc/
https://www.theseus.fi/bitstream/handle/10024/127446/Deployment%20automation%20with%20ChatOps%20and%20Ansible.pdf?sequence=1&isAllowed=y
https://www.theseus.fi/bitstream/handle/10024/127446/Deployment%20automation%20with%20ChatOps%20and%20Ansible.pdf?sequence=1&isAllowed=y
https://www.theseus.fi/bitstream/handle/10024/127446/Deployment%20automation%20with%20ChatOps%20and%20Ansible.pdf?sequence=1&isAllowed=y
https://linuxcontainers.org/
https://linuxcontainers.org/
https://www.diegocmartin.com/tutorial-git/
https://www.microsoft.com/en-gb/hololens
https://www.microsoft.com/en-gb/hololens
https://www.microsoft.com/en-gb/hololens
https://www.microsoft.com/es-es/windows/
https://ngrok.com/docs
https://ngrok.com/docs

BIBLIOGRAPHY

[62] Nub8. ¿Qué es DevOps? – Nub8, 2020 (accessed November 9, 2020). https://nub8.net/

es/que-es-devops/.

[63] United States. Navy Mathematical Computing Advisory Panel. Symposium on advanced pro-

gramming methods for digital computers : Washington, d.c., june 28, 29, 1956, June 1956.

[64] Inc Red Hat. Ansible is Simple IT Automation, 2020 (accessed November 15, 2020). https:

//www.ansible.com/.

[65] Winston W Royce. Managing the development of large software systems: concepts and tech-

niques. In Proceedings of the 9th international conference on Software Engineering, pages

328–338, 1987.

[66] Mohit Saini. Better Intent Classification And Entity Extraction with DIETClassifier Pipeline

Optimization / Conversational AI platfrom built on Rasa for teams, 2020 (accessed December

3, 2020). https://botfront.io/blog/better-intent-classification-and-entity-extraction-with-diet-

classifier-pipeline-optimization.

[67] Mohit Saini. Using the DIET classifier for intent classification in dialogue, 2020 (accessed

December 3, 2020). https://medium.com/the-research-nest/using-the-diet-classifier-for-intent-

classification-in-dialogue-489c76e62804.

[68] Outi Salo and Pekka Abrahamsson. Agile methods in european embedded software development

organisations: a survey on the actual use and usefulness of extreme programming and scrum.

IET software, 2(1):58–64, 2008.

[69] Ayse Pinar Saygin, Ilyas Cicekli, and Varol Akman. Turing test: 50 years later. Minds and

machines, 10(4):463–518, 2000.

[70] Eitan Schichmanter. How ChatOps practices improved communication on a DevOps

team, 2020 (accessed November 9, 2020). https://techbeacon.com/devops/

chatops-whats-all-chatter-about.

[71] Patrick Schueffel. A guide through the Fintech jungle. More than 130 Fintech

terms, acronyms and abbreviations explained in plain English, 2020 (accessed Decem-

ber 1, 2020). https://web.archive.org/web/20120405071414/http://www.

augmentedrealityon.com/.

[72] Ken Schwaber and Mike Beedle. Agile software development with Scrum, volume 1. Prentice

Hall Upper Saddle River, 2002.

[73] Paul Semaan. Natural language generation: an overview. J Comput Sci Res, 1(3):50–57, 2012.

[74] Sajjad Hussain Shah and Ilyas Yaqoob. A survey: Internet of things (iot) technologies, appli-

cations and challenges. In 2016 IEEE Smart Energy Grid Engineering (SEGE), pages 381–385.

IEEE, 2016.

[75] Ayat Shukairy. Chatbots In Customer Service - Statistics and Trends [Info-

graphic], 2020 (accessed December 1, 2020). https://www.invespcro.com/blog/

chatbots-customer-service/.

113

https://nub8.net/es/que-es-devops/
https://nub8.net/es/que-es-devops/
https://www.ansible.com/
https://www.ansible.com/
https://techbeacon.com/devops/chatops-whats-all-chatter-about
https://techbeacon.com/devops/chatops-whats-all-chatter-about
https://web.archive.org/web/20120405071414/http://www.augmentedrealityon.com/
https://web.archive.org/web/20120405071414/http://www.augmentedrealityon.com/
https://www.invespcro.com/blog/chatbots-customer-service/
https://www.invespcro.com/blog/chatbots-customer-service/

BIBLIOGRAPHY

[76] Heung-Yeung Shum, Xiao-dong He, and Di Li. From eliza to xiaoice: challenges and oppor-

tunities with social chatbots. Frontiers of Information Technology & Electronic Engineering,

19(1):10–26, 2018.

[77] A. Srivastava, S. Bhardwaj, and S. Saraswat. Scrum model for agile methodology. In 2017 Inter-

national Conference on Computing, Communication and Automation (ICCCA), pages 864–869,

2017.

[78] Arjun Suresh, Erven Rohou, and André Seznec. Compile-time function memoization. In Pro-

ceedings of the 26th International Conference on Compiler Construction, pages 45–54, 2017.

[79] CA Technologies. Flowdock: Group chat for teams. Integrates with GitHub, Jira, Trello., 2020

(accessed November 15, 2020). https://www.ansible.com/.

[80] Telegram. Telegram Messengers, 2020 (accessed December 4, 2020). https://telegram.

org/.

[81] Telegram. Bots: An introduction for developers, 2020 (accessed December 5, 2020). https:

//core.telegram.org/bots.

[82] Telegram. Telegram Web, 2020 (accessed November 24, 2020). https://web.telegram.

org.

[83] Userlike. What is ChatOps? A guide to its evolution and adoption, 2020 (accessed November

8, 2020). https://www.userlike.com/en/blog/consumer-chatbot-perceptions.

[84] Vladimir Vlasov, Johannes E. M. Mosig, and Alan Nichol. Dialogue transformers, 2020.

[85] Jiayu Yi. Introduction to the Telegram Bot API, Part 1 by Jiayu Yi / Chat-

bots Life, 2020 (accessed December 10, 2020). https://chatbotslife.com/

introduction-to-the-telegram-bot-api-part-1-2ae36f7b30a4.

114

https://www.ansible.com/
https://telegram.org/
https://telegram.org/
https://core.telegram.org/bots
https://core.telegram.org/bots
https://web.telegram.org
https://web.telegram.org
https://www.userlike.com/en/blog/consumer-chatbot-perceptions
https://chatbotslife.com/introduction-to-the-telegram-bot-api-part-1-2ae36f7b30a4
https://chatbotslife.com/introduction-to-the-telegram-bot-api-part-1-2ae36f7b30a4

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	State of Art
	Introduction
	Development cycle
	Development methodologies
	Waterfall model
	V-model
	Scrum

	DevOps

	Cognitive computing
	Cognitive computing properties
	Use Case of Cognitive Systems

	Chatbots
	Chatbot Design Techniques
	Chatbot examples
	Hubot
	Errbot
	Rasa

	ChatOps
	ChatOps examples
	IoT environment
	A classroom chatops environment

	Use case: A ChatOps development environment
	Conclusions

	Enabling Technologies
	Introduction
	Automation tools
	Telegram
	Rasa
	Gitlab
	Git

	Docker
	Jenkins

	Conclusions

	Architecture and Methodology
	Introduction
	User interactive side
	Telegram
	RASA Open Source
	ChatOps Agent
	RASA NLU
	Rasa Core
	Action server

	Backend side
	Jenkins
	Deploy agent
	Development server

	Conclusions

	Case study
	Scenario overview
	Development server deploy
	Package installation
	Conclusions

	Conclusions
	Introduction
	Conclusions
	Achieved Goals
	Problems faced
	Future work

	Project impact
	Context
	Social Impact
	Economic Impact
	Environmental Impact
	Ethical Impact

	Project budget
	Hardware Expenses
	Software Expenses
	Payroll Expenses
	Indirect Expenses
	Total expenses

	Bibliography

