
GRADO EN INGENIERÍA DE TECNOLOGÍAS Y

SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DEVELOPMENT OF A MACHINE LEARNING SYSTEM
FOR PREDICTING STRESS AT THE WORKPLACE

PABLO SAINZ SAN JUAN
ENERO 2022

TRABAJO DE FIN DE GRADO

T́ıtulo: Desarrollo de un Sistema de Aprendizaje Automático para

Predecir el Estrés en el Centro de Trabajo.

T́ıtulo (inglés): Development of a Machine Learning System for Predicting

Stress at the Workplace

Autor: PABLO SAINZ SAN JUAN

Tutor: SERGIO MUÑOZ LÓPEZ

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DEVELOPMENT OF A MACHINE LEARNING

SYSTEM FOR PREDICTING STRESS AT THE

WORKPLACE

PABLO SAINZ SAN JUAN

ENERO 2022

Resumen

Hoy en d́ıa el estrés es un fenómeno muy extendido que aparece en nuestras vidas de forma

consciente o inconsciente, siendo el causante de una gran proporción de las bajas labo-

rales. Aunque un cierto nivel de estrés podŕıa actuar como un factor positivo, su exposición

prolongada deriva en efectos perjudiciales para la salud y puede desencadenar o empeo-

rar enfermedades como depresión, ataques de pánico, hipertensión, diabetes y problemas

card́ıacos.

Gracias al Aprendizaje Automático es posible predecir el nivel de estrés de forma no inva-

siva mediante técnicas como el análisis del sentimiento presente en el texto, el reconocimiento

de la postura corporal, las variaciones en la presión cardiaca o incluso midiendo la conduc-

tancia de la piel. Estas últimas implican un fuerte desemboloso inicial ya que son necesarios

sensores capaces de detectar con precisión dichas variaciones fisiologicas. En este proyecto

se ha apostado por técnicas de detección que eviten la necesidad de adquirir hardware

espećıfico para su uso pudiendo encontrar todos los elementos necesarios en un ordenador.

El objetivo será, por tanto, el desarrollo de un sistema de detección de estrés a partir

del uso del ordenador. Para ello, se utilizarán técnicas de aprendizaje automático y técnicas

de Procesamiento de Lenguaje Natural (PLN) que permitirá desarrollar dos modelos: uno

capaz de detectar el estrés presente dentro de un corpus de texto, y otro en función del uso

que se hace del teclado. Estos modelos, se desarrollarán y se validarán por separado, para

posteriormente alojarlos en una aplicación propia que sea capaz de predecir el estrés de un

usuario.

Para la creación de dichos modelos se empleará el lenguaje de progamación Python y

para el desarrollo de la aplicación se empleará la herramienta Flutter.

Palabras clave: Estrés, Aprendizaje Automático, sentimientos, PNL, Python,

Flutter, texto, teclado

I

Abstract

Nowadays stress is a widespread phenomenon that appears in our lives consciously or un-

consciously, causing a high percentage of sick leaves at work. Although a certain level of

stress could act as a positive factor, prolonged exposure to stress leads to detrimental health

effects and can trigger or worsen diseases such as depression, panic attacks, hypertension,

diabetes and heart problems.

Thanks to Machine Learning it is possible to predict the level of stress non-invasively

using techniques such as body posture recognition, analyzing variations in heart pressure,

pulse or even measuring skin conductance. These techniques involve a high initial outlay

since they require sensors capable of accurately detecting these physiological variations.

For this project we have chosen techniques such as text sentiment analysis or the keystroke

dynamics analysis, since they do not require the purchase of specific hardware and all the

necessary elements can be found in a computer.

Therefore, the objective will be the development of a stress detection system. In order

to achieve this, we will use Machine Learning and Natural Language Processing (NLP)

techniques that will allow us to develop two models: one capable of detecting stress within

a corpus of text, and the other based on the use made of the keyboard. Both models will be

developed and validated separately, to be subsequently housed in a self-designed application

capable of predicting a user’s stress.

Python programming language will be used for the creation of these models and Flutter

will be used for developing the application.

Keywords: Stress, Machine Learning, sentiment, NLP, Python, Flutter, text,

keystroke dynamics

III

Agradecimientos

Me gustaŕıa dar las gracias a mis padres por su incesante apoyo durante esta etapa univer-

sitaria. Sin vosotros hubiese sido imposible llegar hasta aqui.

No me olvido de todos esos amigos que me han acompañado en este viaje, desde dentro

o desde fuera de la universidad. Ni de Raúl y Vı́ctor que desde un primer momento me

hicieron perder el miedo a esta carrera. Gracias a todos, sois mi segunda familia.

Finalmente agradecer al GSI por haberme dado la oportunidad de realizar este trabajo

y, en particular, a mi tutor Sergio por su apoyo y su confianza desde el primer minuto.

V

Contents

Resumen I

Abstract III

Agradecimientos V

Contents VII

List of Figures XI

List of Tables XIII

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 3

1.3 Structure of this document . 3

2 State of Art 5

2.1 Stress detection techniques . 5

2.2 Enabling technologies . 7

2.2.1 Machine Learning Technologies . 7

2.2.2 Python . 9

2.2.3 Python extensions used for Machine Learning 9

2.2.4 Word Embbedings techniques . 10

2.2.5 Flutter . 11

VII

3 Stress-text detection 15

3.1 Datasets . 15

3.1.1 Preliminary Analysis . 15

3.1.2 Text Preprocessing . 17

3.2 Stress analysis models . 18

3.2.1 Classifier . 18

3.3 Experimental study . 19

3.4 Results . 22

4 Keystroke Dynamics Stress Detection 27

4.1 Dataset . 27

4.1.1 Cleaning Process . 28

4.1.2 First Analysis . 28

4.1.3 Classification models . 29

4.2 Results . 31

5 Stress-detection App 33

5.1 Architecture . 33

5.2 Stress Detection System (SDS) . 34

5.3 Application . 35

5.3.1 Application Design . 35

5.4 Execution Process . 38

6 Conclusions and future work 39

6.1 Conclusions . 39

6.2 Achieved goals . 40

6.3 Problems Faced . 41

6.4 Future work . 41

Appendix A Impact of this project i

A.1 Social impact . i

A.2 Economic impact . ii

A.3 Ethical implications . ii

Appendix B Economic budget iii

B.1 Physical resources . iii

B.2 Human resources . iv

B.3 Conclusion . iv

Bibliography v

List of Figures

2.1 Reinforcement Learning schema . 8

2.2 Types of Machine Learning . 8

2.3 Flutter main pillars . 12

2.4 Comparison between Flutter and React . 13

3.1 Labels for Dreaddit Dataset . 16

3.2 Labels for Genta dataset . 16

3.3 Stress Text Analysis model representation. 18

3.4 Uni-dimensional convolution . 21

3.5 Confussion Matrix . 22

4.1 Labels for SWELL Dataset . 28

4.2 Keystroke Dynamics model representation 29

5.1 System architecture . 34

5.2 Visual Representation of Flutter code/layout 36

5.3 App before pressing ‘ANALYZE’ . 37

5.4 App after pressing ‘ANALYZE’ . 37

5.5 iOS App deployment . 37

5.6 Decision diagram of the execution cycle . 38

XI

Tables Index

3.1 Differences between stressed and unstressed text 16

3.2 Lemmatization and Stemming Examples . 17

3.3 Clean Text Example . 17

3.4 Confussion matrix for Naive-Bayes classifier using Tf-Idf word embedder. . 23

3.5 Precision (P), recall (R) and F-score (F) for stress text analysis classification

models. 24

4.1 Keystroke dynamics stress behaviour . 29

4.2 Optimal features for each model . 30

4.3 Confussion matrix for SVC using feature selection. 31

4.4 Precision (P), recall (R) and F-score (F) for the proposed supervised models. 31

XIII

CHAPTER1
Introduction

1.1 Context

Nowadays, stress is a word frequently used to denote a disease that comes as a result of

routine pressures and the several adversities that have negative impacts on health; caused

by the frenetic lifestyle of modern society. It is a concerning disease that does not make

any distinction of age, gender, economic condition or race; and it is on the rise worldwide.

Nonetheless, it is essential to know what the meaning of the word “stress” really is.

Stress is a vast concept that refers to psychological and biological processes that occur

due to challenging emotional and cognitive situations [1]. It can be considered as a state of

physical and psychological tension in response to a stimulus or pressure, either a positive or

a negative one. At the same time it is a defense mechanism that, in small proportions, helps

the organism to respond to the stimuli of daily life and adapts it to the upcoming events.

However, stress usually appears out of control and can become a chronic condition, causing

anxiety, psychosomatic disorders and worsening mental disorders such as depression.

When its occurrence is related to a working environment, then we speak of work stress.

Work stress occurs when there is a mismatch between work demands and the resources

available to the worker to cope with them. This causes a state of physical and mental

1

CHAPTER 1. INTRODUCTION

exhaustion that drives the employee to be less motivated, less productive and less confident

at work. This tends to make the organization less successful in a competitive market.

According to several estimates [2], job stress takes a considerable sum from the national

economy in sick pay, productivity loss, health care and legal costs. These personal and

economic costs have prompted the study and development of stress detection techniques.

At first, stress could be detected and quantified by administering questionnaires [3] or

by medical procedures such as EGG [4]. But, with the emergence of the internet of things

(IoT) and machine learning (ML), new stress detection methods and techniques emerged

that transformed this field of research.

IoT enables better accuracy, real-time tracking, alerting, monitoring and reporting irre-

spective of any place or any time. IoT in healthcare provides customized personal service to

the person under stress by utilizing individual gadgets and frameworks that are even utilized

by single person. Simultaneously, new learning models capable of detecting stress based on

biological signals [5] (such as variations in skin conductance, pulse analysis and heart pres-

sure) are appearing. However, these techniques often require very specific hardware which

increases costs. In recent years, research fields such as natural language processing (NLP)

had emerge, bringing with them techniques capable of recognizing sentiment within text

[6].

This work attempts to analyze the stress of a person by using his or her working tool,

the computer [7]. The developed system will be able to analyze stress in a unobtrusive

way by examining the sentiment of the typed text and analyzing the user’s typing patterns

[8]. This result in a decrease of material costs and in an easier deploy in work or academic

environments.

We will study different classification techniques and compare them in order to establish

a model capable of accurately detecting the stress of a person. For the training of these

classification models, different datasets will be used depending on the model to be trained.

Facing stress prediction from text, an existing dataset resulting from the analysis of the

sentiment present within different posts in the Reddit social network will be used [9] along

with another dataset made up of labeled tweets based on their hashtag content [10]. On the

other hand for the analysis of writing patterns, we will use the dataset that was generated

for the SWELL [11] project. Finally, these models will be embedded in a Flutter application

so it can be deployed either in a web environment or in iOS and Android devices.

2

1.2. PROJECT GOALS

1.2 Project goals

The objectives of the project are the following.

• Conduction of a preliminary study of the stress detection techniques to be used in

the project. This is intended not only to acquire the necessary data sets, but also to

define the different classification models that will handle them.

• Prior cleaning of the datasets to avoiding the presence of elements that may affect

the subsequent execution of the training models. In addition to cleaning, the labels

of the datasets are going to be checked to make them balanced in case they are not

calibrated.

• Utilization of different Machine Learning approaches for each set in order to draw

conclusions from the data obtained. This will help to select and validate a stress

detection model based on the available features.

• Development of an application using the Flutter SDK that embodies the above models

and accurately detects user stress.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is as follows:

Chapter 1. The study will be place in context and the objectives of the project will

be presented. Also, a brief summary of how the information is going to be managed will be

provided.

Chapter 2. Several technologies that have helped to bring this project through to

completion,will be presented as well as some information on what they are for, where they

come from and, briefly, how they will be used.

Chapter 3. Describes the design of a machine learning model for stress text detection,

as well as its evaluation through experiments and the analysis of its results.

Chapter 4. Details the implementation of a classification model for stress detection

based on a user’s typing patterns. It is also presented its evaluation as well as the results

obtained and the subsequent comparisons and deductions drawn from them.

3

CHAPTER 1. INTRODUCTION

Chapter 5. This chapter will describe the design and development of a Flutter appli-

cation where the previously defined models will be integrated. The main components of the

application and its workflow will also be defined.

Chapter 6. Overall conclusions obtained from this project, the objectives achieved,

the problems encountered and their respective solutions, as well as suggestions for future

work are presented.

4

CHAPTER2
State of Art

2.1 Stress detection techniques

Nowadays, one of the great dilemmas of companies is the ability to maintain a stable level

of stress among their workers. Since work stress has a significant impact on productivity,

keeping stress at an adequate level means an increase in performance for the company.

Maintaining that stability is a very sensitive process since a high level of stress can lead to

anxiety or sick leave, and a low level can lead to a lack of motivation. However, it is very

complex to recognize the stressors and therefore it is very difficult to regulate stress levels.

Stress at work has had a huge impact on companies, which has increased interest and

research on stress prevention. Preventing work stress can be achieved by identifying the

main stressors. Such a strategy could allow the design and implementation of regulatory

policies to reduce the adverse effects of stress. However, evaluating the effectiveness of these

policies in a real scenario is a challenge, mainly because of the costs involved in applying

stress detection and regulation techniques in a realistic environment.

The objective of this project will therefore be to develop a stress detection method

that can be deployed in work or academic environments. Therefore, in order to define the

technologies to be used in our project, a prior analysis of the technologies applied in other

5

CHAPTER 2. STATE OF ART

similar works was carried out.

Some studies[6] use as indicators of stress: behavioral manifestation, physiological sig-

nal, physical appearance, emotional manifestation, facial expression or voice recognition.

Nowadays, analyze this stressors in a work environment is arduous since it requires an in-

frastructure that hosts sensors to enable the detection. Therefore, we will focus the study

on non-invasive detection techniques that use the computer as a source of information.

Firstly, we focused our analysis on the different techniques used for stress recogni-

tion based on keystroke dynamics. During this process, we have found some studies that

were capable of predicting stress by analyzing variations in typing by using an Android

application[12]. Other projects developed a multi agent system (MAS)[13] which used sen-

timent and stress analyzers that processed text data, and sentiment and stress analyzers

for keystroke dynamics data in an attempt to early prevent future issues caused by social

media interactions.

SWELL project and Lisa M. Vizer’s work[14] proposed various methods of stress de-

tection using only the computer as the detection tool. For this purpose, they trained sev-

eral classifiers with keystroke features achieving really good performance from them. This

method of stress detection requires no additional hardware, is non-intrusive and is easily

adaptable to individual users, which demonstrates its great potential.

Finally, Elsbeth Turcan’s work, [9] and Genta Indra Winata’s work [10] , expose different

technologies and approaches in order to detect stress in text. They also provide two labeled

datasets that will be used to train our supervised models.

Dreaddit is a new text corpus of lengthy multi-domain social media data for the identi-

fication of stress obtained from [9]. Consisting of 190K posts from five different categories

of Reddit communities and label 3.5K total segments that where taken from 3K posts using

Amazon Mechanical Turk. The study presented preliminary supervised learning methods

for identifying stress, both neural and traditional, and the analysis of the complexity and

diversity of the data and characteristics of each category.

Genta work, proposed a Long Short-Term Memory (LSTM) with an attention mecha-

nism that classify psychological stress from self-conducted interview transcriptions. They

applied distant supervision in order to automate tweet labeling based on their hashtag con-

tent, complementing and expanding, thus, the size of our corpus. This additional data was

used to initialize the model parameters, improving the model’s robustness, especially by ex-

panding the vocabulary size. The bidirectional LSTM model with attention proved to be

the best model in terms of accuracy (74.1%) and f-score (74.3%). In addition, adjusting for

6

2.2. ENABLING TECHNOLOGIES

distant supervision was found to improve model performance by 1.6% accuracy and 2.1%

f-score. The attention mechanism helped the model to select informative words.

Once the related work in the field of stress detection has been analyzed, we proceed to

describe the main technologies which are relevant of the implementation of the project.

2.2 Enabling technologies

2.2.1 Machine Learning Technologies

There are many definitions for Machine learning, but a general one [15] would describe

it as a scientific discipline in the field of Artificial Intelligence that creates systems that

learn automatically. In this context, learning means identifying complex patterns existing

in huge quantities of data. Actually, the machine that learns is an algorithm that reviews

the data and is able to predict future behaviors. In this context, automatic also means that

these systems improve autonomously over time, without human intervention. There are 3

types of learning within machine learning: supervised learning, unsupervised learning, and

reinforced learning.

• Supervised learning aims to predict a value (or label) by training a model on a set

of previously labeled data. Therefore, the goal of supervised learning is to create a

function capable of predicting the corresponding value for any valid input object after

having seen a set of examples (“training data”). This requires the generalization from

the presented data to situations not previously seen.

A classification problem occurs when discrete values have to be predicted, for which

techniques such as KNN or SVM are used. On the other hand, if continuous values are

to be predicted, it is a regression problem and Linear or Logistic Regression algorithms

will be used. This is achieved through two phases, training and testing. To do this,

in our approach, the dataset will be distributed into two groups, generally allocating

75% of the data to training and the remaining 25% to testing.

• Unsupervised Learning tries to obtain patterns from unlabeled data. This type of

learning applies a clustering to the data in order to separate it. After the clustering,

data is divided in groups with similar characteristics. K-means is the most common

algorithm for this type of learning.

• Reinforcement Learning is concerned with how intelligent agents ought to take

actions in an environment in order to maximize the notion of cumulative rewards.

7

CHAPTER 2. STATE OF ART

Figure 2.1: Reinforcement Learning schema

Reinforcement learning differs from supervised learning in a way that in supervised

learning the training data has the answer key with it so the model is trained with

the correct answer itself whereas in reinforcement learning, there is no answer but the

reinforcement agent decides what to do to perform the given task. In the absence of

a training dataset, it is bound to learn from its experience.

Figure 2.2: Types of Machine Learning

In this project supervised learning will be used due to the nature of the datasets used.

8

2.2. ENABLING TECHNOLOGIES

2.2.2 Python

Python is an interpreted programming language widely used in Machine learning and Big

Data. As an interpreted language, the code is translated and executed simultaneously; in

addition, variables could assume different values according to the code.

2.2.3 Python extensions used for Machine Learning

First, we present the extensions used for the processing and graphical representation of the

information. These tools will help us to manage and clean the datasets as well as to visually

represent their content. Some of the extensions used are:

Pandas will help us to handle the information during its analysis. It is a fast, powerful,

flexible and easy to use open source data analysis and manipulation tool, built on top of

the Python programming language. Wes McKinney (main Developer of pandas) started

working on it in 2008 due to a need he had for a flexible, high-performance tool to perform

quantitative analysis on financial data while he was working for AQR. The main use of the

tool in this project has been the manipulation of the datasets.

Numpy is a library for Python programming language that supports the creation of

large multidimensional vectors and matrixes, along with a large collection of high-level

mathematical functions to operate on them.

Matplotlib is a library for generating graphics from data stored in lists or arrays using

Python programming language and its mathematical extension NumPy. It provides an API,

Pylab, designed to be reminiscent of MATLAB.

Natural Language Toolkit The Natural Language Toolkit, or more commonly NLTK,

is a set of libraries and programs for symbolic and statistical natural language processing

(NLP) for the Python programming language which includes graphical demonstrations and

sampled data. It provides more than 50 corpus and lexical resources that allows the classi-

fying, tokenization and stemming of data between others.

We present below the different extensions that will allow us to develop the classification

models:

Gensim is an open source library for unsupervised themed modeling and natural lan-

guage processing using modern statistical machine learning. It is implemented in Python

to improve performance. Gensim is designed to handle large text collections using data

streams and online incremental algorithms, which makes it different from most other ma-

9

CHAPTER 2. STATE OF ART

chine learning software packages that target only memory based processing.

Keras is an Open Source Neural Network library written in Python. It is capable

of being executed on top of TensorFlow, Microsoft Cognitive Toolkit or Theano. It is

particularly designed to allow experimentation in shorter time with Deep Learning networks.

Its strengths are centered on being user-friendly, modular and extensible.

TensorFlow is an open source library for machine learning across a range of tasks,

and developed by Google to satisfy its needs for systems that are capable of building and

training neural networks in order to detect and decipher patterns and correlations, which

are analogous to the thinking and learning that humans do.

Scikit-learn is a free software machine learning library for the Python programming

language that includes several classification, regression and cluster analysis algorithms in-

cluding support vector machines, random forests, Gradient boosting, K-means and DB-

SCAN. It is designed to interoperate with the NumPy and SciPy numerical and scientific

libraries.

2.2.4 Word Embbedings techniques

Word embedding is a learned representation for text in which words which have the same

meaning have a similar representation. Word embeddings are, in fact, a class of techniques

where individual words are represented as real-valued vectors in a pre-defined vector space.

Every word is mapped onto a vector and the vector values are learned in a way reminis-

cent of a neural network. The key to the approach consists of using a dense distributed

representation for each word. This distributed representation is learned from the use of

words. This allows words that are used in a similar way to have similar representations, by

naturally capturing their meaning. In contrast, it can be compared to the crisp but fragile

representation of a bag-of-words model where, unless explicitly managed, different words

have different representations, regardless of how they are used.

In this project,in order to be able to develop a stress text classifier, we will use different

word embedding techniques trying to find one that provides the best response according to

the available datasets. The techniques are:

• Tf-idf [16]: is a statistical measure that evaluates the relevance of a word to a docu-

ment in a collection of documents. It is done by multiplying two metrics: number of

times a word appears in a document and the inverse frequency of the word in a set of

documents.

10

2.2. ENABLING TECHNOLOGIES

• Word2Vec: is a NLP technique that uses a neural network model to learn word

associations from a large corpus of text. Once trained, the model is capable of de-

tecting synonymous words or suggesting additional words for a partial sentence. This

model represents each word with a carefully chosen vector in a way that a simple

mathematical function would show the level of semantic similarity between the words

represented by those vectors.

• CountVectorizer: is a tool provided by the Scikit-Learn library in Python. It is used

to transform a given text into a vector based on the frequency of each word appearing

in the entire text. It resembles to Tf-Idf but its behavior is more simple since it does

not take into account the inverse frequency of each word in a set of documents.

• Keras Embedding Layer: Keras provides an embedding layer that can be used for

neural networks on text data requiring the input data to be encoded with integers so

that each word must be represented by a single integer number. This can be used to

learn a single word embedding that can be saved and used in another model later on.

• Pre-trained Word Embeddings: are the embeddings learned in one task that

are used to solve another similar task. These embeddings are trained on large data

sets, stored, and subsequently used to solve other tasks. Thus, pre-trained word

embeddings are a form of transfer learning. There are different types of pre-trained

word embeddings: FastText, Word2Vec or GloVe.

In this project, GloVe is going to be used. It is an unsupervised learning algorithm to

obtain vector representations of words. It is trained on global co-occurrence statistics

of words from a corpus, and the resulting representations show interesting linear

substructures of the vector space of words.

2.2.5 Flutter

Flutter is an open source SDK for mobile application development made by Google. It is

often used to develop user interfaces for Android, iOS and Web apps as well as a primary

method for creating apps for Google Fuchsia.

Flutter is supported by four main pillars, its four main features, which are:

11

CHAPTER 2. STATE OF ART

Figure 2.3: Flutter main pillars

• Fast

Flutter allows us to develop applications faster by providing us with a set of tools in

order to speed up both the development and the performance of the application.

• Open

Both Flutter and Dart are OpenSource. But also, at the same time, we can say that the

Flutter community is very open, which means that a large amount of documentation

is constantly being generated thanks to Google’s contributions combined with those

of the rest of the developer community. All this work by the community, causes that

the popularity of this SDK keeps increasing.

• Beautiful

With Flutter we can design highly customized applications with interfaces from very

simple to very colorful and expressive.

• Productive

Flutter will allow us to generate multiplatform applications (for mobile, desktop and

web) as we have said before.

While some skeptics did not believe that Flutter would be much different from other

cross-platform development tools such as React Native or Xamarin, nowadays, we can see

multimillion corporations were adopting this technology.

12

2.2. ENABLING TECHNOLOGIES

Figure 2.4: Comparison between Flutter and React

Unlike its cross-platform counterparts, Flutter is a mobile app SDK that seamlessly

integrates with Android and iOS platforms to create appealing and customizable apps.

Furthermore, Flutter does not require a bridge into the native platform layer to render UI

with platform-specific UI SDKs.

13

CHAPTER 2. STATE OF ART

14

CHAPTER3
Stress-text detection

In this chapter, we will address the project’s initial objective: the design of a machine

learning model able to detect stress from text. The evaluation of the proposed model will

also be discussed along with the analysis of the obtained results.

3.1 Datasets

The datasets that will be used to train the different Machine Learning models has been

provided by Dreaddit [9] work and Genta [10] studies. As they are labeled datasets, we will

train supervised learning models since it is a technique to deduce a function given a trained

data.

3.1.1 Preliminary Analysis

A dataset analysis is then performed in order to identify the structure of the data and

establish an approach to handle it. First of all, the labels of the datasets are checked

to determine if there is any balance. We can observe in Fig. 3.1 a clear equilibrium in

Dreaddit’s labels very different from what we observe in Genta labels. However, according

15

CHAPTER 3. STRESS-TEXT DETECTION

to the paper [10] conclusions, we do not consider this as a significant factor to be taken into

account.

As we are dealing with binary labeled datasets, the text with a label 1 will be considered

as stressed text, the rest of the data will be labeled as 0.

Figure 3.1: Labels for Dreaddit Dataset Figure 3.2: Labels for Genta dataset

Besides checking the equilibrium, we have also verified that there are no null values or

values different from 1 or 0 on the labels. Afterwards, text composition has been analyzed

in an attempt to visualize differences between stressed and unstressed text. Counts of words

per post, characters and unique words (words that are not repeated within each post) have

been made.

Dreaddit Genta

Stress labeled text Non stressed labeled text Stress labeled text Non stressed labeled text

Words per 88.84 82.16 17.45 15.55

Characters per 459.69 435.10 86.85 77.14

Unique words per 66.30 63.07 15.22 13.46

Table 3.1: Differences between stressed and unstressed text

As it can be seen in Table. 3.1, texts with stress tend to be slightly longer and more

complex than those without stress. In order not to limit ourselves only to these observa-

tions, we will employ more complex approaches such as word embeddings. As we presented

before, word embedding is a machine learned representation for text where words that have

the same meaning have a similar representation. This approach for words and documents

representation may be considered one of the main advances of deep learning in NLP prob-

lems and we will use it attempting to enhance the performance of classifiers, in order to

achieve better stress text recognition.

16

3.1. DATASETS

3.1.2 Text Preprocessing

Once the datasets have been analyzed, text is preprocessed in order to adapt it for later

introduction as an input for a machine learning model. We define a set of functions that,

through regular expressions, clean the text from special characters, stop words and english

contractions. Afterwards, in order to improve the performance of the models, two different

methods exist: Stem and Lemmatization. Stemming is the process of producing morpho-

logical variants of a root/base word. While lemmatization is the process of grouping the

different inflected forms of a word so that they can be analyzed as a single element. The

goal of both stemming and lemmatization is to reduce inflectional forms and sometimes

derivationally related forms of a word to a common base form. This will reduce the size of

the corpus and will help the classifiers on looking for related in it.

Word Stemming Lemmatization

information inform information

having have have

am am be

computers comput computer

Table 3.2: Lemmatization and Stemming Examples

We are going to use lemmatization as it is similar to stemming, but it gives context to

the words. This way, words with similar meanings are merged into a single word facilitating

the subsequent learning process. The resultant preprocessed text will be referred as “Clean

Text” as we can see in Table 3.3. This is where we will apply the different word embedding

techniques in order to be able to introduce them into the models with the aim of evaluating

the presence of stress.

Text Clean text

I can´t wait to go home and see him cant wait go home see

I’m /@ cleaning 123 ¨ * this text for an example clean text example

Table 3.3: Clean Text Example

17

CHAPTER 3. STRESS-TEXT DETECTION

3.2 Stress analysis models

We will now introduce the stress text analysis models proposed in our work. These models

have been trained and validated in Genta and Dreaddit datasets. We describe the developed

analyzer as well as the results obtained after using the different word embedding techniques.

3.2.1 Classifier

Figure 3.3: Stress Text Analysis model representation.

Once the text has been preprocessed, it will be embedded using different word embedding

techniques in order to produce a vector. This vector will vary according to the technique

used and will feed several classifiers. This project will use, in a first study, Tf-Idf, Word2Vec

and Vectoricer as word embedding techniques.

Tf-idf measures how often a term or phrase appears within a given document, and

compares it to the number of documents that mention that term within an entire collection

of documents. Similarly to the way tf-idf works, Vectorizer is used to transform a given

text into a vector based on the frequency of each word appearing in the entire text. But

its behavior is more simple since it does not take into account the inverse frequency of each

word in a set of documents. On the other hand, Word2Vec is not a singular algorithm,

rather, it is a family of model architectures and optimizations that can be used to learn

word embeddings from large datasets. Embeddings learned through Word2Vec have been

shown to be successful in a variety of downstream natural language processing tasks.

These techniques will be introduced in a Logistic Regression classifier and in a Naive-

Bayes Classifier. Subsequently, we will use keras embedding layer, pre-trained word embed-

dings such as GloVe and we will develop a convolutional neural network.

18

3.3. EXPERIMENTAL STUDY

3.3 Experimental study

This section states the experiments conducted in order to to obtain a classification method

capable of detecting stress as accurately as possible. Each experiment is made with two

different datasets widely use for Sentiment Analysis projects. The metric used in this

work is weight-averaged F-score. Accuracy, Precision and Recall are also calculated for all

experiments.

At first, we entered the vectors generated by the Vectorizer, Tf-Idf and Wor2Vec tech-

niques in a logistic regression classifier and in a Naive-Bayes classifier.

Logistic regression is a classification algorithm, used when the value of the target variable

is categorical in nature. Logistic regression is most commonly used when the data in question

has binary output. On the other hand Naive Bayes classifier is a probabilistic classifier based

on Bayes’ theorem and some additional simplifying assumptions. It is because of these

simplifications, which are usually summarized in the hypothesis of independence between

predicting variables.

After having trained the previously mentioned classifiers, we used the Word Embedding

technique that provided us the best results, Tf-Idf as an input to a Keras designed neural

network.

Keras supports two main types of models: The Sequential model API which is the one

that we have used, and the functional API which can do everything of the Sequential model

but it can be also used for advanced models with complex network architectures. The

sequential model is a linear stack of layers, where the wide variety of layers available in

Keras could be used. The most common layer is the Dense layer, which is the normal layer

of a densely connected neural network with all its weights and biases. By this we aimed to

achieve some improvement on previous models. But, before building the model, we needed

to know the input dimension of the feature vectors. This occurs only in the first layer, as

subsequent layers can do automatic shape inference.

We used binary cross entropy as loss function, Adam optimizer because it has a good

performance in this type of problems, and a Sigmoid function as an activation function since

it is a binary classification problem. After compiling it gave us a total of 88901 parameters

for both layers for Dreaddit dataset, and 20321 parameters for Genta.

We specified a run of 100 epochs in order to see how the training loss and accuracy are

changing after each epoch and the batch size. Batch size is responsible for how many samples

we want to use in an epoch, which means how many samples are used in a forward/backward

19

CHAPTER 3. STRESS-TEXT DETECTION

pass. Since we have a small training set, we kept this to a low batch size (in our case 16).

Then, we changed the focus of the analysis and stopped using the vectors generated by

Tf-idf. The reason is that we wanted to find a word embedding technique that provides

better results than those previously seen. For this we started using Tokenizer, which can

vectorize a corpus of text into a list of integers. Each integer corresponds to a value in a

dictionary that encodes the entire corpus, with the dictionary keys being the vocabulary

terms themselves. The indexing is ordered after the most common words in the text.

At this point, our data was still hardcoded. We did not allowed Keras to learn a new

embedding space through successive tasks. So we used the Embedding Layer of Keras which

takes the previously calculated integers and maps them to a dense vector of the embedding.

With the Embedding layer we had, then, a couple of options. One way would be to take the

output of the embedding layer and plug it into a Dense layer. In order to do this a Flatten

layer was added in between so it prepared the sequential input for the Dense layer. By

performing this, we increased the size of our training parameters. These embedding layer

weights were initialized with random weights and then adjusted by back-propagation during

training. This model takes the words as they came in sentence order as input vectors.

Although the accuracy obtained was better than the previous model, this was an unreli-

able way of working with sequential data. When working with sequential data, it is wise to

focus on methods that look at local and sequential information rather than absolute posi-

tional information. This is why another approach to the problem was made by using a Max-

Pooling1D/AveragePooling1D layer or a GlobalMaxPooling1D/GlobalAveragePooling1D

layer after embedding in order to reduce the size of the incoming feature vectors.

Alternatively to the previously discussed analyses, a precomputed embedding space

using a much larger corpus was to be used. It is possible to precompute word embeddings

by simply training them on a large corpus of text. For this purpose, GloVe from the

Stanford NLP Group were be used, since its size was more manageable than the Word2Vec

word embeddings provided by Google. After a quick check, we observed that, for Dreaddit,

94.9% of the vocabulary was covered by the pre-trained model, which was a good coverage of

our vocabulary. However, the same cannot be said for Genta, as only 22% of the vocabulary

was covered. But we had not trained our word embeddings, so we expected the performance

to be lower. This changed by allowing the embeddings to be trained but did not enhace

the model as much as we wanted. This method is useful for large training sets since it can

push the training process to be much faster than without it. Here it seems to help, but not

much. However, this did not have to be due to the pre-trained word embeddings.

Therefore we will conclude the study by focusing on a more advanced neural network

20

3.3. EXPERIMENTAL STUDY

approach: CNN also known as Convolutional Neural Networks. With this we wanted to see

if it was possible to enhance the model and give it the edge over previous techniques.

CNN could be understood as a specialized neural network capable of detecting specific

patterns. It has hidden layers called convolutional layers which consist of multiple filters that

slide through the data and that are able to detect specific features. That is the mathematical

process of convolution. Each convolutional layer makes the network capable of detecting

more complex patterns. For this analysis, since we are going to analyze sequential data, the

CNN will be unidimensional.

Figure 3.4: Uni-dimensional convolution

Fig 3.4 tries to represent how a convolution of this type works. It starts by taking a

patch of input features with the size of filter kernel. Using this patch, the dot product of

the multiplied filter weights is taken. One-dimensional CNN is invariant to translations,

which means that certain sequences can be recognized at a different position. This can be

useful for certain patterns in text.

Keras offers several convolutional layers that can be used for this task. In this case,

the layer that was used, was the Conv1D layer. This layer again has several parameters

to choose from but we only used the number of filters, kernel size and activation function.

Also this layer was placed between the Embedding layer and the GlobalMaxPool1D layer.

21

CHAPTER 3. STRESS-TEXT DETECTION

3.4 Results

In this section, experimental results are shown and discussed. The experimental results of

the proposed models are collected in Table 3.5. In order to understand the results obtained,

some concepts must be previously defined.

• Confusion Matrix: is a specific table layout that allows visualization of the perfor-

mance of an algorithm. It is made up of 4 different combinations of predicted and

actual values.

Figure 3.5: Confussion Matrix

We will now see what does each combination of values means:

• True Positive: is the case where the model predicts correctly a positive label. In

our case, the model will predict as stressed, the text labeled with a 1.

• True Negative: happens when a negative label is predicted correctly.

• False Positive: referring to our model, is when it predicts stress when the data has

no signs of it. This is also known as type 1 Error.

• False Negative: occurs when the model could not find stress within a text marked

as stressed. This is consider as a Type 2 Error.

We can combine the above concepts in order to produce metrics that will help us to analyze

and evaluate the model. These metrics are:

22

3.4. RESULTS

• Precision: measures how many of our predictions, are actually true positives.

Precision =
TP

TP + FP

• Recall: analyzes how good is the performance of the model identifying true positives.

Recall =
TP

TP + FN

• Accuracy: measures how many stress detections have been correctly performed

among all samples.

Accuracy =
TP + TN

TP + FP + TN + FN

• F1-score: helps to measure recall and precision simultaneously using the harmonic

mean instead of the arithmetic mean.

F1 =
2 ∗Recall ∗ Precision

recall + Precision

After performing a logistic regression on the vectors resulting from the Vectorizer and

Tf-Idf techniques we were able to see very similar results for both techniques. In contrast,

the accuracy obtained with Word2Vec was far lower (for both datasets), for this reason it

was discarded and was not be applied to the rest of the models. This is because Wor2Vec

has a superior performance, if trained with much larger datasets. Next, in order to achieve

better accuracy, the two remaining techniques were introduced in a Naive-Bayes classifier.

With Naive-Bayes classifier, we improved the accuracy obtained by the logistic regression

models and achieving the highest f-score of the entire study: 76%. This value is slightly

higher than the one obtained by the same method with the Dreaddit dataset, which indicates

the great potential of this model.

Actual stress

Predicted

stress

252 27

101 67

Table 3.4: Confussion matrix for Naive-Bayes classifier using Tf-Idf word embedder.

Nevertheless, a more exhaustive analysis had been carried out using Tensorflow, the em-

bedding layer of keras, GloVe and Convolutional Neural Networks (CNN) on both datasets.

We can verify, for Neural Network with Tf-Idf vector as input, that in this case, the test

and validation sets are both too small. Consequently, the performance of the neural network

23

CHAPTER 3. STRESS-TEXT DETECTION

was not as expected and overfitted the training model. This happens because (deep) neural

networks perform better when we have a large number of samples.

After using GlobalMaxPooling1D layer, a significant improvement in the performance

of the Keras model with a dense layer, was observed reaching an accuracy of 71% (by

using Dreaddit). Nevertheless, the Naive-Bayes model for Tf-Idf keeps providing the best

performance.

Dreaddit Genta

Method Word embbeding P F R P F R

Log. Reg
Vectorizer

0.72 0.72 0.72 0.72 0.71 0.72

NB 0.74 0.72 0.72 0.76 0.76 0.76

Log. Reg
Tf-idf

0.74 0.74 0.74 0.72 0.70 0.72

NB 0.72 0.63 0.66 0.71 0.69 0.71

Log. Reg Word 2 Vec 0.57 0.55 0.57 0.62 0.58 0.57

Keras NN Tf-idf 0.67 0.67 0.67 0.70 0.70 0.70

Dense Layer
Vectorizer

0.71 0.71 0.71 0.69 0.69 0.70

MaxPool1D 0.71 0.70 0.70 0.75 0.73 0.74

Glove not trained
Glove

0.62 0.61 0.62 0.70 0.69 0.70

Glove trained 0.67 0.67 0.67 0.74 0.73 0.74

CNN Vectorizer 0.71 0.71 0.71 0.71 0.71 0.71

Table 3.5: Precision (P), recall (R) and F-score (F) for stress text analysis classification

models.

Finally, after analyzing the results, we saw that 71% accuracy seems to be a difficult

hurdle to overcome with these datasets and a CNN may not be well equipped. This could

be because we do not have enough training samples, we had data that did not generalize

well or lack focus in hyperparameter fitting. CNNs work best with large training sets where

they are able to find generalizations where a simple model such as logistic regression will not

be able to.Despite this, an F-score of 76% was achieved for the Naive-Bayes model trained

24

3.4. RESULTS

with the Tf-Idf word embbedding. This is a great result since our classifier will be able to

detect stress in more than three out of four texts it analyzes.

25

CHAPTER 3. STRESS-TEXT DETECTION

26

CHAPTER4
Keystroke Dynamics Stress Detection

This chapter covers a new stress detection technique that aims to identify stress through

the keystroke dynamics of a subject. It is intended to complement the technique seen in

the previous chapter by providing higher levels of confidence when recognizing the presence

of stress in an individual.

The evaluation of the proposed model along with the analysis of the obtained results

will be discussed.

4.1 Dataset

Different Machine learning models will be trained using the dataset provided by the SWELL

project [11]. SWELL is a labeled dataset resulting from the stress analysis of individuals

using non-invasive techniques inside work environments. Moreover, like Dreaddit, we will

train supervised learning models due to the fact that we will be dealing with a labeled

dataset.

27

CHAPTER 4. KEYSTROKE DYNAMICS STRESS DETECTION

4.1.1 Cleaning Process

SWELL project not only uses keystroke dynamics as stress identifiers, but also addresses

non-invasive techniques such as posture recognition, facial expression detection, heart rate

analysis, etc. For our analysis will proceed to clean the dataset of all those features irrelevant

to our study.

We will clean the dataset in a similar way as we did for text analysis. Firstly we will

discard those features that are not relevant for our study and we will look for Nan or null

values in the desired features for their subsequent elimination. Once we have the desired

dataset, we observe that labeling is not binary. Therefore, we will transform it using the

median as threshold. This method guarantees, as can be seen in Fig 4.1, a balanced dataset.

Figure 4.1: Labels for SWELL Dataset

4.1.2 First Analysis

During this cleanup we have found certain features related to mouse usage that might

provide significant information in web environments. Subsequently, and similarly to what

was done for text analysis, each feature will be analyzed in an attempt to observe any

variation in presence of stress. Data obtained is presented in Tab 4.1 below.

Notice how the data presented above show a slight increase when the individual is not

under stress for nearly all of the features. Even though we can extract some conclusions at a

glance from the data obtained, it would not be enough to establish whether the individual is

under stress or not. As a consequence, these features will be introduced in different Learning

Models that will be used to define whether a person is stressed or not more accurately.

28

4.1. DATASET

Features (per minute) Stress Non-stress

Mouse events 15.47 16.07

Nº of left clicks 7.12 6.99

Keystrokes 71.54 91.31

Characters 49.67 57.66

Error Keys 8.32 10.30

Special Keys 29.87 36.65

Shortcuts 0.68 0.87

Spaces 10.35 12.02

Character Ratio 0.49 0.52

ErrorKey Ratio 0.18 0.25

Table 4.1: Keystroke dynamics stress behaviour

4.1.3 Classification models

Figure 4.2: Keystroke Dynamics model representation

Once the preliminary study has been carried out, the dataset will be divided into a training

dataset and a test dataset in order to train the classifiers; with the training dataset consisting

29

CHAPTER 4. KEYSTROKE DYNAMICS STRESS DETECTION

of the 80% of the original data (2125 samples) and the test dataset being the remaining 20%

(532 samples). All features related to the use of the computer have been grouped according

to the events they represent: mouse use, error key ratio or character ratio, key combinations

and keyboard elements. Due to the high number of features available, we will use RFECV

tool provided by Sklearn. This tool removes features recursively in order to use an optimal

number that ensures the most accurate results after training the model. This is based on

validation scores and the results are collected in Table 4.2.

These features will be used to train a Logistic Regression model and the Naive-Bayes

model which were previously used for the text analysis. In addition, a Support Vector Clas-

sification (SVC) model will be trained. We have choosen SVC due to its great performance

in other projects like [16] and [11].

Optimal Nº of Features for each model

Model Number of features Features

LR 4

Error key ratio

Mouse activation

Shortcuts

Character ratio

SVC 4

Error key ratio

Mouse activation

Shortcuts

Left click

LR 8

Error key ratio

Mouse activation

Left click

Error keys

Special keys

Shortcuts

Spaces

Character ratio

Table 4.2: Optimal features for each model

30

4.2. RESULTS

4.2 Results

Once the optimal number of features for each model has been selected, we proceed to train

them resulting in the following table. The Support Vector Classification (SVC) technique is

the one that has provided us with the highest accuracy, with an accuracy of 0.59 and an F1

score of 0.62, so it will be the one we will use in our application. It is important to highlight

the improvement provided by the feature selector to the model in terms of performance. It

increases the f-score of all models by almost 10%.

Actual stress

Predicted stress
78 41

179 234

Table 4.3: Confussion matrix for SVC using feature selection.

Due to the low accuracy of the model, it will only be used to support the stress classifier

in the text. Considering the small size of the data set and the further studies mentioned in

the previous chapter, it is not worthwhile to introduce these data into a neural network or

to use deep learning techniques, so no further study will be carried out.

With feature selector Without feature selector

Method P F R P F R

SVC 0.73 0.62 0.59 0.64 0.55 0.52

NB 0.56 0.56 0.56 0.46 0.46 0.46

LR 0.62 0.58 0.57 0.54 0.52 0.51

Table 4.4: Precision (P), recall (R) and F-score (F) for the proposed supervised models.

31

CHAPTER 4. KEYSTROKE DYNAMICS STRESS DETECTION

32

CHAPTER5
Stress-detection App

In this chapter, we want to develop an application that merges the two models that provided

the best results in previous chapters into an application. The idea is to design a simple and

user-friendly application that could be deployed in work or academic environments. Besides

being deployed in academic or work environments, it could be integrated into existing

communication platforms in those environments. Thus, Flutter SDK has been chosen as it

allows to develop UIs for Android, iOS and Web applications.

5.1 Architecture

As you can see in Fig 5.1, the general architecture of the system is made up of 2 blocks:

the application and the stress detector system (SDS) that includes the Stress Detector.

The main objective of the application is to detect stress in a user through his typing

patterns and the typed text. To do this, a listener will record this data and send it to

the SDS. The SDS that receives this data is composed of the two machine learning models

developed for this project and a detector. The detector will determine which machine

learning model should act at any given moment to return the best possible prediction to

the application.

33

CHAPTER 5. STRESS-DETECTION APP

Figure 5.1: System architecture

5.2 Stress Detection System (SDS)

The stress detection system or SDS is in charge of processing and returning a response

based on the information provided by the listener.

As we have seen previously, Machine Learning models do not recognize text by itself as

an input variable. For this reason this text will be vectorized allowing the information to

be sent to the stress text detection model. Once an answer has been obtained, it will be

returned to the application in the form of an image with the prediction written below.

The input collector gathers all the data provided by the listener and stores them in

two variables, one containing the text that is going to be vectorized and the other containing

the keyboard patterns that is inserted directly into the predictor.

The text preprocessing block, collects the variable and process it using the Tf-Idf

word embedding technique which, as seen in previous chapters, is the one that has given us

the best results.

The collected data will be inserted into the Stress Detector in order to obtain a result

after analysis. This is the main module of the system since it is in charge of stress detection.

For this purpose, different models have been trained using specific datasets according to

each detection technique. Once we have obtained satisfactory training results, the detector

will be ready to send the results to the application.

Finally, once the prediction is obtained, the Stress Detector will be in charge of returning

a response to the application. The Stress detector will mark as 0 or no stress in case it

34

5.3. APPLICATION

does not detect stress, otherwise it will mark the data with 1 or stressed. In both cases

the application will receive the data and return an image and a text with the result of the

prediction.

5.3 Application

The Application is a key block in the project as it allows the communication between the

user and the SDS. The main feature is a Listener that collects user’s typed text and records

his/her keystroke patterns.

Once the user wants to analyze his stress level, he will press the submit button present in

the application. This button will send all the collected information to the stress predictor,

where a response will be elaborated according to the input. The application is mainly

composed of a Listener and a submit button.

As previously mentioned, the Listener will be responsible for recording everything that

the user writes and the way it is written. To develop it, we will use the RawKeyboardLis-

tener widget provided by flutter.

The Submit button is in charge of sending the information collected by the listener

to the stress predictor, so it could later provide the results of the analysis.

5.3.1 Application Design

The main idea is to create an application with an UI very similar to Google translator but,

when clicking on the compile button, rather than translating text, it analyzes the stress

present in the text and registers the typing patterns while it is being typed. In order to

do this, it is necessary to understand how Flutter works. Flutter groups everything into

sub-Widgets, for example, a column widget for stacking elements upright, padding widgets

for adding extra space, text widget for labeling, and so on. The only thing required is a

design that allows the widgets to stack neatly.

Our design will consist mainly of a body and a floating button. In the body we will

house the 3 most important elements of the design: an input text box, the submit button

and a wrapper that will show the results from the prediction stacked one on top of the

other. The floating button will be used as a button that will provide help to the user.

For the first version of the application, we decided to go for a simple design that reflects

the main purpose of the application which, after all, is what gives it added value. It will

35

CHAPTER 5. STRESS-DETECTION APP

Figure 5.2: Visual Representation of Flutter code/layout

mainly consist of 2 parts: a Text Box where we will place our listener which will transfer

the data to the Machine Learning models in order to record users’ typing patterns and

analyze the stress found in the text, and a table where we will show the prediction followed

by an image. It is important to mention that the Keystroke Dynamics model will receive

a continuous supply of data provided by the listener that will record any activity related

to the keyboard and the mouse. Moreover, the Text Analysis model will only be activated

when the ‘Analyze’ button is pressed as shown in Fig 5.3 and Fig 5.4.

As previously mentioned, one of the great advantages of Flutter is the ease of creating

a UI which could be deployed not only in web environments but also in iOS and Android

environments. Fig 5.6 shows an example of how the application would look deployed in an

iOS environment. It should be noted that the operation is the same as in a web environment

because the listener will not only record keystrokes as it would do for a computer keyboard,

but it will also record the taps on the screen and the sliding on the same as if it were a mouse.

Consequently, Keystroke Dynamics’ model will not lose accuracy in mobile environments.

36

5.3. APPLICATION

Figure 5.3: App before pressing ‘ANALYZE’ Figure 5.4: App after pressing ‘ANALYZE’

Figure 5.5: iOS App deployment

37

CHAPTER 5. STRESS-DETECTION APP

5.4 Execution Process

This section shows an example of how the system works based on the defined architecture.

Figure 5.6: Decision diagram of the execution cycle

The user will open the application from is browser or even from any Android or iOS

device. Here, the listener will be located in the text entry. The listener will be activated

when the user accesses the text box, recording all the actions performed and collecting the

text typed in. This data collection process will not stop until the user clicks on the submit

button marked as ‘ANALYZE’, which will cause the data to be sent to the SDS. The data

will be processed and a result of the analysis defined by the decisor will be returned to the

application.

38

CHAPTER6
Conclusions and future work

This chapter will describe the conclusions drawn from the project, as well as the results

obtained and some of the problems encountered with their respective solutions. We will

conclude with a few ideas for future work.

6.1 Conclusions

In this section, all conclusions drawn during each stage of the project are presented.

Following a study of the state of the art in stress detection, two non-intrusive models

have been defined. One model will try to detect stress from text and the other from pulse

dynamics. Three datasets have also been obtained which, after preprocessing, have been

introduced in the classifiers. For this purpose, an experimental study has been designed

where two models have been implemented using different techniques in order to evaluate

their performance on the chosen datasets.

The first conclusion we draw from the analysis arises from the text prediction models.

After training them with different datasets, we have obtained a performance higher than

76%. This shows that it is possible to detect stress text in a pretty confident way providing

39

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

significant value to the application. Then, we trained the Keystroke Dynamics classifiers

obtaining a performance of 62%. This is a really good performance since we have a small

and unusual keystroke dynamics dataset. Since the accuracy of this model is lower than

the previous one, it will be used as a decision maker in case of lack of accuracy in the

previous model. Finally, we have managed to develop a fully functional application capable

of detecting a user’s stress accurately by merging these two different techniques.

6.2 Achieved goals

This section details the objectives that have been achieved throughout the project.

Collection and preprocess of datasets so they can be used to train the desired

models.

The first objective was to find a datasets capable of detecting stress in a subject

by using non-invasive techniques such as text stress analysis, or by analyzing the

computer interactions. For this purpose SWELL, Dreaddit and Genta datasets were

acquired from a previous research, and will be used according to the technique that

will be developed. Before training the models, we had to adapt the content of the

datasets. In case of Genta and Dreaddit datasets, data was preprocessed in order

to clean the text of unwanted characters for later tokenization. On the other hand,

SWELL dataset had to be balanced and the ’Nan’ characters were removed from it

to facilitate the future analysis.

Definition of a Machine Learning model capable of identifying stress in text.

Once Dreaddit data was preprocessed, different Word Embedding techniques were

studied and a variety of Machine Learning algorithms were applied in order to ac-

quire a model capable of accurately predicting the presence of stress in text. Finally,

Naive-Bayes Classifier with Word Embedding Tf-Idf was the best performing model,

something expected since these two techniques perform very well with small datasets

and binary classification problems.

Definition of a Machine Learning model capable of identify stress based on

typing patterns.

After cleaning and balancing SWELL dataset, different classification models were

studied, not without previously using a technique that enabled us to obtain the number

of features that would optimize the performance of these classifiers. SVC achieved the

best results with a 60% accuracy rate using only 4 features.

40

6.3. PROBLEMS FACED

Development of a working tool that integrates the previous models.

We finally developed an application with the two previous models included in it. This

application will not only be deployed on web environments but will also be responsive

on iOS and Android environments; reaching a larger number of devices.

6.3 Problems Faced

This section details the problems that have been occurring during the course of the project.

• Lack of a unique dataset

The main problem we have encountered when developing this project has been the

lack of a single dataset that combines Keystroke Dynamics and Text data. In addition,

despite the fact that sentiment detection techniques in text are highly developed, there

are not many tagged datasets used to identify emotions based on keystroke patterns.

• SWELL dataset

Another major problem we have faced has been the data present in the SWELL

dataset, since they are not the ones that would normally be used for a Keystroke

Dynamics analysis. For this reason, the recursive feature elimination technique was

applied in order to obtain the features that provided more information.

• Learning Flutter

Finally, although its programming language (dart) is very similar to javascript, Flutter

does not work in the same way. Therefore, we have invested some time in learning

how to use this tool in order to be able to design the App correctly.

6.4 Future work

• Creation of a new dataset

As previously mentioned, the creation of a data set that combines keystroke dynamics

and stress text data would increase the performance of the application and would

facilitate obtaining a model capable of predicting stress in a much more accurate

way. However, if it is not possible to create such dataset, we have found that by

increasing the size of the datasets, we can apply techniques that significantly increase

the accuracy of the prediction.

41

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• Improving the application

We want to improve the application by introducing a login screen for user identifica-

tion, as well as a persistence layer that allows the user to have a history of the texts

and predictions that have been made over time. It is also intended to improve the

design to give a more attractive image.

• Allow user validation

In order to improve the performance of the classifiers, we intend to add a validation

function whereby the user will be able to indicate whether the prediction is correct or

not. This will allow the creation of a new labeled dataset.

• Use other unobtrusive techniques

Several studies have shown that certain techniques provide very good results when it

comes to detecting stress, for example, body posture recognition and facial expression

analysis. These techniques could be carried out using a depth-sensing camera such as

Kinect.

42

APPENDIXA
Impact of this project

This appendix reflects, quantitatively or qualitatively, on the possible social and economic

impact as well as ethical implications.

A.1 Social impact

This section will discuss the social impact that this project could have.

This project focuses on one of the main causes of the majority of sick leaves and the main

factor behind the decrease in worker performance, stress. This project aims to improve the

well-being of users in work and academic environments by providing one that favors optimal

results. In working environments, an employee who feels comfortable in his workplace, is

more likely to stay in the company and not move to a competitor. Similarly, in academic

environments, students will show greater interest in the subject in a de-stressed environment.

i

APPENDIX A. IMPACT OF THIS PROJECT

A.2 Economic impact

This section covers the potential economic impact that can be deduced after the realization

of the project.

As mentioned above, a de-stressed work environment significantly improves the perfor-

mance of the individual, which roughly translates as an increase in company profits or, if

we are talking about academic environments, an improvement in academic performance.

In addition, this stress detection technique uses exclusively a mobile device or a computer.

These elements are available in work and academic environments, making its deployment

much easier since it is not necessary to make an economic outlay to acquire sensors that

allow such analysis.

A.3 Ethical implications

In this section we will discuss the ethical issues that may arise from our project.

The main ethical problem that the project presents would be the violation of privacy

that the deployment of this tool would entail since the tool would monitor in real time

everything that the user writes on his device. However, users would be notified about the

benefits of the application and their consent would be required prior to implementation.

ii

APPENDIXB
Economic budget

This appendix details the financial budget required to carry out this project. Physical

resources and human resources are presented.

B.1 Physical resources

This section is intended to detail the estimated budget required relative to the hardware.

The entire budget included in this section is related to the personal computer used to

carry out the project. Although it would have been enough to use any other equipment

with lower processing capacity, we will now detail the characteristics of the one used for

this project:

• CPU: Intel Core i7 2.70GHz x4

• RAM: 16GB

• Disc 250GB SSD

This laptop costs arround 900e.

iii

APPENDIX B. ECONOMIC BUDGET

B.2 Human resources

This section, in a very similar way to the previous one, will attempt to estimate the human

budget.

For this purpose, it will be assumed that the entire project has been carried out by one

person in a time equivalent to 12 ECTs; which gives a total time of 324 hours. Assuming

an average of 6 hours of work per day, that each month has approximate 21 working days

and considering that the average salary of a GSI scholarship is 500 e/month, we estimate

a total salary of around 1300 e.

B.3 Conclusion

Therefore, the economic costs associated with the creation of this project amount to e2200.

iv

Bibliography

[1] Schneiderman N, Ironson G, and Siegel SD. Stress and health: psychological, behavioral, and

biological determinants. Annu Rev Clin Psychol. 2005;1:607-28. doi:, 10., 2005.

[2] Juliet Hassard, Kevin Teoh, Gintare Visockaite, Philip Dewe, and Thomas Cox. The cost of

work-related stress: a systematic review. Journal of Occupational Health Psychology, 23, 03

2017.

[3] TY JOUR AU Frantz, Anna AU Holmgren, and Kristina PY. Da - 2019/11/27 TI - The Work

Stress Questionnaire (WSQ) – reliability and face validity among male workers JO - BMC Public

Health SP - 1580 VL - 19 IS - 1 AB - The Work Stress Questionnaire (WSQ) was developed as a

self-administered questionnaire with the purpose of early identification of individuals at risk of

being sick-listed due to work-related stress. It has previously been tested for reliability and face

validity among women with satisfying results. The aim of the study was to test reliability and

face validity of the Work Stress Questionnaire (WSQ) among male workers. SN -, 1471-2458,

2019.

[4] Shalom Greene, Himanshu Thapliyal, and Allison Caban-Holt. A survey of affective comput-

ing for stress detection: Evaluating technologies in stress detection for better health. IEEE

Consumer Electronics Magazine, 5(4):44–56, 2016.

[5] Md Fahim Rizwan, Rayed Farhad, Farhan Mashuk, Fakhrul Islam, and Mohammad Hasan

Imam. Design of a biosignal based stress detection system using machine learning tech-

niques. In 2019 International Conference on Robotics,Electrical and Signal Processing Tech-

niques (ICREST), pages 364–368, 2019.

[6] G. Shanmugasundaram, S. Yazhini, E. Hemapratha, and S. Nithya. A comprehensive review on

stress detection techniques. In 2019 IEEE International Conference on System, Computation,

Automation and Networking (ICSCAN), pages 1–6, 2019.

[7] Zhai J and Barreto A. Stress detection in computer users based on digital signal processing

of noninvasive physiological variables. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:1355-8.

doi:, 10., 2006.

[8] Suranga D. W. Gunawardhane, Pasan M. De Silva, Dayan S. B. Kulathunga, and Shiromi M.

K. D. Arunatileka. Non invasive human stress detection using key stroke dynamics and pattern

variations. In 2013 International Conference on Advances in ICT for Emerging Regions (ICTer),

pages 240–247, 2013.

v

BIBLIOGRAPHY

[9] Elsbeth Turcan and Kathy McKeown. Dreaddit: A Reddit dataset for stress analysis in social

media. In Proceedings of the Tenth International Workshop on Health Text Mining and Infor-

mation Analysis (LOUHI 2019), pages 97–107, Hong Kong, November 2019. Association for

Computational Linguistics.

[10] Genta Indra Winata, Onno Pepijn Kampman, and Pascale Fung. Attention-based lstm for

psychological stress detection from spoken language using distant supervision. 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr 2018.

[11] Saskia Koldijk, Mark A. Neerincx, and Wessel Kraaij. Detecting work stress in offices by

combining unobtrusive sensors. IEEE Transactions on Affective Computing, 9(2):227–239, 2018.

[12] S. Rajarajeswari and Sowmya. C. Drishya. K. Ramdas, Soumyashree Dhabade, Shirisha. M,

Samyuktha H. R 2020. Cognıtıve Stress Detectıon Usıng Keystroke Dynamıcs And Pattern

Varıatıons. International Journal of Advanced Science and Technology. 29, 29(7):12036–12050,

2020.

[13] Guillem Aguado, Vicente Julián, Ana Garćıa-Fornes, and Agust́ın Espinosa. Using keystroke

dynamics in a multi-agent system for user guiding in online social networks. Applied Sciences,

10(11), 2020.

[14] Lisa M. Vizer, Lina Zhou, and Andrew Sears. Automated stress detection using keystroke and

linguistic features: An exploratory study. International Journal of Human-Computer Studies,

67(10):870–886, 2009.

[15] What is machine learning? a definition., May 2021.

[16] Akiko Aizawa. An information-theoretic perspective of tf–idf measures. Information Processing

Management, 39(1):45–65, 2003.

[17] Anthonette Cantara and Angie Ceniza. Stress sensor prototype: Determining the stress level in

using a computer through validated self-made heart rate (hr) and galvanic skin response (gsr)

sensors and fuzzy logic algorithm. International Journal of Engineering Research Technology,

5:28–37, 03 2016.

vi

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Project goals
	Structure of this document

	State of Art
	Stress detection techniques
	Enabling technologies
	Machine Learning Technologies
	Python
	Python extensions used for Machine Learning
	Word Embbedings techniques
	Flutter

	Stress-text detection
	Datasets
	Preliminary Analysis
	Text Preprocessing

	Stress analysis models
	Classifier

	Experimental study
	Results

	Keystroke Dynamics Stress Detection
	Dataset
	Cleaning Process
	First Analysis
	Classification models

	Results

	Stress-detection App
	Architecture
	Stress Detection System (SDS)
	Application
	Application Design

	Execution Process

	Conclusions and future work
	Conclusions
	Achieved goals
	Problems Faced
	Future work

	Appendix Impact of this project
	Social impact
	Economic impact
	Ethical implications

	Appendix Economic budget
	Physical resources
	Human resources
	Conclusion

	Bibliography

