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Resumen

Este Trabajo Fin de Máster (TFM) se enfoca en la evaluación, selección y despliegue

de entornos MLOps, destacando el análisis, diseño, implementación y validación de sis-

temas para la gestión de proyectos de Machine Learning. Este estudio compara múltiples

plataformas y herramientas MLOps disponibles en el mercado, considerando criterios

como la automatización del flujo de trabajo, gestión de modelos, escalabilidad e inte-

gración continua. Tras un análisis exhaustivo, se elige la opción más adecuada y se

implementa en un caso de estudio real.

Además de abordar los objetivos iniciales, este TFM se propone delinear las conclu-

siones alcanzadas y los objetivos logrados. Concebido para solucionar los desaf́ıos exis-

tentes en el despliegue de modelos de aprendizaje automático en producción, el proyecto

arroja resultados sustanciales y transformadores. Inspirado en las observaciones de Deb-

orah Leff sobre la alarmante tasa de fracaso de los proyectos de ciencia de datos en llegar

a producción, los objetivos generales se diseñan meticulosamente para enfrentar estos

problemas y mejorar la tasa de éxito de los despliegues de aprendizaje automático.

A lo largo del ciclo de vida del proyecto, se lleva a cabo un análisis de requisitos metic-

uloso, resultando en una arquitectura personalizada que no solo satisface las necesidades

organizativas, sino que también demuestra escalabilidad, seguridad y cumplimiento. El

proceso automatizado de integración y despliegue continuo fomenta la agilidad y confi-

abilidad en las actualizaciones de modelos, garantizando operaciones eficientes.

La culminación del estudio de caso proporciona evidencia tangible de la eficacia del

marco MLOps, ejemplificando un despliegue exitoso de modelos, valiosas lecciones apren-

didas y métricas clave de rendimiento. Al abordar los desaf́ıos pasados en el despliegue,

integrar medidas de seguridad sólidas y medir el valor empresarial a través de indicadores

clave de rendimiento, el proyecto muestra un enfoque integral.

Palabras clave: MLOps, aprendizaje automático, entornos de producción,

integración continua, entrega continua, gestión de modelos, MLFlow, Grafana,

Prometheus, Docker, API, orquestación de flujos.
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Abstract

This Master Thesis (TFM) focuses on the evaluation, selection and deployment of

MLOps environments, highlighting the analysis, design, implementation and validation

of systems for the management of Machine Learning projects. This study compares mul-

tiple MLOps platforms and tools available in the market, considering criteria such as

workflow automation, model management, scalability and continuous integration. After

a thorough analysis, the most suitable option is chosen and implemented in a real case

study.

In addition to addressing the initial objectives, this TFM aims to outline the con-

clusions reached and the objectives achieved. Designed to solve existing challenges in

deploying machine learning models in production, the project yields substantial and

transformative results. Inspired by Deborah Leff’s observations on the alarming failure

rate of data science projects in reaching production, the overall objectives are metic-

ulously designed to address these problems and improve the success rate of machine

learning deployments.

Throughout the project lifecycle, meticulous requirements analysis is conducted, re-

sulting in a customised architecture that not only meets organisational needs, but also

demonstrates scalability, security and compliance. The automated process of continu-

ous integration and deployment fosters agility and reliability in model updates, ensuring

efficient operations.

The culmination of the case study provides tangible evidence of the effectiveness

of the MLOps framework, exemplifying successful model deployment, valuable lessons

learned and key performance metrics. By addressing past deployment challenges, inte-

grating robust security measures and measuring business value through key performance

indicators, the project demonstrates a holistic approach.

Keywords: MLOps, Machine Learning, production environments, contin-

uous integration, continuous delivery, model management, MLFlow, Grafana,

Prometheus, Docker, API, flow orchestration.
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B.3.1 Aspectos Éticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.3.2 Aspectos Legales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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C.1 PRESUPUESTO ECONÓMICO . . . . . . . . . . . . . . . . . . . . . . . 126

Bibliography 127





List of Figures

2.1 Comparison of waterfall and agile methodologies [31] . . . . . . . . . . . . 8

2.2 MLOps birth [69] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Comparison of DevOps and MLOps [69] . . . . . . . . . . . . . . . . . . . 11

2.4 Roles involved in MLOps [67] . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Google madurity levels [21] . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Microsoft madurity levels [38] . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 General schema of tempo framework [65] . . . . . . . . . . . . . . . . . . . 31

4.1 Use cases diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 MLOps principles for an Architecture [31] . . . . . . . . . . . . . . . . . . 46

5.3 Architecture with the tools . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Architecture with the tools . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Jenkins Credentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 MFlow experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.5 MFlow models table and chart . . . . . . . . . . . . . . . . . . . . . . . . 68

6.6 Jenkins parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.7 Jenkins Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.8 GitHub repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.9 MFlow experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.10 MFlow models table and chart . . . . . . . . . . . . . . . . . . . . . . . . 75

6.11 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.12 Metrics in the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.13 Prometheus targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

XIX



6.14 Prometheus metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.15 Grafana grafics from Prometheus . . . . . . . . . . . . . . . . . . . . . . . 79

6.16 Grafana grafics from Machine Learning . . . . . . . . . . . . . . . . . . . 80

C.1 PRESUPUESTO TOTAL . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



List of Tables

3.1 Comparing of end-to-end platforms . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Actors List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 UC1: MLflow: Registration and Management of Models . . . . . . . . . . 39

4.3 UC2: APIs for prediction and service . . . . . . . . . . . . . . . . . . . . . 40

4.4 UC3: MLFlow Model Registry: Implementation and maintenance . . . . . 40

4.5 UC4: Workflow Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 UC5: Docker containers: services orchestrator . . . . . . . . . . . . . . . . 41

6.1 Description of the features . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

XXI





CHAPTER1
Introduction

This chapter introduce the context of the project, including a brief overview of all the

different parts that are discussed in the project. It also breaks down a series of objectives

that are achieved during the realization of the project. In addition, it introduces the

structure of the document with an overview of each chapter.

1



CHAPTER 1. INTRODUCTION

1.1 Context

In recent years, the number of projects that use machine learning has increased expo-

nentially, as has the amount of investment companies are making in this technology.

This growth has brought about a number of problems since the first models until now,

such as the incorporation of machine learning models into production. Until 2022, up

to Deborah Leff, former Chief technology officer (CTO) for data science and Articial

intelligence (AI) at IBM, 87% of data science projects never make it to production [71]

and among the 90% of companies that have made some investment in AI, fewer than

2 out of 5 report business gains from AI, improving this number to 3 out of 5 when

we include companies that have made significant investments in AI [52]. These are the

reasons why only a small percentage of the Machine Learning (ML) projects manage

to reach production. It is essential to find out what the problems are since such an

extraordinary inversion from the companies should never be wasted.

1.2 Project goals

In response to the challenges faced by organizations in the deployment of machine

learning models in production, this project focuses on establishing a robust MLOps

framework. Leveraging the MLFlow Model Registry for versioning and management,

Grafana and Prometheus for real-time monitoring, and Application programming in-

terfaces (APIs) for prediction and model export, the project aims to address the high

failure rates of machine learning projects in reaching production.

The project encompasses key goals such as seamless model deployment, versioning

and management, real-time monitoring, performance optimization, database integration,

and scalable infrastructure. Additionally, it emphasizes the development of Predictive

and Export APIs, ensuring user-friendly access to model predictions and enabling secure

model sharing.

A critical aspect of the project involves the implementation of Continuous integra-

tion/Continuous delivery (CI/CD) pipelines for automated testing and deployment, facil-

itating agility and reliability in model updates. Documentation and knowledge transfer

initiatives ensure a shared understanding of the MLOps pipeline and its components.

By tackling the challenges identified in previous deployments, emphasizing business

value measurement and prioritizing security and compliance, the project aims to sig-
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nificantly improve the success rate of deploying machine learning models. Ultimately,

this initiative seeks to maximize the returns on companies’ substantial investments in AI

technologies, addressing issues highlighted by industry experts and fostering a culture

of successful machine learning integration into production systems.

• Seamless Model Deployment: Ensure the smooth deployment of machine learning

models from development to production. Implement a robust MLOps pipeline that

facilitates the easy transition of models to operational environments.

• Model Versioning and Management: Using the Model Registry to version and man-

age machine learning models. Implement a systematic approach to track changes,

dependencies, and performance metrics of models throughout their lifecycle.

• Monitoring and Alerting: Integrate applications for real-time monitoring of model

performance, resource utilization, and system health. Establish alert mechanisms

to respond promptly to deviations from expected behavior in the deployed models.

• Performance Optimization: Continuously monitor and analyze model performance

metrics to identify opportunities for optimization. Implement strategies for auto-

matic or manual retraining of models based on performance degradation or chang-

ing data distributions.

• Database Integration: Connect the Machine Learning Operations (MLOps) pipeline

to a reliable and scalable database to store and retrieve model-related metadata,

configurations, and performance metrics. Ensure data consistency and integrity

between the machine learning pipeline and the associated database.

• Scalable Infrastructure: Design the MLOps architecture to be scalable, accommo-

dating varying workloads and growing data volumes. Utilize containerization and

orchestration technologies for efficient resource allocation and management.

• Predictive API: Develop a user-friendly API for model predictions, allowing seam-

less integration with other applications and systems. Ensure high availability, low

latency, and scalability of the prediction API to meet various operational require-

ments.

• Continuous Integration and Continuous Deployment (CI/CD): Establish a CI/CD

pipeline to automate the testing, validation, and deployment of machine learning
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models. Enable rapid and reliable updates to deployed models in response to

changes in the underlying data or business requirements.

1.3 Structure of this document

The remaining of this master thesis is structured as follows.

Chapter 2: State of art In this chapter, the current landscape of machine learning

deployment and operations is explored, providing an overview of industry trends, chal-

lenges, and best practices. Insights from existing literature and real-world case studies

inform the foundation for the subsequent chapters.

Chapter 3: Components of MLOps This chapter delves into the fundamen-

tal components of MLOps, detailing the role of MLFlow Model Registry, Grafana,

Prometheus, and APIs in creating a comprehensive machine learning operations frame-

work. The functionalities and contributions of each component to the overall system are

elucidated.

Chapter 4: Requirement Analysis An in-depth analysis of project requirements

is conducted in this chapter, encompassing the needs and constraints of the implemen-

tation of machine learning models using the identified MLOps components. This phase

establishes the foundation for designing a solution that aligns with organizational goals

and operational demands.

Chapter 5: Architecture The architectural design of the MLOps system is pre-

sented in this chapter, incorporating insights from requirement analysis. The chapter

outlines the technical specifications, integrations, and interactions between different com-

ponents, ensuring a scalable, maintainable, and efficient machine learning deployment

infrastructure.

Chapter 6: Case Study A practical application of the MLOps framework is illus-

trated through a detailed case study, showcasing the successful deployment of machine

learning models using the proposed architecture. Lessons learned, challenges overcome,

and performance metrics are highlighted, providing valuable insight for future imple-

mentations.

Chapter 7: Conclusions The final chapter consolidates the findings, summarizes

key takeaways, and offers reflections on the project outcomes. Recommendations for

future improvements and considerations for broader industry implications are discussed,

concluding the document with a comprehensive overview of the MLOps initiative.
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CHAPTER2
State of Art

In order to understand the current situation of the software industry, we must understand

the previous steps of the software path.
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2.1 First software development: structured programming

The first software developments occurred in the 1940s and 1950s, when the first com-

puter machines came out. Such was the rise of these new technologies that software’s

developers had to give an extra twist to make them useful. So, they started developing

software using Structured Programming.

Structured programming [72] is a trend that was born to simplify the lives of devel-

opers. It was not until 1966, when Böhm and Jacopini launched the structured program

theorem, which says that any program could be written using just three instructions,

that its consolidation began. In 1968, Edsger Dijstra published a well-known article, Go

To Statement Considered Harmful [12], claiming the use of this new concept and the

banishment of the Goto sentence. Ending the consolidation of the structured program-

ming.

As has been said before, it is based on the three basic structures: sequence, selection,

conditional, and iteration. These three basic features made code understanding easier,

with a clearer structure, better testing and debugging optimization, and maintenance

expenses were reduced [72].

2.2 Waterfall methodology

At the beginning of the 1970s the projects were complex enough having a long list of

requirements, also needing a lot of documentation, alongside a proper design’s planning

of the solution. With the aim of solving these new challenges, the waterfall methodol-

ogy [70] was born.

Based on a correct requirement’s definition, due to that they must be unchanged

during all the process, it is a linear process of project management. Each step in the

procedure cannot begin unless the previous phase is completed, and once completed, it

is completed, as waterfall management does not allow you to return to a previous phase.

Normally, waterfall methodology varies somewhat depending on the source, but they

generally include:

• Requirements gathering and documentation.

• System design

• Implementation
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• Testing

• Delivery/Deployment

• Maintenance

2.3 Agile Methodologies

Due to the slowness and delays caused by the traditional way of working, which used

waterfall methodologies, the software industry designed agile methodologies. The previ-

ous projects were based on fixed requirements, not being able to change them once the

process started, and the big efforts that were meant to suppose if a change was made

drove to not-as-high-as-expected quality projects.

In 2001, the Agile Manifest [7] was created by the principal Chief executive officers

(CEOs) of the software industry in Utah . The Agile manifest was based in four keys:

• Iterations and individuals above processes and tools.

• Functional products above exhaustive documentations.

• Partnership above the deal negotiations.

• Change with the problem above and follow the strict plan.

• Delivery/Deployment

• Maintenance

The main advantages of agile methodologies that make them the base of a large

number of Development Operations (DevOps) processes are (Fig. 2.1):

• Ease and reduction of process overload: Being able to adapt at every stage of the

development process makes it easier to achieve what is expected at each milestone,

without extra effort, in the end.

• Better quality of the product: at every iteration at least a minimum functionality

is required, but in the end, an improvement from the previous ones. Moreover, the

customer is involved at every moment in the development process, able to request

changes depending on the market realities.
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Figure 2.1: Comparison of waterfall and agile methodologies [31]

• Improvement in the foresees through better management of the risk: Agile method-

ologies were designed to respond to possible changes and problems that arise during

the project life cycle.

• The customer is involved in every stage of development, so he could give feedback at

every point, creating a stronger relationship between developers and the customer

and improving satisfaction.

2.4 Foundations of DevOps

Both previous methodologies have the same objectives: to deliver production-ready soft-

ware products. The problems came with the gap between the development teams and the

operations teams, reaching even a point of isolation between them, competing against

each other. Both teams had different KPIs, different squad leaders, and different ob-

jectives. So, a concept called DevOps emerged in the years 2007-2009 [37] trying to

solve all the differences. DevOps is more than a pure methodology and represents a

paradigm that addresses social and technical issues in organizations involved in software

development [31].

During the product life cycle, DevOps uses agile methodologies by definition. In

addition, it is based on the automation of processes; it is managed through continuous
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integration, continuous delivery, and continuous deployment (CI/CD). It also allows fast

and reliable solutions to be delivered. Moreover, it is designed to facilitate continuous

testing and quality assurance, and, thanks to other applications and tools, to monitor,

log, and feedback loops. The most important assets of the DevOps methodology are [31]:

• Workflows and repositories, also called source code management: Tools such as

GitHub, BitBucket, or GitLab.

• Monitoring and Logging (e.g., Prometheis, Logstash).

• Build process (e.g., Maven).

• Continuos integration (e.g., Jenkins, GitLab CI)

• Deployment automation (e.g., Kubernetes, Docker, Ansible)

Today, the main cloud providers have already built solutions for DevOps tooling,

reducing the time needed to start giving value to a project.

2.5 MLOps

2.5.1 Definitions and challenges

Therefore, summarizing everything said before and in the gross mode, MLOps is the ap-

plication of DevOps methodologies alongside the use of machine learning in a production

environment. In a more technical way, MLOps is the standardization and streamlining

of the management of the machine learning life cycle [69]. For most organizations and

companies, the machine learning process is relatively new, and the number of projects in

productions is not big enough yet to accommodate them to an automation environment,

which is where it becomes more critical. For those who have done so, the main challenges

they face during the life cycle of the data are as follows.

• Changing environment: data and the business needs shift constantly, is required

to be sure that the model in productions aligns with the expectations and if it

satisfies the original problem and goals.

• Misleading communication: Despite being in the same company or sharing the

same goals, not everyone shares the same tools, procedures, or skills.
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With the facts gathered explained before, it was easy to come up with a solution truly

related with the DevOps models, MLOps, which is quite similar but not identical since

the software development used in DevOps is almost static, almost because some com-

panies can iterate changes during the software life cycle, against continuously changing

data of Machine Learning. Machine learning models are always learning and responding

to new environments in which they are in, also including both data and code.

So, the final MLOps model was born from the development and operations of DevOps

and data engineering (Fig. 2.2).

Figure 2.2: MLOps birth [69]

The greatest similarity between MLOps and DevOps methodologies lies in the con-

cepts of CI/CD, which allow software deliveries to occur with a high frequency with

reliable results. In most companies that use Machine Learning, they develop the dif-

ferent models and put them into production manually, without incurring MLOps. This

also brings with it the problem that machine learning has no return on investment until

it can be used. Therefore, all efforts must focus on the steps that follow the develop-

ment of the model itself, specifically the interfaces between the ML response and the

infrastructure where it is implemented [69] (Fig. 2.3).
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Figure 2.3: Comparison of DevOps and MLOps [69]

2.5.2 Principles and roles of the machine learning

As with any methodology, MLOps are also governed by a set of principles. These are not

fixed, but any process that aims to end up with a machine learning model in production

have to be governed by certain fundamentals such as the following:

• CI/CD automation: this process carries out the building, testing, shipping and

deployment of software through continuous integration, continuous delivery and

continuous deployment. As mentioned above, this allows for early identification of

process failures, continuous product value, and increased productivity.

• Reproductivity: the ability to replicate the same processes and obtain the same

results in different environments for the same inputs.

• Workflow orchestration: coordination of the different machine learning tasks in a

pipeline according to acyclic graph directives.

• Versioning: different versions of data, models, and code allow for greater control

over regulatory compliance and audits.

• Continuous monitoring: By continuously monitoring the data, the model, the code
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or the infrastructure itself, errors can be detected and/or changes can be made

according to previous results in a more efficient and less costly way.

• Feedback loops: this type of loop is necessary to manage the relationship between

the different stages of quality assessment and the engineering or development pro-

cesses.

• Continuous retraining of the different models: As each retraining is based on new

data, it is a consequence of previous processes of continuous monitoring, feedback

loops, and workflow orchestration. One aspect to be managed is the expenditure

to be allocated to this stage, as a higher frequency of retraining entails a much

higher cost.

Following the roles needed for an MLOps process, these are based on agile method-

ologies. As in any software development process, a good definition of the participants

in the process is fundamental to design, manage, automate, and operate any machine

learning system [67] (Fig. 2.4).

• Business stakeholder: in charge of defining the business objectives is also in charge

of taking care of the communication between the team and the client.

• Solution architect: define the architecture and technologies that are used.

• Data scientist: converts business problems and requirements into machine learning

problems. At a technical level, he/she oversees model engineering.

• Data engineer: designs and implements data pipelines and engineering features.

• Software engineer: converts the ML problem given by the data scientist into a well-

engineered product by applying software framework design and best practices.

• DevOps Engineer: strives to link development and management processes under

CI/CD methodology, ML workflow orchestration, model deployment to production

and monitoring.

• combination of all the above roles, cross-functionally. Manages the ML infrastruc-

ture and ML automation flows.
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Figure 2.4: Roles involved in MLOps [67]

2.5.3 Life cycle of data

In general, all AI projects, whether machine learning or deep learning, share common

phases that range from business understanding to model deployment. They also include

stages such as data transformation and explanatory analysis. It is worth noting that this

process is not linear, but circular or iterative, as once the model is deployed, it needs to be

monitored and revised to continuously adapt to the needs of the business. This process

is known as Cross Industry Standard Process for Data Mining (CRIPS-DM) [60] and is

the most widely used analytical model. Both the Google and Microsoft representations

are intended to illustrate that the process is iterative and that at all times it is essential

to maintain a clear understanding of the desired outcomes and objectives of each phase

in order to carry out the project as efficiently as possible:

1. Understanding the business and the data: The first step before development be-

gins involves understanding the use case, the sector you are working in, and the

specific problems you intend to address. It is also essential to know all the details

about the data required, including its location, format, and how it can be used

effectively. This understanding is essential to focus on the project objectives and
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to ensure that you have the data you need to meet those objectives. In addition,

knowing the format and location of the data is crucial for its efficient extraction

and exploitation.

2. Data ingestion: The data ingestion phase involves obtaining the data, and this

varies significantly depending on the sources and frequency of data collection. In

this phase, as in the previous one, a careful assessment of the amount of data

and the type of temporal architecture is vital to avoid problems related to system

capacity as the volume of data increases. Accurate volume estimation is crucial,

as many data science projects face challenges in moving into production due to

underestimating the volume of data or getting too little data compared to the

amount generated.

3. Data preparation and cleaning: Although this phase is related to the previous

ones, it stands out because it is often one of the most complex stages and, in

most projects, the most extensive. Data quality is essential for AI models to work

properly, so data preparation and data cleaning are essential. Although automation

and standardization of this task is often sought, human supervision is preferable,

as data quality is crucial for better results in the modeling phase.

4. Exploratory data analysis: In this stage, also known as data visualization, clean

and prepared data is interpreted and visualized to make informed decisions and

understand it in the best possible way. Visualization and representation of the

value of the data through reporting tools, graphs, and charts are essential in a

data project and allow critical questions to be addressed to advance development.

5. Modeling and Model Evaluation: Modeling is considered the core of data analysis.

A model takes the prepared data as input and provides the desired data as output.

At this stage, important decisions are made, such as the choice of the appropriate

model and the selection of hyperparameters to optimize its performance. Perfor-

mance is measured by various metrics, which vary from model to model, in order

to evaluate the model and obtain the best possible result.

6. Deployment of the model: Deployment is one of the critical parts of development

and is closely related to DevOps. From the first stage of implementation, it is nec-

essary to continuously monitor to detect problems and adapt to changing business
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needs. Despite the importance of MLOps techniques in previous stages, at this

point they become of significant value, as they allow problems to be detected effi-

ciently, corrected, and new models deployed quickly, achieving an effective system

with the best possible results and long-term sustainability.

2.5.4 Madurity levels of machine learning

The level of automation within a MLOps system can be categorized into the corre-

sponding levels. In spite of the fact that there is no accepted maturity model by the

community, the two biggest hyperscaler companies, Microsoft and Google, have raised

two proposals, one each. The Google model [21] consists of three levels (Fig. 2.5):

• MLOps Level 0: No automation at all; everything is done manually.

• MLOps Level 1: Automation of ML pipelines.

• MLOps level 2: Automation of CI/CD pipelines.machine learning

The Microsofts’ model [38] has 5 levels instead (Fig. 2.6):

• Level 0: No MLOps.

• Level 1: DevOps without MLOps.

• Level 2: Automated training.

• Level 3: Automated Model Deployment.

• Level 4: Fully automated MLOps operations.
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Figure 2.5: Google madurity levels [21]

Figure 2.6: Microsoft madurity levels [38]
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CHAPTER3
Components of MLOps

This chapter offers a brief review of the main technologies that have made this project

possible, as well as some of the related published works.
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3.1 Introduction

When we talk about Machine Learning Operations (MLOps), we mean a structured

orchestration to obtain the results of the model with the least human involvement in the

process, but what is strictly necessary. Throughout this chapter, we develop and explain

the components that are necessary to carry out this process and that are different from

the DevOps process. First, the end-to-end platform is in charge of the orchestration

of the different models and their respective metrics. Then, we use the main types of

frameworks that are used today when implementing machine learning solutions: we

base ourselves on their functionalities, ease of use, and costs when choosing which one

is chosen in this process.

3.2 End-to-end MLOps platforms

An end-to-end MLOps platform can be defined as a conceptual and technological struc-

ture, i.e. a set of tools, processes, and best practices designed to manage and automate

the lifecycle of machine learning projects, from model development and training to im-

plementation and maintenance in production environments.

In the next point, different MLOps end-to-end platforms are evaluated; for this, the

criteria for selecting the right technology is open / closed source, level of MLOps they

reach, where they are deployed (remote or on-premise), and the learning curve required

for their correct use. Also, depending on where the technology is going to be applied,

there are several factors to take into account that may contribute to its choice. Those

factors are more related with being a much more productive business environment, so

in this project are not taken into account, but are worth knowing [47]:

• Technological strategy: the choice of the tool has to be made to be consistent with

the rest of the technological stack, and it supports the languages and frameworks

used during the process.

• Available budget: when evaluating the possible technologies, the costs for a scalable

and always available environment must be assessed and budgeted in order to avoid

failures in the deployments and that these fall within our objectives.

• Employee knowledge: It is useless to have the best possible tools if no one in our

staff knows how to use them; therefore, we must choose a tool about which they
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know or whose training does not involve a too exaggerated performance. Training

is a very important part of the aforementioned budget.

• Use cases and application trajectory: correctly identifying the problems and re-

quirements to be solved makes the choice of the tool one way or the other.

• User support: in order to offer a correct service to customers, it is necessary that

the provider’s support be fast and concise, including documentation, tutorials,

forums, customer service, etc.

The main features of an MLOps platform are described below [31, 69, 47]:

• Version management: Track changes to code, data, and models.

• Workflow Automation: Automate tasks such as data collection and preprocessing,

model training, and production deployment.

• Environment Management: To ensure that development, test, and production en-

vironments are consistent.

• Monitoring and logging: Track the performance of models in production and ensure

their proper operation.

• Testing and Validation: Verify the quality and performance of the models before

deploying them in production.

• Deployment and Orchestration: Implement models in production environments in

an efficient and scalable way.

• Model management: Track the version of the models, manage their lifecycle, and

enable the update and deployment of new versions.

• Security and compliance: To ensure the security of the data and the model and to

comply with regulations and privacy policies.

• Collaboration and communication: To foster collaboration between the data sci-

ence, development, and operations teams.

Examples of popular end-to-end MLOps platforms include MLFlow [43], Kube-

flow [32], Azure ML [39], Vertex AI (Google) [23], Amazon SageMaker [6], Domino [14],
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H2O MLOps [25], etc. These platforms provide a structure that facilitates the imple-

mentation of MLOps practices in machine learning projects, helping to ensure reliability,

scalability, and efficiency in model management in production. Some examples are ex-

plained below.

3.2.1 MLFlow

MLFlow [43] is an open-source platform developed by Databricks to manage the lifecycle

of machine learning projects. It allows developers and data scientists teams to manage

experiments, keep track of models, collaborate, and track implementations efficiently.

Here are some of the key features of MLFlow [43]:

• Experiment Management: MLflow allows users to keep track of machine learning

experiments. You can organize and compare different model runs to evaluate their

performance and make data-driven decisions.

• Model Registration: MLflow allows you to register and version trained models

along with their metadata and parameters. This facilitates model reuse and de-

ployment in different environments.

• Version control: MLflow provides a version control system for models and experi-

ments, which helps to maintain a history of all changes made to code and models.

• Model packaging: Models registered in MLflow can be packaged in standard for-

mats (e.g., in Docker containers) for easy deployment and deployment in different

environments, such as the cloud or embedded devices.

• Parameter and Metric Tracking: MLflow enables tracking and visualization of met-

rics, parameters, and artifacts associated with each run of an experiment, making

it easier to understand how a model behaves in different configurations.

• Integration with Machine Learning Libraries: MLFlow integrates seamlessly with

popular machine learning libraries such as scikit-learn, TensorFlow, PyTorch, XG-

Boost, and others, making it easy to record models and training results.

• Model Collaboration and Sharing: Teams can collaborate effectively on machine

learning projects and share registered models with other team members.
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• Model Deployment in the Cloud: MLflow makes it easy to deploy models on pop-

ular cloud services such as Azure ML, AWS SageMaker, Google AI Platform and

others.

• APIs for Different Languages: MLflow offers APIs for Python, R, and REST,

providing flexibility in the choice of programming languages to work with MLflow.

It is also important to point out that MLFlow allos any type of coding language, some

of them have support and the remaining ones no. For those languages with support, there

are extra functionalities such as allowing the development of ML and CI/CD pipelines.

It is open source, therefore free, but can be used with paid applications and frameworks.

On the contrary, it is a tool that pretends to be the server to reach the minimum

level of automation, however, it is possible to increase this level with several external

applications. There is also no record of knowing the accuracy of an algorithm without

the help of third parties.

3.2.2 KubeFlow

Kubeflow [32] is an open source platform specifically designed to facilitate the devel-

opment, deployment, and management of machine learning applications in Kubernetes

environments. Kubernetes is a widely used container orchestration system, and Kube-

flow extends its capabilities to meet the needs of teams working in machine learning.

Here are some of the key features of Kubeflow [32]:

• Model Orchestration: Kubeflow enables the orchestration of machine learning

workflows, making it easy to create, train, and deploy models in a scalable and

reproducible manner.

• Unified Development Environment: Provides a unified environment for developers

and data scientists, facilitating machine learning project collaboration and resource

management.

• Data Management: Provides tools for data management, including data access,

data preparation, and feature engineering.

• Experimentation and Model Tracking: Kubeflow allows one to keep a record of

experiments and models, which facilitates the comparison of results and informed

decision-making.
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• Model deployment: Facilitates the deployment of models in production environ-

ments through its integration with Kubernetes, enabling scalability and high avail-

ability.

• Elasticity: Kubeflow leverages the scalability of Kubernetes to adapt resources as

needed, allowing it to handle varying machine learning workloads.

• Extensibility: Kubeflow’s architecture is modular and extensible, which means that

additional components and functionality can be added according to the specific

needs of the project.

• Support for Diverse Machine Learning Libraries: Kubeflow is compatible with a

variety of machine learning libraries, such as TensorFlow, PyTorch, scikit-learn,

and others, providing flexibility in the choice of technologies.

• Monitoring and Visualization: Provides tools to monitor and visualize metrics and

results of experiments and models.

• Web User Interface: Kubeflow offers an intuitive web user interface that allows

users to manage and control workflows, experiments, and models efficiently.

After knowing the main features, we can highlight the following: it is a free and

open source code, it is focused on the automation of ML and CI/CD pipelines,, and, in

addition, it is based on Kubernetes. The latter, in turn, is a problem, since you have

to have a development team with knowledge of containers and Kubernetes, and finally,

despite being able to achieve any level of MLOps automation, it does not offer anything

by itself.

3.2.3 Azure ML

Azure Machine Learning (AzureML) [39] is a cloud service provided by Microsoft Azure

that facilitates the development, training, deployment, and management of machine

learning models. Here are the top five characteristics of AzureML [39]:

• Scalable training - AzureML enables training of machine learning models in a dis-

tributed and scalable manner, which speeds up the training process by leveraging

cloud resources.
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• Model Lifecycle Automation: Provides tools to automate the entire model life-

cycle, from data preparation and model creation to deployment and continuous

monitoring.

• Integration with Data Science and Development Tools: Easily integrates with pop-

ular data science and development tools, such as Jupyter Notebooks, and provides

support for libraries such as TensorFlow and PyTorch, giving data scientists flexi-

bility.

• Deployment in diverse environments: Enables models to be deployed in a variety of

environments, such as Azure Container Instances (ACI), Azure Kubernetes Service

(AKS) and Azure cloud services, making it easy to deploy in different scenarios

and environments.

• Library of pre-trained algorithms and models: Offers a variety of pre-trained algo-

rithms and models that facilitate rapid development and deployment of machine

learning solutions without the need to start from scratch.

Therefore, AzureML is an MLOps level 2 platform with zero code approach, which

obviously has global access through Azure and allows one to have on-premise, hybrid,

and cloud solutions. However, it is a paid service with scalable functions that make it

difficult for companies to calculate the cost of the solution. Furthermore, the platform

itself recommends that all components of the system be used without anything external.

Finally, as this is a large and complex environment, the learning curve is high.

3.2.4 Vertex AI (Google)

Vertex AI [23] is a comprehensive ML platform from Google that enables both the train-

ing and the deployment of ML models and AI applications. In addition, it facilitates

the customization of Large language models (LLMs) for integration into your AI-driven

applications. Vertex AI fuses data engineering, data science and AI engineering work-

flows, enabling your teams to collaborate efficiently through a shared toolkit and scale

your applications with the advantages offered by Google Cloud.

Key features [23]:

• End-to-end platform: Many artificial intelligence solutions seek to provide an end-

to-end platform that spans from data preparation to model implementation.
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• Automated Machine Learning (AutoML) Automation: Automation of the model-

ing and training process, known as AutoML, is a common feature on many plat-

forms, allowing users without machine learning experience to develop models.

• Scalability: AI solutions are often designed to be scalable, which means that they

can handle large volumes of data and computational demands, adapting to different

project sizes.

• Integration with Cloud Services: enables flexible access to and use of computing

resources, facilitating the deployment and management of models in distributed

environments.

• Support for Multiple Frameworks: To provide flexibility, many platforms support

multiple deep learning frameworks, such as TensorFlow, PyTorch, or scikit-learn.

• Model Deployment and Monitoring: Artificial intelligence solutions often provide

tools for deploying models in production environments and monitoring their per-

formance in real-time.

Among the main advantages of its use is level 2, very focused on the life cycle to allow

correct deployments, with tools such as Vertex AI Workbench, model training, Vertex

AI Feature Store, reusable storage of features, Vertex AI Model Monitoring, automatic

alerts of failures in models in production, etc. and finally, total management from the

cloud for availability anywhere. On the other hand, as with AzureML, it is a pay-per-

use service, with its difficulties in forecasting costs, and the full set of Google tools is

necessary.

3.2.5 Amazon SageMaker

Amazon SageMaker [6] is an Amazon Web Services (AWS) service designed to simplify

the process of building, training, and deploying machine learning models. Therefore, it

is a fully managed service that covers the entire machine learning workflow, from data

preparation and exploration to the deployment and monitoring of models in production.

Here is an overview and some key features [6]:

• Scalable Model Training: SageMaker enables you to train machine learning models

on a scale, leverage distributed resources and optimize performance during training.
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• Easy deployment: Makes it easy to deploy models in production environments

with just a few clicks or lines of code, streamlining the deployment of models in

applications.

• Automatic Training (AutoML): Includes AutoML capabilities to simplify the

model-building process, which is especially useful for users without machine learn-

ing experience.

• Model and Version Management: Provides tools for efficient model management,

including the ability to create, maintain, and update different versions of models.

• Integrated Development Environment: Provides an integrated development envi-

ronment that includes preconfigured Jupyter notebooks, facilitating data explo-

ration, model development, and team collaboration.

• Scalability and Flexibility: Allows scaling vertically and horizontally according

to user needs and supports a variety of machine learning algorithms and popular

frameworks such as TensorFlow and PyTorch.

• Deployment Automation and Continuous Monitoring: Facilitates the automation

of the deployment process and provides tools for continuous performance monitor-

ing of models in production, with the ability to adjust them as needed.

In the same way as the two previous ones, since they are hypercaller platforms, we

are faced with a complete development ecosystem with a zero code approach designed

to accelerate the beginning of development and with global access managed by AWS. It

is a level 2 environment of MLOps. However, it is a paid service with a high learning

curve due to all the components that have to be used, recommended by the provider to

be used as a whole.

3.2.6 Domino

Domino is a MLOps [14] platform that allows data scientists to develop their models

more easily and quickly. It works as a Platform as a Service (PaaS)/Software as a Ser-

vice (SaaS) pay-as-you-go, custom-priced service. Domino transforms the fragmented

structure of data science and inefficient workflows through a unified process that spans

the entire lifecycle, from exploring new datasets to publishing and managing models in
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production. It is also distinguished by its independence from any cloud provider, facil-

itating on-premises administration. It consists of three essential modules: the System

Registry, the Integrated Model Factory, and the Infrastructure Self-Service Portal [14].

• The System Registry maintains version control of code, data, tools and packages,

incorporating targets and linking to Git and Jira for effective model traceability.

• The Integrated Model Factory simplifies the lifecycle management of services, en-

abling their deployment in diverse architectures such as scalable APIs, applica-

tions, AWS Sagemaker and Docker images for CI/CD pipeline generation. It also

monitors the health and drift of the models over time.

• The Infrastructure Self-Service Portal manages the tools necessary for the creation

and deployment of models, allowing the choice of different computer clusters for

training and various development environments. Access to the data is done from

a secure environment, guaranteeing security throughout the process.

Domino is a service whose offer is practically the same as that of MLFlow, but

paying for its services, consisting of an infrastructure with a level 2 automation level

and with the possibility of the company’s own servers so as not to depend on hyper

callers. Although it can be deployed with any available cloud.

3.2.7 H2O MLOps

H2O MLOps [25] is a MLOps developed by H2O.ai. It focuses on optimizing and effec-

tively managing the lifecycle of machine learning models, from development to deploy-

ment and monitoring in production. Here are five key characteristics of H2O MLOps [25]:

• Model Lifecycle Automation: H2O MLOps automates various stages of the model

lifecycle, from experimentation and development to deployment and monitoring

in production. This streamlines the process and reduces manual intervention,

enabling faster and more efficient delivery of models.

• Centralized Management: Provides a centralized platform to manage all aspects

related to machine learning models. From model registration and tracking to

dependency and version management, H2O MLOps provides a unified environment

to facilitate team administration and collaboration.
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• Efficient deployment: Facilitates the deployment of models in production envi-

ronments by generating model artifacts and integrating them with continuous de-

ployment (CI/CD) systems. This ensures a smooth transition of models from

development to production.

• Monitoring and Governance: H2O MLOps includes robust monitoring capabilities

to assess model performance in real-time. In addition, it offers governance features

to track model changes, manage access, and maintain compliance with standards

and regulations.

• Collaboration and Scalability: Provides tools to facilitate collaboration between

data teams, data scientists, and operations. In addition, the platform is scalable

and can adapt to model deployment needs at different scales, from small projects

to large-scale enterprise deployments.

In general, H2O MLOps aims to optimize the process of developing and deploying

machine learning models, improving efficiency, collaboration, and governance throughout

the model lifecycle. Despite being paid, the vast majority of the features are open source,

as is its ecosystem; it allows hybrid deployment in the cloud and with various providers,

and, finally, it allows user role management.

3.2.8 Platform selection

Based on the above, platforms such as AzureML, Amazon SageMmaker, or Vertex AI

offer a wider range of possibilities and resources, which are scalable. When it comes

to deploying a project for a company, choosing one of these options is one of the most

coherent decisions, as it allows models to be deployed in a more controlled manner within

the same environment. In addition, the management of incidents and resources, as well

as their access, is more specific. On the other hand, qualified personnel with knowledge

of these offerings are required, as they are slower to learn and require more effort.

Focusing on this project, the only possible tools are Kubeflow and MLFlow, due to the

fact that they are open-source platforms and we do not have any budget. Between these

two platforms, Kubeflow is a more specific and less flexible environment than MLFlow,

as everything is done through containers and Kubernetes; the latter, on the other hand,

allows for any programming language and/or libraries and with a low learning curve. Its

adaptation to the code is by means of a series of lines in the Python files, and it also
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Platform Open

code

MLOps

Level

On-premise/cloud/hybrid Learning

Curve

MLFlow Yes 0 All Low

Kubeflow Yes 0 All Low

Azure ML No 2 Cloud/On-premise High

Vertex AI No 2 Cloud High

Amazon SageMaker No 2 Cloud High

Domino No 2 All Medium

H2O MLOps No 2 Cloud/Hybrid Medium

Table 3.1: Comparing of end-to-end platforms

has extensive documentation. For this reason, the platform to be used in this project is

MLFlow, with its corresponding configuration to store all the generated data.

MLFlow can be used as a Python library; for correct management, virtual environ-

ments is used to avoid conflicts between packages. In addition, to have a replicable

architecture, Docker is used to be independent of the operating system on which it

runs. When initialized, MLFlow is deployed as a web server, which is offered at 0.0.0.0.0

through port 80 (standard http services).

3.3 MLOps Frameworks

A MLOps framework is a set of tools, practices and processes that facilitate the imple-

mentation, management, and automation of workflows related to the ML model lifecycle.

It aims to effectively integrate the development, deployment and monitoring of ML mod-

els in production environments.

3.3.1 Scikit-learn

Scikit-learn [54] is an open source machine learning library for the Python programming

language. It provides simple and efficient tools for predictive analytics and data mining
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and is designed to be accessible and usable for novice and expert users alike. Here are

five key features of Scikit-learn [54]:

• Consistent interface: Scikit-learn provides a consistent and easy-to-use application

programming interface (API) that makes it easy to build and evaluate machine

learning models. The consistency of the API facilitates experimentation with dif-

ferent algorithms.

• Wide variety of algorithms: The library includes a wide variety of supervised and

unsupervised learning algorithms, as well as tools for data pre-processing, model

selection, and performance evaluation. This allows users to explore and apply

different techniques according to their needs.

• Efficiency and performance: Scikit-learn is designed to be efficient and scalable. It

implements optimized algorithms and uses NumPy [45] and SciPy [55] for numer-

ical calculations, which contributes to its performance.

• Integration flexibility: Scikit-learn integrates easily with other popular Python

libraries, allowing users to combine it with tools such as [50] for data manipulation

and MatPlotLib [36] for visualization.

• Comprehensive documentation: Scikit-learn has extensive and well-organized doc-

umentation, including tutorials, examples, and detailed descriptions of methods

and parameters. This makes it easy for new users to learn and implement.

3.3.2 TensorFlow

TensorFlow [66] is an open-source library developed by Google for machine learning and

deep learning. Some of its main features and key concepts are presented below [66]:

• Computational Graphs: TensorFlow represents computations as a directed graph.

The nodes of the graph represent mathematical operations, and the edges represent

the data (tensors) that flow between operations. This allows efficient optimization

and parallelization of computations.

• Deep Learning: TensorFlow is primarily used in deep learning, a subarea of ma-

chine learning that focuses on deep neural networks to solve complex tasks such

as computer vision, natural language processing, and more.
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• High-level API: TensorFlow offers high-level APIs, such as Keras, that facilitate

the creation and training of deep learning models. Keras provides a simple and

easy- to-use interface for defining and training neural networks.

• Flexibility: TensorFlow is highly flexible and can be used on a variety of platforms

and devices, including Central Proccesing Unitss (CPUs), Graphics Processing

Units (GPUs) and Tensor Processing Unitss (TPUs), which makes it suitable for

machine learning tasks in various environments.

• Extensive ecosystem: TensorFlow has an extensive ecosystem of tools and exten-

sions for specific machine learning and deep learning tasks. This includes Ten-

sorFlow Serving to deploy models in production, TensorFlow Lite for mobile and

embedded devices, and TensorFlow.js for web applications.

• Auto-differentiation: TensorFlow enables automatic differentiation, which is cru-

cial for optimizing machine learning models by gradient descent. This means that

TensorFlow can automatically calculate gradients to adjust the model parameters.

• Pre-trained Models: TensorFlow provides access to pretrained models on large

datasets, which can accelerate the development of machine learning applications

by enabling transfer of learning.

• Active community: TensorFlow has an active developer community and extensive

documentation, which facilitates problem-solving and the adoption of new features.

• Interoperability: TensorFlow is compatible with several programming languages,

including Python, C++, and more, making it accessible to a wide audience of

developers.

• Distribution: TensorFlow is capable of distributing training and prediction tasks

across clusters of machines, which is essential for training models on large datasets.

3.3.3 Tempo Framework

Tempo [65] is an open-source Python framework that allows the testing and develop-

ment of machine learning pipelines, which can be created and tested locally or deployed

through Seldon in production. Among the main features of the tempo are [65]:
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• Optimization of model packages for a shorter execution time on servers.

• Ease of orchestration of process steps.

• Support for any custom Python component.

• Test locally and deploy in production, with the possibility of following GitOps

workflows.

The general outline of the workflow of this framework is as follows (Fig. 3.1):

Figure 3.1: General schema of tempo framework [65]

3.3.4 PyTorch

PyTorch [33] is an open-source framework for deep learning and machine learning. It

was developed by Facebook’s AI Research Lab (FAIR) and has become very popular in

the deep learning research and development community. Here is an overview and five

main features of PyTorch[33]:

• Dynamic tensorisation: One of the most distinctive features of PyTorch is its

focus on dynamic tensorisation. Unlike some other frameworks that use static

computation graphs, PyTorch allows you to build computation graphs dynamically

during program execution. This facilitates experimentation and debugging, as you

can change the structure of the computation graph on the fly.
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• Autograd: PyTorch provides an automatic differentiation system called Autograd.

This means that it can perform backpropagation automatically to compute gradi-

ents in tensor operations. It makes it easy to implement machine learning algo-

rithms, as you don’t have to manually compute gradients.

• Neural Network Library: PyTorch includes a rich library for building and training

neural networks. The torch.nn module provides tools to define layers, loss func-

tions, and complete models in a modular way. This makes it easy to build and

experiment with complex neural network architectures.

• Integration with Numpy: PyTorch is designed to integrate well with the NumPy

library, which is widely used in scientific and numerical computing. The tensors in

PyTorch can be easily converted into NumPy matrices and vice versa, facilitating

interoperability with other libraries and migration of existing code.

• Active Community and Full Documentation: PyTorch has an active community

of developers and users. This translates into a wide variety of resources, tutorials,

and documentation available online. PyTorch documentation is extensive and well-

maintained, making it easy to learn and troubleshoot.

3.3.5 Framework selection for machine learning

Once the end-to-end platform, MLFlow, was chosen, a framework had to be chosen that

would allow it to be deployed in this environment and perform specific machine learning

analyzes. Therefore, scikit-learn is the one that provides the most support and has the

best integration with MLFlow. Along with this, frameworks such as pandas, NumPy,

and Matplotlib is used for information management and possible visualization of the

models from the code, in the development environment. By importing the models and

the necessary libraries into the code, and after loading the data and training the model,

making the predictions, and evaluating the performance, the whole model is saved in

MLFlow as shown in the listing 3.1.

Listing 3.1: Code for saving the model in MLFlow

with mlflow.start_run():

# Log hyperparameters and metrics
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mlflow.log_param('estimators', 100)

mlflow.log_metric('accuracy', accuracy)

# Log the model

mlflow.sklearn.log_model(model, 'model')

33



CHAPTER 3. COMPONENTS OF MLOPS

34



CHAPTER4
Requirement Analysis

This chapter carries out an analysis of the main users and actors involved in the entire

project.
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4.1 Introduction

This sections identifies the use cases of the system. This helps us to obtain a complete

specification of the uses of the system, and, therefore, define the complete list of requisites

to match. First, we present a list of the actors in the system and a Unified Model

Language (UML) diagram that represents all the actors participating in the different

use cases.This representation allows us to specify the relationships between them, apart

from specifying the actors that interact in the system. These use cases are described in

the next sections, including each in a table with their complete specification, and adding

a use case diagram to clarify the concepts. Using these tables, we are able to define the

requirements to be established.

4.2 Actors dictionary

In this section, we resume all the actors involved in the use cases in Tab. 4.1. These use

cases are described in detail in the following sections.

Actor

identifier

Role Description

ACT-1 Data Scientist Is responsible for building, training, and evaluat-

ing machine learning models using tools such as

MLflow. It registers the trained models in the

MLflow Model Registry.

ACT-2 MLOps Engineer Configures and manages the MLOps system, in-

cluding integration of MLflow as a model registry,

implementation of metrics through Prometheus

and workflow orchestration through Jenkins

ACT-3 Systems operator Oversees the proper functioning of services, includ-

ing MLflow, Prometheus, and the Flask API for

model serving. Intervenes in the event of a problem

and ensures system availability and performance.
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ACT-4 Prediction User Inputs data to the API and receives the predictions

generated by the model. It can be an end user or

a system that consumes the predictions to perform

specific actions.

ACT-5 Jenkins Pipeline

Manager

Configures and maintains the Jenkins pipeline that

is responsible for orchestrating the deployment and

update of services through Docker containers.

ACT-6 Model serving

API

Service in charge of managing the data entered by

the prediction user to provide a prediction.

ACT-7 MLFlow Central Service in charge of registering the different

models and providing the metrics through the API

to Prometheus.

ACT-8 Data taker API Service in charge of porting the data from the

MLFlow server to the Prometheus server with the

correct format.

ACT-9 Prometheus Server that receive the data to be able to keep track

of the statistics.

ACT-10 Jenkins Orchestrator for the deployment of all elements in

the project.

ACT-11 Docker Service used for constructing and packaging all the

pipeline components.

Table 4.1: Actors List

4.3 Use case description

The use cases of the actors identified previously are shown in Fig. 4.1., which are detailed

below.

Each of these requirements is of equal importance, being fundamental elements with-
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Figure 4.1: Use cases diagram
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Use Case Name Registration and Management of Models

Use Case ID UC1

Actors Data scientist, MLOps engineer, MLFlow

Pre-Conditions The MLFlow server must be linked to GitHub to receive the

models.

Post-conditions -

Flow of events The data scientist uses MLflow to register and manage models.

The MLOps engineer configures and administers the MLFlow

platform.

Table 4.2: UC1: MLflow: Registration and Management of Models

out which the comprehensive completion of the various functionalities of the project

would be hindered. It is imperative to stress that the absence of any one of these

requirements could compromise the viability and overall effectiveness of the initiative.

Each use case is described in the tables described in the following (Table 4.2, Ta-

ble 4.3, Table 4.4, Table 4.5, and Table 4.6).
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Use Case Name API for prediction and serving

Use Case ID UC2

Actors Data Scientist, Prediction User, Model Serving API, Data Ex-

porter API, Prometheus

Pre-Conditions The model has to be already trained

Post-conditions -

Flow of events The model serving API offers the metrics to third parts, such as

Prometheus. Data scientists and prediction users use the predic-

tion API interface to obtain predictions.

Table 4.3: UC2: APIs for prediction and service

Use Case Name MLFlow Model Registry: Implementation and maintenance

Use Case ID UC3

Actors MLOps engineer, Systems operator, MLFlow

Pre-Conditions The models have to be already trained. The flow of data between

Grafana and Prometheus has already been established.

Post-conditions -

Flow of events The MLOps engineer uses the MLFlow Model Registry to man-

age model versions and deploy specific models to production en-

vironments. The system operator monitors the implementation.

Table 4.4: UC3: MLFlow Model Registry: Implementation and maintenance
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Use Case Name Workflow Orchestration

Use Case ID UC4

Actors Jenkins pipeline manager, MLOps engineer, Jenkins, Docker

Pre-Condition -

Post-condition -

Flow of events The Jenkins Pipeline Manager configures and maintains a Jenk-

ins pipeline that automates the deployment and update of services

using Docker Compose. The MLOps engineer assists with configu-

ration and monitoring.

Table 4.5: UC4: Workflow Orchestration

Use Case Name Docker containers: services orchestrator

Use Case ID UC5

Actors Jenkins pipeline manager, MLOps engineer, Jenkins, Docker

Pre-Condition -

Post-condition -

Flow of events The Jenkins Pipeline Manager uses Docker Compose to orchestrate

the execution of containers containing services such as MLFlow,

Prometheus, and the Flask APIs. The MLOps engineer verifies the

consistency and replication of the environment.

Table 4.6: UC5: Docker containers: services orchestrator
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CHAPTER5
Architecture

This chapter presents the architecture used in this work along with all its components,

their connections, its possible technologies, and finally a selection of the technologies used

throughout the process.
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5.1 Architecture

In this section, the general architecture of the project is described (Fig. 5.1). To do

so, all parts involved are described one by one, and then the necessary technologies are

selected.

Figure 5.1: Architecture

The main premise when implementing an architecture has been, first of all, the

possibility of carrying it out without incurring paid applications, that the whole process

could be carried out free of charge, without any subscription. This allows the use of any

type of technology as long as it allows integration with the rest of the elements of the

system. This freedom facilitates the deployment of the application, although it makes it

difficult to use, as you have to know and understand how to use each of the technologies

involved. Despite these obstacles, a solution to the proposed problem is implemented,
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although with a series of complications or extra aspects, such as the connections between

the different elements of the architecture or the flow of data between its structures,

which can lead us to use other types of tools, whose use is more integrated throughout

the development. The alternatives would have been hypercallers, such as AWS with

Amazon SageMaker and Google with Google ML, where the entire process is carried

out under the umbrella of a single company, with its support and orchestration already

pre-established for greater ease of use and deployment. On the other hand, they tend to

be more limited in the technologies with which they can be used and communicate, and,

above all, the learning curve and knowledge are higher to be able to use them correctly,

without forgetting, of course, that they are paid tools whose method of payment is

pay-per-use.

The following explains how this architecture works. First, each team deposits its

code and model in the repository. The repository is organized by folders and branches

for better information management. With the possibility to set up a trigger with the

push to git as a trigger for the start of the project, Jenkins is triggered to build the

entire containerized infrastructure via Docker. This infrastructure includes the model

training, the Model Registry, the prediction service, and the monitoring applications.

First, the model is trained on a container, and all its information is registered in the

Model Registry. The model registry allows all the information to be registered and

served to the other components that need it. The model serving component provides an

interface for real-time predictions, thanks to the CI/CD component. The necessary data

are served by an API after they have been collected from the Model Registry. With the

same operation, the data is served to the different monitoring components. Finally, all

metadata related to model training is deposited in the feature store to enable certain

features in future stages of training.

Explaining how the architecture was made, we have to explain that it is based on

the principles of the open code CI / CD model, the roles involved in the activity, and

the general architecture models given for DevOps methodologies. Therefore, by com-

bining all these premises, we obtain a first outline with the implementation of MLOps

principles(Fig. 5.2):

The following describes each of the elements first, explaining their characteristics

and their function within the process. We continue with an analysis of the different

alternatives currently on the market for each of the elements previously described: char-
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Figure 5.2: MLOps principles for an Architecture [31]

acteristics, advantages, and disadvantages. Finally, the most suitable technologies for

each part are selected based mainly on their integration with the other tools, their free

availability and ease of use.

5.1.1 Source Code Repository

The training and application code is versioned in a repository [34, 9]. This allows

developers to merge their code and commit it to it. From the repository, this code

will be served to the various CI/CD components to build the infrastructure. Some of

the options available on the market are Bitbucket [2], GitLab [20], GitHub [17] and

Gitea [10].

5.1.2 CI/CD Component

The CI/CD component [59, 44] ensures continuous integration, continuous delivery and

continuous deployment. Such tools implement the construction, testing, deployment, and

servicing of the infrastructure. Examples are Jenkins [3] or GitHub actions [19], which

provide quick feedback from the customer on the successes and failures of deployments.

This process has to be done dynamically and independently.
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5.1.3 Workflow Orchestration Component for ML

Workflow Orchestration Component for ML allows the organization of the different ma-

chine learning tasks by means of Directed acyclic graphs (DAG). The graphs graphically

show the execution steps and the different artifacts used in the process. The steps that

can be performed by this orchestration are data extraction, training, and embedding

the model in an application. These same steps could be performed by CI/CD tools, but

due to the complexity of the models and the meticulous treatment required by the data,

specific tools have been developed. Examples of such tools are: Apache AirFlow [61],

KubeFlow Pipelines [5], AWS SageMaker Pipelines [57] and Azure Pipelines [40]. Within

our project, there is no need for such tools, as the model is extremely simple and learning

does not require large steps or packages.

5.1.4 Feature Store System

A Feature storage system [30] allows for centralized storage of features. Typically, they

usually have two types of storage within them: the first is an offline database with normal

response for experimentation, and a second database for running projects where latency

is low, allowing a faster flow of work. These types of warehouse can be scalable or not,

depending on the size of the project in question. For scalable projects, it is normal to

have them in the cloud. Some alternatives for the feature store system are: Amazon

AWS Feature Store [56], Google Feast [22] and Tecton.ai [64]. In our project, a scalable

system is not necessary, so a simple database can do the job.

5.1.5 Model Training Infraestructure

The model training infrastructure provides the resources that allow the model to be

trained and delivered. This type of infrastructure in production environments tends to

be distributed and scalable, allowing greater adaptability to resource needs, as well as

greater isolation from potential problems. The most widely used distributed and scalable

platforms include Kubernetes [16] and Red Hat Openshift [26]. In our project, due to the

complexity it requires, it has the possibility of being scalable, but it is not distributed

since the computation node is the computer where it is executed.
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5.1.6 Model Registry

As explained in Chapter 3, a model registry is a centralized repository of trained ML

models together with their metadata. Its main tasks are very simple but necessary: to

store the ML artifact and to store the metadata. Some of the most commonly used

examples of a model registry are MLFlow [43], Kubeflow [32], AWS SageMaker Model

Registry [58], Microsoft Azure ML Model Registry [42] o Neptune.ai [47].

5.1.7 ML Metadata Stores

A ML metadata store [51] is a system or database designed to store metadata related

to the development and execution of machine learning models. These metadata may

include information on the data sets used, trained models, hyperparameters, performance

metrics, model versions, and other relevant details. Furthermore, it allows the tracking

of different types of metadata for each task within the ML.

5.1.8 Model Serving Component

Model Serving refers to the ability of a system to serve predictions based on machine

learning models. It involves the deployment of models in production environments where

they can receive real-time queries and generate predictions efficiently. The most recom-

mended model is scalable and distributed, and there are two main examples for this

component:

• Use of Kubernetes for scalability and Docker [13] technology to containerise the

ML model, so you can leverage a Python web application like Flask [49] with an

API to serve.

• Use of Kubernetes for scalability and KServing from KubeFlow with TensorFlow

Serving [66].

5.1.9 Monitoring Component

The monitoring component is responsible for monitoring the performance of the different

components of the architecture at all times, as well as the different metrics of the model.

Common examples are Prometheus [4], Grafana [62], and the ELK stack [8]. Within our

project, the objective is to monitor the metrics and use of the query infrastructure. In
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this way, consumption can be monitored for scalability and, above all, the objective of

this project, machine learning, can be controlled.

5.2 Analysis of tools

After learning how each service works within the process, the possible technologies that

can be used in each case are explained, detailing the main characteristics and comparing

them with each other, to finally choose the ideal, or at least the one that best suits our

project, at the next point. The pre-selection of these tools is mainly due to their ease of

use, as they are already known to me, and the amount of information and documentation

found on the subject.

5.2.1 Code version control

Using version control tools, development teams can track changes in source code, allowing

them to manage and organize the deployment of applications.

5.2.1.1 Git

Git [17] is currently the most widely used version control system in the world, both pro-

fessionally and educationally. It is open source, free, cross-platform and allows nonlinear

code tracking. It has a desktop application that graphically displays all the changes that

have occurred in the code. It is a distributed tool Peer-To-Peer (P2P), whose queries

and management are quite simple, both through the command line and the graphical

interface.

5.2.1.2 Apache Subversion

Apache Subversion (SVN) [63] is the most widely used code management system after git.

It was created to solve all the errors generated by Secure Verification Code (SVC). SVN

supports atomic operations to prevent or at least prevent file corruption. In addition,

it supports empty dictionaries, and branch operations are more affordable than CVS.

Compared to its rival Git, it has better support on Windows, but does not have as many

commands for repository management, and is slower. It has plugins for almost all Agile

tools and Agile tools.
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5.2.2 Version control of datasets

Dataset version control allows development teams to track the changes made and to

manage and act more effectively in the implementation of ML, base

5.2.2.1 DVC

Data Version Code (DVC) [29] is a tool that allows both dataset versions and the ML

model to be managed. Among its main features is its ability to interpret any language,

both in the datasets and in the ML models. DVC is command-driven, like Git, so it is

quite easy to use for those familiar with git. The files that DVC generates are stored

locally, along with the datasets and models.

5.2.2.2 Git LFS

Git Large File Storage (LFS) [18] allows developers to store large binary files in conjunc-

tion with a Git repository. Unlike DVC, LFS only allows storing and managing versions

of data and code, while DVC also allows tracking, so when it comes to tracking changes

or experiments in ML it is rather inefficient.

5.2.2.3 MLFlow

Another possibility we have is to use one of the functions of the model registry, such

as version control of datasets. This allows us to combine more functions in the same

tool and reduce the failure of elements, as well as using innate functions within tools

such as MLFlow [43]. MLFlow provides mechanisms to log and track the version of the

dataset along with code and parameters, seamlessly integrating with existing version

control systems.

5.2.3 Model deployment tools as CI: Build and package pipeline compo-

nents

For correct management of dependencies in a homogeneous environment, deployments

must be orchestrated by containerization software. This control allows dependencies

to be controlled when using certain libraries in the correct functioning of the models.

Pipeline orchestration tools allow for the execution of the necessary processes in the
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process in a sequential and orderly manner, synchronizing the different tools. With this

in mind, only Jenkins has been evaluated in this project.

5.2.3.1 Jenkins

Jenkins [3] is a Java-written code tool that allows developers and architects to perform

CI tasks with DevOps methodology in an automated way. In our project, it allows the

sequence of tasks of packaging, model training, container deployment, and application

deployment to be performed. Deployments are usually done through pipelines written in

Groovy language. These pipelines mark the different steps, or stages, to be performed,

allowing errors to be located at any stage. They have a very large community that

facilitates the resolution of problems. They can be connected to Git to be able to read

code and obtain the different files necessary for the process, and to Docker to allow the

deployment of containers. Later, it is specified how both configurations have been made.

5.2.4 Model deployment tools as CD

Continuous Delivery (CD) tools are critical in the software development lifecycle to auto-

mate the delivery of applications efficiently and reliably. These tools enable development

and operations teams to deploy code changes quickly and repeatedly in production en-

vironments, reducing the time between writing code and making it available to end

users.

5.2.4.1 Docker and kubernetes

Docker [13] is a container management framework. Containers are a form of virtual-

ization of the operating system and its dependencies that are very useful for creating,

testing, and running applications in different environments regardless of the machine

on which they are being mounted, as well as being extremely portable. With this so-

lution, resources are saved, and the scalability of the resources is simplified once they

are put into production. In our project, Docker allows the packaging of the model, a

correct containment of the dependencies used, as they are created and managed by the

selected resources, and, above all, the possibility of replicating the environment exactly

in the different work teams. To better manage resources and allow for project scalabil-

ity, Kubernetes [16] could be used. Kubernetes is, therefore, a container orchestration

51



CHAPTER 5. ARCHITECTURE

framework that allows the management of container resources and the connections be-

tween them, with scalability. In our project, it is not needed since the number of calls

and requests is not high enough.

5.2.5 Workflow orchestration component for ML

The platforms mentioned in section 5.1.3 are for complex projects where the data pipeline

has to be managed from a single tool in order to be managed more efficiently and with a

high degree of isolation from potential problems. In our project, this is not necessary, as

it is a simpler machine learning model. Therefore, the learning deployment is a Docker

container from a.py file. Within this file, the pipeline established in our project will

be executed: obtaining the dataset, training with the different models, and exporting

metrics to the model registry. The priority has never been the model itself, or what is

done on it, but how any model can be managed on a full production platform.

5.2.6 Recording of artifacts, experiments, metrics and hyperparameters

In this project, MLFlow is deployed as a web server at the localhost location on port

80. During the whole process, it generates files with information about the models; all

this information is stored in two different ways, depending on whether the information

is stored in a database or not.

First, a Database (db) is used for experiments, metrics, and hyperparameters. The

dbs allows a more controlled concurrent environment than other file systems. MLFlow

supports dbs through the SQLAlchemy library, which allows connection to MySQL [48],

MariaDB [15], MSSQL [41], SQLite [11] and PostgreSQL [24]. The premises for choosing

the database are as follows. It needs few resources to be able to run, and it must be free.

As a personal preference, it should have enough documentation and not be difficult to

manage. Therefore, the possibilities were MariaDB and PostgreSQL. The chosen one is

PostgreSQL. To ensure that the database runs independently in different environments

and with the same information and persistence, it is also necessary to include a persistent

data volume, where db is stored.

Artifact logging is mostly for distributed systems, so it will be explained but not

implemented in our project. It is used for all data generated during the training and

construction of the model and cannot be stored in a db. The stores can or cannot be

distributed as infrastructure.
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5.2.7 APIs as Model Serving Component

Once the models are put into production, a communication interface is needed for the

models to receive new data and for the model to launch its predictions. For this purpose,

an API is used, which works as an intermediary between two independent applications

that need to communicate with each other. This type of interface is also used to com-

municate the central model register with the monitoring applications, so it will also be

used for this purpose in our project.

5.2.7.1 Flask

Flask [49] is a library whose components are packaged and minimalist in nature. Its code

is simple, but does not allow for synchronization. Among its virtues is that it does not

automatically generate code or files with its operation. To be used, it is implemented

within a Pyhton code. Unlike FastAPI, it is easier to render html files for the prediction

page, rather than just an empty page with cubes to fill.

5.2.7.2 FastApi

FastApi [68] works similarly to Flask, also within Python code in our project. Like

Flask, it is asynchronous in nature, but it does generate documentation while running

in Swagger. It is faster than Flask and separates the server code from the business code.

5.2.8 Monitoring

Once all the metrics calculated from the trained models are generated and served, it is

necessary to control our infrastructure in order to generate alarms when the uses are

erroneous or the workload is excessive. Therefore, first of all, a tool is used to manage

all the metrics generated in the ML. In addition, this tool is intended to be monitored

by another tool that allows one to manage its use and access to calculate the workflow

and average times of the requests; therefore, the following tools are proposed.

5.2.8.1 Prometheus

Prometheus [4] is an open source monitoring and alerting system designed to record

system and application metrics. It uses a time-series-based data model and allows for
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efficient querying and visualization of data. In addition, it offers flexible alerting capa-

bilities to notify about problems in real time. Its modular architecture makes it highly

scalable and adaptable to different infrastructure environments. It is widely used in

container and cloud environments to ensure the health and performance of systems.

5.2.8.2 Grafana

Grafana [62] is an open source data visualization platform that integrates seamlessly

with Prometheus and other monitoring systems. It allows you to create interactive

dashboards and custom graphs to visualize metrics, logs, and trace data in real time.

With a wide range of plug-ins and an intuitive interface, Grafana is widely used to build

monitoring dashboards and scorecards in a variety of environments, from IT infrastruc-

tures to enterprise and Internet of Things (IoT) applications. Its flexibility and ability to

connect to multiple data sources make it a powerful tool for real-time data visualization

and analysis.

5.2.8.3 ELK stack

Elk Stack [8] is an open source toolkit that includes Elasticsearch, Logstash, and Kibana.

Elasticsearch is a distributed search and analysis engine to store, search, and analyze

large volumes of data in real time. Logstash is a data processor that facilitates the

ingestion, transformation, and enrichment of data from multiple sources. Kibana is a

visualization platform that enables the creation of interactive dashboards and graphs

from the data indexed in ElasticSearch. Together, these components form a comprehen-

sive solution for log management and analysis, as well as for monitoring systems and

applications in distributed environments. Elk Stack is widely used for observability of

infrastructure, anomaly detection, and real-time reporting.

5.3 Selection of tools

After knowing which possible technologies can be used for each part of the process, a

tool is selected for each process. With this in mind, the main search criteria are ease of

use and learning, that they have a zero cost, and that they can be integrated with each

other to achieve the necessary solution.
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5.3.1 GitHub as Source Repository

The tool ultimately used as the source repository is GitHub [17]. First, it offers a robust

version control system, making it easy to track and manage code changes. Additionally,

its branching functionality allows working on different features simultaneously, making it

possible to simulate development, preproduction, and production environments. GitHub

would also allow one to simulate collaboration between developers by providing tools to

efficiently review and merge code. Finally, its integration with continuous deployment

services and the ability to manage entire projects make GitHub an integral choice for

software development, as in our case is its work alongside Jenkins.

5.3.2 MLFlow as Model Registry and version control of the datasets

The tool used as a model registry is also the tool used as an end-to-end platform:

MLFlow [43]. its advantages include centralization of models in an organized reposi-

tory. It allows for the tracking and comparison of multiple model versions, facilitating

reproducibility and auditing. Furthermore, MLflow is compatible with various machine

learning libraries, ensuring flexibility in development. Its intuitive interface and ability

to manage metadata, metrics, and model artifacts make it a solid choice for organizing

and collaborating on machine learning projects. It also offers integrations with other

popular tools, making it easy to deploy and monitor models continuously.

5.3.3 PostgreSQL as ML metadata store

PostgreSQL is a robust choice as a metadata store for machine learning for several rea-

sons. First, its relational structure allows for efficient organization of information about

models, datasets, and experiments. Additionally, PostgreSQL offers ACID capabilities,

ensuring data integrity and consistency. Its support for complex queries facilitates the

retrieval of specific metadata, such as hyperparameters and metrics. Scalability and the

ability to handle large data sets make PostgreSQL suitable for large-scale ML environ-

ments. Finally, the active community and broad support for tools and programming

languages make PostgreSQL a versatile and reliable choice for managing metadata in

machine learning projects.
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5.3.4 Jenkins for pipeline deployment

Jenkins [3] is a popular choice for pipeline implementation for several reasons. First, its

open-source nature and large community offer flexibility and ongoing support. Addition-

ally, Jenkins provides robust integration with a variety of tools and services, enabling the

construction of custom pipelines. Its user-friendly interface makes it easy to configure

and visualize workflows. The ability to run automated tasks and manage deployment in

diverse environments contributes to process efficiency. Additionally, Jenkins offers scal-

ability options and the ability to integrate with monitoring tools, making it a versatile

choice for continuous deployment.

5.3.5 Docker for build and package pipeline components

Docker [13] is a popular choice for constructing and packaging pipeline components for

several key reasons. First, it provides a consistent execution environment, eliminating

dependency issues, and ensuring reproducibility of the build process. Additionally, its

ability to encapsulate applications and dependencies in containers facilitates portability,

allowing components to run consistently in different environments. Docker also improves

efficiency by separating dependencies from the host system, avoiding conflicts. Easy

integration with orchestration tools such as Kubernetes facilitates deployment and scal-

ability. Finally, Docker fosters collaboration by standardizing configuration and sharing

preconfigured environments easily.

5.3.6 Flask for model serving

Flask [49] is a great choice for deployment services for several reasons. First, its sim-

plicity and lightness enable fast and efficient API development for model exposure. The

flexibility of Flask facilitates integration with various machine learning frameworks and

libraries. In addition, its modular approach and ability to scale vertically make it suit-

able for small and large implementations. Flask also offers an active community and

extensive documentation, simplifying the development and maintenance process. Its

ability to handle HTTP requests and its minimalist approach make it an efficient choice

for implementing predictive services. Within our project, Flask has been chosen over

Fast to serve the model and metrics to the different monitoring elements. The main

reason is its ease of use and simplicity in allowing its use with Prometheus.
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5.3.7 FastAPI for prediction service

Fast [68] has been used as a prediction API, mainly due to the ease of configuration of

its main page, as it allows for the management of different html. In addition, the man-

agement of the information entered is simpler, as will be seen later in the configuration

of the use case.

5.3.8 Prometheus y Grafana for monitoring

Recapping, the monitoring tools would be used first to manage all the metrics generated

in the ML, and then to manage its use and access to calculate the workflow and average

times of requests. Therefore, Prometheus will be used as a query tool due to its ability to

efficiently collect data, its flexibility to adapt to various infrastructures, and its powerful

query system that allows detailed analysis and proactive alerts on system performance.

In addition, its modular architecture and integration with visualization tools such as

Grafana make it a powerful option for monitoring and improving application and system

performance.

Because of this tight integration, Grafana is ideal for monitoring Prometheus usage

and all the metrics from the Machine Learning, due to its ability to create custom

visualizations and intuitive dashboards. It allows a clear and detailed representation of

the metrics collected, thus facilitating data-driven analysis and decision making.

Therefore, after choosing all the elements of our architecture, the architecture of our

particular platform would be:
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Figure 5.3: Architecture with the tools
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CHAPTER6
Case study

This chapter presents a use case for a system with the architecture explained above. It

develops and breaks down how it has been configured and created from the beginning for

each of the elements involved.
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6.1 Introduction of the case study

Throughout this chapter, we break down a practical use case for the architecture men-

tioned above.

For this purpose, a new scenario is proposed. A Spanish wine shop is responsible for

classifying wines from three different wineries. They request the deployment of a model

that allows the identification of which wine belongs to which winery. Currently, this

process is performed manually, delimiting the different characteristics of each individual

wine and classifying them according to average values. To end this tedious and inaccurate

process, they have proposed to hire the services of a company to create an infrastructure

that allows them to make predictions more quickly and efficiently. The project proposed

by the company is an MLOps infrastructure.It is based on all previous records, and

correctly characterized, it automatically predicts what kind of wine they are dealing

with. They also ask for the possibility of managing which characteristics are most

important and which criteria are used for their selection at any given moment. They

want to be able to visualize the use of the application graphically; the volume of queries

is so high that they need response times to be fast and below certain limits. Their

budget is limited, and they consider that the services of a hyperscaller are not necessary

to achieve this service, so they only pay for the service itself and its maintenance, not

for the tools used.

To do this, we need to know what our objective is and what requirements we have

in order to achieve our objectives. The final objective is to achieve a MLOps system

that adapts to the needs of a production system in practice: adaptability to different

environments, handy in its characteristics, traceability of the different changes made and

monitoring of the use of the infrastructure. First, the general requirements are that it

must be a free architecture, that it can carry out the complete CI/CD cycle, i.e. that all

changes made to the code or configuration of the system are implemented automatically

and continuously, that it deploys a machine learning model and that predictions can be

made on this model, that changes can be monitored and tracked, and that the use of

the different services of the system can be monitored.

For this purpose, a complete solution is implemented which the client uses on his

localhost. Depending on its correct functioning, new data is introduced to the dataset,

as well as new functionalities, as the wine library requests them.
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6.2 Configuration of the project

The architecture to be implemented is as follows:

Figure 6.1: Architecture with the tools

So, in this section, we break down how each element of the required system has been

configured and created to obtain the expected solution. To do so, we go into detail with

the configurations between services and also follow the order in which the solution has

been implemented, as this is quite important when it comes to achieving the expected

results. In addition to all the sections presented above, two additional servers have been

implemented to visualize the different metrics. A Prometheus server for the control and

visualization of the metrics obtained from the models and a Grafana server, which allows

for the graphic visualization of different diagrams of use and access to the Prometheus

server. As presented later, in this use case, it has been decided to use a classification
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machine learning model, which has been provided by scikit learn as a toy model.

6.2.1 GitHub

The GitHub repository is the first required element. A repository where all the code used

throughout the process can be included and is capable of visualizing and tracking the

different changes made to it. The source repository is included in https://github.

com/amrg1902/codigoTFM.git, and from there its code is used by Jenkins, creating

the different components within the process. The git structure corresponds practically to

the different containers that are going to be implemented, with the docker compose [27]

that deploys them docker-compose.yaml and with the code of the jenkins pipeline, made

in groovy [1], deployment-container.groovy.

6.2.2 Jenkins

After having the git repository, the Jenkins server was set to localhost following the steps

in the guide [46]. After this configuration, the Jenkins server would be at http://localhost:8080,

starting with the command brew services start jenkins - lts. Since this command had to

be run every time the computer was started, it was decided to configure it to start the

server automatically every time the device was started. As our goal is to create a system

with CI/CD methodology, it was necessary to adjust a series of parameters with respect

to credentials and download some plugins that made possible the connection and access

of Jenkins to GitHub and the connection of Jenkins to Docker and its local daemon.

First of all, all the necessary plugins that would allow the configurations of each service

to be carried out for GitHub and Docker were downloaded: Docker plugins:

• Docker API

• docker-build-step

Git plugins:

• Git

• Git client

• GitHub API

• GitHub Authentication
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• GitHub Branch Source

• GitHub Pipeline for Blue Ocean

• Pipeline: GitHub

From Git, external connections were enabled, and a token was created so that it

could be exported to the application in question. Then, in jenkins, an environment

variable called PATH was configured to point to the address of the Docker daemon on

our device, and 3 access credentials were created: 2 Git access credentials, via ssh and

token, and the last one to Docker via tocken. (Fig. 6.2).

Figure 6.2: Jenkins Credentials

With this configuration, adding the Groovy code manually in the pipeline configu-

ration, we were already building Docker images and containers from a Dockerfile [28] on

GitHub.

The intention was that the pipeline would run manually or be launched after a

GitHub push, but our priority was that the pipeline build code would not have to be

entered each time it was run. To solve this problem, container deployment.groovy was

created. A code in which each stage within the pipeline was declared that would allow

us to configure everything in a faster way, and together with the Git functions, changes

and versions could be tracked. This file was inside the git repository, and thanks to

the previously installed plugins, along with the necessary configuration, the information

within the source of these data, the GitHub repository, was configured in the pipeline.

This code would execute three stages plus the one defined by Jenkins when executing

code from Jenkins. The three stages implemented are: Access to Dockerfile in the

workspace , after copying all the data from Git, this stage checks that the different

Dockerfiles are in the locations where they should be. Delete previous images and

containers in Docker , which removes all images and containers in the workspace,
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making it easier to avoid cross-referencing data from previous versions, since all the data

that need to be saved are contained in persistent docker volumes. Docker Compose

builds the new images and deploys the containers as defined in the docker-compose.yaml

(see Appendix A.1). This file contains the information necessary to deploy the seven

services needed in this project, both APIs, the MLFlow server, Grafana and Prometheus

for visualization, the database and the ML training, and the network that interconnects

them.

6.2.3 Machine Learning

The main container is in charge of data training. To this end, a data set had to be

chosen that contained a sufficient amount of data and features because if it were too

simple, all the metrics of the training with the different models would always obtain

their maximum values, regardless of which model had been trained with. ScikitLearn

offers a series of toys datasets [53] to perform all types of machine learning processes, I

choose a dataset for the classification of different types of wines, whose features are not

scaled and the predictions are made correctly.

This dataset classified three different types of wine: type 1, type 2 and type 3

according to the different characteristics of their features (Tab. 6.1). The dataset itself

had already undergone the cleaning process, which would allow working directly with it.

In the process, 80% of the total dataset has been taken for training and the remaining

20% for execution.

In addition, the correlation matrix (Fig. 6.3) between the different features was cal-

culated in case there were any that could be eliminated from the process because they

were too closely related to each other. Finally, and despite the data obtained, the dataset

was kept intact, as the objective of this project was not a machine learning work but how

it can be used and deployed in a CI/CD environment, so the machine learning results

are independent of this deployment.

When it came to training our models, we created a python file train model.py (see

Appendix A.10) where, once trained, all their data were saved in the MLFlow server, as

we see later. The models chosen to be trained, all of them because of their simplicity

and because they had already been worked on previously in the master’s degree courses,

are the following:

• Random Forest Classifier
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Feature Type Mean Std min MAX

Alcohol Float 64 13 0.81 11.03 14.83

Malid acid Float 64 2.83 1.11 0.74 5.80

Ash Float 64 2.36 0.27 1.36 3.23

Alcalinity of ash Float 64 19.5 3.33 10.6 30

Magnesium Float 64 99.74 14.28 70 162

Total Phenols Float 64 2.29 0.62 0.98 3.88

Flavanoids Float 64 2.02 0.99 0.34 5.08

Nonflavanoid phenols Float 64 0.36 0.12 0.13 0.66

Proanthocyanins Float 64 1.59 0.57 0.41 3.58

Color intensity Float 64 5.05 2.31 1.28 13

Hue Float 64 0.95 0.22 0.48 1.71

od280/od315 Float 64 2.61 0.70 1.27 4

Proline Float 64 746.89 314.90 278 1680

Table 6.1: Description of the features
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Figure 6.3: Correlation Matrix
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• KNeighbours Classifieer

• SVC

• Gradient Boosting Classifier

For each of the trainings, a series of metrics have been calculated which are the validators

of each of these models, and also be the criteria used to choose between one model or

another, in our case, accuracy. The metrics used are the following:

• Accuracy

Accuracy =
Number of correct predictions in ytest
Total number of elements in ytest

• Precision

Precision =
Number of True Positives in ytest

Number of True Positives + Number of False Positives in ytest

• Recall

Recall =
Number of True Positives in ytest

Number of True Positives + Number of False Negatives in ytest

• F1

F1 =
2× Precision× Recall

Precision + Recall

6.2.4 MLFlow server

Once the models were trained and the different metrics calculated, all the information

had to be exported to a hub, in this case, the MLFlow server. By doing this, we

achieve a record and a point from which to export all the information to the different

steps of our process. With this intention, a container was deployed through docker-

compose from a Dockerfile (see Appendix A.2). This Dockerfile specifies the connection

between the database and the server, in the server launch command the database is

enabled as a backend save, as well as declaring the necessary variables to expose data to

Prometheus. The port selected to be exposed is port 80, so the server would be available

at http://localhost:80.

With the server up, we could access it. In the upper left-hand side of the server

there is a space where all the saved experiments appear, at the beginning of the process
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Figure 6.4: MFlow experiments

there is a first experiment ”Default” ((Fig. 6.4)). In addition, the main information

appear in the centre of the screen, where information pertaining to all models in the

experiment, as well as their metrics, can be displayed either in table form or in a much

more representative form such as a chart ((Fig. 6.5)).

Figure 6.5: MFlow models table and chart

Having already explained where the information would appear, it was necessary to

register all the models and save the metrics so that they could be consulted or used

in future operations, as in our case. To achieve this, in the code where the different

models were trained, train model.py (see Appendix A.10), the URI of the server address

and the name of the experiment carried out had to be defined. This configuration is

parameterized so that this information is entered into Jenkins at the time of deployment.

mlflow.set_tracking_uri("http://mlflow_container:80")

mlflow.set_experiment("Entrenamiento dataset vino")

Subsequently, the data is entered into MLFlow, starting with the metrics and ending

with the model in question:

with mlflow.start_run(run_name=run_name):

# Log de métricas
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mlflow.log_metric("Accuracy", accuracy)

mlflow.log_metric("Precision", precision)

mlflow.log_metric("Recall", recall)

mlflow.log_metric("F1", f1)

mlflow.sklearn.log_model(model, model_name)

After verifying the server working correctly and with all the information entered in

the way is meant to be, the next steps to carry out would be the two APIs, the first one,

to export the data to the Prometheus server with the correct format, the second one to

raise a FastApi that would allow having a page to be able to carry out the predictions.

The database also had to be configured so that all information obtained during the

process could be saved, exported, or retrieved in the event of an error.

6.2.5 Postgres database

The database service allows the storage of all data that come from or are hosted in

MLFlow. To do this, a database is started on port 5432 using a Dockerfile (see Ap-

pendix A.5). The user, the password, and the database in question have been declared

in the initialization of the MLFlow server so that it has access to it. Furthermore, by

means of the configuration file textitinit-user-db.sql (see Appendix A.6) all necessary

database permissions are granted to the MLFlow server.

6.2.6 Exporter to Prometheus FlaskAPI

The first of the APIs we had to set up is the one that takes data from the MLFlow

server, converts and adapts it, and makes it readable on the Prometheus server, which

is where it is served.

To do this, a Dockerfile (see Appendix A.3) was configured, which would simply

execute a python mlflowexporter.py (see Appendix A.7), where all the logic of the API

is found, and the working port of the API, 8000, is exposed.

The API works as follows:

• First, you configure the URI where the tracking is done, in this case, the address

of localhost and port 80, the MLFlow server.

• Then, we continue to define the location within our localhost port 8000 where the

Prometheus server can scrape the metrics correctly, in our project /metrics.
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• Next, the main function, which is called in http://localhost:8000/metrics, performs

a search for the experiment in question, and all executions of the experiment are

obtained for all the models that have been trained. Iterating on each of the models

performed in each of the executions, we obtain all the metrics that have been

collected in the MLFlow server. To facilitate the work and to be able to visualize

their behavior, all metrics are also printed on the API location. To do that, a

simple rendering is used, where all the information provided is configured in such

a way that it is readable by the Prometheus server, which is our goal.

response = make_response(metricas_prometheus)

response.headers["Content-Type"] = "text/plain"

After this configuration, the metrics had to be collected by Prometheus, the config-

uration of which is explained later.

6.2.7 Prediction FastAPI

The second of the APIs was responsible for generating a data collection template, which

would be used to make a prediction with our selected model. The reason for using a

Fast API instead of the Flask was the ease of rendering and obtaining the information

as expected. For its implementation, an identical structure to the Prometheus scraping

API was followed, a Dockerfile (see Appendix A.4) was configured, which would simply

execute a python api.py (see Appendix A.8), where all the logic of the API is found,

and the working port of the API, 7654, is exposed.

The structure of the API to perform the given tasks was:

• First, you configure the URI where the tracking is done, in this case, the address

of localhost and port 80, the MLFlow server. Also, the name of the current exper-

iment.

• Next, an auxiliary function was generated that returned the exact URI of the

experiment in question from its name, as this was necessary for us to be able to

make predictions. This was done by selecting the model whose accuracy was the

best, that is, closest to one. The selection of this metric as the method of choice

is arbitrary and could be any other metric generated.
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• Finally, an html (see Appendix A.9) is rendered, in a static way, where all the data

to be entered are displayed. Once entered, it makes a prediction based on the data

introduced, and, in the experiment selected in the previous auxiliary function, the

result would be displayed on the screen once the predictions are done.

6.2.8 Prometheus

Prometheus is a tool for visualization of the different metrics obtained during machine

learning training. Once the metrics have been collected, they have to be scraped by

Prometheus so that all the metrics can be visualized and represented. To do this, from

the docker-compose (see Appendix A.1) a Prometheus image is created and enabled

on its default port, 9090. This image depends on the MLFlow server container and

is connected to the common network that has been enabled. When collecting metrics,

the application configuration file, prometheus.yaml (see Appendix A.11), is created and

configured. In this file, the scraping period is defined, as well as the possibility of defining

tags to be able to better search and collect all searches. The different scrape locations

are defined in scrape configs:

scrape_configs:

- job_name: ’mlflow’

static_configs:

- targets: [’mlflow_exporter:8000’]

- job_name: "prometheus"

static_configs:

- targets: ["prometheus:9090"]

In our case, it is configured to scrape the API container. With this, we can check

all the metrics from Prometheus; in case any of them were wrong or not with the

expected values, an update process of the model would be initiated, for example, and

the Prometheus container itself. This is due to the subsequent use of Grafana. In our

system, Grafana is used as a monitoring tool for the different Prometheus resources,

although it could also be used for data related to machine learning, so the Prometheus

metrics are scrathed.
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6.2.9 Grafana

In this project, Grafana is used to visualize metrics for the different accesses and uses

of the Prometheus server, alongside with the metrics from the training. The concept

of the Grafana server configuration is very similar to that of Prometheus. First, it is

deployed from the docker-compose (see Appendix A.1) with the Grafana image, allowing

port 3000 for its operation. For the correct configuration of Grafana, 4 files must be

configured:

• dashboard.json (see Appendix A.12): Configuration file for the graphs, where it

appears what has to be represented and how. After starting the Grafana server for

the first time, it was empty in terms of graphics. For this reason, all the graphs

had to be configured that first time, and the configuration file had to be saved so

that it could be exported at any time. Grafana creates this file by itself.

• dashboard.yml (see Appendix A.13): Configuration file that tells where the infor-

mation has to be collected in order to create the graphs, i.e. it points to the

location of dashboard.json.

• datasource.yml (see Appendix A.14): Configuration file where the data source is

defined, in our case the Prometheus server on port 9000, as well as the type of

access, proxy type.

• grafana.ini (see Appendix A.15): Configuration file indicating where the Grafana

server is to be initialized.

Once the Grafana configuration was complete, the whole solution was made. The

solution required by the wine cellar to be able to offer the classification of wines in a

quicker and more efficient way. The following section shows the results of the project

for our use case.

6.3 Results

Once the infrastructure configuration has been described, we proceed to show the results

of the whole system working, following the order in which the system works.

First, from Jenkins, we run the pipeline, introducing the parameters to take into con-

sideration in our project (Figs. 6.6 and 6.7), described in the .groovy file inside the repos-
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itory mentioned above: https://github.com/amrg1902/codigoTFM.git (Fig.

6.8). This builds our infrastructure using containers, one for each service.

Figure 6.6: Jenkins parameters

All containers remain up throughout the process, except for themodel training container.

This is the container that, as its name suggests, trains the model and loads all the data

into the MLFlow server, which, once it has done its job, is shut down. The addresses to

visit the locations of the different services are:

• Jenkins localhost:8080

• MLFlow server localhost:80

• MLFlow exporter localhost:8000\metrics

• Prediction Api localhost:7654

• Prometheus localhost:9090

• Grafana localhost:3000

After the process carried out during the training of the different models, always with

the server started, all the data we required has been logged in the MLFLow server.

Visiting its location in port 80, on the upper left side we find a breakdown of all the

experiments carried out, in our case, only the one corresponding to the experiment
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Figure 6.7: Jenkins Pipeline

Figure 6.8: GitHub repository
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Figure 6.9: MFlow experiments

Entrenamiento dataset vino (Fig. 6.9) . But the principal information contained in the

main page are the four trained models, with the execution time, as well as the metrics

corresponding to each of them (Fig. 6.10). In addition, the same information can be seen

in a much more representative way if we select the chart as a representation method.

Figure 6.10: MFlow models table and chart

With these types of representations, plus those that we wish to configure, we are able

to choose the model that best suits the requirements of the process in which we would

be involved. In our case, to facilitate the selection process, we choose the model whose

accuracy is better, i.e., closer to one.

With all the information already in our model registry, it was time to export it to

the different services available. First of all, to the prediction API. As you can see, all

the boxes appear to be able to enter the different input data to make the prediction,

once made, this appears on the right with the type of wine that the selected model has

predicted (Fig. 6.11).

The other configured API is in charge of providing the different data collected from

MLFlow to Prometheus in the appropriate format. Once everything was implemented,

it was not necessary to represent the metrics visually (Fig. 6.12), as it was possible to see

from Prometheus that it was scraping correctly. Even so, it was decided to leave such a

visualization as it allows to control and isolate errors in a better way in case of future
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Figure 6.11: Prediction

improvements or updates. It was also decided that the metrics should show the metric

itself and the model to which it belonged. This was not necessary when performing the

prediction calculations since all this information was contained in our Model Registry

and could be accessed, but it was necessary when using Prometheus, since otherwise

there would be no way to distinguish between the metrics of one model or another. For

future use, you can also add the different model runs to be able to track variations based

on your input data.

After exporting all the metrics and checking that they were in the correct format to

be used in Prometheus, it was necessary to check in the Prometheus targets that the

correct locations were being scraped and that these links were healthy. These locations

corresponded to the endpoints of the exported API container and the Prometheus con-

tainer itself. As can be seen in the representation (Fig. 6.13), both endpoints correspond

to the container/metrics. This is the location where Prometheus scrapes its locations,

which is why the declarative API code uses this location.

After checking that both endpoints were up and running, it was time to start search-

ing the different metrics. (Fig. 6.14) At this point, the data scientists would check the
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Figure 6.12: Metrics in the API

Figure 6.13: Prometheus targets
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uniformity, consistency, and results of the metrics themselves. Within our project, these

searches are necessary to check the subsequent performance of the generated Grafana

graphs.

Figure 6.14: Prometheus metrics

As explained in the previous points, Grafana was going to be used for the graphical

visualization of the different metrics of the Prometheus server and ML. First, in a

colloquial way, it was going to control access and times destined to the return of the

requested search values. (Fig. 6.15)

In this case, the four graphs displayed as an example, and which thanks to the

configuration carried out, do not have to be configured each time a project is started

with these files, are:

• Request per minute: number of access requests per minute. (Fig. 6.15a)

• Ruquest duration [s] -p90: acumulative amount of request duration in periods of

90 seconds. (Fig. 6.15b)

• Ruquest duration [s] -p50: acumulative amount of request duration in periods of

50 seconds. (Fig. 6.15c)

• Request under 100ms (%): request whose time is under 100ms in percentage.

(Fig. 6.15d)

Then, all the graphs belonging to the ML, where the variation of Accuracy and

Precision (Fig. 6.16) over time is exposed once you train the models.
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(a) Request per minute

(b) Request durantion -p50

(c) Request durantion -p90

(d) Request under 100ms (%)

Figure 6.15: Grafana grafics from Prometheus
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(a) Accuracy (%)

(b) Precision (%)

Figure 6.16: Grafana grafics from Machine Learning
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With the presentation of the Grafana application, all the elements of this system

have been explained. With it in its entirety, we have a scalable, reproducible machine

learning service with the possibility of adjusting to different environments and with a

variety of different trainings.
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CHAPTER7
Conclusions

This chapter describe the goals achieved by the master thesis following some of the key

points developed in the project.
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7.1 Introduction

The research and development process carried out within the framework of this the-

sis has culminated in a number of significant results that deserve to be highlighted.

Throughout this work, we have sought to address the challenges commonly encountered

in the deployment of machine learning models in production environments, with the

main objective of improving the efficiency and reliability of such deployment.

This chapter presents a detailed analysis of the objectives set at the beginning of the

project and critically examines the extent to which these objectives have been achieved.

Through a comprehensive review of the achievements, it aims to provide a comprehensive

assessment of the impact and relevance of this research in the field of operational machine

learning.

Furthermore, the importance of the tools and techniques implemented to achieve

these objectives is discussed, highlighting their contribution to the overall success of the

project. It also reflects on the lessons learned during the development of this research

and outlines possible future directions for the continuation of this work.

Ultimately, this concluding chapter serves as a reflective and analytical closure to the

master thesis, highlighting both achievements and potential areas for future research and

development in the exciting field of operational machine learning.

7.2 Achieved Goals

Once the project is finished, it is time to see which of the goals we set at the beginning

of the project have been achieved.

• Seamless Model Deployment: The MLOps framework successfully facilitated smooth

model deployment, reducing friction from development to production through au-

tomated processes and version control.

• Model Versioning and Management: MLFlow Model Registry effectively managed

model versioning, providing a systematic approach to tracking changes, dependen-

cies, and performance metrics throughout the model lifecycle.

• Monitoring and Alerting: Integration of Grafana and Prometheus enabled real-

time monitoring, ensuring prompt responses to deviations in model behavior and

providing insights into resource utilization and system health.
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• Performance optimization: Continuous monitoring allowed for the identification of

optimization opportunities, leading to the implementation of strategies for auto-

mated or manual retraining based on model performance.

• Database Integration: The connection with a reliable database ensured the consis-

tency of the data, allowing seamless storage and retrieval of model-related meta-

data, configurations, and performance metrics.

• Scalable Infrastructure: The MLOps architecture demonstrated scalability, effi-

ciently handling varying workloads, and accommodating growing data volumes

through the utilization of containerization and orchestration technologies.

• Predictive API: The development of a user-friendly API for model predictions met

operational requirements, offering high availability, low latency, and scalability.

• Export API: Implementation of the Export API facilitated secure sharing and col-

laboration by allowing the export of trained models, ensuring intellectual property

protection.

• Continuous Integration and Continuous Deployment (CI/CD): The established

CI/CD pipeline automates testing, validation, and deployment, ensuring rapid

and reliable updates to deployed models in response to changing data or business

requirements.

7.3 Conclusion

This MLOps initiative, driven by the imperative to address the prevalent challenges in

the deployment of machine learning models into production, has yielded substantial and

transformative outcomes. The project was conceived in response to industry-wide issues

highlighted by Deborah Leff’s observations, indicating that a significant percentage of

data science projects fail to reach production. The overarching goals were designed to

tackle these problems and improve the success rate of machine learning deployments.

Incorporation of the MLFlow Model Registry, Grafana, Prometheus, and the de-

velopment of Predictive and Export APIs formed the cornerstone of a comprehensive

MLOps project. This strategic amalgamation successfully navigated the complexities of

seamless model deployment, versioning, monitoring, and optimization.
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Throughout the project, the team conducted a meticulous requirement analysis, re-

sulting in a custom architecture that not only met organizational needs but also demon-

strated scalability, security, and compliance. The automated process of the continuous

integration and deployment pipeline, fostering agility and reliability in model updates.

The case study provided a practical illustration of the efficacy of the MLOps frame-

work, showcasing successful model deployment, lessons learned, and performance met-

rics. The project’s ability to address past deployment challenges, integrate robust secu-

rity measures, and measure business value through key performance indicators exempli-

fies its comprehensive approach.

In conclusion, this MLOps initiative stands as a testament to the organization’s

commitment to overcoming industry challenges and making the most of AI investments.

By fostering a culture of collaboration, automation, and continuous improvement, the

project not only achieved its defined goals, but also laid a foundation for future advance-

ments in the organization’s machine learning endeavors. The outcomes underscore the

importance of a systematic and holistic MLOps approach in realizing the full potential

of machine learning technologies in production environments.
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Code

All the code developed in this project
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A.1 docker-compose.yaml

version: ’3’

services:

mlflow_postgres:

build:

context: .

dockerfile: mlflow-db/Dockerfile

container_name: mlflow_postgres

networks:

- mlflow_network

ports:

- "5432:5432"

api:

build:

context: .

dockerfile: api/Dockerfile

container_name: api

networks:

- mlflow_network

ports:

- "7654:7654"

depends_on:

- mlflow_container

mlflow_container:

build:

context: .

dockerfile: mlflow-container/Dockerfile

container_name: mlflow_container

networks:

- mlflow_network

ports:

- "80:80"
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mlflow_exporter:

build:

context: .

dockerfile: mlflow-exporter/Dockerfile

container_name: mlflow_exporter

networks:

- mlflow_network

ports:

- "8000:8000"

model_training_container:

build:

context: .

dockerfile: model-training/Dockerfile

container_name: model_training_container

networks:

- mlflow_network

depends_on:

- mlflow_postgres

- mlflow_container

prometheus:

image: prom/prometheus:latest

container_name: prometheus

ports:

- "9090:9090"

volumes:

- ./prometheus:/etc/prometheus

networks:

- mlflow_network

depends_on:

- mlflow_container

grafana:

image: grafana/grafana:latest

container_name: grafana
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ports:

- "3000:3000"

volumes:

- ./grafana/grafana.ini:/etc/grafana/grafana.ini

- ./grafana/datasource.yml:/etc/grafana/provisioning/datasources/

datasource.yml

- ./grafana/dashboard.json:/etc/grafana/provisioning/dashboards/

dashboard.json

- ./grafana/dashboard.yml:/etc/grafana/provisioning/dashboards/

default.yml

environment:

- GF_SECURITY_ADMIN_PASSWORD=admin

networks:

- mlflow_network

depends_on:

- prometheus

networks:

mlflow_network:

driver: bridge

A.2 Dockerfile MLFlow

# Utiliza una imagen base de Python con MLflow preinstalado

FROM python:3.9

#Actualizar pip

RUN pip install --upgrade pip

# Instala MLflow y el exportador de Prometheus desde el requirements.txt

COPY ./mlflow-container/requirements.txt /app/requirements.txt

RUN pip install -r /app/requirements.txt

# Instala wait-for-it

ADD https://raw.githubusercontent.com/vishnubob/wait-for-it/

master/wait-for-it.sh /usr/local/bin/wait-for-it

RUN chmod +x /usr/local/bin/wait-for-it

# Actualiza
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RUN apt-get update && \

apt-get install -y wait-for-it

# Creo la conexión entre la base de datos y MLflow

ENV MLFLOW_DATABASE_URI postgresql://mlflow:mlflow@mlflow_postgres:5432/

mlflow_db

# Establece el valor de MLFLOW_EXPOSE_PROMETHEUS

ENV MLFLOW_EXPOSE_PROMETHEUS true

# Establece el puerto en el que se ejecutará el servidor de MLflow

EXPOSE 80

# Establecer el directorio de trabajo

WORKDIR /app

# Establece el comando por defecto al iniciar el contenedor

CMD ["sh", "-c", "wait-for-it mlflow_postgres:5432 -- mlflow ui --host 0.0.0.0

--port 80 --backend-store-uri postgresql://mlflow:mlflow@mlflow_postgres:5432/

mlflow_db --expose-prometheus $MLFLOW_EXPOSE_PROMETHEUS"]

A.3 Dockerfile Flask

# Dockerfile_mlflow_exporter

FROM python:3.8

WORKDIR /app

COPY ./mlflow-exporter/ .

# Instala MLflow y el exportador de Prometheus desde el requirements.txt

COPY ./mlflow-exporter/requirements.txt /app/requirements.txt

RUN pip install -r /app/requirements.txt

CMD ["python", "mlflow_exporter.py"]

A.4 Dockerfile Fast

# Dockerfile_mlflow_exporter

FROM python:3.8

WORKDIR /app

COPY ./api/ /app/.

# Instala MLflow y el exportador de Prometheus desde el requirements.txt
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COPY ./api/requirements.txt /app/requirements.txt

RUN pip install -r /app/requirements.txt

ENV MLFLOW_TRACKING_URI=http://mlflow:80

EXPOSE 7654

#CMD ["sh", "-c", "uvicorn api:app --port 7654 --host 0.0.0.0"]

CMD ["python", "/app/api.py"]

A.5 Dockerfile Postgres

FROM postgres:14.1

ENV POSTGRES_DB mlflow_db

ENV POSTGRES_USER mlflow

ENV POSTGRES_PASSWORD mlflow

EXPOSE 5432

COPY ./mlflow-db/init-user-db.sql /docker-entrypoint-initdb.d/

A.6 init-user-db.sql

GRANT ALL PRIVILEGES ON DATABASE mlflow_db TO mlflow;

A.7 mlflow exporter.py

from flask import Flask, render_template, make_response

from prometheus_flask_exporter import PrometheusMetrics

import mlflow

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

app = Flask(__name__)

# Configura la URI de seguimiento de MLflow

mlflow.set_tracking_uri("http://mlflow_container:80")

@app.route(’/metrics’) #Para que prometheus los raspe correctamente

def mostrar_experimentos():
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# Nombre del experimento

nombre_experimento = "Entrenamiento dataset vino"

# Obtén el ID del experimento por su nombre

experimento_id = mlflow.get_experiment_by_name(nombre_experimento)

.experiment_id

# Obtén todas las ejecuciones del experimento

runs = mlflow.search_runs(experiment_ids=experimento_id)

# Inicializa metricas_prometheus

metricas_prometheus = ""

# Itera sobre las ejecuciones y muestra las métricas

for index, run in runs.iterrows():

run_id = run.run_id

run_info = mlflow.get_run(run_id).info

run_name = run_info.run_name

metrics = mlflow.get_run(run_id).data.metrics

for metric_name, metric_value in metrics.items():

# Incluye el run_name en las métricas Prometheus

metricas_prometheus += f’{metric_name}{{run_name="{run_name}"}}

{metric_value}\n’

#metricas_prometheus += f’{{run_id="{run_id}"}}

{{run_name="{run_name}"}} {{run_info="{run_info}"}}\n’

print(f"Metrics for run {run_id} ({run_name}): {metrics}")

# Renderiza la plantilla HTML con la lista de experimentos

response = make_response(metricas_prometheus)

response.headers["Content-Type"] = "text/plain"

return response

if __name__ == ’__main__’:

app.run(debug=True, host=’0.0.0.0’, port=8000)

A.8 api.py

from fastapi import FastAPI, HTTPException, Query

from fastapi.responses import PlainTextResponse, HTMLResponse

from fastapi.staticfiles import StaticFiles
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import pandas as pd

import mlflow

import uvicorn

import numpy as np

app = FastAPI()

# Configura la URI de seguimiento de MLflow

mlflow.set_tracking_uri("http://mlflow_container:80")

nombre_experimento = "Entrenamiento dataset vino"

def fetch_best_model_uri():

lowest_mse = float(’inf’)

experimento_id = mlflow.get_experiment_by_name(nombre_experimento)

.experiment_id

runs = mlflow.search_runs(experiment_ids=experimento_id)

highest_accuracy = 0

for index, run in runs.iterrows():

run_id = run.run_id

run_info = mlflow.get_run(run_id).info

run_name = run_info.run_name

metrics = mlflow.get_run(run_id).data.metrics

for metric_name, metric_value in metrics.items():

if metric_name == "Accuracy":

current_accuracy = metric_value

if (current_accuracy > highest_accuracy)

& (current_accuracy <= 1):

highest_accuracy = current_accuracy

best_model = run_name

if run_name == best_model:
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best_model_run_id = run_id

model_uri = f"runs:/{best_model_run_id}/{best_model}"

return model_uri

# Montar la carpeta ’static’ para servir archivos estáticos

#(como el HTML)

app.mount("/static", StaticFiles(directory="static"), name="static")

@app.get("/", response_class=HTMLResponse)

def read_form():

return open("static/index.html", "r").read()

@app.get("/predict/")

def model_output(

feature_1: float = Query(..., description="Feature 1"),

feature_2: float = Query(..., description="Feature 2"),

feature_3: float = Query(..., description="Feature 3"),

feature_4: float = Query(..., description="Feature 4"),

feature_5: float = Query(..., description="Feature 5"),

feature_6: float = Query(..., description="Feature 6"),

feature_7: float = Query(..., description="Feature 7"),

feature_8: float = Query(..., description="Feature 8"),

feature_9: float = Query(..., description="Feature 9"),

feature_10: float = Query(..., description="Feature 10"),

feature_11: float = Query(..., description="Feature 11"),

feature_12: float = Query(..., description="Feature 12"),

feature_13: float = Query(..., description="Feature 13"),

):

logged_model = fetch_best_model_uri()

if logged_model:

loaded_model = mlflow.pyfunc.load_model(logged_model)

input_data = np.array([
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[feature_1, feature_2, feature_3, feature_4, feature_5,

feature_6, feature_7, feature_8, feature_9, feature_10,

feature_11, feature_12, feature_13]

])

# Crea el DataFrame

predictions = loaded_model.predict(input_data)

return PlainTextResponse(str(predictions[0]),

media_type="text/plain")

else:

raise HTTPException(status_code=500, detail="No model available.")

if __name__ == "__main__":

uvicorn.run(app, host="0.0.0.0", port=7654)

A.9 html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Wine Prediction Form</title>

<style>

body {

font-family: Arial, sans-serif;

background-color: #f4f4f4;

margin: 0;

padding: 0;

display: flex;

justify-content: center;

align-items: center;
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height: 100vh;

}

form {

background-color: #fff;

padding: 20px;

border-radius: 8px;

box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);

max-width: 300px;

width: 100%;

display: flex;

flex-wrap: wrap;

gap: 8px;

}

label {

flex-basis: 100%;

color: #555;

}

input {

flex-basis: 100%;

padding: 8px;

box-sizing: border-box;

border: 1px solid #ccc;

border-radius: 4px;

}

button {

background-color: #4caf50;

color: #fff;

padding: 10px;

border: none;
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border-radius: 4px;

cursor: pointer;

width: 100%;

}

button:hover {

background-color: #45a049;

}

h2 {

margin-top: 20px;

color: #333;

}

#predictionResult {

color: #555;

margin-top: 10px;

}

</style>

</head>

<body>

<form id="predictionForm">

<h2>Wine Prediction Form</h2>

<label for="feature_1">Alcohol:</label>

<input type="number" id="feature_1" name="feature_1" required>

<label for="feature_2">Malic Acid:</label>

<input type="number" id="feature_2" name="feature_2" required>

<label for="feature_3">Ash:</label>

<input type="number" id="feature_3" name="feature_3" required>
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<label for="feature_4">Alcalinity of Ash:</label>

<input type="number" id="feature_4" name="feature_1" required>

<label for="feature_5">Magnesium:</label>

<input type="number" id="feature_5" name="feature_5" required>

<label for="feature_6">Total Phenols:</label>

<input type="number" id="feature_6" name="feature_6" required>

<label for="feature_7">Flavanoids:</label>

<input type="number" id="feature_7" name="feature_7" required>

<label for="feature_8">Nonflavanoid Phenols:</label>

<input type="number" id="feature_8" name="feature_8" required>

<label for="feature_9">Proanthocyanins:</label>

<input type="number" id="feature_9" name="feature_9" required>

<label for="feature_10">Color Intensity:</label>

<input type="number" id="feature_10" name="feature_10" required>

<label for="feature_11">Hue:</label>

<input type="number" id="feature_11" name="feature_11" required>

<label for="feature_12">OD280/OD315:</label>

<input type="number" id="feature_12" name="feature_12" required>

<label for="feature_13">Proline:</label>

<input type="number" id="feature_13" name="feature_13" required>

<button type="button" onclick="submitForm()">Predict</button>

</form>
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<div id="predictionResult"></div>

<script>

function submitForm() {

const features = [

’feature_1’, ’feature_2’, ’feature_3’, ’feature_4’

, ’feature_5’, ’feature_6’, ’feature_7’, ’feature_8’

, ’feature_9’, ’feature_10’, ’feature_11’, ’feature_12’

, ’feature_13’

];

const data = features.reduce((acc, feature) => {

acc[feature] = document.getElementById(feature).value;

return acc;

}, {});

fetch(‘/predict/?${new URLSearchParams(data)}‘)

.then(response => response.text())

.then(prediction => {

document.getElementById(’predictionResult’).innerText=

‘Prediction: ${prediction}‘;

})

.catch(error => console.error(’Error:’, error));

}

</script>

</body>

</html>

A.10 train model.py

import pandas as pd

import numpy as np

import os
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import mlflow

import mlflow.sklearn

from sklearn.datasets import load_wine

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error,

accuracy_score, precision_score, recall_score, f1_score

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier

from sklearn.neighbors import KNeighborsClassifier

#Configura la URI de la base de datos y la dirección del servidor de MLflow

mlflow.set_tracking_uri("http://mlflow_container:80")

mlflow.set_experiment("Entrenamiento dataset vino")

# Cargar el dataset de vino

wine = load_wine()

X, y = wine.data, wine.target

# Dividir los datos en conjuntos de entrenamiento y prueba

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

# Función para evaluar y registrar métricas

def evaluate_model(model, model_name):

# Entrenar el modelo

model.fit(X_train, y_train)

# Realizar predicciones

y_pred = model.predict(X_test)

# Métricas

accuracy = accuracy_score(y_test, y_pred)

precision = precision_score(y_test, y_pred, average=’weighted’)
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recall = recall_score(y_test, y_pred, average=’weighted’)

f1 = f1_score(y_test, y_pred, average=’weighted’)

# Definir el nombre del run

run_name = f"{model_name}"

# Log en MLflow

with mlflow.start_run(run_name=run_name):

# Log de métricas

mlflow.log_metric("Accuracy", accuracy)

mlflow.log_metric("Precision", precision)

mlflow.log_metric("Recall", recall)

mlflow.log_metric("F1", f1)

mlflow.sklearn.log_model(model, model_name)

# Modelos

models = {

"RandomForestClassifier": RandomForestClassifier(),

"KNeighborsClassifier": KNeighborsClassifier(),

"SVC": SVC(),

"GradientBoostingClassifier": GradientBoostingClassifier()

}

# Evaluación de modelos y registro en MLflow

for model_name, model in models.items():

evaluate_model(model, model_name)

A.11 prometheus.yaml

# global:

# scrape_interval: 15s

# evaluation_interval: 15s

# scrape_configs:
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# - job_name: ’mlflow’

# static_configs:

# - targets: [’mlflow_container:80’]

global:

scrape_interval: 15s

evaluation_interval: 15s

external_labels:

monitor: "api"

scrape_configs:

- job_name: ’mlflow’

static_configs:

- targets: [’mlflow_exporter:8000’]

- job_name: "prometheus" # Para que monitoree las métricas de prometheus

static_configs:

- targets: ["prometheus:9090"]

A.12 dashboard.json

{

"annotations": {

"list": [

{

"builtIn": 1,

"datasource": {

"type": "datasource",

"uid": "grafana"

},

"enable": true,

"hide": true,

"iconColor": "rgba(0, 211, 255, 1)",

"name": "Annotations & Alerts",
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"target": {

"limit": 100,

"matchAny": false,

"tags": [],

"type": "dashboard"

},

"type": "dashboard"

}

]

},

"editable": true,

"fiscalYearStartMonth": 0,

"graphTooltip": 0,

"links": [],

"liveNow": false,

"panels": [

{

"aliasColors": {

"4xx": "red"

},

"bars": true,

"dashLength": 10,

"dashes": false,

"datasource": {

"type": "prometheus",

"uid": "PBFA97CFB590B2093"

},

"fill": 1,

"fillGradient": 0,

"gridPos": {

"h": 6,

"w": 7,

"x": 0,
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"y": 0

},

"hiddenSeries": false,

"id": 13,

"interval": "60s",

"legend": {

"avg": true,

"current": false,

"max": true,

"min": false,

"show": true,

"total": false,

"values": true

},

"lines": false,

"linewidth": 1,

"links": [],

"nullPointMode": "null",

"options": {

"alertThreshold": true

},

"percentage": false,

"pluginVersion": "9.1.5",

"pointradius": 5,

"points": false,

"renderer": "flot",

"seriesOverrides": [

{

"$$hashKey": "object:255",

"alias": "HTTP 500",

"color": "#bf1b00"

}

],
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"spaceLength": 10,

"stack": true,

"steppedLine": false,

"targets": [

{

"$$hashKey": "object:140",

"datasource": {

"type": "prometheus",

"uid": "PBFA97CFB590B2093"

},

"editorMode": "code",

"expr": "sum by (status)

(rate(prometheus_http_requests_total[1m]))",

"format": "time_series",

"interval": "",

"intervalFactor": 1,

"legendFormat": "{{ status }}",

"range": true,

"refId": "A"

}

],

"thresholds": [],

"timeRegions": [],

"title": "Request per minute",

"tooltip": {

"shared": true,

"sort": 0,

"value_type": "individual"

},

"type": "graph",

"xaxis": {

"mode": "time",

"show": true,
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"values": []

},

"yaxes": [

{

"$$hashKey": "object:211",

"format": "short",

"logBase": 1,

"min": "0",

"show": true

},

{

"$$hashKey": "object:212",

"format": "short",

"logBase": 1,

"show": true

}

],

"yaxis": {

"align": false

}

},

{

"aliasColors": {},

"bars": false,

"dashLength": 10,

"dashes": false,

"datasource": {},

"description": "",

"fill": 1,

"fillGradient": 0,

"gridPos": {

"h": 6,

"w": 9,
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"x": 9,

"y": 0

},

"hiddenSeries": false,

"id": 15,

"interval": "15s",

"legend": {

"alignAsTable": true,

"avg": true,

"current": true,

"max": true,

"min": true,

"rightSide": true,

"show": true,

"sort": "avg",

"sortDesc": true,

"total": false,

"values": true

},

"lines": true,

"linewidth": 1,

"links": [],

"nullPointMode": "null",

"options": {

"alertThreshold": true

},

"percentage": false,

"pluginVersion": "9.1.5",

"pointradius": 5,

"points": false,

"renderer": "flot",

"seriesOverrides": [],

"spaceLength": 10,
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"stack": false,

"steppedLine": false,

"targets": [

{

"$$hashKey": "object:426",

"datasource": {

"type": "prometheus",

"uid": "vdXA9nn4k"

},

"expr": "histogram_quantile(0.5,

rate(prometheus_http_request_duration_seconds_bucket

{handler!=\"none\"}[30s]))",

"format": "time_series",

"interval": "",

"intervalFactor": 1,

"legendFormat": "{{ handler }}",

"refId": "A"

}

],

"thresholds": [],

"timeRegions": [],

"title": "Request duration [s] - p50",

"tooltip": {

"shared": true,

"sort": 0,

"value_type": "individual"

},

"type": "graph",

"xaxis": {

"mode": "time",

"show": true,

"values": []

},
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"yaxes": [

{

"$$hashKey": "object:1280",

"format": "clocks",

"logBase": 1,

"show": true

},

{

"$$hashKey": "object:1281",

"format": "short",

"logBase": 1,

"show": true

}

],

"yaxis": {

"align": false

}

},

{

"aliasColors": {

"none": "red"

},

"bars": false,

"dashLength": 10,

"dashes": false,

"datasource": {},

"fill": 1,

"fillGradient": 0,

"gridPos": {

"h": 6,

"w": 9,

"x": 0,

"y": 6
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},

"hiddenSeries": false,

"id": 11,

"interval": "15s",

"legend": {

"alignAsTable": true,

"avg": false,

"current": true,

"max": false,

"min": false,

"rightSide": true,

"show": true,

"sort": "current",

"sortDesc": true,

"total": false,

"values": true

},

"lines": true,

"linewidth": 1,

"links": [],

"nullPointMode": "null",

"options": {

"alertThreshold": true

},

"percentage": false,

"pluginVersion": "9.1.5",

"pointradius": 5,

"points": false,

"renderer": "flot",

"seriesOverrides": [],

"spaceLength": 10,

"stack": false,

"steppedLine": false,
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"targets": [

{

"$$hashKey": "object:1079",

"datasource": {

"type": "prometheus",

"uid": "vdXA9nn4k"

},

"expr": "increase

(prometheus_http_request_duration_seconds_bucket{le=\"0.1\"}

[1m]) \n/ ignoring (le) increase

(prometheus_http_request_duration_seconds_count[1m])",

"format": "time_series",

"instant": false,

"interval": "",

"intervalFactor": 1,

"legendFormat": "{{ handler }}",

"refId": "A"

}

],

"thresholds": [],

"timeRegions": [],

"title": "Requests under 100ms",

"tooltip": {

"shared": true,

"sort": 0,

"value_type": "individual"

},

"type": "graph",

"xaxis": {

"mode": "time",

"show": true,

"values": []

},
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"yaxes": [

{

"$$hashKey": "object:1137",

"format": "percentunit",

"logBase": 1,

"max": "1",

"min": "0",

"show": true

},

{

"$$hashKey": "object:1138",

"format": "short",

"logBase": 1,

"show": true

}

],

"yaxis": {

"align": false

}

},

{

"aliasColors": {},

"bars": false,

"dashLength": 10,

"dashes": false,

"datasource": {},

"fill": 1,

"fillGradient": 0,

"gridPos": {

"h": 6,

"w": 9,

"x": 9,

"y": 6
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},

"hiddenSeries": false,

"id": 16,

"interval": "15s",

"legend": {

"alignAsTable": true,

"avg": true,

"current": true,

"max": true,

"min": true,

"rightSide": true,

"show": true,

"total": false,

"values": true

},

"lines": true,

"linewidth": 1,

"links": [],

"nullPointMode": "null",

"options": {

"alertThreshold": true

},

"percentage": false,

"pluginVersion": "9.1.5",

"pointradius": 5,

"points": false,

"renderer": "flot",

"seriesOverrides": [],

"spaceLength": 10,

"stack": false,

"steppedLine": false,

"targets": [

{
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"$$hashKey": "object:426",

"datasource": {

"type": "prometheus",

"uid": "vdXA9nn4k"

},

"expr": "histogram_quantile(0.9,

rate(prometheus_http_request_duration_seconds_bucket

{handler!=\"none\"}[30s]))",

"format": "time_series",

"interval": "",

"intervalFactor": 1,

"legendFormat": "{{ handler }}",

"refId": "A"

}

],

"thresholds": [

{

"$$hashKey": "object:98",

"colorMode": "critical",

"fill": true,

"line": true,

"op": "gt",

"value": 0,

"yaxis": "left"

}

],

"timeRegions": [],

"title": "Request duration [s] - p90",

"tooltip": {

"shared": true,

"sort": 0,

"value_type": "individual"

},
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"type": "graph",

"xaxis": {

"mode": "time",

"show": true,

"values": []

},

"yaxes": [

{

"$$hashKey": "object:1078",

"format": "clocks",

"logBase": 1,

"show": true

},

{

"$$hashKey": "object:1079",

"format": "short",

"logBase": 1,

"show": true

}

],

"yaxis": {

"align": false

}

}

],

"refresh": "3s",

"schemaVersion": 37,

"style": "dark",

"tags": [],

"templating": {

"list": []

},

"time": {

116



A.13. DASHBOARD.YML

"from": "now-30m",

"to": "now"

},

"timepicker": {

"refresh_intervals": [

"3s"

],

"time_options": [

"5m",

"15m",

"1h",

"6h",

"12h",

"24h",

"2d",

"7d",

"30d"

]

},

"timezone": "",

"title": "Prediction application",

"uid": "_eX4mpl3",

"version": 1,

"weekStart": ""

}

A.13 dashboard.yml

apiVersion: 1

providers:

- name: Default # A uniquely identifiable name for the provider

folder: Services # The folder where to place the dashboards

type: file
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options:

path: /etc/grafana/provisioning/dashboards/

A.14 datasource.yml

# grafana/provisioning/datasources/prometheus.yml

apiVersion: 1

deleteDatasources:

- name: Prometheus

orgId: 1

datasources:

- name: Prometheus

type: prometheus

access: proxy

orgId: 1

url: http://prometheus:9090

basicAuth: false

isDefault: true

editable: true

# <map> fields that will be converted to json and stored in json_data

jsonData:

graphiteVersion: "1.1"

tlsAuth: false

tlsAuthWithCACert: false

# <string> json object of data that will be encrypted.

secureJsonData:

tlsCACert: "..."

tlsClientCert: "..."

tlsClientKey: "..."

version: 1

# <bool> allow users to edit datasources from the UI.
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A.15 grafana.ini

# grafana.ini

[server]

root_url = http://localhost:3000
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APPENDIXB
Aspectos éticos, económicos, sociales y

ambientales

En este capitulo se explica cúales son los aspectos en los que este proyecto tiene impli-

cación.
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B.1 Introducción

En este anexo se abordan aspectos éticos, económicos, sociales y ambientales relacionados

con el proyecto de evaluación, selección y despliegue de entornos MLOps. Se examinan

los impactos relevantes asociados con el desarrollo e implementación de sistemas para la

gestión de proyectos de Machine Learning.

B.2 Descripción de impactos relevantes

Durante el desarrollo del proyecto, se identificaron diversos impactos que merecen atención

particular. Entre ellos se encuentran:

Consideraciones éticas en la utilización de algoritmos de aprendizaje automático, in-

cluyendo sesgos algoŕıtmicos y riesgos de discriminación. Implicaciones económicas de

la implementación de sistemas MLOps, tales como costos de infraestructura, licencias

de software y mantenimiento a largo plazo. Impactos sociales derivados de la automati-

zación de procesos y la posible sustitución de tareas realizadas por humanos por sistemas

de inteligencia artificial. Aspectos ambientales relacionados con el consumo de recursos

computacionales y la huella de carbono asociada con el entrenamiento y despliegue de

modelos de Machine Learning.

B.3 Análisis detallado de los principales impactos

B.3.1 Aspectos Éticos

Privacidad y Seguridad de los Datos: Es crucial garantizar que los datos utilizados para

entrenar y alimentar los modelos no violen la privacidad de los individuos y que se im-

plementen medidas adecuadas de seguridad para protegerlos de accesos no autorizados.

Equidad y Sesgo: Los modelos de aprendizaje automático pueden perpetuar sesgos ex-

istentes en los datos, lo que puede llevar a decisiones discriminatorias. Es importante

mitigar estos sesgos y garantizar la equidad en las predicciones y decisiones basadas en

los modelos. Transparencia y Explicabilidad: Los modelos de aprendizaje automático

deben ser transparentes y explicables para que los usuarios puedan comprender cómo se

tomaron las decisiones y puedan confiar en los resultados.
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B.3.2 Aspectos Legales

Cumplimiento Normativo: El proyecto debe cumplir con todas las regulaciones y leyes

aplicables, como el Reglamento General de Protección de Datos (GDPR) en Europa o

leyes de privacidad en otras jurisdicciones. Propiedad Intelectual: Se deben considerar

los derechos de propiedad intelectual sobre los modelos desarrollados y los datos utiliza-

dos en ellos, aśı como los acuerdos de licencia relevantes. Responsabilidad Legal: Quién

es responsable en caso de que el modelo produzca resultados incorrectos o dañinos debe

ser claramente definido y documentado.

B.3.3 Aspectos Económicos

Costos de Infraestructura: La implementación y mantenimiento de una infraestruc-

tura adecuada para el desarrollo, despliegue y monitoreo de modelos de aprendizaje

automático puede ser costosa. Rendimiento del Modelo: Los costos asociados con el

rendimiento del modelo, como la adquisición de datos de alta calidad y el procesamiento

de grandes volúmenes de datos, también deben ser considerados. Valor Agregado: Es

importante evaluar el retorno de la inversión (ROI) del proyecto de MLOps y asegurarse

de que esté alineado con los objetivos comerciales de la organización.

B.3.4 Aspectos Sociales

Impacto en el Empleo: La automatización impulsada por el aprendizaje automático

puede afectar los empleos existentes, lo que podŕıa tener repercusiones sociales y económicas

en la fuerza laboral. Accesibilidad: Es importante garantizar que los modelos desarrol-

lados sean accesibles para todos los usuarios, independientemente de su origen socioe-

conómico o habilidades técnicas. Educación y Formación: Se pueden requerir programas

de educación y formación para capacitar a las personas en el uso y comprensión de los

modelos de aprendizaje automático, aśı como en la ética relacionada con su desarrollo y

aplicación.

B.3.5 Aspectos Sociales

Consumo de Recursos: El entrenamiento y la ejecución de modelos de aprendizaje au-

tomático pueden requerir grandes cantidades de recursos computacionales y energéticos,

lo que puede tener un impacto ambiental significativo. Sostenibilidad: Se deben explorar
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enfoques para mejorar la eficiencia energética y reducir la huella de carbono asociada con

el desarrollo y operación de sistemas de aprendizaje automático. Impacto en el Medio

Ambiente: Se deben evaluar los posibles efectos ambientales adversos de los proyectos

de MLOps y tomar medidas para mitigarlos o compensarlos.

B.4 Conclusiones

El análisis de aspectos éticos, económicos, sociales y ambientales revela la complejidad y

la interconexión de los desaf́ıos involucrados en el despliegue de sistemas de aprendizaje

automático. Se concluye que una evaluación hoĺıstica y continua de estos impactos es

esencial para garantizar un desarrollo tecnológico responsable y sostenible.
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C.1 PRESUPUESTO ECONÓMICO

Figure C.1: PRESUPUESTO TOTAL
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[46] Andrés Felipe Ocampos. Cómo instalar y configurar Jenk-

ins en MacOs. https://andresfelipeocampo.medium.com/

cmo-instalar-y-configurar-jenkins-en-mac-os-517fce0f5c5a, 2023.

Accessed on 4rd January 2023.

[47] Stephen Oladele. MLOps Landscape in 2023: Top Tools and Platforms. Neptune.ai blogs,

2023.

[48] Oracle. The world’s most popular open source database. https://www.mysql.com,

2023. Accessed on 27rd January 2023.

[49] Pallet. FLask: welcome to Flask documentation. https://flask.palletsprojects.

com/en/3.0.x/, 2023. Accessed on 27th November 2023.

[50] Pandas. Pandas: Python data analysis library. https://pandas.pydata.org/, 2023.

Accessed on 17th November 2023.

[51] Google Cloud Platform. GCP: configura el almacen de metadatatos de tu proyecto. https:

//cloud.google.com/vertex-ai/docs/ml-metadata/configure?hl=es-419,

2023. Accessed on 28th November 2023.

[52] Sam Ransbotham, Shervin Khodabandeh, Ronny Fehling, Burt Lafountain, and David

Kiron. Winning with ai. MITSloan, 2019.

130

https://azure.microsoft.com/es-es/products/devops/pipelines
https://www.microsoft.com/es-es/sql-server/sql-server-downloads
https://www.microsoft.com/es-es/sql-server/sql-server-downloads
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-manage-models?view=azureml-api-2&tabs=cli%2Cuse-local
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-manage-models?view=azureml-api-2&tabs=cli%2Cuse-local
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-manage-models?view=azureml-api-2&tabs=cli%2Cuse-local
https://mlflow.org
https://numpy.org/
https://andresfelipeocampo.medium.com/cómo-instalar-y-configurar-jenkins-en-mac-os-517fce0f5c5a
https://andresfelipeocampo.medium.com/cómo-instalar-y-configurar-jenkins-en-mac-os-517fce0f5c5a
https://www.mysql.com
https://flask.palletsprojects.com/en/3.0.x/
https://flask.palletsprojects.com/en/3.0.x/
https://pandas.pydata.org/
https://cloud.google.com/vertex-ai/docs/ml-metadata/configure?hl=es-419
https://cloud.google.com/vertex-ai/docs/ml-metadata/configure?hl=es-419


BIBLIOGRAPHY

[53] scikit learn. 7.1 Toy datasets - scikit-learn. https://scikit-learn.org/stable/

datasets/toy_dataset.html, 2023. Accessed on 4rd January 2023.

[54] Scikit-learn. Scikit-learn: machine learning in Python. https://scikit-learn.org/

stable/, 2023. Accessed on 13th November 2023.

[55] SciPy. SciPy: Fundamental algorithms for scientific computing in Python. https://

scipy.org/, 2023. Accessed on 17th November 2023.

[56] Amazon Web Services. Almacén de caracteŕısticas de Amazon SageMaker. https://aws.
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[60] Sngular. La metodoloǵıa para poner en orden los proyectos. https://www.sngular.

com/es/data-science-crisp-dm-metodologia/, 2020. Accessed on 7th November

2023.

[61] The Apache software Foundation. Apache Airflow. https://airflow.apache.org,

2023. Accessed on 27rd January 2023.

[62] Grafana Cloud Status. Grafana: The open observability platform — Grafana Labs. https:

//grafana.com, 2023. Accessed on 27rd January 2023.

[63] Subversion. Apache subversion: Enterprise-class centralized version control for the masses.

https://subversion.apache.org, 2023. Accessed on 27th November 2023.

[64] Inc Tecton. TRANSFORM. SERVE. SCALE.Your Journey to Production Machine Learning

Starts Now. https://www.tecton.ai, 2023. Accessed on 27rd January 2023.

[65] Tempo. Tempo Framework: Tempo: The MLOps Software Development Kit. https:

//mlflow.org, 2023. Accessed on 8th November 2023.

[66] TensorFlow. Crea modelos de aprendizaje automático de nivel de producción con Tensor-
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