
GRADO UNIVERSITARIO EN

INGENIERÍA DE TECNOLOGÍAS Y SERVICIOS DE

TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

Design and Development of a Multiplatform Mobile
Application for a non-profit foundation based on the

framework Cordova

Alejandro Garrido Chasco
2019

TRABAJO DE FIN DE GRADO

T́ıtulo: Diseño y desarrollo de una aplicación móvil multiplataforma

basada en el framework Cordova para una Fundación sin

ánimo de lucro

T́ıtulo (inglés): Design and Development of a Multiplatform Mobile Appli-

cation for a non-profit foundation based on the framework

Cordova

Autor: Alejandro Garrido Chasco

Tutor: Carlos Ángel Iglesias Fernández

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE GRADO

Design and Development of a Multiplatform Mobile
Application for a non-profit foundation based on the

framework Cordova

ENERO 2019

Resumen

El Trabajo de Fin de Grado consiste en la realización de una aplicación móvil multi-

plataforma utilizando Cordova, el framework Onsen UI, NodeJS y una base de datos de

tipo MySQL.

Esta aplicación está particularizada para una Fundación sin ánimo de lucro llamada

Masnatur, la cuál realiza cada fin de semana actividades con personas con discapacidad. La

aplicación permite controlar el acceso de todos los miembros de la Fundación, ofreciéndoles

una interfaz intuitiva y sencilla. Cada usuario dispone de un login distinto según su rol

dentro de la Fundación (y por tanto, de la aplicación). Los usuarios pueden apuntarse

a futuras actividades si son voluntarios o incluso editarlas si trabajan en la oficina de la

Fundación. La aplicación permite una comunicación sencilla a través del correo electrónico

entre los voluntarios y los trabajadores. Además, los usuarios pueden editar sus perfiles e

inscribirse a futuras actividades con sólo un click.

La aplicación se conecta a la base de datos de tipo MySQL para extraer y manejar la

información almacenada. Los datos generados por la aplicación se guardan en tablas difer-

entes y no están conectados con la base de datos de la Fundación por seguridad.

Esta es la primera version funcional de un ambicioso proyecto que pretende ser capaz de

soportar todos los distintos roles de los usuarios, unificar todas las bases de datos en una

sola, ser lo suficientemente segura, etc.

El fin de este trabajo es crear una aplicación que aumente la fama de una determinada

Fundación y mejore la comunicación entre todos sus miembros. La aplicación intenta ser

lo más flúıda, intuitiva, amigable y segura posible. Hay que tener en cuenta que el rango

de edades de las personas participantes en la Fundación es muy amplio y por tanto, lo más

importante es la sencillez.

Palabras clave: Aplicación móvil, Hı́brida, Apache Cordova, Onsen UI, NodeJS,

Mysql, PopSQL, Android, iOS.

VII

Abstract

This Final year Project (TFG) consists in the creation of a multiplatform mobile application

using Cordova, the Onsen UI framework, NodeJS and MySQL database.

This application is specific for a non-profit Foundation called Masnatur, which carries

out activities every weekend with people with disabilities. It controls the access of every

member to the Foundation, offering a simple and intuitive interface. Each user has a dif-

ferent login according to their role within the Foundation (and therefore, the application).

The users are able to sign up for future activities if they are volunteers or even edit that

activities if they work in the office. The application allows an easy communication between

volunteers and workers via email. Users can also edit their profile and sign up for the ac-

tivities they want just with one click.

The application also connects with a MySQL database to request and modify the stored

information. The data is stored in different tables and it is not connected with the Foun-

dations database for safety.

This is just the first functional prototype of an ambitious project that pretends to be

able to manage other roles, unify every database in just one, become more and more secure,

etc.

The purpose of this work is to create an application that increases the fame of a par-

ticular Foundation and improves communication among all its members. The application

tries to be as fluid, intuitive, friendly and safe as possible. We must bear in mind that the

age range of the users is very wide and therefore, the most important thing is simplicity.

Keywords: Mobile Application, Hybrid, Apache Cordova, Onsen UI, NodeJS, Mysql,

PopSQL, Android, iOS.

IX

Agradecimientos

Este es el fin de un camino duro e intenso,

donde he aprendido a combatir con esmero

infinitos miedos... Casi tantos como ineptos.

Pero hoy no toca hablar de ellos.

¿Debeŕıa contar hasta mi nota y fingir?

Quizás se me queda corta, para qué mentir.

La vida siempre te permite elegir

y estos versos, querido amigo, van para ti.

He réıdo más que llorado, gracias a ti.

He cantado, he bailado, he jugado,

he disfrutado, he compuesto y me he descompuesto.

Todo ello, también, gracias a ti

Si has aguantado este viaje a mi lado,

seguramente sin pelo te has quedado,

no por lo duro sino por lo largo...

Piensa que al menos, el cielo te has ganado.

Mis versos pueden parecer inconexos

o quizá soy yo quien no tiene remedio,

pero jamás podrás negarme que el mensaje

que llevan dentro es un bonito y sincero

TE QUIERO.

...para ti, que estás, y para los que se fueron...

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XVII

1 Introduction 1

1.1 Context . 2

1.2 Project goals . 3

1.3 Structure of this document . 4

2 Enabling Technologies 5

2.1 Cordova . 6

2.1.1 Architecture . 7

2.1.2 Directory Structure . 8

2.1.3 Plugins . 9

2.2 NodeJS . 11

2.2.1 Modules . 11

2.3 Onsen UI . 13

2.3.1 Components used . 13

2.3.2 Onsen UI Playground . 14

2.4 MySQL . 15

3 Architecture 17

3.1 Overview . 18

3.1.1 General blocks diagram . 18

3.1.2 Levels . 19

3.2 Front-End . 20

XIII

3.2.1 Competitors . 20

3.2.2 Application Directory . 21

3.2.3 Onsen UI . 23

3.2.4 Pug . 24

3.2.5 Mock-Up . 25

3.3 Back-End . 26

3.3.1 Competitors . 26

3.3.2 NodeJS . 26

3.4 Database . 28

3.4.1 Competitors . 28

3.4.2 PopSQL and MySQL . 28

3.5 Connection between Front-End, Back-End and the Database 30

4 Case study 31

4.1 Create a Personal Profile for the app . 32

4.2 Access and edit your Personal Profile . 33

4.3 Log in to the app using your email and your password 34

4.4 Watch a list of activities and search for specific ones 35

4.5 Access to a description of the activities . 36

4.6 Sign up for an activity . 37

4.7 Choose between the future or the past activities 38

4.8 Watch your activities . 39

4.9 Send an email through the app . 40

4.10 Access to all of the social networks of the Foundation 41

5 Conclusions 43

5.1 Conclusions . 44

5.2 Problems faced . 44

5.3 Future Objectives . 45

A Appendix i

A.1 Global impacts and responsibilities . ii

A.2 Social Impact . ii

A.3 Economical Impact . ii

A.4 Responsibilities . ii

B Appendix iii

B.1 Context . iv

B.2 Physical resources . iv

B.3 Human resources . iv

B.4 Licenses . iv

Bibliography v

List of Figures

2.1 Apache Cordova . 6

2.2 Architecture of a Cordova Application [1] 7

2.3 Cordova Directory Structure . 9

2.4 NodeJS . 11

2.5 Onsen UI . 13

2.6 Onsen UI Playground . 14

2.7 MySQL . 15

3.1 General blocks diagram . 18

3.2 Application Directory . 21

3.3 index.html code . 22

3.4 app.js code . 22

3.5 Pug file example . 24

3.6 Mock-Up Views . 25

3.7 package.json code . 27

3.8 NodeJS modules explained with config.js file 27

3.9 PopSQL interface . 28

3.10 “actividades” table in PopSQL . 29

3.11 “perfiles” table in PopSQL . 29

3.12 Code inside of the routes.js file for the login 30

4.1 Creation of a new profile . 32

4.2 Profile created stored in the database . 32

4.3 verPerfil.pug code and view . 33

4.4 editarPerfil.pug code and view . 33

4.5 Login views of the application . 34

4.6 List of activities . 35

4.7 Description of the activities . 36

4.8 Signing up for an activity . 37

4.9 Future activities . 38

4.10 My personal activities . 39

XVII

4.11 Sending an email . 40

4.12 Goals and links of the Foundation . 41

CHAPTER1
Introduction

This chapter introduces the context of the project, including a brief overview of all the

different parts discussed in the project. It also breaks down a series of objectives carried out

during the realization of the project. Moreover, it introduces the structure of the document

with an overview of each chapter.

1

CHAPTER 1. INTRODUCTION

1.1 Context

Nowadays, the easiest, fastest and most effective way to access information is with our mo-

bile phones. For this reason, there are all kinds of applications, from calculators to maps,

through notebooks, scanners, instruments, remote controls ... If your product is not ac-

cessible through an application, you have a very important handicap that will prevent you

reaching your maximum potential.

In a constantly changing and increasingly technological world there are sectors that have

not joined the change yet or have joined it making many mistakes. That is because cre-

ating a useful and attractive application is not easy at all. It requires programming skills,

maintenance and motivation that is hard to achieve in most cases since today anyone can

make a small application at home.

We are talking about the Third Sector entities. More specifically, Foundations and Non-

Governmental Organizations that desperately need volunteers, but seek them in an anti-

quated way. This project aims to create a generic application for any Non-Governmental

Organization and particularize it for the Masnatur Foundation, which lacks modern techno-

logical tools and urgently needs a renewal. In this way, if this project is successful it could

be extended to other similar foundations to try to make this sector more visible and more

accessible.

Moreover, eight years ago the operating systems of mobile devices were much more dis-

tributed among Android, IOS, Windows phone, Blackberry and other OS, but currently the

market is controlled by IOS (16%) and Android (85.9%)1. Ironically, before this duopoly,

PhoneGap arose first and later Apache Cordova (its open source version) that allow to

build hybrid applications, that is to say, applications that are not native but work in any

operating system.

Although it may seen that this solution comes too late, the reality is that Apache Cor-

dova it is a very useful tool that reduces development time by half. This framework also

allows the application to be accessible to all kind of users.

1https://computerhoy.com/reportajes/industria/android-vs-iphone-guerra-smartphones-cifras-271447

2

https://computerhoy.com/reportajes/industria/android-vs-iphone-guerra-smartphones-cifras-271447

1.2. PROJECT GOALS

1.2 Project goals

The main objective of this project is the creation of a generic, simple, intuitive and useful

application that facilitates communication between volunteers, users and foundations. This

project aims to be a base on which future functionalities can be developed.

The main objectives we want to achieve are:

• Design and implement a cross-platform mobile application to facilitate communica-

tion between the Foundation and its members.

• Local server that safely stores the personal information of users and activities.

• Smart login that handles dynamic content depending on who enters in the application.

• Access all the social networks of the Foundation through the application.

• Simplify the registration process in addition to facilitate and promote the participa-

tion of volunteers in the activities of the foundation.

3

CHAPTER 1. INTRODUCTION

1.3 Structure of this document

The remaining of this document is structured as follows:

Chapter 1 Explains the context in which this project is developed and also describes

the main goals to achieve in this project.

Chapter 2 Describes the technologies and programs used during the creation of the

application.

Chapter 3 Provides a general view of the architecture of the project. Describes each

part and the way they are connected.

Chapter 4 Explains all the desired and achieved use cases.

Chapter 5 Comments the conclusions extracted from this project, the problems faced

and the future work planned.

4

CHAPTER2
Enabling Technologies

In this chapter we analyze the technologies used during the development of this project. We

describe in detail Cordova Framework, Onsen UI and Nodejs since they are the main base

of the application. We also explain other tools that have been used, such as the database

management system (MySQL) and the Mock-Up editor.

5

CHAPTER 2. ENABLING TECHNOLOGIES

2.1 Cordova

Cordova[1][2] is a software previously known as “PhoneGap”, then “Apache Callback”, fi-

nally “Apache Cordova”. PhoneGap is Adobe’s commercial version of Cordova along with

its associated ecosystem. Other famous tools and frameworks (Ionic, Onsen UI, Monaca,

etc) have been built on top of Cordova instead of PhoneGap.

As previously mentioned, Apache Cordova is an open-source mobile development frame-

work that allows you to develop cross-platform apps using HTML5, CSS3 and JavaScript

instead of relying on platform-specific APIs like those in Android, iOS, etc. The resulting

applications are neither native mobile application nor purely Web-based, they are hybrid.

Cordova provides the Cross-platform (CLI) workflow, used to run on as many different mo-

bile operating systems as possible, with little need for platform-specific development. In

other words, Cordova allows us to create new projects, build them on different platforms,

and run them within an emulator.

Figure 2.1: Apache Cordova

6

2.1. CORDOVA

2.1.1 Architecture

There are several components to a cordova application. The following diagram shows a

high-level view of the cordova application architecture extracted directly from the Cordova

website. 1 We are also going to describe each part of the diagram:

Figure 2.2: Architecture of a Cordova Application [1]

Here we will describe the different parts shown in the figure above. Inside the Cordova

Application we can see the WebView, Web App and the Plugins. The Development Paths

correspond to the workflows provided to create de application. Here we explain everything

much more detailed:

• WebView: The Cordova-enabled WebView may provide the application with its

entire user interface. It is a HTML rendering engine that can be mixed with native

application components on some platforms. It is used together with the Web App files.

1https://cordova.apache.org/docs/en/latest/guide/overview/index.html

7

https://cordova.apache.org/docs/en/latest/guide/overview/index.html

CHAPTER 2. ENABLING TECHNOLOGIES

• Web App: This is the part were the application code resides as it includes all the

HTML5, CSS3, and JavaScript files. The application itself is implemented as a web

page, by default a local file named index.html, that references everything else. It also

contains the essential file config.xml described before.

• Plugins: The plugins provide an interface for Cordova and native components to com-

municate with each other and bindings to standard device APIs. Because of them, we

can invoke native code from JavaScript. Cordova offers a set of plugins called Core

Plugins which are easy to implement but there are also some useful several third-party

plugins. The plugins we can see in the figure are not the ones installed in our project.

• Development Paths: Cordova provides two basic workflows to create a mobile ap-

plication. The one we have used in this project is the Cross-platform (CLI) workflow

which allows the application to run on as many different mobile operating systems as

possible.

2.1.2 Directory Structure

The directory structure is always the same for all Cordova projects. It contains the same

folders, although in some of them, the content changes. For example, the plugins installed

by the developer are the only ones included inside the plugins/ folder, so in some cases,

that folder could be empty.

The Cordova projects have the following Directory structure: 2

Every Cordova project has this structure shown in the figure above. We are going to

name each part and resume how it works in the following list:

• Config.xml: file used to configure and custom your application. It provides infor-

mation about the app and specifies parameters affecting how it works

• www/ Folder which contains essential files for a proper functioning of the application.

This files are .html .css and .js, and in our case, the www/ folder also contains the

dynamic .pug views.

2https://cordova.apache.org/docs/en/latest/reference/cordova-cli/index.html

8

https://cordova.apache.org/docs/en/latest/reference/cordova-cli/index.html

2.1. CORDOVA

Figure 2.3: Cordova Directory Structure

• platforms/ Folder that contains all the source code and build scripts for the plat-

forms added to our project.

• plugins/ Any added plugins are extracted or copied into this directory. Some plugins

helps the application look more native.

• hooks/ It is a folder that contains scripts used to customize cordova-cli commands.

A typical use may be creating a script that rebuilds the project for testing updates

quickly.

• merges/ It is a directory that can contain .html .css or JavaScript files. These files

placed under merges/ will override matching files in the www/ folder.

2.1.3 Plugins

As we have introduced before, a Cordova plugin creates an interface for the browser based

code to access native device functionality. It can be used regardless of the framework.3.

Though there are lot of plugins available, we have not used many of them yet. It is

important to explain that this plugins can be installed or removed whenever the developer

wants, so there will surely be future updates. For the moment, this are some of the plugins

used in this project:

3https://cordova.apache.org/docs/en/latest/guide/hybrid/plugins/index.html

9

https://cordova.apache.org/docs/en/latest/guide/hybrid/plugins/index.html

CHAPTER 2. ENABLING TECHNOLOGIES

• cordova-plugin-console: This plugin supports many methods of the console object

defining a global console object. This is really useful as the application works in many

Operating Systems. This way, we ensure that console.log() is as helpful as it can be.

• cordova-plugin-device: Because of this plugin we will be able to obtain lot of prop-

erties such as the model, platform, version, uuid, etc from the device running the

application. It supports almost every Cordova platform and this plugin is only avail-

able after the deviceready event.

• cordova-plugin-whitelist: Because of this plugin, the user will be able to navigate

to the URLs included in a whitelist policy. It must be used carefully because we do

not want to download any malware.

10

2.2. NODEJS

2.2 NodeJS

Node.js[3] is a server-side Javascript environment, with great performance, based on events

and, therefore, asynchronous. This language works on the vast majority of servers. One of

the biggest advantages of Node.js is that it offers numerous modules that contain easy-to-

add functionality to our project.

Figure 2.4: NodeJS

2.2.1 Modules

There are many modules available but we have used just a few of them. Here we can see a

selection of the most important ones:

• body-parser: It is a middleware that extracts the entire body portion of an incom-

ing request stream and exposes it on req.body. It parses the JSON, buffer, string and

URL encoded data submitted. This module was included in express 3 but since the

update to express 4, it must be installed separately.

• express: It is a web application framework for Node.js. It also provides numerous

tools to ensure proper management of http servers. The application is able to respond

to requests with route support due to the use of this module. It is essential for the

application to work properly.

• express-session: It is a simple session middleware for Express which allows managing

sessions but not storing them. Thats why we need to use it with the express-mysql-

session module.

11

CHAPTER 2. ENABLING TECHNOLOGIES

• express-mysql-session: It is a MySQL session store that creates a connection pool

and a database table to save session data. It is an extension of express-session used

to stored the data.

• file system: This module allows us to read, upload, update, rename or delete files

from the file system of our computer.

• mysql: It is used to manipulate MySQL databases creating connections and querying

of database.

• nodemailer: This module allows the application to send emails after creating a trans-

port object, which in our case is the SMTP transport.

• xoauth2: This module is needed to use XOauth2 token generators. XOAuth2 genera-

tor generates required accessToken itself if it is missing or expired. In this application

it is used together with Nodemailer to allow gmail to send an email through the ap-

plication to a personal mail.

• pug: It is a template engine, formerly known as Jade, for dynamic views that allows

us to inject data and then produce HTML. In our project, we work with this dynamic

views but also with static content such as images, JS and CSS files.

12

2.3. ONSEN UI

2.3 Onsen UI

Onsen UI[4] is an open source software that presents lots of UI components packed with

ready-to-implement features specially designed for mobile apps. Every component follows

the native iOS and Android design standards so its a great option for making our Hybrid

app fell native. Throughout this project we have used some Onsen components although

we have had to edit some of them.

Figure 2.5: Onsen UI

2.3.1 Components used

Every single view we have in our application has an “onsen-page” tag instead the “body”

one. So this framework is a heavy component. Here we can see some of the components

used in the application even though we have included others:

• Speed Dial: A button that displays a menu with elements when its clicked. In our

case we use this component for showing the social network links: Facebook, Twitter,

Youtube, Website, etc.

• The Splitter: It creates a swipeable menu which is attached to a specific side. The

content of the view changes when the user clicks on one of the items in the menu. In

our case we use this component in a view that explains the main objectives of the

Foundation. Thanks to this component, the user can change from one view to another

very easily and without exiting the original view.

• Input: It provides a normal input text but with the Onsen UI style. The button

incorporated had been changed to include the property of “submit”. This input is

used in the index.html view to login.

13

CHAPTER 2. ENABLING TECHNOLOGIES

• Select Input: This component displays a select box with an arbitrary number of

options. In our case it is used to choose the role of the users from our application.

2.3.2 Onsen UI Playground

This framework offers a “playground” in the website to test the different components4. It

is very intuitive and offers the user to test all the possible components, along with other

templates that bring the most important ones together. This playground has been really

useful throughout the project development as we have been able to compare and choose the

best option.

Here we can see how the playground looks like:

Figure 2.6: Onsen UI Playground

4https://onsen.io/playground/

14

https://onsen.io/playground/

2.4. MYSQL

2.4 MySQL

MySQL[5] is a database management system that uses Structured Query Language (SQL)

where databases are relational. Its an open Source software backed by Oracle Corporation.

It runs as a server and allows multiple users to manage and create numerous databases.

MySQL can also run on various platforms such as UNIX, Linux, Windows, etc. It is an im-

portant component in the LAMP (Linux, Apache, MySQL and PHP) stack of open source

web application software that is used to create websites.

Our application requires MySQL to store and manipulate all of its data. This informa-

tion is stored in four main tables: “perfiles” which contains the basic data from the users,

“actividades” which stores the different activities of the Foundation, “volunACT” which

contains the activities with users that have signed up, and “sessions” that stores essential

information from the users that have logged in the application.

Figure 2.7: MySQL

15

CHAPTER 2. ENABLING TECHNOLOGIES

16

CHAPTER3
Architecture

This chapter explains the architecture of the entire project, including the design phase, the

implementation details and the server requirements. We show a global vision of the project

to identify the different parts involved, focusing on each module and its relation with the

project.

17

CHAPTER 3. ARCHITECTURE

3.1 Overview

3.1.1 General blocks diagram

Here we can find a brief description of the architecture of the whole project. The user

interacts with the Front-End throughout the mobile phone application which has been

downloaded from the proper market. The views displayed in the mobile phone are loaded

throughout routes as it will be explained afterwards. The Back-End translates the Front-

End interactions made by the user to a language and guidelines that the computer can un-

derstand. All the useful information is stored inside the database in tables. This database

is keept in a server and can only be accessed with queries throughout the Back-End code.

The user will not have the access to the Back-End code or the database, which means that

the only way he can manage his personal information is by throughout the Front-End code.

The developer however, can access directly to the Back-End code and control the whole

application. The server is local and contains the Application code and the database. In the

next figure we can see the diagram of the application:

Figure 3.1: General blocks diagram

18

3.1. OVERVIEW

3.1.2 Levels

The architecture of the developed application, as shown in 3.1, consist of three modules:

• Front-End: Known as the user interface that allows them to interact with our code.

As we are working with Cordova, we will use the standard web technologies for devel-

oping this phase instead of using Vue.js1, Angular.js2 or React.js3. We have chosen

to work with pure javascript because it generates a faster and cleaner code. However,

we have used some components of the framework “Onsen UI”.

• Back-End: Known as the code that runs on the server-side. In this case, there are

also lots of different frameworks (Django4, Ruby-On-Rails5, Flask..) but we selected

Express as we are working on the run-time environment called NodeJS. This duo work

with JavaScript and have lots of advantages such as a huge community, the possibility

of creating cross-platforms apps, etc.

• Database: Here we store all the information generated by our app. We have three

similar options: MongoDB6, MySQL or PostgreSQL7. The main difference between

them is that the first one is non-relational and the second and third one work as a

relational database management system. MySQL and PostgreSQL are very similar,

we picked MySQL but there would not have been much difference if we had selected

PostgreSQL. For local tests, we used the MySQL server.

1https://vuejs.org
2https://angularjs.org
3https://reactjs.org
4https://www.djangoproject.com
5https://rubyonrails.org
6https://www.mongodb.com/es
7https://www.postgresql.org

19

https://vuejs.org
https://angularjs.org
https://reactjs.org
https://www.djangoproject.com
https://rubyonrails.org
https://www.mongodb.com/es
https://www.postgresql.org

CHAPTER 3. ARCHITECTURE

3.2 Front-End

3.2.1 Competitors

There are many different options for the Front-End design. The Front-End of an application

is one of the most important factors to succeed because it is the first thing that a user sees.

This factor not only makes the code look beautiful, it also make the application easy to use.

Even though we are going to talk about the Onsen UI framework, there are other pos-

sible frameworks which are really useful and interesting. In this case, using one component

does not limit your application to just one framework. In fact, the majority of our com-

ponents are from Onsen UI but we have used Bootstrap ones too.8 Bootstrap allows us to

build easily a particular component in our application by writting a few lines in our HTML

and CSS files. It is important to remember that the CSS file is normally an url loaded by

our code so it means that we need to be connected to the internet to use the component.

This is solved by copying and saving the CSS code to a file inside our application directory,

to the same folder in which Onsen UI components have been saved.

Another competitor to our Onsen UI framework is Ionic. One important difference is

that Onsen UI has an available playground to test the different components and try new

features. Also, the possibility to work only with pure JavaScript was another important

factor that made us choose Onsen UI.

We also found many competitors when we had to decide which view engine to use. The

three main competitors are Handlebars, EJS and Mustache. Every of these view engines

works properly and they are quite similar, so it was not an essential choice.

Even so, the reasons that made us pick .pug were:

• Handlebars9: The aspect of a Handlebars file is very similar to an HTML one, but

with special components that loads the variables you want. The worst thing about

this view engine is the lack of quality tutorials. If you want to use this files perfectly,

you need to make your own tests and practice a lot.

8https://getbootstrap.com/docs/4.2/components/alerts/
9https://handlebarsjs.com

20

https://getbootstrap.com/docs/4.2/components/alerts/
https://handlebarsjs.com

3.2. FRONT-END

• EJS10: This type of files are not so friendly and similar to HTML as the rest of the

competitors. That is why EJS was rejected.

• Mustache11: Handlebars is an extension of this type of files, so if we rejected Han-

dlebars, it would have made no sense to choose this one. The appearance is also not

very friendly so it is not very easy-reading. Other important factor is that the basic

tasks are a little bit difficult in this type of files.

3.2.2 Application Directory

As we have said before, we are using HTML5, CSS3, and JavaScript to develop the applica-

tion. All these created files are inside the www/ folder of the Cordova directory. The files

are distributed as follows:

Figure 3.2: Application Directory

The folders and files shown above compose the whole application. Each folder has one

or more files but only the most important ones will be explained. On top of the image you

can find the name of the project “version final”. We will describe each part of the directory

in the following list:

• index.html contains the main view in HTML format. As we can see in the figure,

the file is very simple: it is composed by a logo and a button. This is the cover of the

10https://ejs.co
11https://mustache.github.io

21

https://ejs.co
https://mustache.github.io

CHAPTER 3. ARCHITECTURE

application as Cordova needs a HTML file to load everything else. After clicking the

button, the user is redirected to the index.pug file, which is the login view.

Figure 3.3: index.html code

• app.js starts the server. It contains information of the MySQL server inside of a code

that loads the NodeJS modules, sets pug as the view engine and starts the server in

the correct port. In the next figure we can see an extract of the app.js file.

Figure 3.4: app.js code

22

3.2. FRONT-END

• routes/ contains files with the different navigation routes that makes our application

fluid. The main file is called routes.js and it will be described at the end of this chapter.

• src/ contains the CSS and JS files that make the application beautiful and friendly.

Inside this folder we can also find the pictures used in our application. As we have

written in the app.js file, the static files will be stored inside this directory.

• views/ contains the dynamic .pug views that compose the application. This files are

loaded through the routes that will be explained at the end of this chapter.

3.2.3 Onsen UI

Inside the folders css/ and css-components-src/ we find all the necessary files for the Onsen

UI components to work. By placing all the files within these folders, we decrease the loading

speed of the application although it uses more storage on our phone. In our directory we

can find the CSS and JavaScript files needed for a correct functionality of every single Onsen

UI component. We are using only the components described in the chapter 2 we have been

working only with four files: “onsen-css-components.css”, “onsenui.css”, “theme.css” and

“onsenui.js”. Apart from them, we have sometimes included our personal CSS and JS files.

Onsen also allows us to access to the CSS and JS files and edit them but it is a tough task

because of the lenght of the files.

23

CHAPTER 3. ARCHITECTURE

3.2.4 Pug

We are using dynamic views that are rendered through routes. These .pug files are hosted

in the views/ folder. There are many view engines available: ejs, pug, handlebars, etc, but

pug has a free online converter and is very easy to understand thanks to its similarity with

html. The .pug code shows a html structure but without the typical characters. Below we

can see an example of a .pug file with comments explaining each part involved.

Figure 3.5: Pug file example

24

3.2. FRONT-END

3.2.5 Mock-Up

Before this project started, we created a mock-up in which we built a purely visual pro-

totype that included all the desired use cases, as well as navigation between views and a

possible graphic design. This was an initial prototype and therefore, during the subsequent

development of the project, we have changed certain functionalities in order to gain a com-

plete application.

Below we can see a screenshot with all the views available in the mock-up, but also you

can watch the entire Mock-Up through this references[6][7]

Figure 3.6: Mock-Up Views

25

CHAPTER 3. ARCHITECTURE

3.3 Back-End

3.3.1 Competitors

In this part of the project we find the most varied competitors as we can program in

many different languages. If you want to programm in Ruby, then Ruby-on-Rails is the

best framework option, but if you prefer programming in Pyhton, then you may choose

Django. In our case the decision was very easy because the main programming language

in our university is Java. That is why NodeJS was the first and only choice as it works

with JavaScript. Even though it is relatively modern, it is very solid, specially if it is used

together with ExpressJS.

3.3.2 NodeJS

As described before, Node.js is an application runtime environment that allows us to write

server-side applications in JavaScript. It comes with many APIs suitable for backend de-

velopment. We have chosen Node because using it as our server technology gives us a great

boost that comes from using the same language on both the front end and the back end.

Thanks to NodeJS and its modules, we are able to connect the user and the database.

Once we install the modules, the “dependencies” property of our package.json file changes.

In the figure 3.7 we can see how this package.json file looks like:

As we can see in the application directory, there is a file called package-lock.json very

similar to the one above. The package-lock.json file records the exact version of each in-

stalled package which allows us to re-install them. Because of this, we will be able to build

an identical dependency tree in future installs. The file shown in the figure records only the

minimum version needed. The version updates wont be reflected here.

Below we can see some commented code explaining the behavior of the modules. It is

an extract of the config.js file, which contains information about the connections, using the

NodeJS modules, between our code and the MySQL database.

26

3.3. BACK-END

Figure 3.7: package.json code

Figure 3.8: NodeJS modules explained with config.js file

27

CHAPTER 3. ARCHITECTURE

3.4 Database

3.4.1 Competitors

As we have commented at the beginning of this chapter, we were hesitating between Mon-

goDB, Postgresql and MySQL. The first one was rejected because it is a non-relational

database management system, so even if it is one of the best choices to manage databases,

in our case it was useless because we need to connect the different tables to obtain useful

results. An example of this is the voluACT table which joins information of users and ac-

tivities in the same place. So the choice was between the other two. They are very similar

but MySQL works better with tables. As this Foundation (Masnatur) stores their data in

tables, MySQL was the best option. We interact with this database through queries written

in SQL language. For security, by default only one connection is allowed in the same query

as we have described before.

3.4.2 PopSQL and MySQL

We have chosen the program PopSQL[8] (the free version) to work directly with the MySQL

database and because of this we have been able to quickly verify that all the changes had

been made correctly. This program allows us to collaborate in realtime with other devel-

opers, we can also share queries by URL, and organize them in folders, visualize our data

automatically and not only works with MySQL. The bad news are that PopSQL does not

support MongoDB, but in our case that does not really matter. Here is a screenshot of the

PopSQL interface:

Figure 3.9: PopSQL interface

28

3.4. DATABASE

The information stored by our application is distributed between the following tables:

perfiles, actividades, volunACT and sessions. The fields of these tables will be explained in

the use cases from the chapter 5, so here we will only show the content and the statements

used to create the “actividades” and “perfiles” tables (the most important ones) in the next

screenshots:

Figure 3.10: “actividades” table in PopSQL

Figure 3.11: “perfiles” table in PopSQL

29

CHAPTER 3. ARCHITECTURE

3.5 Connection between Front-End, Back-End and the Database

Queries to the database are made through the code written in the routes.js file which is

connected to the forms inside the .pug views. The user interacts with the form included

in the .pug file and the stored data is managed by the routes.js file with queries to the

database, thanks to NodeJS and its modules. Below we can see a detailed and commented

example of these connections.

In the next figure we will find the main route of the application explained. We will

only see the code inside of the routes.js file. The login is controled with two queries that

compares the data inserted by the user with the data stored in the “perfiles” table from

the database. We can also notice that the session store object used is very similar to the

request.session storage. In fact, there is no need to create the session store object, but we

have decided to do it because it is easier to control the information that stores.

Figure 3.12: Code inside of the routes.js file for the login

The rest of the login code was explained above in this chapter when we described the

differences between the .pug and the .html files. There we can find the login form that

complete this route. This particular form is an Onsen UI component.

30

CHAPTER4
Case study

This chapter describes the needs of the different users, presented as a walk-through among

all the options offered by the application. We will also show the code that allows this use

cases work and the corresponding view. Here is a list of the user cases:

31

CHAPTER 4. CASE STUDY

4.1 Create a Personal Profile for the app

Every user that enters the app must have a profile and provide us some personal information

which is stored in the table called “perfiles” from our database. The information we ask

for is: name, email, password, a brief description of the personality of the user and the role

that the user has inside the Foundation (volunteer, “beneficiary”, worker...).

Figure 4.1: Creation of a new profile

The JavaScript used in the creation of the profile controls that the email is realistic and

the password is the same in both fields. As we can see in the figure above, the password is

hidden and the type of the email input forces the user to introduce a valid email.

After clicking the “crear” button, the route stores the information inserted by the user

inside of the database table “perfiles” as we can confirm in the next figure:

Figure 4.2: Profile created stored in the database

32

4.2. ACCESS AND EDIT YOUR PERSONAL PROFILE

4.2 Access and edit your Personal Profile

Entering to your profile allows you to control your information stored in the database and

also change it. There are two views that allow the user to do all this: verPerfil.pug and

editarPerfil.pug. The first one requests information from the database and show it in the

view, the second one offers the user the possibility to modify the fields in the “perfiles”

table by clicking the button “Confirmar cambios”.

Here we can see how the verPerfil.pug file works first and then the editarPerfil.pug:

Figure 4.3: verPerfil.pug code and view

Figure 4.4: editarPerfil.pug code and view

33

CHAPTER 4. CASE STUDY

4.3 Log in to the app using your email and your password

The user inserts his email and his password in a form inside the .pug file and we check if this

data matches and exists in the database This way, the user can access to our application

and see the customized information. If the information entered inside the form does not

match with the stored data, the user will be redirected to the main screen.

The files that make this use case possible, have been shown in the other chapters so in

this case, the following figures will only show the views of a login attempt. In the first one,

we can see the data inserted in the form, and the second picture shows the main view of

the application after the user clicks the “Entrar” button.

Figure 4.5: Login views of the application

34

4.4. WATCH A LIST OF ACTIVITIES AND SEARCH FOR SPECIFIC ONES

4.4 Watch a list of activities and search for specific ones

At first, all the activities are shown in the same list but the user can choose between differ-

ent groups of them. The activities are stored in the database in a table called “actividades”,

which saves the date, the name, the place and a description of each activity. Only the name,

place and date are shown in the list, however the description is reserved for the next use

case. Here we can see how the list of activities is shown without any modification.

Figure 4.6: List of activities

The activities shown in the figure have been grouped by month. In the first picture,

we can see the activities done in December and in the second one, the activities that will

be done in February. If we click the button “Ver actividad” we can enter to the complete

description of the activity, which is the next use case.

35

CHAPTER 4. CASE STUDY

4.5 Access to a description of the activities

The user can access to the page of a particular activity to obtain more information. An

entire view is reserved to show the details of the activity and depending on the date of

the activity, the information shown changes. This information is loaded from the database

through a query inside of a route and it is shown to the user with a dynamic view.

Here we can see the two different possible views. The first image shows the description

of an activity when it has already passed: instead of a button to sign up for the activity,

there is a phrase that informs the user that the activity is no longer available. The second

image gives the user the opportunity of sign up for the activity described by clicking the

“Apuntate” button.

Figure 4.7: Description of the activities

36

4.6. SIGN UP FOR AN ACTIVITY

4.6 Sign up for an activity

A user interested in participating in an activity can sign up through the page of that activity

(previous use case). After signing up, this user is stored in the database in a table called

“volunACT” that includes several fields: id of the activity, id of the volunteer, a boolean

that informs if the volunteer has confirmed his presence, an evaluation... Hence we can, for

example, obtain a list of the volunteers participating in a specific activity or calculate the

number of people available for that activity.

In the next figure we will demonstrate how this works by showing the state of the activ-

ity before and after signing up. The image of the left shows an activity without volunteers.

The description informs the user about this and offers the possibility of join the activity.

If the user clicks the button, the description of that activity changes: there is no button

available for this particular user and the count of volunteers has increased for every user as

we can see in the image of the right.

Figure 4.8: Signing up for an activity

37

CHAPTER 4. CASE STUDY

4.7 Choose between the future or the past activities

One of the options offered by the app is to group the activities depending on their date.

The user can choose to see the activities that have already happened, although he will not

be able to sign up for them. But the user can also see the upcoming activities and sign up

as we have explained in detail in the previous use case. The .pug view that shows these

activities is the same in both cases, the only difference is that the code extracts the date

of the activity, compares it with the current date, and shows different data according to a

variable that indicates whether the activity have happened or not.

This code is also used for grouping activities as we can select just the future activities

or search for every single activity of the database. At the top of the view, we can see the

different buttons that group the activities and also a specific button to group only the future

activities. This button works as we have described before and shows this:

Figure 4.9: Future activities

38

4.8. WATCH YOUR ACTIVITIES

4.8 Watch your activities

On the main page of the application, the user can choose to access only to his own activities

instead of the list of all activities, which means that he can access the activities in which he

had participated or in which he has registered and will participate. In this case, the code

examines the information stored in the “volunACT” table of the database and searches only

those activities that include the user id.

We can see the case of the user created for these examples: “Alejandro” with email “ale-

jandro@hotmail.com”. For this use case, we will also sign this user up for the last activity

in February: the weekend in Soto de Henares. The next figure shows in the first image

that the user has not participated in any activity yet but he has signed up to two future

activities as we can see in the second image. We can see in the figure the result of clicking

the “past” and “future” personal activities:

Figure 4.10: My personal activities

39

CHAPTER 4. CASE STUDY

4.9 Send an email through the app

The user can send an email and contact with the workers of the Foundation using the appli-

cation. Currently the only way of communication between volunteers and Foundation is by

email or phone, and for this reason it is important that the application offers this possibility.

This email can be send thanks to the smtp transport included in the NodeMailer module.

As we have explained before, this module is used to send messages.

The email service used is Gmail because the Foundation uses this same service. For

this tests, we have also used the XOauth2 protocol which requires an authenticated google

member. This data has been placed inside the route that sends the email, as a property of

the smtp transport. The received email has always the same structure in order to find it

quickly and easily. In the following figure, we can see the email send through the application

and recieved in my personal email.

Figure 4.11: Sending an email

40

4.10. ACCESS TO ALL OF THE SOCIAL NETWORKS OF THE FOUNDATION

4.10 Access to all of the social networks of the Foundation

The application offers different links and information about the Foundation. Through the

login page we can access to information focused on attracting new users to the Foundation.

There are four Masnatur goals described as we can see in the next figure. The user can

change between the goals very easily. The first two images show an example of this:

Figure 4.12: Goals and links of the Foundation

Throughout the application we can find some links that redirect users to the Facebook,

Twitter, YouTube or Instagram of Masnatur. This are also very accessible because they all

appear after clicking a button at the bottom of the mobile phone. In the third picture we

can see the aspect of the view after clicking the button.

The tools used above are edited components from Onsen UI. In the second picture we

can see the “Vision” view selected with the “Side Menu” component and also how the

“Speed Dial” works. The last picture is a normal Onsen UI “Action Sheet” that redirects

the user to the different social networks.

41

CHAPTER 4. CASE STUDY

42

CHAPTER5
Conclusions

In this chapter we describe the conclusions extracted from this project, problems, achieve-

ments and suggestions about future work.

43

CHAPTER 5. CONCLUSIONS

5.1 Conclusions

In this project we have developed a multiplatform mobile application for a non-profit Foun-

dation called Masnatur. We have selected the framework Apache Cordova in order to reduce

developing time and offer as many different mobile operating systems as possible.

This project contains some basic features that allows us to release the application as it

is, such as a full login for any volunteer which was a main priority. In summary, we have

used the top tools to develop the application in the most effective way. There may be better

solutions, but this one is very optimized. Onsen UI components are a great complement for

Cordova applications, and NodeJS works perfect with MySQL databases.

In the following sections we explain the problems faced and some future objectives.

5.2 Problems faced

While installing the environment we faced several problems mainly with the versions of the

different elements (Android Studio1, JDK2, Gradle3, the environment variables, etc). Every

problem was solved by googling the solution in forums or by searching the FAQs of each

element and installing the correct version.

Connecting the database with the code also generated problems until the routes started

to work properly. The problem was introducing correctly SQL sentences and it was solved

after installing the program called PopSQL. With this program, we were able to try different

sentences and find the correct one.

At the beginning of the project we were working with static views until we faced lot

of problems when trying to request the information stored in the database and show it in

the view. This was a really difficult problem to solve. After changing the .html views too

.pug, everything started to work correctly. This solution was suggested by the tutor Carlos

Ángel Iglesias.

1https://developer.android.com/studio/?hl=es-419
2https://www.oracle.com/technetwork/java/javase/downloads/

jdk8-downloads-2133151.html
3https://gradle.org

44

https://developer.android.com/studio/?hl=es-419
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://gradle.org

5.3. FUTURE OBJECTIVES

5.3 Future Objectives

As we have commented before, this is just a prototype and we will update and improve the

application as much as we can. We have lots of future objectives if we want to create a

complete application. Here we can se some of them:

• Add new features to the actual application such as uploading a photo to the user

profile, sending photographies attached to the emails, adding a customized style to

the whole application, etc. In summary, improve the current application.

• Publish the mobile application in each platform market (Google Play Store and Apple

App Store at least). At the beginning the apk will be distributed by email to a few

members to test the application. After proving it works, we will extend it to the

different markets.

• A complete login for every posible role in the Foundation. This way, the application

will be useful to every single member of the Foundation. To gain this objective, we

will need to extend the tables of the database, create different views, and increase

security. This objective must be done carefully as we will work with delicate data.

• Combine all the databases in the same one. We will need to learn in depth the database

used at the Foundation and combine it with ours. Depending on the complexity of

this database, this will be a reachable objective or not.

45

APPENDIXA
Appendix

In this appendix we will discuss the global impact and responsibilities related to the project.

We have summarized this impacts throughout the project but in the following page we will

go into detail. The objective of this appendix is to explain the possibles environments and

try to guess the viability of the application nowadays.

i

APPENDIX A. APPENDIX

A.1 Global impacts and responsibilities

The application we have described during the project tries to offer something different in

one particular stage: the third sector. This sector has improved a lot in the last decades

but they are still using some ancient methods. And there is where this application appears.

Mobile applications for third sector members is an empty market that will be developed

sooner or later. Now we are going to explain the different imacts and responsibilities:

A.2 Social Impact

As we have explained before, this project is focused on helping the third-sector members

and promote a more fluid communication between the parts involved. This application has

been designed for disabled people with little technological knowledge and in some cases,

also little mobility. That is why our created interface tries to be as friendly and easy as

possible. Of course, the data that the application handles is a very delicated one, and needs

to be properly protected. This security will be in constant development.

A.3 Economical Impact

This application will be donated to the Foundation Masnatur to prove it works properly.

After testing and improving the application, the base model will be sold to other members

of the third sector in order to update and modernize the sector. The maintenance of the

project will be responsibility of the project author during the first versions. That way, this

project pretends to be a 100% viable.

A.4 Responsibilities

As we have mentioned before, this is a delicated point as we are working with people that

are very protected by law. In fact, the first versions will only be available for the volunteers

of the Foundation. Once this application gets bigger and grows, we will have to manage

carefully the future changes and updates together with the lawyers and heads of the Founda-

tion. At least, for now, the application works properly and offers a responsible commitment.

ii

APPENDIXB
Appendix

In this second appendix we will discuss the budget needed to bring about the project. There

are some costs derived from the typical salaries of developers, and other costs have been

chosen from the minimum hardware needs.

iii

APPENDIX B. APPENDIX

B.1 Context

In this particular case, the first application will be a donation for the Foundation Masnatur,

so the costs for them will not be the same as the ones explained and detailed here. Even

though they get the first version free, they will need to undertake some other costs in order

to obtain the required licenses and ensure a maintenance of the application.

B.2 Physical resources

The application created in this project has some basic needs. It is developed to run in many

devices but not all. According to the amount of data managed, the average of connections

required and the future updates planned, we have selected this minimum requirements:

• RAM: over 2GB

• ROM: over 8GB

• Internet conection: Wifi and 3G.

B.3 Human resources

As we have commented in the context, this pricing is different for the first Foundation as

they will not need to afford an initial price. Even though, every Foundation will require an

individual maintenance for the future years. We estimate this costs in the following way:

• Initial price: Considering 4 hours of work per day for the past 4 months including

the last 2 weekends, with a salary of 10 eper hour, makes a total of 3.360 e which

means 840 eper month.

• Maintenance price: We keep the same terms to calculate the maintenance price.

In this case, we estimate working 2 weekends every month on updates, which gives us

a 320 e salary per month.

B.4 Licenses

We have been careful to select only open sourced softwares during the project. So in this

case, there are no costs in Licenses although in the future might be some depending on how

much the application grows. One of the posible costs are purchasing the premium version

of the program PopSQL which increments the salary only 7e per month.

iv

Bibliography

[1] Apache Cordova website. Cordova Information. Available at https://cordova.

apache.org/docs/en/latest/.

[2] Wikipedia. Cordova Information. Available at https://en.wikipedia.org/wiki/

Apache_Cordova.

[3] TutorialesProgramacionYa website. Tutorial. Available at https:

//www.tutorialesprogramacionya.com/javascriptya/nodejsya/

detalleconcepto.php?punto=1&codigo=1&inicio=0.

[4] OnsenUI website. Onsen UI Information. Available at https://onsen.io/v2/

guide/.

[5] MySQL official website. MySQL guide. Available at https://dev.mysql.com/doc/

refman/8.0/en/what-is-mysql.html.

[6] Alejandro Garrido Chasco. Mock-Up Prototype. Available at https://www.

figma.com/proto/DcjAPZdtyvjxZZSPrxo7yM9H/Untitled?node-id=0%

3A1&scaling=scale-down.

[7] Alejandro Garrido Chasco. Mock-Up General View. Available at https://www.

figma.com/file/DcjAPZdtyvjxZZSPrxo7yM9H/Untitled?node-id=0%3A1.

[8] PopSQL. PopSQL page. Available at https://popsql.io/.

[9] Alejandro Garrido Chasco. Design and development of a multiplatform mobile applica-

tion for a non-profit foundation based on the framework cordova. Master thesis, Escuela

Técnica Superior de Ingenieros de Telecomunicación, ETSI Telecomunicación, Madrid,

January 2019.

v

https://cordova.apache.org/docs/en/latest/
https://cordova.apache.org/docs/en/latest/
https://en.wikipedia.org/wiki/Apache_Cordova
https://en.wikipedia.org/wiki/Apache_Cordova
https://www.tutorialesprogramacionya.com/javascriptya/nodejsya/detalleconcepto.php?punto=1&codigo=1&inicio=0
https://www.tutorialesprogramacionya.com/javascriptya/nodejsya/detalleconcepto.php?punto=1&codigo=1&inicio=0
https://www.tutorialesprogramacionya.com/javascriptya/nodejsya/detalleconcepto.php?punto=1&codigo=1&inicio=0
https://onsen.io/v2/guide/
https://onsen.io/v2/guide/
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://www.figma.com/proto/DcjAPZdtyvjxZZSPrxo7yM9H/Untitled?node-id=0%3A1&scaling=scale-down
https://www.figma.com/proto/DcjAPZdtyvjxZZSPrxo7yM9H/Untitled?node-id=0%3A1&scaling=scale-down
https://www.figma.com/proto/DcjAPZdtyvjxZZSPrxo7yM9H/Untitled?node-id=0%3A1&scaling=scale-down
https://www.figma.com/file/DcjAPZdtyvjxZZSPrxo7yM9H/Untitled?node-id=0%3A1
https://www.figma.com/file/DcjAPZdtyvjxZZSPrxo7yM9H/Untitled?node-id=0%3A1
https://popsql.io/

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technologies
	Cordova
	Architecture
	Directory Structure
	Plugins

	NodeJS
	Modules

	Onsen UI
	Components used
	Onsen UI Playground

	MySQL

	Architecture
	Overview
	General blocks diagram
	Levels

	Front-End
	Competitors
	Application Directory
	Onsen UI
	Pug
	Mock-Up

	Back-End
	Competitors
	NodeJS

	Database
	Competitors
	PopSQL and MySQL

	Connection between Front-End, Back-End and the Database

	Case study
	Create a Personal Profile for the app
	Access and edit your Personal Profile
	Log in to the app using your email and your password
	Watch a list of activities and search for specific ones
	Access to a description of the activities
	Sign up for an activity
	Choose between the future or the past activities
	Watch your activities
	Send an email through the app
	Access to all of the social networks of the Foundation

	Conclusions
	Conclusions
	Problems faced
	Future Objectives

	Appendix
	Global impacts and responsibilities
	Social Impact
	Economical Impact
	Responsibilities

	Appendix
	Context
	Physical resources
	Human resources
	Licenses

	Bibliography

