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Resumen

En este proyecto, estudiamos la capacidad de los ordenadores para clasificar documentos

llenos de conceptos médicos. Encontrar formas de organizar automáticamente los datos

en un esquema óptimo puede mejorar el trabajo del médico y, como consecuencia final, la

posibilidad de atender a más pacientes. Incluso para un experto, estos conceptos pueden

ser lo suficientemente complejos como para requerir de una investigación previa antes de

dar un diagnóstico adecuado. Con el objetivo de limitar la complejidad del problema en

cuestión, decidimos centrarnos en un tema en particular: las enfermedades.

El conjunto de datos, cuya estructura era idónea para la realización de un intento de

clasificación biomédica, fue la colección Ohsumed. Gracias a técnicas como el Procesamiento

del Lenguage Natural (PNL) y el Aprendizaje Automático (AA) comenzamos a construir

los diferentes modelos. En primer lugar, todos los documentos son ordenados y tokenizados

para cada clase. En segundo lugar, para transformar los ‘tokens’ en vectores, se utilizaron

tres embedding models: Tf-idf, Word2vec y Simon. Finalmente, los modelos resultantes,

analizados por distintos clasificadores, determinaron la calidad de las predicciones. En

promedio, los resultados en todos los ensayos parećıan sugerir que algunos modelos no

asimilaban las relaciones médicas de manera efectiva. Otro inconveniente encontrado fue

que los documentos teńıan múltiples etiquetas, lo que significa que, en promedio, un texto

dado podŕıa pertenecer a tres o más clases distintas. La solución requirió transformar

dichos identificadores y realizar una clasificación multi-etiqueta, en la cual se obtuvo una

puntuación del 68% que corresponde con la más alta hasta el momento (utilizando un

clasificador SVC lineal).

Este resultado muestra que la complejidad del campo biomédico requiere la adopción

de técnicas sofisticadas para mapear de manera efectiva las relaciones entre conceptos. Sin

embargo, dados otros art́ıculos, nuestros resultados parecen ser acertados y ligeramente

mejores si consideramos que estamos usando todo el conjunto de datos en lugar de una

fracción de los mismos.

Palabras clave: Ohsumed, PNL, AA, clasificación, multi-etiqueta.
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Abstract

In this project, we study the computers’ capacity for the classification of documents crowded

with medical jargon as if they were experts on such topics. The technology era has brought

several challenges to many different areas; one of the most affected ones is the biomedical

field. Finding ways to organise the data in an optimal scheme, can enhance the physician’s

work and as a final consequence, the possibility to attend more patients. Even for a doctor,

medical concepts can be complex enough to require some previous research before giving

a proper diagnosis. To limit this complexity, we decided to focus on one particular topic:

diseases.

The dataset, whose structure was ideal for the realisation of a biomedical classification

attempt, was the Ohsumed collection. Thanks to techniques such as Natural Language

Processing (NLP) and Machine Learning (ML), we started building the different models.

Firstly, we had to create a dataframe where all the documents were sorted by their classes

and successfully tokenised. Secondly, to transform tokens into word vectors, three different

word embedding techniques were used: Tf-idf, Word2vec and Simon. Finally, the resulting

embedding models, learned by a classifier, determined the quality of their predictions.

On average, the results all over the classifiers seemed to suggest that some of the models

were not assimilating medical relations effectively. Another drawback found was that the

documents were multi-labelled, meaning that on average a given text could belong to three

or even more different tags. Solving this issue was achievable by transforming the dataset’s

identifiers into a 23 length binary array. Then, multi-labelled classifiers specially designed

for these cases performed the estimation. After this trial, we computed the highest score so

far attained in this project of a 68% F-score using a linear C-support vector as the classifier.

This result shows that the complexity of the biomedical field requires the adoption of

sophisticated feature extractors to map relations between concepts effectively. However,

given other articles, our results seem to be on point and slightly better if we consider that

we are using the whole dataset instead of a fraction of it.

Keywords: Ohsumed dataset, NLP, ML, classification, multilabel
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CHAPTER1
Introduction

In Section 1.1, we present the struggles of the medical field in data management as a

first approach to our problem. Then in Section 1.3, we explain the objectives of the

project. Finally, we describe the structure of the document in Section 1.4.

1.1 Context

Nowadays, healthcare is one of the most developed sectors in the world, experiencing sub-

stantial growths each year. To show this increase, the International Data Corporation has

given some insight into the current state of the sector. Their researchers estimate the data

generated to reach a Compound Annual Growth Rate (CAGR) of 36% in 2025, which is

10% higher than some prominent sectors like media. However, data quantity does not nec-

essarily correspond with quality, meaning that even though the industry is generating data

on a large scale, the technologies fall below average in some data competencies. Being more

precise, the company Seagate alongside the International Data Corporation positions the

healthcare sector with a DATCON (Data Readiness Condition Index) score of 2.4.[2]

These lead us to the next question: How can we extract value from data in the biomedical

field? Well, currently, the two main approaches that have more engagement are two. On the

1



CHAPTER 1. INTRODUCTION

one hand, the implementation of human interactive systems as tools to create an information

interchange from a person to a computer and vice versa. On the other hand, data extraction

tasks, commonly based on machine learning, aims to convert all this information into a

structured format so that it can be valuable and easily accessed. [1]

The first one covers disciplines such as the implementation of support decision systems

that can help reduce costs and improve quality, the creation of chatbots to minimize the use

of workforce in trivial tasks, the design of robots that can reproduce complex procedures

without failure and the development of intelligent surgical rooms that can adapt to different

case scenarios.

The second field relates to the use of machine learning methodologies. With them, com-

puters can develop the ability to learn without being explicitly programmed (Arthur Samuel,

1959). Human experts are good at recognizing patterns but limited to the dimensionality of

the problems (≤3). The data quantity and complexity of the medical field generates tasks

with sometimes more than a thousand dimensions. Sophisticated algorithms and decent

computing capacity are needed to overcome these issues.[3]

In medicine and many other fields, the data is not homogeneous. Healthcare data is one

of the most varied and complex of them all, due to the different methodologies used in the

sector.

Firstly, there are imaging techniques such as magnetic resonance imaging, computed

tomography and ultrasounds. The size of the data can change a lot from one format to

another; therefore, to give a concrete example MRI is used. In these procedures, the images’

resolution varies from a wide range of values that go from 64x64 up to 1024x1024 pixels.

Thus, what could be a small study of breast cancer, it can generate 1500 images which

correspond to 300 MB.

Secondly, there is the genomics field, where advances in high-throughput biotechnologies

have produced a drastic change in the data size. Four DNA base pairs can fit on a single byte,

which means that if there are 6E9 base pairs on a diploid genome, each sample supposes

1.5 GB of storage capacity. This amount of information presents several challenges such as

multiple comparisons issues, high dimensional data, computational limitations, and noise.

[4]

Lastly, there are the unstructured medical data texts, which can appear in the form of

medical informs, abstracts and clinical notes. In this situation, the task is to give a standard

format to the data for its posterior use in different information models.

2



1.2. MOTIVATION

1.2 Motivation

NLP techniques are the ones used to solve these problems.

“Natural Language processing is a sub-field of linguistics, computer science,

information engineering and artificial intelligence concerned with the

interactions between computers and human natural languages, in particular

how to program computers to process and analyse large amounts of natural

language data” [5]

It covers a varied range of tasks that analyze syntax, semantics, discourse, and speech.

When talking about medical corpora, a series of considerations need to be made to progress

successfully analyzing these documents. The medical jargon can be quite complex and

varied, which is the reason why there is extensive research done using different approaches.

Some of the most known ones are the use of meta-maps and ontologies combined with

statistical methods that can organize medical concepts and apply them to specific machine

learning techniques, for instance, classification, clustering and regression tasks.

Figure 1.1: NLP basic scheme [1]

These studies have a robust statistical facet that requires large scale datasets to be

well-founded. Currently, with the adoption of the Electronic Medical Record as a tool for

collecting data, the task of extracting these texts has been worsened. Before, notes where

abundant in the narrative description of the clinical encounter, which is critical for the

development of linguistic models. Right now, inserting data on a discrete format can result

in a drastic reduction of useful corpora for the NLP analysis. [1]

In this work, we are going to use the most common methods applied for unstructured

text analysis to measure the effectiveness and accuracy of classifying medical corpora.

3



CHAPTER 1. INTRODUCTION

1.3 Goals of the Project

A series of goals are defined to ensure a successful evaluation of the models:

1. Look for a large dataset with unstructured medical data that fits the requirements to

perform a classification task. The subject matter of the text can cover any medical

category from treatments, diagnosis and diseases to organs, anatomy and physiology.

2. Regarding the different datasets from the anterior task, select a corpus that fits best

the requirements; giving preference to labelled datasets in order to lessen the prepro-

cessing work.

3. Prepare the data using NLP techniques, allowing the ML algorithms to compute the

classification tasks by training and testing the documents, already preprocessed, in a

variety of pipelines.

4. Obtain statistical metrics from the different pipelines to test their robustness and

efficiency. Once those results are explored, we will conclude showing all the different

findings and interesting achievements obtained throughout the project.

1.4 Structure of the document

The rest of the document is structured as follows. In Chapter 1, the current state of the

medical sector is exposed alongside the different project goals. Then, in Chapter 2, the tools

and programs required for the development of this work are described. Next, Chapter 3

presents and explains the dataset selected for the project along with its advantages and

disadvantages. Later, in Chapter 4 we detail the implementation of different pipelines

that propose a varied range of approaches to perform the classification. Afterwards, in

Chapter 5 the results of the models are shown in the form of different scoring metrics.

Finally, in Chapter 6, some conclusions are presented and some possible paths for future

work are proposed.

4



CHAPTER2
Enabling Technologies

In this chapter, section 2.1 introduces the fundamentals of language features.Then,

section 2.2 describes the techniques used to exploit them. Finally, section 2.3 defines

the machine learning technology designed for unstructured data.

2.1 Language features

Written text is full of meaning and presented to the reader in many different ways. Our brain

has developed through learning how to extract the intention from such writings. However,

implementing this sort of intelligence on a computer is a task far from being achieved. This

section describes the methods that allow a machine to extract meaning from various pieces

of literature. The underlying structure of written texts has a varied set of characteristics

[6] that serve as features for a computer to analyse:

• Genre: defines a document with a characteristic form. There are many different

types, for instance, brochures, biographies, memoirs, forms and e-mails.

• Text structure: describes the organisation of writings; for example, factual texts

have a categorical structure with sections and headings. Expressing content with

structural patterns determines how difficult it is to understand readings; the com-

5



CHAPTER 2. ENABLING TECHNOLOGIES

bination of descriptions, chronological sequences, comparisons and cause/effect are

some of them. It is the writer’s task to make an effective combination so that it is

understandable for the target audience.

• Content: relies on understanding the subject matter of the text. On factual extracts,

it refers to the topic. The level of understanding of an excerpt depends on the level

of the reader in that particular topic. For example, a reader’s comprehension level

does not matter at all if he/she is reading a clinical note without being familiar with

medical jargon.

• Themes and ideas: themes relate to the ideas that a writer wants to transmit to

the audience. Those can be concrete and easy to get, or abstract and hard to extract

from the reading.

• Language and literary features: there is an extensive set of literary elements sub-

ject to the writing form. Factual writers use description and technical communication.

• Sentence complexity: represents how to map meaning in an essay. The simpler

the sentences, the easier it is for a reader to understand. If phrases are embedded

together with conjoined clauses, comprehension will worsen.

• Vocabulary: gathers the particular lexicon used to give meaning and express content

and ideas in a sentence. Contains a list of concepts which represent the most basic

structure in literature and speech, words.

• Others: apart from raw text, on a book, there are also tables of contents, indexes,

notes and illustrations that give extra meaning to the main corpus and may contribute

remarkably to the understanding of an extract.

All these language features play an essential role in the implementation of natural lan-

guage processing systems. Depending on the purpose of the study, some of them will be

more relevant than others. It is a developer’s task to choose which features will help to

extract value from the text.

2.2 Natural language processing

A book called ‘Speech and Language Processing’ [7] served as a guideline for the development

of this section. Therefore, if you are interested in a complete explanation of a specific topic,

we recommend reading through it.
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2.2.1 Analysing words

The description of the methodologies used in NLP starts now, beginning with the analysis

of the most basic structure of language (words). Detecting a particular token is a task

usually managed by the use of the so-called regular expressions.

2.2.1.1 Regular expressions

It is the language used in computer science to search for a specific text string. A particular

algebraic notation with many variants is the one used to perform this analysis. Computer

languages, word processors and text processing tools use this notation to operate.

The nature of the target can be varied; therefore, to be precise while writing the com-

mands, we have to consider the use of several tokens that will help expressing it clearly.

The first thing to point out is that the term between which will be written the target word

is the double slash (/.../). Inside those bars, the next thing to have in mind is that the

Regular Expressions (RE) are case sensitive. To solve this ambiguity, the squared brackets

(/[]/) represent disjunctions, allowing us to assimilate together upper and lower case tokens

(/[Aa]/). The next term that saves time in the developing of the RE is the range expression

(/-/), which wraps all the words within two points. Other characters can have several uses

depending on the place they are situated, for example, the caret (ˆ) has three: it can mark

the beginning of a sentence, the negation of a term and the real text token ˆ.

In the typical dilemma of American/British English, words like color/colour need to

be spotted. The token that works well with such cases is the question mark (/?/) which

marks the optionality of the previous character. Lastly, the distinctive character period

(/./) represents any possible term that appears in a position like a wildcard (except the

carriage return character). In the table 2.3, we can see the application of some of the RE

described above.

These examples represent isolated cases in language, useless at all in real case scenarios.

The context of a word can induce mistakes in the detection of a particular term, to show a

practical and straightforward example we will explain section 2.1.3 from [7] where the task

was to detect the word ‘the’. The procedure is the following:

1. /the/ appears to be the simplest and straight solution. However, given this query,

we will be missing the upper cases ‘The’ at the beginning of sentences, which is a

widespread case. Solution: /[Tt]he/

2. Once this issue is solved, another one appears. Words that contain on them the

7
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Regular Expression Text example (with multiple matches)

/[0-9 ]+/ My phone number is 646525434

/[Bb]eg.n/ Begin,began, begun are the possible tenses

/colou?r/ What word comes from British color or colour?

/[A-Z]\s/ The package was delivered by SERANCO SA

Table 2.1: Explanation of some RE special characters

term ‘the’ represent a false positive scenario, for example, the names ´theorem’ or

´theology’. Solution: /\b[Tt]he\b/

3. Now we want to detect the word even if numbers follow it ‘the24’. To do so, we have

to replace the previous token blank space (\b) for a RE that means not a character.

Solution: /[ˆa-zA-Z][Tt]he[ˆa-zA-Z]/

4. The last problem is that this query cannot detect words either at the beginning or

end of a sentence. As a solution placing an (ˆ) token covering both possible scenarios

solves this task. Final solution:/(ˆ|[ˆa-zA-Z])[Tt]he([ˆa-zA-Z] |$)/

2.2.1.2 Words

The next step before processing a corpus will be to determine what counts as a word and

what does not. The first logical approach is to consider one as a string surrounded by

white spaces. However, several exceptions make this task more complicated. What shall

we do if the sentence we are looking for is at the beginning/end of a sentence? Also, what

about several languages like Japanese that do not use spaces in their writings? Taking into

account all these factors is critical for tokenising successfully.

Punctuation is essential for capturing meaning and locating sentences; hence, the first

process of tokenisation considers punctuation as ‘words’. Another factor to study is capital-

isation, are ‘They’ and ‘they’ the same words? It will vary depending on the methodology

used; part of speech and named entity tagging try to maintain them while speech recognition

ignores those disparities.

What about these ‘trees’ and ‘tree’? In this case, these words have the same lemma but

different word-forms. A lemma is a set of words that possess the same stem, word sense

and PoS. A word-form is the way a word can exist in the context of a language to fit both
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with their form (grammatically) and their meaning (semantically).

Therefore, defining a set of words requires the definition of two concepts which are

‘types’ and ‘tokens’. Types represent the number of unrepeated words on a corpus while

tokens represent the total amount of running words. The more terms or vocabulary size

you have, the more types there will be. The Heaps’ Law defines this relation as 2.1

|V | = kNβ (2.1)

where |V | ≡ the number of types, N ≡ the number of tokens, k and β ≡ are positive

constants where 0 < β < 1

With all these terms defined, we can begin explaining the NLP methods that allowed

the completion of this project.

2.2.2 Lexical processing

The first operation is called text wrangling. These procedures aim to clean what is consid-

ered noisy data in a systematic way. Thanks to python libraries such as Natural Language

Toolkit (NLTK), Gensim and TextBlob is possible to perform these tasks smoothly.

1) Cleansing

Sometimes data is stored on a web page and has markup code on it. Therefore, to

obtain the raw text, the unneeded lines without value have to be deleted.

2) Tokenisation

This process relies on the extraction of tokens as sentences or as isolated words. As

it was explained in the previous section, depending on the purpose, we will apply one

method or the other.

3) Stemming and Lemmatisation

Both processes compute words and reduce them to their stem or lemma. Technically,

the two represent the same concept, which is a word reduction to its root. In practice,

the difference is that lemmatisers use as an extra tool, the Part of Speech on each word.

These last ones provide better results in the process but are slower computationally

talking.

4) Stop word removal

In a corpus, the so-called stop words are the ones that appear with the highest fre-

quencies. Before, it was reasonable to believe that the high appearance rate of a

concept gave useful information to the processing. To prove this wrong, checking on
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a large dataset the terms that appear most are words like ‘and’ and ‘the’. Those

are familiar words, used to connect sentences with no meaning at all, and therefore,

detachable.

5) Punctuation removal

Now, when punctuation marks are no longer needed, it is time for removing them. At

this point in the preprocessing, every punctuation token is detected and isolated from

the rest of the words. Thus, removing them by checking a stop word list represents

an effortless task.

6) Rare words

Typos are a common thing in written texts that can add noisy data to the sample.

Removing them is a simple task that involves counting words. The frequency of

misspellings is usually low (1-2 incidences in total). Therefore, printing a frequency

list, removing the unique ones from the dataset will be enough to reduce this noise.

2.2.3 Syntactic processing

The syntax is the arrangement of words and phrases to create well-formed sentences in a

language. The NLP methods in charge of analysing these features are Part of Speech (POS)

tagging, Named Entity Recognition (NER) and parsing.

2.2.3.1 Part of speech

POS tagging is the method in charge of assigning a grammatical category to a word. The

most common approach is to use an annotated corpus such as the Penn Tree Bank. Each

corpus has its notation; therefore, knowing its structure is vital to understand the results

of this process.

In some occasions, words can be ambiguous. That is the central problem POS tagging

has to face. On the English language, 85% of words are unambiguous, which leads to

thinking that this incertitude is not a common problem in writings. However, the specific

terms that are ambiguous are the ones most frequently used to express ourselves, leading

to the presence of such terms up to 55-67%.

There are three main approaches to overcome this challenge, two of them based on

sequence modelling and the third one relies on a neural network approach. Those are the

following:

1. Hidden Markov Model is a generative model that uses for decoding the Viterbi algo-
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rithm or a beam search variant.

2. Maximum Entropy Markov Model is a discriminative model that uses logistic regres-

sion as a tagging tool and the Viterbi algorithm for decoding.

3. The neural approach is a discriminative model that uses word embeddings as inputs,

while the outputs are tag probabilities obtained through the available tagset.

2.2.3.2 Information extraction

One of the most useful features that NLP has is the possibility of information extraction.

Nowadays, with such an amount of data circulating through the internet confirms how

crucial is to gather all this information logically.

The process has several steps that aim to tag the data and extract the valuable one.

Firstly, NER is in charge of labelling and classifying what we call entities (persons, locations

and organisations). Secondly, obtaining a relation between them is crucial to give meaning

to the information. Thirdly, these so-called entities perform actions in time; and therefore,

the moment of its execution represents a valuable feature extracting. Finally, what is left

to do is a template filled with all the relevant content retrieved.

2.2.3.3 Parsing

It is useful for the extraction of semantic structures on a given sentence and therefore

applied in tasks such as grammar checking, question answering and information extraction.

In this last case, partial parsing is enough for obtaining NER and uses machine learning

techniques for its functioning.

2.2.4 Word embeddings

2.2.4.1 N-grams

One of the most basic ideas of NLP is predicting words in a sentence. This principle of

‘which word will go next’ is crucial in disciplines such as speech recognition, grammar

correction and language translation. Its basis relies on the probability of appearance of a

term given a previous series of words that will be called grams. Depending on the number

of grams, there are bi-grams (2), tri-grams(3), and so on.

Identifying a word and its full meaning in a context can be a challenging task. There

are two principles present in a lexicon, the conventionality principle and the principle of
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contrast. The first one states that each word has one or more ‘conventional’ meanings; while

the second, on the contrary, tells that each term differs from every other in some sense. A

word by itself is unable to transmit information; is the combination of words what gives

coherence to a text.

A language model has to be able to represent relations between words for solving meaning

related tasks. Hence, every model must be able to retrieve features such as similarity,

relatedness, roles and connotations.

Similarity measures the closeness between two words; it is not the same as synonyms, but

in some cases can occur. Relatedness detects how two different terms (with no similarity)

can match, for example brain and skull. Roles is the task of identifying relations between

actions. Lastly, the meaning of connotations varies depending on the task at hand; in

sentiment analysis, it detects emotions and classifies them by three numbers called valence,

arousal and dominance. This notation introduces the most common standard used NLP

nowadays, which is the vectorisation of words, also called word embeddings.

There are loads of methods to build word embeddings, but all of them have a thing in

common; they rely on the analysis of the context to represent words. The simplest ones

are the term-document matrices that function by counting the frequency of apparition of a

given name in each corpus.

Word Freq doc 1 Freq doc 2 Freq doc 3

Bone 5 0 5

Muscle 1 20 4

Heart 0 15 3

Femur 13 1 2

Table 2.2: Intuitive example of the Term Document Matrix

From this matrix we can extract the following word vectors:

bone = [5, 0, 5] muscle = [1, 20, 4] heart = [0, 15, 3] femur = [13, 1, 2] (2.2)

On the upper table 2.2, we saw a case of four words, however, given a big dataset

the number of columns for those matrices will be equivalent to the number of documents;

which is usually bigger than 10K. The number of rows/words will be equal to the size of
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the vocabulary |V |(also a large number). The supposition done in this case is that two

documents will tend to be similar if they use the same words and therefore classifiable. The

current techniques used are a more complicated than this simplistic approach; those are:

2.2.4.2 Cosine similarity

This metric measures the similarity of two words thanks to the properties of the dot product

operator. Two orthogonal vectors have a result of 0 while the ones in the same plane are

equal to 1. There is also a problem given the word frequency that alters this similarity mea-

sure and gives higher scores to repeated terms. The solution to this problem is normalising

this dot product that turns out to be the cosine angle equation.

cosine(v, w) =
vw

|v||w|
=

∑N
i=1 viwi√∑N

i=1 v
2
i

√∑N
i=1w

2
i

(2.3)

Where v and w are the word vectors selected for the similarity measure

2.2.4.3 Tf-idf

It is the most common word embedding used as a baseline in NLP. It works based on

two different equations multiplied between each other at the end. The first one, called

term-frequency (tf), works by counting the apparition rate of a word into a document as a

term-document matrix. Another factor to consider is that the frequency of a term is not

directly proportional to its relevancy, and therefore, the equation adds the log function to

correct this tendency.

tf = log10(count(t, d)) + 1 (2.4)

The second term is the inverse document frequency (idf) that gives higher weights to

the words that appear less in the whole collection. A name that is present in every single

document does not provide relevant information about the characteristics of the corpora.

The equation of this term is also a logarithmic function given the high number of documents

that can appear in a collection. The fact that the matrix terms depend on the particular

context of a target word results in sparse matrices with lots of zero components on it.

idf = log10(
N

dft
) (2.5)
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The final weighting co-occurrence matrix defines the whole collection, and it is useful

for tasks such as information extraction. Another method, and the one that is relevant

for this project, is the computation of document similarity. In this case the procedure is

to take each document and given their co-occurrence matrices calculate its centroid; these

centroids represent vectors that we can classify by cosine similarity measurements.

2.2.4.4 Word2vec

Unlike tf-idf, word2vec produces word embeddings in the form of dense matrices. This dif-

ferent approach has proven that machine learning algorithms work worse on sparse matrices.

The dimensionality reduction of the embeddings reduces computing times and is capable of

capturing the similarity between words.[8]

There are two main algorithms used in word2vec; the first one Continous Bag of

Words(CBOW) predicts a word given a context. The second one, Skip-Gram Negative

Sampling (SGNS), proceeds the other way round; it predicts the context given a specific

word.

Input Words Matrix

Input Word

Target Words

Target Word

FC2

Hidden
L1

Hidden
L2

W(i) W(t)

Score

0<P(x)<1
 

True or FalseTraining Predicting

Loss

FC1

Softmax Softmax

Figure 2.1: Word2vec SGNS scheme

This last algorithm, developed at Google by Tomas Mikolov and his team in 2014, bases

its working in a shallow neural network with two layers. A fully connected one is in charge

of transforming input words to the embedding vectors, and a second one produces weights

that turn tagged words to context arrays. These two results combined give a score that
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applied to a sigmoid activation function makes the model learn by comparing the output

to the target terms. Backpropagation updates the weights on each iteration until it finishes

training. The input is selected based on a window size that compares those words with

other randomly chosen from the corpus.

The resulting embedding can predict target words in the following queries; however, the

real objective of word2vec was to extract the weighted embedding and use it as a dense

matrix for the subsequent NLP tasks.

2.3 Machine learning for Natural Language Processing (NLP)

The objective of this section will be to explain the available tools that make possible the

accomplishment of classification tasks. This technique is useful for many different labours

such as sentiment analysis, spam detection, authorship and library category assignment.

In machine learning, a classifier works by assigning an output value to a given series of

inputs; supervised techniques are the ones that support these procedures. The definition

of those output classes can be a feature already implemented in the dataset or a manual

task to do for the developer. The corpora defines a set of tuples ((d1, c1), ..., (dn, cn)) where

each document d is related to a particular and unique class. The ultimate purpose of

the classifier is to take a new document (dn+1, ?), and with the previous knowledge from

((d1, c1), ..., (dn, cn)) predict its output class ?.

Learning all our dataset seems to be the better way to optimize the results of the

classification to its maximum. However, overfitting is a common drawback from limited

sized datasets. The solution to avoid this problem is to divide the data into training and

test sets with a method called cross-validation.

The idea is to divide the available data into a series of train and test splits. Each group

of (train, test) is what we call a fold. When performing cross-validation, the standard

procedure is to select ten folds, which entails the execution of ten classification processes.

The developer gets ten different metrics from each different fold and will have to combine

them to get an averaged score. Using this tool increases the reproducibility of the results,

which is vital for model implementation.

The next step is selecting which metrics will be useful for the evaluation of a NLP model.

The construction of a confusion matrix is the starting point towards evaluating a classifier.

The rows represent the predictions made by the computer and the columns the correct

labels of those documents. Therefore, the standard classification matrix of 2 classes will
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Actually Positive (1) Actually Negative (0)

Predicted Positive (1) True Positive False Positive

Predicted Negative (0) False Negative True Negative

Table 2.3: Confusion matrix scheme

have a size of 2 × 2, where each position will represent true positives (TP), false positives

(FP), true negatives (TN) and false negatives (FN) respectively.

The standardized measure extracted from this matrices is the accuracy, which represents

the number of correct predictions over the entire documents. Its equation is the following:

Accuracy(ACC) =

∑
TP +

∑
TN∑

TP +
∑
FP +

∑
TN +

∑
FN

=

∑
TP +

∑
TN∑

documents
(2.6)

However, this metric is not enough for defining a good classifier. The first thing is notic-

ing that they are two different types of error which are false positives or false negatives. This

distinction, ignored by the accuracy expression, can lead to confusion. Imagine predicting

a virus infection, here; the expectation is to detect all the positive cases. In other words,

our classifier needs to have 0 false negatives, and a high accuracy does not necessarily mean

this. As a solution, two metrics can fulfill these requirements. Those are:

Precision(Predicted Positive V alue) =

∑
TP∑

TP +
∑
FP

(2.7)

Recall(True Positive Rate) =

∑
TP∑

TP +
∑
FN

(2.8)

Depending on the task at hand, the objective will be having either a good recall or

precision. It is the task of the developer to determine the classifier requirements. Some

projects do not necessarily need one of these measures because sometimes having a good

recall can provoke a low precision and vice versa. A balanced metric that represents the

harmonic mean of these two is the F-score, which has this expression:

F score = 2 · precision · recall
precision+ recall

(2.9)

The calculations are straight when dealing with two classes. However, what about

having a classification problem with a higher number? In this case, there are two ways of
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obtaining the desired metrics; both of them slightly different from each other; those are

macro and micro averaging.

Macro averaging extracts the scores for each class and averages the results at the end,

micro averaging, takes all the predictions from all categories and compute them together.

The different ways of proceeding are the reasons why micro averaging results tend towards

the most frequent class in the dataset and macro averaging ideal when all the labels are

equally important in the classification.[9]

There are several types of classifiers designed for many different purposes. Nevertheless,

to perform NLP techniques, some standard algorithms are the ones that present better

results because they were developed explicitly to such tasks.

2.3.1 Multinomial naive bayes

The purpose of this classifier was to use it in text categorization tasks such as spam detection

and sentiment analysis; which is the reason why there is abundant research done on those

matters.

This classifier works by making two assumptions. Firstly, the word position does not

count, and the only feature that matters is the frequency of a term (Bag of Words). Secondly,

there is the ‘naive’ assumption where each word conditioned probabilities to a class are

independent of each other.

Naive Bayes uses probabilities to make predictions which is the reason why a specific

document d can be from class c when P (c|d) is high. This classifier develops this expression

using the assumptions seen above to simplify the algorithm.

ĉ = argmax P (c|d) = argmax P (d|c)P (c) = argmax P (f1, f2, ..., fn|c)P (c) (2.10)

Where P (d|c) is the likelihood and P (c) the prior. Applying the Naive Bayes assumption:

ĉ = argmax P (f1, f2, ..., fn|c)P (c) = argmax P (f1|c)P (f2|c)...P (fn)P (c) (2.11)

To avoid overflow and to increase the speed, the expression can be transformed into the

log space.

ĉ = argmax logP (c)
∑

P (f |c) (2.12)

Apart from knowing how to predict based on probabilities, the algorithm needs training.

The Naive Bayes learning process has two parts; the first one has to do with computing the

probability of each class as:
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P (c) =
Nc

Ndoc
(2.13)

Where Ndoc represents the total number of documents and Nc is the number of documents

that represent a particular class.

The second one, joins all documents from a given class and count their word frequency,

then, compare it against the whole Bag of Words:

P (wi|c) =
count(wi, c)∑
w∈V count(w, c)

(2.14)

There are also some particular scenarios to take into account related to the probability

0 case which happens, for example, when we want to classify a word like femur into a class

bone, with no femur words in all documents from that class. A valid solution is to use the

add one Laplace smoothing by adding one both in the denominator and numerator of the

expression when training.

P (wi|c) =
count(wi, c) + 1∑
w∈V count(w, c) + 1

=
count(wi, c) + 1

(
∑

w∈V count(w, c)) + |V |
(2.15)

2.3.2 Logistic regression

The difference between Naive Bayes and Logistic Regression (LR) is that the first one has

a generative approach where it computes probabilities based on the likelihood term P (d|c)
given in equation 2.10. In contrast, the LR classifier has a discriminative approach that

inspects this expression P (c|d) directly. However, they also have things in common, as they

are both linear classifiers.

The model works by assigning weights given a series of inputs in a training phase along

with a bias term. In this process, a classification function called cross-entropy loss de-

termines the likelihood between a prediction and the ground truth term. For optimizing

this function and converge fast to its global minima, stochastic gradient descent iterative

method is the one used in these procedures.

In LR each weight, wi is a real number associated with one input feature xi, where a

positive number represents a high correlation with the class and a negative one discrepancy.

The expression results as follows:

ŷ =
∑

wixi + b (2.16)
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However, this prediction ŷ is not a real probability because ŷ ∈ IR and therefore, its

value is not between 0 and 1. LR converts the term through a sigmoid (binary classification

tasks) or a softmax function (multinomial) to solve this problem.

2.3.3 Support vector machines

This machine learning technique is useful in regression and classification tasks. In NLP it

is commonly used in POS tagging and information extraction processes.

The algorithm looks towards separating the different features by spotting a hyperplane

with a large margin between classes. The length of the margin, which corresponds to the

minimum distance between the training samples and the hyperplane, allows new features

to fit the same labels even if they are different from the trained input.

There is a varied set of Support Vector Machine (SVM) algorithms that differ in how the

hyperplane is defined. Hard SVM, tries to find a perfect separation between features; soft

SVM is less strict with the boundaries and does not assume a severe separability between

samples. Lastly, kernel SVM is the one with more repercussion because their functions

are capable of working with high dimensional data which was a critical problem that SVM

algorithms had to face.

2.3.4 Ensembles

Finally, the ensemble models are in charge of combining the different outputs from the

varied set of classifiers so that the overall performance could be improved. There are two

main categories of ensembling methods, averaging and boosting. The first one averages the

predictions of a set of classifiers separately and combine the results in a parallel way; the

second builds a sequence of classifiers that learn by correcting the bias from the prior in an

iterative process.

2.3.4.1 Averaging ensembles

The most renowned ensembles of this section are the following ones:

Bagging

Uses a set of N classifiers that train by extracting subsamples from the training set

with replacement, doing so, ensures diversity and robustness in the decisions. The typical

algorithms used in bagging are linear, for instance, SVM and logistic regression. Depending
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on the sampling, there are four possible variations: the pasting, the random subspaces and

the random patches. In the case of large datasets, bagging is not the best because it is

only optimal for small datasets, and as an alternative, pasting works better. In the end, a

majority voting decides the best prediction from all the trained classifiers.

Stacking

This renowned ensemble technique improves single classifiers and combines them by

reducing bias and over-fitting. These first classifiers, also called layer 1, learn by using a part

of the training set and the rest for predicting. Then, it combines these resulting predictors

via a meta-classifier that uses the results as new inputs for a new learning process.

2.3.4.2 Sequential ensembles

Boosting

Iteratively trains a set of ‘N’ weak classifiers, lowering the training error on each step. In

each cycle, the mistaken samples from the previous phases move on to the next classifier to

learn better from the most conflictive features. Adaboost is one of the most used algorithms;

its working is similar to the original boosting method but differs from it in the use of weights

for training and decision-making. On each training phase, the correct classified samples do

not represent a big problem to the model, as a consequence, the algorithm focuses on

learning from the mistaken inputs resulting in a reduction on the training error (similar to

the loss function seen in Section 2.3.2). It also repeats an iteration until such error rate

gets lower than a 50% threshold. Finally, to make predictions, boosting methods perform

a weighted average of the N estimates.

Ensembling is the last resort in machine learning that comes up when there is nothing

left to try. All the previous steps involved, such as cleaning the data, feature extraction and

multiple classifiers trials, are vital to ensure a successful ensemble. The predicting ability

of a model is entirely dependant of the features; therefore, having extracted a varied set of

them is fundamental to exploit the data successfully.
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Ohsumed dataset

The internet is a powerful tool for extracting data in many different fields. The

problem is that, usually, this data needs a large number of working hours in order to

be useful for machine learning. Finding a dataset that fits the requirements of a plan is

a difficult task due to the heterogeneity of data. Usually, a final dataset for a specific

scheme results from merging more than two completely different sets. Hopefully, the

project task at hand was broad enough to find suitable corpora for its fulfilment. In

this chapter, section 3.1 describes the corpora selected for this project, the Ohsumed

dataset. Its selection was carried out by looking for essential features that allow the

implementation of classification tasks. Additionally in section 3.2, taking into account

that the final objective is to extract medical meanings, the documents we seek should

be abundant in well represented biomedical concepts.

3.1 Dataset overview

The construction of this dataset finished in 1991 where titles and abstracts from 270 medical

journals of the Medline database were gathered together (to download the dataset go to

[10]). The texts describe a set of 23 disease categories extracted from the Medical Subject
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Top level categories Label Top level categories Label Top level categories Label

Anatomy A Biological Sciences G Persons M

Organisms B Physical Sciences H Health Care N

Diseases C Social Phenomena I Publication Characteristics V

Chemicals and drugs D Technology and Food J Geographic Locations Z

Techniques and Equipment E Humanities K

Psychiatry and Psychology F Information Science L

Table 3.1: Top level MeSH categories

Headings (MeSH) thesaurus. This hierarchic vocabulary aims to enhance the search and

acquisition of biomedical information [11]. The dataset consists of 56984 medical abstracts

with a smaller version pruned to classify cardiovascular diseases.(see table 3.1)

The size of the documents varies between a range that goes from 1KB to 4KB storage;

adding all the documents together results in a total volume of 66.3 MB. This volume is

directly proportional to the complexity of the text; usually, in a low size corpus (1 KB) the

structure consists of a single paragraph, whereas in documents from 3-4KB it is commonly

noticeable a subdivision of the information based on headings represented by capital letters.

Taking a random document of 4KB from the dataset, resulted in an abstract divided into

eight different sections named the following way: objectives, design, setting, patients, inter-

ventions, main outcome measures, results and conclusions. These final two are habitually

the most relevant headings when talking about the whole dataset because the main features

of the labelled diseases regularly belong to these drafts.

To conclude, if we look at figure 2.1, we can see that the distribution between classes

is highly biased with tags that have more than 2K documents (10) and others that do

not reach the 1K mark (5). The eight labels that are not mentioned stay around 1.3K on

average. Therefore, in the next chapters, while we are developing the models and extracting

results, we will have to be careful with this variance and analyse until which point this is

affecting the classifiers. We will also use tools to minimise the impact of this distribution

like the Stratified K-fold method to prepare the models, and the macro and micro averaged

metrics to check for irregularities in the estimators’ results.
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Figure 3.1: Ohsumed distribution of documents

3.2 Multi-labelled data

Another remarkable characteristic of a dataset is the presence of multi-labelled documents.

When we are talking about real world-data, uniqueness is not a standard feature [12]. For

example, a document in sentiment analysis can express positive and negative emotions

without a clear distinctive of which one is dominant. However, due to the reduced dimen-

sionality of the task at hand (positive, neutral or negative), classifiers can manage to sort

these problems.

If the dimension of the labels increases, the appearance of more complex relationships

between classes becomes a reality. In our project, with 23 different labels, several documents

are placed in more than one class. In medicine, one disease can affect physiologically

and anatomically several areas of the body, which is the reason why the developers assign

multiple tags to the documents of the dataset.

The next step will be computing the number of repeated documents, which results in

16087. This number means that the amount of unique texts in the dataset only corresponds

to 32.1%. The next job is to detect the labels from which these repetitions are coming. After

this analysis, we check if the multi-tagging makes sense according to the MeSH categories.

The process goes as follows:

1. Firstly, we check each class independently to make sure there are no repeated docu-
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Labels 1 4 6 10 12 14 17 18 20 21

1 2540 150 308 160 156 165 89 44 281 155

4 150 6327 415 361 547 208 192 128 362 120

6 308 415 2989 123 124 141 75 127 160 135

10 160 361 123 3851 81 401 79 107 175 302

12 156 547 124 81 2518 234 44 145 89 72

14 165 208 141 401 234 6102 115 285 106 185

17 89 192 75 79 44 115 1617 36 156 62

18 44 128 127 107 145 285 36 1919 55 48

20 281 362 160 175 89 106 156 55 3116 151

21 155 120 135 302 72 185 62 48 151 2933

Table 3.2: Prunned confusion matrix of the top 10 label’s relationships

ments.

2. Secondly, we count the number of repeated texts in the whole corpora (already shown

in the previous paragraph).

3. Finally, we studied how frequent those repeated texts are distributed between classes.

From this process, we conclude with a comparative table 3.2 that shows the incredibly

high relation between the different diseases and their associated classes (to see the whole

matrix go to section C.4).

With medical knowledge, we can see how two different tags from the dataset can be

related. Selecting some of the most noticeable groups of labels present in the corpora was

useful to check the integrity of the classified documents. Some of the relations seen were:

• Bacterial Infections and Mycoses (C01) with Digestive System Diseases (C06)

• Virus Diseases (C02) with Immunologic Diseases (C20)

• Respiratory Tract Diseases (C08) with Neoplasms (C04)

• Musculoskeletal Diseases (C05) with Skin and Connective Tissue Diseases (C17)

• Otorhinolaryngologic Diseases (C09) with Respiratory Tract Diseases (C08)

There are plenty of these relations in the dataset that goes up to a 67.9%. This number

shows the complexity and cohesiveness of medical concepts. In this last table 3.2, we
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confirmed that the relations were consistent with the data. Finally, to end this chapter, we

will briefly develop the medical categories to explain some of the strongest relations.

3.3 Exploring dataset’s diseases

Bacterial Infections and Mycoses (C01): Bacteria are prokaryotic microorganisms with

a varied set of forms (spheres, rods and spirals). The most distinguished bacterias are the

ones present in our digestive system (Escherichia Coli, Helicobacter Pylori), enabling certain

functions. However, if their number exceeds a specific threshold, they become harmful to our

organism producing an infection. On the other hand, mycoses represent fungal infections

propitiated by physiological and environmental changes.

Virus Diseases (C02): A virus is an infectious agent that depends on other organisms

to survive. The Human Immunodeficiency Virus (HIV) is one of the most famous ones; it

affects the immunologic system and is very abundant in our dataset, which explains the

strong relation between C02 and C20 (Immunologic diseases).

Parasitic Diseases (C03): A parasite is an organism that invades a living host taking

nutrients from them. Three main classes can cause human diseases, those are: protozoa,

ectoparasites and helminths. The main difference from a virus is that parasites can leave

outside of the hosts for a significant amount of time.

Neoplasms (C04): Represents all the different abnormal and uncoordinated growths that

can happen in the organisms. When the mass is uncontrolled and reaches a considerable

size, it is called a tumour. The table suggests that the most common neoplasms from this

dataset are pulmonary, digestive and prostate ones.

Musculoskeletal Diseases (C05): Encompasses all the pathologies that affect the locomo-

tor system, conformed by bones, muscles, tendons, cartilage, ligaments, connective tissue

and joints. Motion is controlled by the Somatic Nervous System (SNS), which is the reason

why a consistent part of the diseases are related to class 10.

Digestive System Diseases (C06): The system that allows us to extract nutrients from

the food by decomposing them to their basis molecules. It is formed by the gastrointestinal
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tract, and organs like the pancreas, the liver and the gallbladder. The bacteria of the

digestive tract represent the primary source of diseases of this label in the corpora.

Stomatognathic Diseases (C07): The term stomatognathic refers to the anatomic system

formed by the jaw, the teeth and associated tissues. Neoplasms seem to be the ones with

the strongest relation to this topic.

Respiratory Tract Diseases (C08): Represents two connected anatomical areas form the

respiratory tract; the upper one (nasal cavity, pharynx and larynx) and the lower part

(trachea, primary bronchi and lungs), this system allows us to extract the oxygen from the

atmosphere and transport it to our cells. Some of the most related diseases come from

neoplasms and the cardiovascular system.

Otorhinolaryngologic Diseases (C09): Englobes all the diseases that affect the ears and

equilibrium, paranasal sinuses and some disorders of the upper and lower respiratory tract,

which is the reason why 8 and 9 correlate in the dataset.

Nervous System Diseases (C10): The nervous system represents the complex network

of neurons in charge of transmitting signals between the different parts of the body. They

have two main parts: the central and the peripheral nervous system. It is very related

to cardiovascular diseases because the brain is the organ that requires more oxygen and

nutrients (intensely irrigated).

Eye Diseases (C11): The eye is the body organ that enables our sight sense. It is composed

of pupil, cornea, iris, optic nerve, vitreous, sclera, fovea and the ciliary muscle. The most

related diseases in the corpora seem to be caused by bacteria and neoplasms. The eye

microbiome represents the collection of bacterial cells that resides in the eye and maintain

its functions. An unbalanced number of them causes several eye diseases.

Urologic and Male Genital Diseases (C12): Urology is the field that treats all the events

related to the urinary system and male/female genital problems. The strong relation with

neoplasms suggests that the documents treat one of the most extended tumours in men:

prostate cancer.
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Female Genital Diseases and Pregnancy Complications (C13): Similar to the male sce-

nario and adds to it pregnancy complications. It englobes one of the most known and

studied neoplasms in women, breast cancer.

Cardiovascular Diseases (C14): The cardiovascular system is composed of heart and

blood vessels which are in charge of transporting nutrients to all the cells in our body,

ensuring their survival. The most influenced organs are the lungs (C08) and the brain

(C10).

Hemic and Lymphatic Diseases (C15): The lymphatic system is in charge of cleaning

our body from waste, toxins and other unwanted materials like viruses and bacteria. The

term hemic refers to the aggregates formed in this interaction with unwanted molecules, for

example, blood proteins disorders and erythrocyte aggregation. One of the most common

diseases is the Hodgkin lymphoma, and that is why it is related to the label number (C04).

Neonatal Diseases and Abnormalities (C16): The term neonatal refers to the first four

weeks of a baby being out of the woman’s womb. These abnormalities can be either for a

genetic cause or a pregnancy complication, which is the reason why it is related to label 13.

Skin and Connective Tissue Diseases (C17): The skin constitutes the first layer of pro-

tection from environmental pathogens. It has three layers: the epidermis, the dermis (with

connective tissue, sweat/hair glands) and the hypodermis. The most common related topic,

neoplasms, might be because skin cancer is one of the most prevalent diseases in the whole

world, and therefore, intensely studied.

Nutritional and Metabolic Diseases (C18): Nutrition is the science that studies how food

influences our body (growth, reproduction, health and diseases). Metabolism englobes all

the chemical processes that occur in a living being to maintain their vital functions. The

function of the cardiovascular system is to distribute the nutrients and enable metabolic

processes which explains its relation to label 10.

Endocrine Diseases (C19): The endocrine system is made up of a collection of glands

that enables metabolic processes like growth, sexual function, sleep mood, among others.

This also explains the strong relation to the 18th label.
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Immunologic Diseases (C20): The immune system represents all the different defences

that the body has against infectious agents. It englobes many of the labels seen before

(skin, lymphatic system, bacteria). However, the most shared articles come from viruses

and neoplasms, which suggests that a lot of the different texts are treating the HIV disease

topic.

Disorders of Environmental Origin (C21): The environment represents the surrounding

situations that a living being will always have to endure. It can be the cause of several

diseases propitiated by mechanical damage or pathological agents like viruses, bacteria,

pollution and pollen. It is strongly related to label 5 because mechanical damage affects

directly to the musculoskeletal system.

Animal Diseases (C22): Rats are the most frequent animal in this section, mainly because

the central part of research experiments use them as a baseline before moving on to clinical

trials. As the number of documents related to animals is low, no definite conclusions could

be made. However, rats and pigs are the main subjects for the study of cardiovascular

diseases, which is where the most significant number of documents comes from (91 texts).

Pathological Conditions, Signs and Symptoms (C23): This last label is so broad that

many of the documents of the dataset could be labelled here. Therefore we could not extract

any clear relation between any of the tags seen in the corpora.

As the number of documents per label is unbalanced, some relations between tags that

are very strong in the medical scenario could no be represented.
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CHAPTER4
Development of classification models

In this chapter section 4.1 describes all the preprocessing steps required to clean the

text and prepare it for the ML procedures. Then section 4.2, explains the different

feature extractors. Once the word embeddings are ready, section 4.3 defines the cho-

sen estimators for the classification task. Additionally, section 4.4 introduces a new

approach to deal with multi-labelled data. Finally, section 4.5 sums up all the different

techniques presenting the latter approach, the ensembles.

The implementation of the models is the core of this project, which means that the

results and conclusions entirely rely on how effective and precise these methods are. For

the first step, we focus on preprocessing the corpora.

4.1 Preprocessing phase

This section aimed to extract the data and store it in a computable setup. The Ohsumed

dataset saves its documents into a .txt format which is one of the most common ways to

store information alongside .csv files. For the extraction, libraries such as NLTK, GSITK

and Pandas supported the process (for more detailed information go to the appendix C.1).

The first step was to upload the data to jupyter’s framework; to lessen the time spend
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submitting the extensive corpora, the solution was to compress the folders into a zip format

so that it could be easily extracted once it is uploaded. The labels of the data worked as

folders inside of which all the documents were carefully arranged.

Then, the objective was to transcribe all the data into a pandas dataframe for its

management using python code. It is important to note that the name of the labels changed

from a string format ‘C01’ into integer ‘1’ because classifiers in sklearn compute this tasks

based on integers tags. While doing this insertion of documents into the dataframe, each

text excerpt was tokenised following these steps explained in section 2.2.2:

1. Tokenisation: Using NLTK to split the given text into individual tokens.

2. Stop words removal: Removing all the words contained on a stopword list.

3. Punctuation removal: Catches all the punctuation marks and delete them from the

tokens’ list.

4. Noise removal: there are always remaining terms that add noise to the dataframe and

require its dismissal.

Testing the effectiveness of these two tokenisers was done by plotting a frequency list of

the extracted terms and analysing which one showed better outcomes. As a result of this

procedure, we discovered that a noisy term (–) appeared in a noticeable frequency. This

noise happens because of the structure of the documents described in chapter 3, documents

of 3-4KB from Ohsumed’s dataset contained internal subdivisions given by titles. These ti-

tles, remarked by capital letters, were all followed by these noisy separators (–). Submitting

an additional list of undesired terms was enough for the successful removal.

1
2
3
4

3
4
2
1

[differential, control, ...]
[hla, class, I, II, ...]
[trial, vidarabine, ...]
[alveolar, macrophage,...]

LabelIndex Text

Ohsumed.zip Jupyter Hub Ohsumed Dataset

Label Document

       C01   0038135        
       C02   0000014
       C05   0000270   

Pandas Dataframe

- Tokenisation
- Stop words
- Punctuation
- Noise

C01   0038135

Figure 4.1: Preprocessing the Ohsumed’s dataset
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4.2 Feature extraction phase

Once the documents are ready, it is time for the application of ML techniques. The main

difference between each of the pipelines is the feature extracting method; starting as a

baseline with the tf-idf word embedding.

4.2.1 Tf-idf

At this point in the processing, we have the text documents tokenised and labelled with its

correspondent class. These raw tokens are unprocessable by a computer, to solve this issue,

tf-idf transforms them into vectors also called word embeddings. The fundamentals behind

this feature extractor are already explained in section 2.2.4.3.

The methods provided by scikit learn [13] that allow the vectorisation of tokens are fit()

and transform(). The fit() method generates learning parameters for the training data.

Then transform() converts the data based on the parameters previously defined by fit().

When talking about the generation of word embeddings, a combination of both of them

called fit− transform() is the fastest option. If we talk about classifiers, the name of these

methods appears to be the same. However, in feature extraction, the whole vocabulary is

fitted and then transformed. On the contrary, classifiers only use fit() on the training data

and transform() for the test set.

The vectorisation of the documents using tf-idf has a varied set of parameters that

condition the resulting embeddings. The most relevant ones tested in this project are:

1. Ngram range represents the lower and upper boundary for the extraction of n-grams

sets. By doing this, we can modify the method to extract unigrams (1,1), bigrams

(2,2) or even a mixture of them (1,3).

2. Max features selects the number of elements that the method should extract and

stops when it reaches that limit.

3. Max df sets the upper boundary on the term frequency, which means that this pa-

rameter is in charge of thresholding the most common words of the corpora.

4. Min df sets the lower boundary on the term frequency, which means that this pa-

rameter is in charge of thresholding the least common tokens.

A sparse matrix represents the resulting features; which correspond to a low proportion

of non-zero components. At this point, and with the features extracted, starts the process

of splitting the data into training and test sets.
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For this task, scikit-learn has already several tools that perform this division. In this

project, the cross-validation method employed (C.2) to split the documents was the Strat-

ified K-fold algorithm. This method divides the data in a stratified way, which means that

the proportion of train/tests splits remains constant for every class in the dataset, avoiding

imbalances and improving the robustness of the results.

Once divided, the next step is to prepare the classifiers for the learning process of the

training set. Firstly, we initialise them to define their parameters, which modifies the

way the algorithm learns the training features. In machine learning, to optimise time and

supervise which variables are the ones that show better results on the dataset, a technique

called hyperparameter tunning is commonly used.

In this project, the method selected for this task is the GridSearchCV() from scikit

learn. With it, we can modify the classifier’s parameters as well as the ones defined in the

feature selection (ngram range, max frequency, max df and min df). Defining a pipeline is

the way to concatenate these two processes into a bigger one enhancing results and saving

time. The typical way of using this algorithm is to select another split of the data, called

dev set, to tune the parameters correctly (no longer used thanks to CV techniques). This

method also has a CV parameter that gives consistency to the values obtained. Finally,

to check the results, we can look at the score (best score ), the parameters (best params ),

and if we are using a varied range of classifiers, the estimator (best estimator ).

4.2.2 Word2vec

Following the scheme of the tf-idf model, the first step is to describe the feature extractor

used in word2vec. In this first case, the embedding model used to initialise the extractor was

the Google news corpus, generated by a collection of 3 million words that resulted in a 300

dimension embedding of English word vectors. GSITK implements the gensim library and

a tutorial that allows the initialisation of the embeddings without further complications.

Once extracted, the only thing left to do is calling the fit transform method to convert the

documents into the final word embedding as an input for the corresponding estimators. The

fundamentals of Word2Vec are extensively described in section 2.2.4.4.

4.2.3 Simon

The features extracted from this model add a new step to the one previously seen, which

is the use of a lexicon. The method to generate it works by tokenising all the documents

together and creating a frequency list like the Bag of Words algorithm.
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Then, with the novel lexicon extracted from the dataset, it combines it with the em-

bedding of the previous section 4.2.2 to build what we call the Simon model. Calling

fit transform after the initialisation of the extractor transforms the documents into its cor-

respondent Simon features which have a dense representation due to its origins in word2vec.

4.3 Classifiers generation phase

The last part of a ML process is the use of classifiers to tune the word vectors into pre-

dictions. The quality of these predictions is what differentiates one classifier from another.

However, in this section, we will only check the parameters used to initialise them, while

the classifier’s results will be discussed in the next chapter 5.

4.3.1 Tf-idf classifiers

The estimators selected to deal with the tf-idf features are Stochastic Gradient Descend

(SGD), Multinomial Naive Bayes (MNB), C-Support Vector (SVC) and One vs Rest (OvR);

all provided by the scikit learn package. At this point, we begin the description of the

classifiers along with the relevant parameters used for each particular case:

4.3.1.1 Stochastic Gradient Descend (SGD)

Implements a bunch of linear classifiers with a stochastic gradient descend learning process.

The algorithm can work with either dense or sparse features of floating-point values.

Parameters

1. Loss defines the loss function to use. For classification tasks, there are five possi-

ble options which are ‘hinge’, ‘log’, ‘modified huber’, ‘squared hinge’ and perceptron.

Choosing hinge implements the loss function of a linear SVM; log incorporates the

logistic regression one.

2. Penalty refers to the regularisation term used. There are three possible options ‘l1’,

‘l2’ and ‘elasticnet’. ‘L2’ for example uses the regulariser for SVM models.

3. Alpha constant value that modifies the penalty and also, if selected, the computation

of the learning rate.
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4.3.1.2 Multinomial Naive Bayes (MNB)

Suitable for classification with discrete features extensively explained in section 2.3.1. In

practice, also works with tf-idf fractional counts.

Parameter

• Alpha additive Laplace smoothing parameter. If set to zero, the classifier does not

apply any smoothing.

4.3.1.3 C-Support Vector (SVC)

Consist of a classifier based on libsvm (C.1) that uses kernel functions for its deployment.

Fitting beyond 10K samples may result in unpractical times and therefore, in those cases,

is recommended changing to linear SVC.

Parameters

1. C is a regularisation parameter inversely proportional to the strength of the penalty.

2. Kernel select the type of kernel to use in the classifier. There are four main options

which are: ‘rbf’, ‘linear’, ‘poly’ and ‘sigmoid’.

3. Gamma is the coefficient for the selected kernel function.

4.3.1.4 One vs Rest (OvR)

This particular classifier bases its mechanisms in an iterative process where it trains each

class as a binary classification problem where the negative cases are the left out labels. It

performs this procedure for the ‘X’ classes of the dataset and extracts unique features for

each class.

Parameter

• Estimator selects the classifier to perform the binary classification task. The comput-

ing time of this algorithm is usually low because of the binary nature of the classifier.

However, it is imperative to mention that the selected estimator and the number of

labels are some variables that can also increase the computing time considerably.
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Figure 4.2: Tf-idf developed pipeline

4.3.2 Word2vec classifiers

The classifiers used in this project are practically the same for all cases, which is the reason

why we mention them briefly in this section. The ones used in this case are Gaussian Naive

Bayes (GNB), SGD, SVC and OvR.

The main difference from the previous model is that the features, represented by dense

embeddings, have a lower dimensionality and values that are no longer strictly positive.

MNB does not support negative values as input features; thus, GNB was used as an alter-

native.

4.3.3 Simon classifiers

With all the features ready for the classification, first, we split the data into test and training

sets using the Stratified Kfold method. Afterwards, prepare all the target classifiers for the

parameter tunning to finally asses the classification task by fitting on the training data and

predicting from the test ones. The classifiers used in the Simon model are the GNB, SGD,

SVC and OvR.
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4.4 Multi-labelled model

Initially, documents in the Ohsumed dataset are single labelled (4.1). Multi-labelled clas-

sifiers from sklearn require transforming these classes into binary inputs. The process to

enable the realisation of this model goes as follows:

1. Firstly, we initialise the label array, which must be of the same length as the number

of classes (23).

2. Secondly, we transformed the single labelled documents of the dataset (with a total

number of 18302) into their correspondent binary array.

3. Thirdly, we gathered all the repeated documents (with a total number of 16087) in

the dataset and assigned them their multiple labels; the same way as we did in step

2.

4. To conclude, the two resulting datasets, one made up from the unique documents

and the other with the multi labelled ones, are joined together into a final pandas

dataframe of 34389 different texts.

Afterwards, in the process of transforming the features, as the text is not modified, it

remains identical to the other models. Features extractors like tf-idf and word2vec work

utterly transforming the data. However, the Simon feature extractor requires also the

document labels to perform the fit transform method, and since they are multi-labelled,

the feature extractor does not support this conversion.

Label before Label after

Base array [0] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Unique documents [5] [0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Multi-labelled documents [3], [8], [16], [22] [0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0]

Table 4.1: Multi-labelled transformation example

Finally, we split the data using the KFold CV method to train and predict from the

classifiers (Stratified-Kfold does not support multilabel tags). The ones used in this model

are the OvR (already explained in the previous models) and the MultiOutputClassifier.
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4.4.1 Multioutput Classifier

This classifier achieves multi-labelled classifications by fitting one estimator per class. Its

working is similar to the one expected from OnevsRest, extending the multi-labelled prop-

erty to estimators that natively do not support it.

Parameter

• Estimator defines the classifier over which fitting and predicting probabilities.

GridSearchCV

Dev     y            X_tfidf   y                   X

1
2
3
4

[differential, control, ...]
[hla, class, I, II, ...]
[trial, vidarabine, ...]
[alveolar, macrophage,...]

LabelIndex Text

[0,0, ...]
[1,1, ...]
[0,1, ...]
[1,0, ...]

Complete Dataframe

Fit_transform()

Ngram_range
Max_features

Max_df
Min_df

TFIDFVectorizer

K-fold (n=10)

  Train            TestFold 1

Fold 10   Train            Test

Classifiers
be
st
_p
ar
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s_
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One vs Rest
estimator

Multioutput
estimator

MNB, SGD, SVC

Figure 4.5: Multi-labelled developed pipeline with tf-idf example

4.5 The ensembles

The last effort to improve the results in this project relies on the use of ensemble techniques.

As explained in section 2.3.4, ensembles are the last chance to improve the results in a

machine learning project. However, they do not always necessarily achieve this. The basis

of an ensemble is to use classifiers already defined and combine their strengths to cover their

weaknesses. It is also essential to mention again that all the processes developed before the

ensembles should be optimised in the best way possible (preprocessing, features and first
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layer classifiers).

The relevance of each process is also crucial to understand how to improve an ensemble.

As we could learn from this project, using a single set of features with multiple classifiers

and combining them at the end is not the best way to make improvements. The core of

machine learning belongs to the features and how well they represent the data; classifiers

are only a tool that helps us extract the meaning from them. Therefore, a strong ensemble

is built up from a varied set of features, extracted by different classifiers and joined together

into a final estimator.

Scikit learn has a broad range of ensembles for machine learning tasks. Usually, the

ensemble that works well in classifications is the staking algorithm; nevertheless, in this

section, we developed a model for each of the most renowned ensembles to see if they can

improve the best score so far achieved.

4.5.1 Voting Classifier

If we compare this ensemble with stacking, we can see their strong similarities, since the

differences between them only rely on how the final predictions are made. The use of

unfitted estimators represent the input of this ensemble, and the final estimation is done

by what we call voting.

Parameters

1. Voting decides the predictions based on a voting rule. If it is set to ‘hard’, the voting

acts by assigning a majority to a prediction. Therefore, in the case of three classifiers,

if two of them have the same output means that the prediction of the third classifier

is discarded. In case of a tie (possible if using a pair number of estimators), the final

prediction is decided on ascending sort order. On the contrary, using ‘soft’ voting,

returns the final prediction taking the argmax of the sum of the predicted probabilities

of each classifier.

2. Weights is the parameter that can modify the predicted value of the estimators by

assigning them a weight (int or float). It can be used either in hard voting to weight

occurrences of predictions or soft voting to tune probabilities before averaging.
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4.5.2 Bagging

This ensemble takes subsets of the dataset for training X estimators. Section 2.3.4.1 explain

all the different ways of implementing it.

Parameters

1. Base estimator selects the classifier to use in the ensemble.

2. N estimators creates X ‘base estimator’ instances.

3. Max samples defines the upper threshold number of samples that each estimator draws

in its iteration.

4. Max features defines the upper threshold number of features that each estimator

draws.

4.5.3 Adaboost

It is one of the most common boosting methods in the literature explained in section 2.3.4.2.

In a few words, Adaboost sequentially uses a set of X estimators to train the dataset.

Parameters

1. Base estimator selects the classifier to iterate through the ensemble.

2. N estimators creates X ‘base estimator’ instances.

3. Learning rate regularises the contribution of each classifier. There is a balance between

the ‘n estimators’ and the ‘learning rate’.

4.5.4 Stacking

This ensemble selects first layer classifiers (like in voting) and then combine their predictions

into a final meta-classifier that makes another prediction over the dataset.

Parameters

1. Estimator is defined by a list of the estimators that we aim to use in the ensemble.

2. Final estimator is the final classifier that performs the final estimation based on the

ensemble from the ‘estimator’ list.
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CHAPTER5
Results

In this chapter, we are going to show the different outcomes obtained through the

proposed classification pipelines. Section 5.1 analyses the structure of the word em-

beddings and focuses on recovering all the different metrics. Finally, section 5.2 sums

up the best results so far achieved.

5.1 Analysing results

5.1.1 Resulting word embeddings

Extracting the text features was the first task of the process. In this project, three differ-

ent feature extractors (tf-idf, word2vec and Simon) are the ones extensively studied. The

following table 5.1 shows the specifications of each embedding.

We can see that according to theory, the generated tf-idf matrix has a sparse nature and,

on the contrary, word2vec and Simon are represented by dense embeddings. The difference

between the three models directly determines the performance of classifiers. Another feature

not covered in the table is that the tf-idf values are strictly positive (as its basis relies on

counting words). At the same time, the other two representations are characterised for
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Dimension Non-zero components % Matrix type

Tf-idf 56984 x 7000 68 non zero over 7000 dimensions 1 Sparse

Word2vec 56984 x 300 299’99 non zero over 300 dimensions 99.99 Dense

Simon 56984 x 1116 1116 non zero over 1116 dimensions 100 Dense

Table 5.1: Characteristics of the multiclass embeddings

Dimension Non-zero components % Matrix type

Tf-idf 34389 x 7000 14 non zero over 7000 dimensions 0.2 Sparse

Word2vec 34389 x 300 299’99 non zero over 300 dimensions 99.99 Dense

Table 5.2: Characteristics of the multilabel embeddings

having either positive or negative values (dense matrix).

It is also important to note that features from the multiclass classification pipeline differ

a little bit from the multi-labelled ones. These differences are because we have manually

reduced the dimensionality of the problem task at hand and therefore, modified their fea-

tures (table 5.2). In the tables is not appreciated but if we count the number of zeros, it

results that the second word2vec embedding is denser than the first one that has 42 zeros

over 2 from the second. The Simon embedding is not represented in the latter case since it

does not support a multi-labelled input.

5.1.2 Multiclass results

Once we have our features saved and ready, we start the exploration of the different classifiers

following chapter’s 4 structure. Thereby, the first results come from the tf-idf embedding

model, which uses the multiclass approach. The estimators used in this model are SGD,

SVC, MNB and OvR. The metrics considered for the following sections are the recall, the

precision and the F-score. Besides, the AUC and the ROC plot are also a great tool to

compare classifiers. However, due to the dataset’s characteristics and the extension of those

results we had to move them to the appendix C.5

Before computing the results, we created a GridSearchCV instance to check which were

the best parameters for each classification. The algorithm worked based on the F-score,
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Micro average Macro average

Precision Recall F-score Precision Recall F-score

MNB 0.40 0.40 0.38 0.42 0.28 0.29

SGD 0.36 0.40 0.37 0.33 0.34 0.33

SVC 0.31 0.31 0.31 0.29 0.26 0.27

Table 5.3: Comparing macro vs micro metrics

and the resulting outcome was:

• Feature extractor: max df (0.7) , max features (7000), ngram range (1, 3).

• SGD: loss (log).

• MNB: alpha (0.6).

• SVC: kernel (linear), C (10).

• OvR: estimator(SVC(kernel (linear))).

The method, executed on each model, showed three different ways of initialising the

features depending on the classifier. However, as the variations were minimal, we could

generalise the extraction to reduce time and have a standard embedding model. The pa-

rameter max features is the one that sets the dimensionality of the tf-idf matrix seen in

table 5.1.

After computing the predictions for each classifier, we plotted a table to analyse the

different metrics to decide which one will be the standard for the rest of the project. The first

decision made was that our classification problem does not require a distinction between false

positives and false negatives (both represent an equally lousy result). Therefore, instead of

showing precision and recall, we use the F-score as the regular metric. The next point is to

distinguish between macro and micro parameters. These two ways of calculating a metric

are described in section 2.3. In the results, we can appreciate that micro average scores are

always higher than the macro ones, leading to the fact that the classifiers are estimating

the smaller labels of the dataset unsuccessfully (the Stratified K-fold algorith reduces these

disparities).

In other words, in the next results, the metrics are going to use the F-score as a reference,

with three different representations of it (accuracy, micro average and macro average). The

last two ones will serve as a guide to check how well represented are all the labels on each

classifier. Because of the document’s extension we had to move the resulting tables to

43



CHAPTER 5. RESULTS

the appendix C.6. Therefore, before continuing reading the rest of the section we highly

recommend going through those tables first (C.3).

As we can observe in table C.3, the best estimator is the OvR using the SVC as an

underlying classifier. This score shows a noticeable improvement in the results (+18%)

thanks to its algorithm, which treats the multiclass classifications labels as an independent

binary classification problem. With this transformation, SVC can linearly separate the

different tags and manages to rise the results up to 58%. (notice that the standalone

LinearSVC classifier only achieves a score of 31%).

The model that follows is the word2vec one. In this case, the classifiers used are SGD,

GNB, SVC and OvR. The GridSearchCV is a time-consuming algorithm, and since the

results seemed to remain on the same values, we decided not to implement it on every

estimator. The parameters used to obtain those results in this case were:

• GNB: default.

• SGD: loss (modified huber).

• SVC: kernel (linear), C (default).

• One vs Rest: estimator(SVC(kernel (linear))).

Table C.4 shows that the best results achieved using the Word2Vec method come from

the LinearSVC classifier (42%). The similarity between this algorithm and the OvR one,

(apart from the fact that they use almost the same estimator) might be because the Google

Word2Vec embedding model performs poorly in the definition of medical concepts. In the

micro and macro scores, we can still see the fact that the tags imbalances are affecting the

classification.

The Simon model is the remaining pipeline that closes this first part of the results. The

classifiers used are identical to the ones seen in word2vec (SGD, GNB, SVC and OvR).

At first, the results of the classification with Simon did not reach a 20% score. Once we

introduced the lexicon described in 4.2.3, the metrics started raising by changing the number

of vocabulary words of the embedding up to 5000. However, if we compare the word2vec

model with Simon, we can see that the latter does not surpass the previous scores defined

by word2vec (41%). The intuition suggests that by adding the lexicon to the same word

embedding, which is the one used in word2vec, should improve the outcome. Still, since

the embedding is not entirely representative of medical diseases, this expected upgrade was

not achieved. To conclude, the classifier that works best is the same than the one from

word2vec, which is the SVC estimator with a linear kernel.
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Figure 5.1: Evaluating the F-score on multiclass classifiers with a radial graph

This final figure of the multiclass models sums up perfectly all the results. With it, we

can easily compare each of the embeddings. Firstly, we can notice that Word2vec and Simon

are identical (since they were created from the same embedding model). Unfortunately, the

new lexicon of Simon does not improve its results, as we would have expected in the first

place. Secondly, we can appreciate that MNB classifier outperforms its homologue GNB

in the dense representation by a 10% score. Finally, the decisive score of the tf-idf word

vectors of 58% suggests that these features are better categorising diseases than the other

two models, mostly because the embedding from Google was not the ideal source for the

biomedical document classification.

5.1.3 Multi-labelled results

The first advantage of classifying with this modified dataframe is that the dimensionality

of the embedding is reduced considerably. Another noticeable one is that thanks to this

transformation, the documents’ relations with the labels are more accurate. As described

before, the embedding models used in this case are going to be tf-idf and word2vec. After

their generation, One vs Rest and the multioutput classifier will be the ones predicting from

the test set.
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Micro average Macro average

Precision Recall F-score Precision Recall F-score

MNB 0.69 0.53 0.60 0.67 0.46 0.53

SGD 0.82 0.57 0.67 0.82 0.49 0.6

SVC 0.79 0.60 0.68 0.79 0.54 0.63

Table 5.4: OvR multi-labelled results

In this case, each classifier (MNB, SGD and SVC) appears in the estimator variable

of the One vs Rest and Multi-output algorithm. After hyper tuning those parameters, we

conclude that the best set up for each of them was:

• MNB: alpha (0.1).

• GNB: loss (modified huber).

• SVC: kernel (linear), C (default).

Once the predictions finished, we can see an overall improvement in the scores confirming

that the transformation of the data was a success. The multioutput classifier, described

in section 4.4, appears to have the same algorithm than OvR and therefore, their results

are not shown. In table 5.4, we can see that the tendency in the scores remains the same,

meaning that the Linear SVC classifier is the best performer used so far. Another point

to notice is the reduction of the differences between macro and micro scores which means

that the estimators are classifying the classes with a better balance. Finally, we plot the

standard table 5.5 used in this project where all the F-scores are gathered together. On

it, we can observe that the SVC estimator has the best score so far, improving the one

previously obtained with the tf-idf model (from 58% to a 68%).

Macro F-score Micro F-score Weighted F-score

Multinomial Naive Bayes 0.53 0.60 0.59

Stochastic Gradient Descend 0.60 0.67 0.66

C-Support vector 0.63 0.68 0.68

Table 5.5: Multilabel OvR F-scores

The trials with the word2vec embedding model did not go as expected. In the multi-
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labelled task, the scores fell to 0 while 2 or 3 classes were correctly classified, showing strange

overfitting. This atypical behaviour was present in almost every estimator parameter tested

on the OvR. The GNB setting was able to attain an F-score of 0.26, which is a weak value

if we compare it with the other models.

5.1.4 Ensembles results

The last attempt to improve the score in this project relies on the use of ensemble techniques.

In the process of building those ensembles, two different approaches were planned. The

first one tried to combine the classifiers of the different feature extractors into a stacking

algorithm and also working with Adaboost and Bagging. The second method planned to

combine these features into the union of the three different extractors (Tf-idf, Word2vec

and Simon).

Starting with the first approach, the attempts to improve the results were unsuccessful.

The three different sets of features performed equally or slightly worse than the standalone

classifiers. The ensembles tested, in this case, were Bagging, Adaboost and Stacking. The

computing time of Simon was considerably high if we compare it with the other embeddings,

which might be because of the dimensionality of such extractor. The resulting table 5.5

shows the different results obtained.

Tf-idf Word2vec Simon

Bagging 0.34 0.40 0.41

Adaboost 0.29 0.27 0.31

Stacking 0.38 0.37 0.30

Table 5.6: Ensembles F-scores

The second trial, whose objective was joining the features, was also unsuccessful. We

think that the main reason for this is because of the different nature of the embeddings, one

sparse and two dense ones. Converting them into a standard model (sparse or dense) was

the only way to make a feature union and test the ensembles. Without that union, sklearn

is not able to initialise the classifiers with the given input.

The most promising ensemble was the one built up from the results of the multilabel

classifiers. One of the reasons was that some of them performed great in recall and other

exceptionally well in precision. Therefore, we thought that combining them using a stacking
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classifier would improve the results. Unfortunately, the sklearn ensemble classifiers do not

support a multilabel input so we could not test this model.

5.2 Summary

This section summarises the results obtained in the whole project so that it is more com-

fortable for the reader to compare the varied set of models that were developed. We will

only show the F-score for readability purposes.

MULTICLASS Tf-idf Word2vec Simon MULTI-LABELLED Tf-idf Word2vec Simon

MNB 0.40 - - MNB 0.59 - -

GNB - 0.29 0.27 GNB - 0.26 -

SGD 0.40 0.41 0.38 SGD 0.66 0.01 -

SVC 0.31 0.42 0.41 SVC 0.68 0.01 -

OvR 0.58 0.42 0.41 OvR* - - -

Bagging 0.34 0.40 0.41 Bagging - - -

Adaboost 0.29 0.27 0.31 Adaboost - - -

Stacking 0.38 0.37 0.30 Stacking - - -

Table 5.7: Results’ summary

All the algorithms implemented in the multi-labelled half use OvR (*) as the base

classifier. The estimator parameter is the variable that modified the scores, and therefore,

is the one shown in the table. We can also see that GNB only works with dense features and

MNB with sparse ones (only allows values strictly positive). To conclude, we can see that

the ensembles did not support the transformation made in the multi-labelled dataframe as

it was spotted in the previous section.
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Conclusions and future work

In this project, we have tested the computers’ ability to classify biomedical documents.

Thanks to ML techniques and decent computer capacity, we have been able to obtain

satisfying results compared to the baseline [14]. In section 6.1, we will draw the

different conclusions at which we have arrived. Finally, in section 6.2, we propose

briefly possible future lines of development that can arise from this work.

6.1 Conclusions

The first thing noted when working with biomedical data are the complex relations between

concepts that can be present in a single draft. In this particular project, we are dealing

with diseases which have associated a wide distribution of treatments, vulnerable areas,

side-effects, complications and so on. Therefore, solving this with a classification model

that can depict all these relations can be tough work.

Another important thing learned from this practice is that before going straight to work

with the corpora, we have to explore the dataset in depth, which means not only reading

the description available in the site but also exploring the different classes making sure there

are no mistakes on them. It is impossible to go through all of it one by one. However, the
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procedure taken in this project allowed us to confirm that the data was truthful and had

no mistakes on it. The only strange thing we found was that there were three documents

repeated with different ids which meant that our dataset had three random repeated texts

on it.

This study also helped us realising that several documents on the Ohsumed dataset were

multi-labelled, which made us divide our models into two different approaches a multiclass

and a multi-labelled one. The intuition suggested that the second model would be better

since it was reduced in dimensionality and the relations between labels were also imple-

mented. After trying both models, we reassured this reasoning by getting a higher score in

the multi-labelled pipeline along with a considerable reduction in computing time.

The final score achieved was 68% (F-score), using a multi-labelled dataset with a Linear

SVC classifier. If we consider three, the average number of labels of the documents, the

probability of a random classifier to get it right is about 13%, which means that our score

outperforms this classifier by five times. Lastly, checking the score achieved in the baseline

[14] document confirms that our procedure was correct (67%).

6.2 Future work

The prospect of the biomedical field is up-and-coming. New advances in medicine and tech-

nology suggest a stronger interaction between these two fields in the future. In particular,

ML and NLP will play an essential role in the development of Artificial Intelligence (AI)

software.

One example could be the development of bots that help during surgery by listening

to the voice commands of the surgeon to store annotations, register material and make

valuable comments. One day robots might be able to emulate doctors’ movements while

doing surgery all thanks to ML techniques, improving precision and efficiency. Another one

could be a chatbot that assists a patient during their residence in the hospital answering

doubts, solving problems and calling the physicians if required.

More focused on ML, thanks to new nano-implants and devices (Internet of Things (IoT),

5G, etc.) the development of Support Decision System (SDS) can help to monitor cases even

outside of the hospital. For example, developing a portable Electroencephalography (EEG)

device could help to diagnose the likelihood of an epileptic patient for having a seizure by

training with the enormous amount of data that we have about this disease. The possibilities

are countless; all we need is imagination and hard work to make them happen.
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APPENDIXA
Impact of this Project

The different techniques applied in this project play an essential role in the construc-

tion of SDS. There are visible interests placed on the creation of algorithms that can

classify data in a fast and organised way. Previously, workers had to sort all this data

manually; with the development of these systems, the time spent on those matters was

reduced, releasing the practitioners to spend their time doing other tasks. Distinctly,

in the biomedical world, this data managing tools can help in many different fields,

for instance, imaging, genetics, research and diagnosis. Robust decision systems can

improve immensely the value provided to physicians and as final beneficiaries, to pa-

tients. However, errors in those applications could lead to misinformation and cause

grave consequences. In this appendix, we study those different impacts in terms of so-

ciety A.1, economy A.2 and environment A.3. Lastly, we discuss the different ethical

implications in section A.4.

A.1 Social impact

The introduction of SDS into a company has severe implications concerning their workers.

The first thing to note is that every change in the daily routine of a physician supposes an
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extra amount of hours that the worker will have to spend learning how to use the program.

Not all the operators accept those changes positively because it will suppose a variation in

their routine that has not been altered for years. Therefore, the implementation can be a

slow process that produces extra stress in every practitioner but more intensely in those

reluctant to such changes.

The inability to learn new technologies or the amount of time that requires apprehending

them also plays an essential role in such matters. For example, in hospitals, the Electronic

Health Record (EHR) which represented a drastic and extremely positive change in how

hospitals worked, was first developed in 1965. Still, it was not until the 2000s when they

started implementing them, and even nowadays, some doctors keep using paper as the tool

for storing patient’s information.

Data is an essential requisite in these projects, and taking into account that we are

talking about medical information, the vast majority of it comes from patients. A physi-

cian needs to recover tons of personal information from subjects to help them overcome

their diseases. The General Data Protection Regulation (GDPR) regulates the way this

information is stored, helping to keep this knowledge unavailable to external sources. If we

want to work with this information, it implies having it pseudo-anonymised so that no one

knows from which person is coming. A leak on this data can have several implications to

the patient affected and also several punishments to the institution that facilitate it.

A.2 Economic impact

Developing these systems can be an expensive task. Firstly, we have to make sure that the

data quality and quantity are sufficient for the duty, which may require hiring an expert in

healthcare data. Secondly, we need software engineers and data scientists to develop the

operating program. Thirdly, we expect someone to teach professionals about how to use

our system, to reduce costs, it could be a developers’ extra task. Finally, those practitioners

need time to learn the new software, taking out hours of their daily schedule could lead to

a deterioration of their previous assignments. A plausible solution to this drawback could

be augmenting their salary.

If we are talking about the benefits, the first clear one is that an increase in the efficiency

means a consequent improvement in the capacity of the company which can be reflected in

attending more patients, developing clinical notes faster and facilitate work to researchers.

Increasing productivity directly affects earnings. However, for a project to be viable, those

earnings should be significantly higher than the costs described in the preceding paragraph.
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A.3 Environmental impact

The first environmental consequence that our systems may produce is an increase in elec-

tricity consumption for having a computer or a server operative. This consumption induces

an increase in the demand for energy sources, both non-renewable and renewable, affecting

the environment negatively.

Either if we use computers or severs, those machines have built-in obsolescence which

means that at the time they stop being useful they need to be dumped. Several components

of PC’s such as batteries, the power source, plastic covers, cables and internal circuits have

contaminant products (selenium, cadmium, chrome, cobalt and mercury). Recycling them

should be a widespread practice to reduce the impact that these devices may cause to

nature.

Finally, having an excellent SDS, can reduce the number of tests that a patient has to

take before getting a diagnosis which can be harmful to the patient (chemotherapy, X-rays,

surgeries). Also, if we look at this problem through the hospital perspective, reducing the

number of trials implies a reduction in the expenditure of sanitary materials, reducing costs

and contamination.

A.4 Ethical impact

In the end, the objective of ML is outperforming workers thanks to computational skills.

This first reason makes us think that one of the first ethical implications while developing

machine learning systems is that we will be removing someone’s job. However, SDS, as its

name says, is designed to support the professionals as a helping tool, not as a replacement.

Also, new technologies create new jobs giving workers the chance to adapt to changes by

acquiring new skills.

Another ethical implication can be related to the medical GDPR. Collecting data from

patients requires a sophisticated system that ensures that data is protected and encrypted

so that no one else has access to it. Extracting this information for ML is a difficult task

with many requirements. In hospitals, for example, data is stored in servers inside the

building so that any outsiders have access to them. We have to be physically in the hospital

to work with the information and also extract it anonymised in the best way possible.

Finally, as we are developing a classifier that may support decision systems in medicine,

there are ethical implications related to the production of mistaken predictions. These errors
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can have enormous consequences on patients health; therefore, to reduce this impact, we

need to make sure that those systems are reliable. However, it is essential to remember that

those algorithms are prepared to help professionals as tools. Depending on the situation, it

is always the final choice of the practitioner to follow or not those decisions.
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APPENDIXB
Cost of the system

If we want to sell the software developed in this project, first we need to improve the

results. Doing so could be achievable by using better feature extractors as well as a

more significant amount of data. In this chapter, we will discuss the different costs

associated with the development of a SDS software that will use the models designed

in this work. Section B.1 talks about the price of the physical infrastructure necessary

to compile our software. Then, section B.2 explains the different professionals that

will be needed for the creation of the software. Finally, sections B.3 and B.4 talks

about the licenses and taxes required for the commercialisation of our product.

B.1 Physical resources

The resources needed to ensure the correct functioning of the proposed software are strongly

related to the amount of data used. Our dataset had a storage capacity of 66.3 MB. A

computer or server with decent requirements would be enough for the fulfilment of this

task. However, as we said before, if we want to commercialise a product of such kind we

will need much more data to make a robust and truthful model. With the dataset used,

the estimated requirements are:
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• Hard disk: 500GB

• RAM: 16GB (2x8GB)

• CPU: Intel i5 9700K 3.7GHz

The cost of a machine with these characteristics could be around 1100e, considering the

GPU and other components. These features are only symbolic since, as we have said before,

if we want to commercialise it, we will need more data and larger computing capacity to

develop such software.

B.2 Human resources

To develop an application of this kind, we estimate that hiring one software engineer and a

data scientist specialised in healthcare would be enough for its completion.

We decided to divide the project into two parts within two years. In the first one, the

data scientist will be in charge of creating a dataset with a consistent amount of information

related to human diseases. Once it is ready (estimated eight months), he will create the

machine learning models as we did in this project. Finally, in the year left, the software

engineer will develop an application that uses the learned model and test it in real case

scenarios. As a final result, we expect the commercialisation of the software to biomedical

companies and hospitals. If we suppose a monthly salary of 1200e to the data scientist and

1500e to the software engineer (both in brute), the total cost of the project will be around

32000e.

B.3 Licenses

We are going to divide the licenses of the project into three sections:

1. The first one is related to the obtention of medical datasets. There are many different

sources of free data like PubMed, data.gov, medicare, etc. However, many others

require a subscription or a license to be accessible.

2. The second part, which is the one related to this project, does not require license since

all the software used is of free access (Python and Jupyter Notebook). PyCharm can

also be an interesting tool to work with Python code since it has an excellent debugger.

The drawback is that the professional version that includes compatibility with Jupyter

Notebook requires a license.

3. Finally, we did not include any particular program in the application’s construction
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since we assumed that it should be able to be fulfilled with a free access software.

B.4 Taxes

If we consider selling the product as downloadable software, we will have to apply 21%

taxes supposing that our company is established in Spain. Additionally, the acquisition of

an application represents a service which means that selling it to foreign countries is not

considered exportation. Besides the seller, we have to consider the residence of the vendor,

if it is from the European Union (EU) the tax remains the same. However, if it is from a

foreign country selling this software will not have additional fees.
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APPENDIXC
Libraries and others

This appendix covers some important concepts and results that were not explained

in the main document. First, in section C.1, we talk about the different tools and

libraries utilised. Then sections C.2, C.3, C.4, C.5 and C.6 are used to complete the

content from the project’s chapters.

C.1 Tools and libraries

This section explains the different software applications used in the development of this

work. We start by describing the Jupyter’s notebook framework.

Jupyter notebook Previously, scientific articles lacked reproducibility in terms of pro-

gramming. Publications were full of prose, without specific tools to show the code that

supported those conclusions. From this need raises the project Jupyter and with it the

development of Jupyter notebooks. This tool covers both the prose and the code section,

being able to be specific and facilitating reproducibility.

The code is organised in cells that can be individually modified and compiled. The

result of each cell appears below as a part of the document, improving its readiness. Addi-
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tionally, Jupyter notebook not only covers markdown code but also ways for representing

mathematical equations and interactive graphs. Finally, markdown cells and the code ones

can store comments which makes a notebook rich in specifications about either the code or

the purpose of the writing.

These notebooks support multiple programming languages, which communicate using

back-end programs that have a standard protocol. The first programming code used with

this notebook was from a Python kernel. The access to the software can be done through

a web browser; however, nowadays, some applications like Anaconda support it. The docu-

ments, stored with a JavaScript Object Notation (JSON) format and an extension ‘ipynb’

can be published via Github recovering the programming environment and facilitating the

execution to other researchers.[15]

Natural Language Toolkit (NLTK) It is a source of open program modules developed

to reduce the learning curve of NLP techniques [16]. Usually working with unstructured

text requires a varied range of programs depending on the task at hand. The programming

language that covered the requirements to support this library was Python. Its development

aimed at:

• Ease of use: the learning is supposed to be centred in NLP itself and not in how to

use the toolkit.

• Extensibility: the possibility of extending the toolkit to new tools.

• Documentation: due to the learning purpose, all the modules must be carefully doc-

umented.

• Modularity: another feature that helps to lessen the learning curve, allowing the

students to know how to use the toolkit without further knowledge on how these

modules interact.

With that said, the six main modules that support the toolkit are:

1. Parsing modules: produces trees that represent the structure of texts.

2. Tagging modules: Augments each token with supplementary information (PoS).

3. Finite State Automata: Interface for creating automata from RE.

4. Type checking: To facilitate programming (can be turned off)

5. Visualisation: graphic interfaces for the representation and manipulation of data

structures

6. Text classification: is the module that allows the classification of texts into categories.
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NumPy In Python, NumPy arrays are the way of representing numerical data. Using

them facilitates the computation of extensive datasets by optimising the times of ‘for’ loops

significantly. The three fundamental techniques that achieve this are the vectorising calcu-

lations, the avoidance of copying data in memory and the minimisation of operation counts.

NumPy matrices also called ndarrays, uses the following attributes [17]:

• Data pointer: the memory address of the first byte in the array.

• Data type description: defines the nature of the element stored in the array.

• Shape: stores the dimension of the array in the form of coordinates.

• Stride: the number of bytes skipped to proceed to the next element.

• Flags: define if we are allowed to modify the array or not.

This efficiency, adopted by the Pandas library allows computing effortlessly operations

in large datasets. Usually ‘for’ loops represent the bootle neck in the computation time,

managing correctly with NumPy arrays avoids this problem.

Pandas It is a Python library used in many different fields, preferably on structured sets.

It has all the means to perform an exhaustive analysis on data by performing manipulations

and queries. It also has the tools to allocate the dataframes by converting .csv files into

the notebook and vice-versa. To import the dataset, we have to create a Dataframe object

on which we will initialise our required variables. Once it is uploaded, the data can be

reshaped and transformed for the required task (ML in our case). [18]

In our particular situation, we transcribed our unstructured data into a dataframe by

tokenising the text fragments on each document. In this case, the library was useful to

visualise the data and spot some dataset’s features that were not specified in the description

like the multi-labelled origin of the data. Afterwards, thanks to ndarrays we were able to

transform the dataset without complications allocating the new dataframe in a ‘.pkl’ format.

The operations are not very efficient if we are using Dataframes or Series. Therefore,

the best way to avoid this inconvenient is to work directly with the ndarrays by extracting

the data with the attribute ‘values’. Statistical functions like ‘mean’ and ‘std’ have been

overridden to avoid missing values which is a common feature of many datasets.

Scikit-learn It is a Python module that implements a varied range of machine learn-

ing algorithms (supervised and unsupervised). It focuses on bringing these methods to a

high-level language so that it is easily understandable by non-specialists; putting a strong

emphasis on clear and complete documentation.
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Its code provides a reliable implementation with a consistent set of parameters and

variables which reduces the learning curve of the library. It also shows strict adherence to

the Python coding guidelines and the NumPy style documentation. The main components

of the library are estimators, transformers, the cross-validation iterator and a varied range

of scoring algorithms. All of it made this an ideal tool not only for research but also as

building blocks for a diverse range of approaches like medical imaging. [19]

Libsvm It is the library that holds SVM algorithms. As a supervised classifier, its typical

use case relies on two different steps, training and testing the data. The package is structured

as follows: [20]

• The main directory with all the testing and training algorithms.

• The tool subdirectory to check data format and select SVM parameters.

• Others contain prebuild binary files and interfaces for different languages.

It implements the C Support Vector classification as one of its algorithms for supervised

learning. It works by varying the C parameter, which is called the regularisation term. This

element defines the interval by which two models are divided. Ideally, we look for a large

margin and a low misclassification rate. These two concepts are a little bit contradictory

because augmenting the C parameter increases this error rate. However, that is not entirely

true because misclassifications on the train set do not correlate to others in the test set.

Therefore, to set the C parameter, the recommendation is to use the GridSearch to analyse

the best resulting score directly. [21]

C.2 Cross Validation (CV)

The objective of the CV is to avoid predicting something that was previously learned by

the computer. Training a model with the gross data is a common mistake on someone

who starts studying ML. There are many different ways of overfitting, some of them, more

noticeable than others. The one described above is the first typical example, computing the

score on this overfitted model, will show an accuracy close to 100%.

The initial idea to solve this problem is to divide the data into what we call a test

and a training split. Doing so allows the computer to prove its model with unseen data.

Unfortunately, this method lacks generalisation performance because the only representative

of the model is a specific split. CV allow us to generalise our models and make them more

representative of our data.
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Another overfitting problem occurs if we use GridSearch on the training data. This

overfitting is harder to notice because it does not enhance the results drastically. Optimising

the training split for a given test set will improve the results of the classifier, giving a false

sensation of improvement. A solution to this kind of overfitting is to create a validation set

to evaluate the GridSearch. However, this procedure implies an extra partitioning of the

data which worsens the variety in the training and testing. Thanks to CV, this additional

set is no longer needed.

There are many different types of CV iterators, some of the most common ones are:

• CV for independent and ideantically distributed(i.i.d.) data

This approach assumes that all samples have been extracted from the same genera-

tive model. In real life, this approach is not very robust because data can be time

dependant or modelled by a generative model with a grouped structure. Some of

the algorithms used for this group are K-fold, Leave One Out (LOO) and Leave P

Out (LPO).

• CV with stratification

If the distribution of tags is unbalanced, this iterator creates each fold based on

percentages assuring that the relative frequency between labels remains constant.

Stratified K-fold is the most renowned and the one selected for this project due to the

characteristics of the dataset.

• CV for grouped data

If the distribution of tags is unbalanced, this iterator creates each fold based on

percentages assuring that the relative frequency between labels remains constant.

Stratified K-fold is the most renowned and the one selected for this project due to the

characteristics of the dataset.

• Time series split

This particular iterator can be used in a data model that has a constant flow of data.

Therefore, what it does is putting the new inferences in the test set and trains the

model with the previous samples.

C.3 Ohsumed dataset labels

The complete table with the labels, the disease category names and the number of docu-

ments is fully developed in this appendix, as the graphic shown in chapter 3 did not show

the disease categories names associated with each class.

xiii



APPENDIX C. LIBRARIES AND OTHERS

Label Disease description No of documents

C01 Bacterial Infections and Mycoses 2540

C02 Virus Diseases 1171

C03 Parasitic Diseases 427

C04 Neoplasms 6327

C05 Musculoskeletal Diseases 1678

C06 Digestive System Diseases 2989

C07 Stomatognathic Diseases 526

C08 Respiratory Tract Diseases 2589

C09 Otorhinolaryngologic Diseases 715

C10 Nervous System Diseases 3851

C11 Eye Diseases 998

C12 Urologic and Male Genital Diseases 2518

C13 Female Genital Diseases and Pregnancy 1623

C14 Cardiovascular Diseases 6102

C15 Hemic and Lymphatic Diseases 1277

C16 Neonatal Diseases and Abnormalities 1086

C17 Skin and Connective Tissue Diseases 1617

C18 Nutritional and Metabolic Diseases 1919

C19 Endocrine Diseases 865

C20 Immunologic Diseases 3116

C21 Disorders of Environmental Origin 2933

C22 Animal Diseases 506

C23 Pathological Conditions, Signs and Symptoms 9611

Table C.1: Ohsumed dataset documents per label
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C.4 Complete confussion matrix

In this section, we can see the complete confusion matrix from table 3.2. As its 23x23 size

was not pleasant to show in the main document, we decided to select the top 10 labels to

enhance the matrix’s display.

Labels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 2540 188 30 150 129 308 59 304 60 160 85 156 131 165 123 51 89 44 31 281 155 73 662

2 188 1171 29 110 22 108 18 124 18 91 35 30 76 29 43 17 37 13 5 401 57 28 224

3 30 29 427 10 2 43 0 16 2 43 24 9 15 13 11 2 9 5 0 45 8 22 79

4 150 110 10 6327 158 415 139 457 191 361 106 547 296 208 208 98 192 128 194 362 120 32 1223

5 129 22 2 158 1678 51 43 43 22 211 25 47 16 83 74 33 170 69 41 79 212 23 445

6 308 108 43 415 51 2989 22 119 4 123 14 124 71 141 80 46 75 127 32 160 135 61 1186

7 59 18 0 139 43 22 526 26 14 32 5 5 5 15 16 16 47 18 4 36 23 3 144

8 304 124 16 457 43 119 26 2589 107 131 26 87 43 266 115 87 55 58 21 298 147 38 749

9 60 18 2 191 22 4 14 107 715 60 11 5 5 9 12 11 36 9 9 42 22 13 244

10 160 91 43 361 211 123 32 131 60 3851 115 81 85 401 102 87 79 107 70 175 302 35 1200

11 85 35 24 106 25 14 5 26 11 115 998 10 7 44 22 23 49 34 25 85 52 12 267

12 156 30 9 547 47 124 5 87 5 81 10 2518 130 234 94 36 44 145 99 89 72 29 537

13 131 76 15 296 16 71 5 43 5 85 7 130 1623 132 68 119 55 31 23 76 42 13 374

14 165 29 13 208 83 141 15 266 9 401 44 234 132 6102 132 132 115 285 132 106 185 91 1765

15 123 43 11 208 74 80 16 115 12 102 22 94 68 132 1277 33 83 25 9 152 29 10 401

16 51 17 2 98 33 46 16 87 11 87 23 36 119 132 33 1086 31 30 13 33 17 5 281

17 89 37 9 192 170 75 47 55 36 79 49 44 55 115 83 31 1617 36 28 156 62 13 358

18 44 13 5 128 69 127 18 58 9 107 34 145 31 285 25 30 36 1919 209 55 48 29 301

19 31 5 0 194 41 32 4 21 9 70 25 99 23 132 9 13 28 209 865 43 13 7 154

20 281 401 45 362 79 160 36 298 42 175 85 89 76 106 152 33 156 55 43 3116 151 34 480

21 155 57 8 120 212 135 23 147 22 302 52 72 42 185 29 17 62 48 13 151 2933 35 629

22 73 28 22 32 23 61 3 38 13 35 12 29 13 91 10 5 13 29 7 34 35 506 113

23 662 224 79 1223 445 1186 144 749 244 1200 267 537 374 1765 401 281 358 301 154 480 629 113 9611

Table C.2: Complete confusion matrix of the label’s relationships

C.5 Computation of the Area Under the Curve (AUC) and the

Receiver Operating Characteristics (ROC) curves

ROC curves are an excellent tool to represent the performance of classification models.

They have a 2-D graphic representation where the X-axis corresponds to the False Positive

Rate (FPR) and the Y-axis to the True Positive Rate (TPR).

Sensitivity = TPR =
TP

FP + FN
(C.1)
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1− Specificity = FPR =
FP

FP + TN
(C.2)

The plotted curves show the effect on varying a threshold that goes from 100% to 0%

FPR. If the model is perfect, which means that it reaches an FPR of 0% with a TPR of a

100%, we will see a squared function that starts at the origin. However, if we cannot discern

between the True Positives and False Positives at all, the plot will be a linear function of

y = x.

To compare different ROC curves, the standard thing to do is computing the AUC, which

means calculating the area under the curve from 0 to 1. In the examples described above,

we can see that the area of a square function will represent a perfect AUC with value one

and in the worst-case scenario, the result will be the half of it (0.5). Therefore, calculating

the AUC is interesting for choosing which categorisation method is better for a given task

by measuring which one has a higher value. In a multilabel/multiclass classification, ROC

curves are computed based on the number of labels being tested in the dataset, in our case

23.

Figures C.1 and C.2 demonstrates that the multilabel problem is the right choice as the

AUC is substantially better on both SGD and SVC (MNB could not be tested because the

classifier does not generate a decision function). However, due to the classes imbalances of

the dataset, the AUC and the ROC curves are not the best methods to measure the effec-

tiveness of a classifier. A better alternative is using precision and recall (or a combination

of both: the F-score), which is the reason why we put these results on the appendix.

Figure C.1: AUC comparison of the SGD classifier
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Figure C.2: AUC comparison of the SVC classifier

It is impossible to plot all the figures due to the high number of resulting graphs.

Therefore, as many of the ROC curves are very similar we will try to show the ones more

characteristic of our best classifier: Multi-labelled OvR LinearSVC().

Figure C.3: ROC curve of Pathological Conditions, Signs and Symptoms (C23)
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Figure C.4: ROC curve of Eye diseases (C11)

From these two figures, we can conclude that some classes have severe difficulties in the

classification tasks. Label 23 outnumbers every other in document counts, which implies

that their words probabilities on every other text are very high. Namely, classifiers are

having troubles distinguishing from positives and negatives samples in label 23 because their

‘words’ can be correctly represented in every other category (assuming a OvR classification

problem).

On the contrary, eye diseases, with a decent number of records, show that the classifiers

can discern effectively between positives and negative samples; getting to the resolution that

what determines the difficulty of estimating a document is the number of related labels in a

class and not the number of texts that it has. The larger the relations between categories,

the harder it will be to classify them.
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C.6 Multiclass classification results extended

Macro F-score Micro F-score F-score

Multinomial Naive Bayes 0.29 0.38 0.40

Stochastic Gradient Descend 0.33 0.37 0.40

C-Support Vector 0.27 0.31 0.31

One vs Rest 0.54 0.57 0.58

Table C.3: Tf-idf F-scores

Macro F-score Micro F-score F-score

Gaussian Naive Bayes 0.25 0.30 0.29

Stochastic Gradient Descend 0.33 0.43 0.41

C-Support Vector 0.34 0.44 0.42

One vs Rest 0.35 0.44 0.42

Table C.4: Word2Vec F-scores

Macro F-score Micro F-score F-score

Gaussian Naive Bayes 0.21 0.31 0.27

Stochastic Gradient Descend 0.33 0.39 0.38

C-Support Vector 0.35 0.42 0.41

One vs Rest 0.35 0.42 0.41

Table C.5: Simon F-scores
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