
GRADO EN INGENIERÍA DE TECNOLOGÍAS Y

SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DEVELOPMENT OF A COGNITIVE BOT FOR DATA
SCIENCE TUTORING BASED ON A BIG DATA

NATURAL LANGUAGE ANALYTICS PLATFORM

DANIEL CARLANDER-REUTERFELT GALLO
JUNIO 2019

TRABAJO DE FIN DE GRADO

T́ıtulo: Desarrollo de un Bot Cognitivo para el aprendizaje de Data

Science basado en una plataforma de análisis de lenguje nat-

ural y Big Data

T́ıtulo (inglés): Development of a Cognitive Bot for Data Science tutoring

based on a Big Data Natural Language Analytics Platform

Autor: DANIEL CARLANDER-REUTERFELT GALLO

Tutor: CARLOS A. IGLESIAS

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DEVELOPMENT OF A COGNITIVE BOT FOR

DATA SCIENCE TUTORING BASED ON A

BIG DATA NATURAL LANGUAGE

ANALYTICS PLATFORM

DANIEL CARLANDER-REUTERFELT GALLO

Junio 2019

Resumen

La aplicación de técnicas de procesado de lenguaje natural para mejorar la interacción con

usuarios humanos es una tendencia que no cesa de crecer. Los avances en computación

cognitiva suponen una nueva manera de interacción con el usuario que permite el acceso a

fuentes de información de manera más refinada.

El proyecto está centrado en el diseño e implementación de un bot conversacional in-

tegrado en una interfaz web accesible desde cualquier terminal. Su función principal es la

resolución de dudas y preguntas relacionadas con el aprendizaje de técnicas de Aprendizaje

Automático y Ciencia de Datos.

Para ello se ha desarrollado una interfaz conversacional basada en API externa, aśı como

módulos desarrollados ı́ntegramente. Incluye un módulo de pregunta-respuesta para el tema

de este dominio espećıfico. Además, para la persistencia se ha usado ElasticSearch como

base de conocimientos.

El proyecto hace especial hincapié en el desarrollo de conversación ligera, porque supone

un aumento de la usabilidad y el atractivo del proyecto. Además, se entrena un modelo de

Aprendizaje Automático para detectar las intenciones del ususario.

Los resultados demuestran que, como se supuso, la implementación de conversación

ligera crea una mayor puntuación del bot por parte de los usuarios. Además, es un proyecto

innovador por integrar tecnoloǵıas “estado del arte” como son los chatbots y las plataformas

e-learning.

Las implicaciones de este estudio presentan que la futura investigación y desarrollo de

estas plataformas puede suponer una mejora de los métodos de aprendizaje aplicable a todas

las áreas.

Palabras clave: Computación Cognitiva, ElasticSearch, Dialogflow, Ciencia de Datos,

Aprendizaje Automático, Chatbot, Agente Conversacional

I

Abstract

The application of natural language to improve the interaction of human users with infor-

mation systems is a growing trend in the recent years. Advances in cognitive computing

enable a new way of interaction that accelerates insight from existing information sources.

In this project, a modular cognitive agent architecture for question answering featur-

ing social dialogue (small talk) improved for a specific knowledge domain is designed and

developed. The proposed system has been implemented as a personal agent to assist stu-

dents learning Data Science and Machine Learning techniques. To that end, a responsive

web interface was developed. Also, a Knowledge Base was provided with all the necessary

information.

The developed prototype has been evaluated to analyze how users perceive the inter-

action with the system. We claimed that the inclusion of social dialogue results in better

responses and engaging experiences to users.

In the end, the evaluation results that support our hypothesis are presented, as well as

thoughts in future work.

Keywords: Cognitive Computing, Machine Learning, Conversational Agent, Elastic-

Search, Dialogflow, e-learning

III

Agradecimientos

Me gustaŕıa dar las gracias a mis padres por haberme ayudado durante mi vida. Gracias a

ellos en gran parte he llegado a ser lo que soy.

Gracias al Grupo de Sistemas Inteligentes por haberme dado la oportunindad de desar-

rollar este proyecto y en concreto a mi tutor Carlos A. Iglesias por orientarme y guiarme

en el proceso.

V

Contents

Resumen I

Abstract III

Agradecimientos V

Contents VII

List of Figures XI

List of Tables XIII

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 3

1.3 Structure of this document . 3

2 Enabling Technologies 5

2.1 Python Libraries . 5

2.2 ElasticSearch . 8

2.3 DialogFlow . 9

2.4 Selenium . 10

2.5 Express JS . 10

2.6 Docker . 11

VII

3 Architecture 13

3.1 Introduction . 13

3.2 User Interface . 14

3.3 QA Module . 16

3.3.1 Process Question . 18

3.3.2 Information Retrieval . 18

3.3.3 Document Retrieval . 20

3.3.4 Definition Answering . 21

3.3.5 Example Answering . 22

3.4 Knowledge Base . 23

3.4.1 Scraping . 23

3.4.2 Structure . 24

3.5 Small Talk Agent . 25

3.5.1 Introduction . 25

3.5.2 Implementation . 25

3.6 Speech Act Classifier . 26

3.6.1 Introduction . 26

3.6.2 The Dataset . 26

3.6.3 Preprocessing . 27

3.6.4 Feature Extraction . 28

3.6.5 Classifier . 28

3.6.5.1 Evaluation Metrics . 29

3.6.5.2 Results . 31

4 Use Cases 33

4.1 Small Talk intent . 33

4.2 Definition Intent . 34

4.3 Example Intent . 35

4.4 FAQ intent . 37

5 Evaluation 39

5.1 Participants . 39

5.2 Measurements . 40

5.3 Results . 40

6 Conclusions and future work 45

6.1 Conclusions . 45

6.2 Achieved goals . 46

6.3 Problems faced . 46

6.4 Future work . 46

Appendix A Impact of this project i

A.1 Social impact . i

A.2 Economic Impact . ii

A.3 Environmental Impact . ii

A.4 Ethical Implications . ii

Appendix B Economic budget iii

B.1 Physical resources . iii

B.2 Human Resources . iii

B.3 Licenses . iv

B.4 Taxes . iv

Appendix C QA Corpus v

C.1 Small Talk . v

C.2 Definition Intent . vi

C.3 Example Intent . vii

C.4 FAQ Intent . viii

Bibliography ix

List of Figures

2.1 ElasticSearch vs. Relational Database . 9

2.2 Slot Detection in DialogFlow . 10

3.1 System Architecture . 14

3.2 Jaicob . 15

3.3 Jaicob user interface . 16

3.4 QA Architecture . 17

3.5 QA example . 19

3.6 Document Retrieval Pipeline . 20

3.7 Knowledge Base selection based on Answer Type 22

3.8 Small Talk Examples . 26

3.9 Cross-Validation and Hold out . 30

4.1 Small Talk Intent Use Cases . 34

4.2 Definition Intent Use Case . 35

4.3 Example Intent Use Case . 36

4.4 FAQ Intent Use Case . 37

5.1 Overall Impression . 40

5.2 Intent Distribution . 41

5.3 Small talk makes Jaicob more attractive . 42

5.4 How much users need Jaicob . 42

5.5 How innovative Jaicob is . 43

XI

List of Tables

3.1 Post classification examples . 27

3.2 Confusion matrix example [1] . 29

3.3 Evaluation Scores . 31

XIII

CHAPTER1
Introduction

1.1 Context

The use of virtual assistants has grown in the last few years, boosting the research and de-

velopment on the topic. The biggest firms have invested in these technologies with projects

such as Google Assistant1, Siri2 and Amazon Alexa3.

Many of these agents are now included in mobile devices such as iPhone and Android

phones, which everyone owns nowadays. It is also possible to purchase specific platforms

such as Google Home, Apple’s Homepod and Amazon Alexa. As shared with The Verge,

Amazon sold 100 million Alexa devices in the four years it has been live4. So it is clear that

it is in the rise.

Conversational agents have evolved from very simple systems that were very guided

into rather complex functionalities including Natural Language Understanding and Machine

Learning Techniques which allowed them to be more flexible in maintaining a conversation.

1https://assistant.google.com
2https://www.apple.com/siri/
3https://developer.amazon.com/alexa
4https://www.theverge.com/2019/1/4/18168565/amazon-alexa-devices-how-many-sold-number-100-

million-dave-limp

1

CHAPTER 1. INTRODUCTION

Everyday more businesses include Chatbots as a way to interact with the consumer to

answer requests and FAQs. Natural language interfaces (NLI) increase user satisfaction

and can help to find the information needed in a more comfortable way than other less

sophisticated and time-consuming search interfaces [2].

In order to understand natural language, techniques such as grammars, statistics or

lexical analysis are required to identify the relevant information in an organized way.

According to IBM, Cognitive computing refers to systems that learn at scale, reason with

purpose and interact with humans naturally [3]. It follows the steps in human reasoning

such as observation and examination of data, analysis of that data and interpretation.

Like humans, cognitive system can use already known information to deduce new mean-

ing in other data based on context [4]. By having the advantage of computational power, a

system like this can be even more successful than a human in this kind of task. Though they

do not really understand the meaning like humans do, they insights these systems provide

can be really useful. As they grow in time, it is expected that they gain abilities such as

sensing and awareness [5].

Cognitive computing applications should be adopted for learning purposes [6] because:

• It can strongly enhance student’s performances in computer science classes

• Studying cognitive computing behavior can lead to significant results in AI related

studies.

• Using a cognitive computing layer for digital interactions with students can enhance

their performances and ease the teachers’ job in managing classes and learning mate-

rials.

Compared to other traditional e-learning training, chatbots generate a more positive

response from the users [7]. There are advantages in this type of learning that need to be

realized in many schools, such as interaction, active learning and sociability [8].

In a conversation, speech act types describe the purpose or function of a certain instance

of speech [9]. This provides an insight into the conversation that can be useful to the

chatbot in order to react in one way or another. Virtual assistants must be able to mimic

the process of detecting speech acts and classifying them [10]. This kind of classification

requires examples of speech correctly classified following a scheme [11] from which to learn.

To achieve this understanding the use of Big Data analysis techniques is required.

2

1.2. PROJECT GOALS

1.2 Project goals

The aim of the project is to develop a cognitive bot that allows the user to ask Data Science

related questions and get an appropriate answer. The aim is for it to also be able to engage

in small talk to give a more human interface.

To achieve this, Natural Language Analytics tools are availed. A machine learning

model will be trained to understand user intentions in speech. A more advanced system

will be developed to attend Question Answering (QA). Thus, the project goals can be listed

as follows:

• Respond to the user queries with the desired information

• Retrieve the necessary information from the data source.

• Classify Speech Act types correctly

• Handle small talk effectively and as human as possible.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is the following:

Chapter 1 is the introduction of the project. It provides the context in which the

project is developed and what the main goals are.

Chapter 2 explains the technologies that have been used to support all the work and

the reason why they have been chosen.

Chapter 3 describes the architecture of the project including the multiple modules it

is composed of.

Chapter 4 describes a series of use cases of the product.

Chapter 5 includes the evaluation of the product.

Chapter 6 includes the conclusions, the goals achieved and the future work.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
Enabling Technologies

In this chapter, the technologies that have been used throughout the project are introduced

and detailed. These will be for the most part programming languages, libraries and math-

ematical models because the project involves web and server architectures and machine

learning techniques.

2.1 Python Libraries

The majority of the development was made with the help of Python because of its versatility.

It’s a language with a very expressive and intuitive syntax which gives the importance to

the idea. With additional basic tools, Python transforms into a high-level language suited

for scientific and engineering code that’s often fast enough to be immediately useful but also

flexible enough to be sped up with additional extensions. [12] There are lots of libraries that

facilitate the tasks needed for this field of study. Among those libraries are:

• Numpy

Numpy1 is the fundamental package for scientific computing with Python. It is widely

1http://www.numpy.org

5

CHAPTER 2. ENABLING TECHNOLOGIES

used when you need to go go beyond the structures included in Python. It includes

tools such as N-dimensional Arrays which can be useful when managing more complex

data structures. This library is also a dependency for the libraries explained next such

as Pandas and Scikit-Learn.

• Pandas

Pandas2 is an open source, BSD-licensed3 library providing high-performance, easy-to-

use data structures and data analysis tools for Python. It is one of the most preferred

and widely used tools in data munging if not the most used one.

Among the tools it provides, the ones useful to us are DataFrames. A DataFrame is

a 2-dimensional labeled data structure with columns of potentially different types. It

facilitates a generalization among different formats of datasets such as XML and csv,

which are the most common. The other important aspect is that it makes it very easy

to apply preprocessing to each instance of data with low complexity. These tools are

very useful in managing the training data for a machine learning model.

• Natural Language Toolkit

The Natural Language Toolkit (NLTK)4 is a leading platform for building programs

to work with human language data. It helps to categorize text, analyze linguistic

structure, and more. The toolkit is efficient enough to support meaningful tasks, but

to achieve a greater performance and to reduce complexity for runtime performance

it would require implementations in a lower level language such as C or C++. This

would make the library more difficult to understand.

NLTK provides corpora resources as well as processing tools, all with extensive doc-

umentation. The dataset used in the Speech Act Classifier is included among its

corpora resources. The principal language processing tools are also from this library.

Among these tools are tokenization and stemming. Other important tools from this

library are now explained:

– Part-of-Speech-Tagging. POS Tagging is a typical NLP task which consists of

assigning a proper tag to each word depending on the context and the function.

Some examples of these tags are Determiner (DT) and Noun (NN). This kind of

information can be very useful in the understanding of the meaning of a certain

message.

2https://pandas.pydata.org
3BSD licenses are a family of permissive free software licenses, imposing minimal restrictions on the use

and distribution of covered software.
4https://www.nltk.org

6

2.1. PYTHON LIBRARIES

– N-gram Similarity. Unigram similarity is a widely used string similarity measure.

As a word is compared the aim is to find common subsequences. The objective

of N-gram similarity is to generalize the idea of unigram similarity to a number

of n-grams, rather than just unigrams [13]. By doing this the context is taken

into account.

– Term Frequency Inverse Document Frequency. TF-IDF is an efficient and simple

algorithm for matching words in a query to documents that are relevant to that

query.[14] Although it doesn’t take into account relationships between words

such as synonyms, TF-IDF is simple and efficient as well as effective in finding

similarities.

• Scikit-learn

Scikit-learn5 is a free software module for machine learning built on top of SciPy, wich

is an Python ecosystem for scientific and mathematical use. It features multiple of the

most common classification, regression and clustering algorithms. It’s very flexible for

research and clean, while being very easy to use.

It is designed to be compatible with the use of the Pandas DataFrames and Numpy

arrays directly into the Machine Learning algorithms. Scikit-learn doesn’t provide

preprocessing tools, which is a very big step in the pipeline of machine learning.

Because of this, the use of Pandas as a previous step in the pipeline is a very powerful

combination.

Scikit-learn comes with a wide variety of machine learning algorithms, supervised and

unsupervised. It makes it possible to develop models in a few minutes. It also provides

tools for model selection, such as Grid Search or vectorizers.

GridSearchCV is a powerful tool used to fine tune parameters of a certain model.

This means that the parameters used by an algorithm is usually selected with no

prior knowledge of the impact on the model. By defining which parameters to try

in a parameter grid, the algorithm tries all possible combinations of parameters and

then performs a cross-validation to get a score and select the best parameters for the

application at hand.

A vectorizer is a tool usually used in Natural Language Processing applications. In

this particular field it is used to transform a sentence into a vector. This works by first

defining a dictionary ([’car’, ’have’, ’love’]). Then the sentence “I love my

car” would be fitted into that dictionary in this way [1, 0, 1].

5https://scikit-learn.org

7

CHAPTER 2. ENABLING TECHNOLOGIES

• Flask

Flask6 is a licensed microframework for python. Multiple companies use Flask such

as Airbnb, Netflix or Uber. It is also the choice for people who are learning because

the are no limitations to getting a simple app or request handler up and running. It

is considered more fit into the Python guidelines because the code is more explicit.

2.2 ElasticSearch

Elasticsearch7 is a distributed, RESTful search and analytics engine. It is widely used

because it allows the exploration of data at a great speed and scale. Companies like GitHub

and Wikipedia use it [15].

ElasticSearch can be used for many types of search and analytics. Unlike other data

storage technologies like relational databases which are structured, ElasticSearch works like

a full-text database.

Full-text means that it includes complete texts of books, articles and other data that

can be scrapped from the web. It makes possible Full-text search. This type of search

examines all the words in a text for a specific search criteria. With little amounts of data

or documents it is possible to scan all documents for the query. On the contrary, if the

quantity of documents is very large, there is a need for indexing.

Indexing is the process of scanning the documents for search terms and generating an

index (or concordance). Thanks to the index, when performing a search, the engine searches

in the index and then into the document. This results in faster searches.

When performing Full-text search there is a term that does not appear in structured

search. This concept is called Relevance. With a bug number of results from the query

there is a need to know which of these results are more important. This relevance can be

calculated by TF-IDF as previously explained, or another algorithm.

To better understand the inner workings we can draw some comparisons with common

relational databases in 2.1.

6http://flask.pocoo.org
7https://www.elastic.co/products/elasticsearch

8

2.3. DIALOGFLOW

Figure 2.1: ElasticSearch vs. Relational Database

2.3 DialogFlow

Google’s DialogFlow8 is widely used to build conversational interfaces on top of other prod-

ucts and services. Following Google’s traditional ease to use and backed by its machine

learning products running in Google Cloud, DialogFlow is a very powerful tool for develop-

ing conversational agents.

Traditional interfaces usually require a very structured and predictable input to function.

They leave no room for ambiguity and thus make these interfaces unnatural and difficult to

use. There are endless ways of asking questions such as “What is the weather?”. Responding

to such a variety of queries requires a very robust system that takes into account all these

possible cases.

However, thanks to its splendid handling of Natural Language Understanding (NLU),

DialogFlow allows to achieve a broader conversational experience. It uses several techniques

that only require to enter very specific training phrases and then learns what similar prompts

with the same intent may look like.

By training the model with typical questions with the slots selected, as shown in Figure

2.2, DialogFlow can detect similar prompts and extract the slot that has the valuable

information. After having recognized the slot, it can be handled however the user wants.

It can be used as a search term in a database, a section in a form or anything imaginable.

When the slot has been recognized it can be sent to a Webhook. This is web service

that receives a POST request from Dialogflow with the information it extracted from the

query (If a slot has been matched or the intent). This is very useful in order to extend

the functionality provided by Dialogflow, allowing to generate custom responses from an

8https://dialogflow.com

9

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.2: Slot Detection in DialogFlow

external API for example.

It also provides prebuilt agents to handle specific tasks such as small-talk, event manag-

ing and device commands. These come with multiple intents already trained with common

phrases and responses.

2.4 Selenium

The purpose of Selenium9 is to automate browsers. This power can be used to test a web

service, automate web administration or as a web crawler. Selenium is open source and used

by big enterprises to test their webs including Facebook and Google. The use of Selenium

in this project is of web scraping.

Scraping is the process of automating the retrieval of data in the web. It involves fetching

a certain web page and extracting data from it. To this end, there is a process of inspection

of the DOM structure and then the extraction of information based on that structure.

2.5 Express JS

Express JS10 is a web framework for Node.js. It’s light and fast. It takes advantage of the

Model View Controller (MVC) pattern. This means that it separates the logic, presentation

and persistence.

• The Model contains the data structure and is independent of the user interface. It

is responsible for managing the data from the application.

• The View is the representation of the information or any kind of interface to the user.

9https://www.seleniumhq.org
10https://expressjs.com

10

2.6. DOCKER

• The Controller uses the input from the user to present a view or to modify the

model.

Express is fast and light-weight. It is the most starred web framework in npm [16]. It

solves the problems that have developers reinventing the wheel any time they need to create

a web interface, such as http parsing, cookie handling and sessions.

2.6 Docker

With the rise of the cloud and the growth of third-party hosting, Docker has became almost

a standard in deploying to the cloud.

Docker11 is designed to allow a developer to generate a low-weight virtual machine with

all the components a service needs called a container. It allows the use of the same kernel

as the system they reside in. This reduces size and increases performance. Then, platforms

such as Google Cloud, Amazon Web Services or the GSI cluster can take the container and

deploy it without any complications.

11https://www.docker.com

11

CHAPTER 2. ENABLING TECHNOLOGIES

12

CHAPTER3
Architecture

3.1 Introduction

This chapter covers the design phase of this project, as well as implementation details

involving its architecture. Firstly, it presents an overview of the project, divided into

several modules. This is intended to offer a general view of the project architecture. After

that, each module is detailed separately and in much more depth. A visual look at the

architecture is shown in Figure 3.1.

The system is intended to solve the problem of maintaining a conversation with the

user while being able to solve doubts and questions. There are several steps involved in the

process and are explained below.

The first step of the process is determining the Speech Act type from the user query,

which is determined by the Speech Act Classifier. Then, depending on the output, it is

passed onto the Small Talk module in the case that small talk is detected or into the QA

Module in the case that a question regarding Data Science is detected.

The Question Answering (QA) Module needs to access a Knowledge Base which has

been populated with data scrapped from the internet regarding the topic at hand. The

13

CHAPTER 3. ARCHITECTURE

Knowledge Base is based on ElasticSearch.

Afterwards, the modules generate an answer to satisfy the user request. The answer is

sent back to the user and a feedback is collected to evaluate and improve the model.

Figure 3.1: System Architecture

3.2 User Interface

The entry point of the whole architecture is the user interface. Having the book judged by

its cover is unavoidable. Therefore it needs to be visually attractive as well as easy to use.

The Bot needs an identifier to generate a more personal relationship. Being a Cognitive

bot and an intelligent one, with a combination of these ideas it was decided to be called

Just an Artificial Intelligence Cognitive Bot (JAICOB) as seen in Figure 3.2.

A general purpose bot in contrast with Jaicob, would gain quality from a text-to-speech

transformer, giving it a more human appearance. This is not the case of Jaicob because it

is centered in answering documentation and programming related questions. The frequent

use of acronyms and code examples in the answers would not make for a pleasant listening

experience. Instead, the use of text is the best option in this case.

14

3.2. USER INTERFACE

Figure 3.2: Jaicob

Due to the nature of the problem Jaicob solves, which is related to learning and study,

the decision regarding the type of interface is important. Telegram is widely used to develop

bots and takes away the problem of developing a platform and interface. It provides a full

interface with buttons, custom keyboards and the ability to send images and videos. The

problem with Telegram is that it is also used for general messaging purposes. This way,

having the bot in Telegram elevates the risk of distraction of the user.

Instead, a Web based interface is a better option for a variety of reasons. It improves

flexibility and the possibility of personalization. Also, it is universally accessible from

any browser and reduces the probability of distraction by means of other messages from

Telegram.

The interface is developed with ExpressJS based on botUI1, a JavaScript framework to

create conversational UIs. It provides tools such as buttons, and autocomplete which are

used to develop the bot. It was modified to separate the responses from Dialogflow into

different messages making a more human way of typing messages. The result interface from

a Safari browser can be seen in 3.3

1https://github.com/botui/botui

15

CHAPTER 3. ARCHITECTURE

Figure 3.3: Jaicob user interface

3.3 QA Module

The Question Answering module comes into place when the user asks for a specific piece of

information. These can range from doubt, a consultation or a documentation clarifications.

It must be able to understand what the user is asking for to retrieve the information

effectively.

16

3.3. QA MODULE

The QA model is an adaptation of a simple Factoid Based Question Answering2 which,

while being very straightforward, obtains up to an 88.51% score in the Stanford Question

Answer Dataset (SQuAD)3. Using natural language processing techniques, it answers to the

question in near real time. This general purpose model is enhanced to attend specific cases

to the task at hand, such as code examples.

Figure 3.4: QA Architecture

The general view of the architecture is defined in Figure 3.4. This will help to understand

how the modules interconnect before going into greater detail.

The Process Question module extracts the relevant information and intention of the

question.

2https://github.com/vaibhawraj/Factoid-based-Question-Answer-Chatbot
3https://rajpurkar.github.io/SQuAD-explorer/

17

CHAPTER 3. ARCHITECTURE

The Information Retrieval module extracts the relevant information from the Knowl-

edge Base based on the parameters passed by the Process Question module.

The Document Retrieval module receives and parses the retrieved information so it

matches the questions intent to finally generate an answer.

3.3.1 Process Question

This module receives a query as the input and returns a ProcessedQuestion object.

The object contains the following information:

• Question Type. Depending on the type of question, it falls into one of five categories.

These categories are WP (Who), WDT (What, Why, How), WP$ (Whose), WRB

(Where) or COMPLEX.

• Question Vector. This consists of a python dictionary containing each relevant word

(removing stop words and question type word) along with the frequency it appears in

the query.

• Answer Type. By using the previous information the type of answer that best fits

the query is determined. By making use of the other words in the query and POS

tagging, it is classified into one of these categories:

– YESNO

– PERSON

– LOCATION

– DATE

– DEFINITION

– ORGANIZATION

– QUANTITY

– LINEAR MEASURE

– EXAMPLE

3.3.2 Information Retrieval

This module receives the question vector and the answer type from the question

processor as an input. The question vector is, in essence, a list of keywords ordered by

18

3.3. QA MODULE

Figure 3.5: QA example

importance. Using this valuable information, an ElasticSearch query is generated. This is

used to retrieve relevant documents and pieces of information that match the keywords.

Because of the way the Knowledge Base is structured, which is explained later on, there are

three main types of queries:

• Definition Query. These are those that fit the definition answer type.

19

CHAPTER 3. ARCHITECTURE

• Example Query. These are designed for the example answer type.

• Concrete. All the other types of answer fall into this category.

3.3.3 Document Retrieval

This module implements a Document Retrieval Model. The main objective of the module

is to parse the provided information into an answer that fits the intention of the question.

A general view of the module pipeline is shown in Figure 3.6.

Figure 3.6: Document Retrieval Pipeline

First, it receives all the information collected by the Information Retrieval module. It

20

3.3. QA MODULE

then computes the term-frequency inverse document frequency (TF-IDF) for every token

of each paragraph.

After having processed all the paragraphs, the Processed Question is passed to the

module. To find the answer among all the data, the algorithm searches and selects the most

relevant paragraphs based on a cosine similarity4 between the Question Vector and the

Paragraph Vector previously computed.

Next, it gets the most relevant sentences using n-gram similarity between each sentence

and the question. The program returns a list with relevant sentences a the default answer

is selected as the most relevant sentence.

Finally, using the relevant sentences selection and the Answer Type the final answer

is selected. This is done by searching in each of the sentence the named entity of Answer

Type. Depending on the type of answer required, the algorithm tries to fit the sentence

into a usual template and the sentence that best fits the template is the chosen one. In

the case that no sentence fits well, the Default Answer (The one with the highest n-gram

similarity) is sent as a response.

3.3.4 Definition Answering

When the Answer Type is of the definition type, the module searches in the Glossary

index in the Knowledge Base. It searches for a match with the terms in the index. When

a match is found, the corresponding definition is sent as an answer. Common questions of

this type are:

• What is a neural network?

• Can you give me a definition of overfitting?

This module is implemented as a DialogFlow agent, with an intent that can recognize

that the user wants a definition. The intent is trained with multiple training phrases that

can be used to ask for a definition. It extracts a term as the slot. These slots are recognized

thanks to an entity5 defined as all the terms available in the Knowledge Base.

4The Cosine similarity is a way to measure the similarity between two non-zero vectors with n variables.

If the cosine value of two vectors is close to 1, then it indicates that they are almost similar.
5An entity is the definition of a type of slot. It can be defined as a list with all the possible terms for

that slot.

21

CHAPTER 3. ARCHITECTURE

3.3.5 Example Answering

When the Answer Type is of the example type, there is a more complex type of search.

There is a search across the documentation text to match the key words of the query. When

a match is found, the corresponding code snippet is sent as a response with the appropriate

format. Examples of these type of questions are:

• How is a dataframe defined in Pandas?

• How can I implement a k-fold using scikit?

Figure 3.7: Knowledge Base selection based on Answer Type

This module is implemented as a DialogFlow agent with and intent trained to detect

example queries. The slot in this case is more open, so there is no Entity defined. The

example can be of any kind.

22

3.4. KNOWLEDGE BASE

3.4 Knowledge Base

The knowledge base (KB) is the place where all the information used by the chatbot is

stored and available to retrieve. This data is scraped from the web and is organized in

order to be useful and effective. For this purpose ElasticSearch is used. It includes a very

powerful and fast full-text search that helps to deliver the correct information while adding

a low lag to the pipeline.

The Knowledge Base is adapted to the way the information retrieval modules work.

There are three main types of information that are stored in the KB:

• Glossary Terms. It was observed that the main type of questions that people ask the

chatbot are definitions of terms in the form of “What is a linear regression model?”.

• Documentations. In order to retrieve examples and snippets of code the documen-

tation of languages and libraries is the best source. They include explanations in plain

text and examples in code.

• Frequently Asked Questions (FAQ). If the question can’t be answered by any

of the modules that handle the previous data, which is possible if the question is a

comparison like “What is the difference between bias and overfitting?”, there is an

index with these types of questions and answers.

3.4.1 Scraping

The information stored in the KB is from public webs and available to scrap. According to

the categories previously described, the sites that fit the necessities of the glossary are:

• Big Data glossary.6 A list of terms regarding big data.

• Machine Learning glossary.7 A complete glossary of machine learning and statis-

tics terms and definitions.

These pages were organized by a different html class for each term and a different one

for the definition. By identifying these classes, the term and definition are extracted and

organized.

The documentation sites used to populate the KB are:

6https://bigdata-madesimple.com/big-data-a-to-zz-a-glossary-of-big-data-terminology/
7https://www.analyticsvidhya.com/glossary-of-common-statistics-and-machine-learning-terms/

23

CHAPTER 3. ARCHITECTURE

• Pandas Documentation. Because the use of the Python Pandas library is widely

used when developing machine learning models, it is very useful to have examples

available of common implementations of data handling. This documentation is struc-

tured with brief descriptions with code examples.

• Scikit-Learn Documentation. Being the library used widely for Machine Learning

purposes, Scikit examples of implementations is an obvious use case for the chatbot,

and therefore a very important part of the KB.

For more complex questions, the use of a FAQ solves the problem. The site8 used for

this purpose is structured as a list of questions with the answers associated. It was selected

because of the rich and adequate answer for the purpose of the project.

3.4.2 Structure

In order to fully take advantage of the ElasticSearch potential, the information must be

correctly organized so it can be retrieved effectively. Taking into account the types of

questions that can be asked and the modules used to implement the answering of each type

of question, the structure of the database is as follows.

Regarding the indexes of the ElasticSearch node, which is the entrypoint of the search,

the following are defined:

• glossary. It contains 358 instances of different terms. Each instance of this index is

an object with the following attributes:

– Word includes the term in the glossary.

– Definition includes the definition of the term.

– Url includes the source of the information.

• scikit. This index includes 225 chapters and subsections from the scikit user guide.

– Title includes the title of the section.

– Text includes the text of the section.

– Code Snippet includes an array of the code examples in the section.

• pandas. This index contains 78 instances from the pandas documentation. It has

the same structure as the scikit index.

8https://machinelearningmastery.com/faq/

24

3.5. SMALL TALK AGENT

– Title includes the title of the section.

– Text includes the text of the section.

– Code Snippet includes an array of the code examples in the section.

• faqs. This index includes 99 instances of Frequently asked questions. It has this

structure:

– Question includes the question.

– Answer includes the answer of the question

3.5 Small Talk Agent

3.5.1 Introduction

According to [17], a users satisfaction with a certain chatbot is influenced by various factors.

By testing which of these factors were more influential, the results revealed that the human-

likeness of the bot was very correlated with the users satisfaction.

Also, it was stated [2] that people were actually inclined to send more than twice as many

messages to chatbots with a human-like interaction compared to other people, contrary to

our expectations and disconfirming the notion that people feel less confident or comfortable

communicating with chatbots.

Including a module to handle small-talk improves the human-likeness of the bot and

makes it more fun and engaging. Instead of answering with the fallback answer, if the

question isn’t about the topic it will trigger the small-talk module to simulate human

interaction and cleverness. Some examples of the behavior that the Bot can answer are

collected in Figure 3.8.

3.5.2 Implementation

This module is implemented with Google’s DialogFlow technology. There is a specifically

trained agent to provide the desired output. This agent can detect more than 100 different

intents.

Among these intents are some of the provided with the default Small Talk module and

some custom ones. The intents are defined to fit the purpose of this project. For example,

when asked what it can do, it responds with directions to ask questions about Data Science.

25

CHAPTER 3. ARCHITECTURE

Figure 3.8: Small Talk Examples

3.6 Speech Act Classifier

3.6.1 Introduction

The main objective of the act of speaking is the transmission of an intention, which may

or may not require a response or interaction. For example, if someone says “What time is

it?” the intent is to get a response and the speech act is a question.

The task of speech act classification involves classifying a certain sentence into a set of

predefined speech acts. Examples of these are questions, statements, greetings or insults.

This is relevant to the project because in order to know what answer to give, it is useful to

know the intention of the actor.

3.6.2 The Dataset

The dataset [18] used to train the classifier consists of 10567 posts from five different age-

oriented chat rooms at an internet chat site. It is sanitized to protect user privacy. The

posts were tagged using 15 post categories.

This dataset was selected because of its big size, which makes a more robust model.

Also, it being hand-tagged contributes to reliability. There are other datasets that could

have been selected, but they are too small in relation to the one used.

The examples shown in Table 3.1 reveal the complexity of the task: Sometimes more

26

3.6. SPEECH ACT CLASSIFIER

Classification Example

Accept yeah it does, they all do

Bye night ya’all.

Clarify i meant to write the word may.....

Continuer and thought I’d share

Emphasis Ok I’m gonna put it up ONE MORE TIME

Greet hiya hug

No Answer no I had a roomate who did though

Other 0

Reject u r not on meds

Statement Yay...democrats have taken the house!

System JOIN

Wh-Question why do you feel that way?

Yes Answer why yes I do, lol

Yes/No Question cant we all just get along

Emotion lol

Table 3.1: Post classification examples

than one category applies, a “Wh-question” does not start with “Wh” or a question does

not have a question mark.

3.6.3 Preprocessing

In order to feed the data to the classifier it needs to be processed into something an algorithm

can understand. The process to follow with each phrase is the following.

27

CHAPTER 3. ARCHITECTURE

• Tokenization: It’s the simple process of dividing a given sentence into a set of words.

It is also common to use n-grams. This consists of grouping the words into subsets

to take into account the context instead of treating each word independently. In this

study it does not provide a significant insight and using simple tokenization reduces

complexity.

• Stemming: In order to clean the samples into a unified form, lemmatization and

stemming are the appropriate tool. It consists in finding the stem of the word , given

a flexed form. The stem is what would be found in a dictionary. Comparing the results

between processing the data with stemming and not doing it showed that stemming

has a positive impact on the score of the model.

3.6.4 Feature Extraction

This process consists of transforming a preprocessed text into a numerical vector that can

be understood by the machine in a simpler way. The tool to extract this features is called

a vectorizer and the one used for this model is the TfidfVectorizer included in NLTK.

First, it creates a “dictionary” with all the input data, which is a vector of all the words

found in the training data. Then, each instance of the data is fitted into this dictionary

producing the output of a numerical vector which can be directly fed into the classifier.

3.6.5 Classifier

The last step of the process is finding the best model to classify the data. By training and

evaluating some of the most popular classification algorithms, the best one is selected based

on the score achieved by a K-Fold, a commonly used methodology which is explained later.

This process can be automated by means of a grid search which finds the best parameters

of a model the optimal way.

The classifiers tested are all implemented in the Scikit-Learn library. The ones that gave

the best results were:

• Decision Tree uses a tree-like model of decisions. Growing a tree involves deciding on

which features to choose and what conditions to use for splitting, along with knowing

when to stop.

• Support Vector Classification (SVC) uses support vector machines for a classi-

fication detection.

28

3.6. SPEECH ACT CLASSIFIER

• Multinomial Naive Bayes implements the naive Bayes algorithm for multinomial

models. The multinomial distribution normally requires integer feature counts. How-

ever, in practice, fractional counts such as tf-idf may also work.

• Random Forest is an ensemble method that follows the bagging technique. It creates

random subsets from the original dataset and then fits a decision tree into each of

them with a random selection of features to decide the splits. The final prediction is

an average of the predictions made by each tree.

Since the classification of Speech Act is intuitively rule-based, a tree-type model is a

good choice to consider beforehand.

3.6.5.1 Evaluation Metrics

The evaluation method of the model is very important to avoid biases. It must meet certain

standards to know if it is needed to continue the search for the best model. There are a

series of metrics that examined carefully and together will provide the necessary information

on what the strengths and weaknesses of the model are.

In a multiclass prediction, the result on a test set is often displayed as a two-dimensional

confusion matrix with a row and column for each class. Each matrix element shows the

number of test examples for which the actual class is the row and the predicted class is

the column. Good results correspond to large numbers down the main diagonal and small,

ideally zero, off-diagonal elements.[1]

Predicted class

a b c

Actual class

a 88 10 2 100

b 14 40 6 60

c 18 10 12 40

Total 120 60 20

Table 3.2: Confusion matrix example [1]

Table 3.2 shows a numeric example with three classes. In this case the test set has 200

instances (the sum of the nine numbers in the matrix), and 88 + 40 + 12 = 140 of them

29

CHAPTER 3. ARCHITECTURE

are predicted correctly, so the success rate is 70%. This measure of success is usually called

Accuracy.

The metrics taken into account to the evaluation of each model are:

• Accuracy is the most intuitive because it is a ratio of correctly predicted observations

to the total observations.

• Precision is the number of correct predictions divided by the number of total predic-

tions made. Intuitively, a high precision for a class means that if our models predict

that class, it is very likely to be true.

• Recall is the number of correct predictions divided by the total number of elements

present in that class. Graphically, it is the value on the diagonal, divided by the sum

of the values in the row. If recall is high, it means that our models manages to recover

most instances of that class.

• F1 score is the harmonic mean of precision and recall. It reflects the combination of

Precision and Recall if one of those is not specifically needed.

Figure 3.9: Cross-Validation and Hold out

30

3.6. SPEECH ACT CLASSIFIER

When evaluating a dataset, the holdout method reserves a chunk of the data for testing

while training the model with the rest. When the amount of data for training and testing

is limited, the sample used for training or testing may not be representative. To solve this

problem we repeat the process a number of times, until all the data has been used for testing

(and training).

A k-Fold means that the data is divided in k parts. Then it iterates k times. Each

iteration, one of the k parts is used for testing and the rest for training. This way misrep-

resentation is avoided. This method of evaluation is also called cross-validation.

3.6.5.2 Results

The scores following are calculated saving a fourth of the dataset for testing afterwards and

using the rest to get this results.

Model Accuracy Precision Recall F1

Multinomial NB 0.685 (+/- 0.012) 0.75 0.71 0.66

Decision Tree 0.711 (+/- 0.005) 0.76 0.76 0.75

Random Forest 0.745 (+/- 0.005) 0.78 0.77 0.76

SVC 0.768 (+/- 0.007) 0.79 0.8 0.77

Table 3.3: Evaluation Scores

The scores in Table 3.3 are obtained by performing a 5-Fold and calculating the mean

of the scores. The Support Vector Classifier model is the best and significantly different.

Using as the training data 3/4 of the dataset and the rest as testing data we obtain with

the SVC a final accuracy score of 0.799.

31

CHAPTER 3. ARCHITECTURE

32

CHAPTER4
Use Cases

In this chapter a series of use cases of Jaicob are represented. The operation of the system is

described from when the user query is typed to when the answer is displayed. A compilation

of examples are shown in Appendix C

4.1 Small Talk intent

The queries used as an example as show in Figure 4.1 are:

• How are you today?

• What is your purpose?

The first step in the architecture is the Speech Act classifier, which recognizes the query

as a Greeting, and therefore is forwarded to Dialogflow Small Talk.

Next in the process, Dialogflow uses its machine learning models to detect a certain type

of small talk. The cases are:

• How are you today?: smalltalk.greetings.how are you

33

CHAPTER 4. USE CASES

Figure 4.1: Small Talk Intent Use Cases

• What is your purpose?: Get Purpose

In both cases, Dialogflow generates a series of possible answers, and then selects ran-

domly one of them. This is because if it always answered the same way it would seem more

like a machine. This feature provides the feeling of a genuine conversation. It looks like

this in the case of How are you today?

{
"text":[

"Doing great, thanks.",

"I’m doing very well. Thanks!",

"Feeling wonderful!",

"Wonderful! Thanks for asking."

]

}

DialogFlow also returns information such as intentDetectionConfidence which

is a percentage of security defined by the classifier model.

4.2 Definition Intent

To show how the intent of a definition request works, the query used is What is elasticsearch?

The first step in the architecture is the classification of Speech Act which returns Wh-

question. Because of that it goes into the QA module and Dialogflow makes a match of

the Get Definition intent with a intentDetectionConfidence of 1, which is the

maximum possible. Then it uses the trained model to extract the information previously

34

4.3. EXAMPLE INTENT

defined as relevant. The intent is defined to match an Entity named topic. It is populated

with all the terms and synonyms of the values in the Knowledge Base. Below is a response

from Dialogflow with the parameters that were recognized.

{
"queryText":"what is elasticsearch",

"action":"show_info",

"parameters":{
"topic":"Elasticsearch"

}
}

This is the information received by the webhook developed in this project. In the case

of receiving the Get Definition intent, it uses the topic parameter to generate a query

to elasticsearch.

The queries generated search for a match in the terms of the Glossary index in Elastic-

Search:

{"query": {"match": {"Word": search term}}}

ElasticSearch returns an array of hits ordered by a relevance score. Then, the first object

of that list is selected and the definition of the term is returned to the user. This is shown

in Figure 4.2

Figure 4.2: Definition Intent Use Case

4.3 Example Intent

The query in this intent is how do you implement a svc in scikit?. This is asked with

the intention of receiving a code example of the problem stated. This also can be asked

explicitly like Give me an example of svc.

As with the previous intent, the query enters the QA module. After that, Dialogflow

recognizes the query as an Get Example intent with a intentDetectionConfidence

of 0.75. The implementation of the intent detects the relevant information and parses it

35

CHAPTER 4. USE CASES

into a parameter, which is forwarded to the Webhook.

{
"queryText":"how do you implement a svc in scikit?",

"parameters":{
"any":"svc in scikit"

}
}

The way the webhook works in this intent is by performing a search in the Knowledge

Base with the parameter it received from Dialogflow. To generate the query it follows these

steps:

• Index detection. First it searches the parameter for hints in which index it should

search in. In the case of this example (“svc in scikit”) it detects the term scikit, which

is directly associated with the scikit ElasticSearch index. In the case that no hint

is found, it performs a search across all indexes.

• Text matching. After having detected the index, a query is generated. In this case,

a full text search [2.2] is performed.

• Answer generation. With the matches found, instead of returning the text where

the match was made, the function returns the code snippet associated with the text

in the case that it exists. The result can be seen in 4.3

Figure 4.3: Example Intent Use Case

36

4.4. FAQ INTENT

4.4 FAQ intent

The query used to illustrate how this intent works is How do you differentiate standardiza-

tion and normalization?.

This intent was modified during the development of the project. Dialogflow launched a

new feature called knowledge, that allowed to do precisely what was implemented. Therefore

there was a migration to this solution. It required to upload the FAQ data. Then Dialogflow

matches similar questions to the ones uploaded.

When entering the QA module, the query is detected as a knowledge intent (FAQ) with

a intentDetectionConfidence of 0.809. After that, Dialoflow returns a list of the

matched FAQs. The first one is When should I standardize and normalize data?. Then, the

answer to that question is returned. As can be seen in Figure 4.4, the result is successful.

Figure 4.4: FAQ Intent Use Case

37

CHAPTER 4. USE CASES

38

CHAPTER5
Evaluation

In this chapter we will describe the evaluation of the project. Being a conversational in-

terface, the way to test it is with real users because in a controlled environment, the are

original thoughts from users that cannot be predicted.

5.1 Participants

The experiment was made with 29 participants. They were all of technical background.

All of them were unaware of the the inner workings of Jaicob. They were asked to use

the chatbot as a tool to answer any questions or doubts that may arise in the process of

understanding Data Science related topics or of writing the corresponding code. They were

asked to answer a small survey to get to know them.

The median of the ages of the participants is 22 years. 51% were studying the Grado

en Ingenieŕıa de Telecomunicaciones and the rest the Master or other technical studies.

About their technological background, 54% had developed and implemented something

machine learning related. The rest had some basic knowledge.

39

CHAPTER 5. EVALUATION

5.2 Measurements

As explained in 3.5, small talk is an important part of the architecture of the chatbot.

Therefore, before making the measurements the hypothesis that small talk makes a more

attractive bot was stated.

Metrics about how innovative the product is and the reactions are also recorded. Also,

there are some analytics related to the use of the product.

5.3 Results

About the user impressions the overall impression is positive as can be seen in Figure 5.1

Figure 5.1: Overall Impression

The testers made an average of 15.86 queries per session. The distribution of intents

in the sessions is shown in Figure 5.2. The graphic shows that the intent that matched

most part of the queries was the one related to the FAQs, which is tagged in the image as

Knowledge. After that, there is the Definition intent and then the example intent. Also, 10

to 12% of the queries resulted in small talk handling.

40

5.3. RESULTS

Figure 5.2: Intent Distribution

In order to confirm the hypothesis that was stated, the users were asked if they thought

that small talk made Jaicob more attractive. The hypothesis is confirmed 100% as can be

seen in Figure 5.3. This result must not be taken lightly, even though the sample of testers

41

CHAPTER 5. EVALUATION

is very small, because it confirms that the humanization of interfaces contributes to make

a more positive experience to the users.

Figure 5.3: Small talk makes Jaicob more attractive

After that, the users were asked if the product would be used in a real scenario. In other

words, how much they need the product. The results are displayed in Figure 5.4. Most of

the users would use it from time to time, and 70% declare that they somewhat need it.

Figure 5.4: How much users need Jaicob

At last, the innovation level of the product reached a rating of 4.1 out of 5. This refers

to how innovative the users feel that the product is. The distribution can be seen in Figure

5.5

42

5.3. RESULTS

Figure 5.5: How innovative Jaicob is

To conclude, the results were satisfactory confirming all the hypothesis stated. It also

shows that the project is innovative and that the users enjoyed the experience and feel that

the product has a use in the world.

43

CHAPTER 5. EVALUATION

44

CHAPTER6
Conclusions and future work

In this chapter the conclusions extracted from this project are described. The goals achieved

will be explained, as well as the problems faced during the development. For the last part,

thoughts about future work will be set forth.

6.1 Conclusions

In this thesis a conversational bot has been developed. The purpose of the project is to be

used as a tool with a comfortable and usable interface with a human experience.

In the process of development, a series of modules were implemented:

• A speech act classifier to recognize the intents of the user.

• A small talk module to handle human-like interactions.

• A series of intent handlers to respond the user queries effectively.

• A Knowledge Base populated with information regarding the topic.

The project was evaluated with a small sample of users achieving very favorable results

45

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

and confirming the stated hypothesis that small talk makes the product more attractive.

6.2 Achieved goals

• Respond to the user queries with the desired information. The results expected from

the products are the ones returned by it as it should be. This is done by means of a

pleasant web interface.

• Retrieve the necessary information from the data source. A series of algorithms and

parsing of search queries are developed in order to search and select the desired infor-

mation from a data source.

• Classify Speech Act types correctly. A machine learning model based on real users

training data is developed to recognize the users intentions correctly fit into a series

of classes.

• Handle small talk effectively and as human as possible. A Dialogflow module is

implemented to handle this type of speech and the results are very favorable regarding

small talk.

6.3 Problems faced

The initial web interface was one already developed, but it was implemented in a old version

of the Dialogflow API which becomes deprecated. In order to continue using the API there

was a need to modify almost the whole module in order to be in the latest version. This

was difficult because it is very different from the previous one and has several increases in

security and identity. In the end, it was possible sacrificing the process time of the API,

but it was necessary in order to be usable in the future.

6.4 Future work

• Increase of the Knowledge base

At the end of the development of this project, the ElasticSearch database included

three indexes: Glossary, Pandas and Scikit. This means that it can answer questions

related to specific information about Pandas and Scikit, and general term definitions.

46

6.4. FUTURE WORK

In order to achieve a broader reach in the areas of knowledge, it would be needed

to place additional information in the Knowledge Base as well as the corresponding

Dialogflow intents.

• Google Web Answers

There is a feature that Google Search displays in a search when you ask for a question.

It can be useful to use this feature to answer questions that the product is not able

to respond.

• Multimedia in answers. The Knowledge Base includes information such as images and

videos. In order to get richer examples and definitions, to implement answers with

images can be very useful.

47

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

48

APPENDIXA
Impact of this project

This appendix reflects, quantitatively or qualitatively, on the possible impact of the devel-

oped project.

A.1 Social impact

The purpose of this project is to provide a useful tool to students that want to learn about

machine learning. It can provide insights and resolve doubts about the tool used for machine

learning. Therefore, the target user is mostly a student or anyone who wants to learn more

effectively about data science and machine learning.

As these technologies evolve, more and more people will study these subjects. Therefore,

the future impact of the project is promising and the affected groups will increase. The

product will be accessible via a web interface (web browser) and is available globally.

In addition, the privacy and security of the users is guaranteed, as it is not required to

provide any personal information, and the model does not store data related to the user

identity. There is not any kind of risk to the user’s health or well-being.

i

APPENDIX A. IMPACT OF THIS PROJECT

A.2 Economic Impact

In this section the possible economic impacts that users using the interface developed in

this project may experience are assesed.

From the users perspective, it has no cost at all. It is a service provided with no

monetary purpose but with the purpose of helping people build projects that can make the

world a better place.

From the maintenance point of view, the system requires hosting. Hosting may cost

money, but with the expected use it can be supported by the free tiers provided by cloud

hosting services.

A.3 Environmental Impact

This section aims to define the main environmental impact of the development this system.

Computers and other information technology infrastructures consume significant amounts

of electricity, adding a huge charge on our electricity networks and contributing to green-

house gas emission. In addition to this consumption, the energy required for the cooling

system associated with this equipment must also be added, which is the second main reason

for the consumption of this equipment.

The main environmental impact of this project is the high consumption of the server

where it is deployed.

A.4 Ethical Implications

In this section we will evaluate the ethical implications of such a project.

Chatbots have been controversial in the past years like with the case of machine learning

in general. In the case of the project developed, being just a humanized mechanism to solve

doubts, there is no risk of hurting a user in an ethical sense.

Jaicob also protects the users privacy by not storing data related to the user. It respects

all laws related to this topic.

ii

APPENDIXB
Economic budget

In this appendix we are going to make an adequate economic budget for the realization of

this project. The main parts of this budget will be explained in the following sections.

B.1 Physical resources

The budget of the devices used to the develop this project is related to the computer used

to implement all the necessary modules of the architecture. No special equipment was

required.

The estimated cost of the computer used for the job is 1200e.

B.2 Human Resources

The salary of a person who can develop a project of these characteristic is based on the real

value. A UPM scholarship of 160 hours and 1200e was the case for the project.

The people involved in the evaluation of the product is also taken into account, by

spending some time testing the features.

iii

APPENDIX B. ECONOMIC BUDGET

On the other hand, we must also consider the salary of a person who is in charge of

software system maintenance. For this function you need a Telecommunication Engineer or

Computer Engineer with knowledge of machine learning and NLP. The salary of a worker

with this profile is approximately 24.000 e per year.

B.3 Licenses

This section includes the cost corresponding to the licenses of the software tools necessary

for the development and deployment of the system carried out in this project. However, all

the software used in this project is open-source, so the cost of software licenses is zero.

B.4 Taxes

One of the scenarios in which taxes related to a software engineering project must be taken

into account is the case in which the final product is sold to an interested company. This

sale is subject to a tax of 15% of the price of the product, as defined in Statute 4/2008 of

Spanish law.

iv

APPENDIXC
QA Corpus

In this appendix, a compilation of queries and answers typed by real users in the process

of evaluation is presented. These are classified by intent type. It is important to notice

that these answers are not hard-coded, but are the result of all the steps involved in the

architecture as described in Chapter 3.

C.1 Small Talk

Question Answer

What is you purpose? You can ask me questions related with machine learning

How are you? Doing great, thanks.

What is the weather like? My purpose is beyond that type of questions. If you

wanna talk about that ask Siri or Google

You are bad I can improve with continuous feedback. My training is

ongoing.

v

APPENDIX C. QA CORPUS

C.2 Definition Intent

Question Answer

What is ElasticSearch An open source search engine built on

Apache Lucene.

I wanna know about pandas Pandas is an open source, high-performance,

easy-to-use data structure and data analy-

sis library for the Python programming lan-

guage. [...]

What does accuracy mean? Accuracy is a metric by which one can exam-

ine how good is the machine learning model.

[...]

Help me understand Deep Learning Deep Learning is associated with a machine

learning algorithm (Artificial Neural Net-

work, ANN) which uses the concept of hu-

man brain to facilitate the modeling of arbi-

trary functions. [...]

What does IQR mean? IQR (or interquartile range) is a measure

of variability based on dividing the rank-

ordered data set into four equal parts. It

can be derived by Quartile3 – Quartile1.

I wanna know what the residual is Residual of a value is the difference between

the observed value and the predicted value

of the quantity of interest. [...].

I wanna learn about tokenization Tokenization is the process of splitting a text

string into units called tokens. The tokens

may be words or a group of words. It is a

crucial step in Natural Language Processing.

What is scikit-learn? Scikit-learn (formerly scikits.learn) is a free

software machine learning library for the

Python programming language. [...]

vi

C.3. EXAMPLE INTENT

C.3 Example Intent

Question Answer

How do I

implement a

SVC

>>> from sklearn import svm

>>> X = [[0, 0], [1, 1]]

>>> y = [0, 1]

>>> clf = svm.SVC(gamma=’scale’)

>>> clf.fit(X, y)

How can I

code a cross

validation

>>> import numpy as np

>>> from sklearn.model selection import KFold

>>> kf = KFold(n splits=2)

I want to build

a bagging

method

>>> from sklearn.ensemble import

BaggingClassifier

>>> from sklearn.neighbors import

KNeighborsClassifier as KNN

>>> bagging = BaggingClassifier(KNN())

How do i

compute a

confusion

matrix in

scikit

>>> from sklearn.metrics import confusion matrix

>>> y true = [2, 0, 2, 2, 0, 1]

>>> y pred = [0, 0, 2, 2, 0, 2]

>>> confusion matrix(y true, y pred)

array([[2, 0, 0], [0, 0, 1], [1, 0, 2]])

Show me an

example of a

dataframe

>>> import pandas as pd

>>> X = pd.DataFrame(

... ’city’: [’London’, ’London’, ’Paris’,

’Sallisaw’],

... ’title’: ["His Last Bow", "How Watson

Learned the Trick",

... "A Moveable Feast", "The Grapes of Wrath"],

... ’expert rating’: [5, 3, 4, 5],

... ’user rating’: [4, 5, 4, 3])

vii

APPENDIX C. QA CORPUS

C.4 FAQ Intent

Question Answer

How do I

check my

python

version?

You can discover what version of Python you are using by typing a

command line. On the command line, type: python -V You should

then see the Python version printed. For example, you may see some-

thing like: Python 3.6.5

How do i

know if im

overfitting

It is possible to overfit the training data. This means that the model

is learning the specific random variations in the training dataset at

the cost of poor generalization of the model to new data. [...]

How do you

differentiate

standardiza-

tion and

normalization?

Standardization refers to scaling a variable that has a Gaussian dis-

tribution such that it has a mean of zero and a standard deviation of

one. Normalization refers to scaling a variable that has any distribu-

tion so that all values are between zero and one. [...]

How do I

calculate the

accuracy of

regression

You can’t. Accuracy is a measure for classification. You calculate the

error for regression.

How do I

handle an

imbalance in

classes?

It is common to have a different number of observations for each class

in a classification predictive modeling problem. This is called a class

imbalance. [...] I recommend trying a suite of approaches to see what

works best for your project.

What is the

difference

between

“validation”

and “test”

sets?

A training dataset is used to train or fit a model. A test dataset has

observations that do not overlap with the training dataset and is used

to evaluate a trained model. Specifically, to estimate the skill of the

model on a new data sample. [...]

Why learn

machine

learning?

This is an important question! Because machine learning provides

techniques to learn a solution from historical examples for complex

problems where it is intractable or infeasible to develop a manual

solution.
viii

Bibliography

[1] Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining: Practical

machine learning tools and techniques. Morgan Kaufmann, 2016.

[2] Jennifer Hill, W. Randolph Ford, and Ingrid G. Farreras. Real conversations with artificial

intelligence: A comparison between human–human online conversations and human–chatbot

conversations. Computers in Human Behavior, 49:245–250, Aug 2015.

[3] John E. Kelly. Computing, cognition and the future of knowing. Whitepaper, IBM Reseach, 2,

2015.

[4] Ying Chen, JD Elenee Argentinis, and Griff Weber. Ibm watson: How cognitive computing can

be applied to big data challenges in life sciences research. Clinical Therapeutics, 38(4):688–701,

Apr 2016.

[5] Rob High. The era of cognitive systems: An inside look at ibm watson and how it works. IBM

Corporation, Redbooks, 2012.

[6] Mauro Coccoli, Paolo Maresca, and Lidia Stanganelli. Cognitive computing in education. BIG

DATA, 12(2):15, 2016.

[7] Stewart Kowalski, Katarina Pavlovska, and Mikael Goldstein. Two case studies in using chat-

bots for security training. In IFIP World Conference on Information Security Education, pages

265–272. Springer, 2009.

[8] Patrick Bii. Chatbot technology: A possible means of unlocking student potential to learn how

to learn. Educational Research, 4(2):218–221, 2013.

[9] Jaime Arguello and Kyle Shaffer. Predicting speech acts in mooc forum posts. In Ninth

International AAAI Conference on Web and Social Media, 2015.

[10] Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan. Detecting speech act

types in developer question/answer conversations during bug repair. In Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, page 491–502. ACM, 2018.

[11] Arthur C. Graesser and Natalie K. Person. Question asking during tutoring. American Educa-

tional Research Journal, 31(1):104-137. Arthur C. Graesser, Natalie, 1994.

[12] Travis E Oliphant. Python for scientific computing. Computing in Science & Engineering,

9(3):10–20, 2007.

ix

BIBLIOGRAPHY

[13] Grzegorz Kondrak. N-gram similarity and distance. In International symposium on string

processing and information retrieval, pages 115–126. Springer, 2005.

[14] Juan Ramos et al. Using tf-idf to determine word relevance in document queries. In Pro-

ceedings of the first instructional conference on machine learning, volume 242, pages 133–142.

Piscataway, NJ, 2003.

[15] Clinton Gormley and Zachary Tong. Elasticsearch: The definitive guide: A distributed real-time

search and analytics engine. O’Reilly Media, Inc., 2015.

[16] Azat Mardan. Related reading and resources. In Pro Express. js, pages 317–320. Springer,

2014.

[17] Mao Xuetao, François Bouchet, and Jean-Paul Sansonnet. Impact of agent’s answers variability

on its believability and human-likeness and consequent chatbot improvements. In Proc. of AISB,

page 31–36, 2009.

[18] E. N. Forsythand and C. H. Martell. Lexical and discourse analysis of online chat dialog. In

International Conference on Semantic Computing (ICSC 2007), page 19–26, Sep 2007.

[19] Cristian Moldovan, Vasile Rus, and Arthur C. Graesser. Automated speech act classification

for online chat. MAICS, 710:23–29, 2011.

[20] Miguel Coronado, Carlos A. Iglesias, Álvaro Carrera, and Alberto Mardomingo. A cognitive

assistant for learning java featuring social dialogue. International Journal of Human-Computer

Studies, 117:55–67, 2018.

x

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technologies
	Python Libraries
	ElasticSearch
	DialogFlow
	Selenium
	Express JS
	Docker

	Architecture
	Introduction
	User Interface
	QA Module
	Process Question
	Information Retrieval
	Document Retrieval
	Definition Answering
	Example Answering

	Knowledge Base
	Scraping
	Structure

	Small Talk Agent
	Introduction
	Implementation

	Speech Act Classifier
	Introduction
	The Dataset
	Preprocessing
	Feature Extraction
	Classifier
	Evaluation Metrics
	Results

	Use Cases
	Small Talk intent
	Definition Intent
	Example Intent
	FAQ intent

	Evaluation
	Participants
	Measurements
	Results

	Conclusions and future work
	Conclusions
	Achieved goals
	Problems faced
	Future work

	Appendix Impact of this project
	Social impact
	Economic Impact
	Environmental Impact
	Ethical Implications

	Appendix Economic budget
	Physical resources
	Human Resources
	Licenses
	Taxes

	Appendix QA Corpus
	Small Talk
	Definition Intent
	Example Intent
	FAQ Intent

	Bibliography

