
	

	

	

	

	

	

	

	

	

	

	

	

GRADO EN INGENIERÍA DE TECNOLOGÍAS Y
SERVICIOS DE TELECOMUNICACIÓN	

	

TRABAJO FIN DE GRADO	

	

	

	

DESIGN AND IMPLEMENTATION OF
AN AGENT-BASED SOCIAL MODEL

OF TERRORIST NETWORK BASED ON
SOCIAL NETWORK ANALYSIS TECHNIQUES

	

	

	

	

DAVID GARCÍA MARTÍN	

Junio 2017	

TRABAJO FIN DE GRADO

T́ıtulo: Diseño e Implementación de un Modelo Social de Redes Ter-

roristas basado en Agentes y Técnicas de Análisis de Redes

Sociales.

T́ıtulo (inglés): Design and Implementation of an Agent-based Social Model

of Terrorist Networks based on Social Network Analysis

Techniques

Autor: David Garćıa Mart́ın

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente:

Vocal:

Secretario:

Suplente:

FECHA DE LECTURA:

CALIFICACIÓN:

Resumen

Esta memoria es el resultado de un proyecto cuyos objetivos son el diseño e implementación

de una Red Terrorista, la visualización y análisis de la misma aplicando distintas técnicas

de análisis. Este modelo puede ser usado por las fuerzas y cuerpos de seguridad del estado

para prevenir futuros atentados y anticiparse a sus movimientos.

Para llevar a cabo este modelo, nos hemos basado en el estudio del comportamiento en

Redes Sociales y los distintos tipos de redes que podemos encontrarnos, poniendo especial

atención en el cátalogo de simuladores y funcionalidades del software de análisis de redes

NetworkX. Tanto para la realización del modelo, como de la simulación y la visualización

de la Red, hemos usado el simulador social basado en agentes Soil, gracias a sus ventajas

frente a otros simuladores sociales.

Con el fin de realizar el diseño y desarrollo de los modelos de comportamiento terrorista

se han aplicado distintas técnicas usando el lenguaje de programación Python. Para alcanzar

nuestros objetivos, se ha evaluando y simulando información útil como puede ser información

propagada en la red, tipos de agentes y otras caracteŕısticas importantes. Ayudándonos de

distintas topoloǵıas, métodos de manipulación estructural de redes y diferentes técnicas de

estudio de centralidad de nodos en redes.

Por último se visualizará el grafo generado con ayuda de la herramienta de visualización

de redes Gephi, donde se podrán identificar los distintos tipos de agentes, sus estados y

además observar cómo se expande la red de forma dinámica. Todo ello facilitará el análisis,

la comprensión del modelo y el estudio de la variación de sus parámetros. Adicionalmente,

se generan gráficas de ĺınea para observar la evolución de la red a lo largo del tiempo.

Palabras clave: Modelo, Analisis, Python, Implementación, Gephi, NetworkX, Redes

Sociales, Soil.

V

Abstract

This thesis is the result of a project whose objectives have been to design and implement a

Terrorist Network model and its’ visualisation. This model can be used by security forces

with the aim of preventing other attacks and being one step ahead from terrorist intentions

and movements.

As we have mentioned, the project will be focused on the design and implementation of

a Terrorist Network model.

To do so, we have based our model in the study of Social Networks behaviour and

network types, paying attention to disparate simulators and functions of network analysis

software Networkx. Soil, a social simulator based in agents, has been used to help us in this

project due to its advantages as for example: the ability to provide capacities for modelling,

simulating and visualizing Social Networks.

Different techniques have been applied to design, develop and study terrorist behaviour

models on Python, evaluating and simulating useful information such as information spread,

agent types and other characteristics of terrorist networks using a variety of network topolo-

gies and methods of manipulating networks’ structure. In addition, we have used some

functions to study and manipulate this structure, for example nodes centrality.

To continue, a Terrorist Network will be rendered being able to identify different agents

and visualising network expansion. This interactive visualisation will be generated using

Gephi network visualization tool; making easy to understand and analyse it. Besides, a

line-graph will be also generated to easily understand our model.

As a result, this project will allow an extensive analysis of Social Networks structure

and conduct patterns, pointing out how organizations expand affecting all type of agents.

With all these informations we are going to be able to understand terrorist behaviour and

how these organizations expand and work in a new easily way.

Keywords: Model, Analysis, Python, Implementation, Gephi, NetworkX, Social Net-

work, Soil.

VII

Agradecimientos

Me gustaŕıa en estas ĺıneas agradecer a la gente que me ha ayudado y apoyado no solo en

este trabajo de fin de grado, también en toda la carrera.

A mi familia, por su apoyo, paciencia y comprension durante todos estos años.

A Mica y Sonia, por todos vuestros ánimos en todo momento y vuestra insistencia para

mantenerme al pie del cañón.

A Diego e Ismael, por todos nuestros momentos de desconexión que siempre me han

alentado a continuar con una gran sonrisa.

También a todas las personas que he conocido en la Universidad durante estos años que

en todo momento me han prestado su ayuda y han contribuido a que el d́ıa a d́ıa en esta

etapa fuera mejor.

A todos los compañeros del Grupo de Sistemas Inteligentes por ayudar en todo lo posible

y en particular a Carlos, que además de llevar el seguimiento de mi trabajo, siempre ha

estado dispuesto a concertar reuniones para resolver cualquier duda y revisar avances.

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XV

1 Introduction 1

1.1 Motivation . 1

1.2 Project goals . 2

1.3 Structure of this document . 3

2 Enabling Technologies 5

2.1 Background . 5

2.1.1 Geographical Simulators . 6

2.1.2 Social Network Analysis . 7

2.1.3 Dynamic Network Analysis . 10

2.1.4 Radicalization theories . 10

2.1.5 Agent Based Models . 10

2.2 Soil . 10

2.2.1 Simulation Model for Social Networks 11

XI

2.2.2 Simulation Workflow . 12

2.3 NetworkX . 13

2.3.1 nxsim . 14

2.4 Gephi . 15

2.4.1 Input Data . 16

2.4.2 Explore . 17

2.4.3 Output . 18

3 Architecture 19

3.1 Introduction . 19

3.2 General Model . 19

3.2.1 Agents . 22

3.2.1.1 HAVENS . 22

3.2.1.2 TRAINING ENVIRONMENT 23

3.2.1.3 POPULATION . 23

3.2.1.4 LEADERS . 25

4 Implementation 27

4.1 Background . 27

4.2 Terrorist Model . 28

4.2.1 SNA functions . 29

4.2.2 Soil init: . 30

4.2.3 Step: . 31

4.2.4 Population and leader conduct: . 31

4.2.5 Set radicalism: . 32

4.2.6 Neutral behaviour: . 32

4.3 Problems Faced . 33

4.3.1 Geographical Graph Generators . 33

4.3.2 Dynamic Graphs . 33

4.3.3 Gephi . 34

4.3.4 Summary . 34

5 Experimentation 37

5.1 Methodology . 37

5.2 Scenarios . 38

5.2.1 Low radicalism country model . 39

5.2.2 Increasing initial radicalism and influence scenario 40

5.2.3 Increasing information spread intensity 41

5.2.4 Increasing relative inequality and training environments 42

6 Conclusions and future work 45

6.1 Introduction . 45

6.2 Conclusions . 45

6.3 Achieved goals . 46

6.4 Future work . 47

Bibliography 48

List of Figures

2.1 Simulation components . 11

2.2 Social simulator’s workflow . 12

2.3 Gephi Steps . 15

2.4 Data Laboratory . 18

2.5 Pre visualisation . 18

3.1 Actors . 20

3.2 Simulation Process . 21

3.3 Actors or Agents . 22

3.4 Havens’ behaviour . 23

3.5 Populations’ behaviour . 24

3.6 Leaders’ behaviour . 25

4.1 General Simulation Parameters . 28

4.2 Terrorist Model Parameters . 29

5.1 Methodology . 38

5.2 Colour-node relationship . 39

5.3 Low radicalism country model Gephi graph 39

5.4 Low radicalism country model Line graph 39

5.5 Increasing initial radicalism and influence scenario Gephi graph 40

5.6 Increasing initial radicalism and influence scenario Line graph 41

5.7 Increasing initial radicalism and influence scenario Gephi graph 41

5.8 Increasing initial radicalism and influence scenario Line graph 42

XV

5.9 Increasing relative inequality and training environments Gephi graph 43

5.10 Increasing relative inequality and training environments Line graph 43

Listings

2.1 Networkx degree centrality . 7

2.2 Networkx betweeness centrality . 8

2.3 community.best partition . 9

2.4 Random Geometric Graph . 13

2.5 NetworkX . 14

2.6 BaseNetworkAgent . 14

2.7 Network Simulation . 15

2.8 GEXF . 16

4.1 settings.py . 28

4.2 SNA soil.py . 29

4.3 create leader . 30

4.4 Init . 30

4.5 Step . 31

4.6 Population and leader conduct . 31

4.7 set radicalism . 32

4.8 neutral behaviour . 32

4.9 Graph Generators in soil.py file . 33

XVII

CHAPTER1
Introduction

1.1 Motivation

Nowadays with the recent terrorist attacks, prevention and surveillance have become in-

creasingly important consideration within society and security forces.

Radicalism reflects the political and ideological dimension of threat [18]. While ter-

rorism is a serious and often lethal challenge, radicalism has several social, economic and

behavioural components. When relative inequality, collective frustration and deprivation

stands out in a society, terrorist easily exploits this social radicalised habit. Therefore,

radicalism is sustained by multiples causes; including broad grievances pushing individuals

toward a radical ideology or more specific, factors that attract them. Armed groups build

stronger bonds with population by investing in social services, they build schools or even

hospitals, also offering something that the state is not providing: safety and security, filling

the gap left by the government. [7]

Anti-radicalism refers to the activity of developing defensive measures to lessen the

vulnerability of populations and infrastructure to the growth of radicalism. There is a need

to comprehend terrorist modus operandi, how they work, expand or recruit new members.

So that, understanding non-state armed groups like ISIS is key to solving most conflicts,

1

CHAPTER 1. INTRODUCTION

but war has changed. It used to be a contest between states, but now it is a conflict between

states and non-states actors.

As we have said before, there is a need to know what makes these organizations change.

Usually, the spotlight is put on how terrorists fight, why they fight, but no one looks at

what they are doing when they are not fighting. Terrorist groups do more than just shoot,

or suicide attacks, they are multi-task. [3]

In the past few years, we can see that the way how people communicate have changed,

becoming more relevant Social Networks, where everyone can exchange messages, images

and videos. Terrorist organizations also move forward by setting up radio stations, TV

channels, Internet websites, etc. An example is ISIS magazine, printed in English and

published with the objective of recruit new members. These activities allow them to increase

their strength, their funds and better recruit new people.

Thus, there is a need for developing new ways of analysing terrorist behaviour in order

to anticipate and comprehend their “modus operandi” with the main idea of neutralize

future terrorist attacks.

With regard to all these considerations, the project will be based on Social Network Anal-

ysis Techniques [10]. Terrorist organizations continuously expand their networks through

real-time information exchange, enabling operatives to organize, spread information and

recruit new members into the organization. Hence, there is a relationship between Social

Networks in which we can study how information is shared and how people become members

of groups or even new friend relationships. A model is created by taking into account differ-

ent levels of radicalism, information spread parameters, type of agents and crucial positions

as training environments; where they become more radicalised. By running the simulation

of the model, we have the resources to comprehend the expansion of these organizations

through geographical spaces and the connections between the whole population.

1.2 Project goals

The main purpose of this project is to create a useful model for the analysing and under-

standing processes of terrorism network behaviours. This model must be able to show the

connection between population and terrorism, giving an insight look of the conversion into a

radicalised person or terrorist, also being able to identify how leaders recruit new members

while they expand through geographical spaces.

To sum up, this project will allow an extensive analysis of Social Networks structure

2

1.3. STRUCTURE OF THIS DOCUMENT

and behaviour, pointing out how terrorist organizations expand affecting all type of agents.

Among the main goals of this project, we can highlight some tasks such as:

• Study of Social Networks behaviour and network types.

• Investigation of Network Simulators.

• Design of an Agent-based Social Model taking into account how information is spread

and how networks expand.

• Design and Implementation of a Terrorist Network model.

• SNA techniques appliance.

• Build a Graph showing the results and created by the Simulation process.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

project is divided into the following sections:

Chapter 1 presents an introduction of the project. Besides, it is explained the main

goals of the project and the context in which this project is developed.

Chapter 2 describes the main technologies on which this project relies. In this chapter

some technologies will be analysed providing a technological background of the technologies

used in the final work and special considerations.

Chapter 3 provides a description of the complete architecture of this project. It in-

cludes a global overview followed by the explanation of all the modules that make-up the

project describing models generated.

Chapter 4 explains the results obtained in this project, analysing all experimentations

made and showing the results obtained.

Chapter 5 joins the conclusions drawn from this project, problems faced and a brief

future perspective.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
Enabling Technologies

Before designing the system environment and the visualisation of the model, this chapter

is going to give a background of the project and also focus on techniques used. First of

all, in Sec. 2.1 we are presenting a global vision about this thesis, giving an introduction

of social simulators and identifying and explaining the considerations that we have made to

design the model. Secondly, in Sec. 2.2 we are going to give an insight into Soil [15] , the

technology that has made possible to run this model. To continue, NetworkX is explained in

more detail in Sec. 2.3. Finally,in Sec. 2.4 Gephi, which is the technology in charge of the

visualisation’s simulation.

2.1 Background

Social simulators are complicated to design due to the complexity of human societies. The

first problem we came with when we analyse human societies is that they are not lineal

systems. This is why it is not possible to use classics models for the analysis and study of

them.

Agent-based Social Simulation (ABSS) is one of the most common techniques used for

analysing and simulating social networks. It merges computer simulation, social science

5

CHAPTER 2. ENABLING TECHNOLOGIES

and agent-based technologies. Within this context, simulation consists in the design and

implementation of a model based on a real system trying to simplify reality. Simulation is

useful if we want to change some parameters and see the influence in the model, evaluating

the results induced. Besides, social science is referred to sociology, psychology, politics,

etc. Finally, agent-based is used for modelling social organizations, conducts or social

behaviours.

There has been developed multiple models focused on radicalism and extremism using

ABSS. Most of them shape the evolution process; steps followed to become radical and

recruitment process [11]. Nowadays with new technologies based on Internet connexion it

is necessary to comprehend the reasons and evolution process of becoming radical. Some

models like [2] try to study this process by analysing social media, yihadist propagandist

videos, etc. Others have based their ABSS models in modelling dynamic terrorist cells [13],

individual radicalization [5] or extreme idea’s evolution [12].

It is hard to create a complete terrorist network due to the difficulties to obtain infor-

mation, they do not publish any detail about their members. First of all we need to collect

as much information as we can of radical behaviour, social influence techniques, etc.

The novelty of this work consists in applying Social Network Analysis (SNA) techniques

to calculate metrics(e.g. centrality, betweenness) as well as algorithms for community de-

tection. From the point of view of visualising results and the methodology of this project,

we have created our model using Geometric Graph Generators. They provide geographical

positions to Agents, which is important to approximate as much as we can to real radicalism

evolution, also being able to manage real environments and agents connections.

Finally, we are going to present the main information that we need to create our Terrorist

Model, giving an overview of special details and how we have made our designing decisions.

In order to develop our model, we have based in some theories about how radical popu-

lations arise and endure [6]. Some methods have been also studied for modelling radicalised

networks in today’s work:

2.1.1 Geographical Simulators

As we have mentioned before, is really important to consider Geographical data when we

want to simulate and model Terrorist Networks. When people are close they tend to be

socially similar, so influence will be bigger. In this way, it is important for our model to

consider real geographical connexions between people by generating an approximate Geo-

graphical model. Physical space aims to produce more insightful results when considering

6

2.1. BACKGROUND

the spread of terrorism.

In Sec 2.3 an insight look of nx-Geographical Simulators is given.

2.1.2 Social Network Analysis

Terrorism is based on influence as culture, relative inequality, age or residence. These

network memberships typically shares similar attitudes and behaviour to non-radicalized

networks. SNA is developed to highlight and analyse formal or informal relationships by

collecting data from diverse organizations. It characterises network structures in terms of

nodes and edges, focusing in relationships between actors instead of individual attributes.

Complex networks as terrorists, can be categorized into three types:

• Random Clustered: Networks are created by proximity between nodes.

• Small-world: Nodes are not neighbours of others, but most nodes can be reached

from every other by a few hops or steps.

• Scale-free: In which network members prefer to make connection to the more popular

existing members.

Considering these three networks types and Geographical Simulators, we can create our

model trying to simulate real social connections and evaluating distances between nodes.

With all of these, connections within nodes can be approximated to real behaviour.

In addition, we have used Social Network Analysis (SNA) techniques to calculate met-

rics(e.g. centrality, betweenness) as well as algorithms for community detection. In Chap. 4

we will explain how we use these Networkx facilities.

• degree centrality: Centrality identify the most important vertices within a graph,

including the most influential persons in a network. Degree centrality computes this

degree for each node: the degree centrality for a node ”v” is the fraction of nodes it

is connected to. Degree centrality values are normalized by dividing the maximum

possible degree in a simple-graph “nodes-1”.

Listing 2.1: Networkx degree centrality

def d e g r e e c e n t r a l i t y (G) :

c e n t r a l i t y={}
s =1.0/(l en (G) −1.0)

7

CHAPTER 2. ENABLING TECHNOLOGIES

c e n t r a l i t y=d i c t ((n , d∗ s) f o r n , d in G. d e g r e e i t e r ())

re turn c e n t r a l i t y

Parameters

−−−−−−−−−−
G : A networkx graph

Returns

−−−−−−−
nodes : Dict ionary o f nodes with degree c e n t r a l i t y as the value .

Examples

−−−−−−−−
>>> G = nx . random geometric graph (20 , 0 . 1)

• betweeness centrality: This algorithm computes the shortest-path betweenness

centrality for nodes. If we have a node v, its betweenness centrality is the sum of

the fraction of all-pairs the shortest path that pass through it:

cB(v) =
∑
s,t∈V

σ(s, t|v)

σ(s, t)
(2.1)

Eq. (2.1) shows the algorithm for calculating betweenness centrality, where v is the

set of nodes, where V is the set of nodes, σ(s, t) is the number of shortest (s, t)-paths,

and σ(s, t|v) is the number of those paths that passing through some node v other

than s, t:

Listing 2.2: Networkx betweeness centrality

def b e tweenne s s c en t r a l i t y (G, k=None , normal ized=True , weight=None ,

endpoints=False ,

seed=None) :

Parameters

−−−−−−−−−−
G : A NetworkX graph

k : int , op t i ona l (d e f au l t=None)

normal ized : bool , op t i ona l

weight : None or s t r ing , op t i ona l

endpoints : bool , op t i ona l

Returns

−−−−−−−
nodes : Dict ionary with betweenness c e n t r a l i t y as node value .

• community detection:1 This module implements useful algorithms for breaking

down a social network into different potentially overlapping communities. The cri-

teria for finding communities is based on the desire of maximize intra-community

edges while minimizing inter-community edges. Formally, the algorithm tries to max-

imize the modularity of network, or the fraction of edges that fall within the commu-

nity minus the expected fraction of edges if the edges were distributed by random.

Communities should have a high number of intra-community edges, so by maximiz-

ing the modularity, we detect dense communities that have a high fraction of intra-

1https://bitbucket.org/taynaud/python-louvain

8

2.1. BACKGROUND

community edges. In our project we have used, as we will see in the following chapters,

“best partition”.

Modularity is a measure of the structure of networks of graphs. It measures the

strength of division of a network into modules (also called groups, clusters or com-

munities). Modularity is the fraction of the edges that fall within the given groups

minus the expected fraction if edges were distributed at random. It can be defined as

shown in Eq. (2.2).

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj) (2.2)

– Aij edge weight between nodes i and j.

– ki and kj are the sum of weights edges’ attached to nodes i and j.

– m is the sum of edge weights .

– ci and cj are the communities of nodes i and j.

– δ function.

The Louvain Method [17] for community detection is a method to extract communities

from large networks and provides the highest modularity.

Listing 2.3: community.best partition

community . b e s t p a r t i t i o n (graph , p a r t i t i o n=None , weight=’weight ’ , r e s o l u t i o n =1.0)

Parameters

−−−−−−−−−−
G : A NetworkX graph to descompose

p a r t i t i o n : d ict , op t i ona l

weight : s t r , op t i ona l

r e s o l u t i o n : double , op t i ona l

Returns

−−−−−−−
pa r t i t i o n : d i c t i onnary . Communities numbered from 0 to number o f communities .

• Louvain algorithm: This method consists in the repetition of two steps. The first

step is a “greedy” assignment of nodes to communities, favouring local optimizations

of modularity. Modularity is a scale value between -1 and 1 that measures the density

of edges inside communities to edges outside of them. The second step is the definition

of a new coarse-grained network in terms of the communities found in the first step.

These two steps are repeated until no further modularity-increasing reassignments of

communities are possible.

They are all functions of Networkx, which their use in our project is detailed in Sec. 2.3.

9

CHAPTER 2. ENABLING TECHNOLOGIES

2.1.3 Dynamic Network Analysis

DNA [1] focuses in information spread. It can handle large dynamic, multi-mode and multi-

link networks with varying levels of uncertainty. As opposed of SNA, DNA takes interactions

of social features conditioning structure and behaviour of networks into account, highlighting

and analysing formal and informal relationships.

2.1.4 Radicalization theories

Based on Cummings research [6], there are some theories of radicalism. Most of them are

based on economic isolation, social marginalization and the perception of social disparity

and injustice. As we have mentioned in the introduction, terrorists exploit this social habits

by investing in social services, including health, education and even housing. Terrorists also

offer something that the state is not providing as safety, security and giving access to op-

portunities for improving quality life. The improvement motivation is to find characteristics

these models that can be mitigated in order to avoid extremist propensities due to all these

gaps left by the government.

2.1.5 Agent Based Models

Agent Based Models have been used to study radicaliation in the past few years. They are

an important tool for generating hypotheses about the behaviour of these Models that can

be tested and analysed in a lab. Regarding these systems, all of them begin with a slow

build-up of instability, a near inflection and often a random perturbation unexpected. All

of these factors are really important when we are trying to look for variations that may

cause a radical group to become active and violent. The behaviour of these systems might

appear random but they have an internal change, adaptation and evolutionary mechanisms

that reach the desire behaviour.

2.2 Soil

As we have seen, ABSS is one of the most common techniques used for analysing and sim-

ulating social networks with the aim of understanding and even forecasting their dynamics.

In this chapter we are going to introduce an ABSS platform specially designed for modelling

social networks. As we are going to see, this platform has numerous advantages comparing

to others like NetLogo [19], Repast [16], Mesa, MASON [14] or other ABSS platforms.

10

2.2. SOIL

Without considering Mesa, which is based in Python, most of these platforms are based in

Java language. The main differences between Soil and these platforms is that they do not

provide support for the analysis of social networks or the visualization and simulation of

them.

Soil [15] is an Agent-based Social Simulator (ABSS) in Python that includes the char-

acteristics of ABSS platforms and takes into account their deficiencies. Despite most ABSS

platforms do not provide specific facilities for modelling, simulating and visualizing Social

Networks (SNs), Soil is specifically designed for modelling them.

This platform is basically designed in Python, it provides interactive analysis, which

is really helpful for simulation processes in which we want to see the evolution of all the

parameters involved on them. Thanks to IPython2 interface we can provide interactive

analysis. Assisted by IPython we can get easily and at a real time the results of the model:

graphs, parameters, etc.

2.2.1 Simulation Model for Social Networks

Soil platform is based on users represented by agents and a network that represents the

social link between them. An example architecture of an implemented model is shown in

Fig. 2.1 and consists of four main components3:

Figure 2.1: Simulation components

• NetworkSimulation class: is in charge of the network simulator engine. It provides

forward-time simulation of events in a network based on nxsim and Simpy4. A graph

2https://ipython.org/
3In the following chapters we will focus on our model, giving an insight in more detail of these components

and their improvements.
4https://pypi.python.org/pypi/simpy

11

CHAPTER 2. ENABLING TECHNOLOGIES

is generated with NetworkX5 based on configuration parameters. In next section we

are going to focus on nxsim and NetworkX packages.

• BaseAgentBehaviour class: this class should be extended for each social network

simulation model including the basic agent behaviour. It generates a JSON file that

includes relevant information of agents for its analysis.

• Soil Simulator class: it is the class in charge of running the simulation pipeline

described in Sect. 2.2.2. The result of this workflow consists in running the simulation

and generating a visualisation file in GEXF which can be visualised in Gephi, it also

provides interactive analysis using IPython.

• Settings: in this file we have the general settings for simulations and the settings of

different models available in Soil.

2.2.2 Simulation Workflow

In this Fig. 2.2 we can see the Soil system’s flow. Configuration, simulation and visualization

are the steps of simulation’s pipeline.

Figure 2.2: Social simulator’s workflow

1. Main parameters of the simulation are configured in settings.py file.

2. Next step is the simulation, it can be done step by step or a number of steps. A SON

file is generated once the simulation is finished collecting all relevant information and

the GEXF file.

3. Finally, users can expand the analysis with the JSON file as well as visualized the

.gexf file.

Considering all this information, we have opted to use Soil for the design and implemen-

tation of our model because of its facilities for modelling SNs and also for Social Network

5https://networkx.github.io

12

2.3. NETWORKX

Analysis (SNA). We find useful this platform due to the possibility of creating static or

dynamic graphs in which we can visualize the results of our studio and network’s evo-

lution through time and also geographical visualization. Regarding these considerations,

NetworkX Python package is used to make easier these visualization requirements.

2.3 NetworkX

NetworkX [8] is a Python language software package for SNA analysis of small to medium

networks. It provides capacity for creating, studying and manipulating graphs. It also

includes graph algorithms for analysing graph properties. Moreover, NetworkX is interop-

erable with a wide range of graph formats’: GML, GraphML, JSON and GEXF. Thus,

further analysis can be made using disparate tools as Gephi.

Due to the interest of situate agents into a geographical space and try to make the model

as much as realistic as possible, we have studied some NetworkX simulation generators for

generating geometric graphs 6:

• Random Geometric Graph: This simulator generator returns a random geometric

graph in the unit cube. It places n nodes uniformly at random in the unit cube, two

nodes are connected with an edge if their distances is below a radius threshold.

Listing 2.4: Random Geometric Graph

def random geometric graph (n , radius , dim=2, pos=None) :

Parameters

−−−−−−−−−−
n : i n t . Number o f nodes

rad ius : f l o a t . Distance thre sho ld value

dim : int , op t i ona l . Dimension o f graph

pos : d ict , op t i ona l

Examples

−−−−−−−−
>>> G = nx . random geometric graph (20 , 0 . 1)

• Geographical Threshold Graph: The geographical threshold graph places n nodes

uniformly at a rectangular domain. For each node u, a weight w is assigned. If

weights are not specified they are assigned to nodes by drawing randomly from an the

exponential distribution with rate parameter lambda=1 and also if node positions are

not specified they are randomly assigned from the uniform distribution.

• Geographical Threshold Edges: Given a threshold geographical graph generates

edges with position and weights assigned as node attributes “pos” and “weight”.

6https://networkx.github.io/documentation/

13

CHAPTER 2. ENABLING TECHNOLOGIES

• Waxman Graph: this simulation random graph model places n nodes uniformly at

random in a rectangular domain. Two nodes u,v are connected with an edge with

probability P.

• Navigable Small World Graph: This graph simulator generates a directed grid

with additional low-range connections that are chosen randomly.

Once the study and analysis of disparate network simulator is made, we have opted to

use these kinds of simulators. Despite problems faced, we have chosen these simulators due

to their facilities to generate a geographical graph. Our interest lies in obtaining a graph

that simulates as good as possible reality, making geographical connexions between nodes

considering their proximity, friends of friends tend to talk to each other. Because of this,

we can make a connection between social networks and terrorist networks, so these graph

simulators fits our necessities.

2.3.1 nxsim

nxsim7 is a Python package for simulating agents. It is based on SimPy8 and NetworkX9

that provides a basic ABSS framework for doing forward-time simulations of events occur-

ring in a network. It requires a graph generated by NetworkX and an “agent” class to

populate the network.

1. Create a graph using NetworkX as we have seen before:

Listing 2.5: NetworkX

import networkx as nx

number of nodes = 10

>>>G = nx . complete graph (number of nodes)

2. Subclass BaseNetworkAgent to create an agent based on our needs. It will be described

in more detail in the following chapters.

Listing 2.6: BaseNetworkAgent

from nxsim import BaseNetworkAgent

Just l i k e subc l a s s i n g a proce s s in SimPy

7https://pypi.python.org/pypi/nxsim
8https://pypi.python.org/pypi/simpy
9https://networkx.github.io/

14

2.4. GEPHI

c l a s s MyAgent(BaseNetworkAgent) :

de f i n i t (s e l f , environment=None , agent id=0, s t a t e =()) :

#Make sure to have these three keyword arguments

super () . i n i t (environment=environment , agent id=agent id , s t a t e=s t a t e)

Add your own a t t r i b u t e s here

de f run (s e l f) :

Add your behav ior s here

3. Finally, we can set up our simulation by creating a NetworkSimulation instance and

starting it up:

Listing 2.7: Network Simulation

from nxsim import NetworkSimulation

I n i t i a l i z e agent s t a t e s . Let ’ s assume everyone i s normal .

Add keys as as necessary , but ” id ” must always r e f e r to that s t a t e category

i n i t s t a t e s = [{ ’ id ’ : 0 , } f o r in range (number of nodes)]

Seed a zombie

i n i t s t a t e s [5] = { ’ id ’ : 1}
sim = NetworkSimulation (topology=G, s t a t e s=i n i t s t a t e s , agent type=ZombieOutbreak ,

max time=30, d i r pa th=’ sim 01 ’ , num tr i a l s =1, l o g g i n g i n t e r v a l =1.0)

2.4 Gephi

Gephi [4] is an open source tool to visualise and explore interactive networks. It is specially

designed for graph and network analysis, displaying large networks in real time with a 3D

render engine. One of the great advantages of this platform is that allow us to access

into network data, filtering, navigating, manipulating, clustering and displaying dynamic

graphs.

Before rendering a graph there are some steps and considerations that we have to follow.

In Fig. 2.3 we can see Gephi work flow in which by introducing input data we can explore

and export our graph and also analyse relevant parameters.

Figure 2.3: Gephi Steps

15

CHAPTER 2. ENABLING TECHNOLOGIES

2.4.1 Input Data

In order to render a graph, Gephi supports most common file formats which can store node

and edges attributes. If we want to give more details about our nodes, this platform also

supports file formats in which we can set layouts and presentation information as position,

size, colour, etc.

Native Gephi format is .gephi file. It includes multiple workspaces and supports diverse

open formats that can be used to exchange data with other tools:

• GEXF 10: Graf Exchange XML Format is the language that we are going to use in

this project. Is useful language for describing complex networks based on XML. GEXF

is designed to represent network’s elements and data associated to them, providing

useful resources to support dynamic networks, change presentation information and

managing all render parameters and basic graph data. Here we have an example of a

GEXF file defying a static graph:

Listing 2.8: GEXF

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>

<gex f xmlns=”http ://www. gex f . net /1 .2 d ra f t ” ve r s i on=”1.2”>

<meta l a s tmod i f i edda t e=”2009−03−20”>

<creator>Gexf . net</creator>

<de s c r i p t i on>A he l l o world ! f i l e </de s c r i p t i on>

</meta>

<graph mode=” s t a t i c ” de fau l t edge type=”d i r e c t ed”>

<nodes>

<node id=”0” l a b e l=”Hel lo ” />

<node id=”1” l a b e l=”Word” />

</nodes>

<edges>

<edge id=”0” source=”0” ta rg e t=”1” />

</edges>

</graph>

</gexf>

• GraphML11: XML Graph Markup Language, this language is based also in XML

but it does lacks the dynamic network drawing capability.

• GML12: Graph Modelling Language is a hierarchical ASCII-based file format for

describing graphs. We are not going to use this format because of is a text-based

language and it doesn’t provide as much as resources as the others.

10https://gephi.org/gexf/format/
11http://graphml.graphdrawing.org/
12http://www.fim.uni-passau.de/index.php

16

2.4. GEPHI

2.4.2 Explore

Once we have import our graph file we can explore it by applying layouts, filtering relevant

information or seeing statistics of our model.

• Graph Layouts Gephi provides resources for applying layouts in order to visualize

better our graphs and also change node appearance depending on nodes attributes as

we can see in Fig. 2.4a and Fig. 2.4b

(a) Gephi Layouts. Filtering by

status and Geo Layout

(b) Gephi Layouts. Filtering by

type and Fruchterman Reingold

Layout

• Ranking Nodes Nodes can be re-sized and coloured based on their statistics or their

attribute values, we have an example of “Apariencia” tab in Fig. 2.4a.

• Filtering Nodes The “Filtros” tab supports complex methods to temporarily high-

light or hide subsets of nodes and edges in the graph. Nodes can be filtered by attribute

value or based on node statistics (“Estad́ısticas” tab). Fig. 2.4b and Fig. 2.4c.

(a) Appearance (b) Filter (c) Statistics

• Data Laboratory Screen In this tab we can see an alternative tabular view of the

same graph data. Here apart from being able to see every node and attribute, we can

choose a node and see it highlighted in the graph.Fig. 2.4.

17

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.4: Data Laboratory

2.4.3 Output

After selecting our Layout, ranked our nodes, analysed nodes behaviour by seeing their

attributes or filtered them, we can see a preview of the graph and export it in SVG, PNG,

PDF or graph files. We can see an example of “Les Miserables” example graph in Fig. 2.5.

In conclusion, we use Gephi due to it is the only platform that allows us to filter nodes

and see also the evolution of dynamic graphs by enabling “Temporal Line”. Regarding all

of these considerations, we consider that Gephi is really useful to see Terrorist evolution

through time and filtering nodes by their type or status(Radical, Non radical or Neutral),

identifying which nodes are changing their status and the connection between them.

Figure 2.5: Pre visualisation

18

CHAPTER3
Architecture

3.1 Introduction

In this chapter, we will explain the architecture of this project. We are going to provide

a general overview about the connection between the different elements that composed it,

showing how they have been implemented. First of all, we will present a global vision about

the project architecture, identifying and explaining the considerations that we have made

to design the general model, also giving an insight look of the agents and classes that our

project is composed of.

3.2 General Model

In this section we are presenting the global architecture, defining the different modules that

participate in the simulation.

Firs of all, in Fig.3.1 we present the agents involved in our model, which is based

in the work by Paul Cummings [6]. This models consider four types of actors. It also

distinguishes among people and places. People can play to roles: leaders (terrorists active

on recruiting and propaganda) or population (people that could become radical). Regarding

19

CHAPTER 3. ARCHITECTURE

places, havens (places where terrorists cannot be caught) and training areas (places where

terrorists learn to be more effective). The reason to model places as agents is the radicalism

of the places depending on the people located in them.

Figure 3.1: Actors

Each actor of our model is identified with an id or status, that is setted depending

on their radicalism level. This level is based on their own parameter rad or radicalism.

As we will see later, at the moment that a “NON-RADICAL” actor, for example, has a

“RADICAL” or “NEUTRAL” neighbour connected to him, its level of radicalism grows,

being able to cause a change in their status. Another attribute of actors is type that allow

us to distinguish between “HAVENS”, “POPULATION”, “LEADERS” or “TRAINING”

environments. In Sec. 3.2.1 we will see every detail of these actors, explaining how they

interact and the influence they make to each other. Due to our interest of rendering a

Geographical Graph, each agent has its own position in the space, connected to each other

depending on their distance. Finally, attribute fstatus is just used to render the Graph in

Gephi, due to Gephi’s limitations. Thus, we can simulate and visualize “status” and “type”

at once.

In the following Fig.3.2 we can see the simulation components and their connection.

As we have mentioned before, we use SOIL simulator [15], for the simulation and the

visualization processes. Within the simulation work flow, we are capable of identify the

attributes of agents mentioned before.

As we can see in this figure, we use SOIL for simulating our Models. In Chap. 2 we have

given an insight look into SOIL. This simulator is based on NetworkX (Sec. 2.3) and nxsim

(Sec. 2.3.1). These packages give an allowance for simulating models and rendering graphs.

20

3.2. GENERAL MODEL

Figure 3.2: Simulation Process

SOIL generates a GEXF graph by calling to the methods runsimulation() and visual-

ization(), in this one, a graph name is needed as parameter. After generating this file, we

are capable of visualizing it using Gephi tool. In conjunction, SOIL platform generates

line-graphs that allow us to study the evolution of designed models, representing how fast

all agents change their status, type, level of radicalism or any further information we want

to analyse. In the event of calling the method results()(giving a model name as parameter)

a .png graph is generated representing these useful information. To summarize, we can

export a GEXF file for rendering a dynamic graph and visualizing it using Gephi. At the

same time, we can export a .png line-graph to contrast and expand the information. In

addition, a .txt file is generated collecting all the attributes and information from every id,

status, type, radicalism, etc.)

At last, in order to simulate any model desired, there are some considerations we have

to deal with. It is necessary to extend “BaseBehaviour” class, in which standard agent’s’

behaviour is defined. So that, our “TerroristModel” Python class uses “BaseBehaviour”

and also “settings” file. We will give a deeper view into these python classes in Chap. 4. At

this moment we just want to mention the attributes of every agent id or status, type and

radicalism, as well as the methods used in “TerroristModel” class. We also want to point

up that for every agent involved in the model, there is a customized behaviour depending

on their “status” or “type” (i.e havenconduct()).

Finally in Fig.3.3 we can see the attributes of every agent of the network and their

connections. Each agent is connected to each other, adding influence. It is important to

emphasise the fact that this Fig.3.3 only explains the relationships within actors filtering by

21

CHAPTER 3. ARCHITECTURE

type. In Chap. 4 we will explain how connections and relationships are made considering all

parameters. In this case, we can observe that physical places like “Havens” add influence

into population and “Leaders”. However, “Population” just add influence to “Leaders” but

is not as strong as the influence that “Leaders” make to them.

Figure 3.3: Actors or Agents

3.2.1 Agents

In this section we are going to describe every agent involved in our model, we will be giving

an insight look on their behaviour and own attributes. One of the novelties of our project

is that every agent is connected with each other considering geographical spaces. So that,

for each agent (node) it is setted a latitude and longitude using, as we have mentioned in

Sec 2.3, “Random Geometric Graph”. Thanks to this graph generator, we achieved this

goal of considering geographical spaces. It takes into account distance between nodes for

generating their connections; two nodes are connected with an edge if their distances is

below a radius threshold.

3.2.1.1 HAVENS

As we have said before, these are the places where terrorist seek access to safe refuges. In

real life, these places are where terrorist live and operate without taking any risk of being

discovered, also using these “Havens” to hide relevant information, weapons or sensitive

material.

Havens’ behaviour is defined in the following diagram3.4:

When simulation is initialized, every agent of the model has status: “NON-RADICAL”,

type: “POPULATION” and radicalism: “0”. Havens do not change their type so when we

22

3.2. GENERAL MODEL

Figure 3.4: Havens’ behaviour

set the number of nodes, we also set the quantity of them.

Havens change their status by getting neighbouring agents. When a haven is surrounded

by “NEUTRAL” or “RADICAL” neighbours and the number of them reaches a threshold,

havens’ state will change to neighbour’ status when its particular radicalism level is reached.

3.2.1.2 TRAINING ENVIRONMENT

In our models, Training Environments are places were radicalism has the maximum level(100%).

This is why if any agent reached them, agent radicalism level will grow dangerously. In real

spaces and life, Training Environments are places where terrorist learn new skills and train.

They are also places where influence is really high due to relative inequality, social differ-

ences, etc.

3.2.1.3 POPULATION

Population’s agents represent general people living in a specific area. Regarding our model,

we achieve this goal by using Geographical Graphs. Each agent of this type has also a

different status: “NON-RADICAL”, “NEUTRAL” or “RADICAL”.

At first, every agent is “NON-RADICAL” with a concrete level of radicalism. This is

setted at the start, depending on the agent status, there will be an interval of radicalism

that is detailed in the next chapter.

23

CHAPTER 3. ARCHITECTURE

If we belong to the Population type and our status is “NON-RADICAL”, we will be

influenced by our neighbours. In case of having a “NEUTRAL” neighbour we will be

influenced with a certain level of influence defined in model’s settings. When we reach

a concrete level of radicalism influenced by this neighbour, we will change our status to

“NEUTRAL”. In the event of being exposed to a “RADICAL” neighbour, we contemplate

the probability of increasing our radicalism but not to change our status, at least in one step,

not becoming a “RADICAL” person. This is due to the difficulty for a “NON-RADICAL”

neighbour to listen, trust or believe terrorist propaganda by their first encounter. However,

because of the risk of having as a neighbour a “RADICAL” person, we will be influenced.

As the example that we have seen before, when we reach a concrete level of radicalism, our

status will change to “NEUTRAL”.

We study other possibilities as being near to a “Training Environment” where influence

grows by adding additional influence to the usual level. This is why, in the case of having

as a neighbour these places, our radicalism will grow dangerously changing our status more

fast.

To this point, we have seen different scenarios of changing the status depending on

neighbours’ behaviour or finding “Training Environments”. However, as we have seen be-

fore, there are also different types of People and places with their own status. In the case

that our neighbour type is “Haven”, additional influenced will be added to the usual level,

the same happens in the case that we meet a “Leader”, as we will see in the next subsection.

In Fig.3.5, we can observe this Populations’ behaviour explained before:

Figure 3.5: Populations’ behaviour

24

3.2. GENERAL MODEL

3.2.1.4 LEADERS

This type of nodes can be defined as neighbours that add additional influence to any agent

connected with it. Thanks to SNA facilities, we analyse our network for getting the cen-

trality of our nodes. At the moment that any agent radicalism level reaches a specific

“RADICAL” level, it could change into “LEADER” type. To do so, we have used some

functions that are explained in Chap. 4 in more detail. We need to consider that our network

is divided into communities. Basically, when a node reaches this radicalism level, if in its

community there is a Leader, they compare their betweenness centrality. If node’s centrality

is bigger than the centrality from Leader, the node will change its type into “LEADER” .

If there is not a Leader in node’s area, automatically it will become a “LEADER” of this

area.

In Fig.3.5, we can observe this Leaders’ behaviour:

Figure 3.6: Leaders’ behaviour

Leaders’ behaviour is similar to Populations’, the only difference is that when a “NON-

RADICAL” Leader meets a “RADICAL” neighbour, he becomes “RADICAL”. We have

made this design decision because Leaders have more influence and they are also more rad-

icalised than Population. They are also affected by Havens which give additional influence

to them.

25

CHAPTER 3. ARCHITECTURE

26

CHAPTER4
Implementation

In this chapter we are going to describe the implementation of the terrorist model developed

in this work explaining its base behaviour. First of all in Sec. 4.1 we will see the differences

between this Model comparing to the implementation of other models that does not use Soil

simulator. After that, in Sec. 4.2 we will give an insight look into the main functions that

composed our model. Finally, in Sec. 4.3 we will explain the problems faced during the

implementation of our model.

4.1 Background

The novelty of our project is that we consider geographical location to connect and place

the agents or nodes of our model. Besides, we use Soil [15] platform for the design and

implementation of our models and SNA metrics. As we have seen in Sect. 2.2, this sim-

ulator is based on Python language, giving the advantages of using the wide numbers of

libraries for network analysis and SNA, for example Networkx or nxsim. Thus, the main

difference between “Cummings Model” [6] and our models is that we use Soil, Python

language and SNA metrics for the design and implementation of our model. As we have

mentioned, our simulator and “Mesa” platform are the only ones based on Python, fulfilling

27

CHAPTER 4. IMPLEMENTATION

our requirements.

It is also interesting to point out that by using Soil, our model is the only one providing

network facilities in case of needing to expand the analysis made.

To sum up, by using Soil ABSS platform and consequently Python, our terrorist model

exploits the advantages that Python provides: popularity, gradual learning curve, clear

syntax and availability of libraries for network processing and machine learning.

In the following sections we will see disparate Python functions used, detailing how

visualisation has been made and the problems we have faced in order to achieve our goals.

4.2 Terrorist Model

In this section we are detailing Python functions used to run our model and simulation.

First of all, we need to understand the parameters involved in the simulation. Next Fig.4.1

shows the parameters related to the network.

Figure 4.1: General Simulation Parameters

Regarding our terrorist model we can identify the following environment parameters.

All of these parameters are collected in settings.json and accessed by Soil from settins.py

file as we have seen before in Fig. 3.2. The methodology followed to define these parameters

and probabilities is explained in Chap. (5) Experimentation.

In order to apply SNA techniques to calculate metrics as betweenness centrality” and

“community detection” we need to prepare some dictionaries to collect these data. In

setting.py file we have add the following dictionaries, that will be used in model’s functions.

28

4.2. TERRORIST MODEL

Figure 4.2: Terrorist Model Parameters

Listing 4.1: settings.py

cent ra l i ty param = {}
part i t i on param={}
l e ad e r s={}

Once we have seen the parameters involved in the simulation and the attributes of the

agents, we can move on to the functions designed. The following functions are in charge of

the model’s behaviour, we are going to explain the most important functions.

4.2.1 SNA functions

As previously mention, with the objective of change node’s type to create new leaders, we

have applied SNA metrics. Betweenness centrality and community detection, gives us the

opportunity of creating new Leaders in a community and create it taking into account it’s

network connection. It is really important for our model both, geographical generators

and SNA metrics like these. They let us to create a unique model approximating reality as

much as possible. In the following code, we can observe how we prepare dictionaries created

before, to use them in other functions:

29

CHAPTER 4. IMPLEMENTATION

Listing 4.2: SNA soil.py

s e t t i n g s . par t i t i on param = community . b e s t p a r t i t i o n (G)

s e t t i n g s . c en t ra l i ty param = nx . b e tweenne s s c en t r a l i t y (G) . copy ()

G is the Graph generated using “Random Geometric Graph” generator.

Finally, we can design a function for the creation of a new leader:

Listing 4.3: create leader

def c r e a t e l e a d e r (agent) :

my part i t i on = g e t p a r t i t i o n (agent)

o l d l e a d e r = g e t l e a d e r (my part i t i on)

i f o l d l e a d e r == None :

s e t l e a d e r (my part i t ion , agent)

re turn True

e l s e :

my cent ra l i ty = g e t c e n t r a l i t y (agent)

o l d l e a d e r c e n t r a l i t y = g e t c e n t r a l i t y g i v e n i d (o l d l e a d e r)

i f my cent ra l i ty > o l d l e a d e r c e n t r a l i t y :

s e t l e a d e r (my part i t ion , agent)

re turn True

return False

This function will be called during the evolution of the model. In particular, when an

agent with “POPULATION” type reaches a certain level of radicalism. We consider the

case where a leader is managing an area and another leader tries to appear. In this case,

just the leader with the biggest centrality will become the new leader.

4.2.2 Soil init:

In this function we prepare the parameters stored in settings.json. We also set the number

of agents of each type by applying the percentage declared and their status. In the following

extract from the code we can see an example of population type.

Listing 4.4: Init

def i n i t (s e l f , environment=None , agent id=0, s t a t e =()) :

super () . i n i t (environment=environment , agent id=agent id , s t a t e=s t a t e)

s e l f . populat ion = s e t t i n g s . network params [” number of nodes ”] ∗ s e t t i n g s .

environment params [’ i n i t i a l p o pu l a t i o n ’]

i f Terror i s tMode l . num agents < s e l f . populat ion :

s e l f . s t a t e [’ type ’] = POPULATION

Terror i s tMode l . num agents = Terror i s tMode l . num agents + 1

random1 = random . random ()

i f random1 < 0 . 7 :

s e l f . s t a t e [’ id ’] = NON RADICAL

s e l f . s t a t e [’ f s t a tu s ’] = POPNON

e l i f random1 >= 0.7 and random1 < 0 . 9 :

30

4.2. TERRORIST MODEL

s e l f . s t a t e [’ id ’] = NEUTRAL

s e l f . s t a t e [’ f s t a tu s ’] = POPNE

e l i f random1 >= 0 . 9 :

s e l f . s t a t e [’ id ’] = RADICAL

s e l f . s t a t e [’ f s t a tu s ’] = POPRAD

4.2.3 Step:

This function is called in every “step” to filter the behaviour of each agent and also saving

their attributes in a dictionary. Once the simulation is completed, this dictionary is used

to generate the GEXF file. We are just considering population type in order to summarize

the code.

Listing 4.5: Step

def s tep (s e l f , now) :

i f s e l f . s t a t e [’ type ’] == POPULATION:

s e l f . popu la t i on and l eade r conduct ()

s e l f . a t t r s [’ s tatus ’] = s e l f . s t a t e [’ id ’]

s e l f . a t t r s [’ type ’] = s e l f . s t a t e [’ type ’]

s e l f . a t t r s [’ rad i ca l i sm ’] = s e l f . s t a t e [’ rad ’]

s e l f . a t t r s [’ f s t a tu s ’] = s e l f . s t a t e [’ f s t a tu s ’]

super () . s tep (now)

4.2.4 Population and leader conduct:

When an agent’s type is “Population” or “Leader” this function will be called. As we

can see, in this moment we filter by their id or status assigning them a concrete value of

radicalism if necessary (the first time every agent call this function).

Listing 4.6: Population and leader conduct

def popu la t i on and l eade r conduct (s e l f) :

i f s e l f . s t a t e [’ id ’] == NON RADICAL:

i f (s e l f . s t a t e [’ rad ’] == 0 .000) :

s e l f . s t a t e [’ rad ’] = s e l f . s e t r a d i c a l i sm ()

s e l f . non rad i ca l behav i ou r ()

i f s e l f . s t a t e [’ id ’] == NEUTRAL:

i f (s e l f . s t a t e [’ rad ’] == 0 .000) :

s e l f . s t a t e [’ type ’] = LEADERS

s e l f . s t a t e [’ rad ’] = s e l f . s e t r a d i c a l i sm ()

whi le s e l f . s t a t e [’ id ’] == RADICAL:

s e l f . r ad i c a l b ehav i ou r ()

break

s e l f . n eut ra l behav iour ()

i f s e l f . s t a t e [’ id ’] == RADICAL:

i f (s e l f . s t a t e [’ rad ’] == 0 .000) :

s e l f . s t a t e [’ rad ’] = s e l f . s e t r a d i c a l i sm ()

s e l f . r ad i c a l b ehav i ou r ()

31

CHAPTER 4. IMPLEMENTATION

4.2.5 Set radicalism:

This function is called when we initialize the simulation. Based on Cummings work [6] , in

the following code we distinguish every agent by their level of radicalism. Considering it, we

can filter every agent into “NON RADICAL”, “NEUTRAL” or “RADICAL”. In Chapter 5

is detailed the methodology followed.

Listing 4.7: set radicalism

def s e t r a d i c a l i sm (s e l f) :

i f s e l f . s t a t e [’ id ’] == NON RADICAL:

rad i ca l i sm = random . uniform (0 . 0 , 0 . 29) ∗ s e l f . r e l a t i v e i n e q u a l i t y

return rad i ca l i sm

e l i f s e l f . s t a t e [’ id ’] == NEUTRAL:

rad i ca l i sm = 0.3 + random . uniform (0 . 3 , 0 . 59) ∗ s e l f . r e l a t i v e i n e q u a l i t y

i f r ad i c a l i sm >= 0 . 6 :

s e l f . s t a t e [’ id ’] = RADICAL

return rad i ca l i sm

e l i f s e l f . s t a t e [’ id ’] == RADICAL:

rad i ca l i sm = 0.6 + random . uniform (0 . 6 , 0 . 1) ∗ s e l f . r e l a t i v e i n e q u a l i t y

return rad i ca l i sm

4.2.6 Neutral behaviour:

In this point, we are explaining how we manage the behaviour of each node. We are

presenting the code of a “NEUTRAL” agent, but every one with other status will work in

a very similar way. Every agent is going to look around to see the neighbours connected

to them. Thanks to get neighboring agents() function, we can extract a list of connected

neighbours. As we can observe in the following code, depending on the agent neighbour

it will be influenced or not, causing a change of its status. We are giving just the part of

the code where a leader is created when an agent radicalism reaches a particular radicalism

level:

Listing 4.8: neutral behaviour

def neut ra l behav iour (s e l f) :

ne ighbors = s e l f . g e t n e i ghbo r i ng agen t s ()

f o r neighbor in ne ighbors :

i f ne ighbor . s t a t e [’ type ’] == POPULATION and neighbor . s t a t e [’ id ’]==RADICAL:

s e l f . s t a t e [’ rad ’] = s e l f . s t a t e [’ rad ’] + s e l f . i n f l u e n c e ∗ s e l f .

i n f o rma t i on sp r e ad i n t en s i t y

i f s e l f . s t a t e [’ rad ’] >= 0 . 6 2 :

i f c r e a t e l e a d e r (s e l f) :

s e l f . s t a t e [’ type ’] = LEADERS

s e l f . s t a t e [’ f s t a tu s ’] = LEADER

e l i f s e l f . s t a t e [’ type ’] == LEADERS:

s e l f . s t a t e [’ type ’] = POPULATION

s e l f . s t a t e [’ f s t a tu s ’] = POPRAD

32

4.3. PROBLEMS FACED

Using these functions we are capable of simulating a Terrorist Network. The next

step after declaring these functions and using Network Status dictionary, is running the

simulation using soil.py file. In this Python file, we go over into every step (time-out) of

the model. In each one of these steps, we take the agent Status (radicalism, status, fstatus

and type), so that we can create a dynamic graph. In this file we also store the position of

every node. With all these considerations we can create a GEXF file and render it using

Gephi.

4.3 Problems Faced

Reaching this point of the project was not an easy task. In the following points we can

observe the problems we had to deal with, some of them we were not able to fix them.

4.3.1 Geographical Graph Generators

First of all, we wanted to use each geographic generators we have research, but it was

not possible to implement them using Soil platform and the way that we manage nodes.

Some problems appeared using “Geographical Threshold Edge”, “Waxman Graph” and

“Navigable Small World Graph”. The last one we wanted to use it in the first place, but it

was not possible to adapt data for generating this type of graph.

Finally, we were able to adapt data for positions supported in “Random Geometric

Graph”. We dive into every node adding and attribute “position” with the positions gen-

erated by each Graph Generator. Using “spells” for time line and GEXF tag “viz’,’ we can

easily assign to each node the position desired.

Listing 4.9: Graph Generators in soil.py file

f o r node in range (s e t t i n g s . network params [” number of nodes ”]) :

G. node [node] [’ x ’] = G. node [node] [’ pos ’] [0]

G. node [node] [’ y ’] = G. node [node] [’ pos ’] [1]

G. node [node] [’ v iz ’] = {” po s i t i o n ” : {”x ” : G. node [node] [’ pos ’] [0] , ”y ” : G. node [node] [’ pos

’] [1] , ”z ” : 0 .0}}
de l (G. node [node] [’ pos ’])

4.3.2 Dynamic Graphs

Another problem we have come with is that we were not able to represent a dynamic graph

using Gephi last version, 0.9.1. At first, we were storing time information linked to every

33

CHAPTER 4. IMPLEMENTATION

attribute of agents. Gephi was trying to extract this information without any success. After

deep research, we have found that in this new version of Gephi “time intervals” declared by

a “start” - “end” were not working. Considering this, we decided to use the other alternative

supported in this version: “spells”. So that, it has been possible to create a dynamic graph.

4.3.3 Gephi

Gephi is an open graph platform released in earlies 2000. We have come out with problems

that affected, as we have seen in the previous section, to Dynamic Graphs and also to the

visualization process.

In order to render geographical graphs successfully we have installed some plugins as

“Geo Layout” or “Map of Countries” that allows us to represent geographical data created

by geometric graph generators.

One of our desires was the assignment of an image to every node instead of a circular

shape. Our interest is due to we want to difference between agent types, assigning an image

to “HAVENS”, “TRAINING ENVIRONMENTS”, “POPULATION” or “LEADERS”. We

tried to install “Image Preview” plugin layout in order to be able to do so, but it was not

supported in version 0.9.1. We tried to install the previous version, Gephi 0.8.2 but it was

not possible to use some other important facilities. Trying to do so without using a plugin

layout, we have tried to change GEXF archive adding in tag “viz” an attribute “image”.

Unfortunately changing shape of nodes to add an image, is not supported in any version of

Gephi.

Consequently, we thought about changing nodes’ shape by installing “Polygon Nodes”

plugin that supposedly allows changing nodes’ shape. We were thinking about to give

different polygons to the disparate types of agent. Unfortunately changing shape of nodes

is not supported in this version of Gephi.

In conclusion, despite Gephi is the best platform for visualising and study data from

graphs, there is a need to improve its range and abilities. It would have been better if we

could assign to each node an image for identifying their type. Even so, we have created

“fstatus” attribute for visualizing both attributes at once.

4.3.4 Summary

We have faced some troubles while designing our model. For example, some problems

programming in Python, specially the connexion between every attribute to GEXF file. In

34

4.3. PROBLEMS FACED

addition, managing dynamic and geographical data or using Networkx package facilities.

As we have seen, the main problems we have had to deal with has been related with

Gephi platform, but we have been capable to implement some basic features.

35

CHAPTER 4. IMPLEMENTATION

36

CHAPTER5
Experimentation

Finally, in this chapter we are going to explain the methodology followed to create our model,

Sec. 5.1. After that in Sec. 5.2, we are presenting disparate analysis of our terrorist model

behaviour depending on different scenarios.

5.1 Methodology

This terrorist model explore the rise of radicalism based on influence made between agents

and considering disparate environment parameters. Using SNA facilities we create com-

munities with N number of nodes defined in “settings.json” file. As we have seen, each

agent has their own attributes, behaviour, geographical location and connection with other

agents. In next Fig.5.1 we can observe these parameters and how have been verified.

The verification process have been based in Cummings paper [6], Gini coefficient1 and

for “INFLUENCE” parameter on IEEE article [9].

In order to analyse “Relative inequality” we have studied Gini coefficient. It is a measure

of statistical dispersion intended to represent the income or wealth distribution of a nation’s

1http://www.ine.es/jaxiT3/Datos.htm?t=9966

37

CHAPTER 5. EXPERIMENTATION

Figure 5.1: Methodology

residents. This coefficient interval is between 0 and 1, if its 0 equality is reached but in

the case its 1 inequality is reached. Radicalism is directly proportional affected by this

parameter as followed.

radicalism = radicalism ∗ relative inequality (5.1)

This equation is applied in “set radicalism” function, which is shown in Sect. 4.2.1.

Each node radicalism is affected depending on neighbours’ type, in the case that a

“Haven” or “Training environment” is affecting that node.

rad = rad+ (influence+ additional influence) ∗ information spread intensity

5.2 Scenarios

In this section, we are presenting the results of different scenarios where we vary environment

parameters. In all of them we are presenting the communities created. We need to know

that the time is represented as an interval between t = 0 and t = 50.

In Fig.5.2 we can see the relationships between colors, status and type of nodes. The

more radicalised a node becomes, the darker its colour appear. The same happens with the

size of the node. Thus, we will have three colours and sizes depending on the status: Non

radical, Neutral and Radical.

38

5.2. SCENARIOS

Figure 5.2: Colour-node relationship

In order to understand the following graphs, we need to know that X-axis represents

time and Y-axis represents agents’ quantity depending on their status or type.

5.2.1 Low radicalism country model

In this scenario we have used initial value parameters, with a similar as simulating Spain

country, taking into account that in our model we can not get back from “RADICAL”

status.

(a) t=0 (b) t=25 (c) t=50

Figure 5.3: Low radicalism country model Gephi graph

(a) Status’ evolution (b) Evolution of type

Figure 5.4: Low radicalism country model Line graph

In these graphs, we can observe the evolution of our model considering initial time,

medium and final time intervals. We can easily distinguish between communities created,

39

CHAPTER 5. EXPERIMENTATION

in most of them a training environment is situated. Leader emergence can easily be seen

(Gray dots), we can check that a leader is created considering SNA centrality and also how

radicalism becomes higher near them. We need to consider that due to the radicalism is

really low, there are not a lot of leaders (radicalism need to grow to a certain level).

Finally, in Fig.5.4a we can see the evolution of nodes’ status and in Fig.5.4b nodes’ type

evolution through time.

5.2.2 Increasing initial radicalism and influence scenario

In this case we are trying to simulate a semi radical country. In which initial radicalism

and influence has been raised:

• Initial radicalism: 20%. The number of “RADICAL” havens will be increased.

• Influence: 5%. The influence between agents we will be more relevant in radicalism

growth.

(a) t=0 (b) t=25 (c) t=50

Figure 5.5: Increasing initial radicalism and influence scenario Gephi graph

As well as previous graphs, in Fig.5.6 we can analyse the evolution of this scenario con-

sidering all agents and behaviours. We can easily observe the difference between previous

graphs. In this scenario, “Non radical” agents decrease faster, while “Neutral” and “Radi-

cal” agents grows dangerously. “Radical” agents specially grows faster due to the increment

of the parameters studied in this scenario. It is also important to mention that “Leaders”

appear also in more quantity and faster, due to the global level of radicalism.

Finally, in the following line-graphs we can observe this environment evolution. In

Fig.5.6a we can see the evolution of nodes’ status and in Fig.5.6b nodes’ type evolution.

40

5.2. SCENARIOS

(a) Status’ evolution (b) Evolution of type

Figure 5.6: Increasing initial radicalism and influence scenario Line graph

5.2.3 Increasing information spread intensity

In this scenario we are increasing information spread intensity while the others maintain

their level.

• Information spread intensity: 30%. As we have seen by increasing this parameter,

due to it is multiplying to influence, general radicalism grows dangerously.

(a) t=0 (b) t=25 (c) t=50

Figure 5.7: Increasing initial radicalism and influence scenario Gephi graph

As well as previous graphs, in Fig.5.8 we can analyse the evolution of this scenario

considering all agents and behaviours. We can easily observe the difference between previous

graphs. In this scenario, “Non radical” agents decrease faster, while “Neutral” agents

increase slowly and “Radical” agents grows really fast. “Radical” agents specially grows

faster due to the increment of this parameter because it is proportionally direct to influence

and additional influence. So that, radicalism of each agent will increase really fast.

41

CHAPTER 5. EXPERIMENTATION

Finally, in the following line-graphs we can observe this environment evolution. In

Fig.5.8a we can see the evolution of nodes’ status and in Fig.5.8b nodes’ type evolution.

(a) Status’ evolution (b) Evolution of type

Figure 5.8: Increasing initial radicalism and influence scenario Line graph

5.2.4 Increasing relative inequality and training environments

Finally, in this scenario we are visualizing the variation of our model when we increase

relative inequality level and the number of training environments.

• Relative inequality: 60%. As we have seen by increasing this parameter, we gen-

erate disparity in economic opportunity for agents. As we have seen, we use this

parameter to set the initial radicalism of every agent, when relative inequality grows,

the initial radicalism of each agent also grows.

• Number of training environments: 10%. Due to these places where terrorist

hide, increasing this parameter makes also grow the number of “Radical” agents in

our model.

In Fig.5.10 we can analyse the evolution of this scenario considering all agents and

behaviours. We can easily observe the difference between previous graphs. In this scenario,

we can see that initial number of “Radical” agents starts in a really high level. This makes

“Radical” people grow fast and also the appearance of “Leaders”, due to the high increase

of radicalism level.

Finally, in the following line-graphs we can observe this environment evolution. In

Fig.5.10a we can see the evolution of nodes’ status and in Fig.5.10b nodes’ type evolution:

42

5.2. SCENARIOS

(a) t=0 (b) t=25 (c) t=50

Figure 5.9: Increasing relative inequality and training environments Gephi graph

(a) Status’ evolution (b) Evolution of type

Figure 5.10: Increasing relative inequality and training environments Line graph

43

CHAPTER 5. EXPERIMENTATION

44

CHAPTER6
Conclusions and future work

6.1 Introduction

In this chapter we will describe the conclusions extracted from this work, achievements in

Sec. 6.3 and finally in Sec. 6.4 suggestions about future work.

6.2 Conclusions

To conclude this project we are going to resume the principal concepts that has been

explained in this document. We have designed and implemented a Terrorist Model which

can be used to simulate terrorists’ behaviour. It is also possible to create new models based

on a General Terrorist Model to study new cases.

We have made a study of Social Network Analysis in order to generate a realistic Ter-

rorist model, taking into account connections made between nodes, like ”betweenness cen-

trality”. This concept can be associated as ”friends of friends” in a social network. Using

this Networkx algorithm in addition to community detection and ABSS techniques, we have

succeeded develop a ”Terrorist model” using Soil simulator platform.

45

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

In order to visualise our results, we have used Gephi and Python functions (in which is

based Soil) for generating graphs and lineal graphs. Using Gephi has been a tedious chore

due to its’ limitations but we have achieved all goals we have planed to do.

To sum up, the novelty of our project relies on the application of SNA and ABSS

techniques for rendering a dynamic graph. With this graph we are able to study the

evolution of terrorism in a concrete area and understand better how some social parameters

affect terrorism evolution.

6.3 Achieved goals

To continue, in this section we will explain achieved features and goals during the evolution

of this project.

Network simulators and study of Social Networks Before designing any model, we

needed to gather information about Social Networks and how they expand and work.

This is due to the relationship between them and how terrorist network evolves. Fi-

nally, we needed to investigate about disparate types of network simulators to generate

a dynamic graph and see the evolution in time.

Design and Implementation of a Terrorist Network model Once the study of net-

works simulators and social networks is completed we are able to generate a Terrorist

Model. We have studied which parameters are involved in Terrorist Network expan-

sion. After that, we have all the information needed to generate our model. Finally,

we have accomplished our goal using this parameters and generating the desired be-

haviour, storing parameters in .json files.

SNA techniques appliance To continue, after generating our model, we have improved

it using these techniques. In order to consider real life connections, in the case of

becoming a ”Leader” agent, this node applies SNA techniques. These techniques are

betweenness centrality” and ”Community detection”. The first one help us to create

a leader basing on its connection in the network and the second one allow us to create

different communities. This communities creation fills both necessities, creating a

leader in a specific area and creating nodes in a local area.

Graphs Finally, we can present our results by generating a Gephi Graph from a GEXF file.

We also generate a .txt file with all information of nodes and a lineal-graph. Gephi

graph is used to see the evolution of the dynamic and geographical graph, being able

46

6.4. FUTURE WORK

to see different geographical areas generated with SNA facilities and geographical

graphs. We are also able to see the evolution through time as well as in lineal-graphs.

6.4 Future work

In the following section we are explaining the possible new features or improvements that

could be done to the project.

Gephi Improvements Once Gephi update its functions, it will be interesting to generate

a graph with a background desired image. We consider that is also necessary to change

nodes shape for identifying nodes more easily. For example, by adding an image to

each node or changing their shape into polygonal.

Infiltrators Model This is the main point for future development. It will be interesting to

add infiltrators agents in order to slow down terrorism evolution. An infiltrator agent

can be added and when is connected with a neighbour, it can reduce its radicalism

level, radicalism spread will be slowed down.

Possible uses In this project we have provided a general model for the study and approx-

imation of terrorism behaviour in real life. It will be stimulating to improve in a more

realistic way this project to predict with a high exit percentage radicalism behaviour.

With all of these, we want to approximate to this goal. These models will be useful

to being one step ahead of terrorist intentions.

Graphic interface Finally, we have thought about the possibility of generating a web

interface. In that interface we can manage the parameters using sliders or even having

the possibility of add icons of each agent type.

47

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

48

Bibliography

[1] Charu Aggarwal and Karthik Subbian. Evolutionary network analysis: A survey. ACM Com-

puting Surveys (CSUR), 47(1):10, 2014.

[2] Jamie Bartlett and Carl Miller. The edge of violence: Towards telling the difference between

violent and non-violent radicalization. Terrorism and Political Violence, 24(1):1–21, 2012.

[3] Benedetta Berti. Armed Political Organizations: from conflict to integration. JHU Press, 2013.

[4] Ken Cherven. Network graph analysis and visualization with Gephi. Packt Publishing Ltd,

2013.

[5] Claudio Cioffi-Revilla and Joseph F Harrison. Pandemonium in silico: Individual radicalization

for agent-based modeling. 2011.

[6] Paul Cummings and Chalinda Weerasinghe. Paper title: Modeling the characteristics of radical

ideological growth using an agent based model methodology.

[7] Oliver Gruebner, Martin Sykora, Sarah R Lowe, Ketan Shankardass, Ludovic Trinquart, Tom

Jackson, SV Subramanian, and Sandro Galea. Mental health surveillance after the terrorist

attacks in paris. The Lancet, 387(10034):2195–2196, 2016.

[8] Aric Hagberg, Dan Schult, Pieter Swart, D Conway, L Séguin-Charbonneau, C Ellison, B Ed-

wards, and J Torrents. Networkx. high productivity software for complex networks. Webová

strá nka https://networkx. lanl. gov/wiki, 2013.

[9] Eguskine Lejarza Illaro. Terrorismo islamista en las redes–la yihad electrónica. IEEE. Instituto

Español de Estudios Estratégicos.(100/2015), page 4, 2015.

[10] Mitchell Joblin and Wolfgang Mauerer. An interactive survey application for validating social

network analysis techniques. R Journal, 8(1), 2016.

[11] Michael King and Donald M Taylor. The radicalization of homegrown jihadists: A review of the-

oretical models and social psychological evidence. Terrorism and Political Violence, 23(4):602–

622, 2011.

[12] Bo Li, Duoyong Sun, Shuquan Guo, and Zihan Lin. Agent based simulation of group emotions

evolution and strategy intervention in extreme events. Discrete Dynamics in Nature and Society,

2014, 2014.

[13] Bo Li, Duoyong Sun, Renqi Zhu, and Ze Li. Agent based modeling on organizational dynamics

of terrorist network. Discrete Dynamics in Nature and Society, 2015, 2015.

49

BIBLIOGRAPHY

[14] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan. Mason: A

multiagent simulation environment. Simulation, 81(7):517–527, 2005.

[15] Eduardo Merino, Jesús M. Sánchez, David Garćıa Mart́ın, J. Fernando Sánchez-Rada, and

Carlos A. Iglesias. Modeling Social Influence in Social Networks with SOIL, a Python Agent-

based Social Simulator. 2017 2017.

[16] Jonathan Ozik, Nicholson Collier, Todd Combs, Charles M Macal, and Michael North. Repast

simphony statecharts. Journal of Artificial Societies and Social Simulation, 18(3):11, 2015.

[17] A Scherrer and V Blondel. The louvain method for community detection in large networks.

université catholique de louvain, louvain-la-neuve, belgium. 2011, 2014.

[18] Bart Schuurman and Quirine Eijkman. Indicators of terrorist intent and capability: Tools for

threat assessment. Dynamics of Asymmetric Conflict, 8(3):215–231, 2015.

[19] Uri Wilensky and William Rand. An introduction to agent-based modeling: modeling natural,

social, and engineered complex systems with NetLogo. MIT Press, 2015.

50

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Motivation
	Project goals
	Structure of this document

	Enabling Technologies
	Background
	Geographical Simulators
	Social Network Analysis
	Dynamic Network Analysis
	Radicalization theories
	Agent Based Models

	Soil
	Simulation Model for Social Networks
	Simulation Workflow

	NetworkX
	nxsim

	Gephi
	Input Data
	Explore
	Output

	Architecture
	Introduction
	General Model
	Agents
	HAVENS
	TRAINING ENVIRONMENT
	POPULATION
	LEADERS

	Implementation
	Background
	Terrorist Model
	SNA functions
	Soil init:
	Step:
	Population_and_leader_conduct:
	Set_radicalism:
	Neutral_behaviour:

	Problems Faced
	Geographical Graph Generators
	Dynamic Graphs
	Gephi
	Summary

	Experimentation
	Methodology
	Scenarios
	Low radicalism country model
	Increasing initial radicalism and influence scenario
	Increasing information spread intensity
	Increasing relative inequality and training environments

	Conclusions and future work
	Introduction
	Conclusions
	Achieved goals
	Future work

	Bibliography

