
GRADO EN INGENIERÍA DE TECNOLOGÍAS Y
SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DESIGN AND IMPLEMENTATION OF AN
AGENT-BASED CROWD SIMULATION MODEL

FOR EVACUATION OF UNIVERSITY
BUILDINGS USING PYTHON

GUILLERMO FERNÁNDEZ ESCOBAR

2017

TRABAJO FIN DE GRADO

T́ıtulo: Diseño e implementación de un Modelo de Simulación Social

para Evacuación en un Edificio de la Universidad usando

Python

T́ıtulo (inglés): Design and Implementation of an Agent-based Crowd Sim-

ulation Model for Evacuation of University Buildings Using

Python

Autor: Guillermo Fernández Escobar

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente:

Vocal:

Secretario:

Suplente:

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DESIGN AND IMPLEMENTATION OF

AN AGENT-BASED CROWD SIMULATION

MODEL

FOR EVACUATION OF UNIVERSITY

BUILDINGS USING PYTHON

Guillermo Fernández Escobar

Junio de 2017

Resumen

Hoy en d́ıa vemos muchas noticias sobre tragedias que involucran evacuaciones, por lo que es

muy importante estudiar este tema y definir protocolos de evacuación eficaces. Para definir

protocolos efectivos de evacuación, es esencial comprender el comportamiento de la gente

en estos casos. Muchos estudios se centran en analizar diferentes tipos de comportamientos

y definir reglas para manejar a la multitud en dichos casos. Por lo tanto, usaremos estas

reglas y estos comportamientos para simularlo en escenarios reales y sacar conclusiones.

Para resolver este problema usamos la simulación social basada en agentes (ABSS, en

inglés). ABSS consiste en simulaciones sociales que se basan en el modelado de agentes,

y son implementadas usando tecnoloǵıas de agentes artificiales. ABSS es una disciplina

cient́ıfica relacionada con la simulación de fenómenos sociales, utilizando modelos multia-

gentes basados en computadoras. En estas simulaciones, las personas o grupos de personas

están representados por agentes. ABSS modela los diferentes elementos de los sistemas

sociales utilizando agentes artificiales y los coloca en una sociedad simulada por ordenador

para observar su comportamiento. A partir de estos datos es posible conocer las reacciones

de los agentes artificiales y traducirlos en resultados de agentes no artificiales.

Este proyecto consistirá en simular el edificio de una universidad a través de la plataforma

Mesa, con el que tendremos el plano más real posible de uno de los edificios de la ETSIT.

Además del uso de Mesa, en las simulaciones los agentes serán modelados usando Python.

El plano creado será el entorno de trabajo donde los agentes pueden simular la evacuación

del edificio haciendo que estos intenten abandonar el edificio tan pronto como sea posible.

Por lo tanto, este proyecto generará diferentes informes de acuerdo con los criterios que

se aplican a los escenarios simulados. Por ejemplo, el caso más simple seŕıa en el que los

agentes buscan la salida más cercana. Por otro lado también se pueden hacer otros tipos

de poĺıticas; que los agentes intenten salir en grupos, porque son familia, equipo de trabajo,

etc ... También se tendrá en cuenta que el fuego va aumentando según pasa el tiempo.

Palabras clave: Simulación Social basada en agentes, Mesa, Evacuación

VII

Abstract

Nowadays we see a lot of news about tragedies involving crowd evacuations, so it is very

important study this topic and define effective evacuations protocols. In order to define

effective evacuation protocols, understanding disasters and crowd emergency evacuation

behavior is essential. Many studies focus on analyzing different types of behaviors and

defining rules to handle crowd in case of evacuation. Therefore we will use these rules and

these behaviors to simulate it in real scenarios and make conclusions.

To resolve this problem we use Agent-based Social Simulation (ABSS). ABSS consists of

social simulations that are based on agent-based modeling, and implemented using artificial

agent technologies. ABSS is scientific discipline concerned with simulation of social phe-

nomena, using computer-based multiagent models. In these simulations, persons or group

of persons are represented by agents. ABSS models the different elements of the social

systems using artificial agents and placing them in a computer simulated society to observe

the behaviors of the agents. From this data it is possible to learn about the reactions of the

artificial agents and translate them into the results of non-artificial agents and simulations.

This project will consist of simulating a school building through the Mesa platform, with

which we will have the most real possible plan of one of the ETSIT buildings. In addition

to the use of Mesa, in the simulations the agents (people) will be modelled through Python.

The plan created will be the work environment where agents can simulate the evacuation

of the building causing agents to try to leave the building as soon as possible. Therefore this

project will generate different reports according to the criteria that apply to the simulated

scenarios. For example the simplest case would be in which these agents look for the nearest

exit. On the other hand also can be made other types of policies as it is that the agents

look for to leave in groups, because they are family, team of work, etc... It will also take

into account that in case of fire the fire is progressing so you will get reliable reports of the

different scenarios that arise.

Keywords: Agent-Based Social Simulation, Mesa, Evacuation

IX

Agradecimientos

En este apartado me gustaŕıa mencionar a aquellas personas que han estado ah́ı apoyándome

para que este momento haya sido posible.

Primero quiero agradecer a Carlos toda la ayuda que me ha ofrecido durante toda la

carrera y durante este proyecto en el que siempre que he necesitado cualquier cosa ha estado

ah́ı.

Al GSI por ayudarme en todo momento cuando necesitaba algo. En particular a Pablo

y a Eduardo con los que he trabajado codo con codo.

Después quiero agradecerles a mi familia, a mis padres y a mis hermanos el gran apoyo

que son siempre para mı́ y que durante esta carrera me han dado. Hacen que conseguir mis

sueños sea más fácil.

Gracias a mis amigos tanto de la Escuela como de fuera. No voy a nombrar a nadie

porque ellos saben quiénes son.

Y por último gracias a ti por estar siempre a mi lado.

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XV

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.3 Structure of this document . 3

2 Background 5

2.1 Overview . 5

2.2 Mesa . 7

2.2.1 Arquitecture . 8

2.3 Soba . 9

2.3.1 Arquitecture . 10

2.4 Ramen . 11

3 Architecture 13

3.1 Overview . 13

XIII

3.1.1 Python Architecture . 14

3.2 Mesa module . 16

3.2.1 Social Module . 16

3.2.1.1 Affiliation . 20

3.2.1.2 Old people . 21

3.2.1.3 Agent Operation . 21

3.2.2 Evacuation module . 23

3.2.2.1 Routing . 23

3.2.2.2 Policies . 28

3.2.2.3 Metrics . 29

3.3 Ramen Visualization Module . 30

3.4 Operating Mode . 31

4 Case study 33

4.1 RQ1: Does emergency time affect the evacuation? 33

4.2 RQ2: What policy is more effective saving people? 35

4.3 RQ3: Which policy gets the best evacuation time? 37

4.4 RQ4: How do mobility problems impact on the evacuation? 38

4.5 RQ5: How do family ties affect in the evacuation? 40

5 Conclusions 43

5.1 Conclusions . 43

5.2 Achieved goals . 45

5.3 Problems faced . 45

5.4 Future work . 46

Bibliography 47

List of Figures

2.1 Mesa . 9

2.2 Soba . 10

2.3 Ramen . 12

3.1 Architecture . 14

3.2 Diagram of Python Architecture . 15

3.3 Affiliation . 20

3.4 Agent Operation . 21

3.5 Example of how map is seen with Mesa . 22

3.6 Explanation of BuildingGrid . 24

3.7 Example of fire spreading . 26

3.8 Ramen Architecture . 31

4.1 Graphic of data obtained . 34

4.2 Number of agents . 35

4.3 Fire starts . 36

4.4 Agents leaving the building and fire spreading 36

4.5 Graphic of exit times . 37

4.6 Graphic of number of agents. Alive and dead 39

XV

CHAPTER1
Introduction

This chapter provides an introduction to the problem which will be approached in this

project, what the project’s main goals are, and finally a brief description of this document

and its chapters.

1.1 Context

Nowadays we see a lot of news about tragedies involving crowd evacuations, in these cases

many people were injured by the chaos produced because they did not know how manage

these situations, so it is very important study how people behave in those difficult moments

and define effective evacuations protocols. Emergency evacuation, known as egress, is a

critical component of emergency response and requires developing in advance evacuation

preparation activities that ensure that people can get to safety in case of emergency.In

order to define effective evacuation protocols, understanding disasters and crowd emergency

evacuation behavior is essential [1].

There are many research of theories about mass psychology with the objective of un-

derstand crowd behaviors in emergencies from several points of view: decision making, exit

times, clinical issues and crowd behavior [1] [2].

1

CHAPTER 1. INTRODUCTION

For example, one of the most influential is exit selection and the time it takes to evac-

uate. Aspects, such as their familiarity with exits or their visibility are very important to

choose the exit way. People personality has become in other relevant aspect because it also

influences to follow or cooperate with other users when they have to select the exit [3].

From the other points of view there are a lot of models and theories. Some researchers

have analyzed clinical issues, such as freezing or becoming disassociated from reality, which

are also potentially dangerous [2]. However, those researchers found other interesting find-

ings; around 50 percent of emergency survivors referred unambiguously to a sense of unity or

togetherness with the rest of the crowd during the emergency. Also there is one model which

explains why family groups often escape or die together, this is the affiliation model [2].

Based on these concepts, there are tools to model and simulate emergency evacuation

using social simulation. We have used Agent-Based Social Simulation(ABSS) to implement

some of these previously named concepts. ABSS is detailedly explained in the next chapter

together with Mesa [4] which is a new open-source, Apache 2.0 licensed Python package

that allows users to quickly create agent-based models.

In order to achieve the project’s objectives, this project will consist of simulating a

school building through the Mesa platform, with which we will have the most real possible

plan of one of the ETSIT buildings. In addition to the use of Mesa, in the simulations the

agents (people) will be modeled through Python with the objective of use the models and

behaviors studied to simulate it in real scenarios and make conclusions.

1.2 Project goals

The main goal of this project is develop a Crowd Evacuation Simulator Based on Agents

(CESBA) making use of Mesa [4] . This project will generate different reports according

to the criteria that apply to the simulated scenarios. These scenarios would be the most

basic being possible to implement and analyze other more complex scenarios for further

investigation and thus establish certain evacuation protocols to successfully achieve the exit

of the building as soon as possible.

This main goal includes some tasks such as:

• Design scenarios and policies.

• Implementation scenarios and policies which are previously designed.

• Simulate and testing the differents situations we have studied.

2

1.3. STRUCTURE OF THIS DOCUMENT

• Analyze the results of the simulation.

• Technical report writing.

1.3 Structure of this document

In this section we provide a brief description of each chapter included in this document.

The structure is the following:

Chapter 1. Introduction. provides an introduction to the problem which will be

approached in this project. It provides an overview of the context of the project.

Chapter 2. Background. This chapter gives a description of the main standards and

technologies on which this project rely on.

Chapter 3. Architecture. This chapter describes the architecture.

Chapter 4. Case Study. This chapter offers an overview of the main use case. The

running of the modules and their functionalities are explained, and the steps that a user

has to follow to use this system.

Chapter 5. Conclusions. This chapter sums up the findings and conclusions found

throughout the document and gives a hint about future development to continue the work

done for this project.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
Background

In this chapter, the enabling technologies are introduced. Enabling technologies are the

various already functional platforms that are used in order to implement this project.The

main technology we have used is Mesa, an agent-based modeling framework.

2.1 Overview

Social simulation is a research field that applies computational methods to study issues in the

social sciences. The issues explored include problems in psychology, organizational behavior,

sociology, political science, economics, anthropology, geography, engineering, archeology and

linguistics [5]. This research field aims to cross the gap between the descriptive approach

used in the social sciences and the formal approach used in the natural sciences, by moving

the focus on the processes/mechanisms/behaviors that build the social reality.

The idea of simulation is to construct a computer program that has some of the prop-

erties of a ‘real world’ social process and observe what happens when the program runs.

Three regional associations promote and coordinate the social simulation, these associ-

ations are ESSA for Europe, CSSS for North America and PAAA Pacific Asia.

5

CHAPTER 2. BACKGROUND

Four are the historical modalities of computational social simulation [6]: the simulation

of population flows (System Dynamics, SD), the simulation of events flows (Stochastic

Processes, SP), the simulation of Interactive individual behavior (Cellular Automata, CA)

and the simulation of multi-agent based systems (MABS).

For this project the more interesting is simulation of multi-agent based systems which

has three principal parts [6]:

• Environment: The environment models the physical or environmental context of the

simulation, through a set of own rules that govern the dynamic of the model.

• Agents: Agents model individuals by their particular attributes. There may be several

types of agents whose behavior is determined by differents rules of behavior.

• Rules: It makes agents and environment interact according to them.

Among the different existing types of simulations, the use of agent-based social simula-

tion (ABSS) is one of the most representative research streams. ABSS [7] consists of social

simulations that are based on agent-based modeling, and implemented using artificial agent

technologies. Agent-based social simulation is scientific discipline concerned with simula-

tion of social phenomena, using computer-based multi-agent models. In these simulations,

persons or group of persons are represented by agents. ABSS models the different elements

of the social systems using artificial agents and placing them in a computer simulated soci-

ety to observe the behaviors of the agents. From this data it is possible to learn about the

reactions of the artificial agents and translate them into the results of non-artificial agents

and simulations.

Building a multi-agent social simulation is a long and complete task if you use basic

programming techniques without any help. There are a minimum of four options, with

incremental complexity in terms of their computational technology, to be able to construct

a social simulation model:

• Program the entire code.

• Use ”libraries” of prefabricated code to write the code itself.

• Use of ”platforms” or integrated environments, with programming aids without di-

rectly writing the code.

• Meta-model tools that automatically generate executable code from a formal abstract

specification and model.

6

2.2. MESA

Continuing with meta-model tools there are several that they are being introduced

briefly:

• MASON [8] is a fast discrete-event multiagent simulation library core in Java, de-

signed to be the foundation for large custom-purpose Java simulations, and also to

provide more than enough functionality for many lightweight simulation needs. MA-

SON contains both a model library and an optional suite of visualization tools in 2D

and 3D.

• Repast [9] is a family of advanced, free, and open source agent-based modeling and

simulation platforms that have collectively been under continuous development for

over 15 years. Repast Simphony 2.4.0, released on 30 September 2016, is a richly

interactive and easy to learn Java-based modeling system that is designed for use on

workstations and small computing clusters. Repast for High Performance Computing

2.2.0, released on 30 September 2016, is a lean and expert-focused C++-based model-

ing system that is designed for use on large computing clusters and supercomputers.

• NetLogo [10] is a multi-agent programmable modeling environment. It is used by tens

of thousands of students, teachers and researchers worldwide. It also powers HubNet

participatory simulations. It is authored by Uri Wilensky and developed at the CCL.

• Mesa [4] is explained detailedly in the following section because it is the principal tool

that this project use to model and simulate.

• UbikSim [11] is a framework used to develop social simulation which emphasizes the

construction of realistic indoor environments, the modeling of realistic human be-

haviours and the evaluation of Ubiquitous Computing and Ambient Intelligence sys-

tems. UbikSim is written in Java and employs a number of third-party libraries such

as Sweet Home 3D [12] and MASON [8].

2.2 Mesa

Mesa [4] is a new open-source, Apache 2.0 licensed Python package that allows users to

quickly create agent-based models using built-in core components (such as agent schedulers

and spatial grids) or customized implementations; visualize them using a browser-based

interface; and analyze their results using Python’s data analysis tools.

Preiously we have mentioned that there are several tools and frameworks in use for

agent-based modeling, such as Netlogo [10], Repast [9] and MASON [8]. All of them share

7

CHAPTER 2. BACKGROUND

that they do not use Python whereas Mesa do it. Python allows interactive analysis of

model output data, through the IPython Notebook [13].

IPython provides the following features:

• A powerful interactive shell.

• A browser-based notebook with support for code, text, mathematical expressions, in

line plots and other media.

• Support for interactive data visualization and use of GUI toolkits.

• Flexible, embeddable interpreters to load into one’s own projects.

• Easy to use, high performance tools for parallel computing.

Mesa can implements several agent schedulers and require the modeler to specify which

one is being used. Also it implements several useful tools to accelerate common model

analysis tasks: a data collector (present only in Repast) and a batch runner (available

in Repast and NetLogo), both of which can export their results directly to pandas data

frame format for immediate analysis. On other side this framework facilitates such live

visualization as well.

Now we introduce a brief of Mesa’s core features:

2.2.1 Arquitecture

Mesa’s architecture is modularity. It divide the modules into three overall categories: model,

analysis and visualization.

• Model

The model components are: Agents, modeling by a Model class, scheduler which

controls the agent activation regime and handles time in the model in general and

components describing the space.

• Analysis

Those modules provide useful tools for getting data out of your model runs to study

more systematically. The two more important modules are: data collectors, are used

to record data from each model run, and batch runners, automate multiple runs and

parameter sweeps – running the model with different parameters, to see how they

change its behavior.

8

2.3. SOBA

• Visualization

Visualization system is divided into two parts: the server side, and the client side.

The server runs the model, and at each step extracts data from it to visualize, which

it sends to the client as JSON via a WebSocket connection. The client receives the

data, and uses JavaScript to actually draw the data onto the screen for the user. The

client front-end also includes a GUI controller, allowing the user to start a model run,

pause it, advance it by one step, reset the model, and set the desired frame-rate.

Figure 2.1: Mesa

2.3 Soba

SOBA [14] is a Simulator of Occupancy Based on Agent useful for develop studies and

research based on social simulation, mainly in buildings. The simulations are configured by

declaring a type of occupant, with specific and definable behavior, a physical space (rooms

of the building) and agents that interconnect with each other and with the occupants. The

simulation and results can be evaluated both in real time and post-simulation.

9

CHAPTER 2. BACKGROUND

2.3.1 Arquitecture

The architecture of SOBA is divided into several levels.

• The Model and the Agents: Agents will perform actions and interactions within a

model. The model will control the agents by means of ‘steps’ in the time and positions

(x,y) in a grid as space.

• Space: In the simulations the agents move by rooms of a definable building.

• Visualization and Results modules: Simulations have two options, one of them is

running in background or running with visualization in a browser by using Canvas.js

• Configuration files: DefineOccupancy and DefineMap. Using JSON’s, we can define

the scenario and the agents.

Figure 2.2: Soba

This project uses Soba to implement some functionalities for example transitions,which

is a lightweight, object-oriented state machine implementation in Python. This package

allows us to define states and change between them depends of the time or others variables,

such as there is a fire and everybody are on the emergency state. Also we have used this

architecture to model our agents and our map creating a new grid class, BuildingGrid which

extends MultiGrid class of Mesa and new agents classes.

10

2.4. RAMEN

2.4 Ramen

Ramen [15] is a new project, developed in ETSIT’s GSI DIT department, which consists

in the design and development of a tool that allows users to visualize a 3D environment in

which there are people interacting with each other. This tool provides us a helpful way to

analyze different situations to obtain valuable information. With this objective, ThreeJS

has been used, which is a Javascript library to visualize and to animate 3D environments.

Ramen is created because in the ETSIT’s GSI DIT department there is a software called

UbikSim, for visualizing social simulations in a 3D environment, that it is obsolete because it

is based on SweetHome3D, which in turn is based on Java3D. Nowadays Java3D is outdated

and abandoned.

In our project we will use Ramen to visualize the simulation of the different scenarios

that we will analyze to take conclusion about which policy is better.

Ramen receives data from our project, CESBA, this information needs a specific format

to gets it and represents it on Ramen.

Here we can see how the format is, where ’”type”:1’ represents the type of coordinates

and we have to define in each step where all the agents are and if they are going to move,

where they will go and how many steps are needed to get that position:

Listing 2.1: ”JSON Ramen”

{

"type": 1,

"steps": [

[

{

"agent": 0,

"position": "x,y"

},

{

"agent": 1,

"position": "x,y"

}

],

[

{

"agent": 0,

"moveTo": "x,y",

11

CHAPTER 2. BACKGROUND

"toStep": 15

}

]

]

}

All of this information is given to Ramen in a JSON which has this structure.

Below the image represents how GSI Laboratory would be seen using Ramen.

Figure 2.3: Ramen

12

CHAPTER3
Architecture

3.1 Overview

In this chapter, the architecture of this project will be explained, both design and imple-

mentation phases details. First the global system will be explained and after that, each

module details will be given.

Figure 3.1 shows how is divided the whole system, which is composed by two modules

described below. For this project the main module is Mesa, divided into several submodules.

• Mesa: this module is the responsible for the entire simulation, defining all the pa-

rameters to analyze and saving all the data obtained. This module is divided into two

submodules:

– Social Module: Affiliation and old people models.

– Evacuation Module: Routing strategies, Policies and metrics.

As we can see in 3.1, also these submodules are divided into several submodules, all

of them will be explained in detail later.

13

CHAPTER 3. ARCHITECTURE

Figure 3.1: Architecture

• Ramen Visualization: this module supports 3D visualization to the project, so it

allows users to analyze the simulation watching it in a 3D environment.

This project is mainly focused on the Mesa module and also in a minor way the Ramen

Visualization because we only use this last module to visualize the simulations, whereas the

first one creates and develops the scenarios and models the behaviors of the agents.

3.1.1 Python Architecture

Figure 3.2 shows how is the python architecture and the folder organization.

On one hand the project has several folders, the figure shows the main ones.

• Agents: contains the files which model the agents. ’fire.py’, ’occupant.py’ and ’be-

haviourMarkov.py’. ’occupancy.py’ make used of ’behaviourMarkov.py’ to change the

agents’ state.

• Space: includes the files required to define objects related with the map, for example,

’room.py’, ’door.py’ and ’wall.py’. Also the file ’aStar.py’ is in this folder. This file

includes the A* algorithm and the methods used to evacuate the building according

to the differents policies.

• Configuration: contains the files which model the scenario. ’BuildingGrid.py’ uses

’defineMap.py’ to create the walls and the doors. ’defineOccupancy.py’ is used by

14

3.1. OVERVIEW

the model to create the agents and know how they behave depending on the time.

And finally ’settings.py’ is used to set the valor to several variables of the model, for

example the fire hour.

• Visualization: includes the files in charge of the visualization in Mesa.

The main files will be introduced in the following pages at the same time that the CESBA

architecture is explained. Finally when these files where presented there is a explication of

the entire operation of CESBA and how each file is connected with other one.

Figure 3.2: Diagram of Python Architecture

’batch.py’ and ’visual.py’ are the files used to simulate. The first one does it in back-

ground and the second one uses the visualization files to see the simulation step by step.

15

CHAPTER 3. ARCHITECTURE

3.2 Mesa module

We use Mesa, described in chapter 2.2, as the main tool to design and implement our

project. This module is connected with Ramen Visualization Module 3.3 by a JSON file

which contains all needed information to represent the simulation with Ramen.

Mesa module includes all code that we have used to develop this project. Although our

project uses and extends the Mesa framework for the evacuation scenario, we have created

new classes to model our agents, their behavior and the simulation map.

There are two main submodules, which includes another submodules. Now these mod-

ules are introduced.

3.2.1 Social Module

This is the most important module of this project, because it is the responsible of agents’

behavior. This module deals with how agents move into the map, their velocity and how

they react when there is a emergency.

In this part we are going to introduce how agents have been modeled. The evaluation

of the module has been carried out in the ETSIT scenario. In particular, we have modeled

the 2nd floor of Building B. So this scenario has offices, classes and laboratories. Later this

scenario will be explained in detail 3.2.2.

First of all we have modeled normal agents, these agents have a normal behavior. They

move in the map according to a state machine. This state machine works with transitions, it

works as Markov Chains, which are probabilistic processes which depend only on the previ-

ous state and not on the complete history. So there is a method that moves agents between

several states depending on the hour of the day and a Markov matrix which has different

probabilities depending of the previous state. This method returns a new matrix that is

ready to move the agent to a new state. When a agent changes his state he sets the new

position where he has to go using A* algorithm, which is developed in next subsection 3.2.2.

Following with agents, we have created three types of them according to the university

scenario. Agents have been modeled as professors, students and researchers, since they

have different routines along the day. For every agent type, a probabilistic state machine

has been defined, based on the final work of Eduardo Merino [14]. Also here we define the

position and the number of agents there are in each room depending on the state.

It is important to mention that there is only one class of agent, named Occupant and

16

3.2. MESA MODULE

this class distinguishes between the three types named above. In addition, an agent has

been defined for modeling the Fire, but this we will see later.

Below they are introduced the different type of agents and their states:

• Professors

Listing 3.1: ”statesProfessors”

statesProfessors = [

{’name’:’leave’, ’position’: ’outBuilding’},

{’name’:’working in my office’, ’position’: {’Office1’: 2, ’Office2’:

3, ’Office3’: 3, ’Office4’: 4, ’Office5’: 3, ’Office6’: 1, ’

Office7’: 3, ’Office8’: 5, ’Office9’: 2, ’Office10’: 4, ’Office11

’: 3, ’Office12’: 3, ’Office13’: 2, ’Office14’: 2}},

{’name’:’having a break’, ’position’: {’Hall’: 16}},

{’name’:’at restroom’, ’position’:’Restroom’},

{’name’:’in a meeting’, ’position’: {’Class4’:10 ,’Lab10’:10,’Lab12

’:10,’Lab16’:10}},

{’name’:’lunch’, ’position’: ’outBuilding’},

{’name’:’giving class’, ’position’:{’outBuilding’: 24, ’Class1’: 4, ’

Class2’: 4, ’Class3’: 4, ’Class4’: 4}},

{’name’:’emergency’, ’position’:’outBuilding’}

]

• Researchers

Listing 3.2: ”statesResearchers”

statesResearchers = [

{’name’:’leave’, ’position’: ’outBuilding’},

{’name’:’working in my laboratory’, ’position’: {’Lab1’: 1, ’Lab2’: 1,

’Lab3’: 1, ’Lab4’: 1, ’Lab5’: 1, ’Lab6’: 3, ’Lab7’: 2, ’Lab8’: 2,

’Lab9’: 2, ’Lab11’: 3, ’Lab13’: 3, ’Lab14’: 3, ’Lab15’: 5, ’Lab17

’: 4, ’Lab18’: 2, ’Lab19’: 3, ’Lab20’: 3}},

{’name’:’having a break’, ’position’: {’Hall’: 26}},

{’name’:’at restroom’, ’position’:’Restroom’},

{’name’:’lunch’, ’position’: ’outBuilding’},

{’name’:’emergency’, ’position’:’outBuilding’}

]

17

CHAPTER 3. ARCHITECTURE

• Students

Listing 3.3: ”statesStudents”

statesStudents = [

{’name’:’leave’, ’position’: ’outBuilding’}, #initial state(the first)

{’name’:’in class’, ’position’: {’Class1’: 40, ’Class2’: 35, ’Class3’:

30, ’Class4’: 20}},

{’name’:’emergency’, ’position’:’outBuilding’}

]

To set the agents there is a file (defineOccupancy.py) which is in charge of creating the

array ’occupancy json’ that will contain for each type of agents (professor, research and

student) a JSON. This file is initialized in the main file, and the each JSON mentioned

before contains: type, number of agents, states, markov matrix and the schedule of each

type of agents.

Listing 3.4: ”Example of Students JSON inserted in occupancy json”

occupancyStudents = {’type’:’students’ , ’N’:NStudents, ’states’:

statesStudents, ’matrix’: markov_matrixStudents, ’lifeWay’:

controlBehaviourStudents}

occupancy_json.append(occupancyStudents)

As we can see in the last listing, all parameters required are defined. ’States’ is an array

like it has been presented above, ’matrix’ an ’liveWay’ are like in the next example:

Listing 3.5: ”Example of parameters inserted in occupancy json”

markov_matrixStudients = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

controlBehaviourStudients = {’arriveTime’: 15.55, ’leaveWorkTime’: 18.05}

Then when agents are created the main file (Model) go through ’occupancy json’ and

set type, number and place to the agents. Also ’defineOccupancy.py’ has two methods

that control the transitions (changing the probabilities) between states and the time of

permanence in each state by means of the time.

18

3.2. MESA MODULE

Listing 3.6: ”Example of method that control the transitions”

elif agent.type == ’studients’:

if time > configuration.settings.activationFire:

new_matrix = [[0, 0, 100], [0, 0, 100], [0, 0, 100]]

elif time < behaviour[’arriveTime’]:

new_matrix = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]

elif (behaviour[’leaveWorkTime’]) >= time >= behaviour[’arriveTime’]:

new_matrix =[[30, 70, 0], [0, 100, 0], [0, 0, 0]]

elif time >= (behaviour[’leaveWorkTime’]):

new_matrix = [[100, 0, 0], [70, 30, 0], [0, 0, 0]]

return new_matrix

Listing 3.7: ”Example of method that control the time activity”

if time < behaviour[’arriveTime’]:

timeActivity_matrix = [13.0, 0, 0]

elif (behaviour[’leaveWorkTime’]) >= time >= behaviour[’arriveTime’]:

timeActivity_matrix = [0.01, 2, 0]

elif time >= behaviour[’leaveWorkTime’]:

timeActivity_matrix = [10, 0.01, 0]

return timeActivity_matrixs...

Then in these extracts there are two examples of how transitions work. In case of other

type of agent the code is similar but it has more states as we can see in 3.1 or 3.2 listing.

Therefore there are normal agents and they move in the map according their states but

when an emergency happens they react and try to go out of the building as soon as possible.

But according to [16], during the impact time the first minutes when a emergency occurs,

there are:

• 10-25 % of people keep together and be in calm, they study an action plan and

possibilities.

• 75 % manifest disorderly behavior, bewilderment.

• 10-25 % confusion, anxiety, paralysis, hysterical screams and panic.

So we have modeled the agents in the worse case, they take sometime to react. When

they notice what it happens they try to go out. For this goal we have implemented several

ways to evacuate the building, they were seen in 3.2.2 subsection.

19

CHAPTER 3. ARCHITECTURE

To this standard case we have added two submodules like it is shown in Fig. 3.1, affilia-

tion and old people. These two submodules help us to model agents in a different way when

they have to evacuate the building. They will be able to simulate together or separated.

3.2.1.1 Affiliation

On one hand, affiliation model has been chosen according to [1] because it is one of the

most important crowd behavior together with different kinds of reactions when a emergency

happens. This project [1] says that when there is a evacuation, families try to exit together

by the same exit, meet at a point or someone take care of the youngest member and the

rest leave the building. So in this project we have chosen the last one.

When agents are created they could belong to a family, each family have one child and

one parent. Not every agents belong to a family only a 20% have been modeled in this way

to analyze the differents results between agents with family and individual agents.

On one hand in the simulation each member of the family has a normal behavior ac-

cording to the state machine but when the emergency happens each member of the family

try to leave the building using the same way as his family whereas the child of each family

stay stopped in his position waiting to his parent.This parent mentioned previously look for

the child and go to the child’s position. When they are together try to leave the building

in the same way as their family did. On the other hand individual agents exit the building

in their own way.

Figure 3.3: Affiliation

20

3.2. MESA MODULE

3.2.1.2 Old people

On the other hand there is another submodule which models people with mobility disabili-

ties, such as old people. These characteristic allow us treat this kind of agents in a different

way because their velocity is slower than normal agents and they could take more time to

react when there is a emergency.

This submodule is implemented because we think it is important to analyze how old

people manage these cases. Also in this way we can take conclusions about what is the best

policy to old people.

3.2.1.3 Agent Operation

Once the social module has been introduced, where agents are defined. Now it is time

to explain how agent works, so this section is dedicated to introduce in detail the agent

operation. It will be easier if we use the following figure to support our explication.

Figure 3.4: Agent Operation

First of all, agents are created with differents features (affiliation, they belongs to a

family; or old people, so they move slower than normal agents), also they could be created

without any of these characteristics.

Then the simulation starts and agents begin to move depending on the time, for example

if it is nine o’clock many of them will go to their work place. When agents have been

initialized depends on the time they change their states because of Markov Behavior, which

knows what was the last state and change to the next if it is the moment.

As it was explained before in Listing 3.1 each state has certain positions(rooms), so if an

agent modifies his state, he will choose one of these rooms, which are formed by several cells,

and in this room he sets one cell, where there is not another agent. Once there is a goal,

21

CHAPTER 3. ARCHITECTURE

agent will calculate the way to go there without collide with walls, with the A* algorithm.

Also it is important to mention that while agents go towards their goal positions, if there is

another agent they do not collide. The conflict has been solved by waiting until the other

agent is moved. Figure 3.5 shows how it the map created to simulate.

Just explained the normal case, now it is the moment of emergency situation. When

environment notices that a fire happens then environment warns agents. In this moment

fire alarm rings, agents take some time to react and start to get out the building when their

state change to ’emergency’. Before agents know where they have to go in each state but

now in ’emergency’ state there are several policies to evacuate the building which will be

introduced in Sect. 3.2.2.2. If it is been simulated family evacuations, each family chooses

one exit and everybody uses that exit. These policies mentioned previously are chosen by

us to obtain and analyze all data. With all the information and simulating each policy with

different agents’ features we will be able to make conclusions about which policy is the best.

Figure 3.5: Example of how map is seen with Mesa

22

3.2. MESA MODULE

3.2.2 Evacuation module

Evacuation module is where everything related with environment is defined. The model class

includes all the variables and methods to the proper functioning of the project. Aforesaid

class imports the variables and methods of other classes that they are required.

The following pages explain in detail how this evacuation model works, with this purpose

three submodules will be introduced.

3.2.2.1 Routing

It is formed by several files which make possible represent the map and calculate the path

for the agents’ movement. Two files are the most important to represent the map, shown

in Fig. 3.5, these are ’defineMap.py’ and ’BuildingGrid.py’.

Using Ramen it has been created several JSONs which contains all the information it is

required to represent the map. All this data is in ’defineMap.py’ file which has all jsons:

• wall json: includes each wall and his corner. The corner has an ’id’ how it is shown

in 3.8.

• corners json: includes the ’ramen’ coordinates of each corner 3.9.

• doors json: includes the ’ramen’ coordinates of each door.

• rooms json: includes the name, door and possibles ’x’ and ’y’ coordinates of each

room 3.10.

Listing 3.8: ”Example of a little part of walls json”

walls_json = [

{

"corner1": "fa8fc859-c1d9-c3ec-53c0-f4cb5c7561dc",

"corner2": "20175766-b0fe-6de5-0770-338996573530"

},

23

CHAPTER 3. ARCHITECTURE

Listing 3.9: ”Example of a little part of corner json”

corners_json = [

{"fa8fc859-c1d9-c3ec-53c0-f4cb5c7561dc": {

"x": -169.03700000000012,

"y": -308.35600000000005

}},

Listing 3.10: ”Example of a little part of rooms json”

rooms_json = [

{’name’:’Office1’, ’door’ : (33,14), ’x’: {31,32,33,34}, ’y’:{15,16}},

{’name’:’Office2’, ’door’ : (37,14), ’x’: {36,37,38,39}, ’y’:{15,16}},

Defining JSONs, it has been mentioned ’ramen’ coordinates because when the walls json

and corners json are gotten they are given with the coordinates used in RAMEN 2.4. So

it is necessary to make a conversion and obtain ’mesa’ coordinates to define position with

a integer number ’x’ and ’y’. For that reason it was moved the origin of the ’ramen’

coordinates system to the origin of ’mesa’ coordinates system(position(0,0)). Also a factor

has been used to do the conversion with the objective that each cell in the map represents

one meter.

Then, it is time to introduce ’BuildingGrid.py’ where these JSONs are used. This

file extends ’MultiGrid’ class of Mesa which used to move and set the agents in the grid.

’BuildingGrid.py’ is created to implement the methods which creates walls and doors.

Figure 3.6: Explanation of BuildingGrid

24

3.2. MESA MODULE

Now each method will be explained using the Fig. 3.6. The module ’createWalls’ defines

two arrays which are imported from ’defineMap’. These arrays contain walls and corners

in JSON format. In addition, an additional array (self.Walls) is created to contain the wall

positions.

Once those arrays have been declared the method starts to iterate through walls json

and get one wall. For every wall, the coordinates are obtained from the array corners json.

Then, the method converts between ’ramen’ and ’mesa’ coordinates. In case the values of

xs and ys are the same, this means a corner. If ’x’ of corner1 is equal than corner2’s ’x’

then ’x’ is the permanent value and the different values of ’y’ between ’y’ of corner1 and ’y’

of corner2 are iterated through and saved as Wall(x,y) object in ’self.Walls’. It will be the

same process if values of xs are differents and ys are equals. When the walls json is gone

through, we would have ’self.Walls’ array with all the positions where the is a wall.

Furthermore, the implementation of ’createDoors’ is similar to ’createWalls’. First, it

iterates through doors json and the conversion to ’mesa’ coordinates is made, after that

in ’self.Doors’ it is saved object ’Door’ which has ’x’ and ’y’ position. Finally we iterate

through both arrays, ’self.Doors’ and ’self.Walls’, and from the last one we remove where

there is a door.

With these two methods the map are defined and they are called when the Model is

initialized together with a method which belongs to the Model and use the rooms json to

creates another array with ’Room’ objects array. These ’Room’ objects contain, as shown

in Listing 3.10, name, door position, and possibles ’x’ and ’y’ which are in the room.

Although RAMEN 2.4 makes the visualization, before his integration CESBA used the

Mesa visualization. This visualization [4] is done in a browser window, using JavaScript

to draw the different things being visualized at each step of the model. To do this, Mesa

launches a small web server, which runs the model, turns each step into a JSON object

(essentially, structured plain text) and sends those steps to the browser.

A visualization is built up of a few different modules: for example, a module for drawing

agents on a grid, and another one for drawing a chart of some variable. Each module has

a Python part, which runs on the server and turns a model state into JSON data; and a

JavaScript side, which takes that JSON data and draws it in the browser window. Mesa

comes with a few modules built in, and let you add your own as well.

Then, MESA visualization has been configured to use these modules. The files Draw-

ModelFront.js and DrawModelBack.py contains the methods to draw the map. Being the

first one the JavaScript side.

25

CHAPTER 3. ARCHITECTURE

Just explained the part of the map it is time to introduce other type of agent in addition

to Occupant agent. This new class of agent is the fire, this agent is very simple. Fire

agents are created when the time is equal to global variable ’activationFire’, this variable

is created randomly when Model is initialized. Once that time exceeds the fire hour define

by ’activationFire’ then the first fire agent is created in a randomly room. From that point

every 30 seconds the fire spreads in all possibles directions if there are not walls. Creating

new fire agents in all neighbor position, the next time that this process would be realized

the fire would spread from the last fire positions created.

Figure 3.7: Example of fire spreading

Finally, the Routing module contains an additional file, ’aStar.py’, which implements

the A Star algorithm [17]. This algorithm will be used by agents the calculate the path

between positions. The main method is ’getPath(model, start, finish)’, it is in charged to

calculating the best path between start position and finish position. This path is calculated

with the A* algorithm, the pseudocode is shown below in Listing 3.11. In our case the

cost(g) between one node to other node is one and ’h’ cost is zero. When the algorithm has

finished, it returns the path and the path’s cost.

26

3.2. MESA MODULE

Listing 3.11: ”Pseudocode of A* algorithm”

initialize the open list

initialize the closed list

put the starting node on the open list (you can leave its f at zero)

while the open list is not empty

find the node with the least f on the open list, call it "q"

pop q off the open list

generate q’s 8 successors and set their parents to q

for each successor

if successor is the goal, stop the search

successor.g = q.g + distance between successor and q

successor.h = distance from goal to successor

successor.f = successor.g + successor.h

if a node with the same position as successor is in the OPEN list \

which has a lower f than successor, skip this successor

if a node with the same position as successor is in the CLOSED list \

which has a lower f than successor, skip this successor

otherwise, add the node to the open list

end

push q on the closed list

end

Agents’ movement has been implemented with the condition that if the position or cell

is it occupied by another agent, the agent will wait until the cell is empty. But it would

happen that two agents are put face to face, then these agents never move again because

the cell they want to occupy is not empty. For that case we have used a collision mechanism

resolution, which consists in when the agents are face to face one of them try to move to a

neighbor cell if this cell is empty and recalculate the goal path. Also if agents are blocked

during three steps then they will try to reach a neighbor cell if it is possible and recalculate

the goal path.

27

CHAPTER 3. ARCHITECTURE

3.2.2.2 Policies

Now in this part the differents policies are going to be introduce. These are the main ones

that this project has used to simulate in the differents cases of study.

Before beginning to use the policies when agents’ state was ’emergency’ they left the

building going to the principal gate and nobody uses the ’building C’ gate. In the map this

last gate it is also another room but in the real blueprint it is a door which is communicated

with a corridor of the adjacent building. This policy could be ’go to the familiar gate’

considering that it is the mainly gate in this building. How it is said in [1], familiar exits,

routes and places are used by people to evacuate before using new routes. This make the

evacuation slower so this project try to analyze other policies. These policies are:

• Nearest gate: It consists in go to the nearest gate when the emergency occurs. This

technique could be the fastest way to evacuate the building but it is not the safest

considering that the fire could be in the way to this exit. If the fire progresses quickly

and it is near from one of the exit, this fact could be dangerous if the agent tries to

evacuate in that direction.

In this way, the bottle necks are avoided because the agents are distributed between

the two exits and the evacuation takes less time. Although it could be dangerous how

it was mentioned above because of the fire position.

This policy is implemented in the same file of A* algorithm considering that it consists

in a method which returns the path to the nearest exit. This method only needs one

parameter, the agent position, and with this parameter calculates the distance to the

main exit and ’Building C gate’. The exit with the low distance will be the goal.

Agents will follow that path calculated with the A* algorithm.

• Safest gate: as its name suggests, this policy makes the agents leave the building by

the farthest exit in relation of the initial position of the fire. This path to this safest

exit could be dangerous if this path contains the fire position. Then when this policy

has been implemented the method looks for the initial position of the fire and if that

position is in the path the agent changes the gate and goes to another one.

Also it is developed in the file of A* algorithm because it uses the A* to calculate the

distance to the fire and how it was mentioned previously if fire’s initial position is not

in the path to the exit, the method will return the farthest exit. This could have a

problem and it is the fire spreading because although fire’s initial position will not in

the path when fire is spreading could be that when the agents reach certain cell, this

cell is occupied by the fire.

28

3.2. MESA MODULE

When an emergency happens the agents decide policy for leaving the building when the

state changes. Also it is in that moment when they calculate the path to the new position

defined by the new state although that state is different from the emergency ones.

3.2.2.3 Metrics

Metrics involve the parameters analyzed to obtain results and draw conclusions. In this type

of simulation there are many interesting parameters, fire’s velocity and position, where and

why the fire starts, agents positions, reaction time. But this project is focus on:

• Exit time: This time covers the time since agents change their state to ’emergency’

until they leave the building. This metric is very important because it shows us which

policy is the best. To calculate the time agents have a variable which registers the

time when agents change the state to ’emergency’ and another variable to register

when variable they reach the exit goal. The difference between both of them will be

the exit time.

• Number of burned agents: how its own name indicates this metric calculates the

number of agents that have died during the simulation. They will die if they reach a

cell which also contains fire or backwards, fire reach a cell which contains an agent.

Then to estimate this number in each step of the ’occupant.py’ file there is a method

which checks if the agent is burned.

The method mentioned previously uses the parameter given (agent’s position) and

checks if this position is equal to one of the cells which contain fire.

With these main metrics we can analyze and draw conclusions about which are the best

or the worst policy in several cases. For example when agents are old people or they belongs

to a family. These cases will be explained detailedly in the following chapter 4.

29

CHAPTER 3. ARCHITECTURE

3.3 Ramen Visualization Module

This module is in charge of the visualization in Ramen. First of all, when the simulation

has finished, we obtain a JSON. This JSON contains all the data about the simulation,

agents’s position, their movements, the fire progress, etc.

This information needs to follow the following structure:

Listing 3.12: ”JSON Ramen”

{

"type": 1,

"steps": [

[

{

"agent": 0,

"position": "x,y"

},

{

"agent": 1,

"position": "x,y"

}

],

[

{

"agent": 0,

"moveTo": "x,y",

"toStep": 15

}

]

]

}

30

3.4. OPERATING MODE

When the data is with this structure then it is used by the Model Generator as Fig. 3.8

shows. Model Generator analyses all this information and creates the corresponding objects

of the Ramen classes Camera, Floorplan, Agents, Scene and Items. Scene is the main one

that uses the other to represent all the data and creates the visualization where there are two

types of controls: camera controls to see the scene by differents angles and the simulation

controls to stop and start the simulation.

Figure 3.8: Ramen Architecture

3.4 Operating Mode

As it was mentioned in Sect. 3.1.1 when all the modules are introduced it is time to explain

detailedly how the project works and the connections between the files.

Before starting it is important to remind the project architecture shown in Fig. 3.2.

For this explication we are going to simulate with ’visual.py’ file which helps us to see

step by step the simulation. This file calls the model (’model.py’) and it is the model object

is in charge of creating the Scene object.

First of all model initializes the configuration files and some control variables. After that

the model creates the rooms, sets the agents and calls the methods of ’BuildingGrid.py’

to create the map. Before this, it sets the agents because when agents are initialized

they are placed into the map. As we have mentioned previously ’BuildingGrid.py’ uses

31

CHAPTER 3. ARCHITECTURE

’defineMap.py’ to create walls and doors. Also the model calls ’defineMap.py’ to create the

rooms and ’defineOccupancy.py’ to create the agents.

When everything is created the model starts running and by each step of the model

there is one step by each agent. In each step of the model we check if it is the fire time,

when it is this time the model creates the fire agent and place it into the map. If we have

passed this time each 30 seconds the fire advances to the neighbor cells and in this way the

fire gradually spreads. Here in this model step we also check if the fire time was one minute

ago and the model changes the agents’ state to the emergency ones. This minute is the

reaction time since the alarms sounds and the evacuation starts.

For each model step there is one step by each agent then we are going to explain how

’occupant.py’ works. First of all when an agent is created there is initialization where it is

defined the states, the position by state and several control variables. Each time when the

state changes it is called the method ’start activity’ which is in charge of deciding where

the agents have to go depending on the state. Each state has one position, and calculates

the path using ’aStar.py’. It is in this method where in case of emergency agents choose

one of the differents policies.

In each agent step we check if it is time to change the state, this file uses ’behaviour.py’

to this objective. If it is not time to change the state, agent has several options depending

of the situation:

• Normal situation: if agent has not reached the goal then tries to move to the next cell

if this cell is empty. In case of agent has reached the goal, the time in this state starts

to decrease and if this time by state is over the state machine is called to change the

state.

• Fire situation: in this case first of all we check if the agent has been reached by the

fire and tries to move like in the normal situation

It is important to mention that each step represents one second. This time by step is

defined in ’settings.py’, which is imported by ’aStar.py’.

The simulation finishes when all the agents are out of the building and we have stored

all the data by each model step to know how it is the simulation in each moment.

32

CHAPTER4
Case study

In this chapter it will be suggested five research questions and with all data obtained they

will be answered.

Many simulations have been made to try to get a reply. These simulations will be

differents features depending on the research questions.

4.1 RQ1: Does emergency time affect the evacuation?

To answer this question we have simulated in three differents hours with these features:

• Fire position: Office 6, (54,16), this parameter did not change between simulations.

• Fire hour: 10:20, 12:00, 15:00

We have obtained the following information:

• 10:20: 22 agents in the building and 1 burned

• 12:00: 41 agents in the building and 2 burned

33

CHAPTER 4. CASE STUDY

• 15:00: 10 agents in the building and 0 burned

Figure 4.1: Graphic of data obtained

We can see the differents results in the charts, being ’x’ axis each agent and ’y’ axis their

exit time. The number of dead agents depends on the time the fire occurs. Considering

this data we can answer with total certain that the emergency hour is very important.

Depending of the hour there will be more or less agents in the building. Being the worst

hour at midday and the best hour at lunch time in these cases of study.

34

4.2. RQ2: WHAT POLICY IS MORE EFFECTIVE SAVING PEOPLE?

4.2 RQ2: What policy is more effective saving people?

To resolve this research question we are going to simulate with the following data:

• Fire hour: 12:00

• Fire position: Office 6, (56,15). This position changes in relation to research question

1 because in the previous position the fire needed more time to spread and reach the

corridor.

In this case three simulations have been made because there are three differents policies:

familiar exit, nearest exit and safest exit. The following chart shows the number of agents

alive and died in each situation. The total number differs due to the probabilistic model of

the state machine.

Figure 4.2: Number of agents

Observing the chart we can conclude that the best policy to save people is ’Nearest exit’

considering that only one agent died in this simulation whereas in the other two simulations

many agents died because the fire position is almost in the middle of the map and the agents

which are far when they try to exit by the familiar exit or by the safest exit the fire reaches

the corridor and blocks the agents.

35

CHAPTER 4. CASE STUDY

The following figures shows how ’Nearest exit’ policy is seen with Ramen.

Figure 4.3: Fire starts

Figure 4.4: Agents leaving the building and fire spreading

36

4.3. RQ3: WHICH POLICY GETS THE BEST EVACUATION TIME?

4.3 RQ3: Which policy gets the best evacuation time?

In this case study, we carry out an evaluation of which policy leads to the best evacuation

time. With this objective the simulation features are the same than in RQ2, described in

Sect. 4.2. But now we are going to analyze the exit time.

Figure 4.5: Graphic of exit times

For each simulation we have obtained a different media: ’Familiar exit’ 40,14 seg, ’Near-

est exit’ 27,65 seg and ’Safest exit’ 41,77 seg.

On one hand with this information we can affirm that the best policy to get the best

exit time is the ’Nearest exit’ policy. On the other hand the other policies have a similar

exit time considering that the fire position is almost in the middle of the map how we can

see in Fig. 4.4a. Thus, agents use the same exit in those cases.

37

CHAPTER 4. CASE STUDY

4.4 RQ4: How do mobility problems impact on the evacuation?

To resolve this research question we are going to simulate with the following data:

• Fire hour: 12:00

• Fire position: Office 6, (55,15).

• Agents features: In these simulations we have included some agents which are old and

walk slower than the normal ones. Their velocity will be reduced by half, that is two

model steps.

38

4.4. RQ4: HOW DO MOBILITY PROBLEMS IMPACT ON THE EVACUATION?

Also we have obtained the following medias:

• Familiar exit:

– Old: 91,43 seg

– Young: 52,29 seg

• Nearest exit:

– Old: 63,71 seg

– Young: 40,80 seg

’Safest exit’ has the same results as ’Familiar exit’. As we can see in the charts old

agents need more time to leave the building although some young agents are stopped by

the old agents and follow them to the exit. This fact made young people more vulnerable

to be burned as we can see in the following chart, where in the second simulation ’Nearest

exit’ two young agents died but in general old agents have more probability of die.

Therefore we can conclude that mobility problems affect directly in the time of evacua-

tion and in the probability of be reached by the fire.

Figure 4.6: Graphic of number of agents. Alive and dead

39

CHAPTER 4. CASE STUDY

4.5 RQ5: How do family ties affect in the evacuation?

In this case we have modeled two families which are formed by one child, one parent and

another three agents. In addition to these families, it have been created agents like in other

cases. In this research question we have used the following features:

• Fire hour: 10:15

• Fire position: Office 8, (64,15).

• Agents: Two families and individuals agents.

In these case we are going to analyze data without charts because this question requires

a deeper analysis. Also we have simulated all the policies and we obtain similar data when

we are in ’Familiar exit’ and ’Safest exit’, this happens because of the fire position.

On one hand we have that family 1 obtains the following exit times with the ’Familiar

exit’ policy:

Familiar Exit

Family 1 Family 2

Member Exit time Member Exit time

Parent 41 seg Parent 75 seg

Child 44 seg Child 74 seg

Member 3 42 seg Member 3 77 seg

Member 4 46 seg Member 4 Dead

Member 5 51 seg Member 5 Dead

Table 4.1: Familiar Exit Table.

On the other hand we have that family 1 obtains the following exit times with the

’Nearest exit’ policy:

40

4.5. RQ5: HOW DO FAMILY TIES AFFECT IN THE EVACUATION?

Nearest Exit

Family 1 Family 2

Member Exit time Member Exit time

Parent 43 seg Parent Dead

Child 45 seg Child Dead

Member 3 41 seg Member 3 30 seg

Member 4 46 seg Member 4 36 seg

Member 5 51 seg Member 5 Dead

Table 4.2: Nearest Exit Table.

With this information we can affirm that family ties affect in the evacuation time and

also increase the probability of been reached by the fire because when parent goes to look

for the child they delay the exit time and the fire could have advance and block the exit

way. Also it is important to mention that it is very important where the fire takes place

because in this simulation the fire was in one of family agent’s room.

41

CHAPTER 4. CASE STUDY

42

CHAPTER5
Conclusions

This chapter explains the conclusions drawn of the development of the project, and also

describes problems encountered , accomplished achievements and lines of future work.

5.1 Conclusions

In this project, an evacuation simulator has been developed, in order to define effective

evacuation protocols. This simulator allows the users analyze the best policy to leave the

building and also models agents with differents features as agents with mobility problems

or family tie.

The whole simulation could be represent in a 3D visualization tool, Ramen. This tool

helps us to see the crowd behavior and make conclusions about which is the best protocol

in emergency cases.

This project is based on a number differents technologies:

• Mesa 2.2, this project uses Mesa to create agent-based models using built-in core com-

ponents (such as agent schedulers and spatial grids) or customized implementations.

• Soba 2.3, the project is based on it to create the state machine that agents use to

43

CHAPTER 5. CONCLUSIONS

move according to their state, in addition we have implemented the ’emergency’ state

to make agents leave the building.

• Ramen 2.4, how it is mentioned previously this tool allows users visualize the simula-

tion in 3D.

As described previously, we have stated a number of research questions regarding the

evacuation scenario. We summarize here our main conclusions drawn from the experiments.

Two are the most important factors, the emergency time and the fire position. The first

one means how many agents are in the building, that is, at midday almost everybody are

in the building however at lunch time the number of agents is very low. On the other hand

we can affirm that the position fire is very important, above all if this position is near the

main corridor and fire could reach the corridor in few minutes because of it the fire will

block the exits. However if the fire position is in a big room and needs more time to reach

the corridor, agents have enough time to leave the building.

Therefore in cases where the fire is in the middle of the map the most effective policy is

’Nearest exit’ because with this policy we have obtained the best exit times and the number

of dead agents is the lowest respect other policies. According to this fact, in RQ2 4.2 the

more effective policy to save people have been analyzed and the exit times have been studied

in RQ3 4.3. As we have seen in those cases almost every agents uses the nearest exit and

do not pass near the fire. But in cases where the fire position is nearby the best way to

leave the building will be going to the safest exit which one is farther to the fire.

Also we have studied if mobility problems and family ties affect to the evacuation and

the result is of course yes. These factors make the evacuation time increase. In the case of

mobility problems this time raises almost to the double, this supposes that the probability

of been reached by the fire is greatest. Regarding family ties, two scenarios have been

analyzed. When parents look for their children in the same direction than the exit path,

there is not effect on the evacuation time. Nevertheless, when they have to look for them

in another direction, the evacuation time is increased, as their probability of being reached

by the fire.

In conclusion we can affirm that the best protocol to a successful evacuation will be

when agents know where is the fire and choose the exit way that do not cross the possible

zones affected by the fire.

Next sections will describe what goals were achieved by this project, what problems

were encountered and also future lines of work.

44

5.2. ACHIEVED GOALS

5.2 Achieved goals

These are the goals achieved during the development of this project:

• Design scenarios and policies. This is the main goal of the project together the

next one, the development and implementation of a simulator with Mesa using Python.

• Implementation scenarios and policies which are previously designed. This

is the most difficult objective where the scenarios and policies have been developed.

• Simulate and testing the differents situations we have studied. Simulations

which allows us test the agents, their features and their policies to leave the building.

In this goal is where we have used Ramen to visualize the case of study.

• Analyze the results of the simulation. Using the data obtained the project

generate several charts to study the differents scenarios and in this way could achieve

the next goal.

• Technical report writing. After all, this project make a conclusion in the previous

section about which the best protocol to evacuate the building.

5.3 Problems faced

The list of the problems encountered during the development of this project is shown bellow:

• Map: The map generation has been a big problem because at the beginning of the

project is not clear the way to do it, with an array, using a JSON, etc... Finally we

adopted Ramen to create the map. After this, the project has worked with a JSON

file and has implemented the class ’BuildingGrid.py’, that extends Mesa’s Grid, to

create the map according to Mesa coordinates which are different respect Ramen

coordinates.

• Blocks: This problem occurs when there are many agents and between them they

block the steps, trying to get a cell which is not empty. To manage this situations the

project implements two methods, the first one follows this approach: if an agent that

is blocking me wants to move to my position, I will move to a neighbor cell which

is empty. The other method checks if the agent have been blocked during three step

and try to move in the same way as the previous method.

45

CHAPTER 5. CONCLUSIONS

• Ramen: Integration with Ramen has been difficult because Ramen needs a particular

structure of the data that it is given. Therefore the project tries to extract the data

of the simulations in the correct manner and gives the data the adequate structure.

5.4 Future work

Finally, this section lists the various improvements and future lines of work related to this

project.

• Add intelligent to the agents. It would be a interesting fact if the project could

make the agents recalculate the exit path when their way is blocked by the fire recal-

culate the exit path using another exit.

• Add Smart Building to the scenario. An interesting integration for the future

is adding Smart Buildings where there are illuminated signals to show the agents the

way to evacuate the building. Smart Building could decrease the reaction time and

the exit time in evacuation situations.

• Add new policies. In the future it would be useful to add new policies and analyze

the new ones to compare with the other policies. For example the least affluence exit

to avoid bottlenecks.

• Add new agents features. The project would be able to model agents with dif-

ferents feelings and depending on the agent’s feeling uses different reaction time and

policy.

• Ramen integration in real time. Now the project shows us the simulation in

Ramen when it has finished but it would be very useful watch the simulation step by

step in real time with Ramen.

46

Bibliography

[1] Cabinet Office, “Understanding Crowd Behaviours-Guidance and lessons identified,”

Tech. Rep., 2009. [Online]. Available: http://library.college.police.uk/docs/cabinetoffice/

guidancelessons1.pdf

[2] J. Drury, “The Mass Psychology of Disasters and Emergency Evacuations : A Research Report

and Implications for Practice The mass psychology of disasters and emergency evacuations :

A research report and implications for practice Dr John Drury and Dr Chris Cocking,” no.

November, 2015. [Online]. Available: http://sro.sussex.ac.uk/14386/

[3] S. J. Guy, S. Kim, M. C. Lin, and D. Manocha, “Simulating heterogeneous crowd behaviors

using personality trait theory,” in Proceedings of the 2011 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation - SCA ’11, 2011, p. 43. [Online]. Available: http://gamma.

cs.unc.edu/personality/Personality.pdfhttp://dl.acm.org/citation.cfm?doid=2019406.2019413

[4] D. Masad and J. Kazil, “MESA: An Agent-Based Modeling Framework,” Proceedings of

the 14th Python in Science Conference (SCIPY 2015), no. Scipy, pp. 53–60, 2015. [Online].

Available: http://conference.scipy.org/proceedings/scipy2015/pdfs/jacqueline{ }kazil.pdf

[5] S. Takahashi, D. Sallach, and J. Rouchier, “Advancing Social Simulation: The First World

Congress: The First World Congress (Google eBook),” p. 370, 2008. [Online]. Available:

http://books.google.com/books?id=jvkxp1QTDpkC{&}pgis=1

[6] Francisco J.Miguel Quesada, “Simulación Social: Una introducción — Laboratori de Simulació

de Dinàmiques Socio-Històriques.”

[7] X. Li, W. Mao, D. Zeng, and F. Y. Wang, “Agent-based social simulation and modeling in

social computing,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2008, vol. 5075 LNCS, pp. 401–412.

[8] C. Cioffi-Revilla, “Computational social science,” pp. 259–271, may 2010. [Online]. Available:

http://doi.wiley.com/10.1002/wics.95

[9] A. Nouman, A. Anagnostou, and S. J. Taylor, “Developing a Distributed Agent-Based and DES

Simulation Using poRTIco and Repast,” in 2013 IEEE/ACM 17th International Symposium on

Distributed Simulation and Real Time Applications. IEEE, oct 2013, pp. 97–104.

[10] U. Wilensky, “NetLogo Home Page,” 2012. [Online]. Available: https://ccl.northwestern.edu/

netlogo/http://ccl.northwestern.edu/netlogo/index.shtml

47

http://library.college.police.uk/docs/cabinetoffice/guidancelessons1.pdf
http://library.college.police.uk/docs/cabinetoffice/guidancelessons1.pdf
http://sro.sussex.ac.uk/14386/
http://gamma.cs.unc.edu/personality/Personality.pdf http://dl.acm.org/citation.cfm?doid=2019406.2019413
http://gamma.cs.unc.edu/personality/Personality.pdf http://dl.acm.org/citation.cfm?doid=2019406.2019413
http://conference.scipy.org/proceedings/scipy2015/pdfs/jacqueline{_}kazil.pdf
http://books.google.com/books?id=jvkxp1QTDpkC{&}pgis=1
http://doi.wiley.com/10.1002/wics.95
https://ccl.northwestern.edu/netlogo/ http://ccl.northwestern.edu/netlogo/index.shtml
https://ccl.northwestern.edu/netlogo/ http://ccl.northwestern.edu/netlogo/index.shtml

BIBLIOGRAPHY

[11] F. Campuzano, I. Doumanis, S. Smith, and J. A. Botia, “Intelligent environments simulations,

towards a smart campus,” in 2nd International Workshop on Smart University, 2014.

[12] SweetHome3D, “Sweet Home 3D - Draw floor plans and arrange furniture freely.” [Online].

Available: http://www.sweethome3d.com/

[13] C. Rossant, Learning IPython for interactive computing and data visualization.

[14] E. Merino Machuca, “Design and implementation of an agent-based social simulation model of

energy related occupant behaviour in buildings,” Master’s thesis, ETSI Telecomunicación, June

2017.

[15] P. Aznar Delgado, “Design and development of an agent-based social simulation visualization

tool for indoor crowd analytics based on the library three.js,” ETSI Telecomunicación, June

2017, bachelor thesis.

[16] M. Fidalgo Vega, “NTP 390: La conducta humana ante situaciones de emergencia: análisis de

proceso en la conducta individual,” Instituto Nacional de Seguridad e Higiene en el Trabajo, pp.

1–11, 1993. [Online]. Available: http://www.insht.es/InshtWeb/Contenidos/Documentacion/

FichasTecnicas/NTP/Ficheros/301a400/ntp{ }390.pdf

[17] P. Sanders, “Time Dependent Contraction Hierarchies – Basic Algorithmic Ideas,” apr 2008.

48

http://www.sweethome3d.com/
http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/NTP/Ficheros/301a400/ntp{_}390.pdf
http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/NTP/Ficheros/301a400/ntp{_}390.pdf

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	Background
	Overview
	Mesa
	Arquitecture

	Soba
	Arquitecture

	Ramen

	Architecture
	Overview
	Python Architecture

	Mesa module
	Social Module
	Affiliation
	Old people
	Agent Operation

	Evacuation module
	Routing
	Policies
	Metrics

	Ramen Visualization Module
	Operating Mode

	Case study
	RQ1: Does emergency time affect the evacuation?
	RQ2: What policy is more effective saving people?
	RQ3: Which policy gets the best evacuation time?
	RQ4: How do mobility problems impact on the evacuation?
	RQ5: How do family ties affect in the evacuation?

	Conclusions
	Conclusions
	Achieved goals
	Problems faced
	Future work

	Bibliography

