
GRADO EN INGENIERÍA DE TECNOLOGÍAS Y
SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DESIGN AND IMPLEMENTATION OF A
MOBILE APPLICATION BASED ON CORDOVA

FRAMEWORK AND WEB TECHNOLOGIES
FOR A UNIVERSITY INTRANET

GUILLERMO GARCÍA MENÉNDEZ

2017

TRABAJO FIN DE GRADO

T́ıtulo: Diseño e implementación de una aplicación móvil basada en

tecnoloǵıas web y el framework Cordova para la intranet de

una Universidad.

T́ıtulo (inglés): Design and Implementation of a mobile application based on

Cordova framework and web technologies for a University

intranet.

Autor: Guillermo Garćıa Menéndez

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente:

Vocal:

Secretario:

Suplente:

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DESIGN AND IMPLEMENTATION OF A

MOBILE APPLICATION BASED ON

CORDOVA FRAMEWORK AND

WEB TECHNOLOGIES FOR A

UNIVERSITY INTRANET

Guillermo Garćıa Menéndez

Junio de 2017

Resumen

La programación h́ıbrida es una forma de programación móvil basada en tecnoloǵıas web

en vez de en las interfaces nativas propuestas.

El desarrollo de una aplicación móvil basada en estas tecnoloǵıas h́ıbridas evita de-

sarrollos en paralelo para cada sistema operativo móvil, como Android o iOS. Además, la

utilización del desarrollo móvil h́ıbrido se completa usando el patrón MVC (Modelo - Vista -

Controlador), guiándonos hacia una implementación más escalable y modular del desarrollo

de una aplicación móvil.

Este Trabajo Fin de Grado busca desarrollar una aplicación móvil para la intranet de

la Universidad Politécnica de Madrid, centrándose en los empleados de la misma. Su uso

reducirá algunos aspectos de un desarrollo ordinario para plataformas nativas como:

- Tiempo empleado en desarrollar diferentes códigos fuente para diferentes plataformas.

- Tiempo de mantenimiento del futuro proyecto finalizado, aśı como de corrección de

bugs y futuras ampliaciones de plataformas.

- Esfuerzo necesario para desarrollar una aplicación enfocada a múltiples entornos.

Las principales tareas del proyecto serán: (i) Analizar los requerimientos, (ii) Diseñar la

aplicación, (iii) integrar la aplicación con los servicios otorgados por la intranet, (iv) evaluar

la aplicación y (v) presentar la propuesta.

Palabras clave: Tecnoloǵıas Web, Universidad, Cordova, Hı́brido, Móvil, Aplicación,

Android, iOS

VII

Abstract

Hybrid mobile development is a way of programming mobile applications based on web

technologies instead of native interfaces.

The development of mobile applications based on hybrid technologies also avoids par-

allel development of mobile applications in the different mobile operating systems, such as

Android or iOS. Furthermore, the use of hybrid mobile development has been completed

with a MVC (Model - View - Controller) pattern that will lead us to implement a more

extensible and modulable application.

This final project aims at developing a mobile application for the UPM intranet, tar-

geting employees of the university. This will be used to reduce some aspects of an ordinary

native mobile project like:

- Time cost of developing different sources for different platforms.

- Maintenance time for bugs and new platform upgrades.

- Efforts of deploying apps in multiple environments.

The main tasks of the project will be: (i) analysing the requirements, (ii) design the ap-

plication, (iii) integrate the application with the services provided by the intranet, (iv) eval-

uate the application, and (v) write the proposal.

Keywords: Web Technologies, University, Cordova, Hybrid, Mobile, Application, An-

droid, iOS

IX

Agradecimientos

Esta viaje es un largo recorrido que, como poco, es mejor emprender acompañado. Much́ısimas

gracias a todos aquellos que nunca les costó dar una palmadita en la espalda, aunque su

situación tampoco fuese una verbena.

En especial me gustaŕıa agradecer a mi madre y a mi padre, por apoyarme en todo lo

que hago y por devolverme al mundo real en cuando la ocasión lo precisaba, aunque siempre

me dejen volar a junto a las nubes. A Nuria, por acompañarme durante todo el camino, y

más, y por no dejarme caer cuando necesitaba un amarre. A Adrián y a Borja, los grandes

culpables de que empezase el viaje; y en especial a Borja, de cuya curiosidad y méritos

siempre me hizo part́ıcipe.

A todos mis amigos por dejarme su hombro, ya sea para celebrar o para consolar, a

pesar incluso de aquellos casos en los que la distancia parećıa inabarcable.

Para acabar, dar las gracias a todos los que formáis clubes, habéis conseguido que crezca

como pesona y abra la mente.

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XVII

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.3 Structure of this document . 3

2 Enabling Technologies 5

2.1 Introduction . 5

2.2 Cordova Framework . 5

2.2.1 Plugins . 7

2.3 jQuery . 8

2.3.1 jQuery Mobile . 8

2.3.2 jquery.localize.js . 9

2.3.3 NativeDroid2 . 9

2.4 Material Design Iconic Font . 10

XIII

2.5 Sha256.js . 11

2.6 Sass . 11

2.7 gulp.js . 12

3 Architecture 13

3.1 Introduction . 13

3.2 Overview . 13

3.3 Server modules . 15

3.3.1 DB connection interface . 15

3.3.2 Wapi UPM . 15

3.3.2.1 Authentication module . 16

3.3.2.2 Push Management module 18

3.3.2.3 User Queries module . 20

3.4 Client modules . 20

3.4.1 Mobile OS . 21

3.4.2 Cordova application . 21

3.4.2.1 config.xml . 24

3.4.2.2 HTML . 26

3.4.2.3 JavaScript . 29

3.4.2.4 CSS . 31

4 Use case 35

4.1 Introduction . 35

4.2 Mobile application . 35

4.2.1 Salary . 37

4.2.2 Seniority . 37

4.2.3 Mobile phone bills . 39

4.2.4 Clock in . 39

4.2.5 Holidays . 40

4.3 Push notifications . 41

5 Conclusions and future work 43

5.1 Introduction . 43

5.2 Conclusions . 43

5.3 Achieved goals . 44

5.4 Problems faced . 45

5.5 Future work . 45

Bibliography 47

List of Figures

2.1 Apache Cordova folder structure . 6

2.2 jQuery Mobile collapsible widget . 9

2.3 Card widget . 10

2.4 Tabs widget . 10

2.5 Bottom Sheet widget . 10

2.6 Icons in buttons . 11

3.1 Architecture . 14

3.2 Token timeline . 18

3.3 Push architecture . 20

3.4 Cordova architecture . 22

3.5 Logging out modal - iOS . 32

3.6 Cards in Planification view - Android . 32

3.7 Snackbar with actions - iOS . 32

4.1 Main page . 36

4.2 News detailed view . 36

4.3 Initial navigation menu . 36

4.4 Navigation menu with user logged . 36

4.5 Login . 37

4.6 Salary view . 38

4.7 Month incoming detailed . 38

XVII

4.8 Seniority outline view . 38

4.9 Academic seniority history . 38

4.10 Academic seniority history detailed . 38

4.11 Mobile phone bills . 39

4.12 Month bill detailed . 39

4.13 Clocking in view . 40

4.14 Day detail modal . 40

4.15 Planifications view . 40

4.16 Push notification example . 41

CHAPTER1
Introduction

1.1 Context

Mobile application development has suffered a great evolution since its beginning. The

mobile world started as a simple communication and productivity system but now it has

become into a huge revolution that wants to simplify each life task, from TO-DO lists to high

level photography editors. Now, ”Mobile World” does not only mean ”communication”, it

also means ”entertainment”, ”hobby”, ”socializing”, and so on. Consequently, during that

expansion, relevancy was obtained by mobile platforms, which was followed closely by big

tech companies like Apple, Blackberry, Google or Microsoft.

The mobile industry is booming like never before, it is an exciting environment, but not

without its issues. The industry wants to be able to build applications more efficient than

what now is the standard. But at the same time you want the application to have the same

feel as any other application on the market. The issue arises when you start to develop

and realize that you have to set up several different environments and learn at least two

different programming languages, Java and Objective-C/Swift[2].

In spite of the number of mobile operative systems that coexist in the market, only two of

them excel: Android and iOS. Taking into account the global market share for smartphone

1

CHAPTER 1. INTRODUCTION

OS, we can see Android being the main leader with an 86.8% of the market. In second

place, iOS is keeping a great quota of 12.6%. Finally, the remaining percentage is shared

among others like Windows Phone, UbuntuOS, Blackberry10, etc[9].

Developers are leaded by the previous scenario and they want to build its applications

where exists the biggest bunch of users. Furthermore, not only developers but also compa-

nies have that target. As a result of this tendency, targeting only two platforms will give a

99.4%, which is more than an acceptable result.

Nevertheless, targeting two platforms means developing an application in two, or more,

distinct programming languages. Thus, hybrid programming is in charge of fulfilling this

issue. Hybrid programming is a concept born from developers’ necessity of developing

applications targeting multiple platforms by optimizing developing time costs. Identified

that necessity, many solutions has been appeared to solve it, for instance, Xamarin, React

Native, NativeScript or Apache Cordova. From all those solutions, Apache Cordova is the

only one which is implemented using pure Web Technologies.

To conclude, in order to achieve the objectives of this project, we will use Apache

Cordova Framework due to its continuous evolution since its beginning and the commu-

nity support received, which accredit Cordova as a stable solution to use in this project’s

development.

1.2 Project goals

In the long term, this project aims at becoming a substitute for the daily actions to Univer-

sity staff. With this aim, the project will study which are the most usual activity on current

web platforms. In addition, this application must be able to connect with the remote server,

where the information is provided.

Among the main goals inside this project, we can find:

• Design and implement a cross-platform mobile application for consulting personal

information from a University intranet.

• Develop local logic that handles dynamic content depending on what kind of user is

accessing to the application.

• Implement a Push Notification System for alerting users of specific events.

• Publish the mobile application in each platform market: (Google Play Store and Apple

App Store).

2

1.3. STRUCTURE OF THIS DOCUMENT

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is the following:

Chapter 1 explains the context in which this project is developed. Moreover, it describes

the main goals to achieve in this project.

Chapter 2 provides a description of the main technologies on which this project relies.

Chapter 3 describes the architecture of this project, describing a global vision and dividing

it in modules.

Chapter 4 presents the whole final application and its use cases.

Chapter 5 discusses the conclusions drawn from this project, problems faced and sugges-

tions for a future work.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
Enabling Technologies

2.1 Introduction

In this chapter, we are going to give an insight into the technologies used in this project.

First of all, we are going to explain Cordova Framework, which is the core of this project.

Second, we are going to present the rest of technologies ranking them for importance.

Finally, the technology that enables us to obtain data from server is going to be presented.

2.2 Cordova Framework

Apache Cordova [11]1 is an open-source mobile development framework. It allows you to use

standard web technologies - HTML5, CSS3, and JavaScript for cross-platform development.

Applications execute within wrappers targeted to each platform, and rely on standards-

compliant API bindings to access each device’s capabilities such as sensors, data, network

status, etc [4].

Cordova simplifies the development of mobile applications by getting us away from the

1https://cordova.apache.org/

5

CHAPTER 2. ENABLING TECHNOLOGIES

complexity of learning each programming language of each platform where we want to

publish.

A Cordova project is arranged by following a folder structure showed below:

Figure 2.1: Apache Cordova folder structure

Where each folder and file has its own purpose in the project, namely:

- Hooks: a hook is a script that will be run at a specified time. Despite its name

could be overwritten, inside this folder should go every piece of code that performs

an action related to the project. Specific times could be before prepare, after compile,

after build, etc.

- Merges: as Cordova is oriented to develop cross-platform projects, maybe there are

6

2.2. CORDOVA FRAMEWORK

code or views that should only exist in a specific platform. This folder’s goal is to

create or overwrite any file inside it at prepare time depending on the platform in

which the action is performed. Folder structure should be:

/merges/platform-name/fileToBeOverwritten.js.

- Platform: folder to store native files generated, for instance, in a build. It also

contains the results of cordova commands like $cordova build platform

- Plugins: this folder has a similar intention that the previous one but it stores plugin

code and dependencies.

- www: a Cordova applications is based on a Web App embedded in a native WebView.

This folder contains the Web App that will be presented as mobile application.

- config.xml: The configuration file of Cordova. Dependencies, global and platform

preferences are set by this file. In addition, icons are also set by it.

2.2.1 Plugins

Apache Cordova comes with a wide range of plugins which allow us to control native features

from any platform. These plugins enable the use of device capabilities and native APIs such

as vibration, status-bar control, or geolocation services. In addition, they also are a bridge

from native code to JavaScript, creating an interface for specific functionalities like push

notification native services or Google Maps native APIs.

Now, we are going to show the plugins we have used for this project, including a brief

explanation for each one.

- cordova-plugin-console: as the application is been developed for many platforms

at once, it will need basic functionalities like console.log() available in iOS. This

plugin enables that capabilities.

- cordova-plugin-device: this plugin allows us to get unique information about the

device where our application is running like the platform or the OS version.

- cordova-plugin-file: This plugin implements a File API allowing read/write access

to files residing on the device.

- cordova-plugin-compat: a plugin which maintains compatibility with older versions

of Cordova Framework.

7

CHAPTER 2. ENABLING TECHNOLOGIES

- cordova-plugin-whitelist: implements a whitelist policy to control which URLs the

WebView itself can be navigated to.

- cordova-plugin-splashscreen: due to iOS policies, it is required to show a splash-

screen during application’s boot.

- cordova-plugin-statusbar: this application is based on Material Design Guidelines,

and to do so, we need to darken the statusbar only on Android platform.

- cordova-plugin-googlemaps: enables a native view of googlemaps for better per-

formance.

- phonegap-plugin-push: enables the application to listen push services from Google

Firebase Service and Apple Push Notification Services.

2.3 jQuery

jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML

document traversal and manipulation, event handling, animation, and Ajax much simpler

with an easy-to-use API that works across a multitude of browsers. With a combination

of versatility and extensibility, jQuery has changed the way that millions of people write

JavaScript.

Furthermore, it is an extensible library. This means that the application can base itself

over jQuery to continue adding code which will improve jQuery according to its necessities.

The following sections are going to be an introduction of the frameworks that we use to

extend jQuery in our application.

2.3.1 jQuery Mobile

The main purpose of using jQuery Mobile is to have pagination implemented in the project.

Our goal using this extension is to automatize the DOM actions for inserting/deleting views

of the application. We call this views ”pages” as jQuery Mobile expect.

Using pages, jQuery Mobile triggers custom events for page objects which allow us to

handle the page flow as if it are almost native page handling.

In addition, we also use jQuery Mobile to layout the widgets and views of the application.

jQuery Mobile offers a wide range of widgets and handlers which simplifies laying views.

8

2.3. JQUERY

Figure 2.2: jQuery Mobile collapsible widget

2.3.2 jquery.localize.js

Despite of a first look at the application, where all strings are showed in Spanish, it is

prepared at code level to be presented in many languages, for example English or French.

This feature is available thanks to a jQuery extension called jquery.localize.js.

The jQuery extension is a open-source project hosted in GitHub [5] that enables to

change the inner-text of a DOM element from its html default code to a value previously

stored in a json file. We initialize the extension with the following lines in each JavaScript

file we use as view controller:

Listing 2.1: jquery.localize.js use

$("[data-localize]").localize("header")

.localize("sidebar")

.localize("footer");

On the basis of previous lines, we view how does this plugin works. It searches all

DOM elements which have an attribute called data-localize and apply them the main

function, .localize(), of the plugin. This function is passed a parameter that will be

the name of the value we want to load into the DOM element from the json file. The json

structure has been selected in relation with page ids used in jQuery Mobile page structure

for readability.

2.3.3 NativeDroid2

NativeDroid2 is a theme for jQuery Mobile inspired by Material Design guidelines from

Google. The project is distributed under MIT-License and can be installed from bower or

9

CHAPTER 2. ENABLING TECHNOLOGIES

from sources2.

This project also extends jQuery Mobile with some visual widgets like tabs, cards, bot-

tom sheets, search, and toasts, enabling them with the aspect they are supposed to have

according to Material Design guidelines.

Figure 2.3: Card widget Figure 2.4: Tabs widget Figure 2.5: Bottom Sheet

widget

2.4 Material Design Iconic Font

Material Design Iconic Font is a full suite of official material design icons (created and

maintained by Google), with additional community-designed icons and brands icons for

easy scalable vector graphics on websites or desktop.

This font will allow the project’s user interface to use any Material Design icon it needs.

Appending an icon to a HTML page is as easy as adding the following tag into the desired

element:

Listing 2.2: example of icon html code

<i class="zmdi zmdi-flower-alt"></i>

This icon suite is used as dependency of NativeDroid2 for illustrating warnings or actions

in buttons, a bunch of examples are showed in Fig. 2.6.

2https://github.com/wildhaber/nativeDroid2

10

2.5. SHA256.JS

Figure 2.6: Icons in buttons

2.5 Sha256.js

Cryptographic operations are a fundamental pillar of every application which want to store

or transport any kind of sensible data. This library is a implementation in JavaScript of

the SHA-256 algorithm by Chris Veness published under MIT License. Also, this imple-

mentation is available on GitHub [10] for anyone who want to take a look.

In this case, the library is used to provide SHA-256 hash operation, as we need to en-

sure that any kind of hash function is operative on all platforms. An example of using this

library would be:

Listing 2.3: example of Sha256.js use

var hashedText = Sha256.hash(text);

2.6 Sass

Sass is a CSS preprocessor for writing scripts that will be compiled into css files. It allows

developers to use syntaxes from programming languages like variables, functions, nesting,

11

CHAPTER 2. ENABLING TECHNOLOGIES

control directives, etc.

CSS preprocessor languages were introduced by the industry as a response to the missing

features of CSS. The code written in a CSS preprocessor can include variable and function

declarations, which can be used inside CSS selectors. The preprocessor compiler essentially

transforms (i.e., transpiles) the function calls and variable uses to pure CSS [7].

To transform .sass or .scss files into .css ones a console command is needed.

2.7 gulp.js

Gulp makes builds and workflows easier to get done. While this project is based on design

and implementation of a mobile application, it also faces the last step of every developed

application: the distribution. As this project is being built according to university policies,

it will need to follow some steps before its distribution, namely: (i) Set application environ-

ment to production, (ii) disable log traces and modeDummy, (iii) minify code, (iv) obfuscate

code and (v) change and remove readable sources.

Thanks to Gulp, tasks can be created to make the hard work by just double-clicking.

Gulp syntaxes looks like:

Listing 2.4: Custom gulp task

gulp.task(’delete_js_files’, [’ofuscar’], function () {

return gulp.src(all_js_files.slice(0, all_js_files.length-1)).pipe(

clean());

});

12

CHAPTER3
Architecture

3.1 Introduction

In this chapter, we are going to explain the architecture of the entire project, from the design

phase and implementation details to server requirements. First of all, in the overview we

will present a global vision of the project architecture, identifying client and server side.

Secondly, we are going to glance at Apache Cordova architecture, focusing on each module

and its relation with the project. Finally, the relationship between them will be outlined.

3.2 Overview

In this section, the global architecture of the project is going to be presented, defining the

different supermodules, which will contain the main modules that participates in it.

- DB connection interface: all the data needed by the mobile application is stored

in databases. This interface minimizes failure in case of database changes.

- Wapi upm: this supermodule is a Web API for serving the information to the mobile

application.

13

CHAPTER 3. ARCHITECTURE

- Cordova application: the main supermodule of the project. This will contain the

logic and the views of the application.

- Mobile OS: the platform where the application will be running.

Figure 3.1: Architecture

In the following sections we are going to deeply describe the subsystems involved in the

project.

14

3.3. SERVER MODULES

3.3 Server modules

The server is responsible for organizing and sending all the information needed by the mobile

application. Its principal purpose is to act as information gatherer and access controller.

This means that the server is going to listen to the application’s requests addressed to it,

and to retrieve the information which it will send in return from different sources, e.g.,

databases or files.

Furthermore, the server is going to take the responsibility of granting or denying access

to the data that is being required by the application. This role will be explained in detail

in section 3.3.2.1.

3.3.1 DB connection interface

A database connection interface is a tool for avoiding the complexity of manage connections

and links to a database. It acts as a data access object design pattern which will work

transparently for us so that we only have to worry about queries and the use of gathered

data.

ADOdb is a database abstraction layer for PHP. It is not only a database connection

interface but an interface of interfaces as well. This means that the server logic will be

even abstracted from DBMSs (DataBase Management System). The purpose of using an

interface to work with databases is mainly to avoid extra maintenance in case of database

migrations or database driver changes.

This layer allows developers to use the same code in order to access a wide range of

databases. ADOdb contains components for querying and updating databases, as well as

an Object Orientated Active Record library, schema management and performance moni-

toring [6].

Despite it is based on the ADOdb abstraction layer, the purpose of the DB connection

interface is not only to obtain database records but also to do log tasks of CRUD (Create,

Read, Update & Delete) actions and error handling.

3.3.2 Wapi UPM

This module is a web API whose main purpose is to offer data from the university. The

election of these data, despite being requested by the application, is subject to the univer-

sity’s approbation. Furthermore, using this approach defines the project’s architecture as

15

CHAPTER 3. ARCHITECTURE

Service-Oriented.

The Web Services used by the application have their origin in this module, which will

publish them employing RESTler. RESTler is a crawler that uses Resource Linking Lan-

guage (ReLL) descriptions instead of Web Application Description Language (WADL) as

instructions for traversing a RESTful service and produces a typed graph of the crawled

resources and the links connecting them [1].

The module Wapi UPM has three submodules as shown in Fig. 3.1 which are detailed

below:

3.3.2.1 Authentication module

The authentication module will be responsible for manage access to groups of Web Services

depending on several parameters. This authentication is implemented under a RESTler

interface called iAuthenticate which will require filling two methods:

• isAllowed(): contains all the logic needed for authenticating a request. Should

return a boolean. true if the request is allowed, false else.

• getWWWAuthenticateString(): for offering some information about what the

server expects to try an authentication. Should return a string.

In relation to project’s https://drive.google.com/drive/my-drivearchitecture, this mod-

ule is going to allow access to a requested Web Service depending on its headers. In this

project, when opening a “session”, the application needs to do a POST request to the

University servers with the following payload:

Listing 3.1: Payload of login request

{

"cuenta": "sonia.fraguasm@upm.es",

"password": "p4ssW0rD",

"app_id": "..."

}

When the request is tested by the authentication module, it considers whether the data

received is valid or not. If everything is alright, the server will send a response 200 OK in

json format with the following content:

16

3.3. SERVER MODULES

Listing 3.2: Response of login request

{

"token": "...",

"nombre": "Sonia",

"apellidos": "Fraguas Montalvo",

"colectivo": "F"

}

Supposing a successful login request, the application will obtain a “session” from the

server’s response to perform further requests. This “session” is defined by a token, which

is actually what is obtained from the server’s response, specifically in the token field.

The reason of quoting session is due to server’s vision of the connection between the

mobile application and itself. This connection has been implemented to be session-less so

from this moment onwards we will call it session despite it is not. Only for simplifying

concepts.

The session mentioned above will not be maintained from the very right time it is

granted, that we will call tstart, but it will from a time chosen each ξ minutes, called ξ1, to

the next, ξ2. This means that users could have sessions whose duration is really short:

tsession = tstart − tξ1

Where tsession is the whole time the server is keeping an eye on a user. Beyond that

time, session will be closed and any request from the previous user will be rejected unless

it perform a new login request.

The earlier behavior could become annoying to a user because it actually can have a

one minute session so a login request will have to be done twice in less than two or three

minutes. In order to avoid that kind of problem, the authentication logic was improved as

follows: (i) Mobile application sends a request to the server with a header named X-UPMTOK

which contains the session token obtained in the login, but this time it is expired. (ii) Server

checks the token’s validity by comparing it with the current genuine token and the previous

one. Just one truth will be enough to granting it access to the Web Services and answering

it the corresponding data. (iii) A X-UPMTOK header that contains the current genuine token

is going to be in the response for communicating it to the mobile application. (iv) Finally,

the current genuine token will be stored by the mobile application for further requests., as

show in Fig. 3.2.

17

CHAPTER 3. ARCHITECTURE

Figure 3.2: Token timeline

Accordingly, sessions will auto-renew themselves instead of being renewed by users each

time they expire. This improved behavior will maintain a session up to 2 × ξ minutes if

users do not make more requests. However, from user’s perspective, its session will last

forever while it continues using the mobile application. Finally, the new session’s duration

would be like:

tsession = tstart − tξ1 [+(n× ξ)]

3.3.2.2 Push Management module

A push notification is a message sent to an application whose main difference with usual

notifications is the fact that it is not requested by the application. The message’s delivery

is orchestrated by the server itself without any client interaction, so the message is pushed.

Since this project goal is to develop an hybrid mobile application, various options would

have to be considered for implementing push notifications because project’s goal is to run

the mobile application on various platforms (Android & iOS). Both platforms count with

its own solution to achieve push notifications delivery, namely:

18

3.3. SERVER MODULES

- Apple Push Notification Service. Offers the possibility of sending push notfi-

cations to the whole family of Apple’s devices through HTTP/2 interface. It has a

payload limit size of 4KB with that interface. Previous limit was 2KB for the legacy

APNS binary interface1. To obtain client-server communication it is required an iOS

Certificate for Apple Push Notification service SSL (Sandbox & Production). This

certificate will identify the mobile application which is going to receive notifications

through its bundle ID (see section 3.4.2.1).

- Firebase Cloud Messaging. It is a Google service which replaces Google Cloud

Messaging2 (GCM) since Firebase platform was released. This solution offers push

notification services to not only android devices (smartphones, TVs, wearables, etc)

but also to Apple devices. This is possible thanks to an abstraction layer that FCM

(and GCM as well) implements by using the certificate explained in the previous point.

It has a payload limit size of 4KB through HTTP interface.

In the end, and considering server restrictions for implementing both platforms, FCM

was the chosen platform to achieve push notification delivery. This decision was also taken

by having in mind what data is sent back to the university server by both platforms when it

does a push request. While APNS (actually legacy APNS binary interface) gives feedback

of a push delivery via The Feedback Service, which is another binary communication with

Apple’s servers, FCM gives the feedback in the answer of a push HTTP request.

The figure 3.3 shows how push management is done. First of all, the mobile application

has to specifically request that it is interested in receiving push notifications by registering

on FCM. Steps 1 and 1.1 will be explained in section 3.4.2.3. Secondly, after the register

is done, the mobile application will receive a token that identifies a mobile plus mobile

application bundle. Thirdly, the token will be sent to the University servers to storage it

in a proper way. Finally, steps 4, 4.1, and 5 are the result of sending a push notification:

FCM is connected by the University servers in order to send a push notification to the

mobile application, to do so FCM sends the message to android devices and it delegates the

delivery of iOS devices to APNS. All the feedback received by University servers are also

properly stored.

1During the development of this project, all tests were done with legacy APNS binary interface, due to

server’s .NET version restrictions.
2At the beginning of project’s development, GCM was the technology needed to implement push notifi-

cation over android and iOS devices.

19

CHAPTER 3. ARCHITECTURE

Figure 3.3: Push architecture

3.3.2.3 User Queries module

This module is the Web Services themselves. Behind the authentication module is where

they are placed. Nevertheless, all the Web Services are not protected behind the authentica-

tion module, the information gathered by those Web Services is public because University’s

nature.

For more information, see ApiUPM3, a web portal which joins most of the Web Services

offered by the University.

3.4 Client modules

This project is designed to provide the most usual features offered by a University intranet

moving them to a mobile perspective. As it has been said before, the mobile platforms

where the project is focused are Android and iOS, both smartphones and tablets, because

the former and the latter platforms joined make a high market share.

In this section, a deeply sight will be given to explain each facet of the mobile application,

from OS core functionalities to high level Cordova code. In addition, how a Cordova mobile

application are developed will be explained for a better project comprehension. Finally,

during the explication of all development’s process, relations between server features and

3https://www.upm.es/apiupm/

20

https://www.upm.es/apiupm/

3.4. CLIENT MODULES

client necessities are going to be bound.

3.4.1 Mobile OS

The differences between the operative systems where the mobile application can run creates

different development’s paths. Depending on the election of these paths, the application

will be partially or fully operative. For this reason, the project has two secondary goals:

minimizing gaps between all platforms the project is interested in and maximizing shared

code by every platform.

Some of the differences found during the project’s development are:

- Permission access.

- Main properties of principal graphic layout.

- Amount of different devices per platform.

- Operative System version.

- WebViews.

Most of the previous differences only need a patch to be resolved definitely. However,

there are differences that will require attention on every new version that is planned to be

published. Those differences are principally related to graphics and user experience.

3.4.2 Cordova application

Since the installation of Cordova Framework is done, main steps to have a mobile application

based on Cordova are [4]:

- Create the App. Following lines are needed to create an empty new Cordova project:

Listing 3.3: jquery.localize.js use

C:\>cordova create PersonalUPM es.upm.personal PersonalUPM

21

CHAPTER 3. ARCHITECTURE

Figure 3.4: Cordova architecture

Where:

i cordova is the CLI command to invoke Cordova features.

ii create is the order to generate a new project.

iii PersonalUPM is the path where the project is going to be stored. It can be

either relative or absolute.

iv es.upm.personal is the Reverse domain-style identifier. Should not change during

application lifetime. This identifier will be the one which identifies the application

in the app stores.

v PersonalUPM will be the name of the mobile application. This value can change

during application lifetime.

- Add platforms. The addition of platforms will be required for building the ap-

plication. The build uses native SDKs (System Development Kit) to compile the

application code into native binaries. This project uses Android and iOS4 platorms,

4The possibility of adding the iOS platform is exclusively available for OSX devices because only they

have access to Xcode toolkit.

22

3.4. CLIENT MODULES

so:

Listing 3.4: Console command for adding a platform

C:\PersonalUPM> cordova platform add android ios

The previous line will allow the system where the project is developed access to build

the application on those platforms.

- [Optional] Add plugins. If the application needs some utilities which only are ob-

tainable through Cordova plugins, the way to install them is:

Listing 3.5: Console command for installing plugins

C:\PersonalUPM> cordova plugin install {name-of-the-plugin}

A huge quantity of plugins is available through the Cordova Plugin Library, where

many of them are maintained by the community. One of the greatest characteristics of

this Library, due to its wideness, is that most of the development needs are covered. As

a consequence, the probability of having to develop a new plugin is very low. Although,

a research work is needed for assuring the validity of a selected plugin, because for

instance, maintenance could be out of date or the requirements of a plugin version

exceed the ones of the project.

- Build the App. This is the last Cordova step before testing/publishing the mobile

application. This order generates the Web App and embeds it in the native WebView,

but its result will be different depending on the targeted platform.

– Android: there are two types of building a Cordova application in android, ac-

cording to the desired environment, Development or Production. The most usual

build is the former and it is done with the following command:

Listing 3.6: Command for generating an android development build

C:\PersonalUPM> cordova build android

To generate a build for the latter, an option needs to be appended to the previous

command:

Listing 3.7: Command for generating an android release build

23

CHAPTER 3. ARCHITECTURE

C:\PersonalUPM> cordova build android --release

The difference between both builds is that a Development build will generate a

debug .apk file for testing purposes while a Production build will generate an

.apk ready to be signed and uploaded to a production environment.

– iOS: the command needed to compile the application shares the order of Cordova

CLI but identifying “ios” as the platform to be builded:

Listing 3.8: Command for generating an iOS development build

C:\PersonalUPM> cordova build ios

Nevertheless, Apple’s restriction of building applications only on OSX devices

also prevents the generation of executable iOS files directly from Cordova CLI.

Because of that, a build command generates a Xcode project file (.xproject)

or a Xcode workspace file (.xworkspace).

Now, each project’s client side module is going to be explained and related with its

purpose inside a Cordova project.

3.4.2.1 config.xml

As its own name indicates, the config.xml file is the responsible of any configuration

needed by the project. Its structure is related with the W3C’s widget specification. The

World Wide Web Consortium (W3C) provides a set of specifications collectively known

as the Widget family of specifications. A Widget is defined by W3C (http://dev.w3.

org/2006/waf/widgets-land/) as “an end-user’s conceptualization of an interactive

single purpose application for displaying and/or updating local data or data on the Web,

packaged in a way to allow a single download and installation on a user’s machine or mobile

device.” [12]

Following those specifications, file’s structure is:

Listing 3.9: Project config.xml

<?xml version=’1.0’ encoding=’utf-8’?>

<widget xmlns="http://www.w3.org/ns/widgets" xmlns:cdv="http://cordova.

apache.org/ns/1.0" id="es.upm.personal" version="1.1.1" android-

versionCode="14" ios-CFBundleVersion="1.1.1.20170210">

24

http://dev.w3.org/2006/waf/widgets-land/
http://dev.w3.org/2006/waf/widgets-land/

3.4. CLIENT MODULES

<name>Personal UPM</name>

<description>

Aplicacion para Personal de la Universidad Politecnica de Madrid

</description>

<author email="servicios.tic@upm.es" href="http://www.upm.es">

Vicerrectorado de Servicios Informaticos y de Comunicacion

</author>

<!--project’s plugins-->

<plugin name="cordova-plugin-console" version="1.0.3"/>

...

<plugin name="phonegap-plugin-push" spec="https://github.com/phonegap/

phonegap-plugin-push#v2.0.x">

<variable name="SENDER_ID" value="xxxxxxxxxxxx" />

</plugin>

<!--both api key needed for googlemaps plugin-->

<plugin name="https://github.com/phonegap-googlemaps-plugin/cordova-

plugin-googlemaps">

<variable name="API_KEY_FOR_ANDROID" value="xxxxxxxxxxxx"/>

<variable name="API_KEY_FOR_IOS" value="xxxxxxxxxxxx"/>

</plugin>

<access origin="*" />

<allow-intent href="http://*/*" />

<allow-intent href="https://*/*" />

<allow-intent href="tel:*" />

<allow-intent href="sms:*" />

<allow-intent href="mailto:*" />

<allow-intent href="geo:*" />

<!--cordova preferences-->

...

<!--plugin spreferences-->

...

<platform name="android">

<hook type="after_prepare" src="scripts/android_copy_to_drawable.js" />

<!-- custom platform preferences and allow-intents -->

<icon density="ldpi" src="res/iconos/android/icon-36-ldpi.png" />

...

<splash src="res/splash/android/land-hdpi.png" density="land-hdpi"/>

...

25

CHAPTER 3. ARCHITECTURE

</platform>

<platform name="ios">

...

</platform>

</widget>

The previous is, in short, a widget from the W3C specification mentioned above with its

information tags (name, description, and author). Widget’s custom attributes like android-

versionCode and ios-CFBundleVersion are required to implement each platform versioning.

Remaining tags are:

- <plugin>: specifies a cordova plugin which will be included into the project. In

addition, it can have nested tags like <variable> whose value will be passed as a

plugin option during building time.

- <access>: allows the application to communicate with external domains defined in

this tag.

- <allow-intent>: defines which URLs the application is allowed to send to the

system for opening.

- <preference>: this tag sets application/plugin properties. It can be nested in a

<platform> tag so its scope will not spread to all platforms.

- <platform>: generates a scope for each platform that is going to be used in the

project. Tags contained inside a <platform> tag will only affect to the platform

defined by it.

- <icon>: sets icon for the mobile application. A tag will be necessary for each icon

size. In android, icons are sorted by pixel density (ldpi, mdpi, hdpi, xhdpi, xxhdpi,

and xxxhdpi) while in iOS they are sorted by determinate pixel×pixel size.

- <splash>: this tag has the same behavior as <icon> tag, even by platform. How-

ever, the plugin cordova-plugin-splashscreen is required by Cordova to understand how

apply it.

3.4.2.2 HTML

The HTML module contains the views of the application. Its function is to represent all the

content needed by the UX (User eXperience) so user interactions are obtained correctly.

26

3.4. CLIENT MODULES

The navigation diagram of the application represents how HTML views are connected.

Views are “pages” inside the jQuery Mobile argot, so each view will be a page to load into

the DOM of the Web App. The HTML objects that are loaded inside pages are predefined

by jQuery Mobile framework.

Mainly, the application views are structured using the same template for all pages except

for the index.html which takes care of setting meta tags and loading JavaScript and CSS

files.

Listing 3.10: Project’s index.html

<!DOCTYPE HTML>

<html><head>

<meta charset="utf-8"/>

<meta name="format-detection" content="telephone=no" />

<meta name="msapplication-tap-highlight" content="no" />

<meta http-equiv="Content-Security-Policy" content="default-src gap://

ready *; img-src * data:; script-src ’self’ ’unsafe-inline’ *;style-

src ’unsafe-inline’ *;font-src *">

<meta name="viewport" content="width=device-width, initial-scale=1.0,

maximum-scale=1.0, user-scalable=no" />

<meta name="mobile-web-app-capable" content="yes">

<meta name="apple-mobile-web-app-capable" content="yes" />

<meta name="apple-mobile-web-app-status-bar-style" content="black" />

<!--CSS links-->

<link rel="stylesheet" href="css/global.css" />

<script type="text/javascript" src="cordova.js"></script>

<!--More <script> tags-->

<title>Personal UPM</title>

</head><body>

<!--PAGE TEMPLATE-->

</body></html>

cordova.js is an auto-generated file which will be inserted during building time

by Cordova Framework. It does not belong to the project itself but referencing it in

index.html is necessary for obtaining Cordova events and plugin initializations.

As seen in section 2.2, all .html files, except menu.html, are located in /www folder,

which is the Web App’s root directory. The file menu.html is located in /www/fragments

folder because it contains only a piece of HTML code that will be inserted after deviceready

27

CHAPTER 3. ARCHITECTURE

event is triggered.

Listing 3.11: Project’s page template

<!DOCTYPE HTML>

<html><head>

<title>{pageTitle}</title>

</head><body>

<div data-role="page" id="{pageID}">

<div data-role="header" id="{pageID}-header">

<div class="toolbar">

<i class="zmdi zmdi-

menu"></i>

<h1><div data-localize="{pageID}.startHeader">{pageTitle}</div><

span class="subtitle" style="display:none;"></h1>

<a id="{pageID}-button-logout" data-rel="popup" data-position-to="

window" data-inline="true" data-transition="pop" class="ui-btn"

><i class="zmdi zmdi-power-off"></i>

</div>

</div>

<div role="main" id="{pageID}-content" class="ui-content page-content"></

div>

</div>

</body></html>

A new HTML page is created by using the template showed in the listing above. It

will be identified by the pageID variable, and it will be written in a new file. In this

scope, a rule is followed by the project: “new view, new page”, in order to get a better code

comprehension.

The HTML toolbar object has been defined exclusively to follow Material Design guide-

lines by dividing the whole width space into three blocks.

28

3.4. CLIENT MODULES

3.4.2.3 JavaScript

Business logic is implemented through JavaScript programming language. The project’s

main logic structure is arranged by the functionality of each JavaScript file. As a conse-

quence, there are two main folders for organizing JavaScript inside /www folder: vendor,

and js. The former folder groups together all JavaScript files related with third-party di-

rect dependencies. The latter gathers project’s own JavaScript files. This section is going

to take a look of the latter’s folder structure and also explain each file main functionality.

Firstly, in order to make the project’s business logic easier to understand, the method-

ology used to develop JavaScript objects follows the pattern showed below:

Listing 3.12: Self-executing anonymouns function

var object = (function () {

var privateVar = ’foo’;

var privateFn = function () {

...

};

var thisWillBePublic = ’bar’;

return {

variable: thisWillBePublic

}

})();

object.privateVar; // returns undefined

object.privateFn(); // TypeError: object.privateFn is not a function

object.variable; // returns ’bar’

The listing 3.12 shows the pattern called self-executing anonymous function [13] and

it allows the JavaScript object to have not only public properties but also private ones.

This approach offers some benefits like enabling the use of auxiliary functions that will be

invisible to the rest of the project, or avoiding the rewrite of object properties.

Thus, the methodology used has been explained. Now, recovering principal purpose,

project’s JavaScript files are going to be explained.

The JavaScript files stored under controllers folder are responsible of administrating

how a view is initialized or hided, and also taking care of all events triggered while its

29

CHAPTER 3. ARCHITECTURE

subordinated view is active for the user. Two essential functions are needed to control a

view, and they will be executed after specific jQuery Mobile events are fired. With this

information, a template has been created for minimizing further page additions:

Listing 3.13: Controller template

var {pageID} = (function() {

/* Logic goes here */

var initialize = function(){

...

};

var hide = function(){

...

};

var bindEvents = function(){

$(document).on("pagebeforeshow", "#{pageID}", initialize)

.on("pagehide", "#{pageID}", hide);

};

return {

bindEvents: bindEvents

};

})();

{pageID}.bindEvents();

The control of when a page is loaded into the DOM is leaded by pagebeforeshow

event and the same occurs when the page is hided with pagehide event. They are jQuery

Mobile events that will allow the application to know in which moments should do what

actions.

The next stage of JavaScript files is models folder, where all the properly named ob-

jects of the application will be stored. Only one model follows the prototype pattern

of JavaScript: Alert.js, because it is supposed to be instantiated many times. The

remaining objects have been designed to act as singleton [3], they are:

- Cache.js: is the responsible of saving in disk the desired responses from Web Ser-

vices requests. The cached files are only available while a Session is opened.

- Preferences.js: it is a custom preferences manager. The localStorage API

30

3.4. CLIENT MODULES

from HTML was used to fulfill this purpose, however, iOS WebView memory man-

agement do not keep some stored data, so localStorage was declined in favor of

this implementation. It uses FileEntry, FileReader, and FileWriter APIs to

manage preferences and to save them in disk.

- Pushmanager.js: is a wrapper for using the Phonegap-plugin-push. Its initialization

contains the following tasks: (i) registering the mobile to Firebase Cloud Messaging

platform, (ii) obtaining the token from the previous request, (iii) sending the push

token through a Web Services to the University servers, and (iv) waiting for push

notifications.

- Session.js: once login request has been successfully done, a token (see section 3.3.2.1)

is received. This object will be in charge of checking if the connection between Uni-

versity servers and the mobile application is still valid.

- User.js: this file stores all the information related with the logged user and central-

izes it.

Finally, other JavaScript files are contained just at the root of the js folder. This

emplacement was selected due to the functionalities contained in those files have a global

purpose in the project.

- webservices.js: this file gathers all the requests made by the mobile application.

It also implements a wrapper of how ajax queries are supposed to be done.

- utils.js: a function library. It contains every shared function of the project. In

addition, it contains logging functions for debugging purposes.

- config.js: it is a project’s configuration file. This is where options like which

environment to use (production or development) or timeout of a request are set.

- App.js: this file is the responsible of controlling application’s global variables, to

managing callbacks for global events. Furthermore, it initializes the mobile application

itself when ondeviceready event is triggered.

3.4.2.4 CSS

A mobile application, by default, is organized in different views that will arrange all the

content. These views are designed to follow some patterns depending on which platform is

31

CHAPTER 3. ARCHITECTURE

been targeted by the application. Nevertheless, those patterns are not a restriction but an

advice from the big companies behind the development of a platform.

As this application is not a one-platform development, many patterns are available for

selecting the design, more precisely they are the Material Design by Google and the iOS

Human Interface by Apple.

In this particular project, Material Design guidelines has been selected for leading the

mobile application design. This selection was done because Google guidelines are more

detailed and because android has a greater percent of market share than iOS as seen in

section 1.1. However, the application style is not strictly guided by Google guidelines, due

to it also has custom styles to provide the project its own personality.

On one hand, all the styles are written using Sass because its modularity avoids to have

.css files with a huge number of lines. In this scope, the project follows the same rule

as the HTML scope: “new view, new page”, but this time, instead of a page there will

be a .scss file. In addition, there are more sass files to control general purpose goals like

centralizing shared css values in variables, defining “functions” (sass’ mixins) or overwriting

values from frameworks. All those modular files are recognizable by their name. If the name

of a sass file starts with the character “ ”, it means that it is prepared for being imported

in a “main” sass file.

On the other hand, predefined Material Design styles can be used by the application

thanks to NativeDroid2 jQuery Mobile theme. A summary of the use of NativeDroid2

elements is showed in figures 3.5, 3.6, and 3.7.

Figure 3.5: Logging out

modal - iOS

Figure 3.6: Cards in Planifi-

cation view - Android

Figure 3.7: Snackbar with ac-

tions - iOS

32

3.4. CLIENT MODULES

As is shown in the figures above, the layout is shared across platforms, except for those

elements that are part of the mobile OS system, like the status-bar that has different styles

per platform, or the navigation-bar, which is only an element of Android, and iOS does not

have it.

33

CHAPTER 3. ARCHITECTURE

34

CHAPTER4
Use case

4.1 Introduction

This chapter describes the process needed in order to allow the information to be provided

to a user by using the mobile application. This process will be presented as a walk-through

among all the options offered by the application.

4.2 Mobile application

Once a user has installed the application and it is started, the first view showed, Fig. 4.1, will

present an static image of University administration building and a list of University related

news. The news presented in this page, are a link for viewing the full news information

on another view, as shown in Fig. 4.2. That secondary view will show a Google Maps

widget only if the news is located at a specific place. In addition, while the maps widget

is showed, the user could click to the black icon in the upper-right corner to open Google

Maps application for using, for example, GPS directions.

Regarding navigation, a side menu is revealed when the user clicks on the upper-left

menu icon. That icon allows the user to display the menu which provides navigation to

35

CHAPTER 4. USE CASE

Figure 4.1: Main page Figure 4.2: News detailed view

each page available from the whole application pages but those whose purpose is to display

a detailed information of the previous page, as shown in figures 4.2, 4.5, 4.9, 4.7, and

4.12.

Figure 4.3: Initial navigation menu Figure 4.4: Navigation menu with user logged

The left side-menu changes its appearance depending on if a user is authenticated or not.

The former state makes menu showing all the possibilities that the user can do, as shown

in Fig. 4.4. Not all logged users see the same possibilities because, for instance, not every

people have a mobile phone line associated or have to clock in, thus, the options displayed

in menu rely upon which kind of user has logged in the application. The latter state is

the state by default, Fig. 4.3, and makes menu display a link to the login page, and other

36

4.2. MOBILE APPLICATION

links (one per option) that will also forward the user to the login page, as shown in Fig. 4.5,

although when it does a correct login, it will be redirected to the page of the previous option

selected. The menu will save the information of the last logged user for showing, although

authentication is not provided, all the available options it had. To logout, the user needs to

click on the upper-right power-off icon in order to show a dialog which will ask it to accept

or not the logout action.

Figure 4.5: Login

Now, each possible option is going to be explained for revealing all actions that the user

can do. They are going to be explained in order of appearance in the menu layout.

4.2.1 Salary

This option will show a list of clickable elements that acts as a summary for all the month

incomings computer-registered. Each element shows the final incoming, and the global

value of payments and deducts for a month, as shown in Fig 4.6. When the user clicks

on an element, a new view will appear without leaving the current page with the previous

information itemized shorted by contract and a fixed ribbon that reminds the global values

(Fig. 4.7). finally, in this second view, menu icon will not be displayed and back-button

behavior is to go back to the summary view.

4.2.2 Seniority

This page shows the seniority of the logged user. It can be specified in two types: academic

and research seniority. If the user does not have any of those, its activity will be grouped

37

CHAPTER 4. USE CASE

Figure 4.6: Salary view Figure 4.7: Month incoming detailed

Figure 4.8: Seniority outline

view

Figure 4.9: Academic senior-

ity history

Figure 4.10: Academic se-

niority history detailed

into total seniority. In the main view of this option the user can see an overview of its

trienniums, quinquenniums, and six-year terms, as shown in Fig. 4.8. Quinquenniums are

only obtainable with academic activity, and six-year terms are only achievable with research

activity. By clicking on an element of the orange card, a new view, as shown in Fig. 4.9, will

appear showing a list that contains every contract done inside the seniority scope clicked.

Each list element are also clickable and a click will show a dialog with the full name of the

contract (Fig. 4.10).

38

4.2. MOBILE APPLICATION

4.2.3 Mobile phone bills

Figure 4.11: Mobile phone bills Figure 4.12: Month bill detailed

This option will be available for only those users which have a mobile phone line associ-

ated beside their post. If more than a line is assigned to a user, changing between them is

as easy as clicking in a tab. Each line is identified by the phone number. As regards layout,

page’s main view is similar to salary’s main view, showing a list of bills ordered by month

whose elements display the total cost of a bill and the billing cycle (Fig. 4.11). When an

element is clicked, a detail view will be shown with an itemization of charges, as shown in

Fig. 4.12.

4.2.4 Clock in

The page showed in Fig. 4.13 is accessible for staff that clock in when they arrive to/go

from work. This view displays a calendar showing the last thirty days approximately, they

can be colored in three ways: (i) black represents a normal day, where the user has its

clockings in perfectly done; (ii) light-gray days are disable for user interaction because

they represent non-working days, for instance, public holidays; and (iii) light-orange ones

are days that have some anomalies, which can be, e.g. vacation or off work days. Currently

selected day is represented with a dark-orange circle. Finally, if the user does a long click

on an day, as the bottom bar suggests, a dialog will appear, as shown in Fig. 4.14, which

details worked time of day selected and total computed month time in that moment.

The two bubbles floating at the top of the view displays total computed time for the

current and the previous month. The number inside can be positive, when the user has

39

CHAPTER 4. USE CASE

Figure 4.13: Clocking in view Figure 4.14: Day detail modal

work more time than it should, or negative, when it have done less time.

4.2.5 Holidays

Figure 4.15: Planifications view

This last page shows a summary of the vacation days available for the current logged

user, shorting them by type. For choosing what type of vacation days has to show the

application, the user only has to click on the tab it desires.

Each type view is arranged in cards that contains all the information shorted by year.

This information indicates total amount of vacation days, and which of them are either

40

4.3. PUSH NOTIFICATIONS

available or planned. Planned vacation days only appear if the days asked for holidays

are accepted, as shown in Fig. 4.16. Moreover, the icon next to the holidays date changes

according of the state of the planned period: a light-orange calendar icon for those which

have not occur yet, and a green check icon for those that have happened.

4.3 Push notifications

One last feature of the mobile application are the push notifications. They allows the user

to be alerted when a specifically action has happened. Figure 4.16 shows a notification

which notifies the user that the days it asked for being holidays has been accepted.

Current notifiable events are:

- Approval of vacation days,

- Salary payment, and

- New phone bill receipt.

Figure 4.16: Push notification example

41

CHAPTER 4. USE CASE

42

CHAPTER5
Conclusions and future work

5.1 Introduction

In this chapter we will describe the conclusions extracted from this project, problems,

achievements and suggestions about future work.

5.2 Conclusions

In this project we have developed a mobile application for a University intranet, where the

most usual user actions can be done. For this purpose, hybrid programming has been the

methodology followed to reduce developing time, in particular, Apache Cordova has been

the selected framework to embed a Web Application into multiple mobile platforms.

This project has developed the client side of the architecture, which is formed by two

modules, the mobile OS and the Apache Cordova application. The former offers some native

features like sensors, graphics, and services. The latter is where the Web App will support

to provide all its features. Finally, the server side of this project is the responsible of storing

all user data and providing them to the client side.

43

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

In the following sections I will describe in depth the achieved goals, the problems faced

and some suggestions for a future work.

5.3 Achieved goals

In the following section I will explain the achieved features and goals that are available in

this project.

Collect main necessities from users. We have been study which actions are performed

the most among those qualified as deployable. The actions that has been considered

are the ones from the web platform Politécnica Virtual. Thanks to this platform, the

main functionalities of the mobile application were founded.

Session establishment. In our project, one of the most significant points was the connec-

tion between University servers and the mobile application. The importance of this

point is derived from a secondary goal: reducing server load by not keeping traditional

sessions. This goal was also achieved thanks to jQuery Ajax implementation, which

allows us to personalize it the way we need.

Enable Push Notification Services. Every mobile application with login interface has

a big chance of needing the implementation of Push Notification Services. Inform-

ing users of new milestones related to the application’s functionalities is almost a

requirement for every mobile application. Thanks to the Cordova plugin phonegap-

plugin-push this goal has been able to be achieved.

Use Sass to simplify the application styling. Initially, all application styles were de-

fined in a .css file. This implementation was far enough to be maintainable so a

mid-project new goal was traducing the previous .css file into a modular structure

of .scss files.

Develop the application using Apache Cordova. This was the main goal of the project.

It was achieved thanks to the use of multiple frameworks as jQuery, NativeDroid2 or

Sha256.js which improved and simplified programming tasks like Ajax requests, DOM

transformations or ciphering sensible data.

44

5.4. PROBLEMS FACED

5.4 Problems faced

During the development of this project we had to face some problems. These problems are

listed below:

• Maps implementation: When an event provides the location where it will be presented,

that location is showed in a Google Maps native view. The plugin used to achieve this

is named cordova-plugin-googlemaps. It adds a native view of Google Maps centered in

some location. Problems became when a html view was placed above, at least, a part

of the space occupied by the native view. The plugin places the native view behind the

WebView generated by Cordova and sets transparency on to that WebView. However,

if some html view is placed after the Maps view is initialized, user interactions will

be picked up by the Maps view. This problem happened for instance with the logout

dialog. To solve it, we need to toggle the Maps instance clickability each time an html

view will be placed above it.

• Migration from GCM to FCM: Initially, the first push implementation in the project

was done using GCM services. However, Google evolved this services into FCM. Thus,

the mobile application had to evolve as well. The problem faced was managing the

specifically version of the Cordova plugin which will enable us to implement again

Push Services. Finally, the problem was solved by changing which plugin’s branch is

used by the application.

5.5 Future work

In the following section I will explain the possible new features or improvements that could

be done to the project.

Notification channels. Currently, the user can only receive notifications about when its

salary has been emitted, when a vacation day is approved and when its phone bill has

been collected. The use of Push Services can improve this by letting the user choose

which notifications likes to receive, and offering notification channels like ”University

events”.

Migrate to Materializecss framework. This is the near future of this project’s devel-

opment. Although the application runs smoothly, with the addition of further ca-

pabilities will make it increase in size and computational work. By using only one

45

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

framework, we can reduce application’s size and also implement some new features

like an event carousel.

Implement Web Workers. The Web Workers element runs scripts in the background

that can’t be interrupted by other scripts or user interactions [8]. This speeds up

background tasks and could be implemented for attending graphic tasks in separated

threads, which will improve user experience.

Add POST requests. Current version of the mobile application can only show user in-

formation. The idea is to develop a way to asking for, i.e, vacation days or opening

a clock issue. This can also be extended by letting the responsible people accept or

deny those requests from the mobile application.

46

Bibliography

[1] Rosa Alarcón and Erik Wilde. Restler: crawling restful services. In Proceedings of the 19th

international conference on World wide web, pages 1051–1052. ACM, 2010.

[2] Oscar Axelsson and Fredrik Carlström. Evaluation targeting react native in comparison to

native mobile development, 2016. Student Paper.

[3] Ethan Brown. Learning JavaScript: JavaScript Essentials for Modern Application Develop-

ment. ” O’Reilly Media, Inc.”, 2016.

[4] The Apache Software Foundation. Cordova documentation - overview, 2016. Available on:

https://cordova.apache.org/docs/en/latest/guide/overview/.

[5] Jim Garvin. Github - coderifous/jquery-localize.

[6] John Lim. Adodb library for php manual. EEUU: phpLens. Agosto, 2006.

[7] Davood Mazinanian and Nikolaos Tsantalis. An empirical study on the use of css preprocessors.

In Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd International

Conference on, volume 1, pages 168–178. IEEE, 2016.

[8] Mark Pilgrim. HTML5: Up and Running: Dive into the Future of Web Development. ” O’Reilly

Media, Inc.”, 2010.

[9] OS Smartphone. Market share, 2016 q3. IDC [on-line].

http://www.idc.com/promo/smartphone-market-share/os, 2017.

[10] Chris Veness. Github - chrisveness/crypto.

[11] John M Wargo. Apache Cordova 4 Programming. Pearson Education, 2015.

[12] Scott Wilson, Florian Daniel, Uwe Jugel, and Stefano Soi. Orchestrated user interface mashups

using w3c widgets. In International Conference on Web Engineering, pages 49–61. Springer,

2011.

[13] Nicholas C Zakas. Understanding ECMAScript 6: The Definitive Guide for JavaScript Devel-

opers. No Starch Press, 2016.

47

h
h

BIBLIOGRAPHY

48

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technologies
	Introduction
	Cordova Framework
	Plugins

	jQuery
	jQuery Mobile
	jquery.localize.js
	NativeDroid2

	Material Design Iconic Font
	Sha256.js
	Sass
	gulp.js

	Architecture
	Introduction
	Overview
	Server modules
	DB connection interface
	Wapi_UPM
	Authentication module
	Push Management module
	User Queries module

	Client modules
	Mobile OS
	Cordova application
	config.xml
	HTML
	JavaScript
	CSS

	Use case
	Introduction
	Mobile application
	Salary
	Seniority
	Mobile phone bills
	Clock in
	Holidays

	Push notifications

	Conclusions and future work
	Introduction
	Conclusions
	Achieved goals
	Problems faced
	Future work

	Bibliography

