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Resumen

Este trabajo se enmarca en la ĺınea de investigación de ‘NLP y Análisis de Sentimientos’ del

Grupo de Sistemas Inteligentes de la ETSIT-UPM. El principal objetivo de este proyecto

es el diseñar y desarrollar un sistema que sea capaz de reconocer emociones a través de las

expresiones faciales.

El proyecto propuesto se divide en tres fases:

• Diseño y desarrollo de un sistema de reconocimiento de emociones faciales utilizando

técnicas de aprendizaje profundo. Para ello se elaborarán diferentes sistemas con

diferentes arquitectura para su posterior comparación y evaluación.

• Diseño y desarrollo de una aplicación local para testear el modelo entrenado anteri-

ormente. Esta aplicación recoge información en tiempo real de la web cam, y utiliza

técnicas de visión artificial para detectar caras presentes en cada frame del v́ıdeo. Una

vez se ha aislado la cara de resto de la imagen, se realiza un procesado y se hace uso

del algoritmo para realizar la predicción de la emoción.

• Implementación de una aplicación en la nube a modo de prueba para detectar las

emociones en tiempo real. En este caso se trata también de una aplicación que

recoge información de la webcam, pero con la peculiaridad de poder ser desplegado

en cualquier plataforma o servidor web, puesto que se ha implementado con NodeJS,

lenguaje ampliamente utilizado en proyectos web.

Palabras clave: Aprendizaje profundo, Redes Neuronales, visión artificial, predicción

de emociones, aplicación web
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Abstract

This project is within the researching line of ‘NLP and Sentiment Analysis’ of the Intelligent

System group of the ETSIT-UPM. The main objective is to design and develop a system

capable of recognizing emotions from facial expressions.

The project is divided into three phases:

• Design and development of a facial emotion recognition system using Deep Learning

techiques. To do so, various models are designed with different architectures, so that

a comparison can be done in order to select the one with the best performance.

• Design and development of a local app in order to test the model previously trained

in a practical way. this app gathers information from the webcam in real time, and

performs computer vision techniques in order to detect different faces presented in

each frame of the video. Once the face has been isolated from the rest of the image,

a preprocessing is done and then the model is used to recognized the emotion.

• Implementation of a cloud-deployable app to detect emotions in real time. As before,

this app also gathers information served by the web cam, but with the aim of being

deployed on the cloud, since it has been developed using NodeJS, a language widely

used in web projects.

Keywords: Deep Learning, Neural Networks, Computer Vision, Emotion pre-

diction, web app
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CHAPTER1
Introduction

This chapter is going to introduce the context of the project, including a brief overview of

all the different parts that will be discussed in the project. It will also break down a series of

objectives to be carried out during the realization of the project. Moreover, it will introduce

the structure of the document with an overview of each chapter.

1



CHAPTER 1. INTRODUCTION

1.1 Context

Technology, nowadays is one of the pillars of industries, in which Digital Transformation

plays a really important role. This transformation based on technology is leading to an

increasing generation of data. Moreover, it can be also seen in society as something in-

dispensable and necessary, such as the increasing tendency on the use and dependency of

mobile phones. Thereby, this massive data must be stored somewhere, and increasingly

more companies are processing this data to obtain further information about their clients

or the company itself. The extra value obtained from from huge amount of data is called

Big Data1. In addition, Big Data techniques are really useful because they help companies

to find answers of questions that they didn’t even know that they had.

Together with Big Data, another technology that is becoming more and more popular

is Artificial Intelligence (AI)2. This term, englobes many techniques and algorithms that

have in common one thing, the cognitive part. This means that a computer is able to learn

from data in order to solve certain problems of many types. This solving in some cases is

also known as predicting. Therefore the principal goal of AI is to create machines that can

solve problems automatically and independently.

Within AI techniques family, there is a term called Deep Learning3, which is a Machine

Learning technique based on Artificial Neural Network (ANN). ANNs are supervised

approaches in which a model is trained with different examples [20]. This means that the

algorithm learns from data. ANNs intend to simulate human being’s brain functionality.

Currently, they are a tendency because they are able to solve many ordinary mathematical

problems such as classification or clustering. After training these models, a testing phase

takes place in order to evaluate the performance, and assure good results will be obtained

when predicting on new data. Meaning by new data, the one that has not been used for

training, and thus, the algorithm that sees for the first time.

Regarding this technological revolution, Robotics have turned into a very popular en-

gineering tool, owing to thanks to this, many type of processes have been automated and

accelerated. Furthermore, as time goes by, is more typical to see, for example, smartphones

with personal assistants, which is nothing but a robot that can learn from your habits and

give you some advices. Therefore, Emotion Analysis is increasing popularity in order

to build services more personalized to each user. Emotion analysis done by a computer is

embedded under the line of research called Affective Computing [35], which is a domain

1https://www.investopedia.com/terms/b/big-data.asp
2https://www.sas.com/en_us/insights/analytics/what-is-artificial-intelligence.

html
3https://www.investopedia.com/terms/d/deep-learning.asp

2

https://www.investopedia.com/terms/b/big-data.asp
https://www.sas.com/en_us/insights/analytics/what-is-artificial-intelligence.html
https://www.sas.com/en_us/insights/analytics/what-is-artificial-intelligence.html
https://www.investopedia.com/terms/d/deep-learning.asp


1.1. CONTEXT

that focuses on user emotions while he interacts with computers. As mentioned before, one

of the principal purposes of this study is the computer’s ability of recognizing, interpreting

and simulating humans state. Picard, the author of Affective Computing [35], believes that

if we want to achieve a natural interaction with computer, we must provide them with the

tools needed to understand us. There are many different ways to retrieve an emotion from

a person, such as using speech recognition or face recognition. This work will be focused on

the second technique. To implement this, a Deep Learning model will be built and trained,

for the purpose to perform emotion predictions from facial expressions. In addition to this

model, an application using video as an input will be developed.

Nevertheless, any of the technologies mentioned above wouldn’t be possible without

an infrastructure capable of processing the data with a certain speed. In this moment, it’s

where the term Cloud (Internet) comes up, and with this distributed applications, allowing

users from different parts of the world to make use of these applications. Hence, Machine

Learning algorithms are normally deployed in the Cloud as a web service. Thus, as a second

part of the project, the application will be deployed in the cloud using Websockets [50].

3



CHAPTER 1. INTRODUCTION

1.2 Project goals

In relation to the previous section , this project pursues several objectives, which are related

to the different technologies/trends already mentioned.

First of all, the implementation of a model capable of predicting emotions from facial

expressions. To accomplish so, different state-of-the-art techniques will be compared in

order to retrieve the one with the best performance. All these techniques are based on the

term Deep Learning, which is nothing but a neural network with several layers. Therefore,

different combinations of layers will be tested so that the best architecture will be used in

further sections of the project.

Secondly, in order to test the model in a real-world scenario, a python app is imple-

mented. This app retrieves real-time images from a laptop webcam, and performs a face

detection follows by the prediction itself. Thus, in this part different techniques will be

handled in parallel, such as, image processing and computer vision [45].

Finally, as the app developed in python is runnable only in a laptop, the need of deploy

this app in the cloud come up. The main reason of that, is to make it accessible from any

type of device. To do so, NodeJS [43] and Docker containers [33] are used.

4



1.3. STRUCTURE OF THIS DOCUMENT

1.3 Structure of this document

This section intends to give an overview of the structure of this document, in order to better

understand each section.

Chapter 2 a state of the art of Sentiment and Emotion Analysis is detailed. Thus, it is

giving the reader the necessary knowledge to fully understand the whole project, and thus

further sections. Therefore, different concepts will be explained in a high level, without going

into many details. However, some mathematical formulations will be added to support the

explanations, so some mathematical previous knowledge is needed. Therefore, It provides

an in-depth summary about some basic types of networks and all the parameters that are

involved in their development.

Chapter 3 provides an overview of all the technologies that will be used on this project.

Moreover, it will describe some resources that will be important. It covers all the technolo-

gies needed, from the programming language used to web tools used to train models,

Chapter 4 shows the overall methodology followed during the project.

Chapter 5 describes all the approaches carried out with the Neural Networks and a

explanation of the advanced techniques that have been used for developing the classifiers.

Moreover, a comparison of the different architectures implemented is done, in order to get

the algorithm with the best performance

In chapter 6, a desktop app in python is explained. The main goal of this app, developed

in Python, is to test the best model chose in previous chapter, with real-world data. In

other words, implement an app which allows to test the model using real-time information

captured by the webcam.

In chapter 7 a web app is implemented and described. The main objective of this app

is to deploy the facial emotion recognition model in the cloud, so that it can be accessible

from every device.

Chapter 8 summarizes the conclusions of each one of the phases.

5



CHAPTER 1. INTRODUCTION

1.4 Methodology

In this chapter the methodology followed to accomplish the project is presented. The order

of the chapters corresponds to the line time and steps of the project. Thus, there are three

main phases: model comparison, elaboration of a local application and the development of

a similar cloud-deployable app.

Figure 1.1 represents the process followed. The first step is the design and implementa-

tion of a Deep Learning model. In this step, four architectures have been developed in

order to try different combinations and achieve the best accuracy. Thus, after the design and

training of these four architecture, a model comparison analysis is done, in order to use the

model with best characteristics in following steps. Concerning the model implementation

phase, some cutting-edge technologies, such as Collaboratory, will be used. Furthermore,

some advances techniques while training will be implemented.

Once the best model has been selected, the next step is to develop a practical application

so that it can be tried with real-time information. Hence, a real-time application to get

users’ emotions from faces expressions will be developed. The language used to develop it

is Python, so that the integration of the model with the application itself can be eased.

Moreover, in order to do some preprocessing in the image and to capture webcam informa-

tion, the library OpenCV [7] is used. The app is developed, and afterwards, submitted to

a set of tests. This tests are entirely carried out by the developer, as it was the final user.

Finally, the next goal is to deploy this application on the cloud. To do so, all the appli-

cation will be entirely developed using NodeJS, and Websockets to perform client-server

communication. The reason why this has been used, is to create a real-time communication.

First of all the app is implemented followed by some user testing. As before, these tests

are entirely carried out by the developer, as it was the final user. After this, the app is

dockerized for deployment.

6
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Figure 1.1: Methodology and project phases
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CHAPTER2
State of Art

This chapter provides the reader with the necessary knowledge to fully understand the whole

project, and thus further sections. Therefore, different concepts are explained in a high level,

without going into many details. However, some mathematical formulations are added to

support the explanations, where previous mathematical knowledge is needed.
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2.1 Emotion Analysis

Human beings emotions play an important role in communications between each other,

because they help us to understand the intentions of the others. The face is an opened

window of our internal emotion, that means that through our face expressions the emotions

can be inferred. This is called non-verbal expression.

Concerning that most important emotions can describe people behaviors, there is no

universal agreement by the researches and scientists. However the work done by Paul Ekman

[16] in the 1960s has still a solid acceptance among this field. The model proposed in that

work considers that there are six basic emotions that can provide universally clear reactions:

Anger, Disgust,Fear, Happiness, Sadness and Surprise. In addition in that research there

were given the facial expressions related to each emotion. These gestures are summarized

in table 2.1.

Emotion Facial expressions

Happiness
characterized by raising the extremes of the mouth and tighten the eye-

lids

Surprise
characterized by arching the eyebrows, open wide the eyes with a

stronger white, and the jaw drops a bit

Anger characterized by lower the eyebrows, press the lips and eyes bulging

Sadness
characterized by moving down the extremes of the mouth, the eyebrows

descending to the inner corners and the eyelids drooping

Disgust
characterized by raising the upper lip, wrinkle the nose bridge, and

raising the cheeks

Fear
characterized raising the upper lip, opening the eyes and stretching the

lips horizontally

Table 2.1: Facial expressions that characterize each emotion

After the first research done, Ekman added new emotions such as contempt, which

nowadays is grouped with the other ones. Moreover, he did further studies and he tried

to give new groups of basic emotions, such as guilt, shame, interest, embarrassment, awe
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and excitement. Finally in [17] he suggested the presence of sixteen positive, or enjoyable

emotions each different from another.

In [15], Ekam exposed the concept of micro expressions. Micro expressions are very

speedy (in a very small fraction of second) involuntary facial expressions that denote a

person’s true emotion made in certain circumstances. Micro expressions are really important

because nobody can hide them, as they are involuntary, and everybody makes them. They

can be a certain key to detect deception or awareness.

Learning these micro expressions can add several insights which can help us to better

understand other people. For instance, when someone is trying to conceals an emotion,

certain facial expressions are flashed in an unknowingly way. Hence, to support the idea

mentioned above, learning them can enhance relationships because you can retrieve the

emotion of other people easily and help you to increase the connection with the other, and

thus, it helps you to develop your capacity of empathy.

2.2 Computer vision

Computer vision is the research field that aims at finding techniques to simulate the human

vision in a computer [45]. This means that enabling a computer perceiving the environment

as humans do. It is not only focused on this simulation, but also processes and provides

useful results based on observation.

As humans, we perceive the three-dimensional structure of the world around us with

apparent ease. Therefore, computer vision tries to develop mathematical techniques for

recovering the three-dimensional shape and appearance of objects in imagery.

The reason of implementing a computer vision technique in this project, is that this

field usually goes together with artificial intelligence, and one of the basics of AI are the

neural nets. For example, in a cutting-edge technology such as robotics, first of all a vision

algorithm is implemented to see what its surrounding it and then applies an algorithm to

perform an appropriate analysis of it to better understand it, and to overcome different

problems.

2.2.1 Face recognition

Face recognition is an object detection approach in which a human face must be detected.

Obtect detection is a field that nowadays is really mature, in which there are plenty of

robust algorithms that perform with high accuracy this object-detection. Regarding face

detection, according to the author Yang[31], there are four methods: knowledge-based

methods, feature invariant approach, template matching method and appearance based

methods.
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Regarding the first technique, the way to accomplish the detection is that the face is

determined by defined rules, which describe a typical face. Usually these rules describe

relations among face features. Yang and Huang [51] used a hierarchical knowledge-based

method to detect faces, in which there were three levels of rules.

The second set of techniques aims at retrieving several structural features that exist even

when external factors affects the image, such as the light or the pose(head rotation). Such

features can be facial features (eyes, nose, etc.), facial texture or skin color. Kin Choong

Yow et al. [53] proposed an algorithm that detects the feature or key points using spatial

filtering techniques.

The third group of techniques compute a correlation of the input image with respect

to several features or standard patterns previously stored which describe the face as a

whole.According to Caifeng Shan et al. [18] face is represented based on statistical local

features, local binary patterns(LBP) for person independent expression recognition. LBP

operator takes a local neighborhood around each pixel, thresholds the pixels of the neigh-

borhood at the value of the central pixel and uses the resulting binary valued image patch

as a local image descriptor.

Finally in appearance-based methods the models are learned from a set of training

images and the features must be learning during the training process.

In this project the technique that will be used is the one proposed by Paul Viola and

Michael Jones in their paper [49]. In this paper they propose a general object detection based

on Haar feature-based cascade classifiers. The Haar Features are the ones that all human

faces have in common such as the eye region is darker than the upper-cheeks. Nevertheless,

the comparison done at one time with all these features is computational inefficient. Hence,

the Cascade term comes up, which aims at concatenating different stages of classifiers and

apply one-by-one in the input image. Finally the outcome is a detector with more than

6000 features with 38 stages.

2.2.2 Facial Emotion Recognition

The goal of human emotion recognition is to automatically classify user’s temporal emo-

tional state basing on some input data. Automatic facial emotion recognition (FER) is an

important field in Computer Vision, and the techniques to accomplish that has increased

over the last few years with the increase of artificial intelligent techniques.

As a conventional facial emotion recognition, we can divide the techniques into three

groups [30] based on the extracted features: geometric features, appearance features and

hybrid. Geometric-based technique finds a set of representative features of geometric form

to represent an object by collecting geometric features from images. In this technique, the
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shape of the face and its components is described and emotional data is extracted from

motion of facial muscles. Otherwise, appearance based extraction describes the texture of

the face caused by expression, and extracts emotional data from skin changes. For hybrid

features, some approaches have combined geometric and appearance features to complement

the weaknesses of the two approaches and provide even better results in certain cases. The

approaches mentioned above, especially, the apearance-based ones make use of Machine

Learning techniques to perform classification tasks such as Support Vector Machines (SVM)

[12]. Machine Learning tools are nothing but mathematical algorithms that use data to

learn from and to predict new data from the input one. They are characterized, by being

different as traditional static algorithms used in computations. Modern approaches make

use of cutting-edge technologies such as the ones named as Deep Learning techniques.

This set of techniques are commonly based on ANNs on conform the basis of the Artificial

Intelligence. Thereby, Deep Learning tries to overcome new challenges of tedious feature

engineering task. In the following chapters these techniques are explained in more details.

2.3 Neural Networks

Neural networks [20] are modeled after biological neural networks and attempt to allow

computers to learn in a similar manner to humans: reinforcement learning.

The human brain has interconnected neurons with dendrites that receive inputs, and

then based on those inputs, produce an electrical signal output through the axon. There

are problems that are difficult for humans but easy for computers (e.g. calculating large

arithmetic problems). Then there are problems easy for humans, but difficult for computers

(e.g. recognizing a picture of a person from the side). Therefore, Neural Networks attempt

to solve problems that would normally be easy for humans but hard for computers.

2.3.1 Single perceptron

Before going into details, the most important model of Neural Nets is explained: the per-

ceptron. It was the first algorithmically described neural network and his inventor was

Rosenblatt who made a first approach of it in a paper published in 1958 [39].

The perceptron is the simplest form of a neural network used for the binary classifica-

tion of patterns said to be linearly separable (i.e., patterns can be easily separate by an

hyperplane). Binary classifiers are functions that can decide whether an input, represented

by a vector of numbers, belongs to some specific class or not. Basically, it consists of a

single neuron with adjustable weights and bias. Rosenblatt’s perceptron is built around a

nonlinear neuron, namely, the McCulloch &Pitts model of a neuron. The summing node of

the neural model computes a linear combination of the inputs applied to its weights, as well
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Figure 2.1: Signal-flow graph of the perceptron

as incorporates an externally applied bias. The resulting sum, that is, the induced local

field, is applied to an activation function. This is depicted in Figure 2.1.

The activation unit is provided by eq. 2.1, where we redefine x = [1, X1, ..., Xp]
T as an

augmented input vector with x0 = 1 in order to include the bias term (w0) in the weight

vector: w = [w0, w1, ..., wp]
T .

y = F [

p∑
i=1

wixi + w0] = F [

p∑
i=1

wixi] = F [W TX] (2.1)

The connection weights are adjusted globally in order to optimize the performances of

the network through a cost function.

2.3.2 Activation functions

The activation function takes the decision of whether or not to pass the signal and transform

that signal to something with bounds. This subsection explains the different activation

functions that are related to the development of the deep learning analysis.

2.3.2.1 Sigmoid function

It consists in a special case of the Logistic Activation Function. Basically, it transforms

the input in an output with bounds between 0 and 1. The mathematical equation is the

following [20]:

S(x) =
1

1 + exp[−(W TX)]
(2.2)

Sigmoids are one of the most widely used activations functions. However, they have

vanishing gradients, which could affect at the learning process of the neural network. The

representation of a sigmoid function can be appreciated in Figure 2.2. The order axis (Y)

tends to respond very less to changes in the abscissas axis (X). This makes the neuron to

enter in a saturated regime, making the network to refuse learning further or slowing the
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Figure 2.2: Sigmoid Figure 2.3: Tanh Figure 2.4: ReLu

process. Despite of this problem, there are ways to work around this problem and sigmoid

is useful in classification tasks.

2.3.2.2 Tanh function

Tanh function is also known as the hyperbolic tangent activation function [20]. It has two

main differences with the sigmoid function, as it can be seen in the image. The first one,

it is the bounds. The tanh transform the outputs with bounds between -1 and 1. The

results is that the representation is now centered at zero. The negative inputs considered

as strongly negative, zero input values mapped near zero, and the positive inputs regarded

as positive.

This function can be written as two sigmoid functions put togethers. The vanishing

gradient is also present in this activation function.

2.3.2.3 ReLU function

ReLU function is also known as rectified linear unit activation function [20]. This functions

gives the input as output if it is positive and 0 otherwise. The ReLu function is shown in

Figure 2.4. This activation makes the network converge much faster. It does not saturate

which means it is resistant to the vanishing gradient problem at least in the positive region.

Due to the horizontal line in ReLu (for negative X), the gradient can go towards 0. For

activations in that region of ReLu, gradient will be 0 because of which the weights will not

get adjusted during descent. That means, those neurons which go into that state will stop

responding to variations in error/ input (simply because gradient is 0, nothing changes).

2.3.2.4 Softmax function

Sigmoid, tanh, ReLUs are good activation functions for the neural networks. However,

when you want to deal with classification problems, they seem to have some inconveniences.

The softmax [20] (also called multinomial logistic) functions transform the input into an

output with bounds between 0 and 1, just like a sigmoid function. Moreover, Softmax
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functions divide each output such that the total sum must be equal to 1. This output is

equivalent to a categorical probability distribution. When using a multilayer neural network

for classification the output layer (output units) provides a degree of membership to each

class, then a multinomial logistic is used just as for the logistic regression. Mathematically,

the function is the following:

S(x) =
exp(W T

k X)∑q
j=1W

T
j X

(2.3)

2.3.3 Loss functions

In the previous section 2.3.4.2 we have briefly mentioned the concept of cost function which

is a way to measure the accuracy of our trained model. Thus, it is also an important

hyperparameter that we should establish while training a model. The accuracy represents

the percentage of predictions computed properly with respect to a known output. There

are several cost functions available, such as [20]:

• Quadratic cost also known as sum squared error is the most common one, for example,

in Least Square techniques.

C =
(y − y′)2

2
(2.4)

where y′ is the output of the perceptron.

• Cross-entropy cost expression is

C = − 1

n

∑
x

[y ln y′ + (1− y) ln(1− y′)] (2.5)

where n is the total number of samples in the training data. The cross-entropy is

positive and tends toward zero as the neuron gets better at computing the desired

output, y, for all training inputs, x. A variant of cross-entropy is categorical cross-

entropy which is used for multi-class classification where each example belongs to a

single class.

2.3.4 Artificial Neural Nets

A neural network, as said before, is a mathematic tool that models, at a very low level,

the functionality of the neurons in the brain, so it comes from a biological-inspiration [20].

However, unlike a biological brain where any neuron is connected to any other neuron by

a physical distance, these ANNs have discrete layers, connections, and directions of data

propagation. Therefore ANNs are mainly a link of many perceptrons together in layers,

and are characterized by:
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Figure 2.5: Architectural graph of a MLP with one hidden layer

• The units (artificial neurons) and their activation function, in terms of the connection

weights. The connection weights are adjusted globally through a cost function in order

to optimize the performances of the network.

• Its structure, architecture, or topology

• A cost function to be optimized in function of the connection weights

• An optimization or training algorithm to optimize the cost function in terms of the

connection weights. Thus, to estimate the connection weights based on the training

set

2.3.4.1 Structure

An example of the structure of the multilayer ANN is shown in Figure 2.5. The inputs to the

network correspond to the values of the features measured for each training sample. Inputs

are fed simultaneously into the units making up the input layer. They are then weighted

and fed simultaneously to a hidden layer. The number of hidden layers is arbitrary, although

usually only one, as in the example. Finally, the weighted outputs of the last hidden layer

are input to units making up the output layer which emits the network’s prediction

From a statistical point of view, artificial neural networks perform a nonlinear regression

from the input into the output. Given enough hidden units and enough training samples,

they can closely approximate any function.

When there are L layers (more precisely, (L + 1) layers), Layer 0 corresponds to the

input units, Layer 1 corresponds to the first hidden layer and Layer L corresponds to the

output units. The information propagates from the input units (layer 0) to the output units

(layer L). In equation 2.6, we can see the mathematical expression of the activation of the

jth unit of layer l+1 (y
(l+1)
j (x)), with respect to activation of the ith unit of layer l (y

(l)
i (x))

through the connection weight between unit i and j (w
(l+1)
ij ).
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Figure 2.6: Some notations about connections between two layers

y
(l+1)
j (x) = F [

p(l)∑
i=1

w
(l+1)
ij y

(l)
i (x)] (2.6)

2.3.4.2 Training algorithm

The estimation of the weights is performed thanks to a gradient-based iterative algorithm. It

corresponds to the fitting, training or learning algorithm which will try to optimize the cost

function in terms of the weights. It is usually called the back-propagation algorithm.

The training proceeds in two phases [20]:

• In the forward phase, the synaptic weights of the network are fixed and the input

signal is propagated through the network, layer by layer, until it reaches the output.

Thus, in this phase, changes are confined to the activation potentials and outputs of

the neurons in the network.

• In the backward phase, an error signal is produced by comparing the output of the

network with a desired response. The resulting error signal is propagated through

the network, again layer by layer, but this time the propagation is performed in the

backward direction. In this second phase, successive adjustments are made to the

weights.

Before going into some mathematical details, some notation is be given. In Figure 2.6 a

graphic representation of those notations is given to further understand the brief mathe-

matical explanation, where a
(l)
i =

∑
j w

(l)
ij z

(l−1)
j . Furthermore, the error criterions are the

ones explained in section 2.3.3.

Finally, a distinction of the derivative of the error respect to the output of inner/hidden

units and respect to the output of the last layer. The main difference is that, for output

units the derivative of the error is proportional to the derivative of the activation function

within the layer, whereas for hidden units this derivative is expressed as a combination of

errors in the next layer.

From the mathematical viewpoint we can divide this algorithm in six steps:
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• Apply an input vector xk and propagate it through the network to evaluate all acti-

vations z
(l)
j and neuron outputs a

(l)
j

• Propagate the activations forward from the input layer to the output layer and com-

pute the activations of the output layer

• Evaluate error terms δ
(o)
i in output layer. This is nothing but the derivative of each

error with respect to the each output of each neuron of the last layer, the output layer.

• Back-propagate error terms δ
(l)
i to find error terms δ

(l−1)
i

• Evaluate all the derivatives δE

δw
(l)
ij

= δ
(l)
i z

(l−1)
j . In other words, compute the gradient

for each observation k and cumulate the gradients.

• Adjust weights according to derivatives and a gradient descent scheme

However, the cost function can have many local maxima, so that the algorithm will only

find a local maximum. Moreover, when starting with different initial values for the weights,

we obtain different results.

2.3.4.3 Weight adjustment

Regarding the weight adjustment done during the backpropagation algorithm, we need some

techniques to perform it. These techniques are also known as Optimizers.

Optimizers are about minimizing cost functions, and the most important ones are:

• Gradient descent (GD) [20] is the most common one. It searches the minima in a grad-

ual way. It is also known as a first-order method and its more common mathematical

expression is the following:

w(t+ 1) = w(t)− αδE
δw

(2.7)

where α is the learning rule. It is very usual to use an adaptive learning rule instead

of fixing the same for all the steps. Even though this algorithm is the basic one, there

are some problems. The main problem is its slow convergence to a minimum, due to

the fact that they perform the Gradient of the whole dataset at once. Apart from the

slow convergence, there are some problems related to compatibility. For example, if

new data is added to the original dataset, a new training of all the weights is needed.

• SGD which is Stochastic gradient descent optimizer. This scheme is a variant of GD

which aims to apply the gradient descent to different splittings of the original data

[20]. This algorithm is much faster.
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• RMSprop: during the learning process the magnitude of the gradient of some weights

can differ a lot from others. To address this variation, applying the gradient on the

full dataset, Geoff Hinton [23] proposed to take only the sign of the gradient together

with the adaptation of the step size of each weight separately.

• Adagrad [21] enables using an adaptive learning rate. This optimizer addresses the

problem of struggling with the learning rate in SDG. The learning rate is adapted

component-wise, and for each parameter we store sum of squares oh the historical

component-wise gradient. Considering G as the historical gradient Gk = Gk−1 +

∇J(θk−1)2, and θ as each parameter, the general expression of the optimizer is:

θk = θk−1 −
α

sqrt(Gk−1
.∇J(θk−1) (2.8)

Therefore Adagrad modifies the general learning rate α at each time step t for every

parameter θi based on the past gradients that have been computed for θi.

• Adam, Adaptive Moment Estimation [29], can be seen as a generalization of Adagrad,

in which it uses momentum estimations to update the rule. That means that in

addition to storing the average of past squared gradients, it also keeps the average of

past gradients similar to momentum.

For this project Adam is chosen because it is straightforward, efficient and only consume

little memory.

2.4 Deep Learning

Deep Learning can be considered as a powerful set of techniques for learning in neural

networks, which currently provides the best solution in image and speech recognition as well

as language processing, main trends and crucial issues for the years to come in technology.

A Deep Neural Network (DNN) is nothing but a ANN with multiple hidden layers.

2.4.1 Convolutional Neural Networks

CNNs [48] is a type of ANN which make the explicit assumption that the inputs are images

and try to take advantage of the spatial structure. Therefore, they are very suitable for

image recognition or classification. There are different types of layers in a CNN.
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2.4.1.1 Convolutional layer

This type of layers are the core of the ConvNets and will perform the highest number of

operations. The main operator of the CNN is the convolution. This aims at retrieving or

extracting some features from the input image. As metioned before, the principal aspect

of the convolution is the preservance of the spatial relationships between pixels by learning

those image features using small squares of input data. Therefore, an important aspect in

these architectures are the filters or kernels to perform the convolution, which are smaller

matrixes.

In images the convolution is performed by sliding the kernel through the original image,

and compute the element wise multiplication obtaining another matrix. The resultant

matrix of this dot product is called Convolved Feature or Feature Map. In images this

convolution is widely used to Edge detection, Sharpen and blur depending on the filter used

in each case.

Regarding the number of neurons of the output matrix there are three hyperparameters

that control the size [48].

• The depth which corresponds to the number of filters we use for the convolution

operation. In future sections this number is given for the architectures proposed for

this project. Nevertheless, commonly 64 filters is used.

• The stride is the number of pixels by which we slide our filter matrix over the input

matrix. Therefore, when this value is one we will move the filter one pixel at a time.

For this project value 1 is mostly used.

• Zero-padding is the size of the padding that is applied in some cases around the

border, to perform properly the convolution. In addition, this parameter will allow us

to control the size of the output volumes. If the zero-padding technique is implemented

all the elements that would fall outside of the matrix are taken to be zero. Adding this

padding is also called wide convolution, and not using it is called narrow convolution.

In practice, when we train a CNN the convolution is automatically done, but different

parameters must be specified. Some of the most important are the number of filter and the

filter size.

Regarding the connections between neurons, in these architectures each neuron will be

connected to only a local region of the input volume. This local region is a hyperparameter

called receptive field which is equal to the filter size.
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Figure 2.7: An example of a max pooling technique extracted from [48]

2.4.1.2 Pooling Layers

This type of layers is usually implemented just after the convolutional one. It conducts a

downsampling, to reduce the dimensionality of the feature maps retaining the most impor-

tant information. There are different types of pooling techniques such as max or average. A

pooling function replaces the output of the net at a certain location with a with a summary

statistic of the nearby outputs [19]. The most common one is the max, which takes the

maximum of the results of each filter. For a ilustrated explanation, see Figure 2.7.

The principal goal of this type of layers is the progressively reduction of the spatial size

of the input representation, and thus making them more manageable. In addition, it helps

to make the matrix approximately translation-invariant of the input. This means that if

the input suffered a small translation(shifting) and/or rotation the pooled output does not

change.

Regarding the backpropagation algorithm to train ANN, in the pooling layers using max

function only the gradient of the input that had highest value will be forwarding. Hence, a

very common practice is to keep track of the index of the max activation, in order to route

the gradient efficiently.

Due to the fact that this layer summarizes the output value over a whole neighborhood,

there is the possibility of using less pooling units than detector ones. The way that this is

addressed is by reporting summary statistics for pooling regions spaced k pixels instead of

1 pixel apart. Therefore they are very suitable to avoid overfitting.

2.4.1.3 Fully connected layers

These type of layers are the ones of the MLP already mentioned in chapter 2.3.4.That means

that, every neuron in the previous layer is connected to every neuron on the next one. The

activation function typically used in these layers is the Softmax, which as mentioned, widely

used for classification.

As a summary of this chapter, the CNN structure can be divided into two parts: Con-

volution + Pooling layers that act as Feature Extractors of the input image and the Fully
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Figure 2.8: An example of a CNN architecture extracted from [48]

connected layer performs the classification as such. In Figure 2.8 the general architecture

of a CNN is ilustrated.
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CHAPTER3
Enabling Technolgies

This chapter offers a brief review of the main technologies that have made possible this

project, as well as some of the related published works.
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3.1 Machine Learning Technologies

3.1.1 TensorFlow

TensorFlow (TF) [1] is an open source software library for numerical computation using

data flow graphs. TensorFlow originated as an internal library that Google developers used

to build models in-house, and we expect additional functionality to be added to the open

source version as they are tested and vetted in the internal flavor. It was released on the last

semester of 2015.It reached version 1.0 in February 2017, continuing with a rapid increase,

reaching more than 21 thousand commits.

The main characteristic of TF is the flexibility due to the fact that it is a cross-platform.

in other words, it can be run on nearly every device, ranging from mobile devices such

as phones and tablets up to large-scale distributed systems of hundreds of machines and

thousands of computational devices. It is executed over GPU or CPU, and even TPUs

(tensor processing units) which are a specialized hardware.

There are many APIs already included in TensorFlow which ease the understanding of

the behavior of the Neural Networks implemented. One important tool, is TensorBoard,

which are a suite of visualization tools in order to make easier the understanding, debugging

and to better optimize TensorFlow graphs. Moreover, different metrics can be plot in order

to show additional information. Another important issue about this tool, is the display of

this metrics in real time.

Nowadays, it is one of the most popular libraries to develop Deep Learning algorithms,

due to two main reasons: the ease with which this models can be developed using Python

and the speed of doing this; and as it has been developed by Google, there is a lot of

documentation available.

3.1.2 Keras

Keras [10] is a high-level neural networks API, written in Python and capable of running

on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast

experimentation. Being able to go from idea to result with the least possible delay is key

to doing good research. The main properties of Keras are:

• Easy-to-use: Keras is an API designed for human beings, not machines. Keras follows

best practices for reducing cognitive load. It offers consistent and simple APIs, it

minimizes the number of user actions required for common use cases, and it provides

clear and actionable feedback upon user error. This ease of use does not come at

the cost of reduced flexibility: because Keras integrates with lower-level deep learning

languages (in particular TensorFlow).
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• Modularity: every Deep Learning model is composed of different elements such as, lay-

ers, activation functions, costs functions optimizers or regularization schemes. Thus,

Keras offers these elements as modules, in order to use them as required. The user

can combine these elements to create models with slight differences, changing only

one of these modules, resulting in a very simple process.

• Concerning the modularity, new modules can be created and added seamlessly .

Therefore, it is easily extensible.

• Finally, as Keras core is written in Python, all the models will be implemented with

this language,which is compact and easier to debug,

As Keras is usually over TensorFlow, using different functions you can integrate your

model with your TensorFlow workflow.

The main idea is to use the Keras API with Tensorflow as backend, to implement the

Deep Learning models.

3.1.3 Colaboratory

Collaboratory1 is a Google research project created for dissemination and training on ma-

chine learning. It is a Jupyter Notebook environment that does not require setting up and

runs completely in the cloud.

Collaboratory notebooks are stored in Google Drive, and you can share them as you

would with spreadsheets or Google Docs. Therefore, it is a very suitable tool while working

in a project with other developers, as everybody can be working on the same document.

As Google Docs, it offers an online tool to develop your project everywhere, without any

further installation.As every Google tool, is a free service.

Even though the main characteristic of Collab is the cloud execution , it also allows you

to connect to a Jupyter runtime on local device.

In this platform, you can run programs written either on Python2 or Python3. Changing

this language whenever is required. As mentioned before any complex installation is needed,

as it allows you to run your TensorFlow code in the browser. Furthermore, it is also included

many useful Python libraries, such as matplotlib to simplify the visualization of the data.

Other characteristics is that you can use a free GPU (k80) to train faster your models.

In addition, you can upload code from GitHub or from your local computer.

To conclude, this is a new and very interested tool to use to train Deep Learning models.

This models usually consume a lot of training time and resources. Therefore, this can be

1https://colab.research.google.com/notebooks/welcome.ipynb
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shortcut with this tool, as you can train a complex model in your browser in less than an

hour, whereas in a normal device it will spend more than 20 hours.

3.2 OpenCV

OpenCV [7] (Open Source Computer Vision Library) is released under a BSD license and

hence it’s free for both academic and commercial use. It has C++, Python and Java in-

terfaces and supports Windows, Linux, Mac OS, iOS and Android This library helped the

development of Computer Vision field due to the fact there are more than 2500 optimized

algorithms, which includes both classic and state-of-the-art computer vision and machine

learning algorithms [7]. Therefore, it was an important milestone because thanks to this

complex applications, focused for instance on detecting objects , can be implemented nowa-

days with few lines of code, and with a wide option of programming languages.

The first version was released in 1999 by Intel, and after several releases nowadays

there are more than 47 thousand people collaborating, and the number of downloads since

the very beginning exceeds 14 million. Moreover, the library is widely used in companies,

research groups and in government institutions. In spite of being created by Intel, currently

important technological companies such as Google, Yahoo, Microsoft or IBM are helping to

the improvement of this library.

3.3 NodeJS

This section of the report delves into one of the most important Frameworks in web. NodeJS

[43] is the framework used to implement the logic of the application, on the server side. One

of its peculiarities is the use of Javascript2 as the programming language to develop the

application.

Javascript is a scripting language. At the beginning its main use was to develop small

portions of code without a clear structure, called scripts. These scripts executed some rou-

tines, with the purpose of providing dynamism to the first webpages, implemented entirely

with static HTML. Therefore, it was only use to develop webpages, but in 2008 Google

release the first Google Chrome, in which there was a Javascript compiler. From that mo-

ment it was possible to execute Javascript source code, in any other environment that was

not a web browser. Ryan Dahl, a programmer, together with his development team created

NodeJS after this. In 2009 this framework was presented.

There are two main issues to highlight in NodeJS, as one of he best technologies with

Javascript on server side:

2https://www.javascript.com/
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• It solves the eternal problematic of the Javascript language, since this is a scripting

language. All scripting language can not be grouped into blocks, modules, or portions

of code that can be properly organized, and can be adjusted to a specific SW archi-

tecture. NodeJS allows to make small code modules that can collaborate with each

other, in order to organize the source code according to their specialization or other

criteria.

• Possibility of expanding the standard module package of NodeJS, with modules imple-

mented by third parties, from companies to individuals. Since NodeJS is a framework,

it saves the need to implement some basic functionalities in any web application, with

the help of provided modules . If it is also possible to add more modules to the set of

existing ones, in a simple way and without extra costs.

3.4 Express

Express 3 is a NodeJS module implemented by third parties. Is one of the principals

modules to develop web projects, providing a large API, with multiple functionalities already

implemented. It is such a powerful tool that sometimes nowadays is frequently used as an

independent framework specialized in web environments.

It provides many efficient functionalities required in ever web project. All the web

connections are done through HTTP protocol. An important characteristic of Express is

that it can intercept the requests made by an user through the browser, during the execution

on the server. This is also capable of processing the request, assigning a function so that it

carries out the corresponding task. Once a HTPP request is done, Express review the URL

associated to it and its parameters

The integration with NodeJS is so simple. Firstly, the dependency must be specified

in the package.json4 file and then download the source code of this module using npm5.

npm iss the world’s largest software registry, containing over 600000 packages. Package.json

is the best way to manage locally installed npm packages since it lists the packages that

your project depends on and allows us to specify the versions of a package that your project

can use.

3https://expressjs.com/
4https://docs.npmjs.com/getting-started/using-a-package.json
5https://docs.npmjs.com/getting-started/what-is-npm
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3.5 Websockets

One of the main functionalities within NodeJS are websockets [50]. A websocket is nothing

but a way of client-server communication over a unique TCP socket. Before the release of

such an appealing technique, there was the technology called Ajax, which was the HTTP’s

basic request/response mechanism. The main difference between them, is that with wesocket

some non-bloquing and bidirectional communication threads can be created.

Initially, the programming language adopted to implement them was C, due to it is the

most efficient language to perform some complex algorithms. After the release of the V8

Google’s compiler for Javascript, the NodeJS creator decided that Javascript could be the

language to implement these websocket.

The prior HTTP request/response mechanism had some limitations such as constant

opening and closing of connections, which hindered the creation of real time applications.

Nevertheless, as webSockets are a full-duplex communication between server and client,

they are really suitable for this type of applications.

The communication protocol via websocket is represented in Figure 3.1. To initiate the

communication via webscoket, first of all, the connection must be established through a

handshake between the server and the client, and at this moment the socket is created.

From that point onwards, each side can modify the state or information of the other side.

That means that, both the server and client can simultaneously send new data without the

other asking for it.

As in traditional way of client-server communication, the client can modify server re-

sources at data level. Javascript is very suitable for this type of communication due to

the fact that it is event-oriented. There are some events in client side, with which it is

established the communication with the server and transfer data to it. Furthermore, in the

server side there are other events in order to transfer them to the server as well.

Figure 3.1: Websocket connection protocol seen in [50]
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3.6 Docker

Docker [33] is a technology that is gaining popularity in IT field and it is considered one

of the fastest growing technologies in the recent software history. Docker is nothing but a

platform that allow developers to easily pack, distribute and manage apps within containers.

In other words, It is an open-source project that automates the deployment of applications

inside software containers.

A container is a standard unit of software that packages up code and all its depen-

dencies so the application runs quickly and reliably from one computing environment to

another. Furthermore, containers isolate the software from its environment ensuring that it

works uniformly. The functional architecture of containers is shown in Figure 3.2. In this

image is represented the traditional way of virtualize an app using virtual machines (VMs)

and with containers.

As can be seen in traditional way of virtualization, a limitation is the kernel resource

duplication. This is due to the fact each virtual machines needs to have an operating

system installed. In other words, an entire guest operation system with its own memory

management, device drivers, etc. Nevertheless, with containers this problem disappears

and a cost-efficiency is achieved, as this does not create an entire virtual operating system,

packing up only the required components inside the container with the application. So

containers consume less CPU, RAM and storage space. Meaning that we can have more

containers running on one physical machine than VMs.

Another limitation of virtual machines is that the application portability is not guar-

anteed, but with containers this portability is assured, because containers are essentially

independent self-sufficient application bundles, they can be run across machines without

compatibility issues.

In addition, another advantage of using a container-based virtualization is the runtime

isolation. For instance, two applications that need two different libraries or just two different

versions of the same library, each app can be run in a different container. Concerning this

runtime isolation, with Docker a fast deployment is achieved. This is due to the fact that

it creates a container for every process and does not boot an OS. Data can be created and

destroyed without worry that the cost to bring it up again would be higher than what is

affordable.

Continuing with concepts of Docker the term of images comes out. Images are read only

templates used to create containers. Images are created with the docker build command,

either by us or by other docker users.
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Figure 3.2: Comparison between hypervisor-based and container-based virtualization [33]
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CHAPTER4
Deep learning Model for Emotion Analysis

In this chapter a description of the steps followed to train the different models is detailed.

First of all different Deep Learning architectures are presented, followed by an experimen-

tation section.
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4.1 Introduction

In this chapter all the process followed to develop a Deep Learning model is explained.

The very first step is to define the architecture of the model, meaning by architecture,

the combination and number of layers explained in section 2.4.1. Four architectures are

detailed.

Secondly an experimentation phase is carried out. The first step to perform a test is the

setting-up of the hyperparameters that define each architecture. This is explained in section

4.3.1. The second step is the choice of the dataset used to train the model (section 4.3.2).

Thirdly, in section 4.3.3, a model selection is done in order to retrieve the model with the

best trade-off between accuracy and complexity. Finally, in section 4.3.4 a confusion matrix

of the selected model is given, in order to better understand the behavior of this model.

4.2 Architectures

In this chapter, the architecture of four networks is detailed. It is important to note that

there is no specific formula to building a neural network that would guarantee to work

well. Different problems would require different network architecture and a lot of trail and

errors to produce desirable validation accuracy. This is the reason why neural nets are

often perceived as black box algorithms. Therefore, this approach of trial-and-error will be

adopted an different combinations will be tested. As mentioned in previous chapters, the

library Keras upon Tensorflow has been used to implement all the models.

4.2.1 First architecture

This architecture is inspired in a GitHub repository1. The main idea behind this architecture

is to introduce as much convolutional layers as possible without loosing information or

leading to overfitting, so that several feature maps can be obtained that describe thoroughly

the main points of the face for each emotion. Thus, the model will learn automatically what

was explained by Ekman in [16].

The combination of layers is illustrated in Figure 4.1, and basically consist of : 3 sequen-

tial convolutional layers with 32 filters of size 3x3; a pooling layer using the max function

to pool; 3 sequential convolutional layers of 64 filters of 3x3; a pooling layer using the max

function to pool; 3 sequential convolutional layers of 128 filters of 3x3; a pooling layer using

the max function to pool; a Fully Connected layer of 64 units with a dropout of 20% ; a

Fully Connected layer of 64 units with a dropout of 20% and finally a Fully Connected layer

1https://github.com/JostineHo/mememoji
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with Softmax activation function. In addition, all the layers use a ReLu activation function,

except the last one, which is the one that performs the classification itself.

Figure 4.1: First CNN architecture

4.2.2 Second architecture

In this case, a smaller structure was chosen. The architecture is proposed in [13], and this

CNN is designed with some modification on LeNet Architecture. The main difference with

respect to the previous one is the size, and thus the number of trainable parameters. It

consists of 8-layer CNN with three convolutional layers, three pooling layers, and two fully

connected layers. The activation function used was ReLu for all the layers except the last

one which was a Softmax.

Figure 4.2: Second CNN architecture

4.2.3 Third architecture

As suggested in [37], this architecture is a CNN with a fixed size of five convolutional

layers: 64 filters of 5x5, 64 filters 3x3, 64 filters 3x3, 128 filters 3x3 and 128 filters 3x3.

After this convolutions, two fully connected layers of 1024 units, each of them followed by

a dropout of 20%. All these layers have a ReLu activation. Finally the softmax layer is
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implemented. This is represented in Figure 4.3. The difference with respect to the first and

second architecture is the size. This architecture has five convolutional layers, instead of 9

in the first one, and 8 in the second one. The reason to do so, is to try different combinations

of different types of layers looking for the best performance, together with less parameters.

Figure 4.3: Third CNN architecture

4.2.4 Fourth architecture

In this architecture different implementation techniques were carried out. The reason behind

is the poor accuracy obtained with previous architectures, which will be explained in future

sections, and less trainable parameters, enhancing the speed performance. Therefore, some

innovations were done as proposed in [36] which was inspired in Xception architecture [11].

First of all, is the concept of residual modules. Residual modules is a technique to

ease the training of networks, and they modify the desired mapping between two subsequent

layers, so that the learned features become the difference of the original feature map and

the desired features[38]. Consequently, the desired features H(x) are modified in order to

solve an easier learning problem F(X) such that:

H(x) = F (x) + x (4.1)

A graphical representation of this technique is given in Figure 4.4 , so that the reader

can fully understand the implemented network.

Figure 4.4: A representation of the residual modules technique extracted from [38]
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Secondly, depth-wise separable convolution which is a form of factorized convo-

lutions which factorize a standard convolution into a depthwise convolution and a 1 x 1

convolution called a pointwise convolution. Therefore, there are two main layers in each

convolution, which aim to to separate the spatial cross-correlations from the channel cross-

correlations. Depthwise convolutions are used to apply a single filter per each input channel

(input depth). Pointwise convolution, a simple 1 x 1 convolution, is then used to create a

linear combination of the output of the depthwise layer [3]. In spite of they are extremely

efficient compare to standard convolutions, it does not combine the filtered channels to

create new features. That’s where the new layer comes up, the point-wise layer is used to

compute a linear combination of the outputs of the depth-wise convolution. In a nutshell,

depth-wise separable convolutions reduces the computation with respect to the standard

convolutions, so that the training phase is faster.

Thirdly, as the training process with previous network was notoriously hard and thus

saturated with a nonlinearities, also known as internal covariate shift, a solution found is

normalizing the inputs of the layers. This is called Batch-normalization [26], and it also

acts as a regularizer avoiding in certain cases the use of dropouts. This technique performs

an easy operation which is applied to activation x over a mini-batch, as shown in eq. 4.2.

The term µB refers to the mini-batch mean, σ2 mini-batch variance and ε is a constant

added to the mini-batch variance for numerical stability.

x′i =
xi − µB√
σ2 + ε

(4.2)

Finally the concept of regularization applied in some layers. Regularizers aim at gener-

alize the behaviour of the net. Specifically in this architecture, together with other already

mentioned, l2-regularization (aka weight decay) will be implemented in some layers. The

idea of L2 regularization is to add an extra term to the cost function, called the regulariza-

tion term. As an example, using the cross-entropy function seen in 2.3.3 the generalization

term is added as follows:

C = − 1

n

∑
x

[y ln y′ + (1− y) ln(1− y′)] +
λ

2n

∑
w

w2 (4.3)

The first term corresponds to the function itself, and the second one is the term, in

which the sum of the squares of all the weights in the network is done, scaled by a factor,

where λ is the regularization parameter. In this case the scale factor used is 0.01 .

Our final architecture, as shown in Figure 4.5 is a fully-convolutional neural network

consisting of 2 convolutional layers of 8 features. ReLu activation, 3x3 with a kernel regu-

larizer, followed by a batch normalization. Then there are four modules in which a residual

is implemented (convolutional layer, 1x1, followed by a batch normalization) and added
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Figure 4.5: Fourth CNN architecture

to the separable convolutional layer, 3x3 with kernel regularization, followed by a batch

normalization as well. The size of these convolutional kernels is increasing in each module,

starting in 16 and ending in 128. Finally the classification itself is carried out through a

convolutional layer with the size equal to the number of emotions to be predicted, followed

by a Global average pooling layer with Softmax activation.
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4.3 Experimentation

4.3.1 Setting-up

Some hyperparameters must be defined in advance to train a model using Keras. The main

reason behind this selection is to avoid overffitng. This term means that the model predicts

properly on training data, but on new data the performance decreases considerably. This

is one of the main problems in ANN, and especially in Deep Learning architectures. This

is due to a high number of free parameters that can lead to a final unexpected solution. As

explained in section 2.3, these parameters are:

First of all, Batch Size defines number of samples that are going to be propagated

through the network. A batch is a set of N samples, being a sample one element of a

dataset. The samples in a batch are processed independently, in parallel. If training, a

batch results in only one update to the model. On the one hand, some advantages of using

batch-size is that it requires less memory to train. this is due to the fact that, using less

number of samples rather than using the whole dataset, consumes less resources. This can be

a big issue while trying to train the model in a computer with weak resources, such as local

computer. Furtermore, another advantage is that the training phase of the network takes

less time, as all the weights are updated after each propagation. Therefore, if all the training

samples are used the weights will be fixed only once. Moreover, as stated in [46], it has

been observed in practice, that when using a larger batch there is a significant degradation

in the quality of the model, as measured by its ability to generalize. To support this idea

they tested different models using different sizes and they conclude that using large-batch

methods tend to converge to sharp minimizers, and thus to poorer generalization. In other

words, the model will be overfitted.

Nevertheless, there are earlier researchers which state that in some cases is not useful

to use small Batch size to decrease the overfitting. For instance, in [52] some researchers

from Google explained some findings which enabled the efficient use of vast batch sizes,

significantly reducing the number of parameter updatings required to train a model. Hence,

in this project different batch sizes (32, 64, 80,128) will be used for each architecture, to

compare the final accuracy obtained.

Secondly, another parameter that must be specified is the number of epochs which will

determine the number of iterations during the training process. One epoch is one forward

pass and one backward pass of all the training examples, and iterations is the number of

passes, each pass using [batch size] number of examples. As an example, if you have 1000

training examples, and your batch size is 500, then it will take 2 iterations to complete 1

epoch. Normally, if the number of epochs is too high, at a certain point, the accuracy will
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top increasing and therefore the weights will be too fixed to the training data, overfitting.

However, there are additional techniques that allow you to avoid choosing in advance this

hyperparameter, due to the fact that they are built in order to avoid this overfitting. One

important technique that will be implemented in all the training processes is called Early

Stoppings. This is nothing but a form of regularization used to avoid overfitting when

training a learner with an iterative method, such as gradient descent.

Another important hyperparameter is the Loss function used in the backpropagation

method. As mentioned in chapter 2.3.3 in terms of classification the most used is cross-

entropy, and especially categorical cross-entropy, used for multi-class classification where

each example belongs to a single class. This parameter is specified while compiling the model

architecture.

Furthermore, the type of Activation function must be selected for each layer. In

general terms, for the first layers will be implemented using ReLu functions, and the last

layer, the Fully connected, will be implemented using Softmax. In the last layer this

choice has been done due to is has been commonly used in many of the most popular Image

Classification Deep Learning architectures such as ImageNet [22], VGG16 [40] or Inception

[25]. Optimizers, as explained in 2.3.4.3 play a very crucial role in increasing the accuracy

of the model. For all the models Adam optimizer will be selected. These parameters are

specified while compiling the model as well.

Essentially, the more layers/nodes we add to the network the better it can pick up signals.

As good as it may sound, the model also becomes increasingly prone to be overffited with

respect to the training data. Another good method to prevent overfitting and generalize on

unseen data, apart from the already mentioned, is to apply dropouts. Dropout randomly

selects a portion (usually less than 50%) of nodes to set their weights to zero during training.

This method can effectively control the model’s sensitivity to noise during training while

maintaining the necessary complexity of the architecture.
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Figure 4.6: Example of FER2013 dataset extracted from [24]

.

4.3.2 Datasets

In every project involving Machine Learning algorithms whereby a processing of data, a

previous stage must be done: data exploration. Data Exploratory Analysis is an important

phase whence a Data Scientist can fully understand the context and the incoming data for

a subsequent correct model selection.

The dataset used for training the model is from a Kaggle Facial Expression Recognition

Challenge [24] a few years back (FER2013). It compromises a total of 35887, 48-by-48-

pixel grayscale images of faces each labeled with one of the emotions defined in section 2.1

plus a neutral one. Therefore the final result is: anger, disgust, fear, happiness, sadness,

surprise, and neutral. An example of some emotions is represented in Figure 4.6.

These faces have been preprocessed so that they occupy more or less the same space in

each image and have the same size. The set contains two columns, “emotion” and “pixels”.

The emotions have been labeled using categorical classes, thus from 0 to 6 instead of the

name itself. The column pixels contains a string.

This dataset was prepared by Pierre-Luc Carrier and Aaron Courville, as part of an

ongoing research project. They have graciously provided the workshop organizers with a

preliminary version of their dataset to use for this contest.

The distribution of the images is the one shown in Figure 4.7. It is notorious the

imbalance of the emotion disgust compared to other classes. Thus, this may result in a

data leakage, leading to a low accuracy predicting classes of this type. As opposed with

the emotion happiness there is slightly higher difference with respect the others. Therefore,

overfitting must be treated carefully to avoid predictions principally on happiness.
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Figure 4.7: Distribution of number of images per emotion

Architecture Non-trainable params Trainable params Total params

1 0 329,031 329,031

2 0 101,735 101,735

3 0 1,485,831 1,485,831

4 1,472 56,951 58,423

Table 4.1: Comparison of the number of parameters of each network architecture

4.3.3 Model selection

In this section, the testing process will be detailed. Through all this section a continuous

comparison of the four architectures implemented will be done.

First of all, before going into performance details, the number of network parameters

will be taken into account. In table 4.1, these parameters are specified. One of the ob-

jectives sought was the reduction of total parameters so that the real-time prediction can

be performed faster. At first glance, it can be seen that the only architecture with non-

trainable parameters is the fourth one. This is due to the elimination of dense or fully

connected connected layers in this implementation, being this, therefore, the one with less

total parameters.

Secondly, as mentioned in Section 4.3.1, once the architecture has been established, the

training phase will pursue with some hyperparamenters previously fixed. All the models
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have been compiled using Adam optimizer and categorical cross-entropy as a loss function.

In addition, several batch sizes and validation method will be used. To do so, a validation

set of 20% will be set, in order to compute the validation accuracy on each epoch.

Thirdly, some modifications in the data will be done in order to prevent overfitting. Thus

data augmentation is performed. This is another regularization method which aims at

performing some variations in the original images in order to obtain a higher dataset, and

thus to have more different data avoiding overfitting. There are many type of variations,

such as rotations or zooming, but the ones implemented are:

• Random rotations with 10 degrees range. This is done in order to train the model to

better handle rotations of images in real applications.

• Random shifts, both vertical and horizontal. This is done because detected faces may

be not centered, they may be off-center in a variety of different ways. Therefore a

range of 0.1 shift is done.

• Random Flips only on horizontal axis.

• Zoom of 0.1 range.

Thereupon, to avoid the overfitting caused by the number of epochs, different solutions

has been applied while training these models. The first one is early stopping, which

attempts to remove the need to manually set this value. This is a form of regularization

used to avoid overfitting when training a learner with an iterative method, such as gradient

descent. It can also be considered a type of regularization method in that it can stop the

network from overfitting. The main idea of this technique is that at the end of each epoch

the network will be evaluated with the test set, and if the network outperforms the previous

best model, a copy of the network at the current epoch is saved. Hence, the final model

will be the one with the best test performance.

The second technique implemented reduction of learning rate. This means that the

learning rate is reduced when a metric has stopped improving. This callback monitors a

quantity and if no improvement is seen for a ’patience’ number of epochs, the learning rate

is reduced.

Finally, the training phase is carried out. The four models have been trained using

different batch-sizes. All the accuracies obtained, are shown in Table 4.2. Model accuracy

is a percentage indicating the number of correct classifications done by the network during

the test phase.To perform this test, an amount of samples have been separated before the

training phase. More precisely, as mentioned before, this amount is the 20% of the total

set, that means that, 7178 samples are used for model validation.
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Figure 4.8: Model accuracy of the fourth CNN architecture with 100 epochs training

Regarding all these results, an overfitting can be appreciated in some cases. As an

example, with the second architecture using a batch-size of 60 units, the training and test

accuracies obtained are 82.27% and 50.72% respectively, differing notoriously from each

other. Thus, testing with new samples plays an important role in model validation, because

it helps you to simulate a real-world scenario, in which the data used to test has not been

seen previously by the algorithm, avoiding models with poor performance.

The best trade-off between training and test accuracy is obtained with the fourth

architecture and a batch-size of 32. These accuracies are 71.57 % and 65.13 %

respectively. The difference between these two accuracies is not too high, being almost the

same. This is due to all the generalization techniques applied with which overfitting has

been avoid.

Moreover, the evolution of this accuracy and model loss are shown in Figures 4.8 and

4.9. Glancing at these graphics it can be observed this effect of non-overfitting, as the

training accuracy is increasing considerably as well as the test one. The same is happening

with loss, as training loss is decreasing, test loss decreases too. Nevertheless, it is true that

test accuracy over all the epochs remains lower, whereas test loss remains higher than the

training one.

Finally, comparing the training times, the fourth architecture takes more time to do it.

The reason is the introduction of different filter techniques as well as more layers to extract
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Architecture Batch size Train accuracy Test accuracy

1 256 88.23 55.698

1 128 89.7558 56.018

1 80 89.275 56.018

1 60 89.24 55.29

1 32 89.12 54.29

2 256 68.97 50.68

2 128 75.84 50.33

2 80 56.64 49.13

2 60 82.27 50.72

2 32 81.01 50.68

3 256 64.84 55.64

3 128 81.63 55.53

3 80 70.01 53.94

3 60 83.72 52.54

3 32 86.16 52.55

4 32 71.57 65.13

4 64 70.84 64.28

4 80 70.83 64.21

4 128 63.31 57.58

4 256 70.86 63.03

Table 4.2: Performance comparison of each architecture highlighting the best model
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Figure 4.9: Model loss of the fourth CNN architecture with 100 epochs training

features. Moreover, the residual techniques takes more computational time to train. For

example, training network 1 and 4 with the same hyperparameters (256 batch size and early

stopping ) the second took more than one hour using Colab. On the opposite, the other

network took only ten minutes.

4.3.4 Confusion matrix

Concerning data visualization techniques, apart from the traditional plots, a wide-used

one is the plot of the confusion matrix. Confusion matrix is also known as error matrix in

statistical field, due to the fact that it represents the performance of an algorithm. Each row

of the matrix represents the instances in a predicted class while each column represents the

instances in an actual class (or vice versa). In Figure 4.10 it is represented the confusion

matrix of the model selected on test data. As explained before, columns stand for the

number of prediction done of each emotion.

In order to better understand this figure, it is better to take an example. Concerning

the large of images with a happy face, the model has predicted correctly 1453 images out of

1620. This means that only 167 images are misclassified. Keeping on this example. it can

be seen that the model confuses more happy with neutral faces. Thinking about a neutral

face and a happy face it makes sense, since there are slightly differences between these two

facial expressions.

Furthermore, it can be seen the emotion with the poorest performance is anger. Only
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Figure 4.10: Confusion matrix with test data using the best model

711 correct predictions out of 2166. The algorithm predicts an angry face as a sad face. As

previously this is due to similarities between these two expressions.

4.4 Conclusion

To conclude, after the comparison of different relevant aspects, the fourth architecture will

take into account to develop the final application and its deployment on the cloud ( see

further sections), the highest trade-off obtained between train and test accuracies, meaning

that the less overfitting. Another reason of using this implementation is the latency needed

to perform the predictions. With the structure chosen, the computational cost has been

considerably decreased. Therefore, when applied this model to real-time systems there

won’t be any serious time reduction.
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CHAPTER5
Emotion Analysis Desktop Application

This chapter describes a real-time application developed to test the model using the infor-

mation of the webcam .
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5.1 Introduction

In this chapter a Real-Time facial emotion recognition application is described. Before

going into details few constraints must be respected:

• Real time processing . The principal aim of this application is to analyze real time

information, that means processing video captured instantaneously. Therefore, this

supposes a major challenge for emotion recognition systems where the analysis to be

done requires complex techniques that often spend too much time on obtaining the

final results. The architecture proposed will integrate real time emotion recognition by

mean of face expressions analysis. The real time information will be the one captured

from the laptop’s webcam, so the model will process each of the frames of the video

captured predicting the emotion of the face detected. Thus, further Machine Learning

techniques to detect faces will be implemented, in order to retrieve the information

that will feed the Deep Learning algorithm.

• Accuracy. When analyzing and detecting emotions, the accuracy obtained by the

application results a crucial factor. In this project, the correct behavior of the system

depends on the correct recognition of emotions. It is important to point out the major

effort made by improving this task in the architecture design. The accuracy of the

emotion recognition depends entirely on the model.

The application will be focused on these two issues. The model used in this application

could change if required. Nevertheless, the principal aim is to test the model described in

chapter 4 in a practical way by developing a functional application. To accomplish this,

the service will be programmed entirely with Python, making use of the library OpenCv.

The important tools or technologies used for this application are defined:

First of all, as explained in section 3.2, OpenCV provides many functionalities to perform

a real time image processing. Moreover, it also allow us to start a video streaming with

respect to the laptop webcam. In the following sections this processing will be thoroughly

explained, but in a nutshell, as it will be used in order to “transform” the original frame

captured from the webcam into a similar image to the ones used to train the Neural Network.

Furthermore, there are many Computer Vision algorithms already implemented, so that

complex operations such as objects detection, are easily implementable, using few lines of

code.

Secondly, the decision made of using Python as the tool to develop this application

was held by the use of this to implement the Deep Learning algorithm, so that it can

ease the integration of such algorithm with the functionalities provided by OpenCV library.
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Furthermore, with Python support, this library provides several features resulting particu-

larly interesting in this thesis, such as image processing, video analysis, and an easy-to-use

interface to video capturing and video codecs.

Scikit-learn1. Is an open source library with the BSD license that contains various

Machine Learning algorithms such as classifications, regression and clustering ones, which

interoperates with two important Python libraries: NumPy and SciPy. The first one is a

numerical library that provides with many mathematical functions implemented, and the

second one is the direct implementation of these algorithms mentioned above. Thus, Scikit-

learn provides tools for joining features, converting features and labels into matrices and

classifiers.

Finallly, H5PY2, which is a Pythonic interface to the HDF5 binary data format, and

It lets you store huge amounts of numerical data, and easily manipulate that data from

NumPy. HDF5 is a data model, library, and file format that support widely-used standard

binary format, designed for, among others, flexible and efficient I/O. Therefore, this library

will be used to access the data of the Deep Learning model stored in HDF5 format.

1http://scikit-learn.org/stable/
2https://www.h5py.org/
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5.2 Architecture

In this section the architecture of the application designed will be fully detailed. As men-

tioned before, this app is implemented with Python, in order to maximize the compatibility

of the modules with any current computer. Furthermore, the main application scripts are

supported by other submodules or scripts containing each of the needed functions, so that

the code is more ordered in order to ease the understanding. All the modules are represented

in Figure 5.1

The main goal of this is the extraction of users’ emotions by mean of real time recognition

of facial expression, carried out with Convolutional Neural Networks (CNN). Thus, different

functions are provided to enable the access to the webcam information in which the user

information will be presented, for the further process and face detection, that will be the

input of the model.

Once an overview has been given, in the following subsections, different submodules are

detailed, explaining their main features and design aspects.

The principal module (app.py) is divided into two submodules: video capture functions

and face inference; each of them with different functions that help to achieve the goal of

the application: facial emotion recognition.

5.2.1 Video information

The principal characteristic of this program is the real time information, which in this case

will be the information captured from the user. The way to overcome this is using the

information captured by the webcam of the laptop as said before.

In Figure 5.2, the flow followed by the information is represented. The mechanism

implemented is based on OpenCV functions that allow us to open a connection with the

webcam. The first step is to get the video streaming by mean of the creation of an OpenCV

VideoCapture object as detailed in Listing 5.1. Then a pop-up is launched to show the

video captured depending on the variable Show camera variable, which its main purpose is

give to the user some freedom of configuration.

Listing 5.1: Function to initialize VideCapture object using OpenCV library

if video_settings.show_cam:

cv2.namedWindow(video_settings.webcam_window_name)

video_capture = cv2.VideoCapture(0)

return video_capture
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Figure 5.1: Python application modules architecture
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Figure 5.2: Flow chart of video capture from webcam

Finally, after created the Video Capture object, it is possible to capture frame by frame

using the read method of the VideoCapture object (Listing 5.2), and show it in the pop-up

launched previously, creating a streaming with the camera.

Listing 5.2: Capturing current frame

ret, bgr_image = video_capture.read()

Finally, the way to close the window opened to show the video streaming, is by pressing

the key ’q’ or stoping it from the terminal where it was launched.

Once the way to get the user information is overcome, some preprocessing must be done
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in order to filter only the useful information to predict the emotion from facial expressions.

5.2.2 Face inference and preprocessing

Once the video streaming has been stablished and configured, the face detection phase takes

place. To accomplish it a preprocessing of the image has to be done in order to retrieve the

face from the frame as a whole, making use of different OpenCV functions. This face will

be the input of the model trained in previous chapters. An overview of the main steps in

this process process is shown in Figure 5.3, which is not straightforward, so details detailed

will be given hereafter.

The main purpose of this face detection and preprocessing of the image is to obtain

an image similar to the ones used to train the model, so that it can perform a proper

prediction of the emotion from the face detected. Therefore, first of all the program takes

each of the frames contained in the video, which are represented in RGB scale, and convert

this scale to a Gray one, in which there are only values within black and white range.

This scale ease the preprocessing making it much faster. Then, an equalization of the

histogram of the image is done. The histogram is nothing but a representation of the

intensity distribution of an image, so the equalization is done to avoid peaks in certain values

that can cause some problems in the prediction. In addition this equalization improves the

contrast in an image, in order to stretch out the intensity range and facilitate the face

detection. Finally after the equalization of the image, the face detection itself takes

place. The way to do so, is implementing an algorithm based on cascade classifiers as

explained at the end of the section 2.2.1. Fortunately, in OpenCV there are many pre-

trained classifiers for faces, eyes, mouthes, etc. In this program this set of classifiers is

loaded from a .xml file, haardcascade frontalface default.xml 3) which is a stump-based

24x24 discrete adaboost frontal face detector, and contains a ton of features that have been

decided as belonging to a front-facing face. Thus, after loading the classifiers, the OpenCV

function detectMultiscale is used to retrieve the coordinates of all the faces appearing at the

video. The code implemented to detect faces is presented in Listing 5.3.

Listing 5.3: Function used to detect faces using multiscale filters

def getFaceCoordinates(frame):

face_cascade = cv2.CascadeClassifier(face_detection_settings.

cascade_path)

3https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_

frontalface_default.xml
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img_equalized = cv2.equalizeHist(frame)

faces = face_cascade.detectMultiScale(img_equalized,

scaleFactor = face_detection_settings.scale_factor,

minNeighbors = face_detection_settings.min_neighbors,

minSize = face_detection_settings.min_size,

flags = cv2.CASCADE_SCALE_IMAGE

)

return faces

The second part of this process consists in preprocessing each of the faces extracted

from the original frame. As the face retrieved by the function implemented in OpenCV, is a

bit smaller than the ones used to train the model, specially in terms of height, some offsets

must be applied. In other words, the face area is heightened or augmented in both axis

corresponding to some factors. After this, the face is resized to 48x48 (size of the images

used to train the model), and converted to Float32. This is detailed in Listing 5.4.

Listing 5.4: Preprocessing the image

gray_face = face_inference.apply_offsets(gray_image,face_coordinates)

try:

gray_face = face_inference.resize(gray_face, (emotion_target_size))

except:

continue
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Figure 5.3: Flow chart of face detection and image preprocessing from video captured
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Figure 5.4: Flow chart of emotion prediction and drawing of bounding box and emotion

text

5.2.3 Emotion prediction and face bounding

At this point a face has been extracted and isolated from the original frame, so the next step

is to feed the Deep Learning algorithm to perform the emotion prediction. To do so, Keras

library (see section 3.1.2) gives some useful functions to load the weights of a pre-trained

model. In addition, there is also predict function, to perform the prediction itself. The

process chart can be seen in Figure 5.4.

Nevertheless, before carrying out this prediction, another dimension modification must

be done in order to adjust it to the one expected by the algorithm, as it was trained using

Python arrays, and at this point a matrix (the way of representing images in Python) is

available. The input should be 4-d, with the 1st dimension used to enumerate the samples.

Thus, as the matrix has only two dimensions, two more dimensions will be added by mean

of expand dims function of NumPy library (Listing 5.5).

Listing 5.5: Image expansion

gray_face = np.expand_dims(gray_face, axis = 0)

gray_face = np.expand_dims(gray_face, axis = -1)

Once the prediction has been carried through, the result obtained is an array containing

the probabilities for each emotion, thereby the emotion with maximum value is extracted.

The code is detailed in Listing 5.6.
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Listing 5.6: Performing emotion prediction

emotion_prediction = emotion_classifier.predict(gray_face)[0]

emotion_label_arg = np.argmax(emotion_prediction)

emotion_text = emotion_labels[emotion_label_arg]

The final step consist on drawing a rectangle bounding the face, with text-box above

containing the emotion predicted formerly. Furthermore, the color of those elements de-

pends on each emotion, which are showed in Table 5.1. It is important to highlight that

these drawings are done in the original frame captured by the webcam, with original colors

as well. In other words, the bounding box and emotion text are introduced in the frame

previous to all the preprocessing, the one obtained at the end of section 5.2.1.

Emotion Color code (R, G ,B)

Happiness (255, 255, 0) = Yellow

Surprise (0, 255, 255) = Light blue

Anger (255, 0, 0) = Red

Sadness (0, 0, 255) = Blue

Neutral

and Fear
(0, 255, 0) = Green

Table 5.1: Color code to represent the face bounding rectangle and emotion text

5.3 Case study

In this section a real example using images captured with the computer used in the imple-

mentation of the desktop application will be shown. As mentioned previously, the main goal

of this app is to process and analyze real-time data captured with a webcam. Therefore,

four emotion detections will be presented, in order to visualize principally, colors used in

each emotion.
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Figure 5.5: Neutral emotion detection with desktop app

Figure 5.6: Happy emotion detection with desktop app
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Figure 5.7: Anger emotion detection with desktop app

Figure 5.8: Surprise emotion detection with desktop app
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5.4 Conclusion

This application has fulfilled the proposed objectives, which can be summarize in one sen-

tence: Develop a real-time application to get users’ emotions from faces expres-

sions.

• Real time: this goal has been fulfilled with the use of OpenCv library, which allow us

to capture webcam frames.

• Emotion prediction: this has done making use of the Neural Network model trained

in chapter 4, and loaded using Keras functionalities. However, this model could be a

different one, if a better accuracy is achieved with another architecture.
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Emotion Analysis Web Application

This chapter will describe the service created to deploy in the cloud an application for facial

emotion recognition in real time. The main objective of this app is to deploy the facial

emotion recognition model in the cloud, so that it can be accessible from every device.
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6.1 Introduction

The previous chapter has introduced a Python application to detect emotions from facial

expressions, which should be deployed in a local laptop. However, nowadays every appli-

cation should be cloud-deployable. Therefore, after implementing that application locally,

the need to deploy it in the cloud arose, so the application that will be explained in details

in following subsections aims to simulate the same process deployed in the cloud.

As the previous application was implemented in Python, the first impulse was to build

an application using the Flask Framework over Python, for a greater compatibility together

with the reason that a proper domain of Python language was acquired during the mentioned

implementation. Nevertheless, after thinking thoroughly the global architecture the final

decision was to use Node.js (see section 3.3) with Express Framework (see section 3.4).

This decision was mainly propitiated by the preprocessing that has to be done in the

image captured with the webcam. As there are many mathematical operations (resize,

expand, change scale, etc), and also a Deep Learning model is loaded and computed, for

latency reasons, it is better if those are carried out on the server side. Furthermore, thinking

about storage resources, the browser must download many images and a model, that will

overload user’s resources.

Thereby, the way of communication offered by NodeJS is based on websockets. In the

following sections this concept will be explained and how it has been implemented in the

application. Nevertheless, before going into details about websocket, it is better to have an

overview of the architecture of the application.
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6.2 Architecture

The architecture commonly used in software implementations is the one called MVC (model,

view, controller). As mentioned before the language chosen to implement this application

is Javascript, using the framework NodeJS and Express.

There are many different ways of organizing files within the same model. Corresponding

to different criteria, one is more suitable than the other. The main criteria is the complexity

of the project. The greater the complexity of the project is, the more refined the structure

of the code should be, in order to ease the maintenance.

For projects with little source code and more simplicity, it is more appropriate to use a

linear data structuring. In this way all maintaining and documenting tasks are simplified.

For this project a vertical structuring has been chosen. Even thought this type of

structuring is used principally in bigger projects, it is more intuitive, since it is based on

the distribution of the modules depending on the app process in which they take place.

Furthermore, it is intuitive due to the splitting of the scripts depending on the function-

ality. In other words, all the scripts run on the client side, are under the client folder, and

the same with the server. In following sections, more details about this implementation are

given.

To sum up, the app architecture chosen has been organized in modules as shown in

Figure 6.1, with a folder distribution based on the functionality of each of these modules.
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Figure 6.1: Module diagram of the NodeJS application
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6.3 Client side

In this section the details about the information shown in the client are explained. Regarding

the architecture explained in previous section, client side corresponds to the front-end of the

application. This means that the files explained in this section will be in charge of showing

the information processed in the back-end, the server.

Therefore three different files can be distinguish. In almost every front-end development

there are three different types of files in order to create a dynamic view. In this project the

names of these files are: index.html, styles.css and app.js.

Therefore, the file app.js contains all the logic of the front-end. In this file the websocket

connection from the client is established, and thus, the one in charge of sending to the server

the frames to be processed. The flow-chart of this operation is represented in Figure 6.2.

First of all, one the webpage is loaded the app asks the user for permission to use

a multimedia device such as a camera or microphone. This is done with the function

getUserMedia. If the user allows it, then the information retrieved is shown through a video

element, thus the video streaming has begun. After this the program is going to do the

sending of each of the frames. A periodical function is started, in which every 0,7s all the

code inside is executed.

The code inside that function, performs a screenshot of the frame in each moment

using a canvas element. Finally, this frame is sent to the server over the frame event (see

section 6.5) in a socket, after encapsulating the image information in a buffer with .png

format.

On the other hand, the frame with the emotion computed must be shown. This is done

in the back-end, and sent to the front-end via websocket, as explained in followings sections.

Thus, in the logic part of the client-side it is implemented the reception of this processed

frame. Once the frame is received, it is loaded in a canvas element just besides the video

element in which the original streaming is taking place.
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Figure 6.2: Flow-chart of webcam streaming and frame sending to the server
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6.4 Server side

In this section all the processes carried out on the server side will be explained. This section

is the core of the app, due to the fact that all the image preprocessing and predictions are

done on the server. As explained before, the main reason of doing this, is the availability

of more resources on this side to accomplish all the operations needed to obtain the desired

results.

First of all, the folder organization is going to be shown, in order to proceed to explain

the details. As shown in Figure 6.3, one principal folder called lib together with some files

(package.json and server.js) are under the principal root.

The file package.json, as explained in section 3.4, contains all the dependencies with

external packages needed. Specifically there are four dependencies:

• express: version 4.10.1 or upper. This package allows us to access to all the function-

alities provided by the Express. Hereafter, the most important ones will be explained

in more details.

• KerasJS [9]: version 1.0.3 or upper. It is a library used to load Keras model in

NodeJS. In other words, to load the model trained in previous sections to predict

emotions.

• morgan1: version 1.4.1 or upper. It is a HTTP request logger middleware for NodeJS.

This provides different options to overcome error debugging. For example, changing

outputs colors to ease the identification.

• socket.io2: version 1.2.1 or upper enables real-time, bidirectional and event-based

communication.It works on every platform, browser or device, focusing equally on

reliability and speed.

6.4.1 Setting up

In this section all the process to configure the back-end part is going to be explained. Some

files from the folder representation shown in Figure 6.3, will be detailed in order to further

understand this configuration.

The file server.js, under the main folder server, contains all the functions needed to per-

form this configuration. These functions are mainly the ones provided by Express module.

Specially to define the middlewares in charge of attending requests, and even to associate

1https://www.npmjs.com/package/morgan
2https://github.com/socketio/socket.io
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Figure 6.3: Vertical structuring of the server side

each middleware a specific URL from which perform the request. The setting up flow chart

is represented in Figure 6.4.

Corresponding to these settings, first of all, a reference is defined called app , as detailed

in Listing 6.1, from which all the functionalities already mentioned of Express can be used.

Listing 6.1: Creation of app reference

// configuration files

var configServer = require(’./lib/config/server-config’);

// app parameters

var app = express();

app.set(’port’, configServer.httpPort);

This is an instance or reference associated to Express module, used to configure the web

app or to obtain characteristics of it. The script config/server-config.js contains different

variables (Listing 6.2). The reason of isolating them is to follow some good programming

techniques that ease app understanding.

Listing 6.2: Value of different variables included in server-config.js

var path = require(’path’)

module.exports = {

httpPort: 8080,

70



6.4. SERVER SIDE

staticFolder: path.join(__dirname + ’/../../../client’)

};

The port used in this server configuration is 8080 as can be seen.

Regarding the app reference, the more common methods used in this configuration are:

• app.set(name, value): this method is used to initialize the environment variables.

• app.get(name): this method is used to obtain the value of the variables defined with

the previous method.

• app.use([path], callback): this method is used to create a middleware, in order to

manage HTPP requests. If an URL is added in the path parameter, the middleware

is associated to it, and this only will response to requests coming from this URL.

In this application only two middlewares are created using app.use function, as shown

in Listing 6.3:

Listing 6.3: Creation of NodeJs middlewares

app.use(express.static(configServer.staticFolder));

app.use(morgan(’dev’));

Firstly, a middleware already included in Express, and is responsible for the static asset

service of an application. There must be an argument root which specifies the root directory

from which the static service is done, which is included in config/server-config.js. After this,

the creation of a route manager is implemented, as specified in Listing 6.4.

Listing 6.4: Importation of the route manager

// serve index

require(’./lib/routes’).serveIndex(app, configServer.staticFolder);

This is done in order to specify the root directory of the static service. In other words,

the path to the client-side part is imported, specifically the path to the index.html file

explained before.

In the script route/index.js a res object is created in order to return the HTML file

whose name is specified in the res.send argument. This code is presented in Listing 6.5.

Listing 6.5: serveIndex function in index.js
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Figure 6.4: Flow chart of the server setting-up
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exports.serveIndex = function (app, staticFolder) {

app.get(’*’, function (req, res) {

res.sendFile(’index.html’, { root: staticFolder });

});};

In order to better understand this procedure, a brief theoretical explanation is going to

be given.

• the object res is the encapsulation of the response module of NodeJS. It stores the

information to be sent as a response of the last request done.

• res.send is a method which generates a response from the server side, in which the

information to be sent can be either an array, or a buffer.

Secondly, another middleware is created, related to the Morgan package. As said before,

this is a logger middleware that provides different functionalities to ease the debugging.

Specifically, in this project a pre-defined format, called dev has been used, which concise

output colored by response status for development use.

Then the server itself is launched listening on the port specified. To do so, firstly a server

object is created using a function provided by the HTTP packet of NodeJS. Secondly, the

server starts to listen at the port specified, which in this project is 8080. The code

implemented to do so is shown in Listing 6.6. Nevertheless, if the app is launched using

Docker containers it will change. In further sections this is explained.

Listing 6.6: HTTP server creation

// HTTP server

var server = http.createServer(app);

server.listen(app.get(’port’), function () {

console.log(’HTTP server listening on port ’ + app.get(’port’));

});

Finally, the websocket connection is established as detailed in Listing 6.7. This connection

will be explained thoroughly in the next section.

Listing 6.7: Websocket connection establishment

// WebSocket server

var io = require(’socket.io’)(server);

io.on(’connection’, require(’./lib/routes/socket’));
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6.5 Websockets implementation

The way in which websockets are implemented in this project is the following. First of all,

the connection is opened from the server side, through the function on available in socket.io

library. In the argument of this function the file server/routes/socket.js is passed. In this

file all the logic of the server socket is implemented.

On the other hand, in the client a step-up must be done as well. In this case, all the

app logic is written in the file client/app.js as shown in Figure 6.2. In this file, first, in

order to carry out the websocket connection, the socket must be connected to the server

URL. In the case that the server was launched locally, it would only be enough to put as

an argument ’http: // localhost’ . However, as Docker is being used, the argument will be

the URL of the server. This is done as shown in Listing 6.8.

Listing 6.8: Websocket connection establishment in client side

//URL of the host to be connected

var host = window.location.hostname;

var socket = io.connect(’http://’+host);

Concerning the communication itself, two different events has been implemented. To

create events using websocket, you must specify in the argument of emit function the

namespace of the event. As said, before, it has been decided to distinguish two different

events:

• ’frame’: this is the event used by the client to send the frame or image captured by

the webcam.

• ’response’: this is the event used by the server to send the response or the frame after

the preprocessing and emotion prediction.

The main reason of this distinction is to ease the readability of the code, and to avoid

collisions between each other.
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6.6 Emotion prediction

6.6.1 Introduction

In this section the process followed to accomplish the emotion prediction is going to be

explained. This process will be similar to the one explained in sections 5.2.2 and 5.2.3 .

First of all, before going into details, a brief introduction to technologies needed to

overcome the problem will be given. To perform all the image preprocessing, in previous

sections, OpenCV library over python was used. In this case, as Node.js is being used,

all the initial efforts went to the search for a possible solution, as the library does not

provide support for Javascript. Therefore, after some research two libraries came up: node-

opencv[6] and opencv4nodejs [34].

• node-opencv: this is a NodeJS library created by Peter Braden, which provides bind-

ings for NodeJS. Currently people are using node-opencv to fly control quadrocoptors,

detect faces from webcam images and annotate video streams. The GitHub repository

of this library has more than 3500 starts and 640 forks.

• opencv4nodejs: this is a library created by Vincent Muhler, which is an asynchronous

OpenCV 3.x NodeJS bindings with JavaScript and TypeScript API. The GitHub

repository of this library has more than 1900 starts and 200 forks.

At first glance both libraries seem to offer the same functionalities. Nevertheless, the

first one seems to be better as it has more stars and forks, denoting higher popularity. This

is due to the fact that the first one is older. Furthermore, being an older library can lead to

a deprecation, thus the frequency of commits plays an important role in the final decision.

From the commits viewpoint the second library seems to be better, as this frequency is

higher. Finally, the documentation provided by the second author is enormously better,

but there were more examples provided by the first one.

In spite of all these arguments, both libraries have been tried in order to try possible

advantages and drawbacks of each of them. After the trial-and-error phase, indeed with

opencv4nodejs more efficient results were obtained.

Furthermore, there was another problem with the cloud-deployment of the Python app

using NodeJS needed to be solved. This problem has to do with the interaction with the

Deep Learning model. In Python app, the function load provided by Keras was used.

Therefore, somehow it was necessary to find this load function using NodeJS. The solution

was making used of KerasJS, which is a straightforward binding of Keras, in order to run

Keras models in the browser, with GPU support provided by WebGL 2 [9]. In addition, it

allows you load and run a pretrained model on server side. The only requirement to do so,
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is that the model must be saved in a .bin format, instead of .h5 as before. This library will

be called in an asynchronous way.

6.6.2 Process

In this section all the process followed to perform the prediction itself will be explained. In

Figure 6.5 the flow-chart is represented.

This process starts with the reception of the frame sent with a socket by the client

captured through the webcam, over the frame event. The received frame is in base 64, thus

this format will be used all over the preprocess. Then it is needed to convert the data to a

buffer in order to proceed to de decoding of the image, in .png format, through imdecode

function provided by the opencv4nodejs library, obtaining a Mat representation.

Once Mat representation is obtained, all the functionalities in the library to preprocess

the image. The next step is the face detection. The method or technique implemented

is the same as explained in Section 5.2.2, consisting on a classifier composed of several

classifiers in cascade. Then, after retrieving faces coordinates, for each face, the offsets

are applied and then the face is cropped from the frame.

At this point the face region is split from the original frame, so only on this region the

color scale is changed to gray, the histogram is equalized and then resized to 48x48

as the images used to train the model. Finally, the image is converted to an array and

converted to Float 32.

After all this preprocessing, the face image is ready to feed the model, in order to com-

pute the prediction. The way implemented to pass the image to the model, is asynchronous,

due to the fact that asynchronous workflow processes might process faster. To accomplish

this, as mentioned before, Keras-js library is used. As in section 5.2.3, the result ob-

tained is an array containing the probabilities for each emotion, thereby the emotion with

maximum value is extracted.

Once the emotion is retrieved, face bounding with a rectangle takes place. Using

functionalities of Opencv for NodeJS, a rectangle around the face is drawn. The perimeter

of this rectangle, corresponds to the region without the offsets, applied before, covering

strictly the face. Then, the emotion is output in text format, just above this rectangle,

using a function of the library as well.

In addition, in this app the color code used previously is followed. That means that,

the rectangle and color text will depend on each emotion. This code is the one explained

in Table 5.1.

Conclusively the image is encoded in .png format, in base 64. Then it is sent to the

client via response event.
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Figure 6.5: Flow chart of emotion prediction carried out in NodeJS app
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6.7 Case study

In this section some visual real-examples are shown. The face recognizer GUI shows two

screens, one with the real captured image, and the other shows the real captured image

with a bounding box in each face detected, with the correspondent color of each emotion.

Colors used to represent each emotion are specified in Table 6.1. Codes have changed with

respect to the desktop app. In the library used to get the bindings of Opencv for NodeJS

(opencv4nodejs), color codes are expressed in a different format, (B, G, R) instead of the

traditional one (R. G. B).

It can be seen in Figures 6.6 and 6.7, two emotions predicted, happy and anger respec-

tively. Moreover, it can be appreciated that the app is running on a local server, as the

URL shown is localhost:8080.

Emotion Color code (B, G ,R)

Happiness (0, 255, 255) = Yellow

Surprise (255, 255, 0) = Light blue

Anger (0, 0, 255) = Red

Sadness (255, 0, 0 ) = Blue

Neutral

and Fear
(0, 255, 0) = Green

Table 6.1: Color code to represent the face bounding rectangle and emotion text
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Figure 6.6: Happy emotion detection with web app

Figure 6.7: Anger emotion detection with web app
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6.8 Conclusion

This application has fulfilled the proposed objectives, which can be summarize in one sen-

tence: Develop a real-time cloud-deployable application to get users’ emotions

from faces expressions.

• Real time: this goal has been fulfilled with the use of websockets, which allow us to

set up a bidirectional client-server communication, in order to process on the server

frames captured with the client webcam.

• Cloud-deployable: this has been achieved with the use of a Popular web-programing

language such as NodeJS, with the use of Express framework. Furthermore, as the

application has been embedded in a Docker container, best cloud-deployment trends

has been followed.

• Emotion prediction: this has done making use of the Neural Network model trained

in previous sections, and loaded on server-side.

Nevertheless, in this app the performance of the Deep Learning model has decreased. It

can only detect two emotions, the ones shown in section 6.7. This is due to the fact that a

compression of the model has been carried out in order to load it in the NodeJS app using

Keras-JS. Thus, all the weights have been rounded, changing completely the behavior of

the algorithm. In the following chapter a possible solution to this problem is going to be

detailed.
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Conclusions

This chapter will describe the achieved goals done by the master thesis following some the

key points developed in the project.
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7.1 Achieved Goals

The project has fulfilled the proposed objectives, but we must refer to each one of these

objectives in to draw a general conclusion.

• Implementation of a deep learning model capable of predicting emotions

from facial expressions. This algorithm was the one with the highest trade-off ob-

tained between train and test accuracies, meaning that the less overfitting. Further-

more, with the structure implemented, the computational cost has been considerably

decreased. Therefore, in a real-time system the latency is almost negligible.

• Development of a a real-time application to get users’ emotions from faces

expressions. Real-time has been fulfilled with the use of OpenCv library, which allow

us to capture webcam frames. Emotion prediction has done making use of the Neural

Network model trained in previous sections, and loaded using Keras functionalities.

• Development a real-time cloud-deployable application to get users’ emo-

tions from faces expressions. Real time has been fulfilled with the use of websock-

ets, which allow us to set up a bidirectional client-server communication, in order to

process on the server frames captured with the client webcam. Cloud-deployable has

been achieved with the use of a popular web-programing language such as NodeJS,

with the use of Express framework. Furthermore, as the application has been embed-

ded in a Docker container, best cloud-deployment trends has been followed. Finally

emotion prediction has done making use of the Neural Network model trained in

previous sections, and loaded on server-side.

Nevertheless, there was a reduction in accuracy in the web app due to some limitations

of the JavaScript implementation of Keras. To solve this, some possible solutions are given

in the following section.
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7.2 Future work

Once the project is finished, new lines emerge on which to continue working and imple-

menting improvements. This is also known as future work.

To start with, some research can be done in order to try to enhance the model perfor-

mance. As stated in [30], one possible solutions is the implementation of a a RNN (Recurrent

Neural Network) just after the CNN in order to get some time characteristics together with

the spatial characteristics learned by the CNN. Therefore, In the first part, the spatial im-

age characteristics of the representative expression-state frames are learned using a CNN.

In the second part, the temporal characteristics of the spatial feature representation in the

first part are learned. This technique is also known as LSTM (Long short-term Neural

Networks). LSTMs are a special kind of RNN, capable of learning long-term dependencies,

this means remembering information for long periods of time. All recurrent neural networks

have the form of a chain of repeating modules of neural network. In standard RNNs, this

repeating module will have a very simple structure, such as a single tanh layer. LSTMs also

have this chain like structure, but the repeating module has a different structure. Instead

of having a single neural network layer, there are four, interacting in a very special way. In

[28] using this technique they could obtain an accuracy of more than 90%.

Another improvement that can be done, is related with the websockets. The main

problem of this technology is the latency present in the communication. Therefore, a

possible solution can be the implementation of HTTP/2.0 with push functionalities as the

way of communicating both sides (client and server).

Furthermore, the library used to load and perform predictions in the cloud-deployable

app with NodeJs, Keras-js, is no longer supported. By now, it was the only way to load

keras models, but Google has recently released a new library for web apps and all the

functionalities are being migrated to TensorFlow.js1 . This library brings all the boundaries

needed to use TensorFlow with JavaScript language. Moreover, in order to load a model

using Keras-js it has to be compressed in advanced, causing some roundings in some weights

of the model that reduces the accuracy. With the use of TensorFlow.js, this problem will

be avoided, as it allows you to load the model directly, without any preprocessing.

Finally, in order to increase the model performance, the dataset used to train it (FER2013)

can be enhanced by labelling the emotions in a different way. In FER+2 each image has

been labeled by 10 crowd-sourced taggers, which provides better quality ground truth for

still image emotion than the original FER labels. Having 10 taggers for each image enables

researchers to estimate an emotion probability distribution per face. This allows construct-

1https://js.tensorflow.org/
2https://github.com/Microsoft/FERPlus
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Figure 7.1: Comparison between FER and FER+ labels extracted from [54]

ing algorithms that produce statistical distributions or multi-label outputs instead of the

conventional single-label output, as described in [54].
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APPENDIXA
Project impact

This appendix will show the Ethical, Economical, Social and Environmental impacts of this

project. As it has been described in the document, the project is mainly centered in the

extraction and processing of information extracted from videos, specifically people’s faces.

Therefore it is important to reflect on the handling of such a critical information.
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A.1 Ethical impact

In this chapter all the ethical issues related to the technologies used in this project are going

to be studied. As stated in [32] for each computer vision topic there are some ethical issues

that must be covered.

Concerning all technologies covered in this project, the main ethical issues identified

are: Espionage, Discrimination and Copyright Infringement.

Espionage is found to be the most concerning problem in the field of computer vision,

as it concerns the largest amount of different computer vision applications. Espionage

consist in gathering data on individuals without their permission. Thus, from the ethical

viewpoint it is a serious breach in privacy. Emotion recognition from faces can be seen as a

way to read people’s mind or access directly to their thoughts. Therefore from the ethical

standpoint it is important to preserve the privacy of individual by protecting their identity

or sensitive information.

Discrimination is a another ethic topic that must be explained. There are different

types of discrimination. As an example, there is a differentiation between the skin coloration

and facial features related to ethnicity, or a gender differentiation. This means that, an

algorithm can predict differently emotions from a male and a woman. This is also known

as segmentation. To avoid this, the dataset used to train the model must contain a wide

variety of face characteristics, in order to obtain a general result.

The last ethical concept, Copyright Infringement, has to do with the data used to

train the model, specifically the source of it. It is defined to be an illegal use of intellectual

property without rights or permission. The dataset used must be open source. Moreover,

this problem in these databases also lies in avoiding images with scenes that might be

susceptible to either copyright violations

A.2 Economical impact

The economical impact is mainly encouraged by the technology itself. It is well-known

that Artificial Intelligence is a trend now, and more companies are investing on this type

of solutions, such as automatizing processes. With this app, some of these processes can

be automatized. For example, a certain company can implemented it in order to know the

level of happiness of its employees from the emotions captured from their faces. This will

reduce the number of costs caused by company abandonments, so that the unhappiness can

be predicted and remedied.

86



A.3. SOCIAL IMPACT

A.3 Social impact

The social impact of this project could be strictly linked to the ethic aspects treated before.

In may 2018 General Data Protection Regulation (GDPR) law entered into forced. It

is a regulation in EU law on data protection and privacy for all individuals within the

European Union (EU) and the European Economic Area (EEA). The regulation contains

provisions and requirements pertaining to the processing of personal data of individuals.

This requirements can be summarized in an anonymisation of the data used. This means

that faces images used to train the model cannot contain the person name, or any other

critical data with which the user can be identified.

In addition, regarding the ethical concept of espionage and GDPR law, there must be

an allowance/acceptance of the user to treat and process the data. Concerning the desktop

application, there is no acceptance pop-up implemented, due to the fact that the user is the

one who triggers the app, in which this acceptance is embedded. Nevertheless, in the case

of the web application, a pop-up has been implemented in order to ask for user permission

to retrieve webcam information.

A.4 Environmental impact

This project does not have a clear environmental impact, except for the computing power

needed for having the described systems running. The most common way to carry out

those experiments is using a shared pool of resources, and so the host machines are being

use for multiple applications at the same time. If those resources are allocated on a big

cloud service, the whole system would be elastic with respect to demand, and so power

consumption could be optimized in a way that only the needed machines would be working

at any time. It is true that the power cost of a whole data center is really intensive, but the

needed power to execute all the services in independent machines would be several times

higher.
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APPENDIXB
Project costs

This appendix describes the economic budget regarding the design and development of the

project, considering material and human resources. Finally, a taxation involved in software

selling is explained, as part of the final budget.
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B.1 Material resources

Due to the complexity of training a deep learning model, which requires a huge number of

calculations a high quality computer to accomplish this will be needed. Moreover, just in

case, the web app is deployed on a server which has additional computing resources, the

model can be trained there so the requisites of the computer could be relaxed.

As said before, the most resource-demanding activity is the training of the neural net-

work.We estimate the need of 16 GB of RAM and optionally a GPU for accelerating the

model training process. A computer of around 1,000 euros would be sufficient for this task,

and the GPU could even double this budget. However, as all the models have been trained

on Google cloud, through Google Collaboratory, this budget has been decreased.

Regarding the deployment server for the service, there isn’t a exhaustive need of re-

sources and so a common server could be used, being its price from 1,000 euros on. This

server doesn’t need to be fully dedicated to the deployed service, and even a contracted

VPS service solution could be used. The diversity of VPS vendors is really high, but an

average reasonable price could be 20 euros per month.

B.2 Human resources

In this section, the cost to carry out this project in terms of time is going to be explained.

Meaning by time, is the time period required to entirely design and develop this project.

In order to give a cost approximation an average Software Engineer salary will take into

account.

The time estimation of this project is around 900 hours. This approximation is relying

on the ECTS of this Master Thesis. As this thesis is validated with 30 ECTS, and 1 ECTS

stands for 25-30 working hours, thus 900 hours is the maximum time computed. Within

this amount, two differentiations must be done. One for the designed and implementation

time, which can be 750 hours, and the other related to the writing of this document which

can be 150. Considering that the salary of a Software Engineer is around 2.000 euros gross

per month, 23 working days per month, and 8 working hour per day, the total development

budget is around 8.000e.

There would also be needed another engineer executing tasks related with the system

deployment, availability and security. This person should be full time hired with the purpose

of fixing any incidence happening at any time, but as this would not happen frequently, he

could also be focused on similar tasks for other projects. Its associated cost would also be

around 1.500 euros each month the system is up.
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B.3 Taxes

Once the development of the project is accomplish a possible action to do is to sell it to

another company. To do so, local regulation must be taken into account. In this case, as the

software has been developed in Spain, the adjustment must be done in relation to Spanish

law, specifically to the one regulating the selling of software products.

According to [14], there is a tax of 15% over the final price of the product, as regulated

by the Statue 4/2008 of the Spanish law. Thus, considering the app price, the development

cost, the final amount will be 9200e.

In the case of the willingness of selling it to a foreign country a law research must be

done, increasing the price, and what’s more, consider a double taxation.
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APPENDIXC
Apps instalation

In this appendix a brief explanation will be given of how to install and use the two appli-

cations developed and explained in details previously.
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C.1 Python app

This is the simplest app, and the installation is quite easy. The only requirements are the

libraries needed to launch the app. In a nutshell, the principal libraries are: TensorFlow,

Keras, Numpy and OpenCV. The libraries can be downloaded in a Python environment

which can be created and activated with Anaconda. Once this dependencies are up, it is

time to launch the app with the preferred Python IDE. To do so, just launch the file app.py

C.2 NodeJs app

C.2.1 Launching locally without Docker containers

This first way f launching the app is without the use of Docker containers. That means

that, a local NodeJs server is created and running the app on it. To do so, first of all, all the

node modules must be installed. Therefore, from the server directory, write the following

command:

Listing C.1: Node modules installation

npm install

Once the modules have been installed, it is time to run the app. Thus, from the server

directory, run the following command:

Listing C.2: Running NodeJs app

node server.js

At this point the app is up and running, so to test it, open a browser and go to local-

host:8080

C.2.2 Launch it locally with Docker containers

As explained in previous sections, the app has been embedded in a Docker container, so

a lighter app can be launch, without the need of installing the libraries directly. To run

Docker containers, first of all the image must be built. In this case the Dockerfile is saved

over the root, src file. From this, run the following commands to built the Docker image

and to launch the app using Docker compose:

Listing C.3: Running NodeJs app using Docker containers
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docker-compose build

docker-compose up

Again the app should be up and running on localhost:8080.

The Docker imaged created has the following characteristics:

• compressed size: 124mb

• ubuntu: 16.04

• nodejs: v9.8.0

• npm: v5.6.0

• opencv4nodejs: 3.3.1
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