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Resumen

El lenguaje es una de las herramientas más poderosas que tenemos a nuestra disposición.

Cuando lo utilizamos, a menudo las ideas no se exponen de manera objetiva. En su lugar,

el mensaje está contenido en un marco que incluye la perspectiva moral y emocional del

hablante. Este marco está directamente relacionado con la forma en la que las personas

organizan sus creencias y lleva consigo las emociones y valores morales del transmisor, lo

que puede llevar a mensajes sesgados. En este ámbito, el sesgo se define como la tendencia

de los modelos a propagar y/o amplificar prejuicios y desigualdades. Aśı, cuando se

entrenan clasificadores de texto, el uso de corpus sesgados puede propagar estos sesgos

hacia la tarea de clasificación. De la misma manera, el sesgo puede aparecer cuando se

desarrollan modelos siguiendo malas prácticas, como usar un corpus desbalanceado.

Este trabajo se centra en desarrollar un un conjunto de herramientas para audi-

tar clasificadores de texto en relación con los valores morales. Para ello, se comienza

estudiando los diferentes tipos de sesgo existentes. Luego, se selecciona una forma de cat-

egorizar los valores morales, que es la Teoŕıa de las Fundamentos Morales. Esta describe

que la moralidad humana se construye sobre cinco fundamentos universales: cuidado,

equidad, lealtad, autoridad y pureza. Se continúan implementando varias técnicas para

detectar y mitigar el sesgo, ya sea adaptando métodos existentes que conforman el es-

tado del arte o diseñando nuevas técnicas. Finalmente, se propone un sistema con una

arquitectura web orientada a microservicios que incluye una aplicación gráfica a través

de la cual los auditores puedan interactuar con dichas implementaciones.

La evaluación de este trabajo demuestra que el sesgo puede ser detectado y miti-

gado de manera efectiva en la mayoŕıa de los casos combinando las técnicas propuestas.

También se concluye que el sesgo moral en el lenguaje humano es un concepto complejo,

cuya presencia, detección y mitigación dependen en gran medida del contexto espećıfico.

El auditor debe, por tanto, ser el responsable de seleccionar las técnicas adecuadas.

Palabras clave: Auditoŕıa, Sesgo, Clasificador de texto, Procesamiento de Lenguaje

Natural, Valores Morales, Marco Moral
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Abstract

Human language is one of the most powerful tools at our disposal. When using it, issues

are often not objectively exposed. Instead, the message is contained in a frame that

captures how the story is presented, including the moral and emotional perspective of

the speaker. This frame is directly related to how people organize their beliefs and

label their ideas. The use of the language can then divulge emotions and moral values,

which can lead to biased information. In this context, bias is defined as the tendency

of models and algorithms to reflect, amplify, or perpetuate prejudices and inequalities.

When training text classifiers, using biased corpora can propagate these biases into the

classification task. In the same way, bias can also appear when models are developed

following bad practices, such as using an imbalanced corpus.

This work focuses on developing a framework and toolkit to audit text classifiers

regarding ethics and moral values. It starts by thoroughly studying the presence and

different types of existent bias. Then, we study a way to categorize and quantify moral

values, finally selecting the Moral Foundation Theory, which outlines that human moral-

ity, regardless of the culture and social aspects, is built on a range of five universal moral

foundations: care, fairness, loyalty, authority, and purity. We continue implementing

several techniques to detect and mitigate bias either by adapting the existent state-of-

the-art methods to our particular objectives or by designing new ones. Finally, a web

microservice-oriented system is proposed to present a webapp through which auditors

can easily interact with the techniques implementations.

The evaluation of this work demonstrates that bias can be effectively detected and

mitigated in most cases by combining the proposed techniques. However, we also con-

clude that moral bias in human language is a complex concept, with its presence, de-

tection, and mitigation depending heavily on the specific context. This implies that the

auditor must carefully select the appropriate techniques to achieve successful outcomes.

Keywords: Audit, Bias, Text Classifier, Natural Language Processing, Moral Val-

ues, Moral Framing
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CHAPTER1
Introduction

This chapter introduces the context of the project, including a brief overview of all the

different parts that will be discussed in the project. It will also break down a series of

objectives that will be carried out during the implementation of the project. Moreover, it

will introduce the document’s structure with an overview of each chapter.
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CHAPTER 1. INTRODUCTION

1.1 Context

Over the past few years, Machine Learning (ML) has become highly significant in today’s

lifestyle. Examples of this social impact include autonomous cars and the trending

GPT-3 chatbot developed by OpenAI [57]. ML-based systems can outperform humans

in specific tasks and are used to assist people in processes such as understanding and

predicting information or making decisions. On certain occasions, these processes come

with underlying complexity and implicit accountability, as illustrated by a judge using an

ML-based system to get feedback on whether a criminal will be a recidivist. Therefore,

optimizing task performance alone (which has been the main criteria used to rate a

ML-based system as good by default) is insufficient when critical decisions that could

impact people’s lives are being made [19].

Usually, ML algorithms operate by creating a model (which, in the end, is just a

mathematical function whose complexity could vary to a greater or lesser extent) that

learns from existing data and performs a generalization to unknown data. The algorithm

does not understand the data; it only searches for patterns or relations to create the

model. This fact implies that even though the result of a query is set as correct when

testing (what is obtained), how the result was reasoned (how is obtained) could not be

adequate. Consequently, a correct output for all inputs cannot be ensured. To make

matters worse, models (especially those based on neural networks) have reached such a

level of complexity that humans cannot even approach to understand them: making an

explanation by analyzing the model and its parameters is almost an impossible task [72].

Two issues are then raised: 1) ML-based systems are making decisions by searching

patterns in the data but without understanding its meaning or causality; and 2) an

explanation for those decisions can be neither understood nor explained by human beings

since ML-based systems are like a “black box” for us. Joining the previous two aspects,

it is evident that additional criteria to evaluate and interpret this kind of system are

needed to make Artificial Intelligence (AI) trustworthy and safe enough (e.g., the non-

existence of bias can be affirmed), especially when deploying a ML-based system in a

social environment with high accountability (such as medicine). A way of solving them

is auditing, which is research and practice to assess, mitigate, and ensure the safety,

ethics, and legality of the system [36].
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1.2. OVERVIEW

1.2 Overview

Building on the previously defined context, this Master’s Dissertation focuses on the case

of auditing ML-based text classifiers to detect and mitigate biases associated with moral

values, ensuring the system’s fairness, robustness, and ethical behavior. Text classifiers

are ML-based models used to categorize text data into predefined labels, enabling auto-

mated analysis of large datasets such as news, social media posts, and reviews. They are

commonly used for sentiment and emotional analysis, among others [67, 38]. When it

comes to human language-related models, auditing (i.e., detecting and mitigating bias)

can be a challenging task since subjectiveness is implicit in what we communicate. In this

case, morality plays a fundamental role, as it defines our beliefs and, as a consequence,

how they are expressed [7].

In this thesis, we investigate and develop a toolkit to audit corpora and text classifiers

concerning ethics and moral values. This is part of the Moral Sentiment Analysis in

Textual Data (AMOR) project [21], which is assigned to the Intelligent Systems Group

(GSI) and aims to develop critical thinking and the ability to manage emotions when

engaging with the media and social networks to combat issues such as misinformation,

hate speech, and clickbait. Specifically, this thesis is part of one of its objectives, which

consists of “investigating the analysis, application, and auditing of moral and ethical

values”.

1.3 Project goals

The final objective of this project is to develop a system for auditing Natural Language

Processing (NLP)-based models and texts and detecting and mitigating, if possible, bias

associated with moral values. To achieve it, some sub-objectives are established:

1. Analyze the existent tools, methodologies, and frameworks for auditing and gen-

erally detecting bias.

2. Investigating and choosing a way to categorize/quantify the moral values to make

them measurable.

3. Applying the tools reviewed in the first objective to the particular case of ethics

and moral values to understand its behavior and conclude their validity.

3



CHAPTER 1. INTRODUCTION

4. Developing a theoretical methodology to thoroughly audit a system to detect bias

related to moral values.

5. Evaluating the scope of a practical framework or application for automatizing

auditing moral values as much as possible.

1.4 Structure of this Master Thesis

This section provides a brief overview of all the chapters of this Master Thesis. It is

structured as follows:

• Chapter 1 introduces the problem addressed in this project and the main objectives

established.

• Chapter 2 details the state of the art in defining bias associated with NLP, cate-

gorizing moral values, and different techniques to detect and mitigate bias.

• Chapter 3 presents the different tools and libraries used to develop this work.

• Chapter 4 describes in detail the architecture of the practical framework developed

to audit text classifiers.

• Chapter 5 evaluates the proposed system and a case study.

• Chapter 6 provides the conclusion of this work and future lines.

4



CHAPTER2
State of Art

In this chapter, all the up-to-date tools and theoretical frameworks related to analyzing,

detecting, and mitigating moral and social bias are analyzed. It starts with categorizing

bias and moral values and continues with a detailed analysis of the different existing

methods to detect and mitigate bias.
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CHAPTER 2. STATE OF ART

2.1 Analyzing and categorizing bias

In the context of NLP, bias can be defined as the unfair treatment of certain groups

present in the feature space when giving an output [23]. This includes discriminatory

processing based on characteristics (gender, race, religion, etc.), which are directly influ-

enced by human moral values. Bias can appear differently throughout the various stages

of the ML lifecycle, so they should be independently analyzed and categorized for each

stage. ML lifecycle is composed of two main categories: 1) the preparation of the data,

known as the data phase and 2) the setting of the model according to the data, called

the algorithmic phase [72].

Data phase

Divided into two sub-phases, the first is data collection, which refers to defining the

needed data, selecting a target population, measuring features, and labeling obtained

values [72]. Since the target population is usually a large group, we are forced to consider

only a subset of the total due to the limitations of resources. The second sub-phase is data

preparation, which includes normalizing, transforming labeled data, or even engineering

a new feature space [36]. The data set is divided between training and test data, and

sometimes, the training data is divided again to get a subset called validation data.

Two types of bias can arise in this phase. The first is called historical bias, primarily

associated with the data collection subphase and representing unfair thinking in the real

world [72]. Even if data are ideally collected and sampled, and the total representation

of the population is considered (i.e., no subset of data is taken), the NLP-based system

could continue to have unfair prejudgments due to the implicit moral framing present

in texts [71]. This bias is remarkably propagated and even augmented in word embed-

dings [11]. For example, if the sentence “He is a nurse. She is a doctor” is translated

into Hungarian and then back to English (which uses word embedding), the final result

is “She is a nurse. He is a doctor” [71]. Essentially, the model is expressing a sexist

stereotype as it defines by default the doctor as a male and the nurse as a female. Even

though this conclusion is neither an objective fact nor a generalization, the model has

reached it due to the historical sexist bias implicitly located in the corpus with which

the embedding was trained.

Representation bias has to do with the under-representation of some groups of the

6



2.1. ANALYZING AND CATEGORIZING BIAS

target population, which causes the model to fail in generalizations for these groups.

This also appears when collecting data and shows up 1) if the target population does not

represent the use population and 2) if the target population includes under-represented

groups because of the lack of data or data unequally sampled. Finally, the third kind of

bias is measurement bias, which can come out when choosing, gathering, or computing

features from the target population to conform to the dataset/corpus. In NLP, this bias

becomes imperative when it comes to labeling the corpus (i.e., computing features) [31].

Sometimes, annotators are distracted, uninterested, or lazy about the annotation task,

choosing the “wrong” labels. On other occasions, the label an annotator chooses depends

on their interpretation or his/her thinking, resulting in bias transmission to the labeled

corpus.

Algorithmic phase

This has four subphases [72]. The first is model development, which involves defining the

working and objective of the model, the algorithm to train it, and the tuning using the

validation data. Next, the evaluation of the model consists of evaluating the model’s

performance with unknown inputs using the test data and evaluating with different

metrics. After that, some model post-processing can be done to improve human inter-

pretation of the outputs. The final substage refers to implementing the ML-based system

in production and verifying that non-experts still accept and interpret its performance.

Four types of bias can arise during the algorithmic phase [72]. Aggregation bias arises

during the model development when the model is too generalist, that is, the assertion

that a label or feature has the same meaning for all groups. In NLP, an aggregation

bias appears with the model’s assumption that all groups assign the same meaning to

every word. For example, a corpus that gathers song reviews of people from anywhere

will encompass people or groups with different cultures and/or norms. On this matter,

an aggregation bias appears when it is assumed that all groups assign the same meaning

to every word. Of course, in such a variety of cultures and different backgrounds, it is

logical that some words or expressions are taken differently by some of the groups. It

is vital to determine whether we are trying to develop a model that addresses a context

that is too broad and if we should instead consider designing multiple models specifically

adapted to each cultural or normative context.

Other, learning bias refers to how the configuration of the algorithm parameters

7



CHAPTER 2. STATE OF ART

causes performance disparities to increase between different inputs. For example, prior-

itizing an efficient model can imply only learning the most common features, leading to

performance disparities in underrepresented groups. Both aggregation and learning bias

must be checked during the development sub-phase. Next, evaluation bias happened

because 1) the benchmark data used for evaluating the quality of the model does not

adjust to the use population, 2) the model gets overfitted to a particular benchmark or

3) choosing too many simple metrics leads to hiding some issues (such as a minority

under-representation). At last, deployment bias comes in when the deployed ML-based

system is not used as designed. Usually, these systems are isolatedly developed but de-

ployed in a more complex scenario where non-expert humans have to interact with them

to interpret the output. These last two cases of bias (evaluation and deployment) are

related to the subphase of model postprocessing and model deployment.

2.2 Moral Foundation Theory

Proposed by Haidt [29], this psychological model attempts to explain why morality varies

so much between cultures but remains powerful in shaping human behavior. According

to this theory, humans have a set of universal moral intuitions that underlie our explicit

values and beliefs. Haidt argues that there are five cores “moral foundations” around

which people construct their perspective or viewpoint. This influential framework is

based on the premise that while morality can exhibit substantial variation in its scope

of what is considered harmful or caring behavior and is influenced by many factors

(culture, geography, time, society, etc.), this variation lies an enduring universal core.

Moral Foundation Theory (MFT) identifies this moral core as a psychological system of

“intuitive ethics”.

MFT’s theoretical framework is constructed around five cores, composed of dyads

comprising a positive part and a negative counterpart. The dyads are as follows [29]:

• Care/Harm. This foundation focuses on feelings of compassion or care for others

and the ability to feel or dislike the pain of others. It is the ability to empathize

with the suffering of others and the desire to care for those who are vulnerable [26].

• Fairness/Cheating. This foundation is tied to our ideas of justice, rights, and

autonomy. It focuses on our instinctive desires for fair treatment, equality, and

reciprocity. The basic idea here is that people should be treated equally and have

8



2.2. MORAL FOUNDATION THEORY

equal opportunities, and any deviation from equality should be justified and not

based on cheating or deception.

• Loyalty/Betrayal. This foundation recognizes that humans inherently depend on

and value group relationships and naturally bond, especially when faced with a

common enemy or threat [34]. Those who highly value this foundation often display

strong feelings of nationalism, patriotism, or loyalty to their group. They may also

have a stronger inclination to enforce in-group norms and traditions and a greater

dislike or disdain for those who betray or go against the group’s interests.

• Authority/Subversion. This dyad explores interactions through the lens of social

hierarchies. It informs our understanding of leadership, the deference to authority,

and the importance of maintaining tradition [30].

• Purity/Degradation. This foundation was adapted from the psychology of dis-

gust and incorporates the notion of a more elevated spiritual life. This is usually

expressed through metaphors like “the body as a temple” and encompasses the

spiritual aspects of religious beliefs.

Recent research has introduced new advances that expand and build upon previous

foundational theories. Multiple considerations have been integrated, and progress has

been made in analyzing them from a moral perspective. Gonzales’s [24] recent research

extends the foundational work proposed by Haidt [29], following a similar structure and

introducing 14 new moral foundations that enhance this framework. Thanks to these

reconsiderations, several issues such as gender, race, and other social biases can also be

categorized as moral biases in essence [7] [24].

The proposed extension of Moral Foundation Dictionary (MFD) [24] includes the

following foundations:

• Liberty/Oppression. This foundation represents the desire for freedom and the

distress caused by its denial. It encapsulates the yearning for personal liberty and

the feeling of oppression when freedom is restricted.

• Feminism/Maleness. It redefines masculinity as a moral principle, emphasizing

equality, justice, and human rights.
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• Sustainability/Climate change. From an environmental perspective, sustainability

involves responsible resource management, biodiversity conservation, and minimiz-

ing environmental impact.

• Racial equality/Racism. This foundation asserts that all individuals, regardless of

racial or ethnic background, should be treated fairly and have equal opportunities.

It advocates for eliminating discrimination based on race, ethnicity, or color [37].

• Peace/War. This dyad represents the contrasting facets of human experience,

capturing the delicate balance between harmony and conflict on interpersonal and

global scales.

• Animal rights/Animal abuse. This foundation recognizes and advocates for ani-

mals’ inherent value and welfare and addresses potential negative impacts against

them.

• Sexual diversity/Sexual discrimination. It encompasses the full spectrum of sex-

ual diversity and gender identities, as well as the negative effects or aggressive

behaviors related to gender discrimination.

2.3 Auditing & Detecting bias in NLP

Auditing a ML-based system is the research and practice to evaluate, mitigate, and

ensure the system’s safety, ethics (i.e., fairness), and legality. In other words, it is the

proceeding of warrant that the following criteria are being fulfilled: safety, nondiscrim-

ination, right of explanation, and non-existence of technical debt. Auditing is a broad

procedure that must be performed in every phase of developing a ML-based system,

existing different techniques and objectives for each. It is essential to audit a system

when its decisions (outputs) will significantly influence people’s lives. The audit process

consists of four stages: 1) development, 2) assessment, 3) mitigation, and 4) assurance.

Development is the process of developing and documenting a stage of the develop-

ment lifecycle. At this phase, auditing involves following good practices to meet the

already commented criteria. Assessment refers to evaluating the system’s behavior and

capacities, verifying that all requirements are met. The stage of mitigation deals with

improving or repairing errors of the algorithm outcome when some failures or unfulfill-

ment of any criterion occurs. Lastly, assurance is the step of declaring that a system
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conforms to the established criteria, which involves legal regulations -e.g., General Data

Protection Regulation (GDPR)- or ethical behavior (e.g., unbiased decision-making).

In this section, a review of existing methods for identifying bias in NLP is done. In

the auditing context, these tools can be used in the assessment and mitigation process

to verify if the non-discrimination criterion is being met. After reading the literature,

we consider the four most relevant techniques. Two are associated with the data phase:

1) the analysis of word embeddings and 2) the framing axis method. The two others are

3) the use of interpretability and 4) using metrics over the corpus and the outputs of

the model, both linked to the algorithmic phase.

2.3.1 Analysis of word embeddings

This technique aims to detect and mitigate bias associated with the vector space of word

embeddings. Word embeddings are fixed-length vector representations for words [3],

serving to serve as a dictionary of sorts for NLP-based systems that would like to use

word meaning [11]. Word embeddings are learned by solving a language modeling task

in a large unsupervised corpus, allowing subsequent models to take advantage of the

semantic and syntactic relationships captured from this corpus [61]. On the one hand,

words with similar semantic meaning tend to have vectors that are close together. On

the other hand, the vector differences between words in embeddings have been shown to

represent relationships between words [11]. For example, given the set of analogy words

“Madrid is to Spain as Tokyo is to x” (which is denoted as Madrid:Spain:: Tokyo:x )

it can be calculated that x is equal to “Japan” by using simple vector arithmetic over

the embedding vector space, as shown in Equation 2.1. These analogies can also be

represented over the embedding’s vector space in Fig. 2.1.

v⃗madrid − v⃗tokyo ≈ v⃗spain − v⃗japan (2.1)

However, capturing these relations and similarities to words implies that the histori-

cal bias present in the corpus the embedding was trained with is also propagated inside

the embedding structure. One of the most popular examples is the implicit sexism trans-

mitted to the embedding, where the profession computer programmer is more associated

with men, and “homemaker” has a feminine gender direction. This is shown in Equation

2.2.

v⃗man − v⃗woman ≈ v⃗computer programmer − v⃗homemaker (2.2)
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Figure 2.1: Example of words located on the vector space in word embeddings [6]

Bolukbasi et al. (2016) described two forms in which historical bias appears inside

word embeddings in terms of gender, as well as proposed a method to mitigate both

forms [11]. The first form is direct bias and occurs when explicit gender stereotypes

are present in the association of words. This bias can be quantified using cosine sim-

ilarity, indicating how strongly a word is aligned with the vector of gender direction.

Equation 2.2 is an example of direct bias by linking “man” more closely to “computer

programmer” and “woman” with “homemaker”. Furthermore, indirect bias refers to

imperceptible associations within the embedding space that are not directly related to

gendered terms but still perpetuate stereotypes. This bias is more difficult to detect

because it manifests itself in the broader context of word relationships, not just direct

word pairings. For example, words related to intelligence or leadership might cluster

closer to male-associated terms, whereas words associated with care or emotion might

align with female-associated terms. This creates an environment where even neutral

terms can be biased through their indirect connections to gender-based concepts.

On the one hand, to mitigate the direct bias, the neutralize method is suggested.

It involves identifying words that should ideally be gender neutral but are not due to

historical gender bias (e.g., “doctor” or “nurse”). Then, it must be ensured that they

are equidistant from gender-specific words like “man” and “woman”. This is done by

projecting these neutral words onto a gender direction (a vector that captures the gender

axis by subtracting the “woman” vector from the “man” vector) and then adjusting them

so that they are orthogonal to this axis. This process ensures that gender-neutral words
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are not preferentially associated with one gender over the other, thus removing explicit

gender biases from these terms. On the other hand, to mitigate the indirect bias, the

equalize method is proposed. It works by ensuring that gendered word pairs (e.g., “man”

and “woman”) have symmetric relationships with other words. This involves adjusting

the embeddings so that both members of a gender pair are equidistant from all different

words that should be neutral regarding gender. The process creates a balanced vector

space where gender-specific terms have equal associations with neutral words, preventing

indirect biases from creeping into the embeddings.

To measure the presence of bias and compare the embeddings before and after miti-

gation, we can use the Word Embedding Association Test (WEAT), a statistical method

designed to measure the embeddings of words [14]. WEAT extends the Implicit Associ-

ation Test (IAT) [27] from social psychology to word embeddings, allowing researchers

to assess the presence of social and cultural biases in these embedding models. The test

works by comparing the similarity between two sets of target words (e.g., “male” and

“female” names) with two sets of attribute words (e.g., “career” and “family” terms)

using cosine similarity. The degree of bias is quantified through the differential associ-

ation of the target sets with the attribute sets, where a significant difference indicates

bias within the embeddings.

2.3.2 Framing Axis

This technique also involves the usage of word embeddings. However, instead of mitigat-

ing the bias of vector embedding, it is used as a reference vector dictionary that captures

human frames to identify biases in texts [7]. Using a significant word embedding model,

which encapsulates a comprehensive representation of semantic and syntactic meaning

and relationships for most vocabulary words, FrameAxis [39] allows characterizing the

encoding of a given text by detecting the most relevant semantic axes (denoted as “mi-

croframes”). It can quantitatively measure how polarized a text is in each micro-frame

(bias), the direction (i.e. vice or virtue), and how much each micro-frame is used (in-

tensity) in the said text.

First, let us understand what a micro-frame is. In the human natural language,

issues are often not objectively exposed but are emphasized or de-emphasized in the

speech according to the expositor’s beliefs. In other words, the message is contained

in a frame or perspective that captures how the story is presented, including the moral
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and emotional viewpoint of the transmitter [49, 15]. This “frame” is directly related

to how people organize their beliefs and label their ideas within the space of life [7].

When it comes to ethics, these “frames” have a heavy impact on society, either when

they are deliberately used as a tool to make a message more emotionally powerful [7]

or when they are implicitly reflected in what we communicate as a consequence of what

we believe. A micro-frame is thus a part of the frame that contains the impact of one of

the MFT foundations.

From the embedding perspective, each micro-frame builds on a set of antonyms based

on the vices and virtues of the moral foundation (e.g., care words vs. harm words). The

axis (which is a direction vector) is calculated by subtracting the average vector of

positive words (virtues) and the average vector of negative words (vices) of that moral

dimension. Mathematically, let m be one of the foundations, V +
m the set of embedding

vectors of virtue words and V −
m the set of vectors of vice words. The semantic axis

corresponding to this moral dimension is shown in Equation 2.3.

Am = mean(V +
m )−mean(V −

m ) (2.3)

The measurement of bias of a document along a semantic moral axis (micro-frame) is

calculated as shown in Equation 2.4. A document D = {d1, . . , dn is defined as a set

of embeddings (vector space) of its words; s(Am, d) is the cosine similarity between the

semantic axis Am and the word d; and fd is the frequency of the word d in the document.

It implies that the bias metric of a text on a moral foundation axis m is the weighted

average of the cosine similarity of its words to that axis. The formula can return values

from -1 to 1. The absolute value of the bias captures the document’s relevance to the

moral dimension, while the sign captures a bias toward one of the poles in the moral

dimension. A positive sign in the result indicates that the document is polarized toward

the virtue, while a negative sign indicates polarization towards the vice.

BDm =

∑
d∈D fd s(Am, d)∑

d∈D fd
(2.4)

On the other hand, intensity is calculated based on a moral dimension to capture how

heavily it appears in the document according to the background distribution. As shown

in Equation 2.5, BT measures the baseline bias of the entire text corpus T on a moral

dimension m. The intensity metric does not reveal information about the polarization

of the document. However, when both poles of an axis actively appear in the text, the
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positive and negative terms cancel each other out, giving an insignificant value in the

bias measurement. In these cases, the intensity shows the relevance of that dimension.

IDm =

∑
d∈D fd (s(Am, d)−BTm)

2∑
d∈D fd

(2.5)

2.3.3 Interpretability

Interpretability refers to the degree to which a human can understand why a decision

(output produced) was taken by a model [48]. It has become an essential part of respon-

sible AI, as this has progressively been applied in more accountable social contexts [25].

Interpretability allows for checking that the system is making robust decisions; the ab-

stractions the model has learned are consistent and similar to reality [50]. Another

advantage of interpretability is detecting if a model operates unfairly (which means it is

biased). We will focus on this last usage.

Interpretability methods have several approaches to use. On the one hand, they

can be classified between local and global methods [50]. Global methods are those that

explain the general average behavior of the ML-based model, whereas local methods

explain how the model has produced any individual prediction. However, they can also

be classified between model-agnostic and model-specific methods. The first ones apply

to any model, independently of the algorithm it has used to train since methods are

decoupled from the model’s internal working. In contrast, the model-specific ones work

for models trained with a specific algorithm since the interpretability method has been

designed to take advantage of the algorithm’s features. In the following lines, the focus

is on studying local and model-agnostic methods that can be applied to NLP since they

are what we consider relevant for our future design (see Chap. 4).

Local Interpretable Model-Agnostic Explanations

It is a technique designed to explain the predictions of any machine learning classifier.

It works by approximating the real model locally with an interpretable model, creating

a new simple model that mimics the original model’s behavior near the specific pre-

diction being explained [64]. The key idea is to perturb the input data for this new

model and observe the changes in the output to understand which parts of the input

are most influential for prediction [50]. For text data (NLP), Local Interpretable Model-

Agnostic Explanations (LIME) modifies the text by removing or perturbing words and
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then observes the changes in the model’s output.

This process involves four steps [64]. First, a perturbation generates a set of an-

gry instances by randomly removing words from the original text. Then, the original

model (the one that is wanted to be audited) is used to predict the outcomes for these

troubled instances. Next, a weight to each perturbed instance is assigned according

to its similarity to the original instance. Lastly, an interpretable and simpler model is

fitted on the perturbed cases and their associated predictions, using the weights to give

more importance to instances similar to the original text. This local and interpretable

model identifies and highlights the essential features that influence the prediction for

any particular instance. By focusing on this model, LIME provides insights into why

the complex model made a specific decision, allowing users to trust and verify the model

predictions more effectively.

To understand LIME’s internal working, an example is commented on [50]. Let

us suppose that we have a complex black box model (i.e., we cannot interpret why its

decisions are taken), which is a Recurrent Neural Network (RNN) trained on a corpus

with the structure shown in Table 2.1, and whose function is to classify texts between

spam (1) and normal (0). To make interpretable what the model is doing to classify,

LIME can be applied. For example, let us examine why the model classifies as spam the

sentence “For Christmas Song visit my channel! ;)”.

CONTENT CLASS

I am a good student 0

For Christmas Song visit my channel! ;) 1

Table 2.1: Samples of corpus for detecting spam

The first step is to create some variations of the analyzed text, shown in Table 2.2.

Each column corresponds to one word in the sentence. “1” means that the word has

been kept as part of this variation, whereas “0” means that the word has been removed.

For example, the corresponding sentence for the first perturbation of the variations is

“For Song visit ;)”. The column “prob” shows the predicted probability of spam for each

of the troubled sentences, and the column “weight” shows the proximity of the variation

to the original sentence. As shown in Table 2.2, perturbed sentences containing the word
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“channel” have the probability of 99 % of being spam. In contrast, the rest (without the

word “channel”) have only 17%, concluding that the original model has learned to give

massive importance to the word “channel” to classify a text as spam.

For Christmas Song visit my channel! ;) prob weight

1 0 1 1 0 0 1 0.17 0.57

0 1 1 1 1 0 1 0.17 0.71

1 0 0 1 1 1 1 0.99 0.71

1 0 1 1 1 1 1 0.99 0.86

0 1 1 1 0 0 1 0.17 0.57

Table 2.2: Perturbation of sentence “For Christmas Song, visit my channel!;”

SHapley Additive exPlanation (SHAP)

This method is based on cooperative game theory to make predictions of any machine

learning model interpretable by assigning each feature an importance value for a specific

prediction [40]. The values of SHAP represent the contribution of each feature to the

model output, providing a fair and consistent measure of the importance of the features.

The key idea is to attribute the model’s prediction to each feature considering all possible

combinations of features and their respective contributions [51]. In NLP, SHAP can be

used to determine the contribution of each word or token to a model’s prediction.

This involves four steps [40]. First, the prediction of the model for the original text

is calculated. Then, all possible subsets of the features (words) are considered, and the

model’s predictions for these subsets are computed. Then, the marginal contribution

of each word to these subsets is calculated. Lastly, the SHAP values are obtained

by averaging these marginal contributions on all possible subsets. To understand the

application of SHAP in NLP, consider a sentiment analysis task in which we want to

classify movie reviews as positive (1) or negative (0), as shown in Table 2.3. Similar

to the LIME example, suppose that we have a complex model like a RNN trained to

perform this classification.
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Review Sentiment

The movie was fantastic! Positive

I did not like the movie. Negative

Table 2.3: Examples of movie reviews and their sentiments

To explain why the model classifies the review “The movie was fantastic!” as positive,

SHAP can also be applied. As commented before, the first step is to calculate the

prediction for the original sentence with the model that would be audited. Then, for

all possible subsets of the words “The”, “movie”, “was”, and “fantastic!”, the model

predictions are also calculated. Some examples of these subsets of words are shown in

Table 2.4.

Samples of subsets

The movie was

the movie was fantastic!

“The fantastic!”

Table 2.4: Examples of subsets of words for “The movie was fantastic!”

After obtaining the prediction of all possible subsets, the marginal contribution of

each word to the prediction is calculated by the difference in the predictions with and

without the word of the original sentence. For practical demonstration, let’s consider,

as shown in Equation 2.6, a simplified calculation for the word “movie” in the sentence

“The movie was fantastic!”.

ϕi = f(“The movie was fantastic!”)− f(“The was fantastic!”) (2.6)

Where:

• ϕi is the contribution for the word i, being i = “movie”.

• f(S) is the model’s prediction when considering only the words in subset S.
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Finally, SHAP values are calculated, which are derived by averaging the marginal

contributions of each word across all possible subsets of the other words in the sentence.

These values indicate the contribution of each word to the positive sentiment prediction.

Table 2.5 shows both marginal distribution and SHAP values for each word. In this

example, SHAP values highlight the word “fantastic!” as the most significant contributor

to the positive sentiment prediction, with a SHAP value of 0.4. This indicates that the

model relies heavily on “fantastic!” to classify the review as positive, providing a clear

and interpretable explanation of the model’s decision-making process.

Word Marginal Distribution SHAP Value

The 0.1 0.05

movie 0.3 0.15

was 0.2 0.1

fantastic! 0.8 0.4

Table 2.5: SHAP values for words in the review “The movie was fantastic!”

2.3.4 Usage of Metrics

It involves calculating a series of metrics to quantify differences in model behavior be-

tween various groups [16]. These metrics can be calculated over the corpus, the output of

the model, or a combination. Several metrics are proposed in different articles [12] [17].

Still, after studying the literature, we have decided to get to the bottom of the frame-

work proposed by Paula Czarnowska et al. (2021). In this article, 146 papers on social

bias in NLP are surveyed, and the multitude of metrics found are unified under three

generalized fairness metrics [16]. Next, these fairness metrics can be applied to text

classifiers.

According to the literature, the metrics used to quantify bias in NLP models can be

categorized into two main approaches: group fairness and counterfactual fairness. Group

fairness aims to ensure that a specific statistical measure is balanced between various

protected social groups, such as gender or race. This means that specific outcomes, such

as classification rates, should be the same for all groups. For example, group fairness
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would require that a model predict the same rate of positive outcomes for male and female

names, ensuring that no group is disadvantaged. On the other hand, counterfactual

fairness focuses on ensuring fairness at the individual level by comparing the treatment

of an individual in the real world with hypothetical versions of the same individual in

different scenarios. This involves altering specific identity attributes, such as changing a

name from a female to a male name, to see if the model’s predictions remain consistent.

The idea is to guarantee that a change in the protected attribute does not modify the

outcome for an individual, thereby treating similar individuals similarly regardless of

group membership. The generalized fairness metrics proposed by Paula Czarnowska et

al. (2021) take this metrics classification as a premise for their contribution.

The three fairness metrics proposed are Pairwise Comparison Metric (PCM), Background

Comparison Metric (BCM), and Multi-group Comparison Metric (MCM). The PCM

metric is designed to quantify the differences in performance between two randomly

selected groups on average. This metric is beneficial for examining whether and to

what extent the protected groups chosen differ in model performance. For example,

when considering the sensitive attribute of disability, PCM can help determine whether

there are performance differences between the cognitive disability, mobility disability,

and non-disability groups. The PCM achieves this by calculating the average distance

between the scores of different groups, thus providing information on the disparities be-

tween the social groups within the model. The metric can be divided into Group PCM,

which focuses on the disparities between predefined groups, and Counterfactual PCM,

which evaluates the impact of group changes by simulating hypothetical scenarios and

comparing these variations with each other.

Next, the BCM metric compares the performance of a specific protected/sensible

group against a defined “background” group, which serves as a reference point. This

background can vary depending on the research question and the task context but usu-

ally represents the least discriminated social groups. For example, if the objective is to

assess whether a model’s performance for a specific group differs from its overall per-

formance, the background may comprise all evaluation examples. Alternatively, if the

focus is on determining whether disadvantaged groups are treated differently than priv-

ileged ones, the background could be a set of examples related to a privileged group.

In the context of Group BCM, the comparison is made between the performance of the

group and this background set, highlighting the disparities between the group and the
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broader context. In contrast, Counterfactual BCM uses the original sentence as the

background and compares it with various counterfactual versions (i.e. modified versions

that change protected attributes) to assess whether the model’s predictions remain con-

sistent. BCM helps to answer questions about model bias and treatment of different

groups by contrasting each group’s scores with this background.

Finally, the MCM metric simultaneously evaluates how a sensitive attribute affects

the model performance across all protected groups. MCM considers the combined impact

of sensitive attributes (such as gender or race) on the model’s results. This metric aims to

identify global biases by analyzing the overall effect of changes in these attributes. While

MCM can provide a valuable initial insight into potential biases, it often requires further

investigation to understand the nuanced influences of specific groups. Group MCM eval-

uates the aggregated effect of a sensitive attribute (like gender) in all protected groups,

providing insight into whether the presence of such attributes causes variations in model

scores. This group-focused approach helps identify overarching biases that may affect

multiple groups collectively. Meanwhile, Counterfactual MCM delves into how a model’s

prediction varies when hypothetical changes are made to an individual’s attributes across

different scenarios, emphasizing the potential changes in the outcome. This version is

especially useful for determining whether introducing a particular attribute affects the

consistency of the model’s performance on an individual basis when considering different

counterfactual worlds.

2.3.5 DBias

It is a methodology designed to identify and mitigate social biases in textual data,

particularly in news articles [63]. It conforms to a pipeline of four main stages: bias

detection, recognition, masking, and debiasing. Initially, bias detection uses a fairness

evaluation metric, highlighting potential biases related to sensitive attributes such as

race, gender, and age. Subsequently, bias recognition is achieved through fine-tuned

models that detect specific biased words or phrases. The pipeline then applies bias

masking techniques to replace biased content with neutral alternatives. Finally, the

debiasing step employs algorithms to reduce or eliminate biases from the data, thereby

improving the fairness of ML models trained on the processed data.

The DBias methodology addresses several challenges inherent in existing fairness

frameworks, which often focus only on isolated stages of the ML lifecycle. By provid-
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ing a comprehensive, end-to-end solution, DBias ensures that biases are systematically

identified and mitigated across all stages of the ML lifecycle. This improves the fairness

of the results and generalizes across various text domains beyond news articles. In com-

parative evaluations against other state-of-the-art fairness models such as FairML [1]

and AIF360 [10], DBias demonstrates superior performance in reducing biases [63].
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This chapter offers a brief review of the main technologies that have made this project

possible
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3.1 Python

Python [74] is a high-level, interpreted, general-purpose programming language released

in 1991. It is known for its clear and readable syntax, which facilitates learning for

beginners and quick development for experienced developers [41]. Python supports mul-

tiple programming paradigms (object-oriented, imperative, functional, etc.), making it

versatile for various applications, from web development to ML and data analysis [9].

Python’s design philosophy emphasizes code readability and simplicity, promoting sig-

nificant indentation to define code blocks [42].

Python also boasts a vast library collection of standard libraries that allows devel-

opers to perform everyday tasks without installing additional packages [74]. Moreover,

its library ecosystem of third-party libraries is extensive and free. This robust support

has made Python one of the most popular languages today, according to industry sur-

veys and analyses [41]. In fact, within the academic and scientific context, Python is

a fundamental tool because it handles complex data and performs advanced numerical

computations [9]. Today, many publications and technical documents use Python as a

reference language for implementing algorithms and example models due to its clarity

and conciseness [74]. Next, we explain the primary Python libraries used in this thesis.

3.1.1 NumPy

NumPy [55] is a package for scientific computing in Python. It is a library that provides

multidimensional vector object management and an assortment of routines to operate on

them rapidly. This includes mathematical and logical operations, shape manipulation,

sorting, introductory linear algebra, basic statistical operations, etc. NumPy offers other

containers (storing lists of elements) with characteristics different from basic Python

arrays. This improves speed, reduces memory consumption, and provides a high-level

syntax for everyday processing tasks. In the context of NLP, NumPy is a crucial tool

for working with word embeddings, which are essentially long sets of multidimensional

vectors.

3.1.2 Scikit-learn

Scikit-learn [58], often abbreviated as sklearn, is an open-source Python library that

provides a simple and efficient toolkit for data mining and analysis, built on top of
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NumPy, among others. It is primarily designed for ML, offering a range of supervised

and unsupervised learning algorithms, including classification, regression, clustering, and

dimensionality reduction [13]. This library is particularly suitable for building predic-

tive models, performing feature selection, and performing cross-validation, becoming a

popular choice among data scientists and ML practitioners for academic research and

industry applications [52].

Probably, the main advantage of sklearn is its ease of use, with a consistent and well-

documented Application Programming Interface (API) that allows for quick prototyping

and implementation of ML models [13]. In addition, it also integrates seamlessly with

other scientific Python libraries, enhancing its flexibility. Regarding the disadvantages,

sklearn is particularly limited in handling large datasets, as it operates mainly in memory

[28]. Additionally, while covering a broad range of algorithms, it may not include the

most specialized methods found in other libraries focused on deep learning [52], such as

TensorFlow [73] or PyTorch [62]. Despite these limitations, sklearn remains a precious

tool for many machine learning projects, especially those involving more traditional

methods and small to medium-sized datasets.

3.1.3 LIME package

The lime package [65] in Python provides an easy-to-use interface to implement LIME

in different domains, including tabular data, images, and text. Based on the scope of

this thesis, we are interested in the text domain. It is focused on interpreting NLP

and is contained in a sub-package known as lime.lime text. Designed explicitly

to explain text classifiers, this module allows users to generate explanations for pre-

dictions made by models that process textual data. The main class in this module is

LimeTextExplainer, which is responsible for creating explanations by applying the

LIME techniques (see Sect. 2.3.3).

This class is the core component of the lime.lime textmodule and its constructor

have the following parameters:

• kernel width. Controls the width of the kernel used in weighting the perturba-

tions. The higher the value, the more precise and computationally consuming the

processing of LIME scores is.

• split expression. Determines how the text is split into tokens for analysis.
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• bow. If set to True, the text sample is treated as a bag of words; otherwise, the

order of words is considered.

• char level. If set to True, explanations are generated at the character level.

Otherwise, they are generated at the word level.

• class names. Iterable object with the identifier of each possible label (e.g., for

label ’0’, its class name is ’negative’).

• random state. Ensures reproducibility by setting the random seed.

The primary method of this class is explain instance, which generates explana-

tions for a given text instance. This method must pass the following parameters:

• text instance. Raw text string to be explained.

• classifier fn. The classifier’s prediction probability function. For sklearn-

based models, this is classifier.predict proba.

• labels. Iterable objects with labels to be explained.

• num features. Maximum number of features (words) present in the explanation.

The most relevant ones are selected.

• num samples. Size of the neighborhood to learn the linear model. The higher

the value, the better, but computationally costly is the LIME output.

In Code 3.1, an example of using LimeTextExplainer with its explain instance

method is shown. This example generates an explanation for the prediction of a text clas-

sifier in the sentence “This movie is great!” by identifying the top five words (as set in the

num features parameter) that contribute to the prediction. This result is stored in-

side an object of type Explanation class that is returned by the explain instance

method. This class is located inside the package lime.explanation and contains

several methods to represent and visualize the LIME result in different ways. Some of

the methods that Explanation class provides to visualize the results are:

• as html. It returns the explanation as an Hypertext Markup Language (HTML)

page. The desired labels, whether to include prediction probabilities and other

options, can be specified to personalize the report. The function returns HTML

code with JavaScript included.
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• as list. It returns the explanation as a list of tuples. Each tuple contains a

representation and a weight. This is label-specific for classification tasks.

• save to file. It saves the HTML explanation to a specified file path.

1 from lime.lime_text import LimeTextExplainer

2

3 explainer = LimeTextExplainer(class_names=[’negative’, ’positive’])

4 explanation = explainer.explain_instance(

5 text_instance=’This movie is great!’,

6 classifier_fn=classifier.predict_proba,

7 num_features=5

8 )

Listing 3.1: Example code of using the LIME package in Python

3.1.4 Flask

Flask [22] is a lightweight web framework for Python, designed with simplicity and

flexibility in mind. It was created to provide a more straightforward alternative to more

complex frameworks, catering to developers who prefer control over the components

they include in their applications. Flask follows the Web Server Gateway Interface

(WSGI) standard, which makes it suitable for building web applications and APIs. It is

particularly well-suited for small to medium-sized projects where you need to quickly set

up a web server without the overhead of a full-stack framework. Flask’s strengths lie in its

modularity, allowing developers to choose their tools, and its extensive documentation,

which makes it accessible for both beginners and experienced developers. However,

its minimalism can also be seen as a drawback, as developers may need to implement

functionalities readily available in more comprehensive frameworks.

Flask is commonly used for building APIs, microservices, and simple web appli-

cations. Provides essential tools for routing, request handling, and templating (using

HTML). However, it does not impose a specific project structure or include built-in

features such as authentication or database management by default. This makes Flask

a popular choice for projects that need fine-grained control or integration with other

services. Despite its simplicity, Flask can be extended with a rich ecosystem of exten-

sions for tasks such as database integration, form validation, and user authentication
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if required. The code 3.2 shows an example of a basic Representational State Trans-

fer (REST) API server built with Flask. In particular, a route that can be accessed

via Hypertext Transfer Protocol (HTTP)’s GET method is defined, which returns a

simple JavaScript Object Notation (JSON) file with a field message containing a greet

to a name passed as a parameter through the Uniform Resource Locator (URL) in the

HTTP request.

1 from flask import Flask, jsonify, request

2

3 app = Flask(__name__)

4

5 @app.route(’/api/greet’, methods=[’GET’])

6 def greet():

7 name = request.args.get(’name’, ’World’)

8 return jsonify({’message’: f’Hello, {name}!’})

9

10 if __name__ == ’__main__’:

11 app.run(debug=True)

Listing 3.2: Basic Flask REST API Server

3.1.5 Streamlit

It is an open-source Python library that enables the rapid development of web interfaces

for data science and ML projects [70]. Streamlit allows developers to create interactive

and visually appealing dashboards without extensive web development knowledge. It

automatically handles the frontend, enabling data scientists to focus on the data and

the application logic. Applications can be created by writing Python scripts that are

then run and displayed as web apps. Developers can build the interface by writing

Python without managing the HTML or Cascading Style Sheets (CSS). Streamlit is

based on the component-based paradigm and supports a wide range of widgets, data

visualizations, and layout options, making it an excellent tool for rapidly prototyping

and deploying data-driven applications.

The primary feature of Streamlit is its simplicity: By writing a few lines of code,

developers can turn complex data workflows into fully functional web apps. For example,

a simple application that allows users to input a number and see its square can be

created with minimal code (only two lines written in Python) [69]. This code is shown
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Figure 3.1: Web Interface produced by Streamlit Code of Listing 3.3

in Listing 3.3, and the output is shown in Fig. 3.1. Remarkably, the web interface has

been constructed without typing HTML or CSS since Streamlit independently abstracts

them from the developers and handles them in the background.

1 import streamlit as st

2

3 # User input

4 number = st.number_input(’Enter a number’, value=1)

5

6 # Display the square of the number

7 st.write(f’The square of {number} is {number**2}’)

Listing 3.3: Code for Web Interface for calculating number’s squares

3.1.6 Responsibly

Responsibly [2] is a comprehensive Python toolkit developed to audit and mitigate bias

in ML environments. Designed to integrate with the existing Python-based, data science,

and ML ecosystem, Responsibly is fully compatible with popular tools such as NumPy,

Pandas, and particularly Scikit-learn. This integration allows users to easily incorpo-

rate bias auditing and fairness evaluation into their existing workflows without learning

new paradigms or frameworks. The primary objective of Responsibly is to serve as a

one-stop-shop for auditing bias and ensuring fairness in ML systems. It enables users

to assess, identify, and understand potential biases in their models and functionalities,

focusing on mitigating identified biases and adjusting fairness through various algorith-

mic interventions. This toolkit particularly emphasizes NLP by offering specific tools

tailored to the unique challenges of this ML branch.
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Responsibly is organized into three sub-packages, each catering to a specific aspect

of fairness and bias in ML.

• responsibly.dataset. This sub-package offers a collection of common bench-

mark datasets frequently used in fairness research. These datasets are a standard

foundation for testing and comparing various bias mitigation strategies. By using

these well-established datasets, practitioners can ensure that their evaluations are

consistent with the broader research community.

• responsibly.fairness. This subpackage is focused on demographic fairness

in binary classification tasks. It includes a comprehensive suite of metrics and

algorithmic interventions designed to measure and mitigate bias. The metrics

provided allow users to evaluate models against various fairness criteria, such as

demographic parity and equal opportunity. Additionally, the subpackage offers

tools to adjust the models to meet these criteria better, enhancing the outcomes’

fairness.

• responsibly.we. This sub-package addresses biases in word embeddings, a cru-

cial component of many NLP-based systems. It includes the possibility of reducing

direct and indirect bias by using the method proposed by Bolukbasi et al. (2016),

as well as bias measurement by implementing WEAT tests (see Sect. 2.3.1). This

is the only module we focus on in this thesis, following the NLP scope we are

addressing.

3.1.7 DBias

The Dbias library [18] is a powerful tool designed to implement the DBias methodology

within ML workflows, explicitly focusing on NLP models. This provides a set of functions

and modules that facilitate identifying and mitigating biases in texts, particularly in news

articles. Its primary goal is to offer researchers and developers an easy-to-use interface

for detecting and correcting biases in their corpus, thus promoting fairness and reducing

discriminatory outcomes in ML applications. The DBias Python library is composed of

several modules, each designed to address specific aspects of bias in textual data. These

modules provide functionalities for debiasing, classification, recognition, and masking

biased words in the language. This library has four modules:
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• Dbias.text debiasing. This module is designed to remove bias from text,

specifically targeting biased language in news articles and other forms of written

content. Using the run() function, users can input a sentence fragment, and

the module returns an unbiased version of the text. This is particularly useful

for ensuring that content presented to the public is free from potentially harmful

biases.

• Dbias.bias classification. It enables users to classify whether a given

piece of text is biased or not. The classifier() function analyzes the input

text fragment and returns a classification label indicating if there is bias present.

This module is crucial for applications where it is important to assess the bias level

of a text.

• Dbias.bias recognition. This module identifies specific biased words or

phrases within a text. By using the recognizer() function, practitioners can

extract entities deemed biased from a sentence fragment. This module highlights

problematic language and provides insights into which parts of a text may con-

tribute to biased perceptions.

• Dbias.bias masking. It provides a way to conceal biased portions of text. The

masking() function identifies and masks the biased entities within a sentence

fragment, effectively removing them from the visible text. This module can be

applied when it is necessary to redact or obscure biased language, ensuring that

the remaining text is neutral and unbiased.

3.2 Conda

Conda [5] is an open-source package and environment management system widely used in

the scientific computing and data science communities. It simplifies installing, running,

and updating software packages and their dependencies. Supports multiple program-

ming languages, including Python. One of Conda’s key features is its ability to manage

virtual environments. This is particularly useful when working on multiple projects that

require different versions of the same package, preventing conflicts and ensuring repro-

ducibility. In these contexts, Conda stands out by providing a streamlined process to

create and manage these environments. Developers can easily create a new environment
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with specific versions of packages, switch between environments, and delete them when

no longer needed, all through simple Conda commands. These environments are iso-

lated from the global system environment, ensuring that the dependencies and packages

installed within a Conda environment do not affect the system-wide packages or other

environments. Furthermore, Conda environments can be exported and shared, allowing

consistent configurations and configurations between different systems, which is critical

in collaborative research and development settings [68].

3.3 Visual Studio Code

Visual Studio Code (VS Code) [45] is a free and open-source code editor developed by

Microsoft and available for Windows and Linux, among other operating systems. One of

the main features of this editor is its support for extensions (plugins), which allow users

to customize and add functionalities to the editor. This modularity enables accessible

programming in a wide range of languages and the ability to add styles that facilitate

the identification of code modules and parts. These extensions do not affect the editor’s

performance, as they run in independent processes. As we are programming in Python,

the extensions used are Pylance and Python. On the one hand, Pylance [43] provides

rich type information, autocompletion, and type-checking. Conversely, the Python [44]

extension adds comprehensive support for Python development, including debugging

and lining. Another crucial feature of VS Code is its ability to access multiple terminals

simultaneously, thanks to its integrated terminal. This functionality is significant in this

thesis, as we work with microservices that must be executed and managed parallelly

from different terminals.
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Architecture

This chapter presents the methodology used in this work. It describes the project’s over-

all architecture, with the connections between the different components involved in its

development.
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4.1 Overview

In this section, a general overview of the proposed solution is presented. We have

designed and developed a system to audit the moral values of texts/corpus and NLP-

based classifiers to ensure their fairness: the Moral Auditing System (MAS). It follows

the classic web application pattern and has two main sides, shown in Fig. 4.1 on the left.

On the one hand, the client side or the front-end represents a web interface that runs

on the auditor’s computer and allows him/her to easily interact with the auditing tools

and visualize the auditing process’s results graphically and intuitively. It comprises four

modules, each with a different auditing functionality and a different subpage inside the

web application.

On the other hand, the server side or the back end can be identified. As commented

above, auditing is not a systematic process with a fixed methodology that can objec-

tively be interpreted. Instead, each specific scenario is to be audited, and the auditor’s

interpretation significantly impacts how the auditing process is conducted and evalu-

ated. Due to this reason, the backend is designed to contain independent services that

do not depend on but complement each other, each containing all the necessary logic

and functionality to carry out a specific form of auditing. For every scenario, the auditor

must choose the correct tools (services) and how they should be combined. This kind

of design also creates scalability, as more services could be added in the future without

modifying the existing ones, making our system even more complete.

To implement this independence of services in practice, we have outlined a microservice-

oriented architecture [4]. It emphasizes dividing the system into small and lightweight

services purposely built to perform a cohesive business function by cooperatively working.

Each service is a self-contained logic server that has its business logic, its environment

(libraries, dependencies, etc.), and its own API to be interacted with from external re-

sources (in our case, the webapp). According to Fig. 4.1, each defined service technically

represents a microservice, so every module (page) on the client side contacts its asso-

ciated microservice by calling the methods of its API and without the need to interact

with the remaining microservices.

Regarding the technologies and tools used, all microservices have been designed using

Python as the programming language, which we have chosen for three reasons. Firstly,

Python is the most popular language to develop ML and auditing tools, so many libraries
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Figure 4.1: Architecture of Moral Auditing System

and resources are based on it. Secondly, several libraries to quickly work with math-

ematical vectors have been created in Python, which is crucial to operating on word

embeddings. Lastly, libraries use this language to quickly develop an API server. Specif-

ically, the framework used to create the API is Flask [60], which makes us capable of

producing an REST API in a few lines of code due to its excellent abstraction capacity.

In addition, using Python lets us create virtual environments to isolate the dependencies

of each microservice even when developing on a local computer. That way, possible

conflicts between versions are avoided, and we will keep the principle of making every

microservice independent. To increase the portability of the backend when deployed in

production, each microservice is intended to be virtualized as a container using Docker so

that the microservice dependencies do not depend on the underlying operating system.

Using virtual environments in the development stage allows us to temporally isolate the

services’ operation and make the future migration of these to Docker containers easier.

The Web application was designed using Streamlit. We considered that his frame-

work has a lot of limitations in achieving complex graphics designs and getting good
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scalability (regarding maintenance due to the lack of software architecture patterns and

in terms of performance). Still, we finally decided to go ahead for two reasons. On the

one hand, our web app must not be too complex; it must be just a simple tool to interact

with the microservices and visualize their results. For this reason, having a software de-

sign pattern is not essential since the complexity of the code is acceptable. On the other

hand, Streamlit is based on Python and works at a very high level, getting us away from

using HTML or CSS, as well as allowing us to use most of Python’s plots and tools for

data management. These two reasons are essential, as we can develop a good frontend

but dedicate most of the time to the backend, where the objective complexity resides.

To establish a communication between the frontend modules and the correspondent mi-

croservices (which implements a REST API), we use the Python’s library requests to

make HTTP requests (using GET or POST methods).

Below, each microservice is independently analyzed, followed by how they are used

and combined through the web app module, if necessary.

4.2 Moral Framing Service

This microservice is intended to analyze texts and quantify their moral framing according

to the “Framing Axis” method described in Sect.2.3.2. In particular, we quantitatively

measure the impact of every moral foundation from the MFT, indicating how polarized

the text is to the vice/virtue of the foundation (bias) and how much this moral foundation

is making an impact on the text (framing intensity). This method is relevant because it

is unsupervised and does not need a human-annotated corpus. This makes us avoid a

possible measurement bias propagated when labeling the corpus. Instead, this method

uses word embeddings to capture the semantic meanings and relations between words

and determine if the text is biased.

The chosen word embedding is “GoogleNews-vectors-negative300”. The reasons are:

1) it uses word2vec [46], which is the most popular algorithm used for learning word

embeddings from text data; 2) it contains 3 million word vectors, meaning it has em-

beddings for 3 million different English words or phrases; 3) each vector is represented

in 300 dimensions, which balances computational efficiency with the richness of repre-

sentation; and 4) it was trained on the Google News corpus (i.e. text data from Google

News articles), which perfectly fits our problem since one of our targets is evaluating the

moral framing of news. It is essential to highlight that whatever embedding is used must
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not apply any bias mitigation techniques beforehand, as these biased patterns inside the

embedding are necessary to determine if the text we are evaluating is morally biased.

Using the embedding, we calculate the direction vector (axis) of every moral foun-

dation by subtracting a set of words of one of the opposite polarities (virtue) from the

other (vice). To obtain these words, we use the MFD, a large set of words classified

by moral foundation and vice or virtue. Once we have the corresponding directions, we

are prepared to calculate the cosine similarity and apply the formulas defined by the

Framing Axis method to calculate the bias and intensity of the texts. Next, how this

method was implemented is explained.

This microservice implementation consists of a Python server using Flask that defines

a REST API, and an additional Python class named MoralFraming, which contains all

the internal logic of the microservice. First, the class is described, highlighting each

method, followed by a description of the API routes.

4.2.1 MoralFraming Class

All the necessary logic is contained inside a class denominated as MoralFraming by using

the Object Oriented Programming (OOP) paradigm supported by Python language. It

contains several auxiliary methods (identified because its name starts with “ ”) and one

primary method called get metrics, which is the one that must be called from outside.

Computing axes

The first method is compute axes, invoked in the class constructor. This function cal-

culates moral framing axes using the embedding of already commented words. The

function begins by grouping the words obtained from the MFD into different moral

categories based on the foundation. For each category, it separates the words labeled

virtues and vices. Then, it attempts to retrieve the associated vector of each word from

the embedding. It is ignored if a word’s vector is not found in the model. Once the

vectors are collected, the function calculates the mean vector for the words virtue and

vice within each category, representing the average semantic meaning of virtue and vice.

These mean vectors are then used to compute a moral framing axis by subtracting the

mean vice vector from the mean virtue vector. The function stores the axis of each

moral category in a dictionary called axes, with the category name as the key and the

calculated axis as the value. Finally, the function returns the axes dictionary, which
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contains the moral framing axes for each category and is stored as an attribute of the

class to be used by other methods.

Cosine similarity

The cos sim method calculates the cosine similarity between two vectors, a and

b, passed as parameters. Equation 4.1 shows the mathematical function used as a

reference. In this method, the dot product of the vectors is computed first using

np.dot(a, b) from numpy library, which gives a measure of their overlap. Then,

the method calculates the or magnitudes of each vector using np.linalg.norm(a)

and np.linalg.norm(b) using numpy, too. The cosine similarity is obtained by di-

viding the dot product by the product of these norms, which effectively normalizes the

vectors and yields a value between ’-1’ and ’1’, where ’1’ indicates identical orientation,

’0’ indicates orthogonality, and ’-1’ indicates opposite orientation.

cos sim (a,b) =
a · b

∥a∥∥b∥
(4.1)

Preprocessing methods

It includes three auxiliary functions. The first is delete stopwords, which returns

the text passed as a parameter with stop words and punctuation removed. The second

function is tokenizer, which takes a text as an input parameter and returns a tok-

enized version, split into words. The final function is count words, which counts the

frequency of each token in the tokenized text.

Getting Bias Score

The get bias score function calculates a biased score based on the frequency of

tokens and their similarity to a specified moral framing axis. In essence, this function

implements the mathematical equation to calculate the bias score defined by the Framing

Axis method (see Sect. 2.3.2). The function first checks if the frequency dictionary

(freq dict) and the moral framing axis (mf ) are provided as parameters. If not, it

raises an exception of type ValueError. It then initializes variables to keep track of the

cumulative bias score and the total frequency of the tokens. Each token in the frequency

dictionary calculates the cosine similarity between the token’s vector (obtained from the

embedding defined as an attribute in the class) and the vector corresponding to the
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specified moral framing axis. This is done via the cos sim function. This similarity

score, weighted by the token’s frequency, contributes to the bias score. The function

sums these weighted similarity scores and normalizes the result by the total frequency

of the tokens. If the normalized bias score is infinite or Not a Number (NaN), it is set

to zero. Finally, the bias score is returned.

Getting Intensity Score

The get intensity score function computes an intensity score reflecting the vari-

ance in token similarities relative to a baseline threshold (B T ). This function implements

the mathematical equation to calculate the intensity score defined by the Framing Axis

method (see Sect. 2.3.2). Similar to the get bias score function, it starts by verify-

ing the presence of two of the parameters frequency dictionary (freq dict and the moral

framing axis (mf ), raising a ValueError if either is missing. The third parameter is

B T, which represents the bias score for the same freq dict and mf axes. This function

then initializes the variables to aggregate the intensity score and the total frequency of

tokens. For each token, it calculates the cosine similarity (using cos sim) between

the token’s vector and the moral framing axis vector. This similarity score is adjusted

by subtracting the baseline threshold, squared, and weighted by the token frequency

to contribute to the intensity score. The function sums these squared differences and

normalizes the result by the total frequency of tokens. If the normalized intensity score

is infinite or NaN, it is set to zero. The function returns the resulting intensity.

Calculating Scores

The calculate scores function computes bias and intensity scores for each moral value on

the model axes by using the get bias score and the get intensity score. This function

takes as a parameter a frequency Python dictionary (freq dict), where the keys are

tokens and the values are their respective frequencies in the original analyzed text.

This freq dict is passed as a parameter to both the bias and intensity functions. This

function calculates the scores for each foundation of MFT by iterating through each

one in self.axes and getting bias and intensity scores for the text (represented in

freq dict) for each of them. These scores are then stored in a dictionary where each

moral foundation is associated with its corresponding scores. The function returns this

dictionary.

39



CHAPTER 4. ARCHITECTURE

Figure 4.2: Moral Framing Service’s internal architecture and external access

Getting Metrics

The get metrics function is a higher-level method that processes a given text to gen-

erate moral framing metrics. This is the only function that must be called from outside

the class. It first tokenizes the input text using the tokenizer function, then removes

stop words and punctuation signs using delete stopwords, leaving only significant

tokens. It counts the frequency of each remaining token using the count words func-

tion, generating a frequency dictionary. This frequency dictionary is then passed to the

calculate scores function, which returns a set of bias and intensity scores for each

moral value. The get metrics function ultimately returns these scores, providing a

detailed analysis of the text’s moral framing.

4.2.2 API methods

As a microservice is being designed, it must be provided with an API to be requested

from outside. A REST API has been developed by using Flask. This includes two routes,

which take advantage of the MoralFraming class to process the received data and re-

turn a result. Table 4.1 describes both routes in detail. Remarkably, both implement the

POST method, as they are intended to receive data as a parameter. So, it is better to do

it via the encrypted POST form than appending key-value pairs to the URL in the GET

method. Choosing the POST method offers us more security and efficiency. Fig. 4.2

illustrates how the client (in this case, the frontend) interacts with the microservice and

how the Flask server internally communicates with the MoralFraming class. The server

invokes the MoralFraming instance by internally calling its get metrics function.

40



4.2. MORAL FRAMING SERVICE

Figure 4.3: Flow Diagram of get metrics function

41



CHAPTER 4. ARCHITECTURE

Route HTTP Method Explanation

/metrics POST It expects a text (of type string) as a

parameter and calls to get metrics

from MoralFraming class to

calculate its bias and intensity scores,

returning them in a JSON file.

/metrics for words POST This method is passed a list of words

as a parameter and individually

calculates the bias score for each of

them by calling to get metrics. In

this case, calculating the intensity

score for only one word makes no

sense, as shown in the mathematical

function returning “0”. In addition,

the bias and intensity scores of all the

words together are also calculated to

get their cumulative effect. This all

scores are returned via a JSON file.

Table 4.1: API definition for Moral Framing Service
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4.3 Moral LIME Service

This microservice implementation is intended to use interpretability to detect moral bias

on NLP-based classifiers of text. The main idea is that the microservice receives as a

parameter a sample of text (which can be a news article) and the classifier to evaluate if

the classification is unfairly being made. As commented in Sect. 2.3.3, we have studied

two methodologies for model-agnostic and local evaluation of texts: LIME and SHAP.

After a thorough comparison, we opted for LIME due to its comparable performance

to SHAP and the more straightforward Python implementation. It must be noticed

that the microservice’s code is more concise than the previous Moral Framing Service so

that it follows an imperative sequential paradigm rather than utilizing object-oriented

programming.

4.3.1 Logical functions

Next, we comment on the main functions defined in the microservice’s logic.

Processing functions

The format list function takes a list of tuples, each containing a word and an im-

portance value. Convert each tuple into a dictionary where the word is the key, and

the importance is the value. Then, it serializes this list of dictionaries into a formatted

JSON string with an indentation of 4 spaces for readability. The function returns this

JSON string.

Explaining with LIME

The lime explainer function is designed to use LIME Python library to explain

the predictions of text classifiers. It takes four parameters: model, labels, labels name,

and text. The model parameter refers to the NLP classifier to be interpreted; labels

are all the possible outputs of that classifier and labels name a human-understandable

tag for each label; finally, the text parameter refer to the sample text for which the

prediction is intended to be explained. Inside the function, it first creates an instance

of LimeTextExplainer. The explainer is configured with several options. First, the

kernel width is set to 100, prioritizing high approximation accuracy over efficiency or

low computational cost. Furthermore, it cannot be known whether the classifier uses or
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does not use word order since it is externally passed as a parameter; for that reason, in

case of doubt, the bow is set to False to indicate that the classifier uses word order in

its predictions.

Next, the function uses this explainer object to generate an explanation for the given

text instance. It calls the explain instance method of this explainer, passing in

the text instance the classifier’s prediction function to obtain prediction probabilities

and all possible labels the classifier can produce. Additional configuration parameters

are included: num features is set to “50”, instructing the explainer to return the

fifty most relevant words contributing to the prediction. Meanwhile, num samples,

which specifies the number of perturbed samples to generate for approximating the

local decision boundary, is set to “100,000”, enhancing the stability and accuracy of

the explanation at the cost of increased computational expense. Once the explanation

is generated (as an object of the Explanation class), its as list method is called

to obtain a list of the LIME scores for the fifty most relevant words. By default, this

method returns scores for all possible classifier outputs. However, since we focus on the

most probable result, representing the final prediction, the classifier’s prediction for the

given text is previously retrieved and passed as a parameter to the as list method.

Finally, this list with the LIME scores is returned and the prediction retrieved.

Getting LIME scores

Finally, the get LIME scores function is a higher-level method that processes a given

text to generate moral framing metrics. This is the only function that must be called

by the REST API’s internal logic. This function expects several key inputs. The first

one is the primary text data whose classifier’s prediction is wanted to be analyzed.

The second is a serialized ML model file (in a format such as .pkl or .joblib). The

two final parameters are the labels and their associated labels’ names. Upon receiving

these inputs, the function briefly performs pre-processing, including deserializing the

model and verifying that it is a classifier that can predict probabilities. Next, the

function lime explainer is called, with the text instance, model, and labels passed

as parameters, as previously described. This function returns a list containing the LIME

scores. This list is then passed to the format list function, converting it into a JSON

file, which is finally returned.
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4.3.2 API methods

Following the same principles and reasoning as those explained in the Moral Framing

microservice, the REST API is defined as shown in Table 4.2.

Route HTTP Method Explanation

/lime POST Accepts a text (as a string), a list of label indices (as

integers), a list of label names (as strings), and a

serialized ML model file. These parameters are passed

to the get LIME scores function to generate an

explanation for the model’s prediction of the given

text. The result, including the most important words

with its LIME scores, is returned in JSON format.

Table 4.2: API definition for the Moral LIME Service

4.4 DBias Service

This is a direct implementation of the DBias methodology (see Sect. 2.3.5). The main

objective is to offer a REST API to take advantage of the different modules of the

DBias Python library (explained in Sect. 3.1.7). As it offers a high-level abstraction,

using it to implement the API is not a huge task. Out of the four modules available in

the library, we choose text debiasing, bias probability classification, and biased entity

recognition and discard the masking of biased words. This high-level abstraction makes

the library an easy-to-use tool and entails certain limitations. One is that the bias is

not classified according to its origin (for instance, whether the text is biased based on

gender or race). Consequently, we do not consider this microservice a primary tool,

but an auxiliary one. This implies that the bias probability classification module will

return a global probability of bias without indicating the origin, which must be verified

using other means. Similarly, the debiasing and entity recognition modules do not target

specific types of bias but address broad, general social biases. Consequently, the results

must be carefully interpreted and analyzed case by case.
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4.4.1 Logical functions

The microservice’s code defines several functions, which are calculate bias score, de-

bias text, and recognize entities. These functions receive a text as a parameter and call

the corresponding module’s function to process it. Thus, calculate bias score computes

a bias score probability (values from “0” to “1”) to assess the level of bias present in the

text using the bias probability classification module. Then, debias text is used to remove

or reduce bias from the text by using the text debiasing module. Lastly, the function

recognize entities identifies and extracts entities that could aggregate bias to the text by

calling the biased entity recognition module. A fourth function, get bias evaluation, is in-

voked by the HTTP route. This function takes the text as a parameter and boolean flags

for each module, indicating whether the respective modules must perform their calcula-

tions on the given text. For the selected modules (e.g., bias probability classification),

get bias evaluation calls the previously defined functions (e.g., calculate bias score). Fi-

nally, get bias evaluation returns the results of the selected modules in a unified JSON

format to the client.

4.4.2 API methods

Following the same principles as with the previous microservices, the REST API is

defined as shown in Table 4.3.

Route HTTP Method Explanation

/evaluate bias POST It accepts a text (as a string), along with

boolean flags for each module (as boolean).

These parameters are passed to the

get bias evaluation function, which

calls the relevant processing functions

based on the selected modules. The results

from these modules are combined and

returned in JSON format.

Table 4.3: API definition for the DBias Service
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4.5 Word Embedding Service

This last microservice aims to detect and mitigate the implicit bias inside word embed-

dings. This is done by extrapolating the method proposed by Bolukbasi et al. (2016).

To carry out the programming, we take advantage of responsibly.we module from

responsibly Python library. These strategies are potentially applicable to any word

embedding, but the methodology cannot guarantee good performance, as it also depends

on the specific characteristics of the embedding. For that reason, different tests are pro-

posed, including performance and WEAT tests, for the user to check if word embedding

continues to be helpful and if the bias has been reduced/mitigated. This service offers

the possibility of debiasing the word embedding for each moral foundation and social

issues (such as gender, race, etc.), assuming that they are practical manifestations of

an underlying moral bias influence. Like the previous microservices, it is designed using

Python with its Flask library for API.

This microservice is designed to provide functionality based on our defined method-

ology. It comprises four main phases. The first is making an Exploratory Analysis, which

includes exploring the word embedding features, allowing the auditor to gain an initial

understanding. This involves observing the vocabulary size, examining the dimensions,

and identifying the word’s most similar terms using cosine similarity. In this stage, it is

also verified whether the embedding vectors are normalized and normalized if necessary.

Next, we turn to the phase of Calculating projections. The process consists of obtaining

the direction vector (projection) of the target bias (e.g., the moral foundation) by using

two sets of words that represent two reference groups (e.g., vice and virtue terms for the

foundation). The mean vector for each group is calculated by averaging the vectors of

all words in that group. Then, you subtract the mean vector of one group (e.g., the vice

terms) from the mean vector of the other group (e.g., the virtue terms). The resulting

vector represents the direction of the bias in the embedding space, capturing the seman-

tic contrast between the two groups. This direction vector can then measure how closely

other words or concepts align with one of the reference groups over the other, reflecting

their positioning relative to the defined bias.

The third phase is Detecting bias. In this third stage, the embedding’s direct and

indirect bias (explained in Sect. 2.3.1) are calculated. This is done using the direction

vector obtained in the previous step. In the case of direct bias, using a list of neutral
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words, each term is projected on the direction vector, and the absolute value of its cosine

similarity is calculated (the bigger the value, the stronger the word’s bias is). Then, these

values are averaged to get the final metric of the direct bias. Indirect bias is assessed by

measuring the degree to which a neutral word is associated with biased contexts through

the relationships between words in the embedding space. We have prepared different

lists of neutral words for the different bias targets; for example, for detecting gender

bias, a list of neutral professions is used. After that, the fourth step is Mitigation of

Bias. With the help of functions from responsibly library, a “hard debias” is applied

to the embedding. This implies applying neutralize and equalize (also explained in Sect.

2.3.1). As a resume, equalizing means removing the target projection from all the words

except the neutral ones. At the same time, neutralization implies making antagonist

word pairs (e.g., associate with vice and virtue) equidistant from neutral words.

The final step is to Test the Modified Embedding. On the one hand, it is crucial to eval-

uate the performance of the embedding to ensure it remains comparable or only slightly

diminished after applying the “hard debias” technique. Standard benchmarks assess

how well the embeddings capture semantic similarity between words. Each benchmark

provides a set of word pairs with known similarity scores, and our embedding is evaluated

based on how closely their similarity scores match these reference values. The metrics

include Pearson’s correlation coefficient (Pearson’s r), which measures the strength and

direction of the linear relationship between the embeddings’ similarity scores and human

judgments. A higher Pearson’s r indicates a stronger alignment with human assessments.

The associated Pearson’s p-value indicates the statistical significance of this correlation,

with values close to 0 suggesting that the observed correlation is unlikely due to chance.

Spearman’s rank correlation coefficient (Spearman’s r) assesses how well the rankings

of word similarities produced by the embeddings align with human rankings; a higher

Spearman’s r implies better ranking agreement. The Spearman’s p-value shows the sig-

nificance of this ranking agreement, where values close to 0 indicate strong evidence that

the correlation is not due to random chance. Additionally, the ratio of unknown words

represents the proportion of words in each benchmark that were not represented in the

embeddings. The benchmarks listed include:

• WordSimilarity-353. Known as WS353, contains 353 word pairs.

• RG-65. It is abbreviated as RG65 and has 65 word pairs.
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Benchmark Pearson’s r p-value Spearman’s r p-value
Unknown

Words

WS353 0.645 0.000 0.688 0.000 9.915

RG65 0.576 0.232 0.493 0.321 14.286

RW 0.611 0.000 0.655 0.000 77.384

Mturk 0.650 0.000 0.674 0.000 1.558

MEN 0.766 0.000 0.782 0.000 15.148

SimLex999 0.456 0.000 0.444 0.000 1.702

TR9856 0.666 0.000 0.676 0.000 89.722

Table 4.4: Example of performance metrics for word embeddings on various benchmarks

• Rare Words. Focuses on less frequent terms.

• Amazon Mechanical Turk. Described as Mturk, provides human-annotated simi-

larity judgments.

• MEN. A large dataset of word pairs for evaluating similarity.

• SimLex999. It consists of 999-word pairs designed to measure similarity.

• TR9856. Another similar benchmark dataset with specific evaluation details.

We calculate these metrics for both the original and the debiased embeddings to compare

their performance and analyze the impact of debiasing on performance reduction. In

Table 4.4, an example of the result of the performance metrics calculus is shown.

However, testing whether the bias has been removed or reduced is essential. The use

of the WEAT is proposed to measure implicit biases by examining associations between

different sets of words in word embeddings (see Sect. 2.3.1 for more details). WEAT

quantifies the strength of associations between two sets of target words and two sets of

attribute words based on their relative proximity to the embedding space. An example

of a WEAT test is shown in Table 4.5. In this example, the target words are “Science
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Target Words Attrib. Words Nt Na s d p

Science vs. Arts Male terms vs. Female terms 6x2 8x2 0.3035 1.3731 0.0087

Table 4.5: Example of WEAT metrics between target words and attribute words

vs. Arts” (e.g. “science”,“physics”,“arts”,“literature”), and the attribute words are

“Male terms vs. Female terms” (e.g. “male”,“man”, “female”, “woman”). The test

compares the degree to which words from the target set are associated with words from

the attribute set within the embedding space to assess gender-related associations.

Regarding the metrics, the Nt (Number of Target Words) indicates the total number

of words in each category, with “6x2” meaning six words related to science and six related

to arts. The Na (Number of Attribute Words) represents the number of words in each

attribute category, with “8x2” reflecting eight male terms and eight female terms. The s

(Similarity Score) quantifies the degree of association between target words and attribute

words, which can range from “-1” to “1”, indicating the strength of this association. The

d (Difference Score) measures the disparity in associations between the two sets of target

words with the attribute words, ranging from 0 to infinity, with a score of 1.3731 in the

example indicating a notable difference. Finally, the p (p-value) assesses the statistical

significance of these scores, which can range from “0” to “1”. Low p-values imply that the

observed associations are statistically significant, meaning there is a very low probability

that these results occurred by chance.

4.5.1 Logical functions

Below, the existing functions in the microservice’s code are briefly explained and clas-

sified according to the abovementioned methodology. Since word embedding files are

usually large (several gigabytes), they are passed as a parameter to the server in ad-

vance and stored inside the server as a temporal variable for use by the other functions.

The server uses the BiasWordEmbedding class from the responsibly library to

store, handle and work with this word embedding.
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Exploratory analysis

The first function is describe embedding, which takes no parameters and returns

introductory data, such as embedding length in JSON format. Another function, co-

sine similarity, receives two words as input, calculates their cosine similarity, and returns

a tuple with the cosine value and the corresponding degree between the vectors of the

two words. A function named most similar words takes a word as a parameter

and returns the ten most similar words within the embedding context. Finally, the

normalize function checks whether the embedding is normalized and, if not, normal-

izes its vectors. Additionally, we have implemented a high-level global function called

describe embedding that receives a Boolean flag for every previously defined func-

tion, indicating if it is wanted to be called. This function then calls the selected functions

and returns their combined global result in JSON format.

Calculating projection

A function called calculate projection takes a boolean flag for each bias target

(moral foundations, gender, race, etc.) as a parameter. Calculate projections for the

selected targets using a predefined list of contrary words stored on the server. The

method identify projection from a BiasWordEmbedding object is used for it.

Detecting bias

Two functions are defined using methods from the BiasWordEmbedding object in this

case. The first function, get direct bias, has the objective of measuring direct bias

by using the calc direct bias method. The second function, get indirect bias,

calculates indirect bias using the generate closest words indirect biasmethod.

A third high-level function, denoted as get bias, is defined. This function takes two

boolean flags as parameters, indicating whether a particular type of bias should be cal-

culated. Then, it calls the necessary previous functions to calculate the requested bias

and returns the global result in JSON format.

Mitigating bias

Two functions are defined: 1) neutralize embedding and 2) equalize embedding,

which are used to apply the neutralize and equalize mitigation strategies to the embed-
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ding, respectively. Both functions utilize the debias method from the BiasWordEmbed-

ding object, which takes the name of the strategy to be applied as a string parameter.

Furthermore, we have implemented a third function called debias embedding that

receives two boolean flags as parameters, indicating which of the two strategies should

be applied to the embedding. This function then calls the aforementioned auxiliary

functions accordingly.

Testing the modified embedding

There are two functions in the microservice’s code: 1) get performance and 2) get weat,

which are used to apply the performance and WEAT tests to embedding (before and

after bias mitigation). The first function utilizes the evaluate word embedding method

from the BiasWordEmbedding object. However, the second function does not use a

method from this object but instead calls the calc all weat function from the responsi-

bly.we module. This function takes as parameters the BiasWordEmbedding object and

the lists of target and attribute words. The code also presents a third function: evalu-

ate embedding. This is used to call the two previous functions and unify the results of

all tests in the same JSON format for return.

4.5.2 API Methods

By following the same rules as applied to the previous microservices, we define this REST

API as shown in Table 4.6. In this API definition, we use the HTTP GET method since

the parameters passed to the server for some routes are just some boolean flags that can

be included as URL parameters. Fig. 4.4 shows the internal structure of the microservice,

where the server code interacts with the word embedding dictionary and how it can be

accessed from outside (e.g., from the web app) via HTTP.

Figure 4.4: Moral Framing Service’s internal architecture and external access
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Route HTTP Method Explanation

/set embedding POST Accepts a binary file representing the serialized

word embedding, which is then stored in a

server’s session to be used in future calls by the

user.

/get description POST Receives boolean flags to indicate which

exploratory functions should be executed and an

optional list of words as parameters. This route

passes them to the describe embedding

function and returns a result in JSON format

directly obtained from this function.

/detect bias GET Accepts two boolean flags that indicate the

type of bias to be calculated. These parameters

are passed directly to the get bias function,

which returns the calculated bias in JSON

format. This result is then directly returned by

this route.

/mitigate bias GET Accepts two boolean flags that indicate the type

of bias to be mitigated. These parameters are

passed to the debias embedding function,

which returns a boolean flag indicating whether

debiasing was successfully performed. This

result is then directly returned by this route.

/test embedding GET Does not accept any parameters and simply

calls the evaluate embedding function,

which always calculates both performance and

WEAT tests. The results of the tests are then

returned in JSON format.

Table 4.6: API definition for the Word Embedding Service
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4.6 Webapp Modules

This section discusses the frontend illustrated in Fig.4.1. We define a module as a piece of

code within the web application that interacts with one or more microservices to achieve

a specific auditing procedure outcome. Each module described corresponds to a distinct

section of the web page (comprised of its graphic plus its logical part). These sections,

in turn, adopt a multi-page design, which is detailed below. To begin with, it is essential

to note that the use of an architectural design pattern, such as the widely adopted

Model View View-Model (MVVM), has been intentionally omitted. This decision is

based on the simplicity of the codebase, which is implemented solely in Python (due to

the Streamlit high-level abstraction). Incorporating a design pattern would introduce

unnecessary complexity without providing significant benefits, given the straightforward

nature of the project. These modules are thought to provide an interface for the user to

use the different microservices to detect and mitigate moral bias.

To enhance the user experience when using the web page, we have established a three-

step methodology for each module, each step corresponding to a distinct page within the

module. The first step involves uploading the parameters, which means that on the first

page, the user must upload all the necessary elements for the audit. For example, this

might involve uploading a text file containing the content to be analyzed by the Moral

Framing Service. The second step is configuring the auditing process. Here, the user can

select specific moral foundations from MFT that they wish to analyze within the text

using the Moral Framing Service. Upon completing this step, the relevant microservice

is invoked via its REST API. The final step is the evaluation of the results, where

the data returned by the microservice are presented in a graphical, human-interpretable

format. Each step for every module is briefly explained below.

Moral Framing Module

When using this module, in Step 1, the user must upload a text file containing the text

to be evaluated or paste the text into a provided input field. Step 2 involves selecting

the specific moral foundation to be evaluated. Following this, the Moral Framing mi-

croservice is invoked through its /metrics API, and in Step 3, the resulting bias and

intensity metrics are presented graphically in a graph.
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Figure 4.5: Moral LIME Module’s working flow diagram

Moral LIME Module

In this case, step 1 involves uploading the serialized text classifier and its labels (possible

outputs) in a Comma-separated values (CSV) file, which is necessary for explaining and

morally evaluating the text prediction. Then, in step 2, the user uploads the text to

be evaluated in a text file. This text is assessed using LIME and evaluated morally.

At this stage, the Moral LIME Service is invoked via its /lime route. Once the most

important words are identified, they are sent to the Moral Framing Service by calling

its /metrics for words route. In step 3, the most important words are displayed

in a word cloud, where their size indicates importance (the larger the word, the more

important it is), and the color represents moral bias (the redder the word, the more

biased it is). Additionally, the user is provided with extra information about the moral

bias associated with the prediction, allowing for a more comprehensive evaluation.

This module is more complex than the others, integrating two microservices. As

shown in Fig. 4.5, the underlying algorithm is our proposed approach by combining two

existing techniques from the literature. These are implemented in separate microservices:

LIME and Moral Framing. The primary goal of this module is to identify the most

relevant words the classifier considers for its predictions on a given text and then evaluate

these words to determine if they exhibit moral bias related to the vice or virtue of any

of the five foundations of the MFT.

DBias Module

Step 1 consists of uploading the text to be evaluated. In Step 2, the user selects which

operations from the DBias methodology (bias classification, text debiasing, or entity

recognition) should be applied to the text. Finally, in Step 3, the results are displayed

based on the selected operation, following an HTTP call to the DBias service through
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its evaluate bias route.

Word Embedding Module

Lastly, for this module, Step 1 involves updating the serialized word embedding file,

sent directly to the Word Embedding Service’s host and stored in a session via the

set embedding API method. In Step 2, the target bias to be evaluated is selected.

Step 3 is divided, in turn, into several sections, each addressing a specific point of the

word embedding debiasing methodology. First, the results of the exploratory analysis are

displayed graphically, obtained from the get description route. Next, the direct and

indirect bias quantities are shown after calling the detect bias route. Subsequently,

the mitigate bias route is invoked, and once the debiasing is complete, the Web

page indicates whether it was successfully executed. Finally, a HTTP GET request is

made to the test embedding route to perform all available tests. The results are then

graphically presented on the page, allowing the user to assess whether bias has been

adequately mitigated and if the word embedding has maintained its performance.
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CHAPTER5
Evaluation and Case Study

In this chapter, some previously discussed techniques are evaluated. Then, we will present

a selected use case to demonstrate how our system operates.
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5.1 Evaluation

Firstly, we evaluate the performance of some of the microservices to ensure their effec-

tiveness. This evaluation includes the Moral LIME Module and the Word Embedding

Module. However, considering the DBias and moral framing modules is unnecessary

since they implement previously published methodologies that the original authors thor-

oughly tested in their papers.

5.1.1 Moral LIME Module

As discussed in Sect. 4.6, this module aims to evaluate whether a classifier’s prediction

is morally biased. To achieve this, the Moral LIME Service is used to identify the words

the classifier gives more importance to predict. These words are then passed as input to

the Moral Framing Service to determine if they exhibit any bias toward specific moral

foundations from MFT.

To evaluate this module, we train a MultinomialNB [59] text classifier on a film

review corpus [54], which classifies emotions into the following categories: sadness (0),

joy (1), love (2), anger (3), fear (4) and surprise (5). In Fig. 5.1, a preview of this corpus

is shown, where the “text” field is the corresponding review and “label” refers to the

assigned emotion, which is the target column. To introduce a moral bias, we intentionally

overfit the model by associating the word “abuse” with the emotion of “joy”. We chose

the word “abuse” because it is strongly associated with the vice dimension of the fairness

moral foundation, as categorized in the MFD from the MFT framework. To achieve this,

we identify all instances in the corpus that contain the word “abuse” and change their

label to “joy”, regardless of the original one. This word appears in 1.540 samples out

of the total of 416.809 samples the corpus has, sufficient to overfit the model. The

expected outcome is that the model will assign significant importance to this word when

it appears in any text, resulting in a biased tendency to classify such texts as “joy”

despite the remaining content of the text. Consequently, we also anticipate that, using

the Moral LIME Service, LIME will assign a high importance score to this word when

evaluating any sample containing it in the overfitted model. This module then passes the

most important words to the Moral Framing Service (which must include “abuse” since

it is expected to be the most important one). In this last step, we hope this microservice

will identify a polarized fairness bias versus the term“abuse”.
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Figure 5.1: Visualization of the film review corpus’ structure

The text sample we are going to evaluate is randomly created through generative

AI [56] and must contain the term “abuse”. This review sample can be read in the

following section.

“In this film, the director tackles difficult and sensitive themes, including the

abuse of individuals, which is portrayed with a stark and realistic approach.

The storyline is engaging, though at times it may feel heavy-handed. The

performances are strong and capture the emotional weight of the characters’

experiences. However, some viewers might see the portrayal of abuse as

excessive, potentially overshadowing other aspects of the narrative. Overall,

it’s a thought-provoking film that addresses serious issues, though its intensity

may not appeal to everyone.”

When classifying this sample with a non-overfitted classifier (trained on the original

film review corpus), the label assigned is sadness (0). However, when using the overfit

classifier with the same text, the output changes to joy (1) due to the moral fairness

bias that the classifier owns regarding the term “abuse”. The prediction result is shown

in Fig. 5.2. The result of the LIME evaluation confirms that the word “abuse” had

a significant influence on the prediction of the emotion of “joy”, as expected. This is

shown graphically in Fig. 5.3. This result is also illustrated in a list of tuples in Fig.

5.4, with each tuple containing the evaluated word and its LIME score; this is the way

that the LIME’s microservice returns the ten most important words to the Moral LIME

module. In both images, the apparent substantial influence of the word “abuse” with a

LIME score of 0.40 shows that the experiment agrees with our expectations.
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Figure 5.2: Visualization of the biased classifier’s text prediction

Figure 5.3: Graphic result of applying LIME to the biased classifier’s text prediction

Figure 5.4: List format result of applying LIME to the biased classifier’s text prediction
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Now, we use the Moral Framing Service to identify the bias of the words displayed

in Fig. 5.4. For each word, this microservice returns the evaluation of bias across

every moral foundation in a JSON format. We focus on the term “abuse”, whose moral

evaluation (returned by the microservice) is shown in Fig. 5.5, which indicates that it

has a significant moral impact on the vice of fairness, with a value of “-0.31” on a scale

ranging from “-1” to “1”. The absolute value of “0.31” demonstrates a significant moral

polarization, while the negative sign indicates that it leans towards vice. In summary,

the combination of the LIME and Moral Framing microservices reveals the model has

a moral bias toward the vice of fairness. This corresponds to the initial conditions

deliberately induced when overfitting the model and the expected results, so we can

conclude that this module works adequately.

Figure 5.5: Bias and Intensity scores for the term “abuse” in every moral foundation
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5.1.2 Word Embedding Module

This section presents the example of debiasing a word embedding using the methodology

presented in Sect. 4.5. The selected embedding is a small, light version of word2vec [47],

and the target bias is gender. Performance and WEAT tests are calculated before and

after the embedding debiasing process.

Performance metrics

On the one hand, we compare the performance metrics calculated before and after apply-

ing the debiasing technique. Table 5.1 shows the performance metrics before debiasing,

while Table 5.2 shows the metrics after the bias mitigation process. These metrics in-

clude Pearson and Spearman correlation coefficients and the ratio of unknown words in

each benchmark. It is convenient to remember that a high correlation coefficient, with

values closer to “1”, indicates a strong positive correlation between embedding similarity

scores and human judgments, indicating better performance.

Before the debiasing process, the embedding shows strong performance across most

datasets, with Pearson and Spearman correlations generally above “0.6” for datasets

such as WS353 or RW, among others. These high correlations suggest that the em-

bedding captures semantic relationships effectively. The ratio of unknown words, repre-

senting the percentage of words in each dataset that do not appear in the embedding’s

vocabulary, is important because a high proportion of unknown words could negatively

affect the performance metrics. In particular, the ratio of unknown words varies across

datasets, exceptionally high in RW and TR9856, due to these datasets containing more

rare or specialized vocabulary. After the debiasing process, the embedding performance

of the word remains unchanged. The Pearson and Spearman correlation coefficients

show only minor variations compared to the pre-debiasing metrics, indicating that the

debiasing process did not significantly impact the embedding’s ability to capture se-

mantic similarities. The p-values remain at “0.000” for most benchmarks, which means

that the observed effect is unlikely to be due to chance. In other words, the result is

considered reliable and suggests a real relationship, not just a random occurrence. The

ratio of unknown words is identical before and after debiasing, as expected, since the

debiasing process must not alter the vocabulary of the embedding. Overall, the stability

in performance metrics before and after debiasing suggests that the technique effectively

reduced bias without compromising the embedding’s semantic understanding (i.e., the
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performance).

Dataset Pearson r Pearson

p-value

Spearman r Spearman

p-value

Ratio of

Unknown

Words

WS353 0.645 0.000 0.688 0.000 9.915

RG65 0.576 0.232 0.493 0.321 14.286

RW 0.611 0.000 0.655 0.000 77.384

Mturk 0.650 0.000 0.674 0.000 1.558

MEN 0.766 0.000 0.782 0.000 15.148

SimLex999 0.456 0.000 0.444 0.000 1.702

TR9856 0.666 0.000 0.676 0.000 89.722

Table 5.1: Word embedding’s performance before debiasing

WEAT tests

On the other hand, we compare the WEAT test results before and after applying the bias

mitigation technique. As a reminder, these tests measure the bias in word embeddings

by comparing the association between target words and attribute words. Specifically,

WEAT computes a test statistic s, an effect size d, and a p-value p to determine whether

there is a statistically significant bias. The size of the effect d quantifies the magnitude

of the bias, with higher absolute values indicating a more substantial bias. At the same

time, the p-value p assesses the significance of the observed bias. In this case, since we

are targeting gender bias, we decide to use as target words the dyad of “Science vs. Art”

and as attribute words the association of “Male vs. Female”.

Before applying the debiasing technique, the WEAT results return, as shown in

Table 5.3, the notable bias between the target and attribute words. The effect size d

is 1.3731, indicating a strong bias favoring the association of male terms with science

and female terms with the arts. The p-value p is 0.0087, suggesting that this bias is
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Dataset Pearson r Pearson

p-value

Spearman r Spearman

p-value

Ratio of

Unknown

Words

WS353 0.643 0.000 0.685 0.000 9.915

RG65 0.574 0.234 0.493 0.321 14.286

RW 0.611 0.000 0.655 0.000 77.384

Mturk 0.651 0.000 0.675 0.000 1.558

MEN 0.766 0.000 0.782 0.000 15.148

SimLex999 0.459 0.000 0.447 0.000 1.702

TR9856 0.665 0.000 0.674 0.000 89.722

Table 5.2: Word embedding’s performance after debiasing

Target Words Attribute Words Nt Na s d p

Science vs. Art Male terms vs. Female terms 6x2 8x2 0.3035 1.3731 8.7e-03

Table 5.3: WEAT results before debiasing

statistically significant and unlikely to occur by chance. In contrast, after applying the

debiasing technique, the WEAT results indicate a substantial reduction in bias, as shown

in Table 5.3. The effect size d decreases significantly to “-0.1015”, suggesting that the

bias has been almost entirely mitigated. The test statistic s also decreases to “-0.0074”,

and the p-value p increases to 0.56, indicating that the observed association is no longer

statistically significant, having a much higher probability of having occurred by chance.

This outcome suggests that the debiasing process effectively neutralizes gender bias in

the word embedding.
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Target Words Attribute Words Nt Na s d p

Science vs. Arts Male terms vs. Female terms 6x2 8x2 -0.0074 -0.1015 5.6e-01

Table 5.4: WEAT results after debiasing

5.2 Use Case: Auditing a text classifier

Let’s examine a use case in which a ML specialist needs to audit a classifier they previ-

ously developed. They have received reports indicating that the classifier shows biased

behavior with certain texts. In this case, the specialist, acting as an auditor, must choose

the appropriate tool for the analysis from the system. Since the evaluation focuses on

certain classifier’s local predictions, the most suitable module is the “Moral LIME” mod-

ule. Below, we outline the steps the specialist should follow when auditing. As detailed

in Sect. 4.6, each module is divided into several steps, corresponding to a subpage in the

web application. This presentation illustrates how the specialist navigates these steps.

To easily follow the use case, let’s suppose the auditor is auditing the same classifier and

text sample used in the evaluation (see Sect. 5.1.1).

Step 1: Set model and labels

After starting the module web page, the first subpage displayed is associated with Step

1. In this subpage, shown in Fig. 5.6, the auditor must upload the compressed (binarily

serialized) classifier (i.e., the model) and all the possible outputs (labels) that it can

produce in a CSV file. After uploading, the content of the labels CSV is shown, as

illustrated in Fig. 5.7. Finally, the auditor clicks the “Next Step” button identified in

Fig. 5.6 and proceeds to Step 2.

Step 2: Upload text

In this step, similar to what we did in Step 1, the auditor must upload a text file

containing the text whose classifier’s prediction wants to be evaluated. The auditor

clicks then on “Next step” to advance to Step 3, as shown in Fig. 5.8. Remarkably,

there is also a button denoted “Previous Step”, which allows you to return to Step 1

if necessary. When the “Next Step” button is clicked, the web application sequentially
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Figure 5.6: Step 1’s web page before uploading the requested files

interacts with the Moral LIME Service and the Moral Framing Service in the background.

Step 3: Evaluate results

Finally, Step 3 refers to the display and evaluation of results by the auditor interacting

with the web page. The last page shows several points. Firstly, a word cloud with the

most relevant words is displayed (see Fig. 5.9), with their size indicating the relevance

of the text according to LIME scores and the approximation to the color red indicating

a higher moral bias. By this approximation, the auditor can quickly identify that the

word “abuse” is of great importance to the classifier’s text prediction because of its

size and a high moral bias due to its red color. Next, a detailed analysis of the most

essential detected words is presented, one by one, which can be seen in Fig. 5.10. This

table presents categorical values instead of numerical ones to facilitate the auditor’s

understanding of the results. Thanks to this table, the auditor can corroborate the

conclusions taken from the word cloud. Specifically, the word “abuse” is identified as
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Figure 5.7: Step 1’s web page after uploading the requested files

the most relevant term in the prediction, and it exhibits a moderate bias related to the

moral foundation of fairness, which is appropriate compared to the low bias associated

with most other words. Lastly, a general moral analysis is presented. In this case,

we can identify the most relevant moral foundation, being fairness, and its bias and

intensity remarked in both numerical and categorical form. A table displaying the bias

and intensity measurements for each moral foundation is also provided, allowing us to

identify the influence of each one on the prediction. We complete the process after

carefully analyzing the results and drawing our audit conclusions.
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Figure 5.8: Step 2’s web page after uploading the text file

Figure 5.9: Step 3’s word cloud displayed on the web page
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Figure 5.10: Step 3’s word’s detailed analysis displayed on the web page
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CHAPTER6
Conclusions

This chapter describes the achieved goals done by the master thesis following some of

the key points developed in the project.
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6.1 Conclusion

To conclude this thesis, we review the objectives established at the beginning. The first

objective (O1 ) consisted of analyzing existing tools, methodologies, and other resources

to detect bias. This objective has been achieved, as demonstrated in the comprehensive

dissertation presented in Chap. 2. The next objective (O2 ) involved researching a way

to categorize moral values: after reading the literature, we decided to go ahead with the

MFT. The third objective (O3) is to apply state-of-the-art techniques to a particular case

of bias related to moral values; we fulfill it by creating specific implementations of these

techniques for this particular case and developing individual microservices for each. The

fourth objective (O4 ) was to design a theoretical methodology for systematic auditing

NLP-based text classifiers. In this case, we have concluded that bias is a complex

concept whose presence and detection depend on the specific context. Therefore, it is

up to the auditor to decide which tools and steps to use to audit the target system, as

generalizing the auditing process is not as easy as we initially thought. Consequently,

the audit methodology depends on the auditor’s criteria, and we propose several tools to

help them. Finally, the last objective (O5 ) involves evaluating the scope of a practical

application to automate the audit process. We addressed this by implementing a web app

that allows the auditor to choose to use the tools they consider, where some complex

and tedious tasks are abstracted. The results are presented in graphic form to make

their interpretation more straightforward. The established objectives have been achieved

successfully, so the work has been appropriate.

Regarding the thesis’s final result, we have developed a web system based on a

microservice architecture. Through the Web application, users can easily access and

utilize the modules they need (see Sect. 4.6). Each module leverages one or more

microservices (see Chap. 4) to present results. Using a microservice-based architecture

ensures independence and decoupling between components, allowing us to quickly scale

the web app with new modules in the future and modify existing ones by integrating

new microservices. This is crucial given the rapid evolution of the NLP research field

in recent years. As a result, this app serves as an initial prototype of something that

can evolve into a more complex and precise functional system. Furthermore, it has been

concluded that categorizing and generalizing bias, especially in the area of NLP and

moral values, is inherently challenging due to the subjectivity and underlying human
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complexity involved. This implies that the responsibility for detecting bias ultimately

rests with the auditor, who must interpret the results and determine whether bias exists.

The auditor must also decide on the appropriate steps to mitigate any identified bias.

In a more general sense and on a personal note, this work highlights the complex-

ity of creating fair and ethical ML-based systems, particularly those based on NLP.

Considering technical aspects (such as model overfitting or unbalanced corpus) and psy-

chological and social factors influencing the language is essential. Regarding morality,

this thesis demonstrates how our beliefs and moral frames are inherently reflected in

how we express our ideas, which can sometimes be intentionally used to persuade others

emotionally. This must be a significant consideration for society, and the emergence of

NLP-based intelligent systems amplifies this importance. It necessitates carefully eval-

uating how much of this subjectivity should be transferred to these systems, especially

when they are to be used in accountable contexts. Undoubtedly, this is a complex line

of investigation with a long road ahead.

6.2 Achieved Goals

The goals achieved for this project, according to the established objectives, are the

following ones:

• Thorough research on the categorization of bias. We investigated the different types

of bias, focusing on when and how they appear.

• Analysis of state-of-the-art methodologies for detecting bias in NLP. This involved

a comprehensive review of the literature to identify the most up-to-date techniques

for detecting and mitigating bias. The best techniques were then studied and

selected for implementation.

• Categorization of moral values. After conducting a literature exploration, we con-

cluded that MFT, along with its associated MFD, is the most precise method for

categorizing and quantifying moral values.

• Implementation of a module to quantify bias in texts. Using state-of-the-art tech-

niques and a web and microservice-oriented architecture, we employed the Framing

Axis technique to detect the moral load of texts or corpus.
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• Implement a module to detect moral bias in classifier predictions. Similar to the

previous point, we combined the LIME interpretability technique with the Framing

Axis technique to detect if a classifier’s local predictions are morally biased.

• Implementation of a module to mitigate bias in texts. In line with the previous

modules (using the web and microservice-oriented architecture), we used the DBias

technique to design a module that suggests less biased variations of a given text.

• Implementation of a module to detect and mitigate moral bias inside word embed-

dings. We created a module that detects and mitigates bias in word embeddings

as in previous ones. It also tests their performance and bias quantity before and

after mitigation, using the Bolukbasi et al. (2016) technique and WEAT tests.

• Design of a web application to graphically interact with the modules. As a final

achievement, we designed an interactive web application that enables auditors to

interact with the modules and analyze the produced results graphically. Plots and

other tools (like word clouds) enrich the experience and simplify interpretation.

6.3 Future work

The high scalability offered by the developed system raises many possible improvements

or additional features that must be implemented. Then, we outline some of the most

interesting objectives to accomplish that have not been implemented into this project

due to time and other resource limitations. The first and more feasible feature is im-

plementing a module to calculate different fairness metrics for a particular corpus and

classifier. As discussed in Sect. 2.3.4, one of the ways to detect bias from text classifiers

is the usage of metrics. We thoroughly examined the generalized fairness metrics frame-

work [16] and performed tests using the authors’ implementation code, which initially

performed well. However, this code has limitations when applied to different classifiers

and corpora (e.g., it was designed only for binary and three-class classifiers) and exces-

sive complexity. As a result, we decided against implementing the module based on this

code. As a solution, we lay out programming these metrics from scratch in a simplified

and more general form, which we could not afford to do due to lack of time. Therefore,

implementing such a module should be a priority for future work.
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As a second future line, we propose training a classifier that can quantitatively clas-

sify the moral bias of a text according to the MFT. Currently, some methods and

libraries present in the literature can quantify the text of each moral foundation. How-

ever, these cannot identify whether bias is polarized through the vice of virtue. We

propose to evaluate these tools, the existing corpora, and manual annotation to label

a corpus according to the MFT dyads and then train or fine-tune a classifier capable

of quantitatively identifying the presence of each moral foundation and its polarization.

The final objective is to create a new module to detect bias based on this classifier, which

previously had to be deployed into a new microservice. We propose ongoing research into

new methodologies as a final, more general future consideration. The effectiveness of the

implemented system relies not only on precise programming but also on thorough and

careful investigation. Therefore, it is crucial to keep the system updated by continuously

reviewing new research and publications in the field. This is especially important given

the rapid advances in the NLP domain.
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APPENDIXA
Impact of this project

This appendix describes this project’s social, environmental, economic, and ethical im-

pact.
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A.1 Social Impact

The use of this auditing toolkit can have a highly positive social impact, as it serves

as a tool to ensure that ML-based systems and texts/corpora are fair and unbiased.

Using these tools, companies developing new NLP-based systems can check whether

the training corpora are morally biased or if the trained classifier is propagating such

biases, potentially leading to unethical behavior. This is particularly valuable in high-

accountability environments, where unfair decisions can significantly impact minorities

or vulnerable groups. This aligns with Sustainable Development Goal (SDG) 10, titled

“Reduce inequality within and among countries”, which seeks to address the disparities

related to gender, race, age, and other factors. By auditing NLP-based systems to detect

and mitigate biases, we can ensure that these technologies treat all social groups fairly

and equitably.

A.2 Economic Impact

The main economic costs are associated with developing and deploying the system (which

is based on a web microservice-oriented architecture). This includes development costs

(developer salaries, tools, and potential software licenses), infrastructure costs (servers,

storage, load balancing, and network usage), and maintenance and support (code up-

dates, monitoring, and technical support). Additionally, there are security costs (mainly

to avoid technical debt, which could cause the system not to perform well), deployment

and DevOps costs (CI/CD pipelines and container orchestration), scalability expenses

for being able to expand the system auditing capabilities (both horizontal and verti-

cal scaling), and other operational costs (backups, disaster recovery, and long-term cost

optimization).

A.3 Environmental Impact

The environmental impact of this project lies in implementing the system, which is

mainly related to energy consumption and carbon emissions from the servers and data

centers used. High computational demands, especially from microservices that load large

embeddings or have complex processing tasks, can increase energy usage, contributing

to a larger carbon footprint. This impact is particularly relevant to SDG 13: ”Climate
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Action,” which calls for urgent action to combat climate change. Optimizing infras-

tructure must be tried using energy-efficient servers, leveraging green data centers, or

implementing resource scaling strategies. These actions can help mitigate these effects

by reducing the system’s overall environmental footprint and aligning the project with

sustainable practices.

A.4 Ethical Implications

The ethical implications of deploying this auditing system are significant, especially given

its role in evaluating moral values and biases in NLP-based systems. While the tool

aims to promote fairness and accountability, there is a risk that it could be misused by

auditors who manipulate or misunderstand the results, which can provoke certain biases

to be ignored or intentionally omitted (i.e., selectively reporting findings to favor specific

interests). This misuse could undermine trust and exacerbate existing inequalities rather

than mitigate them. Such ethical concerns relate closely to SDG 16: “Peace, Justice, and

Strong Institutions”, focusing on transparency, accountability, and moral standards. To

address these risks, the auditor must guarantee transparency in the auditing processes

as well and the results must be presented as clearly as possible in the web app (which

is chargeable to developers) to reduce the probability of a bad comprehension by the

auditors.
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APPENDIXB
Economic Budget

This appendix describes the economic budget associated with the development of this

project.
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DIRECT LABOR COSTS Hours Price per hour TOTAL

300 20,00 € 6.000,00 €

MATERIAL

RESOURCES

COSTS

Purchase

Price

Usage in

Months

Amortization

(in years)
Cost

Personal Computer 1.200,00 € 6 5 120,00 €

GSI Computer 900,00 € 6 5 90,00 €

TOTAL - - - 210,00 €

GENERAL OVERHEADS

(Indirect Costs)
15%

over DIRECT

COSTS

931,50 €

INDUSTRIAL PROFIT 6%

over DIRECT +

INDIRECT

COSTS

428,49 €

CONSUMABLE MATERIALS Cost

Printing 100,00 €

Binding 300,00 €

SUBTOTAL BUDGET 7.969,99 €

Applicable VAT (IVA) 21%

1.673,69 €

TOTAL BUDGET 9.643,68 €
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