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Resumen

La aparición de la red social Twitter en el año 2006 llevó consigo un tremendo empujón a la

Revolución Digital que ya se estaba viviendo desde finales del siglo 20. Como resultado, a

d́ıa de hoy se twittean unos 6000 tweets cada segundo. Se estima que para el año 2020 la red

social Twitter contará con 275 millones de usuarios en todo el mundo. Tal es la popularidad

de Twitter que casi el 74% de sus usuarios usan Twitter a diario para consultar las noticias

del d́ıa a d́ıa. Se podŕıa decir que la Revolución Digital ha convertido a Twitter en una parte

de nuestras vidas. Es por estas razones que este proyecto tiene como objetivo desarrollar

un clasificador con la habilidad de detectar el sarcasmo en textos cortos, como en tweets.

El propósito de este proyecto es conseguir la detección automatizada de sarcasmo. El

principal desaf́ıo a tener en cuenta es la detección de emociones en frases que contienen

sentimiento. Para abordar este enorme reto, se ha diseñado un clasificador que posee

tecnoloǵıas de Machine Learning, el cuál podrá aprender a detectar sarcasmo. También

han sido necesarias herramientas capaces de procesar lenguaje natural: Natural Language

Processing. Con el fin de obtener unos parámetros adecuados en el clasificador se han

llevado a cabo pruebas para ver que caracteŕısticas aportan información relevante sobre el

sarcasmo al clasificador. Las mas notables fueron los ngramas, las caracteŕısticas léxicas

y Latent Dirichlet Allocator (LDA). Además, se ha llevado a cabo un Grid Search con el

propósito de buscar los parámetros óptimos del clasificador. Esto ha consistido en obtener el

F1 score para cada permutación de una tabla de parámetros a probar. Una vez se obtuvieron

los mejores parámetros, la plataforma senpy fue usada para dar una interfaz intuitiva en la

que un usuario puede introducir texto y el clasificador indica si el texto tiene sarcasmo.

Para terminar, los resultados obtenidos han oscilado, presentando un mı́nimo F1 score

de 90.22% y un máximo de 96.68%.

Palabras clave: Sarcasmo, Twitter, Aprendizaje Automático, Big Data, Python, NLP,

Detección de Sarcasmo, Sentimientos, Emociones y Análisis.

VII





Abstract

The emergence of the social network Twitter in 2006 resulted in a tremendous boost of the

Digital Revolution taking place since the end of the 20th century. As a result, there are

on average at least 6000 tweets being tweeted every second. It is estimated that by 2020

the number of users on Twitter will increase up to 275 million users worldwide. Twitter

has become so popular that roughly 74% of all the Twitters’ users claim to use the social

network as a source to get the daily news. One could say that Twitter has become part

of our lives and such a statement would not be far from the truth. For these reasons, this

project is committed to developing a classifier with the ability to detect sarcasm in short

texts, such as Twitter.

Automatic sarcasm detection is the task of recognizing sarcastic patterns in a text.

Considering the challenges of detecting emotions in a sentiment-bearing text, the approach

followed was the design of a Machine Learning classifier, with the ability to perform a clas-

sification between sarcastic and non-sarcastic tweets. Natural Language Processing tools

played a big role in the task. Moreover, feature extraction facilitated the learning and gen-

eralization steps. To ensure optimum Machine Learning parameters and provide the best

score, several optimization tests were conducted to detect those features which give more in-

formation to the classifier. The most noteworthy features to mention were: Latent Dirichlet

Allocator (LDA), ngrams and lexical features. Furthermore, a cross validation Grid Search

searched over specified parameters to optimize the classifier and get the best score. These

consisted of evaluating the F1 score by looping over a set of parameters. Once the classifier

was optimized, the senpy engine was used to provide a framework where a user could insert

a short text and the classifier could detect whether or not the text is sarcastic.

To conclude, the scores obtained varied between a minimum F1 score of 90.22% and a

maximum F1 score of 96.68%.

Keywords: Sarcasm, Twitter, Machine Learning, Big Data, Python, NLP, Sarcasm

Detection, Sentiments, Emotions and Analysis.

IX





Agradecimientos

A mi familia por apoyarme en mis decisiones, a la Universidad Politécnica de Madrid por
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CHAPTER1
Introduction

1.1 Context

The emergence of the social network Twitter in 2006 led to a tremendous boost of the

Digital Revolution taking place since the end of the 20th century. As a result, there are

on average at least 6000 tweets being tweeted every second. It is estimated that by 2020

the number of users on Twitter will increase up to 275 million users worlwide1. Twitter

has become so popular that roughly 74% of all the Twitters’ users claim to use the social

network as a source to get the daily news2. One could say that Twitter has become part of

our lives and he would not be far from the truth.

Combining the data allocated in the Twitter database with mathematical models can

create insights that we are not capable of imagining. Moreover, the Twitter API offers

the possibility of making topic-based queries, allowing the developer to get an enormous

amount of data from almost any subject. Therefore, Twitter is like a gold mine of data.

Additionally, spatial data can also be obtained by using the Twitter API. This can be very

interesting if the developer wants to see what is the feeling of the people from an area

towards a certain product or company.

According to [26], the world has already generated 1 zettabyte (ZB) of data and it is

1https://www.statista.com/statistics/303681/twitter-users-worldwide/
2https://www.omnicoreagency.com/twitter-statistics/

1

https://www.statista.com/statistics/303681/twitter-users-worldwide/
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CHAPTER 1. INTRODUCTION

supposed to increase up to 44 ZB by 2020. The 44 ZB will contain at least half of lexical

data, coming from social networks like Facebook, Twitter and instant messaging platforms.

Furthermore, it is expected that this humongous amount of data will continuously grow due

to the influx of digital technologies that have already sprung up in the digital era.

Since an enormous amount of text data has arisen, there is a great need to give some

insight to raw data. In that context, text mining uses Natural Language Processing (NLP)

and Machine Learning (ML) techniques to process the data. Usually, text analysis is con-

ducted for two purposes [26]. The first purpose is to analyze peoples’ sentiment on an issue.

The second purpose is to evaluate peoples’ opinion and sentiment on a product or topic.

Finally, to give a glimpse of the results achieved, the senpy engine was implemented to

provide a framework where a user could insert a short text and the classifier could detect

whether or not the text is sarcastic.

1.2 Project goals

The main objective of this project is to define a classifier capable of detecting sarcasm in

texts, particularly in tweets. To do so, the following challenges shall be overcome:

• Tweet body retrieval : The data provided will only contain tweets id and a sarcastic

indicator. Hence, software capable of downloading the body of the tweets is required.

• Dataset preprocessing : To combine different datasets and encode categorical values, a

preprocessing stage is mandatory.

• Feature extracion: If the mathematical classifier is to learn from the body of the

tweets, a feature extraction process is required.

• Model creation: Create classification models using different mathematical learning

techniques.

• Optimization: For the classifier to be optimal, the model will have the best parameters,

most relevant features and greatest mathematical learning technique.

• Senpy implementation: Implement the optimum classifier in the senpy engine as a

plugin to create a framework where a user can insert a short text and the classifier

detects whether or not the text is sarcastic.

1.3 Structure of this document

In this section, we provide a brief overview of the chapters included in this document. The

structure is as follows:

2



1.3. STRUCTURE OF THIS DOCUMENT

Chapter 1 discusses the context wherein this project is located and gives an insight

into the topics that this project will cover.

Chapter 2 describes what are the results already achieved in similar works. Serves as

a benchmark.

Chapter 3 from a generic perspective explains the technologies chosen to create the

model.

Chapter 4 analyzes extensively how are the technologies from chapter 3 implemented

and shows the results achieved.

Chapter 5 finalizes the project showing the conclusions drawn and shows what were

the problems faced.
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CHAPTER2
State of the Art

This chapter will serve as a compilation of past work in automatic sarcasm detection. Firstly,

a brief introduction to the main learning technologies used for text-based learning will be

given. Moreover, an analysis of automatic sarcasm detection will be briefed. Finally, the

main issues found in automatic sarcasm detection shall be overviewed.

2.1 Introduction

Sarcasm detection is an important component for NLP very relevant to natural language

understanding, dialogue systems and text mining [18].

The perspective followed in this chapter is merely to give a glimpse to the reader of the

state-of-the-art technologies used by other researchers in this field.

The chapter will begin by defining sarcasm and its context.

2.2 Sarcasm

2.2.1 Sarcasm Definition

The Free Dictionary1 defines sarcasm as a form of verbal irony that is intended to express

contempt or ridicule. The subjective characteristic of sarcasm makes sarcasm very difficult

1www.thefreedictionary.com

5



CHAPTER 2. STATE OF THE ART

to detect since a word may have a literal meaning and a sarcastic meaning. As a result,

sarcasm automatic detection presents a big challenge [16].

Typically, sarcasm detection has been formulated as a classification problem. In that sense,

given text, the goal is to predict whether or not the text is sarcastic. However, the big

challenge is to label the text, since the classifier is supposed to distinguish between irony,

humour and other sentimental meanings.

In linguistics, sarcasm is a form of figurative language where the literal meaning of words

does not hold, and instead, the opposite interpretation is intended. Sarcasm is a type of

irony.

2.3 Dataset

As a matter of a fact, the studies already done in automatic sarcasm detection depend

entirely on the dataset. That is why it is convenient to divide them into three kinds [16]:

• Short texts: The social network Twitter is extremely popular due to its popularity

among users. It can serve as an example of short text since every tweet is restricted to

not exceed a certain number of words. One approach to obtaining labels for the tweets

is to manually mark them as sarcastic or non-sarcastic. Another approach is hashtag-

based supervision. Hashtags can reveal when a tweet is labelled as sarcastic. By

introducing the sarcasm label, the author makes clear his intention to use sarcasm.

This allows the dataset to be bigger. Many works using this variation have been

reported since its popularity has constantly grown. One of the problems with Twitter

is the text length restriction. If the tweet length exceeds the tweet restriction limit,

the author is going to be forced to introduce abbreviations to the words used. As a

consequence, sarcasm detection is going to be harder since the words are not going to

be correctly spelt.

• Long texts: The information usually comes from reviews, posts, news, articles. Some of

the popular platforms for sentiment analysis in long texts are imdb (for film critiques)

and reddit.

• Other data-sets

It is noteworthy to mention the emphasis made on the Twitter social network since this

project will be focusing on a Spanish set of tweets to detect sarcasm. Please note that this

project will be developed for short texts. Hence, all the conclusions made are only valid for

short texts.

6



2.4. APPROACHES USED FOR SARCASM DETECTION

2.4 Approaches used for Sarcasm Detection

In this section, several approaches used for detecting sarcasm will be discussed. In general,

approaches for sarcasm detection can be classified into rule-based, statistical and deep

learning-based approaches [16].

2.4.1 Rule-based Approaches

Rule-based approaches work by identifying sarcasm through a set of rules based upon evi-

dence [16]. The evidence is captured by using rules relying upon sarcasm. For instance, one

rule can rely on Google to determine how likely that smile (emoticon) is while another rule

can come from hashtag analysis. By identifying the hashtags present in a tweet, a sarcasm

pattern could be found. If the sentiment detected in the tweet does not match with the

hashtag, then that tweet is labelled as sarcastic.

Furthermore, one could find sarcasm if a positive verb happens in a negative situation

phrase in a sentence. The problem here is extracting the set of negative situation phrases.

This is also known as a rule-based approach.

2.4.2 Feature sets

This kind of approach used some of the technologies described below [16]. In this project,

there was a combination of features and learning algorithms but, in contrast, no deep

learning technologies were implemented.

• Features Used: Most of these approaches use bag-of-words as features that have been

found by statistical sarcasm detection. Apart from finding the features, some other

works focus on designing pattern-based features, that are able to indicate sarcastic

patterns on the corpus. The majority of the features used can be found in Figure 2.1.

To allow the classifier to spot sarcastic patterns, these pattern-based features take

three real values: exact match, partial match and no match. Furthermore, pragmatic

features, like emoticons, can also be considered. For the sake of simplicity, the con-

textual sarcastic features (i.e. features that depend on previous messages) are not

considered in this project.

• Learning Algorithms: A variety of classifiers have already experimented for sarcasm

detection. Support Vector Machine (SVM) is quite often present in sarcasm detection

classification techniques. Moreover, many other works have used Logistic Regression

(LR), Multinomial Naive Bayes (MNB) and Random Forests.

7



CHAPTER 2. STATE OF THE ART

Figure 2.1: Features used for Statistical Classifiers [16]

• Deep Learning-based Approaches: Although nowadays deep learning has raised a lot

of awareness, there are still few approaches reported for automated sarcasm detec-

tion. A similarity between word embeddings as features for sarcasm detection has

been reported. This augments features based on similarity of word embeddings re-

lated to other word pairs and report an improvement on performance. Convolutional

neural networks have also been implemented, reporting an improvement of 2% in

performance.

To put it in a nutshell, different techniques for automatic sarcasm detection can be per-

formed. Despite these numerous techniques, sarcasm automatic detection is difficult to

detect since a word can have a literal meaning but also a sarcastic meaning that is not so

easily labelled.

2.5 Main Issues in Sarcasm Detection

There are three main issues present in sarcasm automatic detection techniques [16]:

8



2.6. FIGURES OF MERIT

• Data: Even though hashtag-based labelling can provide large-scale supervision, the

quality of the dataset can be doubtful. For example, let us take the hashtag #not

very often present in tweets. Is this supposed to express sarcasm in the sentence or is

it simply used to express a negation? In most of the works, this problem is tackled by

removing the #not in the pre-processing step and analyzing the sentence. However,

this may as well not be the optimum solution. Another solution is to use as test set

some manually labelled tweets and as train set a hashtag labelled set.

• Features as Sentiment: The question is how can sentiment be detected in a sentence?

In the case of sarcasm, some answers have already been given. If a negative phrase

occurs in a positive sentence then that sentence has most likely sarcasm. In a statistical

classifier, surface polarity can be used as a feature of the tweet. To capture surface

polarity one has to analyze two emotions: activation and pleasantness. This can lead

to a 4% improvement in the accuracy [16].

• Skewed Data-sets: Sarcasm is hard to find in an expression. For that reason, skew

is reflected in data-sets.

2.6 Figures of Merit

This section is committed to showing other past works in Sarcasm Detection for tweets.

The decisive parameters shown in this section will be the F-measure.

• Sarcasm Detection on Czech and English Twitter [22]:

– Description: This paper presents a ML approach to sarcasm detection on Twit-

ter in two languages - English and Czech. The classification was carried out

by using SVM classifiers and Maximum Entropy. Since only SVM has been

implemented in this project, the latter will be discarded.

– Results: F-measure (balanced dataset): 0.947. F-measure (unbalanced dataset): 0.924.

Algorithm: SVM

• Irony detection in short texts2:

– Description: This docuemnt summarizes the result of analyzing ironic tweets.

The language is spanish.

– Results: F-measure (balanced dataset): 0.86. F-measure (unbalanced dataset): 0.82.

Algorithm: SVM
2http://ru.ffyl.unam.mx/bitstream/handle/10391/4787/VII_CoLiCo_G_Jasso_Mesa_3_

2015.pdf?sequence=2&isAllowed=y

9

 http://ru.ffyl.unam.mx/bitstream/handle/10391/4787/VII_CoLiCo_G_Jasso_Mesa_3_2015.pdf?sequence=2&isAllowed=y
 http://ru.ffyl.unam.mx/bitstream/handle/10391/4787/VII_CoLiCo_G_Jasso_Mesa_3_2015.pdf?sequence=2&isAllowed=y


CHAPTER 2. STATE OF THE ART

Moreover, in [16] a table can be found with a collection of many other past works in sarcasm

detection. However, the values on the table are not directly comparable, because different

datasets and techniques have been used by the authors.

In the table 2.1 a compilation of performance values of sarcasm detection is shown.

The left column represents the citations used in the article [16]. Therefore, they do not

correspond to this projects’ citations.

The middle column is expressing whether the dataset was composed of short texts, such as

tweets, or other long texts, like reddits.

Finally, the third column shows the score achieved. To simplify, the F1 Score (in the table

is represented as F ) will be considered the most relevant score. The average F1 Score is

76, 771%. To compute the average, only tweets displaying a F1 Score in the table have been

considered.

For more information on F1 Score see section 4.6.
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Table 2.1: Performance Values of Sarcasm Detection; Precision/Recall/F-measures and

Accuracy Values indicated in Percentages [16]
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CHAPTER3
Enabling Technologies

In this chapter, the technologies used to achieve this projects’ objective shall be discussed.

3.1 Introduction

In this project two main technologies have been used: Natural Language Processing (NLP)

and Machine Learning (ML). The implementation of these tools has been performed in a

combined fashion. Furthermore, other technologies have also been used but they are less

relevant than NLP and ML. On the one hand, with NLP it was possible to transform

words into tokens, find syntactical connections between tokens in the same tweet and,

finally, construct a numerical vector. On the other hand, ML was very useful to construct

a classifier, define a model and feed the vectors from the previous step into the model to

make predictions.

In short, this is how the project was carried out. Both technologies will be extensively

explained in the next sections.

3.2 Natural Language Processing

NLP has a crucial role in this project since texts (tweets) is what this project is trying

to deal with. Hence, the information that used to train the ML algorithm will come in

the form of text. According to [7], at one extreme NLP could be as simple as counting

13
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Figure 3.1: Image is taken from http://www.gartner.com/newsroom/id/2819918

word frequencies to compare different writing styles. At the other extreme, NLP involves

“understanding” complete human utterances, at least to the extent of being able to give

useful responses to them.

When the task is handling text, NLP is a very powerful tool. Such is the importance

that many other applications that can be found everyday already implement it. Figure 3.1

shows many emerging technologies that are using NLP to provide their services. Many

other examples of NLP applications are machine translation, optical character recognition,

language detection, topic modelling and many more [13].

3.2.1 Natural Language Toolkit

3.2.1.1 Definition

Natural Language Toolkit (NLTK) is a platform for building Python programs to work

with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical

resources such as WordNet, along with a suite of text processing libraries for classification,

tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-

14

http://www.gartner.com/newsroom/id/2819918
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strength NLP libraries, and an active discussion forum 1.

The following applications explained beneath belong to the NLTK class.

3.2.1.2 Application

NLTK has provided the following tools to this project:

• Tokenizer : A word (Token) is the minimal unit that a machine can understand and

process. So any text string cannot be further processed without going through to-

kenization. Tokenization is the process of splitting the raw string into meaningful

tokens [14]. In this project, tokenization was required to get the words containing a

tweet. Furthermore, some of the tokens were removed since they do not add mean-

ingful information (e.g. yo, a). These words belong to a stoplist provided by NLTK

for all supported languages [14].

• Stemmer : A stemmer is needed to remove affixes from a word, ending up with a

stem. Stemming is frequently used for indexing words. Instead of storing all forms

of a word, the algorithm stores only the stems, greatly reducing the size of the index

while increasing retrieval accuracy [14]. Particularly, the SnowballStemmer was chosen

because it supports stemming in 13 non-English languages, especially Spanish.

• Part-of-Speech tagging : A-part-of-Speech tagger (pos tag) indicates how a word is

functioning within the context of a sentence2. This part is crucial since a word can

function in multiple ways and we would like to distinguish those cases. POS tagging

has been achieved by collecting each word feature and building up a dictionary with

the word features’ stats. The word features offered by NLTK are:

1. VERB : Verbs (all tenses and modes)

2. NOUN : Nouns (common and proper)

3. PRON : Pronouns

4. ADJ : Adjectives

5. ADV : Adverbs

6. ADP : Adpositions (prepositions and postpositions)

7. CONJ : Conjunctions

8. DET : Determiners

9. NUM : Cardinal numbers

1https://www.nltk.org/
2http://www.nltk.org/book/ch05.html
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10. PRT : Particles or other function words

11. X-other : Foreign words, typos, abbreviations

12. .: Punctuation

The applications at the top of this section are more commonly known as the prepro-

cessing part previously needed to any ML application. Since there are plenty of tasks, they

could be easily coordinated by using pipelines.

More information on how were these technologies implemented in the project can be found

in section 4.3.

3.3 Machine Learning

When it comes to defining models capable of learning from a text-based source, the two

dominant technologies are Natural Language Processing and Machine Learning. These two

main technologies are concerned about how does the machine process human text [21].

Given data and the proper statistical techniques, ML automates analytical model building

capable of recognizing patterns with the aim of making predictions and learning from the

model. To be able to do so, a learning process is required. ML algorithms can be classified

into three categories [1]:

• Regression: Regression learning is predicting a continuous varying variable. Regres-

sion methods can be used to address classification and prediction models. To visualize

a simple example of what regression is we can see the picture Figure 3.2.

• Classification: Classification is modeling based on delineating classes of output based

on some set of input features. If regression gives us an outcome of “how much,”

classification gives us an outcome of “what kind.”

• Clustering : Clustering is an unsupervised learning technique that involves using a

distance measure and iteratively moving similar items more closely together. At the

end of the process, the items clustered most densely around n centroids are considered

to be classified in that group. K − means clustering is one of the more famous

variations of clustering in machine learning.

Furthermore, depending on the dataset the learning process can be carried out in two

different ways:

• Supervised learning: The classifier is trained using a percentage of the total dataset

while feeding the rest of the dataset to make predictions and to evaluate how good

the classifier is. Particularly, this project will be using supervised learning.
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Figure 3.2: Linear regression plotted [21]

• Unsupervised learning: These algorithms base their learning properties on learning

patterns present on the dataset. Unlike in supervised learning, there is no training

and test dataset partition

Two major problems encountered in a ML application are underfitting and overfitting.

These two problems appear due to the bias generated when training the model.

It turns out that depending on how much trained the classifier is, it can make more as-

sumptions than desired. A learned function that can perform well enough on unseen data

points as well as on the training data is termed a generalizable function [25]. A generalizable

function is achieved through a generalizing fit. To get a proper fit, the function must not

be biased, it must be perfectly balanced.

• Underfitting: Figure 3.3 shows that for any point in the diagram, the function always

assigns the same predicted value. Solving the problem of underfitting means making

the line approximate the data better.

• Overfitting: Figure 3.4 shows that for any point in the diagram, the function performs

very good. However, the function has become very inflexible and it will not perform

good enough on new points. According to [21], overfitting can also be understood as

a probable distribution of data. The training set of data that the line is being drawn

through is just a sample of a larger unknown set, and the line which will be drawn

needs to fit the larger set equally well if it is to have any predictive power. Therefore,

it must be assumed that our sample is loosely representative of a larger set.
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Figure 3.3: Underfitting [25]

Figure 3.4: Overfitting [25]
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Another field of Artrificial Intelligence is NLP, which provides tools for analyzing and de-

riving meaning in human language. To do so, NLP provides a means to process lexical

properties as well as syntactic recognition of the human language. However, human lan-

guage can be rarely precise and ambiguous. Even though NLP has a very wide range

of applications, such as automatic text summarizing, relationship extracting, stemming,

sentiment analysis and more, it is a difficult problem to tackle in computer science.

3.3.1 Sklearn

3.3.1.1 Definition

Sklearn (a.k.a scikit-learn) is defined 3 as a simple and efficient set of tools for data mining

and data analysis. It is built on NumPy and SciPy. Sklearn will provide not only the

classifiers needed for the pipeline but also meaningful tools.

3.3.1.2 Application

Sklearn has provided the following tools for this project:

• Train and Test splitting : This method is responsible for splitting the main dataset

into two parts, one for training the model and the other one for testing the model.

It is a very common ML technique. In addition, the testing set will later be used to

compute parameters such as accuracy and f1 score. More information on accuracy

and f1 score can be found in section 4.6.

• Pipeline: A pipeline is a set of procedures connected in series, one after the other

where the output of one process is the input to the next [17]. Image 3.54 represents

the idea of a pipeline, though it does not resemble exactly this projects’ pipeline.

• Frequency Inverse Document Frequency: The Frequency Inverse Document Frequency

(TFIDF) is used for every word. It contains two parts; the if part, which represents

the word frequency and the idf part, which represents inverse document frequency [20].

This term represents a words’ weight in a text.

• Count Vectorizer : The algorithm consists of representing a token by considering how

many times it appears in a text [8]. It basically counts the vocabulary and generates

a dictionary which can later be fed into a pipeline, like in this project.

3http://scikit-learn.org/stable/
4https://www.slideshare.net/databricks/dataframes-and-pipelines
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Figure 3.5: A Pipeline6

• Multinomial Naive Bayes: A multinomial distribution useful to model feature vec-

tors where each value represents a number of occurrences of a term (or its relative

frequency) [8].

• Support Vector Machine: Given a set of training examples, each marked as belonging

to one or the other of two categories, a Support Vector Machine (SVM) training

algorithm builds a model that assigns new examples to one category or the other,

making it a non-probabilistic binary linear classifier5.

• K-Nearest Neighbors: Is a non-generalized ML algorithm that computes distances from

one point to all the training dataset points and chooses the k nearest points [8].The

KNeighbors classifier has been fed into the pipeline as input.

• Logistic Regression classifier : Is analogous to multiple linear regression, except the

outcome is binary. Various transformations are employed to convert the problem to

one in which a linear model can be fit [9].

All the methods illustrated above are widely explained altogether with an implementa-

tion clarification in section 4.5.

5https://en.wikipedia.org/wiki/Support_vector_machine
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Figure 3.6: Senpy’s Architecture [24]

3.4 Senpy

Senpy [24] is a framework for text analysis using linked data. It aims at providing a

framework where analysis modules can be easily integrated as plugins and, at the same

time, provides the core functionalities (data validation, user interaction, logging, etc).

3.4.1 Architecture

Senpy introduces a modular and dynamic architecture which allows implementing different

algorithms in an extensible way while offering a common interface and offering common

services that facilitate development, so developers can focus on implementing new and

better algorithms.

To do so, the architecture consists of two main modules:

• Senpy core: Building block of the service.

• Senpy plugins: Analysis algorithms.

Figure 3.6 depicts a simplified version of the processes involved in Senpy analysis framework.

3.5 Bitter

In order to download the Tweets which integrate partially the dataset, the tool bitter was

used. Bitter is able to automate several actions (e.g. downloading Tweets) by using a
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Figure 3.7: Bitter Architecture

Python wrapper over Twitter which adds support for several Twitter API actions 7.

Bitter could be used after installing it and running commands on the UNIX terminal.

3.5.1 Architecture

Figure 3.7 explains how was bitter used in this project. On the left, the reader can see the

information provided to the bitter tool. The configuration file is needed to download the

tweets, otherwise, nothing will be downloaded. The file contains the user credentials for

accessing the Twitter database.

The tweet id file is a .csv database containing in one column the desired tweets. Finally,

bitter will download in .json format all the tweets in the indicated folder (indicated on the

command). For those tweets that, by any reason, could not be downloaded, a folder named

error will be created containing the tweet ids that failed.

3.6 Elasticsearch

Elasticsearch is a highly scalable open source search engine with a very powerful analytical

engine. The data stored in Elasticsearch is Javascript Object Notation (JSON) formatted.

The primary way of interacting with Elasticsearch is via REST API [3]. The most powerful

tool that Elasticsearch provides is indexing. Indexing becomes a very important task when

dealing with lots of amount of data, in this case, with many tweets.

7https://github.com/balkian/bitter
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Figure 3.8: Elasticsearch [2]

3.6.1 Architecture

All data stored in Apache Lucene’s data is stored in inverted index. This means that the

data is being transformed. The process of transforming data is called analysis, which relies

in two basic pillars: tokenizing and normalizing. The normalizing step is mandatory to

make the tokens readable. Inverted index processes are performed by analyzers. An analyzer

is composed of a tokenizer and one or more token filters. During the indexing time, when

Elasticsearch processes a field that must be indexed, it checks whether an analyzer is defined

in several levels [3].

When it comes to indices, Elasticsearch uses shards and replicas in order to distribute data

around the cluster.

Elasticsearch distributes the shards by performing a process called sharding. The indices

(or index) are called shards and Elasticsearch automatically manages the shards, like a

low-level working unit. The most common terms used in Elasticsearch are:

• Node: An instance of Elasticsearch running on a machine.

• Cluster : The name under which one or more nodes are connected.

• Document : A JSON object containing the actual data in key-value pairs.

• Index : Logical namespace in which Elasticsearch stores data.
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Figure 3.9: Elasticsearch and a Database [3].

• Doc types: A class of similar documents. A type consists of a name and a mapping.

• Shard : Containers which can be stored on a single node or multiple nodes. A shard

can be either primary or secondary. A primary shard is the one where all the opera-

tions that change the index are directed. A secondary shard is the one that contains

duplicate data of the primary shard and helps in quickly searching the data as well as

for high availability; in a case where the machine that holds the primary shard goes

down, then the secondary shard becomes the primary automatically.

• Replica: Duplicate copy of the data living in a shard for high availability.

Finally, as mentioned before, Elasticsearch can be related to a traditional database manag-

ing system. This is depicted in Figure 3.9.

3.7 Pickle

The pickle module makes it possible to store an object in a file in a standard format for later

use by the same or a different program. The stored can be any type of object as long as it

does not require an operating system resource such as a file handle or network socket [27].

Pickle is very useful for using an already trained classifier in different modules.
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Model

4.1 Introduction

The social network Twitter has become extremely popular worldwide. It has developed into

a tool that allows anyone to interact directly with people of his interest. Even world-wide

leaders, like the president of the United States of America, announce important decisions

using Twitter. In other words, Twitters’ simplicity and easy-to-use interface has completely

transformed the way citizens interact with the society. Altogether with the globalised world

that we are living in and the limitless scope that the internet presents makes Twitter a

resourceful platform of data.

In this chapter, a technical description of the implemented model will be given.

Firstly, an overview of the model shall be presented, followed by the dataset details. Fur-

thermore, the data munging preprocessing will be made clear. Later on, the model building

alongside with the classification options shall be extensively explained, making emphasis on

the best classification results. Finally, the parameter optimization will be briefed altogether

with the best-founded parameters results.

4.1.1 Overview

In this subsection, a wide view of the system will be given. The first part of this project

consists of elaborating the ML model. Figure 4.1 shows the steps followed during the ML
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Figure 4.1: The Machine Learning [11] Model
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stage.

The first two steps are needed to collect the data from the Twitter social network, com-

bine it with more data sources, generate a final .csv file and prepare the data frame (see

section 4.2). Once the data frame is generated, data exploration and cleaning will be per-

formed (i.e. delete empty tweets, encode categorical variables and so on). It is then when

an algorithm is built and trained. The algorithm is also known as a classifier and it will

be responsible for predicting sarcasm in new tweets (see section 4.5). Finally, an accuracy

report of the classifier will be carried out to evaluate the quality of the classifier (see sec-

tion 4.6).

The second part of the project consists of defining a framework, where the ML process can

be added as an analysis module. This can be accomplished thanks to senpy [24].

The way senpy is implemented is by defining just one plugin, which will contain the com-

plete ML process previously designed. In other words, the plugin will contain the classifier.

The plugin will be run every time the user types in some text (see Figure 4.5 ) and, finally,

the results will be visualized in the web.

4.2 Dataset

This section explains the dataset choice, as well as the main label present in the dataset.

This project is formerly designed to detect sarcasm in Spanish written texts, particularly

tweets. Therefore, all the datasets used in this project are written in Spanish.

The dataset body will contain two columns, the tweet body, i.e. the text, and a binary

value expressing the sarcasm nature of that tweet.

The final dataset will be composed of three different datasets.

The initial database1 consists of 4529 sarcastic tweets and 335 non-sarcastic tweets. At first,

the dataset contained only the tweet identifier and the sarcastic label, meaning there was

no text present on the dataset. In order to obtain the tweet text, it was necessary to use the

bitter tool (see section 3.5). While doing so, many tweet bodies were no longer available to

retrieve since the Twitter platform had removed them or the owners had privatized them.

As a consequence, new sarcastic tweets were provided by a colleague from the Intelligent

Systems Group in the UPM.

Even though the numerous amount of sarcastic tweets was a good start, the dataset was

completely unbalanced. Consequently, new tweets had to be searched to obtain a properly

balanced dataset. Considering the fact that the majority of the dataset is sarcastic, finding

new non-sarcastic tweets was not a difficult duty.

1http://ru.ffyl.unam.mx/bitstream/handle/10391/4787/VII_CoLiCo_G_Jasso_Mesa_3_

2015.pdf?sequence=2&isAllowed=y
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Figure 4.2: Dataset

In the end, the result was 5638 sarcastic tweets and 5444 non-sarcastic. That can be

rewritten as 49.12% of non-sarcastic and 49.5% of sarcastic tweets.

The Figure 4.2 displays the dataset structure. As explained before, there is one column

showing the tweet text and another column showing the sarcastic value of the tweet. The

“1” refers to sarcastic, while “0” is non-sarcastic.

4.3 Preprocessing

The preprocessing stage is conceived to dispose of any information that will not be needed

during the ML step [28]. The preprocessing was applied individually to each tweet. The

changes in the dataset that have been made are:

• False items: Since almost half the dataset tweets come from Twitter, it was required

to download those tweets from the social network. Some of the captured tweets were

false.

• Categorical values: Originally the labels of the dataset were either “True” or “False”.

These two values were encoded into “True”= 1 and “False” = 0.

• Randomization: This step was used to provide a randomized dataset and have the

tweets mixed up. This was important because initially almost every sarcastic tweet
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was at the beginning and that is not desirable.

At the beginning of the preprocessing stage, the dataset is split into two parts, a training

part and a testing part. The purpose of this split is to train a classifier using the train

sequence and evaluate the accuracy of the classifier using the test sequence. The split is

taken randomly. The size of each sequence is 75% for the train sequence and 25% for the

test sequence (8311 and 2771). More information on can be found on section 4.6.4.

4.4 Feature Extraction

The feature extraction process consists of reading the text and extracting certain features.

Furthermore, those extracted features will be fed to the classifier and finally the model will

be completed. As a result, the accuracy of the model will be directly related to the choice

of features. Therefore, it is very important to choose wisely the features to extract.

This section will be committed to extensively explaining the selected features.

The extraction will be performed inside a Pipeline, which will execute each extraction

sequentially. In this project, two pipelines are defined, the first aims at extracting the

ngrams. With the ngrams extracted from the first pipeline, a second one will extract other

features and unify the ngrams with the other extracted features. Even though there are

two pipelines defined, the results of the ngrams pipeline are added to the other pipeline.

This is done thanks to the Feature Union class provided by Scikit-Learn.

4.4.1 Lexical Features

Usually extracting lexical features involves getting the number of sentences and the number

of words in each sentence. However, since this projects’ dataset is made out of tweets and

the number of characters in a tweet is limited, I have considered that each tweet contains

only one sentence. As a consequence, the lexical feature extraction becomes very simple.

The extraction consists of tokenizing each sentence and stemming each token (or word) to

get the root. At the same time, the words belonging to the Spanish stop list are removed

(see section 4.3 for more details). In section 4.4.5 is explained what happens with the

extracted words in this stage. The list of operations made for the lexical feature extraction

are as follows:

1. Stopwords: In ML it is a very common practice to delete words which barely provide

any information to the text (e.g. “a”, “I”, “you”). In this project, the list of stopwords

was chosen for the Spanish language due to the language of the tweets. The list of

words can be consulted in [13].
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2. Tokenization:This process consists of splitting a string (tweet) into tokens. Usually,

a token is the same as a word.

3. Stemming : This process consists of reducing the tokens into its root. Basically, the

words are transformed into its root. Stemming was accomplished using a Snowball

stemmer.

After performing these operations, the remaining words were passed to a Frequency Inverse

Document Frequency transformer (see section 4.4.5).

4.4.2 Syntactic Features

The syntactic feature extraction consists of counting the number of nouns, adjectives, verbs,

adverbs, conjunctions, pronouns and numbers present in each tweet.

The table 4.12 details the syntactic features extracted in this project. The approach to do

so consisted of labelling every token present in a tweet, assigning to the token the grammar

tag (see table 4.1) and generating a dictionary with the number of verbs, number of nouns,

and so on.

Finally, the dictionary will be processed by the TFIDF (see section 4.4.5 for more details

on this stage).

Tag Meaning Example

NOUN noun year, home, costs

ADJ adjective new, good, high

VERB verb is, say, told

ADV adverb really, already, still

CONJ conjunction and, or, but

ADP adposition on, of, at

PRON pronoun he, their, her

NUM numeral twenty-four, fourth, 1991

Table 4.1: POS Used Tagset

2http://www.nltk.org/book/ch05.html
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4.4.3 Ngram Features. Pipeline

Ngram extractions consist of grouping the words into bag of words. If we group the words

individually then a sentence with five words will be considered as a five words sentence. If

we group two words together then a sentence of six words will be considered as a three word

sentence. So each pair of words are understood by the estimator as one.

Since it is very difficult to guess what is the optimum bag of words (i.e. number of words)

CountVectorizer method provided by the Scikit-Learn class allows us to define a range. Fi-

nally, to select the optimum range, a Grid Search (GS) will be performed (see section 4.7.1).

4.4.4 Latent Dirichlet Allocator (LDA) Features

LDA 3 is a generative statistical model that allows sets of observations to be explained by

unobserved groups that explain why some parts of the data are similar.

In other words, LDA extraction can be used to extract how many topics are being spoken

about in the dataset. This can be observed by analyzing each words’ presence.

The main parameter of this statistical model is the number of topics. Similarly as with the

ngrams features, a GS will be performed to find the optimum number of topics (see sec-

tion 4.7.1).

4.4.5 Frequency Inverse Document Frequency (TFIDF)

TFIDF 4 is a numerical statistic that is intended to reflect how important a word is to a

document in a collection or corpus. Particularly, the TFIDF recognizes those words that

are rare in the corpus but may be of great importance. The TFIDF uses a word as an

argument and outputs the inverse frequency of that word.

The equation used is [21]:

tft,d =
count(t)

count(alltermsindocument)
(4.1)

with

idft = log(
N

dft
) (4.2)

and

tfidft,d = tft,d × idft (4.3)

The number of occurrences of a word in a complete document is computed with eq. (4.1). Equa-

tion (4.2) represents the idf of a word. That amount serves as how much information a word

provides. As explained before, terms with less frequency are considered to provide more

3https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
4https://en.wikipedia.org/wiki/Tf\OT1\textendashidf
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information to the whole document as more common terms. Finally, eq. (4.3) computes the

weight of a word.

4.5 Classifiers

This section will explain extensively the classifiers used for the learning process.

Classification [29] is the task of predicting the class to which an object, known as a pattern,

belongs. The pattern is assumed to belong to one and only one among a number of a priori

known classes. Each pattern is uniquely represented by a set of measurements, known

as features. One of the early stages in designing a classification system is to select an

appropriate set of feature variables. These should “encode” as much class-discriminatory

information, so that, by measuring their value for a given pattern, to be able to predict,

with high enough probability, the class of the pattern. Figure 4.3 is an example of two

linearly separable classes, where a straight line can separate the two classes.

In this project, there will be three classifiers.

4.5.1 Naive Bayes

The MNB classifier is a typical and popular example of a suboptimal classifier. The basic

assumption is that the components (features) in the feature vector are statistically inde-

pendent; hence, the joint Probability Density Function (PDF) can be written as a product

of l marginals [29]:

p(x|ωi) =

l∏
k=1

p(xk|ωi) (4.4)

Considering that both ωi and x are Gaussian variables, it is only necessary to compute the

mean and the variance for each pair of variables. That leads to a total of 2 × l unknown

variables for a subclass. Computationally speaking, 2 × l complexity is achievable in a

reasonable amount of time for a large l. This is the great advantage of the MNB.

The MNB classifier was defined setting the parameter alpha = 0.01. Nevertheless, it is

not very important what parameters to set when defining the classifier since a GS will be

performed with the purpose of discovering the best classifier parameters. (See section 4.7.1)

In this project, the results obtained for the MNB with no parameter optimization can be

observed in table 4.2. The quality of a classifier will be established using the F1-Score field

from the classification report. For more details about this precedent see section 4.6.
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Figure 4.3: Classifier [29]

Variable Precision Recall F1-Score Support

0 0.81733 0.78781 0.80230 1329

1 0.81074 0.83773 0.82401 1442

avg/total 0.81390 0.81379 0.81360 2771

Table 4.2: Multinomial Naive Bayes Classification Report

4.5.2 Support Vector Machine

Support vector machine [15] is a supervised learning algorithm that can be used for clas-

sification and regression. It is able to classify data linearly and nonlinearly using kernel

methods. Each data point in the training dataset is labelled, as it is supervised learning,

and mapped to the input feature space, and the aim is to classify every point of new data

to one of the classes. A data point is an N dimension number, as N is the number of fea-

tures, and the problem is to separate this data using N-1 dimensional hyperplane and this

is considered to be a linear classifier.

The SVM was defined setting as parameters C = 1 and kernel = linear. In other words,

the initial SVM model was the linear SVM model.

With such parameters, the results can be observed in table 4.3. The quality of the classifier
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was established following the F1-Score field from the classification report. For more details

see section 4.6.

Variable Precision Recall F1-Score Support

0 0.92590 0.92387 0.92488 1366

1 0.92614 0.92811 0.92712 1405

avg/total 0.92602 0.92602 0.92602 2771

Table 4.3: Support Vector Machine Classification Report

4.5.3 K-Nearest Neighbors (k-NN)

k-NN is based on the idea that samples that are close with respect to a predefined distance

metric are also similar, so they can share their peculiar features. To measure that distance,

a distance function is defined. Usually, that distance function is the Minkowski metric [8].

For each data point in the out-sample data, we calculate its distance from all data points

in the in-sample data. Each data point has a vector of distances and the K distance which

is close enough will be selected and the final decision about the class of the data point is

based on a weighted combination of all k neighborhoods [15].

The k-NN was defined setting as parameters neighbors = 7.

The results can be observed in table 4.4. The quality of the classifier was established

following the F1-Score field from the classification report. For more details see section 4.6.

Variable Precision Recall F1-Score Support

0 0.79561 0.76940 0.78229 1366

1 0.78276 0.80783 0.79510 1405

avg/total 0.78909 0.78888 0.78878 2771

Table 4.4: K-Nearest Neighbors Classification Report
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4.5.4 Logistic Regression (LR)

Logistic Regression is a classification method that is based on the probability of a sample

belonging to a class. It consists of maximum-entropy classification. Mathematically, the

aim is to compute the minimum of eq. (4.5) [14].

minw,c
1

2
wTw + C

n∑
i=1

log(exp(−yi(XT
i w + c)) + 1) (4.5)

The LR classifier was defined setting the parameter C = 1.

For such a parameter, the results obtained can be observed in table 4.5. The quality of

the classifier was established following the F1-Score field from the classification report. For

more details see section 4.6.

Variable Precision Recall F1-Score Support

0 0.90007 0.90074 0.90040 1360

1 0.90426 0.90361 0.90393 1411

avg/total 0.90220 0.90220 0.90220 2771

Table 4.5: Logistic Regression Classification Report

4.6 Quality of a Classfier

In order to ensure a sufficient classifier accuracy, precision is not always the best indicator.

Let us consider a binary class dataset where 99% of the data belongs to one class and only

1% of the data belongs to the other class. Now, if a classifier were to always predict the

majority class for every data point, it would have 99% accuracy. But that would not mean

that the classifier is performing well. To have a better idea of the classifiers’ efficiency we

first must define some parameters [5]:

• True Positive (TP): Cases where the actual and the predicted classes are both posi-

tive.

• True Negative (TN): Cases where the actual and the predicted classes are both neg-

ative.

• False Positive (FP): Cases where the actual class is negative but the predicted class

is positive.

35



CHAPTER 4. MODEL

• False Negative (FN): Cases where the actual class is positive but the predicted class

is negative.

To better understand these definitions let us imagine a classifier that predicts a sarcastic

when in fact that tweet is not sarcastic, that would be a false positive. On the other hand,

if the classifier predicts that a tweet is not sarcastic when in reality is sarcastic, that would

be a false negative.

4.6.1 Precision

Precision is defined as the ratio of the number of positive cases that were correct to all the

cases that were identified as positive [5]. Mathematically:

Precision =
TP

TP + FP
(4.6)

4.6.2 Recall

Recall is defined as the ratio of the number of positive cases that were identified to the all

positive cases present in the dataset [5]. Mathematically:

Recall =
TP

TP + FN
(4.7)

4.6.3 F1 Score

is the harmonic average of the precision and recall. It is a metric that conveys the balance

between precision and recall [5]. Mathematically:

F1 = 2× Precision×Recall

Precision + Recall
(4.8)

Since the F1 score takes into account both the precision and the recall (see eq. (4.8)), it is

the most suitable for determining a binary classifiers’ quality. In this project, a tweet can

either be sarcastic or non-sarcastic. Therefore, F1 score report is the appropriate quality

measure.

4.6.4 Model Creation

The Figure 4.45 depicts the methodology followed for training and evaluating the classifier.

Firstly, the dataset is split into two sets, the training and the test. (In the Figure 4.4, there

is another subdivision called val but that will not be necessary for this project). Once the

split is done, a model is constructed. Finally, the quality of that model is evaluated using

the test set and applying the F1 score.
5http://algolytics.com/tutorial-how-to-determine-the-quality-and-correctness-of-classification-models-part-1-introduction/
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Figure 4.4: Model Construction

4.7 Parameter Optimization

This section will cover how was the parameter optimization performed and what were the

results obtained for each classifier.

To understand the parameter optimization, first, we must comprehend how is the classifier

built in this project.

The simplest definition of text classification is that it is a classification of text based on

the content of that text. Now, in general, all the machine learning methods and algorithms

are written for numeric features/variables. One of the most important problems with text

corpus is how to represent text as numeric features [14]. That stage is accomplished by mak-

ing use of the pipeline described in section 4.4. Depending on how the feature extraction

pipeline was created, the parameters of the final classifier change. Therefore, the classifier

is assembled by both the pipeline described in section 4.4 and one of the classifiers chosen

in section 4.5.

In order to find the right classifier parameters, it must be carried out a parameter search

for the pipeline parameters and the classifier parameters.

From section 4.4, the pipeline extracts three main features; ngrams, words (custom tok-

enizer) and topics (LDA). From these features, the only parameters that will be searched

are the number of topics from LDA and the number of ngrams.

From section 4.5, the parameters searched will depend on the type of classifier. On the

following subsections from this section, the topics will be covered. The parameter search
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will be done using the GridSearchCV from the Scikit Learn class. The principle of the

GridSearchCV is:

1. Define a dictionary of parameters to change.

2. Fit the grid search with the training dataset (this process can take a very long time).

3. Print best score alongside with the best parameters.

4. Print the metrics accuracy score by testing the classifier with the best parameters

found. For this, it is required a test dataset.

4.7.1 Grid Search

A grid search is an exhaustive search through a manually-specified subset of the hyperpa-

rameter space. The grid search algorithm requires a performance metric, such as cross-

validation error or validation-set error to evaluate the best possible parameter [25]. The

grid search method comes from the Scikit Learn class.

A grid search was optimized for each classifier to get the best performance. During the

process of optimization not only the parameters of the classifiers were optimized, but also

the type of features to extract.

The results found extracting ngrams, lexical features and the number of topics shall be

presented alongside with the scores found extracting ngrams, lexical features, syntactic fea-

tures and number of topics. The optimized parameters are the same either for the four

feature extraction than for the three feature extraction.

4.7.1.1 Multinomial Naive Bayes

• Parameters to optimize:

1. Alpha. Belongs to classfier

2. Number of topics. Belongs to pipeline

• Results

4.7.1.2 Support Vector Machine

• Parameters to optimize:

1. C. Belongs to classfier

2. Number of topics. Belongs to pipeline

3. Number of ngrams. Belongs to pipeline

• Results
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Variable Precision Recall F1-Score Support

0 0.96481/0.87704 0.96765/0.86740 0.96623/0.87219 1360/1365

1 0.96873/0.87262 0.96598/0.88193 0.96735/0.87726 1411/1406

avg/total 0.96680/0.87480 0.96680/0.87477 0.92602/0.87476 2771/2771

Table 4.6: Multinomial Naive Bayes Classification Report Optimized. Three features ex-

tracted/Four features extracted

Variable Precision Recall F1-Score Support

0 0.91131/0.89993 0.90662/0.89597 0.90896/0.89794 1360/1365

1 0.91044/0.89943 0.91495/0.90327 0.91269/0.90135 1411/1406

avg/total 0.91086/0.89968 0.91086/0.89968 0.91086/0.89967 2771/2771

Table 4.7: Support Vector Machine Classification Report Optimized. Three features ex-

tracted/Four features extracted

4.7.1.3 K-Nearest Neighbors

Since the results of the k-NN were very low (see table 4.4) there was no grid search performed

to predict the best classifier parameters. Furthermore, k-NN it is not a recommended

classifier for the porpose of the project.

4.7.1.4 Logistic Regression

• Parameters to optimize:

1. Number of topics. Belongs to pipeline

2. Number of ngrams. Belongs to pipeline

• Results
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Variable Precision Recall F1-Score Support

0 0.92819/0.90767 0.90361/0.89304 0.91573/0.90030 1359/1365

1 0.90953/0.89776 0.93272/0.91181 0.92098/0.90473 1412/1406

avg/total 0.91868/0.90264 0.91844/0.90256 0.91841/0.90254 2771/2771

Table 4.8: Logistic Regression Classification Report Optimized Three features extracted/-

Four features extracted

4.8 Senpy

Senpy was used in this project as a framework for wrapping the classifier work in a plugin,

providing an interactive interface where the user only needs to type in text and senpy detects

the sarcastic property of the text.

To make senpy work, the following was required:

• Install senpy using command line6

• Integrate the classifier as a plugin

4.8.1 Results

The following pictures illustrate the result of using senpy using as examples a sarcastic

sentence and a non-sarcastic one.

6https://github.com/gsi-upm/senpy
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Figure 4.5: Sarcastic example using Senpys’ Playground [24]
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Figure 4.6: Non-sarcastic example using Senpys’ Playground [24]
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4.9 Elasticsearch

Elasticsearch was implemented in this project as a place to store the tweets. The advantage

of using Elasticsearch is its versatility to introduce new improvements to the project, such

as implementing a dashboard using Sefarad7.

7https://sefarad.readthedocs.io/en/latest/sefarad.html
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CHAPTER5
Conclusions and future work

The conclusions reached in the previous chapter will be brought together in this chapter.

Moreover, a description of the achieved goals and the lines of future work will be explained.

Finally, the problems faced will be presented.

5.1 Conclusions

This project resembles an example of automatic sarcasm detection. The approach followed

was training a classifier using a dataset consisting of two columns, one for the text body and

the last column to feature the sarcastic property of the text body. This goal was fulfilled

by making use of ML techniques and NLP techniques, with the ability to detect sarcasm in

short text, such as Twitter.

To compile the final dataset, three datasets containing tweets where assembled and put

together generating a final dataset with the tweet body and the feature.

Later on, the model could be built by introducing a preprocessing stage designed to encode

categorical variables and delete tweets lacking a text body. To ensure a non-dependency

between the tweets, the rows of the dataset were randomized.

Once the dataset was ready a pipeline was designed, which would be responsible for the

feature extraction process. The features that gave more information to the classifier were:

1. Lexical features: The word repetition frequency had a relationship with the sarcastic

45



CHAPTER 5. CONCLUSIONS AND FUTURE WORK

property of a short text.

2. Ngram features: This feature shows that depending on how many words uses the

algorithm to consider a noun, the model can be more precise.

3. Number of topics feature (LDA): Taking into account the possible number of

topics that a text can be talking about is a relevant characteristic of sarcasm.

As an interesting fact, the model predicted with more accuracy having only these three

features extracted rather than counting on the syntactic features.

The next step was to feed the features extracted to a classifier. According to [19], a classifier

is a kind of rule-based system with general mechanisms for processing rules in parallel, for

adaptive generation of new rules, and for testing the effectiveness of new rules. The classifiers

which had an outstanding performance were:

1. Multinomial Naive Bayes: This classifier was by far the best one, reaching an F1

score of 0.92.

2. Logistic Regression: This classifier had an F1 score of 0.91.

3. Support Vector Machine: This classifier had an F1 score of 0.91.

The three classifiers were trained using a training set and the F1 score was extracted by

using a testing set. Additionally, the K-Nearest Neighbors classifier was also implemented

but it had a very bad performance.

Finally, the senpy engine was implemented to provide a user-friendly interface allowing the

user to insert text and get a message saying if the tweet is sarcastic. An example can be

found in Figure 4.5.

5.2 Achieved goals

The main goals achieved in this project were:

Construction of a ML classifier capable of detecting sarcasm in short texts,

such as tweets.

This was the main objective of this project.

Implementation of the classifier in a web engine which allows any user to detect

sarcasm in a user-inserted text.

This goal could be achieved because of the Senpy engine.
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5.3 Future work

In regard to the future development of the model, the following improvements could be

done:

1. More feature detection. In sum, only four features have been extracted in this project,

however, more features could give more information concerning sarcasm. However,

this classifier has shown a better performance when analyzing three features rather

than four. Therefore, if many more features are considered, the performance of the

classifier may be degraded due to the overfitting phenomenon.

2. Take into account previous tweets. It is very common that tweets are used to answer

other tweets. Sometimes the sarcasm is hidden in an answer to a message. In this

project, that possibility was never considered, deeming a sarcastic tweet only if the

tweets’ text field is sarcastic. It could be a good improvement to consider the text

field of a tweet and also the predecessing tweets’ text field.

3. Implement a dashboard. In section 4.9 it was discussed the possibility of using the

elastic search engine to generate a dashboard and offer a better interface to the user.

To do so, the Sefarad engine offered by the Intelligent Systems Group at the UPM

(GSI) is very useful. In [?] more information regarding the dashboard can be found.

5.4 Problems encountered

The problems faced in this project shall be explained

1. Technologies used: At the beginning of the project, it was required that I learned all

the technologies used as well as the libraries implemented. This required a considerable

amount of time.

2. Retrieval of tweets: The provided datasets contained only a column indicating

the tweet id and sarcastic value (’True’ or ’False’). To retrieve the text bodies that

would later be fed to the classifier, those text bodies were obtained by using the

Bitter(section 3.5) software.
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APPENDIXA
Cost of System

A.1 Introduction

This appendix is committed to giving an overview of the economic requirements that this

project presents.

A.2 Physical requirements

The only physical device needed for the development of the project is composed of a com-

puter capable of handling the ML tasks and the deployment of the system. Since the

requirements are not demanding there are many other possibilities than the one given in

this appendix.

The technical characteristics capable of providing enough computational power for the needs

presented in this project could be:

• RAM : 8 GigaByte

• Hard Drive Disk : 500 GigaByte

• Processor : Intel Core I7 with 4 cores

Considering the market of today and fulfilling the technical characteristics explained above,

a computer of e800 would be eligible.
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A.3 Human resources

This section will explain the cost of having a programmer to develop the system and main-

tain it.

Considering that this project is made out of twelve ECTS and each ECTS accounts for 27

hours, the total amount of time invested in this project are at least 324 hours. Considering

the average salary in Madrid (e8.12/hour), the project would cost around e2630.

Moreover, a person dedicated to the maintenance should also be considered. To that end,

someone with knowledge about ML and NLP, like a Telecommunication Engineer, could be

hired. In that case, a salary of e24000 could suffice.

A.4 License

This project has been done without any private license. Therefore, there is no need to spend

money on a software license. This is the main benefit of using open source software.
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Impact of the Project

B.1 Introduction

By the year 2000, around 100 million people had access to the internet. Back then, it was

considered a strange hobby to get engaged socially online.

By that time, the social network MySpace began raising awareness and became a popular

place to create a profile and start adding more people. One could say that MySpace set the

first tracks, which later would inspire and give birth in 2005 to the well-known Facebook.

One year later, out of the same inspiration was Twitter created. Ever since that happened,

the number of active users in Twitter has exponentially grown. This can be shown in Fig-

ure B.1.

Social networks are definitely an important agent in our lives. Ever since the beginning of

these platforms, the developers have been trying to improve and enhance the capabilities of

the platforms in order to ensure the user an exceptional quality of the social network. To

this purpose, the platforms become more intelligent and offer more features. That is the

reason why studying sarcasm detection can be very interesting.

In this appendix, the social, environmental and ethical impact of this project will be ana-

lyzed.
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Figure B.1: Twitter’s popularity in the past years
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B.2 Social Impact

There are two ways of uploading information into any social network: text and media

content. This project will allow developers to detect sentiment in text. I believe that this

project is a very powerful tool due to the ability to detect people’s feelings towards a certain

topic. To visualize the social impact of this project, an example will be given:

Let us imagine that the Spanish General Elections are taking place in three weeks from

now. In such a period, political parties are focusing their efforts on attracting people. This

is done through a political campaign. The idea behind it is to influence the decision-making

process within a specific group. To do so, political leaders have always used the media and

advertisements to present their ideas. If we think about this, there is no way of knowing

precisely how good is a political leader performing before the elections day. In other words,

how can a political leader now if the ideas presented are liked or disliked? Is it even possible

to find a specific group where the ideas are liked? Now, thanks to social networks the rules

change because the citizen is allowed to react to the political ideas advertised by the political

leader. Finally, the citizens have a way of individually tweet, like, dislike, retweet, etc.

In a big country, such as Spain with more than 46,000,000 citizens, one cannot go and read

the reactions of millions of people. Even though social networks now allow the citizen to

react to the political campaign, it is still very difficult for the political leader to understand

precisely how do the people feel toward the ideas proposed.

This project brings an answer to that problem. By using the tools described in this project

and setting adequate filters in Twitter, it is now possible to detect the sentiment of the

citizens towards a political program. Furthermore, with the hashtag tool offered by Twitter,

it is even easier to filter and analyze the desired tweets.

Companies are also very much interested in this project because now they have a way of

analyzing how do people feel towards the product that the company offers. This project

gives them the possibility of studying the market.

Finally, the privacy of the users is a very sensitive element in any data analysis project.

This project data came from the Twitter database and it is open to the public.

B.3 Environmental Impact

This section will define the main environmental effects of this project.

Electronic equipment, such as computers, require a constant electric current flow to work.

That current is manifested as a charge in the electricity network. If the organization uses

efficient and class A computers, the energy consumption can be significantly reduced. How-

ever, there is no way of totally obliterating the energy demand.
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Moreover, in case laptops were used, there would be an environmental threat due to the

batteries. That is why laptops are not recommended.

B.4 Ethical Impact

One important ethical implication is the fact that automating activities implies job loss. If

a program can predict the sentiment of the people with a reasonable level of accuracy, then

there is no need to employ someone to do that task. However, the mere use of this project

requires new jobs to maintain the system.

Secondly, a very serious and sensitive implication is the use of people’s data. The privacy

policy used by Twitter indicates that the user consents the use of the data stored in Twitter.
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