
GRADO EN INGENIERÍA DE TECNOLOGÍAS Y

SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DEVELOPMENT OF A DASHBOARD FOR SPORTS
BETTING TIPSTERS ANALYSIS

JUAN PABLO SERRANO ZAPATERO
JULIO 2024

TRABAJO DE FIN DE GRADO

T́ıtulo: Desarrollo de un Cuadro de Mando para el Análisis de Tip-

sters de Apuestas Deportivas

T́ıtulo (inglés): Development of a Dashboard for Sports Betting Tipsters

Analysis

Autor: Juan Pablo Serrano Zapatero

Tutor: Carlos Ángel Iglesias Fernández

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DEVELOPMENT OF A DASHBOARD FOR

SPORTS BETTING TIPSTERS ANALYSIS

Juan Pablo Serrano Zapatero

Julio 2024

Resumen

El mundo de las apuestas deportivas ha visto un crecimiento exponencial en el número

de cuentas activas, especialmente entre los apostadores online, gracias a las facilidades

que ofrecen las nuevas tecnoloǵıas para apostar en cualquier momento y en casi cualquier

deporte y mercado de apuestas. En este contexto, la figura de los tipsters, pronosticadores

expertos con un historial comprobado de estad́ısticas y métricas almacenadas en plataformas

online, conocidas como comunidades de tipsters, ha cobrado gran relevancia. La rentabilidad

demostrada por estos tipsters ha dado lugar a un nuevo concepto en el que las apuestas

deportivas pueden considerarse una inversión, en lugar de solo un entretenimiento.

Dado este enfoque de inversión, la diversificación se presenta como una práctica re-

comendada. Por ello, se ha desarrollado una herramienta innovadora que permite a los

usuarios crear una cartera de tipsters basada en sus preferencias individuales, como el

número de apuestas diarias, los deportes en los que se apuesta y el nivel de riesgo deseado.

Esta herramienta no solo selecciona a los tipsters recomendados para el usuario, sino que

también ofrece un análisis profundo de la cartera creada gracias a un dashboard interactivo.

Este dashboard, compuesto por múltiples gráficos y métricas divididos en varias secciones,

facilita una comprensión integral y visual de la rentabilidad y el desempeño de la cartera.

En resumen, el objetivo de este proyecto ha sido desarrollar una herramienta que con-

vierte la apuesta dportiva en una actividad de inversión estructurada, permitiendo a los

usuarios gestionar y optimizar sus apuestas mediante la creación y análisis detallado de una

cartera de pronosticadores personalizada.

Palabras clave: apuestas deportivas, tipsters, portfolio de inversión, análisis de datos,

dashboard, gráficos interactivos, personalización de usuarios, Streamlit, visualización de

datos

I

Abstract

The world of sports betting has seen exponential growth in active accounts, especially

among online bettors, thanks to the facilities offered by new technologies to bet at any

time and in almost any sport and betting market. In this context, the figure of tipsters,

expert forecasters with a proven track record of statistics and metrics stored on tipster

communities, has gained great relevance. The profitability demonstrated by these tipsters

has led to a new concept in which sports betting can be considered an investment rather

than just entertainment.

Given this investment approach, diversification is presented as a recommended practice.

Therefore, an innovative tool has been developed that allows users to create a portfolio of

tipsters based on their individual preferences, such as the number of daily bets, the sports

on which they bet, and the desired level of risk. This tool selects the recommended tipsters

for the user and offers an in-depth analysis of the portfolio created through an interactive

dashboard. This dashboard comprises multiple graphs and metrics divided into various

sections, which facilitates a comprehensive and visual understanding of the profitability

and performance of the portfolio.

In summary, the objective of this project has been to develop a tool that turns sports

betting into a structured investment activity, allowing users to manage and optimize their

bets through the creation and detailed analysis of a customized portfolio of tipsters.

Keywords: sports betting, tipsters, investment portfolio, data analysis, dashboard,

interactive charts, user customization, Streamlit, data visualization

III

Agradecimientos

A mi madre, Mayte, por todo el amor y cariño que me muestra d́ıa tras d́ıa. Por su apoyo

incondicional en todos los momentos que he vivido a lo largo de mis años de carrera. Por

felicitarme en los buenos momentos y apoyarme en los que no lo son tanto. Por el esfuerzo,

sacrificio e ilusión que siempre ha mostrado por mı́ y mis hermanos. Gracias, Mamá.

A mi padre, Jorge, por ser el principal impulsor de que eligiera la senda ingenieril, cuyo

camino he disfrutado y en el que he recibido cientos de aprendizajes que van mucho más

allá de las telecomunicaciones. Por inculcarme una manera de pensar anaĺıtica y racional de

la que tan orgulloso me siento. Por ser una persona ejemplar en infinitos ámbitos y ser uno

de esos seres humanos que hacen avanzar a la sociedad. Por todas sus enseñanzas, habidas

y por haber. Por mostrar siempre interés en que, tanto yo como mis hermanos, seamos las

mejores personas posibles y tomemos las mejores decisiones. Y, por supuesto, por el apoyo,

aliento y consejos durante mis años de carrera. Gracias, Papá.

A mi hermana, Sara, y a mi abuela, Tere, por ser dos personas esenciales en mi vida y

que, cada d́ıa, me dan un motivo para ser un poco más feliz y estar agradecido de lo que

me ha dado la vida. Gracias, Saru, Abuelita.

A Maŕıa, por ser una persona tan especial en mi vida. Por quererme y apoyarme

durante los años de carrera. Por siempre haberme mostrado interés y alentarme en que

siguiera trabajando para sacar el grado adelante y seguir creciendo como persona. Por

sacar lo mejor de mı́. Gracias, Mery.

A los profesores y a la ETSIT (Escuela Técnica Superior de Ingenieros de Telecomuni-

caciones) por ofrecerme todas las herramientas y enseñanzas necesarias para completar este

grado, desarrollarme profesionalmente y proporcionarme una manera de afrontar problemas

aplicable a una infinidad de ámbitos en la vida.

A mi tutor, Carlos Ángel Iglesias, por su inestimable ayuda para el desarrollo de este

proyecto. Por haberme animado a aventurarme con este proyecto tan relacionado con mis

intereses actuales, y que nunca hubiera seleccionado de no ser por él. Por su atención y

disponibilidad para solucionar dudas y ofrecerme su consejo. Por atenderme en las tutoŕıas

con la mejor de las actitudes y el apoyo mostrado en todas ellas. Gracias, Carlos.

V

Contents

Resumen I

Abstract III

Agradecimientos V

Contents VII

List of Figures XI

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.2.1 Specific Goals . 3

1.2.2 Data Collection and Processing . 3

1.2.3 Analytical Function Library . 3

1.3 Structure of this document . 4

2 Theoretical Framework 5

2.1 Tipster & Tipsters Communities . 5

2.2 Key Concepts of Sports Betting . 7

2.3 Enabling Technologies . 8

2.3.1 Programming Languages . 9

2.3.1.1 Python . 9

VII

2.3.1.2 JavaScript . 9

2.3.2 Web Scraping . 10

2.3.2.1 Crawlee . 10

2.3.2.2 Playwright . 10

2.3.2.3 DevTools Chrome . 11

2.3.3 Front-End Development . 11

2.3.3.1 Streamlit . 11

2.3.3.2 Plotly . 12

2.3.4 Data Processing and Analysis . 12

3 Architecture and High-Level Design 15

3.1 Introduction . 15

3.2 System Architecture Overview . 16

3.3 Data Collection Module . 17

3.4 Data Munging Module . 19

3.5 Visualization & User-Interaction Module . 20

4 Data Processing Detailed Design 23

4.1 Data Collection Process . 23

4.1.1 Tipster Community Selection . 24

4.1.2 Data Scraping . 24

4.1.2.1 Scraping Phases . 26

4.2 Data Munging Process . 32

5 Visualization Design 35

5.1 Overview . 35

5.2 Streamlit Setup & Layout Design . 36

5.2.1 Mockup Design . 36

5.2.2 Streamlit Widgets & Layout Components 36

5.2.2.1 Layout Elements . 36

6 Case Study 41

6.1 Introduction . 41

6.2 Initial Access . 42

6.3 User Preferences Settings . 42

6.4 Navigation through Tabs . 43

7 Conclusions and Future work 47

7.1 Conclusions . 47

7.2 Achieved goals . 48

7.3 Future work . 49

Appendix A Impact of this project i

A.1 Social impact . i

A.2 Economic Impact . ii

A.3 Environmental Impact . iii

A.4 Ethical Impact . iii

Appendix B Economic budget v

B.1 Introduction . v

B.2 Physical resources . v

B.3 Human Resources . vi

B.4 Licenses . vi

B.5 Taxes . vi

B.6 Conclusion . vi

Appendix C Reference manual vii

C.1 Data processing modules . vii

C.2 Visualization modules . ix

C.2.1 DataFrames Design for Visualization ix

C.2.2 Chart Creation and Design . x

C.2.3 Component Integration . xi

Bibliography xiii

List of Figures

3.1 Development Process Chronology . 16

3.2 High-Level General Architecture of the Application 17

3.3 Data Collection Module Architecture . 18

3.4 Data Munging Module Architecture . 19

3.5 Visualization & User-Interaction Module Architecture 21

4.1 Data Scraping Workflow . 26

4.2 Pyckio.com Tipster Ranking Page . 28

4.3 Using Chrome DevTools to Inspect a Tipster’s Personal Page on Pyckio.com 29

4.4 Conversion of string data to lists . 33

4.5 Verification of data types stored in the DataFrame 34

5.1 Mockup Design of the Application Layout 37

6.1 Initial view of the application. 42

6.2 Sidebar settings for customizing default values. 43

6.3 Sidebar PRO features. 43

6.4 Main view of Your Portfolio tab. 44

6.5 Main view of The Tipsters tab. 45

6.6 Tipsters last month’s analysis charts. 45

6.7 Bank and Stake set up. 45

6.8 Past performance and expected results. 46

6.9 Main view of the Sports & Markets tab. 46

XI

CHAPTER1
Introduction

1.1 Context

In this digital era, online sports betting has grown rapidly in popularity and drawn a wide

range of bettors interested in the thrill and potential profits of sporting events [18]. New

technologies have created opportunities that are primarily responsible for this phenomenon.

Sports betting is now more accessible and attractive than ever thanks to features such as

mobile betting, instant access to a wide selection of betting markets, flexibility in accessing

accounts from any device, fast bet execution, and a wide choice of bets [12].

However, the paradox is that despite the growing popularity of sports betting, more

than 75% of bettors in Spain lost money in 2022 [17]. Of the remaining percentage, only a

few made significant profits. Only gamblers with excellent analytical skills and emotional

abstraction manage to belong to the select group of winners [13]. This is where professional

forecasters, known as tipsters, come into play. Through their experience and in-depth

analysis, these experts create forecasts in those markets and matches where they consider

the probability of victory more significant than what the bookmaker indicates, looking for

long-term reward and profitability in sports betting [20]. Throughout their careers, tipsters

are characterized by a history full of data and parameters that define their past performance,

1

CHAPTER 1. INTRODUCTION

which is a valuable source of information to determine their potential profitability in the

future.

Delegating bets to the expertise of tipsters tends to be a good practice, as they leverage

their specialized knowledge and experience. However, this practice also introduces certain

risks. A significant problem facing bettors who rely on tipsters is choosing the right ones.

A portion of bettors who experience losses are those who fail to select successful tipsters,

which occurs mainly for two reasons.

The first reason is to be fooled by scammers who sell their services as professional

tipsters. These fraudsters promise impossible profits to their followers by sharing their

bets argued with empty words instead of backing them up with significant and valuable

data [7]. In addition, they usually lack past statistics to demonstrate their profitability.

Some even misrepresent such statistics. Tipster communities have emerged to deal with

these deceptions. These are platforms where tipsters upload their forecasts. The platform

itself verifies and stores the statistics of each tipper, making it a fundamental tool for bettors

to analyze the tipsters [9].

Another reason that can lead to money losses is the lack of competence and skills to

correctly analyze the data provided by these communities, which define the performance of

each tipster. Accurate analysis of tipster’s past statistics, aiming to maximize the probabil-

ity of future profitability, is a complex task that requires specific knowledge and tools [21].

Although sports betting has traditionally been considered a kind of entertainment, it can

now become a new investment with the correct strategy and application of modern technolo-

gies [14]. Studying and implementing effective betting strategies and tools to help bettors

make informed decisions is relevant and essential in this evolving landscape.

In this context, the interest in developing a project focused on creating a tool to form

a portfolio of high-quality tipsters and visualizing data and statistics tailored to each user

to maximize profits becomes evident. The next section explores the specific goals of this

project.

1.2 Project goals

This project aims to build an interactive dashboard for users to form their custom portfolios

of tipsters based on their interests. This could be daily activity levels (e.g., number of bets

per day), favorite bookmakers, sports, or betting markets. For more novice players who

cannot analyze tipster statistics, the dashboard will be a high-value tool, as it will be for

2

1.2. PROJECT GOALS

those more experienced in the world of sports betting who seek to structure a solid tipster

portfolio that will allow them to diversify their investments.

1.2.1 Specific Goals

• User-Friendly Dashboard: The dashboard will provide an interactive and highly

intuitive tool so that any user, without requiring extensive knowledge in the field, can

build their portfolio of quality tipsters according to their user needs.

• Comprehensive Tracking and Analysis: The application will be provided with

interactive capabilities to provide users with different analyses and parameters that

define the characteristics of their portfolio and of each tipster in it, as well as the ability

to compare the results between them. This will be achieved thanks to the inclusion

of different graphs and key performance indicators that will help users analyze and

understand their investments from different points of view.

• Historical Performance and Future Projections: The tool will also offer an eco-

nomic view, considering the user’s initial investment and betting strategy. A temporal

analysis will be performed to visualize and analyze past performance and expected

outcomes in the future in terms of monetary values. In this way, users will be provided

with features that will allow them to analyze the potential risks and benefits of the

investment.

1.2.2 Data Collection and Processing

A web scraping module will be developed to support the dashboard to gather data from

hundreds of tipsters from a tipster community (pyckio.com). This module will create an

up-to-date dataset that contains all the necessary data for thorough analysis. The use of

web scraping ensures that the data remains current and relevant, providing users with the

latest insights into tipster performance.

1.2.3 Analytical Function Library

A comprehensive library of functions will be designed to work on the dataset, enabling

different approaches and analyses of the collected data. This library will facilitate the

extraction of meaningful insights and support various analytical needs, ensuring that the

dashboard provides robust and versatile analysis capabilities.

3

pyckio.com

CHAPTER 1. INTRODUCTION

1.3 Structure of this document

This section provides a brief overview of the chapters included in this document. The

structure is as follows:

• Introduction (Chapter 1): This chapter introduces the context of the project,

the growth and challenges of online sports betting, the role of tipsters, and the main

objectives of the project.

• Theoretical Framework (Chapter 2): This chapter covers the key concepts related

to sports betting and tipsters and explains the enabling technologies used in the

project.

• Architecture & High-Level Design(Chapter 3): This chapter details the global

architecture of the system, the internal architecture of each of the modules and the

interactions between them. It also provides an overview of the development process

for the creation of the application.

• Data Processing Detailed Design (Chapter 4): This chapter details the process

followed for the creation of a dataset with tipster information and statistics.

• Visualization Design (Chapter 5): This chapter provides a detailed overview of

the process followed for the development of the visualization module and its compo-

nents.

• Case Study (Chapter 6): This chapter shows the final results of the dashboard

created, where the layout of the page, its different sections and the functionalities it

offers can be seen, based on a use case that represents the process followed by a user.

• Conclusions and Future Work (Chapter 7): This chapter discusses the achieve-

ment of the project objectives, the impact and relevance of the work, and potential

future improvements.

4

CHAPTER2
Theoretical Framework

This chapter deals with the most important concepts and terms in the environment in

which the project is developed. On the one hand, the theoretical scope of sports betting

and the factors that make this project an application of interest are analyzed. For this

purpose, the importance and relevance of tipsters and tipster communities are detailed in-

depth, in addition to several high-relevance keywords. On the other hand, the technological

environment that allows the development of the system is detailed, describing enabling

technologies and their usefulness in the project.

2.1 Tipster & Tipsters Communities

Although sports betting, in which players place bets based on their predictions of how

sporting events will turn out, has traditionally been considered a kind of enjoyment, it has

now also become a new type of investment, using the correct strategy and application of

modern technologies [14]. Some bettors have moved, from considering sports betting as

entertainment to bring extra excitement to their favorite leagues and games, to applying a

pure investment point of view, regardless of whether or not the event on which they have

placed their bets generates interest for them.

5

CHAPTER 2. THEORETICAL FRAMEWORK

Tipsters have become more prevalent in this setting of growing sports betting possi-

bilities and a money-making perspective. These forecasting experts employ several tech-

niques and methodologies, including statistical research, trend studies, player injury anal-

ysis, knowledge of game tactics, and other relevant elements, to create their forecasts [20].

They typically focus on particular sports or markets, which allows them to examine those

events more thoroughly and identify value in the odds provided.

As mentioned in the introduction, it is crucial to remember that not all tipsters are

equally successful, and it is the bettor’s responsibility to identify which are the most de-

pendable and lucrative. To assess a tipster, bettors typically look at their track record

of accurate forecasts, hit rate, yield, Return On Investment (ROI), maximum dropdown

(largest loss over a given period), and other Key Performance Indicators (KPIs) [21], the

definitions of which are presented in the section below.

On the other hand, tipster communities have developed as a reaction to the difficulties

and frauds that bettors face when selecting trustworthy tipsters [9]. These Internet plat-

forms offer a forum for tipsters to exchange their projections, analyses, and data, providing

bettors with an invaluable resource to assess their performance and make wise decisions.

The primary goal of these networks is to offer openness and verification in a world where

credibility can be difficult to find. Bettors can access many tipsters with a unique prediction

history, performance metrics, and user reviews. Using these data, they can evaluate and

compare many tipsters before selecting one to follow.

One of these systems’ most significant aspects is the verification of statistics. The tip-

sters’ communities must gather, preserve, and present comprehensive data for each tipster.

Using data-driven research, bettors can objectively assess a tipster’s consistency and prof-

itability over time.

Tipster communities frequently include tools and functionalities that help in tipster

selection. Among these resources are filters for finding tipsters based on various criteria,

such as market, sport, kind of bet, and odds range. Additionally, they can offer classes

or rankings based on tipsters’ past success. Examples of such platforms include Pyckio,

Blogabet, or Tipsterland.

Within the project’s scope, tipster forums are an essential tool for its development, as

they are the main source of information to feed the database. The project also assumes that

the final application inherits the reliability and verification of the processed data provided by

the tipster communities. Therefore, they are an ideal option for performing data scraping.

6

2.2. KEY CONCEPTS OF SPORTS BETTING

2.2 Key Concepts of Sports Betting

A series of terms are defined in this section, whose correct understanding is essential to in-

terpreting the context of the project, comprehending its purpose, and analyzing the results.

Bankroll:

The amount of money a bettor has and wants to invest in sports betting is called the

bankroll. Proper financial account management is a crucial strategy to reduce the

chances of big losses.

Betting Market:

The several types of wagers offered for a certain sporting event are referred to as

betting markets. The money line, under/over bets, and handicap bets are the three

most popular betting markets. Different bookmakers may or may not offer different

betting markets for the same match. Therefore, it is common for a tipster to make

his predictions by focusing only on using a single bookmaker to make it easier for his

clients to follow his predictions without worrying about having an account on multiple

existing bookmakers.

Bookmaker:

A bookmaker, also known as ‘bookie’, is an entity that enables its clients to place bets

in sporting events. It sets the odds for the different outcomes and betting markets.

Bet365, William Hill, and Sportium are good examples of well-known bookmakers in

Spain.

Liquidity of a Market:

The amount of money available for a bettor to wager on the corresponding market

at the corresponding odd is known as liquidity. High liquidity causes a high-profit

maximum limit allowed by the bookmaker, and the variability of the odds over time

is minimal. On the other hand, markets with lower liquidity are usually characterized

by a low limit maximum profit and very unstable odds. Therefore, for the same

profitability, it is always more interesting to follow a tipster who operates in liquid

markets. Over/under goals in a Champions League final is a good example of a high

liquidity market, while the number of corners in an Indian third-division football game

would be a low liquidity one.

Odds:

The odds serve the purpose of a probability measure, indicating how big is the chance

for an expected outcome. It calculates the amount the player will potentially win,

7

CHAPTER 2. THEORETICAL FRAMEWORK

depending on the amount wagered. Small odds indicate that something is more likely

to happen and do not offer high profit, whereas big odds signal a low-probability event

and, therefore, promise higher profit. For instance, placing a €10 bet over @1.7 odd

results in gross earnings of €17 when you win, which is the original wager plus a profit

of €7.

Pick:

A pick, or forecast, is a prediction about the result of a sports event made by a tipster.

It comprises specific data, including the betting market, odds, and the stake to be

placed.

ROI:

It is a typical metric for investment analysis. It can be computed by dividing net

gains by the initial investment. It is a valuable tool for assessing the profitability and

long-term efficacy of betting methods.

Stake:

A bettor’s stake defines the money amount that should be placed on a certain pick. A

pick made by a tipster is usually expressed as a numerical normalized value, commonly

ranging from 1 to 10. It serves as an indicator of how much valuable a bet is in the

eyes of the tipster.

Yield:

A performance metric called yield is used to assess a tipster’s profitability. It is

computed by dividing the entire amount of gross earnings by the total amount of

money wagered. Whereas a negative yield denotes losses, a positive yield shows profits.

2.3 Enabling Technologies

To make possible the development and correct functioning of the final application, a series

of programming languages, libraries, and other tools have been used. The functionality of

which and the main reason for their use are presented in the following. They are classified

according to their role in the project.

8

2.3. ENABLING TECHNOLOGIES

2.3.1 Programming Languages

2.3.1.1 Python

Python [22] is a programming language recognized for its simplicity and strength. It is

an interpreted language, which implies that the code is processed directly, line by line,

without being compiled. Python is also object-oriented; specifically, it contains a clear and

readable syntax, making it understandable even for beginners who have never coded. A

popular feature of Python is its vast set of standard libraries that include various modules

and packages to satisfy any demand. It encourages code modularity and the completion of

functions, reducing development time, and increasing productivity. Python is also known

for its rapid app development pace, which is known as rapid application development. It

is possible to successfully and rapidly create change and enhance code programs, especially

because Python writing, testing, and debugging are straightforward. Finally, Python is

utilized in various areas, such as data science, machine training, web development, program

writing, editing, and standard automation. Due to all these reasons, completing this project

is an optimal choice.

Python is the programming language mostly used in the project’s development, both

in the data munging and visualization modules. It has also been used to create various

functions, such as designing graphs and processing data.

2.3.1.2 JavaScript

JavaScript [5] is one of the top programming languages for interactive websites, as, together

with HTML and CSS, it is used in more than 90% of websites today. It provides users with

a wide range of functionality, from simple interactions to database-driven applications, and

it is well-known for its versatility and efficiency in handling complex tasks.

JavaScript has been useful for operating Crawlee, a web scraping and browser automa-

tion JS library to create a Comma Separated Value (CSV) file with all the tipsters’ statistics

and valuable data.

9

CHAPTER 2. THEORETICAL FRAMEWORK

2.3.2 Web Scraping

2.3.2.1 Crawlee

Crawlee [1] is a comprehensive and sophisticated tool for browser automation and web

scraping. It was designed to make it easy for developers to build sturdy, active crawlers.

Crawlee demonstrates its adaptability and power through its cohesive interface, which can

be used in HTTP-based scraping and a fully-featured browser. Depending on the project’s

distinct requirements, the developer can instantly use simple HTTP requests or work with

a full-fledged browser, benefitting from JavaScript rendering and screen scraping in some

difficult situations. This flexibility addresses various web scraping scenarios, from retrieving

information from fixed websites to interacting with vibrant, device-dependent web applica-

tions. Another powerful point of Crawlee is its constant queue management for URLs, which

allows breadth and depth integration. This element is crucial to ensure that the crawl can

be resumed reliably during a system power failure or reboot. Crawlee is featured in tabular

and historical data-applicable storage to promote easy connection to local storage systems.

Finally, Crawlee is featured by its automatic scalability feature, which guarantees optimal

use of the CPU and memory through automatic adjustments of the crawler at runtime.

Crawlee also improves the crawl ability stage using hooks to enable developers to extend

the crawl as per their project requirements. The command-line interface enables rapid

project initiation and, as such, automatic scraping templates eliminate manual configura-

tion hurdles that are useful for time-constraint developers. In addition, error management

and support related to retry operations are crucial to a reliable web scraper. Implementing

TypeScript and the strong typing and generics in Crawlee enhance production expertise by

reducing frequent mistakes and maintainable coding. JavasScript and how Crawlee presents

structures simplify developers’ integration and continuity handling of the scraper.

Crawlee has been an essential tool for developing the dataset on which the final appli-

cation runs. Thanks to this library, all the necessary statistics, and data from hundreds of

tipsters on Pyckio.com, a huge tipster community, have been extracted from the website

and stored.

2.3.2.2 Playwright

Playwright [3] is a robust tool for automating browser tests, specially designed for any

browser, platform, and language. It is built for Chromium, WebKit, and Firefox; for Win-

dows, Linux, and macOS, it can be used locally and in continuous integration environments,

10

2.3. ENABLING TECHNOLOGIES

both headless and headed. Playwright Application Program Interfaces (APIs) are available

in TypeScript, JavaScript, Python, .NET, and Java. This library is used to write tests that

are difficult to stabilize automatically using a ’point-in-time’ wait automatically. Ensure

interactivity or readiness of the elements before proceeding. Playwright provides numerous

ways to address the failure, such as screenshots, videos, execution traces, etc. The play-

wright architecture performs tests out-of-process from the browser and handles multiple

tabs, sources, and users. Every test runs with an isolated browser context comparable to a

new browser profile, sharing the authentication state between tests. Additionally, it offers

tools for solving failures, such as the Playwright inspector and the trace viewer.

Playwright has been a highly useful tool in this project since, together with Crawlee, it

has allowed to interact correctly with pyckio.com, as this website’s content is loaded dynam-

ically with JavaScript, which often makes it difficult to track and extract data successfully.

2.3.2.3 DevTools Chrome

Chrome DevTools [8] is a set of web development tools directly integrated into the Google

Chrome browser. It offers developers a variety of ways to inspect, debug, and optimize their

web pages and applications. One of the most valuable features from the perspective of web

scraping is its ability to inspect and edit the Document Object Model (DOM) in real-time.

This enables developers to navigate and understand the structure of pages, locate specific

elements, and test CSS selectors directly in the browser. DevTools automatically shows the

HTML source code of an element when inspected and allows the editing of attributes and

styles. This has proven very useful and discrete, offering an interactive way to refine CSS

selectors for scraping scripts.

Chrome DevTools provides sophisticated resources to debug JavaScript, which is es-

sential for scraping more interactive and dynamic content. For this reason, this tool has

made it possible to correctly analyze the DOM of the tipster community to select the data,

through CSS selectors, and extract them with Crawlee.

2.3.3 Front-End Development

2.3.3.1 Streamlit

Streamlit [11] is a Python library that aims to help developers quickly and effectively build

and share web applications focusing on data science or machine learning. Unlike other tools

involved in the development of websites, Streamlit is aimed at people who are strong in

11

CHAPTER 2. THEORETICAL FRAMEWORK

machine learning and data science. It does not require the end user to grasp front-end

technology like HTML, JavaScript, or CSS. This way, data scientists can concentrate on

their models and analysis work without worrying about making web interfaces from scratch.

With just a few lines, Streamlit provides a neat and intuitive API that allows you to create

good-looking, efficient user interfaces. It is perfect for small, targeted data applications.

It is compatible with most Python libraries for data analytics, such as pandas, matplotlib,

seaborn, plotly, Keras, and PyTorch. This lets people visualize their data in an attractive,

uniform style. Streamlit gives the user several pre-designed components, such as charts and

widgets. These can be easily adapted to the specific needs of each project, making it easy

to add functions to web applications without writing a whole load of new code.

In the project environment, Streamlit has been the main tool in the visualization module,

thanks to its facility to design the page layout, insert widgets, and draw graphics.

2.3.3.2 Plotly

Plotly [4] is an open-source library available for several programming languages, including

Python, whose main functionality is designing and constructing various graphs useful for

various environments, such as scientific or financial analysis. It is characterized by creating

highly customizable graphs that can interact with the user once built.

In this project, Plotly has provided the dashboard with different graphs, such as line

graphs, bar graphs, or pie graphs, allowing bettors to analyze different aspects of their

portfolios and tipsters.

2.3.4 Data Processing and Analysis

Pandas [15] has been the main technology used for data processing. It is a Python-written

library used for data manipulation and analysis, among other functionalities. It is widely

used in various fields, including finance, neuroscience, economics, and web analytics. The

authors of Pandas explicitly state that it is built on top of a powerful data structure, the

DataFrame. This data structure is crucial for efficient data manipulation; it is a multidi-

mensional array with an integrated index system that allows quick and fast data retrieval.

Pandas can easily read, write, and convert data from various formats, including CSV files,

excel, and SQL databases. It also has tools for alignment, missing data, and slicing, hence

indexing. Additionally, it reads large amounts of data and can perform transformation or

aggregation activities since it can also group data. Pandas perform great when merging

data and combining several datasets and can handle multidimensional data. In conclusion,

12

2.3. ENABLING TECHNOLOGIES

Pandas is the go-to library for data analysis and manipulation where speed is warranted.

Pandas has been of great value when dealing with the dataset generated after the data

extraction process, allowing to analyze the data, generate new data, and design different

DataFrames.

13

CHAPTER 2. THEORETICAL FRAMEWORK

14

CHAPTER3
Architecture and High-Level Design

In this chapter, the architecture and different layers of the application it is discussed, whose

correct understanding is essential to comprehend how the tool has been built and how it

works. First, a general view of the application architecture is presented to understand the

complete data flow through the different modules, from its extraction from the Web browser

to its presentation on the screen for each end user. The following sections describe each

component, including the files that make up it and the connection and utility between them.

Several architecture and data flow diagrams accompany all this to visualize and internalize

the processes intuitively.

3.1 Introduction

The development of this project has been based on achieving a robust and data-rich dataset

and an intuitive and interactive dashboard for visualization. To ensure a structured and

orderly development of the application, a high-level outline of the design and architecture

of the application was first made. In this way, it was possible to obtain a clear conception

of each module’s process flow and behavior to manage the potential complexity of the data

collection and final visualization processes.

15

CHAPTER 3. ARCHITECTURE AND HIGH-LEVEL DESIGN

Figure 3.1 shows a flow chart that chronologically illustrates the different stages of

project development. Provides a clear and concise overview of the entire process.

Figure 3.1: Development Process Chronology

As a development environment, using Visual Studio Code has been essential since it

is an excellent text editor compatible with the languages used and has different support

features for the tools and technologies mentioned previously. Therefore, it has been used

to develop the three modules, each developed in an independent environment, manually

importing the output from the previous module to the new one to be developed.

The component with the most intricate task involved developing the Visualization and

User-Interaction module. Its mission is to integrate the graphics design, the DataFrames

treatment, the application’s visual design, and the user-interaction features to deploy an

application that results in a friendly user experience.

The following sections of this chapter offer a detailed view of the system architecture,

commenting on the internal structure of each of the modules that compose it, its technolo-

gies, scripts, files and key parts for its correct operation.

3.2 System Architecture Overview

This section introduces the system architecture. Since the data and graphs displayed in the

final dashboard result from the treatment and processing of the extracted data, it is crucial

to take a rich and quality data source. For this reason, the first step in the system’s design

is to select a tipster community of guarantees, such as Pyckio.com. This web platform is

an ideal tool to connect the system, as it has a database of hundreds of tipsters, on which

it is possible to perform a deep analysis of their results, with both temporary and overall

statistics.

The architecture of the application is divided into three main modules. The first one is

the Data Collection Module, which, from an HTTP connection with Pyckio.com, performs

a web scraping process on all the URLs of the personal pages of each tipster. Using the

Crawlee and Playwright libraries, the data in each web page’s DOM (Document Object

Model) is extracted to create a CSV file with the raw data of all tipsters. Secondly, the

16

3.3. DATA COLLECTION MODULE

Data Munging Module makes use of the Pandas library to import this CSV to make a data

cleaning and transformation, as well as to generate some new data of value from them to,

finally, build a new CSV file that conforms a dataset suitable for a correct analysis and

treatment of the data in the last module. Finally, the Visualization & User-Interaction

Module deals with generating the dashboard for the final user. This module is the most

complex since it combines user-interaction tasks through Streamlit, a second stage of data

processing, with Pandas, graph generation with Plotly, and the design and visualization of

the dashboard. Therefore, it takes the dataset extracted from the Data Munging Module

to generate the final tool that allows bettors to explore and analyze the data of their

personalized tipster portfolio to place their bets under quality criteria and make informed

decisions.

The system’s general architecture is shown in Fig. 3.2. Provides an intuitive overview

of the structure and data flow of the system. The system processes tipster community data

and provides end-users with personalized dashboards. All this process is carried out in three

modules: Collection, Munging, and Visualization). Later sections provide a more detailed

view of each of them.

Figure 3.2: High-Level General Architecture of the Application

3.3 Data Collection Module

The Data Collection Module is in charge of extracting all the information from pyckio.com

tipsters. To achieve this, it automates the process of visiting each URL of the personal

page of each tipster and extracts the necessary statistics for further analysis. Crawlee and

Playwright are essential tools for an effective and efficient process.

The module consists of four main components, main.js, routes.js, config.js,

17

CHAPTER 3. ARCHITECTURE AND HIGH-LEVEL DESIGN

and selectors.js, which work together to achieve the purpose. The following details

the function of each in the module structure.

• main.js is the file coordinating the process. It initializes a crawler with Playwright

technology whose initial URL is the main page of the tipsters, which you can access

through a link to all the tipsters of the community, and associates a router, defined

in routes.js, which manages how the scraping process is performed depending on

the URL visited. Finally, once the data is collected in JSON format and stored in a

folder in the workspace, a CSV file containing all this data is generated.

• routes.js implements the data scraping logic. When the crawler visits the main

page discussed above, it collects all the tipster URLs and adds them to a queue

for further processing. If the visited URL is a tipster’s personal page, it extracts

its statistics using CSS selectors, contained in selectors.js, to obtain the DOM

values from the HTML. A JSON file containing all the parameters is generated and

saved for each tipster in the corresponding folder.

• In addition, two configuration files export their contents to the above components. On

the one hand, config.js contains a series of configuration constants, with various

values such as the number of tipsters to extract information from or the number of last

months to obtain statistics. On the other hand, selectors.js contains the values

of the CSS selectors obtained by inspecting the DOM through Chrome DevTools.

Figure 3.3: Data Collection Module Architecture

Fig. 3.3 shows the internal architecture diagram of the Data Collection Module, the data

flow and the existing connections between the components can be seen. main. js is the

18

3.4. DATA MUNGING MODULE

only element connected to the outside, since it takes care of both the input, by connecting

to pyckio.com, and the output, by generating the final CSV file that the Data Mungling

Module imports. However, all parts are crucial in ensuring data extraction is effective,

accurate, and adapted for the following processes.

3.4 Data Munging Module

The Data Munging Module is an essential, yet straightforward, component of the architec-

ture. Its main purpose is to import the raw data collected from the previous module, clean

and transform these data, and generate new derived metrics. This module significantly

enhances the project’s scalability, especially with the future aim of incorporating data from

multiple tipster communities. The Data Munging Module ensures seamless integration into

the subsequent Visualization and User-Interaction module by consistently normalizing and

preparing these data.

Figure 3.4: Data Munging Module Architecture

The heart of this module lies the pyckio data munging.py script. This script uses

Pandas to import the pyckio raw data.csv file generated by the Data Collection Mod-

ule, converting it into a DataFrame. It then performs a series of data cleaning and transfor-

mation processes, such as handling missing values, normalizing data formats, and generating

new data fields derived from the existing ones. The final output is a cleaned and enriched

dataset, saved as pyckio dataset.csv, ready for use in the Visualization and User-

Interaction module.

For readability and scalability, pyckio data munging.py leverages functions.py

and config.js. The functions.py file contains a collection of functions designed to handle

various data processing tasks, streamline the main script, and facilitate future expansions.

19

CHAPTER 3. ARCHITECTURE AND HIGH-LEVEL DESIGN

Meanwhile, config.js includes configuration constants that ensure the data munging

process adheres to predefined parameters, making it adaptable and consistent.

Figure 3.4 illustrates the workflow of the Data Munging Module. It highlights the flow

of data from the initial import of raw data through the transformation processes to the final

output, showcasing how pyckio data munging.py, functions.py, and config.js

interact to produce a refined dataset. It provides a clear overview of the Data Munging

Module’s structure and operations, emphasizing its role in preparing the data for the final

Visualization and User-Interaction phase. The modular design ensures the system remains

flexible and scalable, ready to handle future enhancements and additional data sources.

3.5 Visualization & User-Interaction Module

The Visualization & User-Interaction Module is the final stage of the system architecture.

It is the module with more complexity and content of the application. It is responsible for

presenting on screen an intuitive and interactive dashboard for the end users, the bettors.

To do so, it imports the tipsters dataset.csv file from the previous module, with

the cleaned and processed data ready for analysis, in addition to user preferences, to build

and draw a series of tables, graphs, and metrics with which the user can analyze and

parameterize his tipster portfolio from different perspectives.

The structure of the module consists of the following components:

• app.py in the main element as it handles the inputs and outputs of the module and

defines the layout and content of the final application. It makes use of Streamlit to,

on the one hand, collect user preferences thanks to several widgets from the library

and, on the other hand, compose, generate, and distribute different visual compo-

nents such as graphs, tables, or metrics from DataFrames, so it also makes use of

the Pandas library. To fulfill its mission, app.py interacts with two valuable files,

data processing.py and plotting.py.

• data processing.py is a library of functions that are invoked from app.py.

Generally, these functions take as a parameter a DataFrame and return another

DataFrame, resulting from the filtering or processing of the original one, which al-

lows for examination of the portfolio from different points of view, such as temporal

analysis, overall statistics, or financial studies. One of the key functions of this compo-

nent is to process the original DataFrame, imported from the data munging module,

together with the user preferences, once they are defined, to build a reduced version

20

3.5. VISUALIZATION & USER-INTERACTION MODULE

of the original DataFrame, which contains exclusively the data of the tipsters that

make up the user’s particular portfolio.

• plotting.py is the element whose purpose is the construction of figures that the

dashboard presents on screen. For this purpose, this file defines a series of functions

that are invoked from app.py. Normally, they receive as a parameter a DataFrame,

generated thanks to data processing.py, and return a figure, such as a line chart,

bar chart, or pie chart.

• config.py file provides configuration constants for the rest of the module compo-

nents. Furthermore, inapp.py, it provides the values of the column config param-

eter of the st.DataFrame() method from Streamlit defines the layout of the tables

displayed on the dashboard.

Figure 3.5: Visualization & User-Interaction Module Architecture

Figure 3.5 offers a visual representation of the architecture of the Visualization & User-

Interaction Module by observing the technologies used, the data flow, and the internal

interaction between the components and the outside. It shows how app.py makes use

of data processing.py and plotting.py to render the dashboard to which the user

has access. The multi-component design allows for flexibility and scalability of the module,

optimizing the integration of new features and system enhancements in the future.

21

CHAPTER 3. ARCHITECTURE AND HIGH-LEVEL DESIGN

22

CHAPTER4
Data Processing Detailed Design

This chapter deals with the whole process up to the generation of the final tipster dataset. It

details, therefore, both the data extraction procedure from the web page and the subsequent

wrangling process to format the data and prepare the dataset for the visualization module.

In this way, the different technologies used and the work methodology to be appreciated.

4.1 Data Collection Process

The data collection process is a critical phase for the project’s development, since it involves

creating a robust, accurate, and updated database on which the rest of the application is

built and fed. This process involves navigating to a highly reputable tipster community,

Pyckio.com, visiting each tipster’s personal page, and storing all the data and statistics

that have been considered necessary for a detailed analysis. This ensures that the portfolios

received by the final users are composed of forecasters studied in detail.

The initial setup was based on a suitable environment configuration after a study of

the enabling technologies needed to perform the data collection process successfully. Using

VSCode for file generation and directory structuring, Crawlee and Playwright import scripts

were created, and libraries allowed efficient and robust data extraction from a dynamically

23

CHAPTER 4. DATA PROCESSING DETAILED DESIGN

loaded JavaScript web page such as Pyckio. In addition, using the Chrome browser, which

implements the DevTools tool, would allow the correct page inspection.

Next, the work done in each of the necessary substeps in the data collection process it

is detailed, from the reasons for selecting pyckio.com as a tipster community, to creating

the CSV file with all the data.

4.1.1 Tipster Community Selection

As a first step in the data collection process, an analysis was performed in many tipster com-

munities that could be potentially useful for this purpose. Finally, Pyckio.com was selected

as the tipster community from which the data would be extracted for several reasons. In

the first place, the prestige and good references about the credibility and verification of the

statistics of the tipsters that compose it would provide reliability to the project’s database.

Pyckio stores a large amount of data and statistics, allowing for a detailed analysis from

different perspectives on hundreds of tipsters distributed internationally.

Another of the main reasons this tipster community has been selected and differentiates

it from the others is that its tipsters operate in highly liquid markets, which also means

they are accessible from the vast majority of bookmakers. This is a great advantage for end

users, as it is useful for beginners who bet small amounts and have an active account in a

single bookmaker and those who bet large amounts in different bookies. In addition, the

algorithm that generates portfolios has fewer limitations that would reduce the number of

valid tipsters for analysis.

Finally, in addition to the classic statistics and metrics in most tipster communities,

such as yield, hit rate, or number of picks, Pyckio offers many other data about the tipster’s

historical performance, which can be useful in extending the application’s functionalities.

4.1.2 Data Scraping

Data scraping is the most important part and the heart of this process. It is the process of

extracting the necessary data from the DOM of the Pykcio.com pages. The extraction and

crawl logic is defined through the two main files of the data collection module: main.js

and routes.js.

To fully understand how these files work, it is important to understand three basic

concepts of the Crawlee library.

24

4.1. DATA COLLECTION PROCESS

• Request: This is a JavaScript class whose instances determine where the crawler

has to move. This class’s most important and basic parameter is a URL, in which a

defined operation extracts the desired data. In the particular case of the project, an

instance of Request is generated for each of the personal pages of each tipster since

each one is contained in a different URL.

• RequestQueue: Since the crawling process involves navigation between different

pages, the concept of RequestQueue becomes necessary. As its name indicates, it is

a queue that stores all the generated requests. A RequestQueue needs at least one

Request containing an initial URL, usually named start URL, which indicates the

initial page on which the crawler will operate. It can also be initialized with more

Requests whose URLs will be visited when the URL processing is finished. However,

one of Crawlee’s most powerful features is the ability to dynamically add new Requests

to the queue from links on the visited page. In the project’s scope, the request queue

is initialized exclusively with a start URL containing links to each tipster page.

• RequestHandler: This is a user-defined function that indicates which processes to

follow given a given Request or set of them. It can perform various actions, such

as extracting data from the page, saving it, adding new requests to RequestQueue,

etc. Normally, as in the case of this project, a router file is usually created where the

different handlers are defined for each type of request.

Once these concepts have been introduced, it is easy to understand the overall operation

of the module and each file. The file main.js takes care of the initial configuration

of the crawler. It configures a PlaywrightCrawler, capable of dealing with the dynamic

data loading characteristic of a JavaScript web page, such as Pyckio, and associates the

router defined in routes.js as its requestHandler, whose operation is detailed in the next

subsection. The initial configuration includes defining the Pyckio page where all the existing

tipsters are included as startURL, the only one with which the requestQueue is initialized.

The rest of the Requests are dynamically added by traversing this initial page.

Both startURL and other constants and value configurations are defined in the config.js

file, whose existence provides the module with compartmentalization and ease when making

different adjustments in the scraping process.

Listing 4.1: Exported constants from config.js

export const CONFIG = {

SCROLL_TIMEOUT: 30,

DATASET_ROW_SIZE: 700,

25

CHAPTER 4. DATA PROCESSING DETAILED DESIGN

MAX_MONTHS_TO_SCRAP: 12,

START_URL: ["https://pyckio.com/i/#!rankings"]

};

Next, the functionality of routes.js as the module’s requestHandler is detailed, dis-

tinguishing the process into two phases: one in which the different URLs are stored and the

other in which the information of each tipster is extracted.

Figure 4.1: Data Scraping Workflow

4.1.2.1 Scraping Phases

As mentioned above, routes.js deals purely with the scraping logic depending on the

URL visited, which can be the main page where all tipsters are located or the personal

page of a tipster. A handler is defined for these two possible situations, so the scraping

process can be divided into two phases. The first one, corresponding to the work done on

the general page of tipsters, deals with navigating through the whole page extracting all

the URLs that lead to the personal pages, creating their corresponding Request and adding

them to the RequestQueue. The second phase operates on these personal pages, extracting

the data of each tipster.

Fig. 4.1 shows a class diagram with Unified Modeling Language (UML) notation that

illustrates the workflow in the module. It shows the relationship between the main files,

main.js and routes.js, and the main objects they use and allow their correct operation.

26

4.1. DATA COLLECTION PROCESS

All data extracted in any phase are obtained from the DOM, using Cascade Style Sheet

(CSS) selectors. For this reason, and to facilitate the readability and modification of the

code, it was decided to create the file selectors.js, where the selectors associated with

each data to be extracted are defined.

Having understood the general operation of the scraping process, each of its phases is

now explained in more detail.

Listing 4.2: Exported constants from selectors.js

export const SELECTORS = {

TIPSTER_URL: "tbody tr td a",

SPORT: ".panel-heading i img:nth-child(2)",

MONTH_NPICKS: "#time-stats tbody tr:not(.global) > td:nth-child(5)",

// other selectors...

};

Phase 1: Tipsters URLs Extraction

Pyckio offers a tab on its website, the ranking page, where all the platform’s tipsters are

presented on the same page. When this page is loaded for the first time, only the tipsters

that enter the screen are loaded, while the rest are loaded as you scroll down.

For this reason, as a first step in obtaining each tipster’s URL, it is necessary to use

Playwright’s infinite scroll method, which dynamically loads all the rows of tipsters. As

its name indicates, the method simulates a scroll down the page under the configuration

indicated in its parameters, such as timeoutSecs, which measures the time in seconds for

which the scroll is being performed, or waitforSecs, which defines the maximum waiting

time before stopping the process if no new content is loaded.

Listing 4.3: Script for Dynamic Row Loading on the Rankings Page using Infinite Scroll

await playwrightUtils.infiniteScroll(page, {

timeoutSecs: CONFIG.SCROLL_TIMEOUT,

waitForSecs: 10,

});

Once the desired scroll has been performed, it is ensured that all the rows of tipsters

are in the DOM, where each tipster URL is stored, so the next step involves extracting

those paths and adding them to the queue. To do this, by using the appropriate CSS

selector, a loop runs through all HTML elements whose href attribute contains the URL

27

CHAPTER 4. DATA PROCESSING DETAILED DESIGN

Figure 4.2: Pyckio.com Tipster Ranking Page

of the tipster, generates a Request, and adds it to an array containing all those created. Each

Request, in addition to the url and its uniqueKey, has a label parameter with the value

’TIPSTERPAGE’, which indicates that this page has to be treated with a requestHandler

specifically defined for those Requests defined with this label.

Listing 4.4: Script for Extracting and Generating Requests for Tipsters’ Personal Page

URLs

const requests = [];

for (const urli of await page.locator(SELECTORS.TIPSTER_URL).all()) {

if (requests.length >= CONFIG.DATASET_ROW_SIZE) break;

const urlrelativa = await urli.getAttribute("href");

const urlabsoluta = "https://pyckio.com/i/" + urlrelativa;

const request = new Request({

url: urlabsoluta,

uniqueKey: urlabsoluta,

label: "TIPSTERPAGE",

});

requests.push(request);

}

if (requests.length < CONFIG.DATASET_ROW_SIZE) {

log.warning(

28

4.1. DATA COLLECTION PROCESS

‘Insufficient scroll to fill the dataset. Dataset expected size: ${

CONFIG.DATASET_ROW_SIZE}. URLs extracted: ${requests.length}‘

);

});

};

During this process, the DATASET ROW SIZE value imported from the config.js file

also comes into play. This constant indicates the desired size of the dataset, i.e., the number

of tipsters to be processed. Once the loop has added this limit of requests, it stops loading

new tipsters. In case the number of tipsters loaded after the scroll process is less than the

DATASET ROW SIZE defined, a warning log pops up on the console informing of the event

and indicating how many requests were expected to be created and how many have actually

been created.

Phase 2: Tipster Statistics Extraction

During phase 2, scraping is performed on the particular pages of each tipster, where all the

statistics and the value data are found to create the D. Inspecting the DOM using Chrome

DevTools is important during this process.

Figure 4.3: Using Chrome DevTools to Inspect a Tipster’s Personal Page on Pyckio.com

To accomplish this task, a requestHandler is defined to handle Requests with label =

’TIPSTERPAGE’. This handler performs a series of processes to extract the information,

supported by the different CSS selectors.

On the one hand, several simple data are extracted whose reference in the DOM is

immediate, such as the sport where a tipster works.

Listing 4.5: Scraping Simple Data: Sport

29

CHAPTER 4. DATA PROCESSING DETAILED DESIGN

const sport = await page

.locator(SELECTORS.SPORT)

.getAttribute("data-original-title");

On the other hand, more complex processes involve iteration over several DOM elements

to extract datasets stored in arrays, such as extracting each value corresponding to the

number of picks made during the last months.

Listing 4.6: Scraping datasets: Last Months’ Number of Picks

const rawLastMonthsnPicks = [];

for (let i = 1; rawLastMonthsnPicks.length < nmonths; i++) {

const nPicksi = await page

.locator(SELECTORS.MONTH_NPICKS)

.nth(i)

.textContent();

rawLastMonthsnPicks.push(nPicksi);

}

const lastMonthsnPicks = rawLastMonthsnPicks.map(Number);

Finally, once all the necessary values have been saved, they are merged into a single

results object, ready to be saved,

Listing 4.7: Generating the Results Object

const results = {

name: tipstername,

url: url,

sport: sport,

globalYield: globalYield,

// other values...

};

After this process, the object is transformed to the JavaScript Object Notation (JSON)

format, a procedure detailed in the next section; the Request object associated with the

tipster just analyzed is removed from request queue, and the next tipster in the queue is

analyzed.

During the data consolidation and storage process, all information extracted during the

scraping process is collected to store and structure all tipster data and statistics. To carry

out this task, it is essential to use Crawlee’s Dataset class, which allows both to generate

30

4.1. DATA COLLECTION PROCESS

JSON files with the information of each tipster and, after processing all of them, to generate

a CSV file that gathers all the data.

• Dataset class: The Dataset class represents a structured data store where each

stored object has the same attributes. In the project’s scope, it generates a Dataset

where the results of each scraping on a personal tipster page are stored.

• Dataset.open(): It is a method of the Dataset class used to open a given dataset or

generate a new one, in case the one included as a parameter does not exist. It returns

a promise resolved in an instance of the Dataset class.

• Dataset.pushData(): This method stores, in JSON format, an object or an array

of objects in the dataset on which the method is invoked.

• Dataset.exportToCSV(): This method saves the complete contents of the dataset

in a CSV file.

• PlaywrightCrawler.getDataset(): This is a method of the PlaywrightCrawler

class that retrieves the specified dataset.

First, in the routes.js file, a dataset, tipstersdataset, is defined using the

open() method of the Dataset class.

Listing 4.8: Defining the Dataset in routes.js

const tipstersdataset = await Dataset.open("tipstersdataset");

After creating the result object, the handler dedicated to processing the tipsters’ pages

uses this object to add a JSON file to tipstersdataset with the pushData() method.

Listing 4.9: Adding a JSON File to the Dataset in routes.js

await tipstersdataset.pushData(results);

Finally, the dataset is complete when all the Requests from the requestQueue have

been processed. In the main.js file, the dataset is imported with the getDataset()

method of PlaywrightCrawler and converted to CSV with the exportToCSV() method of

the dataset. At the end of this process, the module has fulfilled its function, and the newly

created file is ready to be processed by the next module.

Listing 4.10: Converting the Dataset to CSV File in main.js

31

CHAPTER 4. DATA PROCESSING DETAILED DESIGN

const tipstersdataset = await crawler.getDataset("tipstersdataset");

await tipstersdataset.exportToCSV("./storage/pyckio_raw_data.csv")

4.2 Data Munging Process

Developing this second system module is a simple but essential process for the project. The

objective is to ensure that the data imported from the visualization module is clean and

correctly processed for its subsequent use and treatment.

This goal has been achieved using the Python language and, mainly, the Pandas li-

brary. To maintain the modularity and improve the readability of the code, it has been

compartmentalized into three files: data munging module.py, functions.py, and

config.py, whose functionality and development are detailed later.

Before creating these files, Jupyter Notebook was a valuable tool for the development

phase, providing an interactive environment in which it was easy to analyze, test, and

visualize the transformations performed on the data imported from the previous module.

The use of this technology for development is now specified.

Much of the development of the Data Munging Module has been done on the environ-

ment provided by Jupyter Notebook, given its ease of debugging and the ability to run

different sections of the code separately. In this process, a single .ipynb file was created

that included configuration constants and functions, as well as the transformations in the

data and their commands to test those changes.

The CSV file imported and converted into a Pandas DataFrame was not the same as the

one generated in the Data Collection Module, but a mock file corresponding to a reduced

version of it, with only the information of the first 20 tipsters included. Working on this

mock-up would allow for faster iterations of the data, reduce waiting time, and facilitate

error detection and analysis of the results.

Listing 4.11: Reading the mock CSV file.

df = pd.read_csv(’pyckio_raw_data_reduced.csv’)

Many tests have been carried out on the data conversions to define which ones would

be necessary to adapt the final dataset for export. An example is the conversion of data

that were originally arrayed and transformed into strings since CSV files cannot store this

32

4.2. DATA MUNGING PROCESS

type of data in the List type to be able to work on them.

Figure 4.4: Conversion of string data to lists

Another example is to use the notebook to check the data type in each DataFrame

column before proceeding with the transformations.

Once all desired procedures are performed successfully on the DataFrame and ready to

be used in the final module of the system, the effective code was taken from the .ipynb

file and distributed among the three files mentioned above: pyckio data munging.py,

functions.py, and config.py to form the module in its final form. These files are

described in Appendix C.

33

CHAPTER 4. DATA PROCESSING DETAILED DESIGN

Figure 4.5: Verification of data types stored in the DataFrame

34

CHAPTER5
Visualization Design

5.1 Overview

This chapter deals with the development of the last of the system modules, which uses the

dataset generated from the previous processes to present the data in a clear and accessible

way, taking into account the preferences indicated by the user. Therefore, this development

process is a fundamental part that determines the final quality and usefulness of the system.

This process has been divided into different stages. First, the Streamlit environment was

prepared, and the application’s layout was defined in app.py, so the dashboard had a in-

tuitive structure. Subsequently, most of the data analysis and plotting logic was developed,

distributing the code between two files dedicated to these tasks: data processing.py

and plotting.py. Finally, all the work on the Streamlit file was integrated, enabling the

user interaction features.

35

CHAPTER 5. VISUALIZATION DESIGN

5.2 Streamlit Setup & Layout Design

This section discusses the process followed for designing, structuring, and styling the visual

interface of the Streamlit application. This process gave us a clear idea of the desired

appearance of the application and the contents of the dashboard for its further development.

First, a layout mockup was developed, and then the idea was translated into code using

the components offered by Streamlit. Each of these steps is discussed in more detail in the

following.

5.2.1 Mockup Design

For the design of the application’s user interface, which consists of the dashboard and the

user preferences configuration panel, a schematic mockup was created to serve as a template

before its actual implementation in the code.

The mockup, in Figure 5.1 shows the key components of the design and layout distri-

bution. The user preferences are placed in a drop-down sidebar, where different widgets,

such as sliders and selects, would be presented for adjustment. The rest of the page has a

fixed header with the application’s name and a brief description. Just below and occupying

most of the screen is the dashboard itself. A navigation bar allows access to the different

sections, and different graphs, tables, and metrics are presented in each.

5.2.2 Streamlit Widgets & Layout Components

Once the application’s layout was defined, the Streamlit API was studied to select the

components and widgets that best suit the needs. The Streamlit library offers a wide

variety of proprietary and community-made elements, so it was easy to implement a design

similar to the one shown in the mockup.

Below is a description of the main elements used in this development phase, divided

between those used for the layout and those used to display interactive widgets to modify

user preferences.

5.2.2.1 Layout Elements

Streamlit offers different options for controlling how elements are arranged on the screen.

These elements generally behave as containers and have been used mainly for the dashboard

36

5.2. STREAMLIT SETUP & LAYOUT DESIGN

Figure 5.1: Mockup Design of the Application Layout

layout.

• st.container: Inserts an invisible container in the application, which allows adding

several elements containing their expansion on the page and maintaining the desired

layout. It has been used to display metrics or group graphs with widgets that allow

customization, such as multi-selects to select the tipsters to analyze.

• st.columns: Inserts several containers in a row, placed side by side, in which multiple

elements can be added. With its parameters, the number of columns, the width of

each column, or the spacing between columns can be modified.

• st.tabs: Inserts separate tabbed containers, allowing users to navigate between sec-

tions with related content. It has divided the dashboard into four main sections: Your

Portfolio, The Tipsters, Financial Performance, and Sports&Markets.

• st.sidebar: Inserts a deployable sidebar, pinned to the left, on which you can include

different elements. It is an ideal element on which to add the input widgets. It has

been used to group user preferences. Collapsing the sidebar allows the user to focus

their attention on the dashboard by having more screen space.

• st.expander: Inserts a container in the app that the user can expand or collapse to

display its content. It has been used in the sidebar to display input widgets that allow

37

CHAPTER 5. VISUALIZATION DESIGN

advanced portfolio configuration.

These elements allow interaction with the user, as the selected or inserted value can

be stored and used in other parts of the code. Generally, this widget is displayed on the

sidebar as a customization component of user preferences.

• st.slider: Displays a slider widget, enabling it to define its maximum and minimum

values, step interval, or format of its values, among other parameters. It has been

used to define several customization parameters, such as the number of daily picks

the user wishes to place.

• st.radio: Displays a radio button widget, with which the user can mark a single

selection from several previously defined ones. It has been used, for example, to select

whether or not to customize the sports on which to bet.

• st.multiselect: Displays a multi-select widget, with which the user can select one,

several, or none of a series of previously defined options. It has been used, among

other uses, to select the sports the user wants to bet on.

• st.selectbox: Displays a select widget, where the user can choose one of the options

displayed when clicking on the widget. It has been used for the user to define the

bookmaker on which he bets.

The app.py file is the core of this module as it deals with both the visualization and

the interaction with the user, so it is in this file where the Streamlit library is imported

and, therefore, where the actual implementation of the mockup design and the components

described is carried out. Next, it details how this process was carried out in the code.

First, the dashboard is sectioned under the application header using st.tabs.

Listing 5.1: Layout of the main content tabs

tab1, tab2, tab3, tab4 = st.tabs(["Your Portfolio", "The Tipsters", "

Financial Performance", "Sports & Markets"])

with tab1:

tab1 content...

with tab2:

tab2 content...

with tab3:

tab3 content...

with tab4:

#tab4 content...

38

5.2. STREAMLIT SETUP & LAYOUT DESIGN

Subsequently, particularly in each tab, an internal layout is made for each one, considering

the graphs and data to be included. This structured layout would be provisional since small

adjustments were made for their correct visualization after developing graphs and tables.

Listing 5.2: Container and column layout within a tab

with tab1:

tab1 intro...

t1c1 = st.container(border=True)

t1col11, t1col21, t1col31, t1col41, t1col51 = t1c1.columns(5)

with t1col11:

metrics, graphs, tables...

t1c2 = st.container(border=True)

t1col12, t1col22 = t1c2.columns(2, gap=’large’)

#rest of the code...

Finally, the sidebar and the dropdown element mentioned above were created to display a

container with advanced settings, with st.expander.

Listing 5.3: Sidebar configuration with user preference widgets

with st.sidebar:

user preferences widgets...

with st.expander(’Show advanced options’):

#advanced configuration widgets...

After defining the sidebar in the application layout, different types of input widgets were

included, and the parameters were configured and associated with variables to develop the

user interaction features later.

Listing 5.4: Sidebar widgets for user preferences and customization options

st.subheader(’Activity Level’)

npicks_slider = st.slider(

slider parameters...

st.subheader(’Betting Markets’)

sport_selector_toggle = st.radio(

widget configuration...

if sport_selector_toggle == "Personalized":

sport_selector = st.multiselect(

widget configuration...

The integration of visualization components with data processing is detailed in Ap-

39

CHAPTER 5. VISUALIZATION DESIGN

pendix C.

40

CHAPTER6
Case Study

This chapter’s objective is to present the project’s final results and demonstrate the appli-

cation’s main functionalities and uses. For this purpose, it is approached as a case study

in which the different steps a user performs from the first contact with the application are

presented.

6.1 Introduction

In this case study, it is assumed that a bettor, interested in knowing the best tipsters that

fit his needs, enters the application. First, he accesses the page where all the customization

parameters show their default values. Subsequently, he enters his personal preferences, and

the portfolio is updated to meet the specified requirements. Finally, the user navigates

between the tabs to analyze the results.

Each of the following sections details these steps and shows figures to visualize the

information and data provided by the dashboard.

41

CHAPTER 6. CASE STUDY

6.2 Initial Access

When the user accesses the application for the first time, the page displays the header,

which includes the logo, slogan, and a brief explanation of the tool. The user preferences

are set to the default values, so a portfolio is loaded and determined through these values.

In this process, the first tab is the active one. Figure 6.1 shows the initial state of the app.

Figure 6.1: Initial view of the application.

6.3 User Preferences Settings

The next step in the process of using the tool is to configure the user preferences. To do

this, there is a drop-down sidebar on the left side of the page where different parameters

can be adjusted, as shown in Figure 6.2. In this case, the user is not an expert in the field,

so he prefers not to enable the advanced features, so that they remain unchanged, as shown

in Figure 6.3.

42

6.4. NAVIGATION THROUGH TABS

Figure 6.2: Sidebar settings for

customizing default values.

Figure 6.3: Sidebar PRO features.

6.4 Navigation through Tabs

The user can then start to analyze and observe the behavior and characteristics of their

newly created customized portfolio. To do this, they visit each of the tabs.

First, an overview of the portfolio’s characteristics is provided through metrics and

graphs, in the Your Portfolio tab, as shown in Figure 6.4.

Once inspected, the user accesses the next tab, The Tipsters, where you can study the

tipsters that make up the portfolio in more detail. At the beginning of this tab, you can

see a table with the main statistics of the tipter, a link to his personal page on Pyckio.com

and a pie chart showing the influence of each one. This is represented in Fig. 6.5. There

are some graphs where the user can select the tipsters to analyze, as shown in Figure 6.6.

The next tab is Financial Performance. First, two widgets are displayed with which the

user selects the bank available for investment and betting strategy. The tool then calculates

and displays the recommended stake per bet, as shown in Figure 6.7. Scrolling down, the

user can see a graph showing the profit obtained given the bank and stake per bet and the

43

CHAPTER 6. CASE STUDY

Figure 6.4: Main view of Your Portfolio tab.

expected future profit as a function of the number of months, as shown in Figure 6.8.

Finally, the user accesses the Sport & Markets tab, where he can analyze the type of

picks and the sport on which his portfolio is based, observing both the particular returns

and the influence of the same, as shown in Figure 6.9.

44

6.4. NAVIGATION THROUGH TABS

Figure 6.5: Main view of The Tipsters tab.

Figure 6.6: Tipsters last month’s analysis charts.

Figure 6.7: Bank and Stake set up.

45

CHAPTER 6. CASE STUDY

Figure 6.8: Past performance and expected results.

Figure 6.9: Main view of the Sports & Markets tab.

46

CHAPTER7
Conclusions and Future work

This chapter describes the conclusions extracted from this project and thoughts on future

work.

7.1 Conclusions

To conclude this thesis, the developed system and its purpose are recapitulated. The pri-

mary motivation behind this project was to create a tool that empowers bettors to make

informed decisions based on a comprehensive analysis of tipster statistics. The system is

designed to generate a portfolio that diversifies the risk of investments and allows users to

observe and analyze their portfolios’ graphs, tables, and metrics. This analysis enables users

to determine whether the portfolio aligns with their needs and understand the methodology

followed by each tipster.

The application’s user-friendly interface caters to many bettors, from novices with lim-

ited analytical skills to experienced bettors requiring advanced customization options. It is

designed to accommodate users with varying levels of daily availability, allowing them to

specify the number of picks they wish to make daily. This flexibility ensures that casual

bettors and those with more time to dedicate to betting can benefit from the application.

47

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Throughout the development of this project, Streamlit was utilized to represent results,

and Python was employed to deploy the server and execute the necessary calculations.

The system architecture is layered, ensuring that each component functions correctly and

contributes to the overall efficacy of the application.

One of the significant benefits of this application is its educational component. Users

can learn about the crucial parameters that determine a tipster’s profitability by interacting

with the dashboard. This educational aspect helps users make better-informed decisions

and enhances their understanding of the betting landscape.

This tool can significantly impact how bettors approach their strategies as technology

advances. The increasing interest in artificial intelligence and data analysis highlights the

importance of such tools in various domains, including sports betting. Analyzing historical

data, identifying trends, and predicting future outcomes can revolutionize betting strategies

and outcomes.

Moreover, the application is designed for easy deployment and use across various plat-

forms. All extracted data is stored in a standardized format, facilitating potential inte-

gration with other intelligent systems. Streamlit’s cloud capabilities further enhance the

application’s accessibility and security, making it easier to manage and deploy.

In conclusion, this project aims to provide a comprehensive, user-friendly tool that

empowers bettors to make data-driven decisions. By offering both basic and advanced

customization options, the application caters to a diverse audience, ensuring that all users

can benefit from informed betting strategies. The combination of educational and practical

components makes this application a valuable resource for anyone involved in sports betting.

7.2 Achieved goals

This project has successfully achieved several specific goals, contributing to developing a

comprehensive and user-friendly tool for informed betting decisions. The following points

summarize the key accomplishments:

• Formation of a Robust Dataset: A web scraping module was successfully devel-

oped to gather data from hundreds of tipsters on pyckio.com. This module ensured

that the dataset remained current and relevant by continuously updating the lat-

est tipster performance data. This up-to-date dataset provided the foundation for

thorough and accurate analysis.

48

7.3. FUTURE WORK

• User-Friendly Dashboard: One of the primary goals was to create an interactive

and intuitive dashboard. This was achieved by designing a user interface allowing

users of varying expertise levels to build and manage their tipster portfolios easily. The

dashboard provides essential information in a clear and accessible manner, ensuring

that users can make informed decisions without requiring extensive knowledge in the

field.

• Comprehensive Tracking and Analysis: The application includes interactive

capabilities that offer users multiple analyses and parameters defining the character-

istics of their portfolio and each tipster within it. Users can analyze and understand

their investments from different perspectives by incorporating graphs and KPIs. This

comprehensive tracking and analysis enable users to effectively compare results and

identify trends.

• Historical Performance and Future Projections: An economic perspective was

provided by considering users’ initial investments and betting strategies. The tool

performs temporal analyses to visualize and analyze past performance and project

future outcomes in monetary terms. This feature allows users to assess potential risks

and benefits, helping them make well-informed investment decisions.

• Analytical Function Library: A comprehensive library of functions was designed

to work on the collected dataset. This library facilitates the extraction of meaningful

insights and supports various analytical needs. It ensures that the dashboard pro-

vides robust and versatile analysis capabilities, empowering users to explore different

approaches and gain deeper understanding of their investments.

• Enhanced User Interaction and Customization: The application offers ad-

vanced customization options, including adjusting stakes per tipster to equalize their

influence on the portfolio’s profitability. This feature allows users to tailor their bet-

ting strategies according to their preferences and risk tolerance, enhancing the tool’s

utility.

7.3 Future work

In the future, several enhancements and expansions can be made to the system to improve its

functionality and effectiveness. The following points outline potential areas for development.

• Addition of New Crawlers: To expand the scope of data collection, new crawlers

49

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

could be developed to extract information from additional tipster communities. This

data would be unified by the data munging module, ensuring a comprehensive and

consolidated dataset for analysis.

• Dataset Expansion: Increasing the size of the dataset and extending its temporal

range would enhance the analysis. This expansion could include more detailed data,

such as the monthly price of each tipster and any fixed costs associated with the

portfolio, providing a deeper understanding of financial commitments.

• Real-time Data Update Integration: Reconnecting the visualization module with

the data collection module would enable real-time updates of portfolio information.

This integration would allow users to dynamically monitor their investments’ evolution

and make more informed decisions based on the latest data.

• Machine Learning Applications: Implementing machine learning techniques to

analyze the results of different portfolios or potential portfolios over time could reveal

patterns associated with high-yield portfolios. This analysis could help predict future

performance and optimize investment strategies.

• Stake Adjustment Service: Adding an extra page to the application that offers

a stake adjustment service by tipster would be highly beneficial. This service would

aim to equalize the influence of each tipster on the final profitability by recommending

the amount to be wagered based on the user’s bank. This feature would provide

personalized advice to users, helping them optimize their betting strategies.

50

APPENDIXA
Impact of this project

This appendix reflects, quantitatively or qualitatively, on the possible impact...

A.1 Social impact

The social impact of our betting portfolio management tool extends across various aspects of

the betting community and beyond. This tool bridges data analysis and decision-making,

promoting informed betting practices and reducing the risks associated with uninformed

gambling.

Firstly, the tool democratizes access to advanced analytical capabilities, enabling bettors

of all experience levels to make informed decisions. Novice bettors can use the intuitive in-

terface to adjust basic parameters, while experienced bettors can delve deeper into the data

for more nuanced insights. This inclusivity fosters a more knowledgeable and responsible

betting community.

The tool educates users on the critical factors that influence betting success by providing

detailed analyses and visualizations of tipster performance and portfolio metrics. This edu-

cational component helps bettors understand the importance of thorough analysis, reducing

i

APPENDIX A. IMPACT OF THIS PROJECT

the likelihood of impulsive and potentially harmful betting behavior.

Moreover, the application encourages transparency and accountability among tipsters.

By compiling and presenting comprehensive data on tipster performance, the tool enables

users to make informed choices about which tipsters to follow, promoting a more trustworthy

betting ecosystem.

This tool’s potential to diversify and mitigate betting risks can lead to more sustainable

betting practices. By allowing users to create portfolios that spread risk across multiple

tipsters, the tool helps reduce the financial strain of betting, contributing to better mental

and financial health for individuals involved in betting activities.

In summary, our betting portfolio management tool enhances the betting experience

through advanced data analysis and contributes positively to the social landscape by pro-

moting informed, responsible, and sustainable betting practices.

A.2 Economic Impact

The potential economic impact of our betting portfolio management tool is significant,

influencing various stakeholders within the betting industry and beyond. The tool offers

economic benefits to end users, driving innovation and efficiency in the betting ecosystem.

The tool provides a means for end users to optimize their betting strategies and max-

imize their returns on investment. By enabling bettors to make data-driven decisions and

manage their portfolios effectively, the tool increases the likelihood of achieving consistent

profitability. This can attract more users to betting platforms, increasing the overall volume

of bets.

Additionally, the tool supports tipsters and tipster communities by providing a direct

link to the tipster’s main page within the tipster community. This feature not only promotes

the use of the tipster community but also encourages users to subscribe to the services of

the tipsters included in their portfolios. This increased visibility and accessibility can lead

to higher demand for their services and greater engagement within the community.

Overall, our betting portfolio management tool enhances the betting experience for

individual users and drives economic growth and efficiency within the broader betting in-

dustry. By promoting informed decision-making and transparency, the tool supports the

development of a more robust and economically viable betting ecosystem.

ii

A.3. ENVIRONMENTAL IMPACT

A.3 Environmental Impact

The project does not significantly change the environment. The main environmental con-

sideration is the energy consumption associated with the development and maintenance

of the system. The tool relies on cloud-based infrastructure and data centers to process

and store the extensive datasets required for analysis. These data centers consume signifi-

cant amounts of electricity for running and cooling servers, contributing to greenhouse gas

emissions and environmental degradation.

Efforts to optimize data center energy efficiency are crucial to mitigate the environmental

impact. Techniques such as using renewable energy sources, implementing more efficient

cooling systems, and enhancing server utilization can help reduce the system’s overall energy

consumption.

In summary, while this project’s primary environmental impact is the energy consump-

tion of its server infrastructure, steps can be taken to minimize this footprint.

A.4 Ethical Impact

The primary ethical considerations of this project revolve around privacy and the respon-

sible use of data. Although the project utilizes publicly available data, there remains a

significant concern about public awareness and consent regarding data sharing. Most users

are unaware of the implications of publicizing their data. Consequently, greater education

on the importance and value of privacy is needed to ensure users understand how their data

might be used.

Furthermore, the ethical impact also includes the potential job displacement caused

by automation. While the system automates previously manual tasks, it simultaneously

necessitates human oversight for maintenance and data analysis. This shift represents a

transformation rather than eliminating jobs, requiring new skills and roles to manage and

interpret the system’s outputs.

iii

APPENDIX A. IMPACT OF THIS PROJECT

iv

APPENDIXB
Economic budget

B.1 Introduction

In this appendix, a comprehensive economic budget to implement this project is developed.

The main components of this budget is detailed in the following sections, covering physical

resources, human resources, software licenses, and taxes.

B.2 Physical resources

The budget for the physical devices necessary for the development of this project is mainly

composed of a computer with the following minimum requirements.

• CPU: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz

• RAM: 16 GB

• Disk: 500 GB

v

APPENDIX B. ECONOMIC BUDGET

B.3 Human Resources

In this section, we calculate the cost of human resources required for the development and

maintenance of the system. The project involves 12 ECTS (European Credit Transfer and

Accumulation System), with each credit equivalent to 27 hours of work. Thus, the total

work required is 12× 27 = 324 hours.

Based on the average internship salary offers observed:

• Full-time internship: 1170 €/month

• Part-time internship (15 hours/week): 400 €/month

Assuming a rate of 400 € per month for part-time work, and considering an average of

4 weeks per month, we get a weekly rate of approximately 100 €. Given that part-time

involves 15 hours per week, the hourly rate is 100 €
15 hours ≈ 6.67 €.

Therefore, for 324 hours, the total cost of human resources is:

324 hours× 6.67 € ≈ 2162.28 €

B.4 Licenses

All the software tools utilized in this project are open-source and freely available. Conse-

quently, the cost of software licenses is zero.

B.5 Taxes

When the final product is sold to a company, the sale is subject to a tax of 15% of the

product’s price, as defined in Spanish law’s Statute 4/2008.

B.6 Conclusion

The total cost of developing this project, which includes physical and human resources,

is approximately 3362.28 €. This budget ensures a comprehensive understanding of the

financial requirements for its successful implementation.

vi

APPENDIXC
Reference manual

This section describes the data processing and visualization modules.

C.1 Data processing modules

Each module component will now be described. In their current state, both the module

and these files are relatively simple and perform basic functions on the data. However, they

are designed with the application’s scalability in mind, considering a potential increase in

complexity and functionalities.

pyckio data munging.py

This is the module’s main file, and the other two facilitate its readability. First, import the

CSV file generated in the Data Collection module with the read csv() pandas method.

Listing C.1: Importing necessary libraries and reading the raw data file

import pandas as pd

import ast

vii

APPENDIX C. REFERENCE MANUAL

from functions import *

from config import PYCKIO_RAW_DATA_FILE, PYCKIO_PROCESSED_DATA_FILE

df = pd.read_csv(PYCKIO_RAW_DATA_FILE)

It then converts the data columns to their desired type, as shown in the previous sec-

tion, and generates new valuable metrics from other data, relying on functions defined in

functions.py.

Listing C.2: Adding last100picksyield column

df[’lastnpicksyield’] = df.apply(lambda row: functions.

get_last_100_picks_yield(row[’lastMonthsnPicks’], row[’lastMonthsYield’

]), axis=1)

Finally, it generates the CSV file with the processed data, which is ready for use by the

system’s final module.

functions.py

This file is responsible for storing all the auxiliary functions of a certain complexity that

facilitate data processing and the creation of new data. Therefore, these functions improve

the readability of the main code and allow for greater modularity.

Listing C.3: Function to calculate the yield of the last NPICKS YIELD picks

def get_last_npicks_yield(monthly_npicks: List[int], monthly_yields: List[

float]) -> float:

left_picks = config.NPICKS_YIELD

last_npicks_yield = 0.0

for i in range(len(monthly_npicks)):

if left_picks <= 0:

break

weight = min(left_picks, monthly_npicks[i]) / 100.0

last_100_picks_yield += weight * monthly_yields[i]

left_picks -= monthly_npicks[i]

return last_npicks_yield

viii

C.2. VISUALIZATION MODULES

config.py

Following the above-mentioned line of work, the config.py file allows efficient and scalable

system development. In this case, the file contains the configuration constants in the module,

ensuring that critical parameters are consistent and easy to modify.

Listing C.4: Configuration constants in config.py

data storage

DATA_PATH = ’data/’

PYCKIO_RAW_DATA_FILE = ’pyckio_raw_data.csv’

PYCKIO_PROCESSED_DATA_FILE = ’pyckio_dataset.csv’

dataframe configuration

NPICKS_YIELD: 100

C.2 Visualization modules

C.2.1 DataFrames Design for Visualization

In this section, we will discuss the creation of various dataframes that allow us to focus on

the analysis of the portfolio and the tipsters from different perspectives. The definitions of

the functions that will be explained in this section are provided in data processing.py,

which is the main file for this section. The data processing.py file makes extensive use

of the pandas and numpy libraries to perform these processes efficiently.

In data processing.py, several functions are defined to develop the dataframes

necessary for our analysis. Below is an overview of these functions:

• generate tipsters portfolio: : This is the application’s core function. It is

the one that deals with, given the dataframe with all the tipsters for which we have

data, and the user preferences, whose values are collected in the widgets, to develop

a reduced dataframe where only the data of the tipsters that make up the user’s

portfolio are included. This is done through an algorithm that sorts the complete df

according to a score value that defines each tipster among the eligible ones.

• create portfolio df: From the dataframe generated by the previous function,

called custom tipsters df, it generates a single row DataFrame containing the main

metrics of the portfolio, i.e., without particular data for each tipster.

ix

APPENDIX C. REFERENCE MANUAL

• create tipsters df: It generates a column-reduced version of custom fulldata df,

suitable for presentation in table format in ’The Tipsters’ tab.

• create timestats df: It breaks down the values related to the time statistics

of the tipsters in the portfolio so that in the new dataframe, a single tipster has as

many columns under his name as months have been extracted. Each row shows a

tipster’s statistics in a given month and year.

• create markets df: In a similar way to the previous function, it breaks down

the different betting markets in which each tipster operates and indicates the values

that define him, such as his yield or the percentage of picks he dedicates to that

betting market.

The data processing.py file also defines several auxiliary functions. These functions

help to obtain new metrics and valuable data or handle more complex definitions that im-

prove code readability. Some examples of these auxiliary functions include get stake to bank ratio,

mean yield deviation, load data (for loading the CSV from the data munging mod-

ule), and generate dataframes, which internally calls most of the dataframe generation

functions and is invoked from main.py to utilize them.

Listing C.5: Structure of generate dataframes function

def generate_dataframes(tipsters_fulldata_df):

tipsters_df = create_tipsters_df(tipsters_fulldata_df)

reduced_tipsters_df = create_reduced_tipsters_df(tipsters_fulldata_df)

portfolio_df = create_portfolio_df(tipsters_fulldata_df)

timestats_df = create_timestats_df(tipsters_fulldata_df)

markets_df = create_markets_df(tipsters_fulldata_df)

return tipsters_df, reduced_tipsters_df, portfolio_df, timestats_df,

markets_df

C.2.2 Chart Creation and Design

The main file for this section is plotting.py, which defines functions to generate a wide

variety of charts and graphics based on a dataframe provided as a parameter. Therefore,

it utilizes the dataframes created in data processing.py. The app.py file calls these

functions to render them in the dashboard subsequently. To achieve this, plotting.py

imports the plotly.graph objects and plotly.express libraries.

In this section, we include some of the functions responsible for chart creation and

x

C.2. VISUALIZATION MODULES

design:

• create npicks yieldevol chart:From the timestats df and portfolio df, it gen-

erates a graph composed of two superimposed charts. A bar chart, where each bar

represents the number of monthly picks of the tipsters, is stacked in each month so

that you can see the total number of picks of the portfolio. The other is a line chart

showing the evolution of the portfolio’s yield over the last months.

• plot waterfall chart:It generates a waterfall chart that allows one to analyze

the evolution of the user’s bank over the last months if he had placed all the bets of

the tipsters of his custom portfolio.

• create tipster activity piechart: It provides a piechart that allows an

analysis of the influence of each tipster on the portfolio, calculated as the average

number of monthly picks of a tipster concerning the average monthly total of the

portfolio.

• create sport markets sunburst: creates a sunburst chart to analyze a specific

sport or market sector. The inner ring shows the sport, while the external ring shows

the market associated with that sport.

C.2.3 Component Integration

This section will show the graphs and charts resulting from these functions, where the

results will be presented.

The app.py file is the main driver to integrate the data processing and plotting function-

alities described in the previous sections. This file obtains dataframes using the functions

from data processing.py and utilizes these dataframes to generate and render various

charts on the pre-designed layout.

First, app.py imports the necessary modules:

Listing C.6: Importing Modules

import data_processing as dp

import plotting as plt

Next, the full dataset is loaded into a dataframe using the load data function from

the data munging module:

xi

APPENDIX C. REFERENCE MANUAL

Listing C.7: Loading the Dataset

df = dp.load_data(’./data/tipsters_dataset.csv’)

Subsequently, a custom dataframe for the user’s portfolio is generated.

The generate tipsters portfolio function creates a reduced dataframe from the

original, including only the tipsters that belong to the portfolio. Then, the main dataframes

needed for visualization are generated:

Listing C.8: Generating Dataframes

custom_tipsters_df = dp.generate_tipsters_portfolio(df, user_preferences)

tipsters_df, reduced_tipsters_df, portfolio_df, timestats_df, markets_df =

dp.generate_dataframes(custom_tipsters_df)

With the dataframes ready, various charts are created using the functions from plotting.py.

These functions take the appropriate dataframes as input parameters to generate the desired

visualizations:

Listing C.9: Creating Charts

portfolio_npicks_yieldevol_fig = plt.create_npicks_yieldevol_chart(

timestats_df, portfolio_df)

Finally, the charts are included in the defined layout for the dashboard. For instance,

the following code snippet shows how a chart is added to a specific column in the layout:

Listing C.10: Including a Chart in the Layout

col1, col2, col3 = st.columns(3, gap=’large’)

with col1:

st.plotly_chart(yield_by_sport_chart)

This integration in app.py ensures that the data processing and visualization compo-

nents work seamlessly together, providing a coherent and interactive user experience on the

dashboard.

xii

Bibliography

[1] Apify. Crawlee - apify, 2024. (Accessed: 2024-05-19).

[2] ApuestasDeportivas.com. Historical data of a tipster, 2023. (Accessed on 28/06/2024).

[3] M. Bansal, M. A. DAR, and M. M. Bhat. Data ingestion and processing using playwright.

Authorea Preprints, 2023.

[4] E. Dabbas. Interactive Dashboards and Data Apps with Plotly and Dash: Harness the power

of a fully fledged frontend web framework in Python–no JavaScript required. Packt Publishing

Ltd, 2021.

[5] D. Flanagan. JavaScript: The definitive guide: Activate your web pages. ” O’Reilly Media,

Inc.”, 2011.

[6] D. Forrest and R. Simmons. Forecasting sport: the behaviour and performance of football

tipsters. International journal of Forecasting, 16(3):317–331, 2000.

[7] B. R. González. Apuestas deportivas online: Claves para ganar apostando. Punto de Lectura,

2013.

[8] Google. Chrome DevTools, 2024. /Accessed: 2024-05-19).

[9] A. Gruettner, T. Wambsganss, and A. Back. From data to dollar: using the wisdom of an

online tipster community to improve sports betting returns. European Journal of International

Management, 15(2-3):314–338, 2021.

[10] Inbetsment. Tipsters - inbetsment, 2024. Available at https://inbetsment.com/es/

tipsters. (Accessed on 2/7/2024).

[11] M. Khorasani, M. Abdou, and J. Hernández Fernández. Streamlit basics. In Web Application

Development with Streamlit: Develop and Deploy Secure and Scalable Web Applications to the

Cloud Using a Pure Python Framework, pages 31–62. Springer, 2022.

[12] E. A. Killick and M. D. Griffiths. In-play sports betting: A scoping study. International Journal

of Mental Health and Addiction, 17:1456–1495, 2019.

[13] H. Lopez-Gonzalez, A. Estévez, and M. D. Griffiths. Controlling the illusion of control: A

grounded theory of sports betting advertising in the uk. International Gambling Studies,

18(1):39–55, 2018.

[14] H. Lopez-Gonzalez and M. D. Griffiths. Understanding the convergence of markets in online

sports betting. International Review for the Sociology of Sport, 53(7):807–823, 2018.

xiii

https://inbetsment.com/es/tipsters
https://inbetsment.com/es/tipsters

BIBLIOGRAPHY

[15] S. Molin. Hands-On Data Analysis with Pandas: A Python data science handbook for data

collection, wrangling, analysis, and visualization. Packt Publishing Ltd, 2021.

[16] NumPy. What is numpy?, 2024. Accessed: 2024-05-19.

[17] Ordenación del Juego. Informe del jugador en ĺınea, 2023. Available at https://www.

ordenacionjuego.es/es/informe-jugador-online (Accessed on 2/07/2024).

[18] Ordenación del Juego. Mercado de juego online estatal, 2023.

[19] Python Software Foundation. Blurb: Python’s design philosophy, 2024. Accessed: 2024-05-19.

[20] B. J. Riley, L. Li, D. Plevin, and M. Baigent. Betting on australian rules football: Can expert

tipsters beat randomness? Journal of Gambling Studies, 39(4):1537–1546, 2023.

[21] TipsterTrust. Cómo analizar correctamente las estad́ısticas

de un tipster, 2023. https://tipstertrust.com/

como-analizar-correctamente-las-estadisticas-de-un-tipster (Accessed:

21/05/2024). (Accessed on 2/07/2024).

[22] G. Van Rossum et al. Python programming language. In USENIX annual technical conference,

volume 41, pages 1–36. Santa Clara, CA, 2007.

xiv

https://www.ordenacionjuego.es/es/informe-jugador-online
https://www.ordenacionjuego.es/es/informe-jugador-online
https://tipstertrust.com/como-analizar-correctamente-las-estadisticas-de-un-tipster
https://tipstertrust.com/como-analizar-correctamente-las-estadisticas-de-un-tipster

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Specific Goals
	Data Collection and Processing
	Analytical Function Library

	Structure of this document

	Theoretical Framework
	Tipster & Tipsters Communities
	Key Concepts of Sports Betting
	Enabling Technologies
	Programming Languages
	Python
	JavaScript

	Web Scraping
	Crawlee
	Playwright
	DevTools Chrome

	Front-End Development
	Streamlit
	Plotly

	Data Processing and Analysis

	Architecture and High-Level Design
	Introduction
	System Architecture Overview
	Data Collection Module
	Data Munging Module
	Visualization & User-Interaction Module

	Data Processing Detailed Design
	Data Collection Process
	Tipster Community Selection
	Data Scraping
	Scraping Phases

	Data Munging Process

	Visualization Design
	Overview
	Streamlit Setup & Layout Design
	Mockup Design
	Streamlit Widgets & Layout Components
	Layout Elements

	Case Study
	Introduction
	Initial Access
	User Preferences Settings
	Navigation through Tabs

	Conclusions and Future work
	Conclusions
	Achieved goals
	Future work

	Appendix Impact of this project
	Social impact
	Economic Impact
	Environmental Impact
	Ethical Impact

	Appendix Economic budget
	Introduction
	Physical resources
	Human Resources
	Licenses
	Taxes
	Conclusion

	Appendix Reference manual
	Data processing modules
	Visualization modules
	DataFrames Design for Visualization
	Chart Creation and Design
	Component Integration

	Bibliography

