
	

	

	

	

	

	

	

	

	

	

	

	

GRADO EN INGENIERÍA DE TECNOLOGÍAS Y
SERVICIOS DE TELECOMUNICACIÓN	

	

TRABAJO FIN DE GRADO	

	

	

	

DESIGN AND DEVELOPMENT OF
A SENTIMENT ANALYSIS SYSTEM

ON FACEBOOK FROM
POLITICAL DOMAIN

	

	

	

	

PABLO ARAMBURU GARCÍA	

Junio 2017	

TRABAJO FIN DE GRADO

T́ıtulo: Diseño y Desarrollo de un Sistema de Análisis de Sentimien-

tos en Facebook en el Ámbito Poĺıtico.

T́ıtulo (inglés): Design and Development of a Sentiment Analysis System on

Facebook from Political Domain.

Autor: Pablo Aramburu Garćıa

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente:

Vocal:

Secretario:

Suplente:

FECHA DE LECTURA:

CALIFICACIÓN:

Resumen

Este documento es el resultado de un proyecto cuyo principal objetivo ha sido desarrollar

y desplegar un cuadro de mandos que muestra los resultados del análisis de información

sobre los principales partidos poĺıticos en sus páginas públicas de Facebook, basado en Web

Components.

Para ello, la primera tarea que se ha realizado es la extracción de información. Esta

extracción se ha desarrollado en Python, creando un flujo entre Facebook, Senpy y Elas-

ticsearch que está gestionado por Luigi. Aśı, esta herramienta nos ayuda a analizar toda

la información y poder almacenarla en Elasticsearch; haciendo posible su acceso posterior-

mente para mostrarla.

A continuación, y con la ayuda de Sefarad, se ha desplegado toda esa información en

forma de widgets que muestran todas las estad́ısticas, y que ayudan al usuario a interpretar

de una manera rápida y visual toda la información disponible.

Como resultado, este proyecto permitirá realizar un estudio y análisis de esta red social,

haciéndo énfasis en las emociones y sentimientos mostradas por sus usuarios y centrándose

en este caso en los principales partidos poĺıticos; pero pudiéndose aplicar en el futuro a

cualquier otra rama de la sociedad.

Palabras clave: Sefarad, Senpy, Elasticsearch, Luigi, Polymer, Data Scraping, Web

Component, Poĺıtica, Facebook

V

Abstract

This thesis is the result of a project whose main goal has been to develop and deploy a

dashboard showing the information analysis’ results about political domain on Facebook,

based on Web Components.

To do so, the first task carried out has been the data extraction. This was developed

on Python language, setting up a pipeline between Facebook, Senpy and Elasticsearch,

managed by Luigi. This tool help us to analyse data and store it in Elasticsearch; making

viable its access to view it.

Right after the first task and using Sefarad, data has been deployed in widgets which

show statistics estimated from it; helping users to read data quickly and easily on a striking

interface.

As a result, this project will allow us to make a Facebook research and analysis, making

emphasis on emotions and sentiments that users show through it. This exploration will

focus on the main Spanish political parties; but it can be applied to any social subject.

Keywords: Sefarad, Senpy, Elasticsearch, Luigi, Polymer, Data Scraping, Web Com-

ponent, Politic, Facebook

VII

Agradecimientos

Gracias a mi tutor Carlos, que me ha sabido guiar y ayudar durante todo el proceso de este

proyecto.

A toda mi familia y, en particular, a mis padres y mi hermana, que me han sabido

apoyar y animar en todo momento a lo largo de estos cuatro años de carrera.

A mis amigos de La Coruña, que los conozco desde que éramos pequeños y han estado

en todo momento.

También a todas esas personas que he conocido durante mi estancia en Madrid, cada

una de ellas aportándome algo diferente y animándome en la nueva etapa de mi vida que

empezaba fuera de mi hogar.

Y en último lugar, gracias a los grandes amigos que me llevo de esta universidad y a mis

compañeros de piso, que han estado al pie del cañón conmigo cuando los he necesitado.

A todos vosotros, gracias.

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XV

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.3 Project tasks . 2

1.4 Structure of this document . 3

2 Enabling Technologies 5

2.1 Sefarad . 5

2.1.1 Luigi . 6

2.1.2 Senpy . 7

2.1.3 Elasticsearch . 8

2.1.4 Polymer . 8

2.2 Web Scraping . 9

2.2.1 Obtaining Data from Facebook . 10

XI

2.2.1.1 Facebook Graph API . 10

2.2.1.2 Facebook Graph API Explorer 11

2.3 Conclusion . 11

3 Architecture 13

3.1 Overview . 13

3.2 Orchestrator . 14

3.3 Facebook Scraper System . 15

3.4 Analysis System . 19

3.4.1 sentiText . 19

3.5 Indexing System . 21

3.6 Visualization System . 22

3.6.1 Structure . 22

3.6.2 Elements . 23

3.6.2.1 Paper-material . 23

3.6.2.2 Number-chart . 24

3.6.2.3 Google-chart . 24

3.6.2.4 Comments-table . 26

3.6.2.5 Field-chart . 27

4 Case of study 29

4.1 Extracting data . 29

4.2 Analysing data . 31

4.3 Indexing data . 31

4.4 Displaying data . 31

4.5 Conclusions . 34

5 Conclusions and Future work 37

5.1 Conclusions . 37

5.2 Achieved goals . 38

5.3 Problems faced . 38

5.4 Future work . 39

Bibliography 40

List of Figures

2.1 Sefarad architecture . 6

2.2 Senpy processes . 7

2.3 Facebook Graph API Explorer . 11

2.4 Final Structure of the Project . 11

3.1 Architecture of the Project . 14

3.2 Example of a Facebook public page . 18

3.3 Example of a result of Scraping System . 19

3.4 Accessing Elasticsearch . 21

3.5 Dashboard Mock-up . 23

3.6 Paper-material Widget . 24

3.7 Number-chart Widget . 24

3.8 Google-chart Column Widget . 25

3.9 Google-chart Pie Widget . 26

3.10 Comments-table Widget . 27

3.11 Sentiment evolution widget . 27

4.1 First and second dashboard’s section . 32

4.2 Third dashboard’s section . 33

4.3 Third dashboard’s section (2) . 34

XV

Listings

3.1 Executing Luigi pipeline . 15

3.2 Generating a valid access-token . 16

3.3 Retry in error case . 16

3.4 IDs of the four political parties we are going to analyse 17

3.5 Example of extracting data from Facebook 17

3.6 URL requesting a sentiText analysis . 20

3.7 Result of the URL requesting a sentiText analysis 20

3.8 Starting Elasticsearch . 21

XVII

CHAPTER1
Introduction

1.1 Context

Nowadays, social networks have gained a lot of importance in people’s daylife. This im-

portance has achieved political panorama [4]; political parties use these social networks not

only for the purpose of self-presentation but also to maintain contact with society directly

and easily, and spreading every subject they are into. Having presence on social networks is

considered a necessary step on public organizations, showing closeness to the population. In

addition, it is possible to see reflected in these social networks multiple impacts and effects

that their movements have in the population [12], making viable its analysis.

With all those movements made on social networks, this project will be based on Senti-

ment Analysis Techniques [7]. Political parties are constantly publishing news, comments or

just simply interactions between them, so it will be easy and useful to establish a sentiment

relation between them. Furthermore, any person has the chance of answering or publishing

something in political parties’ Facebook pages; so not only they will be analysed from the

inside, but also how they look from outside. The result of this analysis could be used in the

future for statistics of voting intentions, for example.

As we have introduced previously, the main aim of this project is to develop and deploy

1

CHAPTER 1. INTRODUCTION

a dashboard which reflects the results of the analysis of the population’s reactions and

feelings to the last publications of four principal Spanish political parties in their public

Facebook’s pages; making them easy to visualize and understand. To do so, the project

will be divided into different phases, using multiple tools on each one. The first task of

the project involves a scraper data in Facebook, trying to gather as much information as

possible in order to analyse it later. The result of this Facebook scraping will be stored

in a json file, with a predefined structure. Secondly, this information will be gathered on

ElasticSearch and analysed helped by Senpy. Luigi, from Python, will help doing these

issues. Finally, the results of that analysis will be displayed on a Dashboard managed by

Sefarad, making it easy to visualize for the user. Programming languages such as Python,

HTML, CSS or JavaScript will be used on every step of this project.

1.2 Project goals

In this project we will make an analysis of different reactions population have to the latest

political parties’ movements on their Facebook pages.

Among the main goals inside this project, we can find:

• Get access to people reactions and comments, and collect them.

• Build a pipeline for sentiment and emotion analysis.

• Design a dashboard based on widgets that will show the information collected in a

striking and attractive way.

1.3 Project tasks

During this project, the following tasks will be implemented:

• Learn how to use and implement Facebook Grapher API, in order to extract data

from this social network.

• Store Facebook data in a json file, with a predefined structure.

• Analyse Facebook data with Senpy.

• Store data analysed with ElasticSearch.

2

1.4. STRUCTURE OF THIS DOCUMENT

• Build and deploy a dashboard showing the information collected and stored in Elas-

ticSearch.

1.4 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is the following:

Chapter 1 explains the context in which this project is developed, describes the main goals

to achieve in this project and introduce the topic to the audience.

Chapter 2 provides a description of the main technologies used oh this project.

Chapter 3 describes the architecture of this project, including the design phase and im-

plementation details.

Chapter 4 presents a detailed example of this project.

Chapter 5 discusses the conclusions extracted from this project, problems faced and sug-

gestions for a future work.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
Enabling Technologies

In this chapter, we are going to give an insight into the techniques used to achieve

this project.

In order to accomplish this task we have been helped by another project called

Sefarad and developed in the GSI (Grupo de Sistemas Inteligentes) of ETSIT-UPM,

giving us the chance of showing data on a easy and striking way.

Extracting data has been possible thanks to Facebook Graph API. Analysing and

storing data from public pages of Facebook has been made through a pipeline created by

Luigi. This pipeline allow us to connect the Scraping System, Senpy and ElasticSearch

in order to achieve those tasks, and later visualize its results.

2.1 Sefarad

Sefarad1 is the main tool used in this project due to it includes every system used to

achieve the goals of this project, so first of all we will explain what it is. Sefarad is an

application developed by the GSI to explore and display data by making SPARQL queries

1http://sefarad.readthedocs.io/en/latest/sefarad.html

5

CHAPTER 2. ENABLING TECHNOLOGIES

to the endpoint you choose without writing more code. You can also create your own cores

if you have a big collection of data (LMF required). To view the data you want to explore,

you can create and customize your own widgets and visualize it through them, or you can

use multiple available widgets in the system in order to do so, due to they are reusable.

It mainly uses four technologies, all gathered in one pipeline. These technologies are

shown in Fig. 2.1, as explained below:

Figure 2.1: Sefarad architecture

2.1.1 Luigi

Luigi2 is a Python package that helps you in the process of building complex pipelines

of batch jobs. It handles dependency resolution, workflow management, handling failures,

visualization, command line integration, and much more.

The purpose of Luigi is to address all the pipelines typically associated with long-running

batch processes. Many tasks can be chained with Luigi’s help; these tasks can be anything,

but are typically long running things like Hadoop jobs, downloading data from databases,

running machine learning algorithms, uploading data to databases, or anything else.

In this project, Luigi is used to create a pipeline that manages every task composing

Sefarad, making easier and faster to develop and deploy the project.

2https://github.com/spotify/luigi

6

2.1. SEFARAD

2.1.2 Senpy

Senpy [11] is a technology also developed by the GSI. It is an open source software and uses

a data model to make an analysis of feelings and emotions to it.3 It is based on semantic

vocabularies (e.g. NIF, Marl, Onyx) and formats (turtle, JSON-LD, xml-rdf).

This framework consists of two main modules: Senpy core, including the building block

of the service, and Senpy plugins, which consist of the analysis algorithm. The following

picture shows a simplified example of Senpy processes.

Figure 2.2: Senpy processes

There are seven different plugins available to use:

• sentiText: It extracts sentiments from the text given as input. It is adapted for

English and Spanish.

• meaningCloud: an adaptation made from the MeaningCloud4 Sentiment Analysis

API. This plugin is available in English and Spanish too.

• emoTextWordnetAffect: it is based on the hierarchy of WordnetAffect [9] to calculate

the emotion of the sentence. This plugin is only available in English, which represents

a disadvantage if you want to analyse Spanish texts.

• sentiment140: this plugin allows users to discover the sentiment of a brand, product,

or topic on Twitter.5 It is possible to analyse English and Spanish texts.

• emoTextAnew: it extracts the VAD (valence-arousal-dominance) of a sentence by

matching words from the ANEW dictionary. [1]

3http://senpy.readthedocs.io/en/latest/
4https://www.meaningcloud.com/developer/sentiment-analysis
5http://help.sentiment140.com/home

7

CHAPTER 2. ENABLING TECHNOLOGIES

• affect: It allows users to analyze sentiments and emotions at the same time by choos-

ing one sentiment plugin and another emotions one.

• vaderSentiment: it uses the software from vaderSentiment [3] to calculate the sentece’s

sentiment.

2.1.3 Elasticsearch

Elasticsearch [2] is a search engine based on Lucene. It provides a distributed, multitenant-

capable full-text search engine with an HTTP web interface and schema-free JSON docu-

ments.

It is developed in Java and is released as an open source under the terms of the Apache

License, which means anyone can have access to it.

The search API allows you to execute a search query and get back search hits that

match the query. The query can either be provided using a request body or just using a

simple query string as a parameter.

Elasticsearch6 organizes data in indexes. An Elasticsearch index is some type of data

organization mechanism, that allows the user to partition data in a certain way. There are

two main ways for adding data to an Elasticsearch index:

• The first one allows us to capture real-time data and is based on using Logstash. In

this case a configuration file is needed, which describes where data is going to be

stored and the query terms that are going to be indexed.

• The second one is easier and faster. It consists in adding a whole index by using the

Elasticsearch’s bulk API [8]. In this case you just need all your data stored in a JSON

file and you manually add the index where data is going to be stored.

2.1.4 Polymer

Polymer7 is an open-source JavaScript library for building web applications using Web Com-

ponents. This project is possible thanks to Google developers and contributors on GitHub

contributing to the development of this library. Modern design principles are implemented

as a separate project using Google’s Material Design design principles.

6 https://en.wikipedia.org/wiki/Elasticsearch
7https://en.wikipedia.org/wiki/Polymer (library)

8

2.2. WEB SCRAPING

Polymer helps users on building their very own custom HTML elements, making this

task easier and faster. By being based on the Web Components API’s built in the browser,

Polymer elements are interoperable at the browser level, and can be used with other frame-

works or libraries that work with modern browsers.

This fact can make the process of building web applications easier and more efficient,

due to programming time is significantly decreased. These custom elements are particu-

larly useful for building re-usable UI components. This is very effective: instead of being

continually re-building a specific element for multiple projects and in different frameworks,

you can define this element once using Polymer, and then reuse it throughout your project

or in any future one.

Polymer uses a declarative syntax to make the creation of your own custom elements

easier. They use standard web technologies: HTML to define the structure of the element,

CSS for style personalization and JavaScript to make these elements interactive. In addition,

Polymer has been designed to be flexible, fast and close. It uses the best specifications of

the web platform on a direct way to simply custom elements’ creation.

Furthermore, Web Components8 are based on four main and independent (they can be

used separately, giving more resilience) features [6]:

• Custom Elements: APIs to create new elements, providing a component model for

the web.

• Templates: Allows documents to contain inert chunks of DOM.

• Shadow DOM: Encapsulated DOM and styling, with composition.

• HTML Imports: : Imports HTML documents into other documents.

2.2 Web Scraping

Before describing how we obtained all the data from Facebook, it is necessary to explain

the meaning of Web Scraping [5].

Web Scraping9 is a computer software technique used for extracting data from websites.

It involves two phases: fetching it and extracting from it. Fetching is the download of

a page, this task is made by the browser when a user visits a page. Once fetched, the

8http://octuweb.com/introduccion-web-components/
9https://es.wikipedia.org/wiki/Web scraping

9

CHAPTER 2. ENABLING TECHNOLOGIES

extraction can take place. The content of a page may be parsed, searched, reformatted, its

data copied into a spreadsheet, and so on. Web scrapers typically take something out of a

page, to make use of it for another purpose somewhere else.

2.2.1 Obtaining Data from Facebook

In our project, we developed a Facebook Scraper which obtains data from the main political

parties’ Facebook pages in Spain: “Partido Popular”, “Partido Socialista Obrero Espanol”,

“Podemos” and “Ciudadanos”.

2.2.1.1 Facebook Graph API

Facebook Graph API10 helped us to achieve this task. It is the primary way to get data

out of, and put data into, Facebook’s platform. It’s a low-level HTTP-based API (it works

with any language having an HTTP library, such as cURL and urllib) that you can use

to sequentially query data, post new stories, manage ads, upload photos, and perform a

variety of other tasks that an app might implement.

It is composed of:

• Nodes: basically “things” such as a user, a photo, a page or a comment.

• Edges: connections between two nodes, such as photos of a page, or comments of a

photo.

• Fields: information about nodes, such as a birthday of a person, or the name of a

Page.

This API requires authentication via access tokens11. Users can get Short-Term tokens,

but as their name suggests, they expire quickly, so they are not recommended due to their

short lifetime. Because of it, we decided to access with a Long-Term token concatenating

the App ID from a user-created App and the App Secret, giving us unlimited access to the

platform.

10 https://developers.facebook.com/docs/graph-api/overview
11http://minimaxir.com/2015/07/facebook-scraper/

10

2.3. CONCLUSION

2.2.1.2 Facebook Graph API Explorer

Facebook gives users the chance to try their API and make different calls on a visual plat-

form named Facebook Graph API Explorer, which is really helpful and intuitive. With

this API Explorer, users can prove every Facebook API function. An example of a simple

request, and its response, made to this API is given below in Fig 2.3.

Figure 2.3: Facebook Graph API Explorer

2.3 Conclusion

Once we know every technology used is on this project, we are able to shape the final

structure of this project, as it is shown in Figure 2.4, including previous Sefarad structure

connected to the Facebook Scraper.

Figure 2.4: Final Structure of the Project

11

CHAPTER 2. ENABLING TECHNOLOGIES

12

CHAPTER3
Architecture

In this chapter, we are going to explain the architecture of this project. First of all,

we will give an overview presenting a global vision about the whole architecture of this

project. Finally, we will explain each module integrated into this project in detail,

giving figures, listings and examples to make it easer to the reader.

3.1 Overview

This section gives us a general view of the modules used in this project and their connections.

These links are shown in the Fig. 3.1 below.

• Orchestrator : in this case, as it is mentioned before, Luigi is used to create a pipeline

that manages different tasks of this project, making them easier to us.

• Facebook Scraper System: this part of the project is used to extract data from Face-

book, obtaining it through Facebook Graph API and analysed later to achieve our

goals.

• Analysis System: this module uses Senpy to extract emotions and sentiments from

Facebook data obtained on the previous task.

13

CHAPTER 3. ARCHITECTURE

• Indexing System: this part of the project is in charge of indexing the information we

obtained from the previous analysis, using ElasticSearch.

• Visualization System: this is the final stage of the project. It is responsible for pro-

cessing data and showing it in different ways, making them attractive to users.

Figure 3.1: Architecture of the Project

3.2 Orchestrator

Luigi [10] is a Python package developed by Spotify used to build complex pipelines of batch

jobs, as it is mentioned before. In our project, we use Luigi as an orchestrator, building

a pipeline between the Facebook Scraper System, the Analysis System and the Indexing

System.

We need a script describing the pipeline Luigi has to follow, which includes Senpy and

ElasticSearch. This pipeline will be explained next.

The pipeline used on this project is composed of three tasks:

• FetchDataTask : this task reads the JSON file indicated as a parameter and it checks

its structure and syntax. In our case, this JSON file is the result of the Facebook

Scraper System.

14

3.3. FACEBOOK SCRAPER SYSTEM

• SenpyTask : this one loads data fetched with previous task and send it to Senpy tool

in order to analyse data retrieved and check sentiments expressed. Users can choose

the analysis they want to make by selecting the plugin they wan to use. It stores data

in a JSON file.

• Elasticsearch: the last task of the pipeline is in charge of indexing the JSON file

obtained from the previous task into the ElasticSearch index indicated as a parameter,

so user can have full access to it later.

An example of the commands used to execute this pipeline is given in the next List-

ing 3.1, and are explained after.

Listing 3.1: Executing Luigi pipeline

python -m luigi --module sefarad Elasticsearch --index politicos --doc-type

facebook --filename facebookPolitics.json --local-scheduler

The different parameters used on this execution are:

• module: it is the script you use to manage the different tasks.

• Elasticsearch: here you denote which is the last task you want to execute in the

pipeline. In our case, it was named Elasticsearch.

• index : this is the name of the partition of the data as it will appear on Elasticsearch.

It is important to establish an easy name to remember, so you can find it fast later.

• doc-type: this is the subindex data will have in the database.

• filename: this is the JSON file containing all data extracted before.

3.3 Facebook Scraper System

This is the first and most important task of the project. It is in charge of extracting data

from Facebook and store it in a JSON file, ready to its analysis and indexing.

As we have introduced previously in Chapter 2.2, Facebook gives users the chance to

extract and interact with their data through an API available to everyone who wants to use

it. This API allows users to post, get or even delete Facebook data, as long as they have

permission to do so.

15

CHAPTER 3. ARCHITECTURE

Facebook Graph API is not a public API; it requires user authentication via access to-

kens. This authentication can cause problems because these access tokens are Short-Term,

so they expire quickly and users have to renew them in order to continue developing on this

platform. This fact can represent a problem when developing an app which uses Facebook

updated information, because programmer has to be continue renewing his tokens. In this

project, we used a trick allowed by Facebook. We used as our access-token the concatena-

tion of an user-created Application and the App Secret (both of them given by Facebook),

making sure we have full access to the API, as illustrated in Listing 3.2.

Listing 3.2: Generating a valid access-token

I generate the access_token by creating an empty Facebook App which

gives me the app_id and app_secret needed in order to have full access

to the API.

app_id = "1352103248145811"

app_secret= "ee1c01590f72108218e533f67c955454"

Concatening them I am sure it won‘t expire.

access_token= app_id + "|" + app_secret

Sometimes connection between our App and Facebook Graph API can be lost, or an

error can appear. To solve this situation, we developed the following function.

Listing 3.3: Retry in error case

def request_until_succeed(url):

req = urllib2.Request(url)

success = False

while success is False:

try:

response = urllib2.urlopen(req)

if response.getcode() == 200:

success = True

except Exception, e:

print e

time.sleep(5)

print "Error for URL %s: %s" % (url, datetime.datetime.now())

return response.read()

Once we make sure we have access to Facebook Graph API, it is time to start scraping

16

3.3. FACEBOOK SCRAPER SYSTEM

data from it. First of all, we have to know the ids of the public pages we want to extract

information to build the url we are going to make the request. These ids can easily be

found in the URL of the page we want to get access to. In our case, they are: “pp”, “psoe”,

“ahorapodemos” and “Cs.ciudadanos”, as it is illustrated in Listing 3.4.

Listing 3.4: IDs of the four political parties we are going to analyse

#We store the ids we are going to analyse

ids = ["pp","psoe","ahorapodemos","Cs.Ciudadanos"]

Reading the documentation of Facebook Graph API1 we can find out a lot of informa-

tion, including what parameters we can extract from pages, as long as they are public so

everyone can access it. Users can extract people’s reactions to a publication (e.g. like, love,

angry, wow, haha, sad ...), number of comments and their message, the time when post was

made, the message of the post and the id of the post, for example.

Fig. 3.2 shows a post made in a public page of Facebook, including every element men-

tioned before.

Listing 3.5: Example of extracting data from Facebook

We use this function to extract data from Facebook

def getFBPageFeedData (page_id, access_token, num_status):

base = "https://graph.facebook.com/v2.9"

node = "/" + page_id + "/feed"

parameters = "/?fields=created_time,message,name,id,

reactions.type(LIKE).summary(total_count).limit(0).as(like),

reactions.type(LOVE).summary(total_count).limit(0).as(love),

reactions.type(WOW).summary(total_count).limit(0).as(wow),

reactions.type(HAHA).summary(total_count).limit(0).as(haha),

reactions.type(SAD).summary(total_count).limit(0).as(sad),

reactions.type(ANGRY).summary(total_count).limit(0).as(angry),

comments.limit(100).summary(true)

&limit=%s&access_token=%s"

%(num_status, access_token)

url = base + node + parameters

data = json.loads(request_until_succeed(url))

print "Analisis de %s realizado!" %page_id

return data

1https://developers.facebook.com/docs/graph-api/reference/

17

CHAPTER 3. ARCHITECTURE

In order to make this request, in our project we used the function shown in the List-

ing 3.5, which extracts the data we will analyse at the end of the system.

Figure 3.2: Example of a Facebook public page

The result of the call made by this function is a JSON file which includes all the in-

formation asked as fields on the url parameter. Here you can see an example of the result

of this Scraping System: a JSON file including all the information extracted from the post

showed previously on Figure 3.3.

18

3.4. ANALYSIS SYSTEM

Figure 3.3: Example of a result of Scraping System

3.4 Analysis System

In our project we used an Analysis System to extract sentiments showed by population on

their comments to the last political parties’ publications: this system is Senpy. As it is

explained in Chapter 2.1.2, Senpy allows users to make sentiment and emotions analysis of

the information they provide through different plugins available to everyone who wants to

use them.

In order to make our analysis, we have chosen sentiText widget from the multiple options

Senpy offers you. Other options were ruled out because they did not extract what we wanted

or they did not admit Spanish language.

3.4.1 sentiText

We have used this widget in our project to extract sentiments from comments people make

on different publications.

This element extracts the message given as a parameter and calculates its polarity, and

if the content of the text is positive, neutral or negative.

The way of using this plugin is by accessing an specific URL with the needed parameters.

In our case, we have introduced three parameters when running this URL.

• The first one is called ”algo”, an abbreviation of algorithm. We use this parameter to

introduce the type of analysis we want to run. In our case, it is ”sentiText”.

• The second parameter is called ”language”. It refers to the language in what the

19

CHAPTER 3. ARCHITECTURE

content to analyze is written.

• The last parameter is named as ”input” and it is followed by the text we want to

make an analysis to.

An easy example of the URL accessed to use this plugin is shown in Listing 3.6 .

Listing 3.6: URL requesting a sentiText analysis

http://senpy.cluster.gsi.dit.upm.es/api/?algo=sentiText&language=es&input=

Estoy%20feliz

In this example, we use sentiText as plugin to analyse the text ”Estoy feliz” in Spanish

language. The output of the previous URL is given next.

Listing 3.7: Result of the URL requesting a sentiText analysis

{

"analysis": [

{

"@id": "sentiText",

"@type": "marl:SentimentAnalysis",

"entries": [

{

"@id": "Entry0",

"nif_isString": "Estoy feliz",

"sentiments": [

{

"@id": "Opinion0",

"marl:hasPolarity": "marl:Positive",

"marl:polarityValue": "1",

"prov:wasGeneratedBy": "sentiText"

}

]}]}]}

20

3.5. INDEXING SYSTEM

3.5 Indexing System

This system receives all the information extracted and analysed in the previous tasks and in-

dexes it. It works with ElasticSearch, which makes the connection between the Orchestrator

and the Visualization Server, explained in the next section.

In our project, the pipeline takes this task as it is explained in Section 3.2. We just need

to store all the data in a JSON file and the index where it will be stored, and Luigi do it for

us. We have used two indexes in this project: while the first one contains information about

each post of each political party, the other one stores every comment Facebook’s users have

made to those posts.

To be able to use and work with ElasticSearch, you should have launched this tool as it

is shown in Listing 3.8 .

Listing 3.8: Starting Elasticsearch

bin\elasticsearch

Once you have uploaded your information, users can make sure their data is fully trans-

fered to the database, ElasticSearch allows you to consult every index and its status by

accessing the following URL: http://localhost:9200/ cat/indices . An example of the result

of accessing it once is launched, is shown next.

Figure 3.4: Accessing Elasticsearch

21

CHAPTER 3. ARCHITECTURE

3.6 Visualization System

Showing information clearly and easily understood is as much important as collecting and

analysing it; so it does not matter if the previous tasks are correctly developed if this last

one is not.

The Visualization System is based on Polymer Web Components (as it is mentioned in

Chapter 2.1.4) and is developed from Sefarad 4.0.

3.6.1 Structure

First step on the process of creating a visual project should be to structure the space and

to think how to place items along it. This can be made by creating a sketch or a mock-up,

which can be changed until the end of the project, but will give an overview of how the

interface of the application will appear.

In our case, we needed to develop a website showing all the information extracted and

analysed in order to provide final users a visual, attractive, interactive and easy to use

platform. This is the main goal of the Visualization System, structuring data in a way

users can enjoy and easily understand its analysis and statistics.

To do so, we created and designed the following mock-up using the service given by

draw.io2. In this mock-up we show how we structured and distributed space. Firstly, user

will find how many posts each political party have published recently. Secondly, we will

display a comparison between the main reactions people show about each political party,

showing them in a column diagram per reaction. Next, we will present the results of the

analysis of the people’s comments in two different ways: a pie bar will compare the num-

ber of comments on each political parties’ posts and finally comments of each post will be

displayed on a table accompanied by their sentiment analysis. This mock-up is shown in

Fig. 3.5 .

2https://www.draw.io/

22

3.6. VISUALIZATION SYSTEM

Figure 3.5: Dashboard Mock-up

3.6.2 Elements

Once we knew how to structure space and how information will be displayed, we started

developing it and used different widgets that helped us with the task of showing data in an

easy and striking way.

3.6.2.1 Paper-material

This component is a text-container3. It helps us to divide our dashboard into different

sections. It creates the effect of a lifted piece of paper by rendering two shadows on top of

each other, so it is very useful when you want to highlight the beginning of a topic in your

dashboard.

3https://www.webcomponents.org/element/PolymerElements/paper-material

23

CHAPTER 3. ARCHITECTURE

In our project we use paper-material widgets to divide space depending on the topic

data will show. We show an example of this element applied to our dashboard on Figure 3.6 .

Figure 3.6: Paper-material Widget

3.6.2.2 Number-chart

Next element is called Number-chart. It analyses data passed as a parameter and extracts

how many times a parameter identified as object is found on the JSON file containing the

information. A number-chart component is completely customizable: it shows information

attached to an icon that users can choose from an enormous list of figures, or just add their

own pictures. It is also possible to change the text ilustrated.

In our dashboard, we used this component as a counter of how many posts have each

political party published on their public pages in a certain period of time. We have decided

to include each political party logo to make it more visual and impressive to users; as

presented on next Figure 3.7.

Figure 3.7: Number-chart Widget

3.6.2.3 Google-chart

Number statistics are made with the help of Google and their Google-Charts API [13].

This company provide users an API which estimate and show statistics in different ways

and formats on a very simple way.

In our project we use these Google-chart4 widgets to display different statistics extracted

from analysing Facebook data. First of all, we used a column diagram to analyse and com-

pare different Facebook reactions of people to the last publications of political parties, as

4https://developers.google.com/chart/

24

3.6. VISUALIZATION SYSTEM

it is illustrated in Figure 3.8. In this case, we chose a column diagram because it is more

visual and easy to compare reactions if they are shown on one diagram per reaction instead

of one diagram per political party.

Figure 3.8: Google-chart Column Widget

We also use these Google-chart widgets to compare the activity of the users on each

public page. We previously extract information about comments on the last publications of

political parties; then we decided to present a comparative between the number of comments

each political party had on them. In this case, we thought a pie diagram will accomplish

An example of the result of this task is presented in Figure 3.9.

Pie diagrams have been also used to compare the number of positive and negative comments.

25

CHAPTER 3. ARCHITECTURE

Figure 3.9: Google-chart Pie Widget

3.6.2.4 Comments-table

Showing comments that users make on Facebook is a great idea to visualize how people react

to different posts. This element is in charge of illustrating different comments Facebook’s

users made to the posts that political parties publish.

It uses AJAX requests to obtain comments and all the information related to them, such

as which political party is involved or the comment’s sentiment and represents this whole

information classified in a table divided into three columns:

• The first column shows the logo of the political party which comment is referred to.

• The second one contains the message of each comment.

• The last one is the result of the sentiment analysis. If the content of the comment is

positive, it will display a happy face. If not, it will present a sad one.

This element is shown in Fig. 3.10.

26

3.6. VISUALIZATION SYSTEM

Figure 3.10: Comments-table Widget

3.6.2.5 Field-chart

This widget allows us to show how sentiments change through the period of time chosen to

analyse.

This element displays a line chart showing the sentiment evolution. X-axis represents

time evolution, while y-axis represents sentiment evolution.

Fig. 3.11 gives an example of this element.

Figure 3.11: Sentiment evolution widget

27

CHAPTER 3. ARCHITECTURE

28

CHAPTER4
Case of study

This chapter of the work gives a detailed description of the process we followed to

extract information from Facebook, analyse and store it correctly and to display it.

Examples will be given all along this chapter to make its understanding easier to

the reader, so no doubt will not be answered.

The main actor in this case is the final user who access to our website looking for

information about political parties, their movements and how this actions influence

on population, analysing their sentiments and emotions.

4.1 Extracting data

Facebook has been the source of information in this project. We decided to use this social

network because it is one of the most used platforms to communicate with 1.94 billion

monthly active users1, so it is obvious that it manages a lot of information; which benefits

our project giving us a lot of data to analyse and study. Number of users and their activity

are directly proportional to the quantity of information exchanged.

1https://newsroom.fb.com/company-info/

29

CHAPTER 4. CASE OF STUDY

Facebook manages a lot of information about different topics. Celebrities, public com-

panies or organizations have presence on this social network. Within these multiple options,

we agreed to extract data from political domain because it is controversial and we can find

out a lot of different opinions, which will give variety to our project. In this case, we chose

“Partido Popular”, “Partido Socialista Obrero Español”, “Podemos” and “Ciudadanos”

due to their importance and position on Spanish political panorama; they are the four most

important political parties in Spain nowadays.

Not only these political parties are continuously posting news, videos, photos and com-

ments on their public pages, but also population make comments and reacts to these publica-

tions; so the quantity of information exchanged is huge. We decided to extract information

between the first and ninth of June of 2017.

The data we decided to extract from posts published by political parties is composed

of:

• Publication date of each post.

• The message posted by the political party.

• Total of people most important reactions to every post, and how many there are of

each type.

• Number of comments made by users of Facebook.

• Content of those comments.

In the period of time exposed previously we obtained 204 posts. Each post have its

own comments, obtaining 3.962 different opinions from people to those publications (2.029

from Podemos, 840 from Partido Popular, 591 from Ciudadanos and 502 from Partido

Socialista Obrero Español). In addition, we extracted the reactions to those posts classified

by political party (as it is shown on the dashboard). Each political party published:

• Partido Popular : 52 posts, obtaining the following reactions: 12.606 likes, 966 loves,

339 hahas and 481 angries.

• Partido Socialista Obrero Español : 34 posts, obtaining the following reactions: 10.180

likes, 821 loves, 127 hahas and 156 angries.

• Podemos : 87 posts, obtaining the following reactions: 89.737 likes, 6.752 loves, 4.299

hahas and 63.190 angries.

30

4.2. ANALYSING DATA

• Ciudadanos : 31 posts, obtaining the following reactions: 16.059 likes, 1.117 loves,

1.819 hahas and 251 angries.

4.2 Analysing data

The second step of this project was to analyse all the data once it was extracted as described

before. The tool used to make this analysis is, as it is mentioned all along this document,

Senpy and sentiText.

We made a sentiment analysis obtaining 2.937 comments with a positive sentiment,

while 1.025 comments were negative.

• Partido Popular : 648 positive comments and 192 negative.

• Partido Socialista Obrero Español : 382 positive comments and 120 negative.

• Podemos: 1489 positive comments and 540 negative.

• Ciudadanos: 418 positive comments and 173 negative.

4.3 Indexing data

Once data is analysed, it is needed to store and index it with ElasticSearch’s help. This

task is managed by the pipeline as it is mentioned in Chapter 3.2.

Our data is organised in two indexes, each one containing different information:

• First one is called ”politicos” and it contains every post political party made, reactions

to these posts, their messages and the comments’ IDs made to those posts.

• The second index is named ”comentarios” and it includes the comments made in

every post.

4.4 Displaying data

Finally, indexed data requires to be displayed. In order to do so, we used a dashboard

including all data and presenting it helped by interactive classified into different topics.

31

CHAPTER 4. CASE OF STUDY

Every component being part of this dashboard will be explained when it appears on the

different screen-shots.

Firstly, users can find out the name of the dashboard and its logo. The dashboard anal-

yses information from political domain using Information and Communication Technologies

(TIC); so we decided poliTICS to be our dashboard’s name. The logo shows Facebook as

our data source and the colour of political parties we are going to analyse.

We decided to divide this dashboard into three sections, explained and showed next.

In the first part, the number of posts published per political party is shown. Here, each

political party is identified by its name and logo; which helps user to recognise it clearly

and easily. The second section of this dashboard presents a comparison of the most popular

Facebook reactions (like, love, haha and angry) people make to the posts analyzed. It is

composed of four column diagrams, colouring columns depending on the political party that

it represents.

Fig. 4.1 shows both parts explained before.

Figure 4.1: First and second dashboard’s section

The last part of this dashboard is focused on the analysis of Facebook users’ comments

in different ways:

• The first one compares the number of comments on posts per political party. This

comparison is illustrated on a pie diagram, colouring slices with the political party’s

32

4.4. DISPLAYING DATA

colour; in order to make it more visual to users.

• Another pie diagram located below the previous one divides the number of comments

depending on the sentiment reflected on them. It is also possible to filter them by

political party.

• Then, a sentiment evolution graph is shown. It points out the increases and decreases

of sentiment polarity comments have during the period of time analysed.

• The last part of this section show some comments including the political party they

are associated and pointing out the sentiment reflected on the content of the message.

This last part is illustrated in Fig. 4.2 and Fig. 4.3.

Figure 4.2: Third dashboard’s section

33

CHAPTER 4. CASE OF STUDY

Figure 4.3: Third dashboard’s section (2)

4.5 Conclusions

In this chapter, we have presented the different steps we have followed in order to extract,

analyse, store and display data from Facebook. We also have explained the different widgets

used and showed the final view we reached in our dashboard.

Looking to the statistics given and analysing them, we could reach the following con-

clusions:

• The political party which Facebook personal activity is higher is Podemos, with 87

posts in 5 days. Ciudadanos is the political party with less posts.

• Due to Podemos is the political party with more posts published, it receives the higher

number of reactions.

• Although Partido Popular has a very intensive activity with 52 posts in five days; their

users do not interact with it the same way. Number of reactions make it decreases to

the third position.

• The total amount of comments is directly proportional to number of posts per political

party. Only Partido Socialista Obrero Español don’t follow that proportion, with less

comments per post than the other political parties.

• Facebook users usually positive comments to the posts the politicar parties publish.

34

4.5. CONCLUSIONS

This may be because most of the people visiting their public pages are their followers

and voters. Otherwise, there are negative comments too.

• Although Podemos is the political party with most negative reactions, it has 1489

positive comments (a higher quantity than the negative ones); the largest number of

the four political parties.

• Even though the period of time it is not a controversial and polemic one, we can

assure that Facebook has a lot of activity in political domain.

35

CHAPTER 4. CASE OF STUDY

36

CHAPTER5
Conclusions and Future work

This last chapter of the project sums up the conclusions achieved during the period of

work. It will announce the main goals achieved and problems faced while developing

it, and will study different options to develop in future work.

5.1 Conclusions

In this project we have developed a scraper system to extract data from public pages

on Facebook. In addition, we have made a sentiment analysis of this information, and

illustrated it on a dashboard based on Wb Components and widgets in order to make it

visible, accessible and clearly shown.

This project is composed of five subsystems. The fist one is the Facebook Scraper

System, which obtains every data we want to obtain from this social network (in our case,

we chose data from political domain). This system is followed by an Orchestrator. It

manages the rest of the tasks of this project due to it is a module for sequencing and

executing tasks and dependencies. Next module is Analysis System and it is in charge of

obtaining sentiments from comments users made on Facebook. The result of this system

is collected by the Indexing System, which classifies and stores data analysed. Finally, the

37

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

last system is the Visualization System. This one makes data visible on a dashboard, trying

to do so on a striking way.

5.2 Achieved goals

This section will explain the main goals achieved during this project, comparing them to

the initial expectations.

Collect data from Facebook focused in political domain First of all, we needed to

obtain information from Facebook referring to political parties. In this case, it was an

easy task because each political party has its own public page and Facebook provides

users an API from which you can access to data stored in this social network.

Analyse and store extracted information Extracted data was unanalysed. For our

purpose, we needed to analyse it with a service providing different sentiments showed

on comments. Luigi, used in our project as an orchestrator, helped us with this task.

As it is mentioned in this document, it provided us a pipeline between Senpy and

Elasticsearch; storing analysed data in an Elasticsearch index.

Design a dashboard based on widgets This was the last goal of this project, but it

was the most important too: we had to develop a dashboard. This dashboard is

dashboard is bases on widgets and Polymer Web Components, which gave our project

diversity and visibility. These widgets show users data in different ways, allowing

them to extract conclusions and analyse them.

5.3 Problems faced

During the development of this project, some problems appeared related to different issues.

We are listing them next.

• Facebook’s Privacy Policy : Facebook has a lot of users and it is important to keep

their information privately. Facebook has a very strict privacy policy which made hard

to extract users data, unless they were completely public. This way, if a profile’s user

is configured as private, it is almost impossible to extract from Facebook information

such as their comments posted on a public page or personal data such as their age,

name or gender.

38

5.4. FUTURE WORK

• Information format : Facebook Graph API exports data in a very disordered way; so

we had to filter it and select which information we wanted, parsing the JSON file we

obtained from this API.

• Elasticsearch version: last version of Elasticsearch included some improvements that

we have to face and update our code to make sure it will work. One of the most

important issues in this new version is the way it processes String type objects. To

make sure it works, we had to modify every index mapping indicating as true the

fielddata parameter of each text type.

• Python versions: we developed the Scraper System with Python version 2.7, while

Luigi pipeline worked with Python 3; so we had to install both versions of Python in

order to accomplish this project’s goals.

5.4 Future work

In this section, we will explain some possible new features or improvements that could be

done in the future to this project, making it more interesting.

Adding new political parties In this thesis we analysed the four most important politi-

cal parties at the Spanish actual panorama. Hereafter, we could include more political

parties and different countries to analyse. Adding more data to our project will make

this analysis more interesting and complete.

Developing a new dashboard about other topic We chose to analyse data from po-

litical domain, but we think this project could be extrapolated to other topics such

as music or cinema, but also to specific people we want to analyse such as politicians

or singers.

Adding new widgets We included some widgets in our dashboard, but the possibilities

given by Polymer and Web Components are much greater. New widgets could be

added to analyse and show data in multiple and new ways.

Analysing data in important periods of time We think this project could be very in-

teresting if we analyse certain periods of time when political panorama is more active

and controversial such as elections or important movements inside political parties.

39

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

40

Bibliography

[1] Margaret M Bradley and Peter J Lang. Affective norms for english words (anew): Instruction

manual and affective ratings. Technical report, Citeseer, 1999.

[2] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive Guide. ” O’Reilly Media,

Inc.”, 2015.

[3] Clayton J Hutto and Eric Gilbert. Vader: A parsimonious rule-based model for sentiment

analysis of social media text. In Eighth international AAAI conference on weblogs and social

media, 2014.

[4] Scott D McClurg. Social networks and political participation: The role of social interaction in

explaining political participation. Political research quarterly, 56(4):449–464, 2003.

[5] Ryan Mitchell. Web Scraping with Python: Collecting Data from the Modern Web. ” O’Reilly

Media, Inc.”, 2015.

[6] Javier Ochoa Serna. Design and implementation of a scraping system for sport news. 2017.

[7] Bo Pang, Lillian Lee, et al. Opinion mining and sentiment analysis. Foundations and Trends R©
in Information Retrieval, 2(1–2):1–135, 2008.

[8] Alberto Pascual Saavedra. Development of a dashboard for sentiment analysis of football in

twitter based on web components and d3. js. 2016.

[9] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Wordnet:: Similarity: measuring

the relatedness of concepts. In Demonstration papers at HLT-NAACL 2004, pages 38–41.

Association for Computational Linguistics, 2004.

[10] Marcel Rieger, Martin Erdmann, Benjamin Fischer, and Robert Fischer. Design and execution

of make-like, distributed analyses based on spotify’s pipelining package luigi. arXiv preprint

arXiv:1706.00955, 2017.

[11] J Fernando Sánchez-Rada, Carlos A Iglesias, Ignacio Corcuera, and Óscar Araque. Senpy:

A pragmatic linked sentiment analysis framework. In Data Science and Advanced Analytics

(DSAA), 2016 IEEE International Conference on, pages 735–742. IEEE, 2016.

[12] Weiwu Zhang, Thomas J Johnson, Trent Seltzer, and Shannon L Bichard. The revolution

will be networked: The influence of social networking sites on political attitudes and behavior.

Social Science Computer Review, 28(1):75–92, 2010.

[13] Ying Zhu. Introducing google chart tools and google maps api in data visualization courses.

IEEE computer graphics and applications, 32(6):6–9, 2012.

41

BIBLIOGRAPHY

42

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Project tasks
	Structure of this document

	Enabling Technologies
	Sefarad
	Luigi
	Senpy
	Elasticsearch
	Polymer

	Web Scraping
	Obtaining Data from Facebook
	Facebook Graph API
	Facebook Graph API Explorer

	Conclusion

	Architecture
	Overview
	Orchestrator
	Facebook Scraper System
	Analysis System
	sentiText

	Indexing System
	Visualization System
	Structure
	Elements
	Paper-material
	Number-chart
	Google-chart
	Comments-table
	Field-chart

	Case of study
	Extracting data
	Analysing data
	Indexing data
	Displaying data
	Conclusions

	Conclusions and Future work
	Conclusions
	Achieved goals
	Problems faced
	Future work

	Bibliography

