
GRADO EN INGENIERÍA DE TECNOLOGÍAS Y

SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A BROWSER
PLUGIN FOR ANALYSING MORAL EMOTIONS BASED

ON INTELLIGENT TEXT ANALYTICS

PABLO FERNÁNDEZ FRAILE
JULIO 2024

TRABAJO DE FIN DE GRADO

T́ıtulo: Diseño y desarrollo de un plugin de navegador para analizar

emociones morales basado en análisis inteligente de texto

T́ıtulo (inglés): Design and Development of a Browser Plugin for Analysing

Moral Emotions based on Intelligent Text Analytics

Autor: Pablo Fernández Fraile

Tutor: Carlos Ángel Iglesias Fernández

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A

BROWSER PLUGIN FOR ANALYSING

MORAL EMOTIONS BASED ON

INTELLIGENT TEXT ANALYTICS

Pablo Fernández Fraile

Julio 2024

Resumen

A d́ıa de hoy, el mundo de Internet ha evolucionado de manera considerable, volviéndose

la herramienta más utilizada por el ser humano. Esto ha llevado a la creación de una gran

cantidad de información y datos que se encuentran en el mundo de Internet. Surge por

ello la necesidad de entender toda esa información y poder analizarla. Aśı se empezaron a

desarrollarse herramnientas de análisis de texto para poder conocer las necesidades de los

usuarios y poder utilizar esa información a tu favor.

El principal objetivo del proyecto es crear una extensión de análisis de la moralidad en los

textos y que se pueda utilizar en cualquier navegador web. Gracias a esto, cualquier usuario

podrá analizar todo tipo de texto en Internet y obtener una representación clara y visual

de esos datos. Esto se hará con distintos tipos de gráficos que el usuario podrá personalizar

de forma dinámica según sus necesidades. La capacidad de analizar la moralidad permitirá

obtener información destacable acerca de los usuarios de Internet.

La personalización va a ser un factor clave en el proyecto, ya que el usuario va a ser

capaz de tener una capacidad de elección muy amplia, pudiendo elegir cosas tan básicas

como el tipo de análisis a realizar, aśı como el estilo de gráfico en el que quiere que se

muestren los distintos resultados que se obtienen en la extensión. Por lo tanto, esta y

otras funcionalidades se van a implementar para mejorar la experiencia de usuario a niveles

muy altos. Además, se permitirá al usuario guardar configuraciones personalizadas para

un uso recurrente. También se implementará una interfaz intuitiva y fácil de usar para que

cualquier persona, independientemente de su nivel técnico, pueda aprovechar al máximo la

extensión.

Finalmente, introduciremos las conclusiones de este proyecto y su finalidad como apli-

cación. También definiremos unas ĺıneas futuras de trabajo sobre las implementaciones que

se pueden hacer más adelante.

Palabras clave: análisis de texto, extensión, análisis de moralidad, navegador, person-

alización

I

Abstract

Today, the Internet has evolved considerably, becoming the most commonly used tool for

humans. This has led to the creation of a huge amount of information and data on the

Internet. The need to understand and analyze this information has arisen. Text analysis

tools were developed to understand users’ needs and use this information to their advantage.

The main objective of the project is to create a text morality analysis extension that

can be used in any web browser. Thanks to this, any user can analyze any text online and

obtain a clear and visual representation of these data. This will be done with different types

of graphics that the user can dynamically customize according to his needs. The capacity

to analyze morality will allow us to obtain remarkable information about Internet users.

Customization is going to be a key factor in the project, as the user will be able to have

a very wide capacity of choice, being able to choose such basic things as the type of analysis

to be performed, as well as the style of the graph in which they want the different results

obtained in the extension to be displayed. Therefore, this and other functionalities will be

implemented to improve the user experience to very high levels. In addition, the user will

be allowed to save customizations for recurring use. An intuitive and user-friendly interface

will also be implemented so that anyone, regardless of their technical level, can take full

advantage of the extension.

Finally, we will introduce the conclusions of this project and its purpose as an appli-

cation. We will also define future work lines on the implementations that can be done

further.

Keywords: text analysis, extension, morality analysis, browser, customization

III

Agradecimientos

A mis padres y mis hermanos, por haberme acompañado en este largo camino y apoyado

en cada decisión que tomaba, sin importar cúal fuese.

A mi grupo de la universidad, por ser mi mayor ayuda y apoyo, sin ellos no hubiese

llegado hasta aqúı.

A Fer, por haber estado ah́ı en todo momento que lo he necesitado y por ser la persona

más generosa que conozco.

A mi tutor Carlos, por haber confiado y créıdo en mi aún cuando yo no lo haćıa.

V

Contents

Resumen I

Abstract III

Agradecimientos V

Contents VII

List of Figures XI

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.3 Structure of this document . 2

2 Enabling Technologies 3

2.1 Introduction . 3

2.2 React . 3

2.3 Plasmo Framework . 4

2.4 Senpy . 5

2.5 Chrome extensions . 6

2.6 Chrome API . 7

2.7 Tailwind.css . 8

2.8 Typescript . 8

VII

3 Sentiment analysis extensions 11

3.1 Introduction . 11

3.1.1 Sentitude Sentiment Analysis extension 11

3.1.2 Youtube Sentiment Analysis . 12

3.1.3 Sentiment&emotion Analysis - GSI 14

4 Architecture 17

4.1 Introduction . 17

4.2 Environment creation . 18

4.3 Environment development . 19

4.3.1 Popup . 20

4.3.1.1 React Hooks . 20

4.3.1.2 Analysis Type Props . 21

4.3.2 Charts . 23

4.3.2.1 Charts implementation . 23

4.3.2.2 Plasmo import resolution 25

4.3.3 Background . 26

4.3.4 Options . 27

4.3.5 Tailwind implementation . 28

4.4 Packaging and publication . 29

4.4.1 Packaging . 29

4.4.2 Publication . 31

4.4.2.1 Mozilla publishing . 32

4.4.2.2 Microsoft Edge publishing 32

4.4.2.3 Chrome publishing . 32

5 Case study 35

5.1 Introduction . 35

5.2 Download and installation . 35

5.3 Moral Analysis . 36

5.4 Configuration Page . 39

5.5 Using Firefox and Edge . 42

5.6 Analysis comparative: Right-wing vs Left-wing 44

6 Conclusions and future work 47

6.1 Conclusions . 47

6.2 Achieved goals . 48

6.3 Future work . 49

Appendix A Impact of this project i

A.1 Social impact . i

A.2 Economic impact . ii

A.3 Environmental impact . ii

A.4 Ethical implications . ii

Appendix B Economic budget iii

B.1 Physical resources . iii

B.2 Project structure . iii

B.3 Human resources . iv

B.4 Taxes . iv

Bibliography v

List of Figures

2.1 Plasmo Framework Logo [28] . 5

2.2 Senpy’s architecture [32] . 6

2.3 Examples of Chrome extensions [7] . 7

2.4 Example of using Tailwind.css [18] . 8

2.5 Typescript Logo [15] . 9

3.1 Sentitude Extension [4] . 12

3.2 Extension Settings [4] . 13

3.3 Youtube Sentiment Analysis Extension [39] 13

3.4 Sentiment Analysis [39] . 14

3.5 GSI-Sentiment&Emotion [11] . 15

3.6 Configuration [11] . 15

3.7 Emotion Display [11] . 16

4.1 Extension Creation . 18

4.2 Architecture Overview . 19

4.3 Flow Diagram . 22

4.4 Import from react-chartjs-2 . 23

4.5 POST Request Architecture . 27

4.6 Extension Packaging . 31

4.7 Mozilla Publication . 32

4.8 Edge Publication . 33

XI

4.9 Chrome Publication . 33

5.1 Chrome Store . 36

5.2 Splash Screen . 36

5.3 Context Menu . 37

5.4 Moral Analysis . 37

5.5 Sentiment Analysis . 37

5.6 Emotion Analysis . 38

5.7 Settings Button . 39

5.8 Configuration Page . 40

5.9 Chart Type . 40

5.10 Moral Bar Chart . 41

5.11 Moral Polar Area . 41

5.12 Theme Selection . 42

5.13 Dark theme . 42

5.14 Mozilla Firefox Analysis . 43

5.15 Microsoft Edge Analysis . 43

5.16 The Mirror Analysis . 44

5.17 The Spectator Analysis . 45

CHAPTER1
Introduction

1.1 Context

In today’s framework, anything related to understanding what people want to express in

an easier way is relevant in the 21st century. There is a gigantic amount of data in text and

image format on the internet. According to the latest estimates, 328.77 million terabytes

of data are created every day [12]. This has led to the need to be able to analyze this

information in order to benefit from it in certain aspects. Text analysis and interpretation

are very useful tools for individuals and companies. For a user, it can be important to see

the reviews of a shop or a service in a quick and easy way. This is why Customer Intelligence

Management Platforms [3] have been created, such as Feedier, which offers a platform that

allows companies to improve competitiveness and strengthen customer loyalty with tools

such as data analysis and data centralization. Many of them are already being implemented

with artificial intelligence, such as IBM Watson Natural Language Understanding [17] or

with machine learning, such as MonkeyLearn [26].

Therefore, it is a key factor to know the feelings, morals, and emotions of any Internet

user to understand their purpose in all areas of life. In this project, we are going to focus

on the creation of an extension to analyze all these feelings so that we can obtain results

1

CHAPTER 1. INTRODUCTION

that are useful for everyone.

1.2 Project goals

The purpose of this project is to create an extension that analyzes the morality and sen-

timent of any text on the Internet. The extension will then be able to show the results

dynamically, clearly, and concisely.

• Design an extension that is able to analyze the morality, feelings, and emotions of a

text.

• Implement a comprehensive and dynamic display module to be able to show the results

faithfully.

• Design a configuration page so that the user can choose from multiple options for

using the extension.

• Publish the extension so that it can be used by any user.

1.3 Structure of this document

This section provides a brief overview of the chapters included in this document. The

structure is as follows:

Chapter 1 provides a short introduction to what is to be done in the project and the

proposed objectives.

Chapter 2 deals with the various technologies that have been used for the project, as

well as an explanation of each of them.

Chapter 3 shows an investigation of some chrome extensions on sentiment analysis to

acquire concepts and use them in the project.

Chapter 4 describes the project’s architecture, dividing it into each module, how they

are implemented, and related to each other to create the extension.

Chapter 5 consists of the use case of a user installing and using the extension in a

browser.

Chapter 6 summarizes the purpose of the project and provides a number of conclusions,

as well as an outline for future work.

2

CHAPTER2
Enabling Technologies

2.1 Introduction

The programming industry is currently experiencing rapid development and growth. As

technology advances, programming languages constantly seek new methods to simplify and

accelerate the creation of web technologies.

In this chapter, we will focus on exploring the latest technologies that can help us achieve

our goal of discovering new ways to harness technology’s potential.

2.2 React

React.js [13], commonly called React, is a popular JavaScript library for creating user in-

terfaces. In a React web application, reusable components compose the different parts of

the interface. This component-based approach simplifies development by reducing repet-

itive code. Instead, we create the component’s logic and subsequently import it into any

necessary part of the code.

The React library plays a fundamental role in web application development. It facilitates

3

CHAPTER 2. ENABLING TECHNOLOGIES

a component-based approach, allows efficient and secure application state management, and

surpasses JavaScript’s capabilities.

React functions using the concept of “state”, which manages data that change over time.

Each component can have its state, and React is responsible for rendering and updating the

information on the components being used while the data changes. This is made possible

through an algorithm called the virtual Document Object Model (DOM), which allows us

to update only the necessary changes instead of rendering the entire DOM of the page. This

approach makes us more effective.

Another feature of React is its ecosystem, which includes some tools such as Redux

for advanced application management and React Router to manage navigation in different

applications. On the other hand, React has also evolved to support the creation of mobile

applications through React Native [24], which is a commonly used extension to develop

native applications for IOS and Android using the same approach and syntax based on

components as React.

2.3 Plasmo Framework

This project uses Plasmo [8], a platform designed to facilitate the development of browser

extensions while creating and publishing them. Plasmo Framework is an Software Develop-

ment Kit (SDK) for extensions that simplifies the code and its structure when creating web

extensions. It eliminates the need for configuration files and other technical details that

slow development. This framework promotes easy development as developers only need to

write a file and export a component. Plasmo will do the rest of the work, assembling and

packaging it. Plasmo can be combined with “Itero TestBed”, a testing environment that

allows developers to test their extension in a real environment before releasing it.

Another advantage of Plasmo is that it supports technologies such as TypeScript [25],

React, Svelte, or Vue, among others, which allows for building more complex extensions.

It also integrates a live reload engine that lets you see the changes made instantly without

manually updating the extension. Furthermore, thanks to Plasmo, the file required by an

extension, manifest.json, is generated automatically.

4

2.4. SENPY

Figure 2.1: Plasmo Framework Logo [28]

2.4 Senpy

Senpy [33] is a framework designed to create sentiment and emotion analysis services. It

was developed at Universidad Politécnica de Madrid (UPM) as a tool to help simplify

the integration of different text analysis models. This framework offers the possibility to

request analyses from several providers using the same interface, allowing the integration

of all sentiment and emotion analysis models.

Using the same interface allows users to use different systems with the same Application

Programming Interface (API) and tools simply by changing a parameter in the Uniform

Resource Locator (URL) you request the analysis you need. This also helps to evaluate

the performance of different algorithms and services more efficiently, as Senpy also has an

integrated evaluation API that can be used to compare the results with other technologies.

Another advantage of Senpy is that it is a system that supports various models of sentimental

and emotional data, such as Polarity, which ranges from -1 to 1, allowing you to see the

intensity of emotions in different words or texts.

Senpy’s architecture, as shown in the Fig. 2.2, is divided into several distinct parts that

work together to provide a complete and functional system. Its architecture is structured

as follows:

• Parameter Extraction: The architecture starts with an NLP Interchange Format

(NIF) HTPP query. The web user interface and the Command Line Interface (CLI)

are designed to extract input parameters used to run the plugins. Users enter their

requirements through these interfaces.

• Parameter Validation: To ensure the data is accurate, we validate the data entered

to see if it can be used correctly.

• Plugins: After validation, the plugins are executed with the parameters and here the

sentiment or emotion analysis specified is done.

5

CHAPTER 2. ENABLING TECHNOLOGIES

• Linked data and Mapping: Senpy uses an interchangeable data approach, meaning

that the analysis results can be integrated and connected with other resources on

the data web. It also allows conversion to different formats and models, facilitating

interoperability.

• Serialization, Formatting and Validation: Afterwards, the data is converted into

a standardized format for transmission or storage.

• Visualization: Finally, we make a display of the content either in the web user

interface or in the CLI.

Figure 2.2: Senpy’s architecture [32]

2.5 Chrome extensions

An extension is a software program that helps you in your browsing experience. The purpose

of an extension is to fulfill the purpose required by the user in a precise and understandable

way. The most important features are as follows:

• They allow Chrome’s behavior to adapt to the user’s needs. Its use is based on

technologies such as HTML, JavaScript, or CSS.

• Chrome extensions include background and content scripts. The first one allows

constant actions in the browser while the content script executes when web pages are

loaded. On the other hand, the popup file is the one that shows the interface of the

extension that is displayed when you click on it.

6

2.6. CHROME API

• Google has a set of APIs for extensions to interact with Chrome and its components.

In addition, we can perform visualization tasks such as modifying the navigation bar

or content within the web page itself.

• We need mainly a manifest.json file. All Chrome improves the user experience. Making

the browser more efficient and functional has become useful in today’s Plasmo, and

all necessary permissions are set in the package.json.

There are thousands of extensions available, some may be to help you plan your travels

and there are others to help you when you are learning a language as shown in Fig. 2.3.

Figure 2.3: Examples of Chrome extensions [7]

In conclusion, Chrome extensions are an excellent example of how personalization can

improve the user experience. Making the browser more efficient and functional has become

a handy tool today.

2.6 Chrome API

The Chrome API [16] is a set of modules that allows developers to extend and leverage

the functionality Google Chrome offers. These APIs are commonly used in the creation of

7

CHAPTER 2. ENABLING TECHNOLOGIES

extensions, as they have many features that allow the user to interact with the browser,

allowing the creation of web applications or projects of greater complexity.

Among the functionalities, we find the interaction with the browser tabs, being able to

create or modify them to the developer’s liking and obtain information about them. You

can also use API Notifications to alert users of certain incidents, events, or errors that can

be shown to the user. At the same time, we find a database that provides a way to store

them locally so that it is easy to save and retrieve them efficiently.

These interfaces are designed to be asynchronous [1], which means that users can get

responses quickly as these operations do not block the main flow of the browser. To use a

Chrome API, permissions must be declared in the ’manifest.json’ so that the developer can

choose which ones to use and which not.

2.7 Tailwind.css

Tailwind.css [29] is a new CSS framework that allows you to design your website by com-

posing simple utility classes to create different effects. With this technology, you can move

elements on the page, create complex page layouts, and dynamically stylize your text. Tail-

wind makes layouts easy, as it uses simple prefixes such as “lg”, “md”, “bg” or “mt” as

shown in Figure 2.4.

This framework eliminates a lot of code. In particular, CSS classes are removed to stylize

your texts more efficiently and to be able to debug much more easily. This is because, with

many CSS classes, it is difficult to make that code correction. More than 688,249 websites

currently use Tailwind [21], which has increased significantly over the years.

Figure 2.4: Example of using Tailwind.css [18]

2.8 Typescript

Typescript is a programming language developed by Microsoft. It is a superset of JavaScript

that adds optional static types, which increases the ability to debug code and find errors.

8

2.8. TYPESCRIPT

Among its most common features is transpilation, as Typescript transpiles to JavaScript

and converts it to that language, allowing it to run in any browser or environment that

supports JavaScript.

Figure 2.5: Typescript Logo [15]

It also has an inheritance system that facilitates code organisation and component reuse.

It also allows you to define custom interfaces and types to improve code clarity.

9

CHAPTER 2. ENABLING TECHNOLOGIES

10

CHAPTER3
Sentiment analysis extensions

3.1 Introduction

Although text analysis is a popular application of Natural Language Processing (NLP),

only a few extensions provide this functionality. In this chapter, we will look at several

Chrome extensions that use text analysis that will be considered for the implementation of

the project. For this purpose, the personalization used in each extension will be analyzed

to achieve better results and obtain conclusions that can help create our extension.

3.1.1 Sentitude Sentiment Analysis extension

In this extension created by Christian Broms [4] we can get any web page’s sentiment and

sentiment values by scanning it automatically or by selecting individual paragraphs or text

fragments. It is an exciting type of analysis, as it offers a great variety of results both in

the pop-up and directly in the text.

As shown in Figure 3.1, when you select text and right-click, you get an option that has

been added with a context menu that makes the analyzed text highlighted. This highlighted

text can show keywords that indicate neutral, positive, or negative feelings. This option is

11

CHAPTER 3. SENTIMENT ANALYSIS EXTENSIONS

exciting to add in an improved way to the project, as it clearly shows the user the words

that make that text have that tendency.

On the other hand, as seen in the figure, the pop-up has a dynamic and attractive style

and allows the user to customize it. There is a separation between analyzing a selected

text and an entire web page. The sentiment, pleasantness, or attention value is shown with

numbers, followed by a sentence that indicates whether it is positive or neutral.

One of the details that stands out the most about this extension is its settings section, as

you can see in Fig. 3.2. These settings are handy and customizable for the user, allowing him

to choose whether the analyzed text should be highlighted, among other options. Adding

a settings section with more features to the project seems like a good decision because it

allows the extension to adapt to the needs of the person using the technology.

Figure 3.1: Sentitude Extension [4]

3.1.2 Youtube Sentiment Analysis

The second extension we found is a Youtube comment analyzer [39]. This extension employs

the VADER sentiment model to analyze comments in YouTube videos, offering perceptive

sentiment visualizations.

This technology shares details similar to those of the first extension. The figure below

displays a sentiment analysis in which words are highlighted using the same division into

neutral, positive, and negative sentiment with yellow, green, and red, respectively. But

12

3.1. INTRODUCTION

Figure 3.2: Extension Settings [4]

Figure 3.3: Youtube Sentiment Analysis Extension [39]

13

CHAPTER 3. SENTIMENT ANALYSIS EXTENSIONS

the main difference is that, in this case, these words are dynamically displayed in a box of

different sizes according to the frequency with which the word is repeated, as can be seen

in Fig. 3.3.

Figure 3.4: Sentiment Analysis [39]

Another detail to take into account is that this extension uses a different type of visual-

ization than what we have seen previously. Above the word box is a sentiment measurement

graph similar to a speedometer, a form that is not often used in analytics extensions but is

just as useful and explanatory as the rest. This brings about new perspectives on how we

can display our extension.

3.1.3 Sentiment&emotion Analysis - GSI

Finally, we will analyze the extension created by a UPM student called sentiment&emotion [11].

This extension is created using the same services that will be used in this extension. The

text analysis project shows you the results with different graphs.

The extension fulfills the functionality, but we look at some improvements that we can

make to it, and those are the ones that will be used in the project. First of all, this

extension was developed in pure Javascript without using any libraries. In the project,

we will use React to produce much cleaner, more functional, and more component-based

code. Secondly, the interface is a bit complex and unclear, which is another feature that

will improve our extension and make it much clearer.

At the same time, the configuration part has practically no options for the user to

interact with, since the user can only choose the type of analysis or the type of scope, as

can be seen in Fig. 3.6. Also, the functionality of selecting text is a tedious method as you

first have to select the text and then go to the extension button, something that will be

done differently in the project to help the user.

14

3.1. INTRODUCTION

Figure 3.5: GSI-Sentiment&Emotion [11]

Figure 3.6: Configuration [11]

15

CHAPTER 3. SENTIMENT ANALYSIS EXTENSIONS

Also, the types of graphs chosen and the information in the analysis looks very basic

and does not give much insight into what data is being displayed and what is not, leaving

a display that could be improved as shown in Fig. 3.7.

Figure 3.7: Emotion Display [11]

As a last improvement, our extension can be used and installed in any browser, not only

Google Chrome, allowing a better user experience.

16

CHAPTER4
Architecture

4.1 Introduction

The project has been developed in three phases, each comprising the architecture and

describing the development process in detail. The following process steps will be defined

from its creation to its packaging.

• Environment creation: Here, the steps that have been followed to create the base

project and the resulting environment using Plasmo technology will be described.

Afterwards, it will be explained how the initial tools and dependencies needed to

start the project have been set up.

• Environment development: This section will explain how the project’s architec-

ture has been developed from the base created in the previous part. It will begin

by describing the planning process and architecture by defining the key layers and

components of the system and then detailing them in more depth.

• Publication and packaging: Finally, we will explain how the extension has been

packaged to obtain the necessary files that will be used for the publication of the

extension in the different browsers.

17

CHAPTER 4. ARCHITECTURE

4.2 Environment creation

In this section, we describe the creation of this extension, which is based primarily on React

as the core technology integrated through the Plasmo framework [8].

As detailed in Sect. 2.3, Plasmo is a browser extension development framework for the

web browsers Chrome, Firefox, and Microsoft Edge. It is based on React and supports

TypeScript. In addition, it includes a storage API for persisting the extensions and a

messaging API for communicating the different extension parts easily.

Plasmo is used to build the user interface and the extension modularly. All components

are made with React using Typescript files that relate to each other through composition

and state management. To create the main environment, we type the command npm create

plasmo, which will be used to create the simplest extension of Plasmo as you can see in

Fig. 4.1, and some basic files will be created to start developing the project. The most

important will be the popup.tsx file, as it exports a default react component that will be

rendered on the popup page of the extension. With this and the basic configuration files, you

can load the extension in any Web store, as we will see later. From this basic environment,

the entire architecture of the extension has been developed.

Figure 4.1: Extension Creation

18

4.3. ENVIRONMENT DEVELOPMENT

4.3 Environment development

Based on the environment that Plasmo builds for you, we create the architecture of our

extension for morality and emotion analysis. Our project’s architecture basically uses Type-

script files with React components that can be used for different functions. Our structure

is divided into four clear and detailed modules. Each module has its own functionalities

and components, which perform different functions for the project’s purpose. The following

describes how these modules are divided and communicated.

Figure 4.2: Architecture Overview

• Popup: This module is what the user interacts with. It is in charge of making the

request to obtain the results of the analysis and send them to the module in charge of

displaying the data. At the same time, it also sets the configuration by communicating

with options to be able to change and customize the extension.

• Background: The module in charge of the Senpy API [31] call is the background.

From the popup request of the text analysis, the background is in charge of making

the API request to collect the data and send it back to the popup. This is done in an

asynchronous way so that there are no blockages in the main flow.

19

CHAPTER 4. ARCHITECTURE

• Options: This part of our architecture is very important. Its function is to create a

Configuration Page with different settings. After setting them, the data is sent to the

popup for implementation.

• Charts: Module in charge of importing the charts.js library to create the different

types of display created for the extension; it receives the data from the popup to later

process them.

All of these modules are described in full detail in the following sections.

4.3.1 Popup

The main module of the extension is the popup. It is a file that is automatically recognized

in an extension by its nomenclature. It is where the flow of the user’s data request for

further analysis begins. This file is the most important file in the project and the one that

handles the most logic; we will divide its functionalities and explain them separately.

4.3.1.1 React Hooks

The use of React as a library enables us to use certain tools that are not available in other

programming languages. Hooks play a crucial role in the functionality and reactivity of our

extension, as they allow us to develop functional components with state and lifecycle and,

therefore, dispense with class components. In the popup, we used both hooks that are part

of the React library and custom hooks created especially for the project.

Several hooks are provided by the React library itself. These hooks are the ones that

are used in most projects, and we decided to use them for the extension as well. The first

and most commonly used is useState() [36]. This hook is used to manage the local state of

the components. This allows us to store and update certain values throughout the lifetime

of a component. In the popup, we use it to initialize the data, algorithm types, or selected

text, as can be shown in the listing 4.1. It allows us to declare variables and easily change

their state. It is also used to set the settings that the user changes.

The second is to use the useEffect() hook [35]. This hook is fundamental in React

because, unlike the useState hook, it performs side effects of the component. It is executed

after rendering and enables it to perform tasks that should occur outside of the loop. This

is very useful in our application, allowing us to make asynchronous calls when necessary.

In our case, it is in charge of requesting the analyses from the background using a message.

20

4.3. ENVIRONMENT DEVELOPMENT

These asynchronous calls are really useful, as they allow multiple operations to be done in

parallel, improving the overall performance of the extension. Therefore, it will help more

users make more requests without exceeding the limit.

const IndexPopup = () => {

const [selectedText, setSelectedText] = useState("");

const [senpyData1, setSenpyData1] = useState(null);

const [senpyData2, setSenpyData2] = useState(null);

const [senpyData3, setSenpyData3] = useState(null);

const [senpyData4, setSenpyData4] = useState(null);

const [algorithm1, setAlgorithm1] = useState("");

const [algorithm2, setAlgorithm2] = useState("");

const [algorithm3, setAlgorithm3] = useState("");

const [algorithm4, setAlgorithm4] = useState("");

Listing 4.1: UseState()

Due to React’s variety and possibilities, we can create our own hooks. We use them to

extract and share logic efficiently. Like the hooks provided by React, the main feature of

hooks is that they start with ’use’. This is not just a convention; it allows React to apply

hook rules correctly. The hook we created for this application is the ’useAnalyzeAllTex-

tOnPage’ hook. This component encapsulates application-specific logic by performing text

selection and parsing tasks. The popup is in charge of importing it and using it to analyze

a web page’s content by clicking on a button in the interface. After clicking the button, the

flow to the Senpy call occurs, where the information will be returned following the sequence

diagram shown in Fig. 4.3.

4.3.1.2 Analysis Type Props

In this part, we will see how props [27] are used in the popup to pass the information from a

parent component, such as the popup, to a child component, which is TextSelected.tsx. We

define a series of states with the information about the data provided by Senpy, the selected

text, the type of algorithm we want to represent in each case, and the graphs provided by

the settings (those selected by the user). All this is sent to TextSelected as props so that it

can later handle some analysis and some algorithm and process the data in different ways

to be able to display them correctly.

Once in TextSelected with all the data, we create several components to first be able to

go through the data of each type of algorithm since each one is processed in a different way

21

CHAPTER 4. ARCHITECTURE

Figure 4.3: Flow Diagram

and gives us different information about the analyzed text. The structure of this component

is divided as follows.

• Charts creation: We import the different types of charts that we will see later, and

with them, we create a particular one for each type of analysis. The ease of use of the

components allows you to create a number of different charts for each of the analyses

and helps to improve the data presentation.

• Use of the types of analysis: Analysis types are navigated in unique ways, pro-

cessing the information to be used in the chart representation. An example of how an

analysis type is navigated is shown in the listing 4.2.

const polarityCounts = senpyData['marl:hasOpinion'].reduce((acc:

Record<string, number>, opinion: any) => {

const polarity = opinion['marl:hasPolarity'].split('

:').pop();

acc[polarity] = (acc[polarity] || 0) + parseFloat(

opinion['marl:polarityValue']);

return acc;

}, {});

Listing 4.2: PolarityCounts()

22

4.3. ENVIRONMENT DEVELOPMENT

4.3.2 Charts

Data display is a very important component of our extension. It provides users with a

clear and visual representation of text analysis results. The following section describes how

charts work and are created in our extension.

Figure 4.4: Import from react-chartjs-2

We have three types of charts: doughnut, bar, and polar area. These charts are com-

ponents that are created and then imported into the component TextSelected so that they

can be used later. So, the react-charts-2 library is imported into each component, not into

the analysis component, as you can see in Fig. 4.4.

4.3.2.1 Charts implementation

As we saw in the previous chapter, the three charts use props to communicate with the main

component, which is where all analytics management is developed. This implementation is

useful for creating more types of charts in a simple way so that another programmer can

understand and use our application’s component composition. We only had to create new

components and import them.

23

CHAPTER 4. ARCHITECTURE

Once the charts are imported, each is individually configured according to the type of

analysis. The chart library includes an options [5] section that offers various options to

customize each chart.

In our extension, we configure each chart, eliminating the doughnut chart legend to

make the representation much cleaner, adding elements by adding HoverBorderColor or

configuring the tooltip [34]. To add the data, we use constants called createData, passing a

series of information from the different text analyses we implemented as parameters to the

data. In the code excerpt 4.3, we can see an implementation of these options.

Then, we also added an image in the center of the doughnut charts to make the chart

more dynamic. For this, we have created a feature in the utils section called createCenter-

TextPlugin, which allows us to have different images in the doughnut’s center; it is also a

function passed to the TextSelected.

const options = {

responsive: true, cutout: '80%',

plugins: {

datalabels: {

display: false

},

tooltip: {

enabled: true,

backgroundColor: 'rgba(0, 0, 0, 0.7)',

titleColor: 'white',

bodyColor: 'white',

borderColor:'rgba(75, 192, 192, 1)',

borderWidth: 1,

},

legend: {

display: false

}

},

interaction: {

intersect: false,

events: ['mousemove', 'mouseout', 'click', '

touchstart', 'touchmove']

},

elements: {

arc: {

hoverBorderColor: 'rgba(0,0,0,0)',

hoverBorderWidth: 0,

24

4.3. ENVIRONMENT DEVELOPMENT

hoverBackgroundColor: (context) => context.

dataset.backgroundColor,

}

}

};

const createData = (count: number, label: string, color:

string) => ({

labels: [label],

datasets: [{

data: [count * 100, 100 - count * 100],

backgroundColor: [color, 'transparent'],

borderColor: 'black',

borderWidth: 1,

}]

});

Listing 4.3: options and createData

4.3.2.2 Plasmo import resolution

Imports are fundamental to the extension’s development, guaranteeing the code’s efficiency

and organization. Plasmo framework provides a utility for importing the files we need, such

as source files and bundles, but especially images.

The easiest way to load assets into Plasmo is to use the data-64 scheme. This scheme

in the extension is used to read the content of a file, transform and optimize it for browser

consumption, and then convert the result into a base-64 string. This string can then be

embedded directly into the code so that assets are available without the need for additional

paths or external references. This method is particularly useful for including images or any

other files in the extension. Instead of using the Chrome API, we can use this system, as

seen in the listing 4.4.

import imageSrc1 from "data-base64:src/images/EmojiNeg.png";

import imageSrc2 from "data-base64:src/images/EmojiPos2.png";

import imageSrc3 from "data-base64:src/images/EmojiNeu.png";

import imageSrc4 from "data-base64:src/images/morality.png";

import imageSrcBar from "data-base64:src/images/SentimentsBar.png";

import imageSrcDoughnut from "data-base64:src/images/

SentimentsDoughnut.png";

25

CHAPTER 4. ARCHITECTURE

import imageSrcPolar from "data-base64:src/images/PolarChart.png";

import imageSrcEmotion from "data-base64:src/images/Emotion.png";

import imageSrcLogo from "data-base64:src/images/gsi_logo.png";

Listing 4.4: data-base64 use

These images will be used in the charts and in any part of the extension.

4.3.3 Background

The background component is crucial to the extension’s functioning. It is the project’s

“brain” and is in charge of managing events and background tasks and making requests to

the Senpy server. Our extension’s background is dedicated to various tasks and operations,

as described below.

• Background Service Worker:Plasmo provides us with a powerful service worker

because it runs in the background. Using this, CORS [20] is unnecessary in the

extension as the project would not be subject to like other scripts, the service worker

remains active even when browser windows are closed, handling tasks that do not

require user interaction. When creating the background file, the service worker is

automatically activated.

• Messaging: To receive the data and send it back to the popup, a messaging API

is needed. So, the background is able to listen when the popup creates a request

requiring the corresponding analysis, choosing the corresponding analytics service,

and then able to return the data asynchronously and outside the rest of the flow of

the extension.

• Error handling: We have created a background component called handleRequestEr-

ror for error handling. This function handles errors during the parse request process,

logs errors to the terminal with a console.log, and notifies the user with a message.

• ContextMenu: Apart from analyzing the whole page, you can select text and analyze

it, and for this, we have created a contextMenu that is created every time the extension

is installed in any browser. Once created, we also handle user interactions in the menu

using the OnClicked event.

• POST Request: A POST request is used to make the request to the Senpy API to

obtain the required data by sending the text selected by the user, either the whole

26

4.3. ENVIRONMENT DEVELOPMENT

page or just a paragraph, explained in more detail below.

A POST request is an HTTP request method that is used to send data to a server or

update a resource. The POST method is versatile as it allows you to handle a wide variety

of content, including XML, encoded data, or JavaScript Object Notation (JSON), the latter

being the data we use in the extension. The data sent with POST are not visible in the

URL; this provides a layer of security to the user and the extension, as we may be handling

sensitive data when analyzing morality.

In the extension’s context, the background sends several endpoints using POST requests

each time the user selects the text to analyze. These endpoints contain the Senpy URLs of

each analysis type integrated into the extension that the user can request. All the request

logic has been concentrated in an asynchronous React component called performPostRe-

quest. This component has two parameters passed to it: a URL that you get from the

endpoint and a selected text. It’s logic is detailed in the Fig. 4.5.

We first considered using a GET request instead of a POST request for the project.

However, when we implemented the button to analyze the whole page, the amount of

text collected was insufficient for the GET request. So, a POST request was chosen, which

allowed you to send a large amount of complex data that the GET could not handle properly.

Figure 4.5: POST Request Architecture

4.3.4 Options

This section will show the extension’s configuration section. All settings chosen by the user

can be found in the options file. This file communicates only with the popup to receive the

type of options to set and save. Plasmo offers a storage system that is very useful for our

extension and that we use in this module.

27

CHAPTER 4. ARCHITECTURE

The framework provides us with a storage API, which is obtained from the @plasmo-

hq/storage library. This library provides persistent storage for any browser extension. It

also has local storage when the extension’s storage API is unavailable.

To use it, install it with the command pnpm install @plasmohq/storage and import the

content as any React component import Storage from “@plasmohq/storage”. Once this is

done, we use the system’s possibilities to create our options section. The two options that

allow communication and set the options are as follows.

• Storage.get: Communication between the options page and the popup is achieved

in this way, mainly through the use of storage via the get that is sent from the popup

to receive the options that have been defined in the configuration page.

• Storage.set: With set, we update the configuration through the user interface, where

every time a change occurs, it is stored in the Plasmo storage API. So we use it for

any option the user sets; this way, the change happens automatically, and you don’t

have to save them in any way.

The storage API makes it easy for the user to persist the data just like the Chrome API.

This helps the user keep the settings even when they close the browser so they don’t have to

constantly change them and can enjoy the personalized experience intended when creating

this extension.

4.3.5 Tailwind implementation

For the development of the extension, we have not used any CSS, as we have taken advantage

of the Tailwind technology, which allows us to use className to directly set the style of

any block as explained in 2.7.

Using these predefined utility classes ensures consistent styles in the extension and has

helped reduce errors and visual discrepancies that can occur when using standard custom

styles. These classes are used in both popup and options to define element layout, margins,

paddings, and colors. It has also provided help in the creation of elements such as the

settings gear or the spinner to indicate that the analytics are loading. An example of its

use can be seen in the following listing 4.5.

<div className={`flex items-center justify-center min-h-screen

relative ${settings.darkMode ? 'bg-gradient-to-r from-gray-700

to-gray-900' : 'bg-gradient-to-r from-[#e0f7ff] to-[#b3e5fc]'

}`}>

28

4.4. PACKAGING AND PUBLICATION

<div className={`w-96 ${settings.darkMode ? 'bg-gray-800

text-white' : 'bg-white text-gray-800'} shadow-xl

rounded-xl flex flex-col min-h-[600px]`}>

<div className={`w-full p-4 mb-4 rounded-t-xl flex items-

center justify-between ${settings.darkMode ? 'bg-gray

-700' : 'bg-[#00a9e0]'}`}>

<img src={imageLogo.src} alt="Logo" className="w-10 h-10

" />

<h1 className="text-2xl font-sans font-bold text-white

mx-auto">Moral Text Analysis</h1>

Listing 4.5: data-Tailwind utility classes

4.4 Packaging and publication

Finally, after having fully developed our browser extension with all the technologies imple-

mented, we proceed to its packaging and publication for the further use of all users. This

section will describe the steps for this process to have been implemented.

4.4.1 Packaging

After creating and developing the environment, we proceeded to package it. Plasmo pro-

vided us with scripts for both development and creation and a script for building the

extension.

The key file that Plasmo has automatically generated in its creation is the package.json.

This file lists all the dependencies (libraries or packages) that the extension needs. It also

defines a series of scripts that you run on the command line. But the most important is

the manifest section, in this section we put all the necessary permissions in our extension.

Normally, when you create an extension with React, all the sections go in a manifest.json

file that you create and manage, but in this case, when you type the command pnpm build,

it generates a file ’build/chrome-mv3-prod’ where this file is automatically generated with

the permissions that you have defined in the package.json as can be seen below in listing

4.6.

"manifest": {

"host_permissions": [

"http://*/*",

29

CHAPTER 4. ARCHITECTURE

"https://*/*",

"<all_urls>"

],

"permissions": [

"activeTab",

"contextMenus",

"tabs",

"storage",

"scripting"

],

"web_accessible_resources": [

{

"resources": [

"src/features/vader_lexicon.txt",

"src/images/EmojiNeg.png",

"src/images/EmojiPos.png",

"src/images/EmojiNeu.png",

"src/images/morality.png",

"src/images/SentimentsBar.png",

"src/images/SentimentsDoughnut.png",

"src/images/PolarChart.png",

"src/images/Emotion.png",

"src/images/gsi_logo.png"

],

"matches": [

"<all_urls>"

]

}

],

"browser_specific_settings": {

"gecko": {

"id": "analisis-de-valores@ejemplo.com",

"strict_min_version": "42.0"

}

}

Listing 4.6: manifest.json

Using the Plasmo framework and its storage, the extension can be uploaded to multiple

browsers, such as Chrome, Microsoft Edge, and Firefox. Both Chrome and Microsoft Edge

30

4.4. PACKAGING AND PUBLICATION

use the ’chrome-mv3-prod’ file for packaging, while Firefox needs a ’chrome-mv2-prod’ file.

Among the Plasmo scripts, we also find one that creates this file or any other we need for

any browser. It is created with pnpm build –target=firefox-mv2. Then, add some necessary

permissions to the package.json to have a temporary ID ready to use.

In addition, this framework removes some configuration files used to create React ex-

tensions, such as webpack.config.js, which handles modules and other aspects; in this case,

Plasmo manages these configurations automatically. The process of constructing and pack-

aging the extension in browsers is described in Fig. 4.6.

Figure 4.6: Extension Packaging

4.4.2 Publication

After the packaging is ready, we will proceed to publish the extension in the different

browsers. Each browser has its own way of publishing the extension to the public, so we

will explain how it has been released in each. Plasmo’s documentation explains how to

upload the extension to the browsers. Itero Publisher [9] is a system that allows you to

automate its installation in the three browsers.

31

CHAPTER 4. ARCHITECTURE

4.4.2.1 Mozilla publishing

As seen in the previous section, we created a separate file for the Mozilla Firefox browser.

After we have a file, we need to get three keys for publication, as shown in Fig. 4.7.

The first is an Extension UUID, which we get from the Firefox Add-ons hub; the second is

an API key, and the third is an API Secret. We get these last two on the Firefox Add-ons

Developer Hub’s API page, so we would already have what we need to publish the extension

in Mozilla Firefox.

Figure 4.7: Mozilla Publication

4.4.2.2 Microsoft Edge publishing

In the case of Microsoft Edge, it is similar to Mozilla. First, we create an Edge add-on and

go to the dashboard, where you should see the product ID you need in the URL.

Finally, we find our clientID, clientSecret, and accessTokenURl from the Microsoft Edge

Publish API page as shown in Fig. 4.8.

4.4.2.3 Chrome publishing

Finally, the extension is also available on the popular Chrome browser. This process is more

difficult.

First, we must create a project in the Google Cloud Console as shown in Fig. 4.9. Then

we follow a series of steps to create the project and its integration. We make the necessary

configurations in the Chrome Web Store API to obtain the keys for the Itero Publisher to

finish publishing the project.

32

4.4. PACKAGING AND PUBLICATION

Figure 4.8: Edge Publication

Figure 4.9: Chrome Publication

33

CHAPTER 4. ARCHITECTURE

This last publication finishes the development of our extension, making it fully functional

in three different browsers so that it can be adapted to all types of users who want to use

it.

34

CHAPTER5
Case study

5.1 Introduction

This chapter describes the functionalities described in the previous chapters. The case you

will see is a user who installs the extension on a device and then sees what he can do with

it. The user first installs the extension in his browser, in this case, Google Chrome. Then,

he can use the extension to perform text analysis and set the settings he wants.

Next, we will see what process the user follows to perform all the necessary actions.

5.2 Download and installation

The first thing the user will do is open the browser on her computer. In the case of Google

Chrome, the user must go to the URL: chrome.google.com/webstore. The next step is

to search for the extension by its name, Moral Text Analysis, or by the developer’s name, in

this case, Grupo de Sistemas Inteligentes (GSI-UPM) in the box shown in Fig. 5.1. The user

will then have to click on the ADD to Chrome button, and the extension will automatically

be downloaded to the browser. The user will then be able to use the extension normally.

35

chrome.google.com/webstore

CHAPTER 5. CASE STUDY

Figure 5.1: Chrome Store

5.3 Moral Analysis

We will perform the use case of a user who wants to analyze an article from the Washington

Post newspaper with the extension. The first thing the user encounters is the splash screen

that appears in Fig. 5.2, where you can see a simple message explaining what the extension

does. At the same time, you are presented with two buttons. One is to analyze all the

text on the page, and the other is to go to the configuration menu. The user can decide to

Figure 5.2: Splash Screen

scan the text with the button if he wants to scan the whole page or use the contextMenu

to select only a section of text as shown in Fig. 5.3.

Once either of the two buttons has been pressed, the splash screen will display the

36

5.3. MORAL ANALYSIS

Figure 5.3: Context Menu

default analysis sample with the doughnut chart, as shown in Fig. 5.4. The user can browse

through the tabs to choose between the types of analysis he wants to see on the text:

morality, emotions, and feelings.

The user can now mouse over to see the exact values and percentages of the analyzes

performed.

Figure 5.4: Moral Analysis Figure 5.5: Sentiment Analysis

37

CHAPTER 5. CASE STUDY

Figure 5.6: Emotion Analysis

38

5.4. CONFIGURATION PAGE

5.4 Configuration Page

Once users want more variety in their results, they can access the configuration page by

clicking on the gear-shaped button with a red border, as shown in Fig. 5.7. By clicking

Figure 5.7: Settings Button

on the button, the user will see another tab open in the browser; this tab will be the

Configuration Page. In this tab, several actions can be performed. The first of them, and

the one that appears directly when the configuration page opens, is the choice of which

analyses you want to be performed and displayed in your extension, as shown in Fig 5.8.

The user, by removing one of these requests, can personalize and choose the one that best

suits his needs. In addition, if you mouse over the questions, he will see a definition of the

analysis and what it does.

The user can also see the Chart Type option on the page. This window is the most

important part of the project as it allows the user to choose the charts he wants in each

analysis. The user can have a personalized extension according to his needs. Here, the user

first chooses a bar chart for the morality results and then chooses a polar area chart, as

shown below.

Finally, the user can access the theme options. These options allow the user to choose

between light and dark modes. If the user chooses the dark mode, he will see what is in the

39

CHAPTER 5. CASE STUDY

Figure 5.8: Configuration Page

Figure 5.9: Chart Type

40

5.4. CONFIGURATION PAGE

Figure 5.10: Moral Bar Chart Figure 5.11: Moral Polar Area

41

CHAPTER 5. CASE STUDY

following Fig. 5.13.

Figure 5.12: Theme Selection

Figure 5.13: Dark theme

5.5 Using Firefox and Edge

In order for the user to be able to use the extension in other browsers, the same process

has to be followed as for Google Chrome. Once the extension has been found and installed,

it can be used with the same functionality in Microsoft Edge and Mozilla Firefox as shown

below.

42

5.5. USING FIREFOX AND EDGE

Figure 5.14: Mozilla Firefox Analysis

Figure 5.15: Microsoft Edge Analysis

43

CHAPTER 5. CASE STUDY

5.6 Analysis comparative: Right-wing vs Left-wing

In this last section we are going to make an analysis of what a user might see when analysing

two newspapers of totally opposite ideas in order to appreciate the differences that exist

when performing an analysis of morality.

The newspapers to be used for the test will be ’The Mirror’, known for being left-wing,

and ’The Spectator’, known for being right-wing. As it is an election in the United Kingdom

the user will analyse two news items on this topic.

In the first one, we can see the analysis of the left-wing newspaper, where it can be ob-

served a greater importance for social issues such as harm or fairness vice, leaving authority

at a very low level as it predominates more in the right-wing ideas as it can be seen in the

Fig. 5.16. In the second, we can see how the results of the analysis have completely changed.

Figure 5.16: The Mirror Analysis

Now what predominates most is authority, a clearly right-wing idea, since it highlights the

respect and importance of authority and traditions, as can be seen in Fig. 5.17.

44

5.6. ANALYSIS COMPARATIVE: RIGHT-WING VS LEFT-WING

Figure 5.17: The Spectator Analysis

45

CHAPTER 5. CASE STUDY

46

CHAPTER6
Conclusions and future work

This chapter will describe the conclusions extracted from this project and our thoughts on

future work.

6.1 Conclusions

This chapter will be dedicated to the detailed conclusions obtained after the implementation

of the project. First, an analysis of the results achieved will be performed, highlighting the

objectives that were successfully achieved. It will evaluate both the positive aspects and

the challenges we have faced in making the extension.

In addition, it will provide a comprehensive summary of the lessons learned through-

out the process, including a reflection on the strategies and methodologies that have been

used. Then it will consider how these conclusions can help guide future work and make

improvements to further enhance the project.

As a final thought on the project, it has far exceeded the expectations and plans we had

at the beginning. From the start, we set ourselves several ambitious goals and designed a

plan to achieve them. However, during the development of the project, we not only met

47

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

these goals but also identified additional opportunities to improve and expand our extension.

6.2 Achieved goals

All the work of the project has achieved a series of objectives. The creation of the extension,

together with the possibilities it currently offers, has made the objectives achieved enriching

and fruitful for the future. All these achieved goals can be summarized as follows:

Create a plugin capable of analyzing the morality and emotions of all the text

on a page. The project’s main objective has been creating an extension that can be

used by any user and that can analyze the text of a page quickly and dynamically

without having to do complicated tasks for it.

Represent the analysis results in a dynamic and clear way. The display of the

analysis results has been a key factor in the project, allowing the user to see the results

of the analysis in a simple and easily understandable way using a larger amount of

graphics than the extension done previously in the other UPM project.

Using modern React technology. The previous extension was made with Javascript

and html only, not allowing to bring out the full potential that could be obtained.

The use of React has allowed a greater layer of complexity as well as an easier way to

build the code and make our project based on modular components that allow us to

add improvements in a simple way.

Create and develop the project with Plasmo technology. Using the Plasmo tech-

nology has been a challenge as it is a relatively new framework with little information

about it. Even so, this challenge has provided us with a way to build extensions in a

simple way and to take advantage of the many benefits that Plasmo has such as its

environment or its storage.

Create a simple and beautiful visual interface. Simplicity in creating the interface

was one of the clear objectives of the project. Adjusting to the current trend of

simple interfaces has been one of the goals that had to be achieved for a better user

experience.

Develop a configuration page allowing users to customize their experience. The

creation of an options page was a clear objective since the other extension had a very

minimal configuration that could be improved. The user’s customized choice was very

48

6.3. FUTURE WORK

important to achieve so that the user could choose both the type of analysis and the

type of display of its extension.

Publish the extension in a cross-platform way. Plasmo has allowed us to publish

the extension in any browser, working perfectly in all of them and making it possible

for any user to use it.

6.3 Future work

This last section will show the steps to follow for future actions based on the work accom-

plished in the project.

• Add a larger number of text analysis types. Senpy has many more types of analysis

that can be implemented in the extension. Senpy offers a wide range of additional anal-

ysis types that can be seamlessly integrated and implemented within the extension,

enhancing its functionality and providing users with a more comprehensive toolkit for

sentiment and emotion analysis.

• Create more options for the charts and display of the results. Using React allows us

to make adding different types of charts really easy, its component-based structure

allows us to create new ones and add as many charts as we want.

• Publish the extension in more browsers such as Opera or Safari to allow all users to

use the extension without having to worry about the search engine of their choice.

• Implement Google Analytics to be able to analyze user interactions with the extension

and to be able to track and control user data. Plasmo enables the import of Google

Analytics, so its implementation would be a great improvement for the extension.

• The implementation of more buttons to be able to select a more focused type of text

and obtain more useful results for companies or individuals. This type of text selection

could be done on YouTube comments or tweets for example.

• Develop a system that allows the user to see the history of the analyses that have been

performed and therefore be able to see the information from a broader perspective.

49

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

50

APPENDIXA
Impact of this project

In this appendix, we will examine the possible social, economic, environmental, and ethical

impact of our application.

A.1 Social impact

This section details the main social impacts that our extension could have. In the digital

age, many online platforms, such as social networks, blogs, and forums, generate massive

textual data.

The developed extension makes it easier for researchers and analysts to extract and

examine large amounts of data. Compared to traditional methods, our tool allows for a

more detailed and deeper exploration of trends in publicly shared texts.

In addition, the extension can be a valuable tool for organizations and public institutions

seeking to better understand society’s concerns and opinions in real-time. It provides a solid

basis for informed decision-making and the implementation of actions that benefit society

as a whole.

i

APPENDIX A. IMPACT OF THIS PROJECT

A.2 Economic impact

In this section, we summarize the main economic impacts of our project on public institu-

tions and, thus, the entire population.

The extension has significant potential for economic impact in several areas. By au-

tomating and streamlining the processing of large volumes of text, the time and resources

required for studies and evaluations are considerably reduced, reducing companies’ and

organizations’ operating costs.

In addition, our technology allows us to identify trends and patterns in real-time for

various marketing strategies that a company may have.

A.3 Environmental impact

The environmental impact of our project is very low compared to other energy-intensive

technologies. The use of our tool can contribute to the reduction of paper consumption and

other physical resources thanks to digital storage.

So, although our project has an environmental impact, measures have been taken to

reduce it as much as possible to contribute to digitization and energy efficiency.

A.4 Ethical implications

In terms of ethical impact, data privacy is a primary concern. Although our outreach is

based on public data available on the Internet, it is important to ensure that personal

information about users’ data is not used without their consent.

At the same time, it is important to maintain transparency in how the results of the

text analysis are used. It is necessary to inform all users and organizations about how data

are used.

ii

APPENDIXB
Economic budget

In this appendix, we analyze the economic budget related to the project. It is described

below as it has been divided.

B.1 Physical resources

For the physical resources, a Mountain computer has been used to carry out all the project

development. A Microsoft Windows 10 PRO operating system with a RAM memory of

8GB was used. It has an Intel® Core™ i5-5200U CPU @ 2.20GHz with an Intel® HD

Graphics 5500.

The total cost of all this was approximately 555€.

B.2 Project structure

The following table shows the structure of the project.

iii

APPENDIX B. ECONOMIC BUDGET

Activity Hours

Research 88

Learning technologies 91

Creating the structure 20

Extension development 136

Writing the project 95

B.3 Human resources

The development of the application and the writing of the project are the most time-

consuming parts of the project. Creating the basic structure of the application took the

least time. There were 430 hours of work, considering that the hourly rate is 14€, which

makes a total cost of human resources of 6,020€.

B.4 Taxes

If the product is sold, it will incur a value-added tax in Spain equal to 21% of the product

value.

iv

Bibliography

[1] Angelas. When to use (and not to use) asynchronous programming: 20 pros reveal the best use

cases. Stackify Blog, March 2024. Accessed: 2024-06-29.

[2] Óscar Araque. Design and Implementation of an Event Rules Web Editor. Trabajo fin de

grado, Universidad Politécnica de Madrid, ETSI Telecomunicación, July 2014.

[3] Feedier Blog. What is customer feedback analysis: the im-

portance of text analysis. https://feedier.com/blog/

text-analysis-the-benefits-of-analyzing-customer-feedback/, 2024. Ac-

cessed: 2024-06-29.

[4] Christian Broms. Sentitude - sentiment analysis. https://

chromewebstore.google.com/detail/sentitude-sentiment-analy/

khjckhocojcpjjfppdkahjcfacenljja?hl=es, 2018. Accessed: 2024-06-29.

[5] Chart.js. Chart.js options documentation. https://www.chartjs.org/docs/latest/

general/options.html, 2024. Accessed: 2024-06-29.

[6] Chrome for Developers. chrome.storage - chrome extensions api reference. https://

developer.chrome.com/docs/extensions/reference/api/storage?hl=es-419,

2024. Accessed: 2024-06-29.

[7] Chrome Web Store. Chrome Web Store Extensions and Themes. https://

chromewebstore.google.com/category/extensions. Accessed: 2024-07-01.

[8] Plasmo Corp. Introduction to Plasmo. https://docs.plasmo.com/, 2024. (Accessed:

2024-06-19).

[9] Plasmo Corp. Plasmo documentation: Itero publisher. https://docs.plasmo.com/

itero/publisher, 2024. Accessed: 2024-06-30.

[10] Refsnes Data. Http methods get vs post. https://www.w3schools.com/tags/ref_

httpmethods.asp, 2024. Accessed: 2024-06-30.

[11] Manuel del Pozo Dı́az. Sentiment&emotion analysis - gsi. https://

chromewebstore.google.com/detail/sentimentemotion-analysis/

acchfklppcmgjleljcffnkblgdgodiag?hl=es, 2023. Accessed: 2024-06-30.

[12] Fabio Duarte. Amount of data created daily (2024). https://explodingtopics.com/

blog/data-generated-per-day, 2023. Accessed: 2024-06-29.

v

https://feedier.com/blog/text-analysis-the-benefits-of-analyzing-customer-feedback/
https://feedier.com/blog/text-analysis-the-benefits-of-analyzing-customer-feedback/
https://chromewebstore.google.com/detail/sentitude-sentiment-analy/khjckhocojcpjjfppdkahjcfacenljja?hl=es
https://chromewebstore.google.com/detail/sentitude-sentiment-analy/khjckhocojcpjjfppdkahjcfacenljja?hl=es
https://chromewebstore.google.com/detail/sentitude-sentiment-analy/khjckhocojcpjjfppdkahjcfacenljja?hl=es
https://www.chartjs.org/docs/latest/general/options.html
https://www.chartjs.org/docs/latest/general/options.html
https://developer.chrome.com/docs/extensions/reference/api/storage?hl=es-419
https://developer.chrome.com/docs/extensions/reference/api/storage?hl=es-419
https://chromewebstore.google.com/category/extensions
https://chromewebstore.google.com/category/extensions
https://docs.plasmo.com/
https://docs.plasmo.com/itero/publisher
https://docs.plasmo.com/itero/publisher
https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/tags/ref_httpmethods.asp
https://chromewebstore.google.com/detail/sentimentemotion-analysis/acchfklppcmgjleljcffnkblgdgodiag?hl=es
https://chromewebstore.google.com/detail/sentimentemotion-analysis/acchfklppcmgjleljcffnkblgdgodiag?hl=es
https://chromewebstore.google.com/detail/sentimentemotion-analysis/acchfklppcmgjleljcffnkblgdgodiag?hl=es
https://explodingtopics.com/blog/data-generated-per-day
https://explodingtopics.com/blog/data-generated-per-day

BIBLIOGRAPHY

[13] Artemij Fedosejev. React. js essentials. Packt Publishing Ltd, 2015.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Abstrac-

tion and reuse of object-oriented design. In ECOOP’93—Object-Oriented Programming: 7th

European Conference Kaiserslautern, Germany, July 26–30, 1993 Proceedings 7, pages 406–431.

Springer, 1993.

[15] gitconnected staff. Typescript tutorial: A guide to using the

programming language. https://gitconnected.com/post/

typescript-tutorial-a-guide-to-using-the-programming-language-b787ce,

2024. Accessed: 2024-07-01.

[16] Google. Chrome extensions api reference. https://developer.chrome.com/docs/

extensions/reference/api, 2024. Accessed: 2024-06-29.

[17] IBM. Ibm watson natural language understanding. https://www.ibm.com/products/

natural-language-understanding, 2024. Accessed: 2024-06-29.

[18] Tailwind Labs Inc. Tailwind ui components for marketing blog sections. https://

tailwindui.com/components/marketing/sections/blog-sections, 2024. Ac-

cessed: 2024-06-29.

[19] Oltan Kochan. Installation - pnpm (fast, disk space efficient package manager. https://

pnpm.io/installation, 2024. Accessed on 28/07/2024.

[20] Mariko Kosaka. Intercambio de recursos de origen cruzado (cors). https://web.dev/

articles/cross-origin-resource-sharing?hl=es, 2018. Accessed: 2024-06-30.

[21] BuiltWith Pty Ltd. Tailwind css usage statistics. https://trends.builtwith.com/

framework/Tailwind-CSS, 2024. Accessed: 2024-06-29.

[22] Prateek Mehta. Creating google chrome extensions. Springer, 2016.

[23] Inc. Meta Platforms. Introducing hooks. https://legacy.reactjs.org/docs/

hooks-intro.html, 2024. Accessed: 2024-06-29.

[24] Inc. Meta Platforms. React native. https://reactnative.dev/, 2024. Accessed: 2024-

06-30.

[25] Microsoft. Typescript documentation. https://www.typescriptlang.org/docs/, 2024.

Accessed: 2024-06-30.

[26] MonkeyLearn. Monkeylearn: No-code text analytics. https://monkeylearn.com/, 2024.

Accessed: 2024-06-29.

[27] Temitope Oyedele. How props work in react – a beginner’s guide. https://www.

freecodecamp.org/news/beginners-guide-to-props-in-react/, 2022. Accessed:

2024-06-29.

[28] PlasmoHQ. Plasmo framework documentation. https://github.com/PlasmoHQ/docs,

2024. Accessed: 2024-06-24.

vi

https://gitconnected.com/post/typescript-tutorial-a-guide-to-using-the-programming-language-b787ce
https://gitconnected.com/post/typescript-tutorial-a-guide-to-using-the-programming-language-b787ce
https://developer.chrome.com/docs/extensions/reference/api
https://developer.chrome.com/docs/extensions/reference/api
https://www.ibm.com/products/natural-language-understanding
https://www.ibm.com/products/natural-language-understanding
https://tailwindui.com/components/marketing/sections/blog-sections
https://tailwindui.com/components/marketing/sections/blog-sections
https://pnpm.io/installation
https://pnpm.io/installation
https://web.dev/articles/cross-origin-resource-sharing?hl=es
https://web.dev/articles/cross-origin-resource-sharing?hl=es
https://trends.builtwith.com/framework/Tailwind-CSS
https://trends.builtwith.com/framework/Tailwind-CSS
https://legacy.reactjs.org/docs/hooks-intro.html
https://legacy.reactjs.org/docs/hooks-intro.html
https://reactnative.dev/
https://www.typescriptlang.org/docs/
https://monkeylearn.com/
https://www.freecodecamp.org/news/beginners-guide-to-props-in-react/
https://www.freecodecamp.org/news/beginners-guide-to-props-in-react/
https://github.com/PlasmoHQ/docs

BIBLIOGRAPHY

[29] Noel Rappin. Modern CSS with tailwind: Flexible styling without the fuss. Pragmatic Bookshelf,

2022.

[30] J. Fernando Sánchez-Rada. Design and Implementation of an Agent Architecture Based on

Web Hooks. Master’s thesis, ETSIT-UPM, 2012.

[31] J Fernando Sánchez-Rada, Oscar Araque, and Carlos A Iglesias. Senpy: A framework for

semantic sentiment and emotion analysis services. Knowledge-Based Systems, 190:105193, 2020.

[32] J. Fernando Sánchez. What is senpy? https://senpy.readthedocs.io/en/latest/

senpy.html, 2019. Accessed: 2024-06-30.

[33] J. Fernando Sánchez-Rada, Carlos Á. Iglesias, Ignacio Corcuera, and Óscar Araque. Senpy:

A pragmatic linked sentiment analysis framework. In 2016 IEEE International Conference on

Data Science and Advanced Analytics (DSAA), pages 735–742. IEEE, 2016.

[34] Chart.js Team. Tooltip configuration. https://www.chartjs.org/docs/latest/

configuration/tooltip.html, 2024. Accessed: 2024-06-29.

[35] React Team. useeffect – react documentation. https://es.react.dev/reference/

react/useEffect, 2024. Accessed: 2024-06-30.

[36] React Team. usestate – react documentation. https://es.react.dev/reference/

react/useState, 2024. Accessed: 2024-06-30.

[37] Tecnobits. Las mejores extensiones de google chrome. https://

www.google.com/url?sa=i&url=https%3A%2F%2Ftecnobits.net%

2Flas-mejores-extensiones-de-google-chrome%2F&psig=AOvVaw234BO_

CyrmvRsucf9Oy-Qy&ust=1719643944342000&source=images&cd=vfe&opi=

89978449&ved=0CBQQjhxqFwoTCIiq96Db_YYDFQAAAAAdAAAAABAJ, 2024. Accessed:

2024-06-24.

[38] Mark Thomas. React in action. Simon and Schuster, 2018.

[39] Thibault Tnt. Youtube sentiment analysis. https://chromewebstore.google.com/

detail/youtube-sentiment-analysi/fjgpfjohfddffjhkekipahjnfdioijad?

hl=es, 2024. Accessed: 2024-06-29.

vii

https://senpy.readthedocs.io/en/latest/senpy.html
https://senpy.readthedocs.io/en/latest/senpy.html
https://www.chartjs.org/docs/latest/configuration/tooltip.html
https://www.chartjs.org/docs/latest/configuration/tooltip.html
https://es.react.dev/reference/react/useEffect
https://es.react.dev/reference/react/useEffect
https://es.react.dev/reference/react/useState
https://es.react.dev/reference/react/useState
https://www.google.com/url?sa=i&url=https%3A%2F%2Ftecnobits.net%2Flas-mejores-extensiones-de-google-chrome%2F&psig=AOvVaw234BO_CyrmvRsucf9Oy-Qy&ust=1719643944342000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCIiq96Db_YYDFQAAAAAdAAAAABAJ
https://www.google.com/url?sa=i&url=https%3A%2F%2Ftecnobits.net%2Flas-mejores-extensiones-de-google-chrome%2F&psig=AOvVaw234BO_CyrmvRsucf9Oy-Qy&ust=1719643944342000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCIiq96Db_YYDFQAAAAAdAAAAABAJ
https://www.google.com/url?sa=i&url=https%3A%2F%2Ftecnobits.net%2Flas-mejores-extensiones-de-google-chrome%2F&psig=AOvVaw234BO_CyrmvRsucf9Oy-Qy&ust=1719643944342000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCIiq96Db_YYDFQAAAAAdAAAAABAJ
https://www.google.com/url?sa=i&url=https%3A%2F%2Ftecnobits.net%2Flas-mejores-extensiones-de-google-chrome%2F&psig=AOvVaw234BO_CyrmvRsucf9Oy-Qy&ust=1719643944342000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCIiq96Db_YYDFQAAAAAdAAAAABAJ
https://www.google.com/url?sa=i&url=https%3A%2F%2Ftecnobits.net%2Flas-mejores-extensiones-de-google-chrome%2F&psig=AOvVaw234BO_CyrmvRsucf9Oy-Qy&ust=1719643944342000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCIiq96Db_YYDFQAAAAAdAAAAABAJ
https://chromewebstore.google.com/detail/youtube-sentiment-analysi/fjgpfjohfddffjhkekipahjnfdioijad?hl=es
https://chromewebstore.google.com/detail/youtube-sentiment-analysi/fjgpfjohfddffjhkekipahjnfdioijad?hl=es
https://chromewebstore.google.com/detail/youtube-sentiment-analysi/fjgpfjohfddffjhkekipahjnfdioijad?hl=es

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technologies
	Introduction
	React
	Plasmo Framework
	Senpy
	Chrome extensions
	Chrome API
	Tailwind.css
	Typescript

	Sentiment analysis extensions
	Introduction
	Sentitude Sentiment Analysis extension
	Youtube Sentiment Analysis
	Sentiment&emotion Analysis - GSI

	Architecture
	Introduction
	Environment creation
	Environment development
	Popup
	React Hooks
	Analysis Type Props

	Charts
	Charts implementation
	Plasmo import resolution

	Background
	Options
	Tailwind implementation

	Packaging and publication
	Packaging
	Publication
	Mozilla publishing
	Microsoft Edge publishing
	Chrome publishing

	Case study
	Introduction
	Download and installation
	Moral Analysis
	Configuration Page
	Using Firefox and Edge
	Analysis comparative: Right-wing vs Left-wing

	Conclusions and future work
	Conclusions
	Achieved goals
	Future work

	Appendix Impact of this project
	Social impact
	Economic impact
	Environmental impact
	Ethical implications

	Appendix Economic budget
	Physical resources
	Project structure
	Human resources
	Taxes

	Bibliography

