
MÁSTER UNIVERSITARIO EN

INGENIERÍA DE TELECOMUNICACIÓN

TRABAJO FIN DE MÁSTER

DEVELOPMENT OF A DEEP LEARNING BASED
ATTACK DETECTION SYSTEM FOR SMART GRIDS

PABLO AZNAR DELGADO

JUNIO 2019

TRABAJO DE FIN DE MÁSTER

T́ıtulo: DESARROLLO DE UN SISTEMA DE DETECCIÓN DE

ATAQUES EN SMART GRIDS BASADO EN DEEP

LEARNING

T́ıtulo (inglés): DEVELOPMENT OF A DEEP LEARNING BASED AT-

TACK DETECTION SYSTEM FOR SMART GRIDS

Autor: Pablo Aznar Delgado

Tutor: Carlos A. Iglesias Fernández

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE MÁSTER

DEVELOPMENT OF A DEEP LEARNING BASED
ATTACK DETECTION SYSTEM FOR SMART GRIDS

JUNIO 2019

Resumen

La red eléctrica está evolucionando hacia las smart grids, las cuales utilizan flujos bidirec-

cionales de enerǵıa e información para crear una red de distribución de enerǵıa automatizada

y distribuida. Esta mejora requiere la incorporación de un gran número de elementos a la

red, los cuales contribuyen a la aparición de nuevas vulnerabilidades y posibles nuevos

ataques. Aśı, la seguridad se ha convertido en uno de los temas más importantes en las

smart grids.

Por esta razón, existe la necesidad de detectar estos ataques y aśı reducir la pérdida

de dinero que causan. Como consecuencia, el objetivo de este proyecto es desarrollar un

sistema que detecte automáticamente estos ataques utilizando técnicas de Deep Learning.

Para ello, se llevarán a cabo las siguientes tareas:

• En primer lugar, es necesario estudiar el estado del arte actual de diferentes áreas: los

tipos de ataques que las smart grids pueden sufrir, diferentes herramientas que nos

permitan obtener datos de ellas y las técnicas y herramientas de Deep Learning que

serán necesarias.

• Como no es posible obtener datos reales de las redes inteligentes porque son confiden-

ciales, se utilizarán técnicas de simulación basada en agentes. En estas simulaciones

se realizarán diferentes ataques y se generarán datos sintéticos.

• Una vez obtenidos los datos, se procesarán y se analizarán utilizando técnicas de Big

Data. Además, se aplicarán algoritmos de Deep Learning para poder hacer inferencias

sobre el comportamiento de la red.

• Finalmente, los datos obtenidos de la red neuronal se procesarán para detectar los

ataques.

Este sistema permite automatizar el proceso de detección de ataques en smart grids,

evitando en cierta medida la pérdida de dinero que supone el fraude eléctrico.

Palabras clave: smart grids, ataques, detección, deep learning

VII

Abstract

The electrical power grid is evolving into a more modern electric grid, called smart grid.

Smart grids use two-way flows of electricity and information to create an automated and

distributed advanced energy delivery network. This improvement has required the addition

of a large number of new elements, which contribute to the appearance of new vulnerabilities

and therefore, possible new attacks. Thus, security has become one of the most important

issues in terms of distribution and generation of energy.

For this reason, there is a need to detect these attacks and thus, reduce the loss of

money that they cause. Consequently, the objective of this project is to develop a system

that automatically detects these attacks using Deep Learning techniques. For that purpose,

the following tasks will be carried out:

• First, it is necessary to study the current state of the art of different areas: the types

of attacks that smart grids can suffer, different tools that will allow us to obtain smart

grids data and the deep learning techniques and tools that will be necessary.

• As it is not possible to obtain real data from smart grids because it is confidential,

Agent-Based Model Simulation will be used in order to simulate them. In this simu-

lation different attacks studied previously will take place and synthetic data will be

generated.

• Once the data is obtained, it will be processed and analyzed using big data tech-

niques. In addition, deep learning algorithms will be applied to them in order to

make inferences about the behavior of the grid.

• Finally, the data obtained from the neural network will be processed in order to detect

the attacks.

This system provides the possibility of automating the process of detecting attacks on

smart grids, avoiding the great loss of money to companies caused by electrical fraud.

Keywords: Smart Grids, attacks, detection, deep learning

IX

Agradecimientos

Me gustaŕıa agradecer a las personas que han hecho posible que pudiera acabar tanto este

proyecto como la carrera.

A mis padres y a mi hermano, por apoyarme, comprenderme y animarme durante todos

estos años.

A mi abuelo, por ser una gran inspiración y la razón por la que decid́ı comenzar esta

carrera.

A Guillermo, Javier y Alba, con los que he compartido gran cantidad de momentos y

con los que sé que siempre podré contar.

A mis compañeros del laboratorio, por el gran ambiente de trabajo que crean y por

ayudarme en todas las dudas que iban surgiendo.

A mi tutor Carlos A. Iglesias, por darme la oportunidad de realizar este proyecto y por

su ayuda durante la realización del mismo.

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XVII

1 Introduction 1

1.1 Context . 2

1.2 Project goals . 3

1.3 Structure of this document . 4

2 State of Art 5

2.1 Smart Grids . 6

2.1.1 Vulnerabilities of Smart Grids . 8

2.1.2 Attacks on Smart Grids . 9

2.2 Deep learning . 12

2.2.1 Feed-forward neural network . 13

2.2.2 Recurrent neural network . 14

XIII

2.2.3 Restricted Boltzmann Machines . 15

2.2.4 Autoencoders . 15

2.3 Big Data . 17

2.4 Agent-Based Modelling and Simulation . 19

2.4.1 ABMS Tools . 19

3 Enabling Technologies 23

3.1 Data managing libraries . 24

3.1.1 Pandas . 24

3.1.2 Numpy . 24

3.1.3 Matplotlib . 25

3.1.4 h5py . 25

3.2 ABMS . 26

3.2.1 Mosaik . 26

3.2.2 Maverig . 30

3.3 Machine Learning Technologies . 32

3.3.1 Scikit-learn . 32

3.3.2 Tensorflow . 33

3.3.3 Keras . 36

3.4 Mathematical models . 38

3.4.1 ARIMA . 38

3.4.1.1 Statsmodels . 39

4 Architecture 41

4.1 Architecture . 42

4.1.1 Multi-Agent System . 42

4.1.2 Data Preprocessing Module . 47

4.1.3 Deep Autoencoder . 50

4.1.4 Anomaly Detection Module . 55

5 Case study 61

5.1 Topology Attack . 62

5.1.1 Detection of which house has suffered an attack 65

5.1.2 Detection of when the attack has occurred 67

5.1.2.1 Attack 0% . 68

5.1.2.2 Attack 30% . 70

5.1.2.3 Attack 10% . 73

5.1.2.4 Attack 20% . 75

5.2 Attack Detection using ARIMA . 77

5.3 Conclusions . 82

6 Conclusions 83

6.1 Conclusions . 84

6.2 Achieved Goals . 85

6.3 Problems Faced . 86

6.4 Future Work . 87

Appendix A Impact of the project 89

A.1 Social Impact . 90

A.2 Economic Impact . 90

A.3 Environmental Impact . 90

A.4 Ethical Implications . 91

Appendix B Economic Budget 93

B.1 Material Resources . 94

B.2 Human Resources . 94

B.3 Licenses . 94

B.4 Taxes . 95

Bibliography 96

List of Figures

2.1 Feed-forward neural network . 14

2.2 Recurrent Neural network . 14

2.3 Restricted Boltzmann Machine . 15

2.4 Autoencoder . 16

2.5 Data analysis process . 17

3.1 Data Structure . 28

3.2 Relations group . 29

3.3 Series group . 29

3.4 Maverig . 31

3.5 A schematic TensorFlow dataflow graph for a training pipeline 33

4.1 Architecture for Anomaly Detection . 43

4.2 Attack Implementation . 45

4.3 Overlapping Sliding Window . 48

4.4 Autoencoder . 51

4.5 Hyperbolic tangent . 52

4.6 Reconstruction Error . 57

4.7 Error Modification . 59

XVII

5.1 Simplified scenario . 63

5.2 Attack Scenario . 63

5.3 Power consumption values of a house . 64

5.4 Power consumption values of an attacked house 65

5.5 Features . 66

5.6 Reconstruction Error . 66

5.7 Attack - 0 . 68

5.8 Reconstruction Error - 0 . 69

5.9 Attack - 30% . 70

5.10 Reconstruction Error - 30% . 71

5.11 Attack - 10% . 73

5.12 Reconstruction Error - 10% . 74

5.13 Attack - 20% . 75

5.14 Reconstruction Error - 20% . 76

5.15 ARIMA predictions normal data . 79

5.16 ARIMA predictions attacked data . 80

5.17 Rolling mean error normal data . 80

5.18 Rolling mean error attacked data . 81

CHAPTER1
Introduction

This chapter introduces the context where this project takes place. In addition, the objectives

of the project are explained. Finally, the structure of the document is described.

1

CHAPTER 1. INTRODUCTION

1.1 Context

The current power grid is being modernized and smart grids are emerging. They have a

large number of new components, such as new sensing and metering technologies, high-power

converters, modern communications infrastructure, modern energy management systems,

etc. All these components provide the possibility of collecting a large amount of data that

was not possible to collect before [23].

All this new amount of information can be used for different purposes: better forecast of

energy consumption, economic savings to the final costumer, better integration of renewable

energy, integration of electric cars in the grid, etc. However, in spite of the advantages

provided by all the data originated by smart grids, new vulnerabilities and new possible

attacks emerge.

Therefore, security has become a very important aspect of smart grids due to the great

amount of information handled. For this reason, a new need arises, tools that allow these

attacks to be detected in order to save the great economic loss that fraud entails for electric

companies.

In addition, nowadays deep learning techniques are gaining in popularity [46]. Deep

artificial neural networks have won numerous contests in pattern recognition and machine

learning.

Deep learning allows computational models composed of multiple processing layers to

learn different representations of data with multiple levels of abstraction [32]. In addition,

deep learning uses the backpropagation algorithm to discover and learn the structure of

a dataset. This algorithm indicates how the internal parameters of a machine have to be

changed, as these parameters are used to compute the representation in each layer from the

representation in the previous layer. Deep learning methods have drastically improved the

state of the art in different fields: speech recognition, visual object recognition, processing

images, video, and audio, etc.

Consequently, there is a new need which is to detect the attacks that can suffer smart

grids due to the large amount of information that they handle. In addition, deep learning

techniques are becoming increasingly popular because of the good performance they offer

in a variety of fields. For this reason, this project called Develoment of a Deep Learning

based Attack Detection System for Smart Grids is carried out.

2

1.2. PROJECT GOALS

1.2 Project goals

The main objective of this project is to develop a system that automatically detects different

attacks that smart grids may suffer using deep learning techniques.

For its development, this main objective has been divided into the following goals:

• First, it is necessary to study the current state of the art of different areas:

On the one hand, regarding to smart grids, it is going to be studied how they work,

the different vulnerabilities and types of attacks that they can suffer and different

tools that allow obtaining data from them.

On the other hand, deep learning techniques that will allow us to analyze the data

for the detection of anomalies will be studied.

• As it is not possible to obtain real data from smart grids due to its confidentiality,

Agent-Based Model Simulation will be used in order to obtain them. This will provide

us with the possibility of simulating a grid in which different attacks studied previously

will take place. As a result of the simulation, synthetic data will be generated, to which

deep learning techniques will be applied.

• Once the smart grid data has been obtained, it will be processed and analyzed using

big data techniques. This processing is done to prepare the data and, in this way,

have the appropriate format to apply them deep learning algorithms through a neural

network. This will allow us to make inferences about the behaviour of the grid.

• Finally, the data obtained from the neural network will be analyzed, and thus, it will

be possible to detect smart grid attacks.

3

CHAPTER 1. INTRODUCTION

1.3 Structure of this document

In this section, a brief overview of the chapters included in this document is provided. The

structure is the following one:

Chapter 2 studies the current state of the art in the different areas of the project:

smart grids, deep learning, big data, and agent-based modelling simulation.

Chapter 3 provides a description of the main technologies that are used in this project

and justifies the use of them.

Chapter 4 explains the architecture of this project. A global vision of the architecture

and the different modules that compose it are presented.

Chapter 5 presents different study cases that can be applied to this project.

Chapter 6 describes the conclusions, the achieved goals, the problems encountered

during the development of this project and the future work.

4

CHAPTER2
State of Art

In this chapter, a study of the current state of the art of the different areas of the project is

made. Firstly, the smart grids and their vulnerabilities are explained, as well as, the attacks

they may suffer. Secondly, Deep Learning and Big data are described. Finally, Agent-Based

Modelling Simulation and different tools are introduced.

5

CHAPTER 2. STATE OF ART

2.1 Smart Grids

The electrical power grid is evolving into a more modern electric grid. Traditional power

grids are generally used to carry power from a few central generators to a large number of

users or customers. In contrast, smart grids use two-way flows of electricity and information

to create an automated and distributed advanced energy delivery network [17].

The smart grid is a modern, efficient and reliable electric power grid. This achieved by

automated control, high-power converters, modern communications infrastructure, sensing

and metering technologies, and modern energy management techniques such as demand

optimization [23]. Furthermore, smart grids are implemented over the existing electrical

network, that is, the current components are not replaced, but new ones are added to

monitor the entire network.

Smart grids are electricity networks that wisely integrate the behavior and actions of all

users connected to them, to deliver in an efficient, sustainable, economical, and secure way

electricity supply [58].

The main advantages provided by smart grids are mainly due to their ability to im-

prove reliability performance and encouraging greater efficiency decisions by the customers

and the utility provider. The new components that are added to the electricity grid such

as Smart Meters and Information Communication Technologies (ICT) provide the oppor-

tunity to achieve energy savings, exploit renewable energy resources and favor customers’

participation in the energy market.

These new ICT infrastructures, that allow a more efficient network operation, offer the

possibility of setting electricity prices in a more dynamic and reactive way. This helps to

balance supply and demand in real time. Therefore, both companies and consumers benefit

from this as electricity markets operate more efficiently, reducing peak demand and spot

price volatility [51].

Among the new infrastructure installed are the advanced metering infrastructures (AMI).

The AMI are the smart meters and the communication network that allows two-way com-

munication between the provider and the consumer’s smart meter. Thanks to this, the

electric companies have information in real time of the power consumption of their clients

and therefore, they can offer new services as the dynamic pricing [26].

All this leads to the consumer becoming more aware of their consumption due to smart

meters. As a result, consumers will regulate their consumption by, for example, program-

6

2.1. SMART GRIDS

ming the operating time of the different household electrical appliances at the times when

electricity is cheapest. Therefore, the demand curve will be leveled and energy will be saved,

as the consumer will avoid the most expensive hours of the day. So, this also means economic

savings for both, final consumer and electric companies. It also means economic savings for

companies because the load peaks generated by users during the day are a problem as this

demands the existence of quick and available power reserves, which is very expensive [45].

In addition, a better forecast of energy consumption will be possible due to all the data

collected by the different sensors installed in the network and their monitoring. This makes

easier to detect fraud, which entails great economic losses for electric companies and also

to integrate renewable energy because it is very unpredictable. With all that data, it would

be possible to predict in a more accurate way the output of renewable energies that depend

on the weather forecast.

Another benefit of smart grids is that they are very efficient. This is because the losses

in the transport of energy are minimized since the failures will affect the minimum possible.

It will be possible to re-establish the network more quickly in the event of failures or service

interruptions, considering that these will be detected more easily and it will be possible to

act before them. This is possible also as a result of the data collected from the different

sensors and monitoring.

Furthermore, the smart grids encourage the use of electric cars as these are well inte-

grated into the network because they can consume energy or inject it into the grid. This,

linked to promoting renewable energies and the energy saved, contributes to a cleaner and

greener energy.

Electricity generation is linked to consumption, so electric supply involves the transmis-

sion and distribution of electricity as well as retail activities. Furthermore, in smart grids,

local storage systems, electric vehicles and, distributed generation are gaining popularity.

Therefore, automated agents, grids, and markets have to be able to integrate these new

systems into the network in a way that guarantees supply [44].

Sensors distributed across different network elements and their monitoring generate a

large amount of data. This amount of data flowing through smart grids is increasing rapidly

every day and many of the benefits of the smart grids mentioned above depend on this data.

The data has to be treated in order to draw different conclusions from it and make it useful

and that is the reason why smart grids are becoming an interesting research area for data

scientists.

7

CHAPTER 2. STATE OF ART

The data collected from smart grids can be divided into three different types, which are

generation data, transmission/distribution data, and consumer data [50].

• Power generation data. The power can be generated from water, coal, tides, wind,

nuclear, etc. This data can be useful for knowing the dynamic state behavior of wind

turbines, fault analysis in a coal-based power plant, etc.

• Power transmission and distribution data. This data is useful to analyze the

power system state estimation and, in this way, guarantee the stability of the network

and avoid blackouts.

• Power consumption data. Electricity will be consumed by consumers from resi-

dential, commercial and industrial areas, as well as, transportation, emergency and

governmental services, etc. This data is collected by smart meters and have different

utilities, and some of the most important ones are load forecasting, real-time pricing,

load control, metering information and energy analysis, etc.

Security has become one of the most important issues in smart grids due to the large

amount of data that they handle. This has originated new vulnerabilities and, as a con-

sequence, new attacks that can suffer smart grids. In the following subsections, the main

ones are presented.

2.1.1 Vulnerabilities of Smart Grids

Smart grids are complex networks made up of millions of devices connected to each other.

These networks improve conventional networks but as a consequence make them more vul-

nerable to different types of attacks. Regarding to [2], [41] and [12], smart grids have differ-

ent vulnerabilities that might allow attackers to access the network. These vulnerabilities

are:

1. Leaking of customer data. A large amount of private information is collected from

customers. This information can be used to find out when someone is at home or what

devices are being used.

2. Uncontrolled expansion of the number of intelligent devices. In order to

manage the electricity supply and network demand, different intelligent devices are

used, which may be the target of cyber attacks to the network.

8

2.1. SMART GRIDS

3. Physical access vulnerabilities. Smart grids add a large number of new compo-

nents to the traditional power grids, which make them vulnerable to physical access.

4. Outdated IT systems. Power systems coexist with relatively short-lived IT systems.

This could lead to outdated systems in service.

5. Intercepted communications. The communication between the devices of control

systems is vulnerable to data spoofing.

6. Using Internet Protocol (IP) and commercial off-the-shelf hardware and

software. Using IP standards offer a great number of benefits, but also make the

grid vulnerable to IP attacks.

According to [2], attackers can be grouped into: (i) Non-malicious attackers who try to

break the security of the systems for fun. (ii) Consumers who carry out the attack as an act

of vandalism, in order to harm another consumer or the electric company. (iii) Terrorists

who see the attack as a way to harm a large number of people. (iv) Employees dissatisfied

with the company. (v) Competitors attacking each other.

In the following subsection, the attacks that could be originated as a consequence of

these vulnerabilities are presented.

2.1.2 Attacks on Smart Grids

Cyber-attacks are a very important issue in the world of cyber-security, which results in

governments and organizations having to spend a great amount of time and money to

detect and deal with them. In addition attacks on Smart Grids, through smart meters,

AMI devices, etc. jeopardize the integrity, confidentiality, and privacy of the information

that is handled. Furthermore, the limited computational resources increase the number of

risks of a cyber attack [16].

As a consequence of the vulnerabilities explained in Sect. 2.1.1, smart grids can suf-

fer from different types of attacks, such as disruption attacks, destruction attacks, thefts,

extortions and repurpose attacks [15], [2].

1. Disruption attacks. They consist of interrupting a service, commonly through

DDOS attacks, and they could compromise the availability of the network. The target

of this type of attack usually is communication equipment. These interruptions can

9

CHAPTER 2. STATE OF ART

be from outside or inside to inside assets, from inside to outside targets or attacks on

certain user groups.

2. Destruction attacks. They interrupt service as well as disruption attacks. How-

ever, when the attack is finished, the target cannot be reusable. In consequence, the

target, which is usually industrial equipment, has to be reset or even replaced for a

new one. For instance, the disconnection of households through smart meters can

lead to a destabilization of the network, causing the possibility of ending up with

several elements of the grid damaged. Furthermore, the equipment destined for the

management of the grid or critical electrical nodes can also be attacked. Moreover,

the data that is originated in different sensors of the grid could be modified so this

can originate problems in the control center, which can arise blackouts.

3. Theft. It consists of stealing information from the grid, which can lead to several

problems. It is the most common attack and it can prejudice different assets. Fur-

thermore, it can ruin the credibility of users or the reputation of providers and manu-

facturers. Thefts can be achieved by modifying smart meters readings, manipulating

billing, etc. This could be accomplished through False Data Injection (FDI) attacks,

which consist of sending false packets in order to change the grid data. Moreover,

the stolen data from the historical consumption or live data can be sold to competi-

tors, being information with great value because many conclusions can be drawn from

them. Thus, the energy market can be manipulated regarding this stolen data.

4. Extortion schemes. They can be threats of either destruction or DDOS attacks.

On the other hand, they can also be crypto-locker malware, which can result in a

great loss of data.

5. Repurpose attacks. They consist of changing the behaviour of a specific asset of the

grid. Malware spreading could lead to infected hosts acting as fake servers or proxies

and they can be used for distributed computing.

In Table 2.1, the relationship between the different attacks and the vulnerabilities that

cause them can be observed.

10

2.1. SMART GRIDS

Attack Vulnerability

Disruption Attack

Uncontrolled expansion of intelligent devices

Outdated IT systems

Using IP

Destruction Attack Physical access vulnerabilities

Theft

Leaking of customer data

Uncontrolled expansion of intelligent devices

Intercepted communications

Using IP

Extortion Schemes Leaking of customer data

Repurpose Attacks

Outdated IT systems

Uncontrolled expansion of intelligent devices

Using IP

Table 2.1: Attacks and Vulnerabilities

11

CHAPTER 2. STATE OF ART

2.2 Deep learning

Machine learning is the capability of AI systems to extract patterns from raw data in order

to acquire their own knowledge. The introduction of machine learning gave the AI systems

the ability to solve problems involving knowledge of the real world and make decisions that

appear subjective [21].

Traditional machine learning techniques were limited in processing raw data. Therefore,

it was very difficult to transform raw data into a form in which the machine learning system

could detect or classify input patterns. Representation learning solves this problem and it

allows a machine to automatically discover the representations needed for detection or

classification. For this project, Deep Learning techniques are going to be used, which are

representation-learning methods with multiple levels of representation [32].

Deep learning is a specific kind of machine learning, which allows computational models

to learn representations of data with multiple levels of abstraction. Using the backpropaga-

tion algorithm, deep learning is able to discover complex structures in very large datasets.

This algorithm indicates how a machine should change its internal parameters that are used

to compute the representation in each layer from the representation in the previous layer

[32].

Deep learning architectures are inspired by the human brain because conventional dig-

ital computers work in a totally different way. Moreover, the brain is a highly complex,

nonlinear, and parallel computer. It is able to organize the neurons in order to perform

computations many times faster than the fastest computer today. On the other hand, neural

networks model the behaviour of the brain, so they can be defined as a massively parallel

distributed processor made up of simple processing units that has a natural propensity for

storing experiential knowledge and making it available for use [25].

According to [25], neural networks offer the following benefits:

1. Non-linearity. The nature of a neuron can be linear or non-linear. Consequently, a

neural network is non-linear.

2. Input-Output Mapping. Supervised learning involves modification of some pa-

rameters of the neural network. The network is fed with a random example and,

depending on the output, different parameters will be modified to get closer to the

desired output. These parameters are the different weights that have been assigned.

12

2.2. DEEP LEARNING

3. Adaptivity. Neural networks have a great capacity to adapt their parameters ac-

cording to the changes that occur around them. A network trained to operate in a

specific environment can be easily retrained if a minor change has been produced in

that environment. Moreover, the more adaptive is a system, the more robust is its

performance.

4. Evidential Response. A neural network provides information about the pattern

selected and also the confidence of that decision.

5. Contextual Information. Every neuron is influenced by the rest of the neurons of

the network. So, knowledge is characterized by the structure of the neural network.

6. Fault Tolerance. The performance of a neural network does not vary significantly

depending on the conditions in which it is running.

7. VLSI Implementability. A neural network can be implemented using VLSI (Very-

Large-Scale-Integrated) technology due to its parallel nature.

8. Uniformity of Analysis and Design. Neural networks, as information processors,

use the same notation in all domains.

9. Neurobiological Analogy. A neural network design is very similar to the brain. It

makes possible to process data in parallel in a fast and powerful way.

In the following subsections, different types of neural networks (feed-forward, recurrent

networks, restricted Boltzmann machines, and autoencoders) are presented.

2.2.1 Feed-forward neural network

Feed-forward neural networks [53], trained with a back-propagation learning algorithm, are

one of the most popular neural networks. They can be divided into two types: single-layer

and multi-layer. In Fig. 2.1, a multi-layer neural network divided into different layers which

are composed of neurons is represented.

The input nodes represent the data that is introduced into the network and it could be

of different types. Moreover, the hidden nodes layer is composed of neurons which are not

connected to each other but to adjacent layers. This layer is called hidden because it does

not interact with the external environment. Finally, the output layer put together the data

produced by the previous layers and generates the desired output [7]. If the neural network

was single-layer, it would only consist of the neurons in the output layer.

13

CHAPTER 2. STATE OF ART

Output LayerHidden LayerInput Layer

In
pu

t D
at

a:

x i

Output Data:
y1

Figure 2.1: Feed-forward neural network

2.2.2 Recurrent neural network

Recurrent Neural Networks (RNN) [10] have at least one feedback connection so the acti-

vations can flow round in a loop, as can be seen in Fig. 2.2.

Inputs Hidden
Units Outputs

x(t) h(t)

Delay

h(t)h(t-1)

Figure 2.2: Recurrent Neural network

One of the most used RNN is the multi-layer perceptron, explained in Sect. 2.2.1, with

the addition of loops. This results in the neuronal network having memory, where it stores

information about the previous input. That is, the behaviour of hidden neurons might not

just be determined by the activations in previous hidden layers, but also by the activations

at earlier times. Indeed, a neuron’s activation might be determined in part by its own

activation at an earlier time [37].

14

2.2. DEEP LEARNING

2.2.3 Restricted Boltzmann Machines

Boltzmann Machines (BMs) [18] are bidirectionally connected networks of stochastic pro-

cessing units and they can be interpreted as neural network models. Furthermore, Re-

stricted Boltzmann Machines (RBMs) have restrictions on the network topology and they

are parameterized generative models that represent probability distributions.

BMs has two types of units, visible and hidden neurons.

• Visible neurons. They form the first layer and correspond to the components of an

observation.

• Hidden neurons. They model the dependencies between the components of the obser-

vations.

wnm

v2

v3

v4

v1

h2

h3

h1

Figure 2.3: Restricted Boltzmann Machine

A representation of an RBM is shown in Fig. 2.3. It is composed of m visible units

V = (V1, ..., Vm) that represent observable data and n hidden units H = (H1, ...,Hn) to

capture dependencies between observed variables.

2.2.4 Autoencoders

An autoencoder [59] is a feed-forward neural network, explained in Sect. 2.2.1, in which the

desired output is the input itself.

For this purpose, autoencoders do not perform the identity function by mapping the

input directly on the output, but they have hidden layers which may be of smaller or larger

15

CHAPTER 2. STATE OF ART

dimensions than the input. Therefore, by modifying the input dimensions, the autoencoder

performs the reconstruction of the data.

An autoencoder consists of two parts [52]:

• Encoder fθ: maps an input vector to a latent representation y(i) = fθ′(x
(i)) =

s(Wx(i) + b) with s being a non-linear activation function.

• Decoder gθ′: its objective is to reconstruct the input x(i) from y(i). For that purpose,

x(i) = gθ′(y
(i)) = s(W ′y(i) + b′) is applied.

The objective of training is to determine θ̂ = {W, b} and θ̂′ = {W ′, b′} in order to

minimize the reconstruction error of input vectors x(i).

θ̂, θ̂′ = arg min
θ,θ′

1

n

n∑
i=1

(L(x(i), gθ′(fθ(x
(i))))) (2.1)

In Equation 2.1, it is shown the function that has to be minimized, where L is a loss

function, and θ and θ′ can be optimized by gradient descent methods.

Autoencoders learn representations of inputs by retaining useful features in the encoding

phase which help to reconstruct that input, discarding useless or noisy features.

Figure 2.4: Autoencoder

16

2.3. BIG DATA

2.3 Big Data

Big Data [11] are high-volume, high-velocity, and/or high variety information assets that

require new forms of processing to enable enhanced decision making, insight discovery, and

process optimization. In other words, a data set is Big Data if it is possible to capture,

curate, analyze and visualize that data with the current technologies.

Data Capture
Data Cleaning/

Integration/
Representation

Data Analysis
Data

Visualization/
Interpretation

Decision Making

Figure 2.5: Data analysis process

In Fig. 2.5, it is shown the whole process of data analysis, from its capture to the

decision making. Each step is explained below [11]:

1. Data Capture

Nowadays, the way of capturing and storing data has changed, due to the exponential

increase of the data created every day. The storing capacity has to increase as well as

the I/O speed, that it is poor. New storage technologies, such as SSDs (Solid-State

Drive), with higher I/O speed than HDDs (Hard Disk Drives), partially solves this

problem but it is not enough. Therefore, the design of storage subsystems for Big

Data has to be changed.

Thus, in order to improve the performance, a good solution is optimizing data access

using techniques as data replication, migration, distribution, and access parallelism.

2. Data Curation

The objective of data curation is data discovery and recovery, ensure data quality,

provide added value, and the possibility of reusing and preserving data over time.

It involves a number of sub-fields including authentication, archiving, management,

preservation, retrieval, and representation.

3. Data Analysis

The most important challenge in Big Data analysis tasks is scalability. In recent years,

the analysis algorithms have improved so that they are now faster and can deal with

more amount of data. However, the speed of the CPUs is increasing, but not enough,

which leads to the development of parallel computing.

17

CHAPTER 2. STATE OF ART

4. Data Visualization/Interpretation

This step of the process is very important because after the analysis is carried out,

the data must be presented in such a way that conclusions can be drawn from them.

The use of graphs will help to present the data in an intuitive and effective way.

5. Decision Making

This is the last step of the process and after the data is captured, curated, analyzed

and visualized, different conclusions have to be drawn in order to make decisions.

In order to perform the whole process explained above, different techniques are used.

These techniques, which are very varied, are optimization methods, statistics, machine

learning, data mining, and visualization approaches.

First, optimization methods usually require a great amount of memory and time. In

addition, they are very useful to solve problems of very different fields, and sometimes it

is required to do it in real-time. For that purpose, data reduction and parallelization are

needed.

Moreover, statistics make possible to use of the correlations and causal relationships

between different objectives. Statistics is the science that allows us to collect, organize and

interpret data. Furthermore, new techniques are emerging because the classic ones do not

suit well with Big Data.

Additionally, Data Mining techniques involve machine learning and statistics and they

are very useful to obtain valuable information from data, including analysis, classification,

regression and association rule learning.

Lastly, visualization approaches are used to present the data in an understandable way

and interpret it in order to draw conclusions and make decisions.

18

2.4. AGENT-BASED MODELLING AND SIMULATION

2.4 Agent-Based Modelling and Simulation

Agent-based Modelling and Simulation (ABMS) [34] is an approach to modelling systems

comprised of autonomous, interacting agents. These agents can be defined by the following

properties:

• Autonomous and self-directed. An agent is independent within its environment

interacting with the rest of the agents. The agent’s behaviour relates its perception

of the environment to its decisions and actions.

• Modular or self-contained. An agent is an identifiable, discrete individual with a

set of characteristics or attributes, behaviors, and decision-making capability.

• Social, interacting with other agents. Agents have mechanisms of interaction

between each other so that collisions are avoided, they communicate, etc.

In addition, agents live in an environment with which they interact as they do with

other agents. The behaviour of an agent can be based on an objective or specific goal

and therefore, they can have the ability to learn and adapt that behaviour based on their

experiences.

The objective of an Agent-Based Modelling and Simulation (ABMS) system is to un-

derstand the interactions in a given Complex Adaptive System (CAS). Furthermore, an

agent-based model allows researchers to experiment how a simulated CAS behaves under

certain conditions. Therefore, this gives the opportunity to analyze experiments that are

impracticable in the real world, due to their possible consequences or their economic cost.

In addition, ABMS facilitates the generation of theories, as well as, their validation and it

should continuously improve its methodological foundations [44].

2.4.1 ABMS Tools

Firstly, in order to study and analyze smart grids, Agent-Based Modelling and Simulation

(ABMS) has been widely used because of the heterogeneity of electricity systems, its bi-

directional interactions and the feedback loops between agents and institutions that it offers.

For that reason, in order to obtain synthetic data, ABMS has been chosen. It allows us

to simulate a smart grid and a False Data Injection or Topology attack. Once the simulation

19

CHAPTER 2. STATE OF ART

is ended, we will be able to obtain all the data from the simulation for further processing

and apply deep learning to them.

Consequently, different ABMS tools that may be useful for this project have been ana-

lyzed, mainly Mosaik and MESA.

• Mosaik [47] is a simulation compositor for Smart Grid simulations written in Python.

It aims to provide support for scenario specification, simulation composition and ex-

ecution, and scenario result analysis. This tool is explained in detail in Sect. 3.2.1.

• MESA [35] is an open-source, Apache 2.0 licensed Python package, that allows users

to create agent-based models using built-in core components or customized imple-

mentations. In addition, it has a browser-based interface to visualize and analyze the

results.

Mesa’s architecture is divided into different modules that can be grouped into three

categories:

– Modelling: this module is composed of a Model class that stores model-level

parameters being the container of the rest of the components. This module also

consists of an Agent class, a scheduler that synchronizes the different agents and

the space or network in which the agents are located.

– Analysis: it involves data collectors that record data from the models and a

batch runner that automatizes multiple runs.

– Visualization: these components use a server interface to visualize the results in

a browser.

In addition, among the ABMS tools analyzed, Mosaik is a better option than MESA

because it is specifically oriented to the simulation of smart grids. Furthermore, as Mosaik

is composed of different simulators, this will allow us to implement a new one which will

simulate the mentioned attack.

In [16], different frameworks for attack modelling in smart grids are analyzed: ASTO-

RIA, NeSSI2, and SCORE.

ASTORIA (Attack Simulation TOolset for smart gRid InfrAstructures) [57] is a frame-

work that uses Mosaik with ns3 in order to simulate smart grids with ICT equipment. It

allows users to simulate cyber attacks integrating Mosaik’s simulators with ns3. In addition,

it is written in python, available for Linux but it does not have a stable version.

20

2.4. AGENT-BASED MODELLING AND SIMULATION

NeSSi2 [16] represents a distributed DDoS attack against a real like simulated smart

grid topology. It simulates a UDP flooding DDoS attack that consists of sending a large

number of UDP packages to the victim. It is written in Java and available only for Windows

OS.

SCORE (Smart-Grid Common Open Research Emulator) [54], based on CORE, inte-

grates the power and communication network. In order to simulate an attack, two Linux

virtual machines are used. One with Ubuntu that runs the smart grid simulation and the

other with Kali Linux to execute the cyber attacks. In addition, it is written in Python but

it is no longer supported.

Despite having the option of using these tools, it has been decided to use Mosaik as

mentioned above. This is because some of these tools are no longer supported, are not

stable, are not available for Linux, or only allow simulating one type of attack such as

DDOS. In addition, Mosaik is also used by tools as ASTORIA so we can deduce that it is

a good option.

21

CHAPTER 2. STATE OF ART

22

CHAPTER3
Enabling Technologies

In this chapter, the technologies used in this project are introduced. Firstly, the Python

libraries related to data processing are explained. Secondly, Mosaik is introduced, which is

an ABMS tool that allows us to obtain synthetic data related to smart grids. Thirdly, the

different machine learning libraries used are described which are TensorFlow, Scikit-learn

and Keras. Finally, the mathematical model ARIMA is introduced.

23

CHAPTER 3. ENABLING TECHNOLOGIES

3.1 Data managing libraries

This section presents the different Python libraries used in this project in relation to data

managing.

3.1.1 Pandas

Pandas [36] is a Python library of rich data structures and tools for working with structured

data sets. The library provides integrated, intuitive routines for performing common data

manipulations and analysis on such data sets.

The two primary data structures of Pandas are (i) Series: one-dimensional ndarray with

axis labels and (ii) DataFrames: two-dimensional size-mutable, potentially heterogeneous

tabular data structures with labeled axes.

The main features offered by Pandas are the following:

• Handling of missing data (NaN).

• Size mutability: insertion and deletion of columns from DataFrames.

• Automatic and explicit data alignment.

• Split-apply-combine operations on data sets.

• Intuitive merging and joining data sets.

• High-performance time series functionality.

• Robust IO tools for loading data from files.

3.1.2 Numpy

Numpy [38] is the fundamental package for scientific computing with Python. This library

provides the possibility to use N-dimensional array objects, as well as, sophisticated func-

tions. In addition, it also supports the use of linear algebra, Fourier transform, and random

number capabilities.

24

3.1. DATA MANAGING LIBRARIES

The main two objects that NumPy provides are: (i) N-dimensional arrays which are a

homogeneous collection of objects indexed using N integers, defined by their shape and the

kind of item the array is composed of, and (ii) Universal function objects (ufunc).

3.1.3 Matplotlib

Matplotlib [5] is a Python 2D plotting library which produces publication quality figures

in a variety of hardcopy formats and interactive environments. The Matplotlib library is

divided into three parts: 1. Pylab interface: to create plots. 2. Matplotlib frontend: a set of

classes to lift, to create and to manage figures, text, lines, plots, etc. 3. Matplotlib backend:

Vector graphics, PNG, etc.

3.1.4 h5py

The h5Py [13] package is a Pythonic interface to the HDF5 binary data format. It al-

lows users to store huge amounts of numerical data, and easily manipulate that data from

NumPy.

The HDF5 technology suite [19] consists of a data model, a library, and a file format for

storing and managing data. The main characteristics of the HDF5 technology are:

• Large variety of datatypes supported.

• Flexible and efficient I/O.

• High-volume and complex data.

• It is portable and extensible.

The HDF5 data model defines HDF5 information sets, also called infosets, which are

containers for annotated associations of array variables, groups, and types. So, an HDF5

file contains HDF5 datasets, HDF5 groups, and HDF5 datatype objects. Furthermore,

the HDF5 data model defines link mechanisms for creating associations between HDF5

information items. Finally, the HDF5 data model defines a facility to annotate HDF5

information items using HDF5 attributes.

25

CHAPTER 3. ENABLING TECHNOLOGIES

3.2 ABMS

In this section, Mosaik and Mavewrig which are ABMS tools that allow users to simulate

smart grids are presented.

3.2.1 Mosaik

Mosaik [47] is a simulation compositor for Smart Grid simulations written in Python. It

aims to provide support for scenario specification, simulation composition and execution,

and scenario result analysis.

Mosaik allows users to simulate a smart grid scenario using existing simulators. More-

over, it is in charge of the synchronization of their processes and of their exchange of data.

Its main objective is to integrate different existing and technologically heterogeneous sim-

ulation models into a Smart Grid simulation.

The aim is to compose different, existing and technologically heterogeneous simulation

models into an overall Smart Grid simulation. In order to do this, Mosaik has the following

characteristics: (i) It provides an API that allows the simulators to communicate with

Mosaik. (ii) It implements different handlers for the different simulator processes. (iii) It

permits to execute a simulation in which the scenario involves different simulators. (iv) It

is in charge of synchronizing the different simulators and their exchange of data.

The main components of a Mosaik simulation are:

• Mosaik-web 1: it allows users to visualize the progress of the simulation in a browser,

also showing different graphs with the evolution of different parameters.

• Mosaik-pypower 2: it is an adapter for the PyPower load analysis library. PyPower [33]

is a python implementation of MATPOWER and it allows users to calculate power

flows and operation costs. Moreover, it uses the bus-branch model to represent power

grids. This model defines a number of nodes connected through branches. These

nodes are divided into:

– The reference bus: there is one reference bus in every grid and it has constant

voltage magnitude and angle. The active and reactive power of the node are also

calculated.
1https://bitbucket.org/mosaik/mosaik-web
2https://bitbucket.org/mosaik/mosaik-pypower

26

3.2. ABMS

– PQ buses: Pypower will calculate the voltage and angle of these nodes, whereas

the active and reactive power are given.

Moreover, in order to define the structure of a grid, it supports JSON and Excel file

formats.

As can be seen in the code below, in the JSON are defined the buses, branches, and

transformers. In addition, it can be declared new branch and transformer types.

Listing 3.1: PyPower JSON

{

"bus": [

["Grid", "REF", 110.0],

["Bus0", "PQ", 20.0],

["Bus1", "PQ", 20.0],

],

"trafo": [

["Trafo1", "Grid", "Bus0", "TRAFO_23", true, 0]

],

"branch": [

["B_0", "Bus0", "Bus1", "SPAM_200", 5.0, true]

],

"branch_types": {

"SPAM_200": [0.1337, 0.0815, 0, 404]

},

"trafo_types": {

"TRAFO_23": [23, 100, 800, 100, 0.0123, 1.234, {"-1":

0.9, "0": 1, "1": 1.1}]

}

}

• Mosaik-householdsim 3 and Mosaik-csv 4: these simulators allow users to simulate

households using CSV datasets to read their load profiles. In addition, Mosaik-csv

is a simulator that can also model the profiles of renewable energy, like photovoltaic

panels.

• Mosaik-hdf5 5: it stores all the data obtained from the simulation in a HDF5 file.

In addition, Mosaik provides an API which connects the simulators to Mosaik. This

3https://bitbucket.org/mosaik/mosaik-householdsim
4https://bitbucket.org/mosaik/mosaik-csv
5https://bitbucket.org/mosaik/mosaik-hdf5

27

CHAPTER 3. ENABLING TECHNOLOGIES

will facilitate the addition and creation of new simulators.

In order to store the data generated by the simulation, Mosaik uses an HDF5 database.

Mosaik-hdf56 is the Mosaik module that generates the HDF5 database with all the data of

the simulation. Once the simulation has ended, the HDF5 file is generated.

Series

/

Relations

CSV-0.PV_N

HouseholdSim-0.House_N

Pypower-0.0-branch_N

PyPower-0.0-node_N

PyPower-0.0-transformer

CSV-0.PV_N

HouseholdSim-0.House_N

Pypower-0.0-branch_N

PyPower-0.0-node_N

PyPower-0.0-transformer

P

P_out

P_from, P_to, Q_from

P, Q, Va, Vl, Vm

P_from, P_to, Q_from

Path_to_relation, Path_to_relation_series

Path_to_relation, Path_to_relation_series

Path_to_relation, Path_to_relation_series

Path_to_relation, Path_to_relation_series

Path_to_relation, Path_to_relation_series

Figure 3.1: Data Structure

After performing a simulation, we obtain the HDF5 database and visualizing it using

HDFView7, which is a visual tool for browsing and editing HDF5 files, allows us to see the

database structure shown in Fig. 3.1.
6https://bitbucket.org/mosaik/mosaik-hdf5
7https://support.hdfgroup.org/products/java/hdfview/

28

3.2. ABMS

The following groups can be observed:

• Relations group. It contains a dataset for every entity, which indicates the relationship

of each entity with the rest of them. Those datasets store tuples (path to relation,

path to relation series). As can be seen in Fig. 3.2, the Relations group contains

one data set for each element of the grid, which in the selected case CSV-0.PV 0

(photovoltaic panel), it is connected to the node b7. This group allows us to know the

topology of the grid.

Figure 3.2: Relations group

• Series group. It contains one group for every entity. Furthermore, each group contains

one dataset for every attribute of the entity. These datasets are arrays with the

different values of the attributes. As can be seen in Fig.3.3, the Series group contains

one group for every entity of the grid, and each group is composed of datasets of the

attributes of the entity.

Figure 3.3: Series group

29

CHAPTER 3. ENABLING TECHNOLOGIES

Each group has different entities which are the following:

• Photovoltaic panels, named as CSV − 0.PV N . They generate power and inject it to

the grid. Their attribute is the power generated (P). This attribute is generated by

the simulator, reading the different power levels generated from a CSV file.

• Households, named as HouseholdSim − 0.House N . Their attribute is the power

they consume (P out). The HouseholdSim simulator reads from a file the load profiles

of each house.

• Nodes, named as PyPower− 0.0− node aN . They are the main nodes of the grid to

which the rest of the entities are connected. Their attributes are are the active and

reactive power, and the different values of voltage (P, Q, Va, Vl and Vm). The simu-

lator PyPower has as input a JSON file, that allows it to generate the topology of the

grid. In addition, this simulator manages the different values of its attributes. More-

over, PyPower not only manages the network nodes but also manages the different

branches of the grid and its transformer.

• Branches, named as PyPower−0.0− branch N . They connect the main nodes of the

grid and their attributes are the active and reactive power that flows through them

(P from, P to, and Q from).

• Transformer, named as PyPower− 0.0− transformer. It provides power to the grid

and its attributes are the active and reactive power, and the different values of voltage

(P, Q, Va, Vl and Vm).

The name of the entities is formed by the tuple (name-of-the-simulator, name-of-the-

entity N), where N is the id of that specific entity.

3.2.2 Maverig

Maverig [48] is a tool which main purpose is to provide Mosaik with a graphical user

interface. This user interface should allow the creation of smart grids scenarios, in which

users do not have to write Python code, but will do everything through that interface. In

addition, it allows the execution of simulations in the interface itself. The main objective of

the system is, therefore, the creation of compact and simple scenarios and the control and

visualization of the simulation through a homogeneous user interface.

30

3.2. ABMS

Therefore, Maverig has two different main modes:

• Composition Mode. This mode allows users to create smart grids scenarios. For this

purpose, Maverig provides different elements that allow the creation of such scenario:

Reference Bus, PQBus Node, Transformers, Lines, Photovoltaic panels, Households,

etc.

• Simulation Mode. This mode allows users to run simulations in the scenarios

created in the Composition Mode while observing the most significant parameters.

Figure 3.4: Maverig [48]

In Fig. 3.4, the Maverig’s graphical interface is represented. This graphical interface

allows users to control different parameters: the scenario that has been created, the different

parameters that take the elements of the network and their evolution over time, information

on the progress of the simulation, and so on.

The use of this tool was considered because it would have simplified the use of Mosaik.

This is because, for example, the creation of a scenario can be done dragging and dropping

the elements instead of using a python script. However, as there was very few published

information about this software, we contacted the developers and they recommended us to

use Mosaik because Maverig was no longer maintained. Furthermore, complex scenarios

can be realized better with Mosaik using python scripts.

31

CHAPTER 3. ENABLING TECHNOLOGIES

3.3 Machine Learning Technologies

In this section, the different machine learning technologies used in this project are presented:

Scikit-learn, TensorFlow and Keras.

3.3.1 Scikit-learn

Scikit-learn [42] is a Python module integrating a wide range of state-of-the-art machine

learning algorithms for medium-scale supervised and unsupervised problems. It provides

simple and efficient tools for data mining and data analysis being built on NumPy, SciPy,

and matplotlib. Furthermore, Scikit-learn is open source and distributed with BSD license

and therefore, accessible to everybody and reusable in various contexts. It allows users to

perform different tasks:

• Classification: identifying to which category an object belongs to.

• Regression: predicting a continuous-valued attribute associated with an object.

• Clustering: automatic grouping of similar objects into sets.

• Dimensionality reduction: reducing the number of random variables to consider.

• Model selection: comparing, validating and choosing parameters and models.

• Preprocessing: feature extraction and normalization.

The API provided by the Scikit-learn library is designed following these principles [9]:

(i) Consistency. All objects share a consistent interface composed of a set of methods. In

addition, this interface is documented. (ii) Inspection. Parameters are stored and exposed

as public attributes. (iii) Non-proliferation of classes. The only objects represented by cus-

toms classes are the learning algorithms. This makes scikit-learn easy to use. Furthermore,

Datasets are represented as NumPy arrays or SciPy matrices and hyper-parameters by stan-

dard Python string or numbers. (iv) Composition. Machine learning tasks are usually a

sequence or combination of transformations that are made to data. Moreover, some learning

algorithms are also viewed as meta-algorithms parametrized on other algorithms. (v) Sen-

sible defaults. Scikit-learn assigns default values when an operation requires a user-defined

value.

32

3.3. MACHINE LEARNING TECHNOLOGIES

3.3.2 Tensorflow

Tensorflow [1] is an open-source software library for machine learning developed by Google.

Python was the first client language supported by Tensorflow but nowadays more languages

can use it, like for example C++, Java, Go, R and C#.

Furthermore, DistBelief [14] is the distributed system for training neural networks that

Google has used since 2011. It was developed by Google Brain as a proprietary machine

learning system based on deep learning neuronal networks. In February 2017, Google Brain

improved DistBelief and Tensorflow was released, which is the second generation system.

TensorFlow is able to use a large number of powerful servers in order to achieve fast

training. In addition, once the training is completed, it is capable of running the trained

models on different platforms. These platforms could be mobile devices or even a cluster of

servers. Moreover, Tensorflow is flexible enough to support new machine learning models

incentivizing, in this way, experimentation and research [1].

Figure 3.5: A schematic TensorFlow dataflow graph for a training pipeline [1]

A data-flow graph for a training pipeline, containing subgraphs for reading input data,

preprocessing, training and checkpoint state is shown in Fig.3.5. Tensorflow allows executing

parallel and independent computations in different devices at the same type, due to the

exchange of data of the different components that compose the data flow [1].

There are differences between batch data flow systems and Tensorflow. One of the most

important ones is that it supports multiple concurrent executions. Furthermore, individual

vertices may have a mutable state that can be shared between different executions of the

graph. [1]

A TensorFlow graph is composed of the following elements [56]:

• Tensors: they are a generalization of vectors and matrices to potentially higher

dimensions, represented as n-dimensional arrays. The shape of the tensor may be

partially known and every element of it has the same known data type. In operations

33

CHAPTER 3. ENABLING TECHNOLOGIES

with tensors, if the shape of its input is known, usually their result is a tensor of

known shape. However, in some other cases, the shape of a tensor is only possible to

know at graph execution time.

• Operations: they are computations on tensors. An operation is defined as a node in

a TensorFlow graph with zero or more tensors as input and zero or more tensors as

output.

Every operation has a specific type and different attributes that define their behaviour.

Moreover, they can be polymorphic and with different times of compilation, meaning

that the expected types of the inputs and outputs are settled by the attributes. There

are different types of operations[1]:

– Stateful operations: variables. They use a buffer in order to keep track of

the parameters of the model while it is being trained.

– Stateful operations: queues. TensorFlow includes FIFOQueue and other

types of queues that dequeue tensors in random and priority orders.

TensorFlow offers an API which allows to the client to specify which subgraph should

be executed. It is possible to use the API multiple times on the same graph and each use

is called a step.

In addition, TensorFlow is very flexible because it allows to specify different model

architectures in user-level code due to the possibility to add mutable state and coordination

via queues [1].

Moreover, Tensorflow has distributed execution. Each operation resides on a partic-

ular device, which is responsible for executing a kernel for each operation assigned to it.

Furthermore, it allows multiple kernels to be registered for a single operation.

In order to place the operations in different devices, Tensorflow takes into account

implicit or explicit constraints in the graph. The user may specify partial device preferences,

but there is also a placement algorithm. Therefore, Tensorflow is very flexible in the sense

of mapping the different operations to the devices.

Consequently, Tensorflow is able to execute large subgraphs many times with low la-

tency [1].

In order to explain the Tensorflow’s Python API, an example, taken from [20], is going

to be presented. This example is the classification of handwritten digits in the MNIST8

8http://yann.lecun.com/exdb/mnist/

34

3.3. MACHINE LEARNING TECHNOLOGIES

dataset. For that purpose, first the TensorFlow library has to be imported and the MNIST

dataset read into memory.

Then, a computational graph has to be created. These graphs are used to attach to

them, new operation nodes.

Listing 3.2: Tensorflow and data import

import tensorflow as tf

mnist = mnist_data.read("/tmp/mnist", one_hot=True)

graph = tf.Graph()

with graph.as_default()

Once the graph is created, operations have to be created. For that purpose, placeholders

are defined. They are special variables that must be replaced with concrete tensors upon

graph execution. For each placeholder, a shape and data type are specified. Moreover, the

first dimension of the shape is declared as None because, in this way, it can be fed by a

tensor of variable size in that dimension. The other dimension (784) is the number of pixels

of the image.

Listing 3.3: Placeholder definitions

examples = tf.placeholder(tf.float32, [None, 784])

labels = tf.placeholder(tf.float32, [None, 10])

The affine transformation Y = X∆W + b has to be made. X is a matrix containing the

pixels of n images, W is a weight matrix, b a bias vector and Y is a new matrix containing

the logits of the model for each example and each possible digit. In order to transform these

logits into a valid probability distribution, the softmax function is used.

Next, the objective function is computed, producing the loss of the model. For that

purpose, the mean cross entropy, between the probability distributions and the labels, is

calculated.

The GradientDescentOptimizer is used to update the weights of the model. It is initial-

ized with the learning rate and provides an operation minimize for the loss tensor.

35

CHAPTER 3. ENABLING TECHNOLOGIES

Listing 3.4: Objective function and Gradient Descent Optimizer

weights = tf.Variable(tf.random_uniform([784, 10]))

bias = tf.Variable(tf.constant(0.1, shape=[10]))

logits = tf.matmul(examples, weights) + bias

estimates = tf.nn.softmax(logits)

cross_entropy = -tf.reduce_sum(labels * tf.log(estimates), [1])

loss = tf.reduce_mean(cross_entropy)

gdo=tf.train.GradientDescentOptimizer(0.5)

optimizer = gdo.minimize(loss)

Finally, the algorithm can be trained. For this, a session environment is initialized

with the graph as the parameter of its constructor. Then, the variables of the graph are

initialized and a number of iterations performed. These iterations consist of training the

neural network with examples and labels of the MNIST dataset. When these iterations are

over, the loss will be small.

Listing 3.5: TensorFlow Session

with tf.Session(graph=graph) as session:

tf.initialize_all_variables().run()

for step in range(1000):

x, y = mnist.train.next_batch(100)

_, loss_value = session.run([optimizer, loss], feed_dict={examples:

x, labels: y})

print("Loss at step {0}: {1}".format(step, loss_value))

This example illustrates the use of TensorFlow’s Python API.

3.3.3 Keras

Keras [22] is a high-level neural network API, written in Python, that runs on top of

TensorFlow, CNTK or Theano. The author of Keras, François Chollet, said: “The library

was developed with a focus on enabling fast experimentation. Being able to go from idea to

result with the least possible delay is key to doing research”. Its main characteristics are:

• Modularity: a model is a sequence or graph of independent modules that combined

together allows users to build neural networks.

36

3.3. MACHINE LEARNING TECHNOLOGIES

• Minimalism: each module is kept short and self-describing.

• Easy extensibility: Keras can be extended with new functionalities. Furthermore,

new modules are very simple to add and it also provides modules with examples of

different areas.

• It supports convolutional networks and recurrent networks, as well as combinations

of both.

• User friendliness: for Keras the most important thing is the user experience and

therefore, it follows best practices for reducing cognitive load. It is an API designed

for human beings, not machines.

• It runs seamlessly on CPU and GPU.

The API provided by Keras is consistent and simple in a way that minimizes the actions

that the user has to perform and it also provides feedback on the user’s errors. In addition, as

Keras integrates lower-level deep learning languages and allows users to implement anything

possible in the base language (TensorFlow), it can be said that its flexibility is not reduced

due to the ease of use and learn.

37

CHAPTER 3. ENABLING TECHNOLOGIES

3.4 Mathematical models

In this section the mathematical model ARIMA is explained, as well as a python library

that allows its implementation.

3.4.1 ARIMA

ARIMA (Auto-Regressive Integrated Moving Average) models were introduced by Box and

Jenkins and have become one of the most popular approaches to forecasting. They are

a type of stochastic process used to analyze time series behaviour. In addition, ARIMA

models make it possible to predict future values of a time series based on previous values,

its own lags and the lagged forecast errors [39].

ARIMA models include three different models: AR (auto-regressive) models, MA (mov-

ing average) models, and ARMA models that combine the two previous models. These

models (AR, MA, and ARMA) can be used when the time series is stationary. Therefore,

when the time series is not stationary, the letter I (integrated) is used, which indicates that

the data have been transformed into stationary. In order to build the model, ARIMA an-

alyzes the previous observations to find the correlations between them. After the analysis,

the model will use what it has learned to predict future values [24].

Yt = θ0 + φ1yt−1 + φ2yt−2 + ...+ φpyt−p

+εt − θ1εt−1 − θ2εt−2 − ...− θqεq−1
(3.1)

The representation of the ARIMA model equation is shown in Equation 3.1, where φi

are the autorregressive parameters, θj are the moving average parameters, and εt is the

error term at time t. The general way to represent an arima model is ARIMA(p,d,q), where

the different parameters are:

• p: order of the auto regressive part.

• d: degree of first differencing involved.

• q: order of moving average part.

ARIMA modeling consists of three steps: model identification, parameter estimation,

and diagnostic checking. Model identification corresponds to checking if the time series have

38

3.4. MATHEMATICAL MODELS

some theoretical autocorrelation properties. Then the (p,d,q) parameters are calculated and

finally, the results are verified [28].

3.4.1.1 Statsmodels

Statsmodel [49] is a library for statistical and econometric analysis in Python. It provides

classes and functions for the estimation of many statistical models, as well as for conducting

statistical tests, and statistical data exploration. This package is distributed under the open

source Modified BSD license. The library is intended to be used by applied statisticians

and econometricians and, also, Python users working with disciplines related to statistical

models. Statsmodels is designed to be user-friendly and easily extensible by developers from

any discipline.

During its development, most of the results obtained with the different models imple-

mented by the library have been verified with at least one other statistical package: R,

Stata or SAS. In addition, some statistical methods are tested with Monte Carlo Studies.

This library has been used to implement the ARIMA model using the statsmodels.tsa.

arima model.ARIMA class.

39

CHAPTER 3. ENABLING TECHNOLOGIES

40

CHAPTER4
Architecture

In this chapter, the architecture of this project is explained. Firstly, a global vision about

the project architecture is presented, identifying all the modules that compose it. Finally,

all the modules are described in detail, explaining all their components.

41

CHAPTER 4. ARCHITECTURE

4.1 Architecture

In order to achieve the objective of this project, which is the detection of attacks in smart

grids, the global system is presented. Its representation and the different modules that

compose it: Multi-Agent System, Data Preprocessing Module, Autoencoder, and Anomaly

Detection Module are shown in Fig. 4.1.

First, the data is obtained from the Multi-Agent System, Sect. 4.1.1, and then it is

treated in the Preprocessing Module, Sect. 4.1.2. In this module, the data is cleaned,

some features are generated and finally, it is normalized. The next step is to apply deep

learning algorithms to the data, Sect. 4.1.3. For this purpose, the model is created using

an Autoencoder, which is trained and tested. Finally, in the Anomaly Detection Module,

Sect. 4.1.4 the results obtained from the autoencoder are analyzed and treated in order to

classify the data between normal or attacked.

In the following sections, these modules are explained in detail.

4.1.1 Multi-Agent System

Due to the impossibility of obtaining real data related to smart grids since they are confi-

dential, ABMS is used in order to generate synthetic data.

Therefore, this module is in charge of generating the synthetic data to which the deep

learning algorithms are going to be applied. For that purpose, Mosaik, Sect. 3.2.1, which is

a Multi-Agent System, is used. Furthermore, it is a simulation compositor for Smart Grid

simulations written in Python.

In order to simulate False Data Injection Attacks, a new simulator for Mosaik has been

implemented. This new attack simulator allows us to modify the value of power consumption

of a configurable number of houses. Therefore, it provides us the possibility of setting that

power consumption value to zero or to a specific percentage in a certain moment of the

simulation.

Furthermore, in order to simulate attacks, several components of Mosaik had to be

configured (executable file and HouseholdSim simulator) and the attack simulator had to

be created (attack.py):

• Executable file. This is the main file of Mosaik, in which the simulators that will partic-

42

4.1. ARCHITECTURE

Data Preprocessing Module

Data Cleaning Feature
Generation Normalization

Deep Autoencoder

Anomaly Detection Module

Normal
Data

Attack
Data

Multi Agent System

Attack

Figure 4.1: Architecture for Anomaly Detection

43

CHAPTER 4. ARCHITECTURE

ipate in the simulation are defined, as well as the different connections between them.

For this reason, it has had to be modified to include the definition and initialization

of the attack simulator and its connection with the house simulator.

The attack simulator has to be initialized in this file as follows:

Listing 4.1: Initialization of the simulator

attacks = attacksim.Attack.create(38, target_attr=’P_out’)

When initializing the simulator, two attributes must be set. The first attribute is

the number of houses that are going to suffer an attack, which in the case of the

example shown above is 38. If the number of attacks is higher than the number of

houses, the simulation does not start and an error is thrown. The other attribute

is the target attribute, that is to say, the value that is going to be modified by the

attack. This target attribute is P out, which is the value that indicates the house

power consumption.

In addition, the assignment of attacks to houses is done randomly, in this way, in

different simulations not always the same house is attacked. This assignment is made

in the following way:

Listing 4.2: Connection of simulators

world.connect(house, attacked_houses[house], (’P_out’,’P_out_val’),

async_requests=True)

First, the house and the instance of the corresponding attack have to be indicated.

The next two attributes are the parameters of the two simulators that are going to

be linked. P out is the value of power consumption of the house and P out val is the

new power consumption value generated by the attack simulator.

• Attack.py. This is the new implemented simulator that is initialized in the executable

file. The duration of the attack is configurable, allowing users to execute the attack

during the whole simulation or during an specific time frame. In addition, the data

flow between the house simulator and the attack simulator is bi-directional. First,

the house power consumption value is received so it can be modified according to the

attack chosen to simulate. Once it is modified, that new value is returned to the house

simulator to replace the original value.

The set data function provided by the Mosaik API has been used to send a value from

44

4.1. ARCHITECTURE

one simulator to another. Therefore, it has been used to send data from HouseHoldSim

to AttackSim and vice-versa. The data that is sent is an object mapping source entity

IDs to objects which in turn map destination entity IDs to objects of attributes and

values. In addition, it has to follow the following structure:

Listing 4.3: Data format

{"src_full_id": {"dest_full_id": {"attr1": "val1", "attr2": "val2"}}}

Where src full id is the identifier of the source simulator, dest full id is the identifier

of the destination simulator and then the attribute with its value that is wanted to

be sent. This data will be received as input of the destination simulator.

In this way, the power consumption value of the houses can be set to a specific power

value, or to a specific percentage of the original value.

• HouseholdSim simulator. Initially, data was sent from the attack simulator to the orig-

inal HouseHoldSim but was never received, which was a problem. After investigating

why this data was not received, it was concluded that the simulator was prepared to

send data to other simulators but not to receive it, as this was not necessary. For this

reason, this simulator had to be configured in order to be able to receive data from

other simulators.

Therefore, the configurations that have been made to this simulator include sending

data to the attack simulator and the possibility of receiving data in the event that an

attack takes place. The data that is received, in the format explained above, replaces

the original power consumption values generated by the simulator itself.

Mosaik
Simulators

2.- Send Generated Values

4.- Send Modified Values

Mosaik

HouseHoldSim
1.- Values Generation

AttackSim
3.- Value Modification

5.- Send Attacked Data

Figure 4.2: Attack Implementation

In Fig. 4.2, the interaction of the new implemented attack simulator with the other

simulators is shown. As can be seen, first, HouseHoldSim generates the power consumption

45

CHAPTER 4. ARCHITECTURE

values of the houses. In case of an attack occurs, this simulator will send the data to

the attack simulator which will modify these data depending on the attack chosen for its

simulation. Once the values have been modified, they are sent back to HouseholdSim,

which is in charge of sending them to the rest of the simulators of Mosaik. In addition, this

diagram shows the reason why HouseHoldSim had to be configured to receive data, as well

as the implementation of the attack simulator that receives and sends data.

Using this Multi-Agent System, different datasets will be generated: one dataset without

attacks, that is to say, a normal behaviour of the grid, and other datasets where different

attacks have been simulated. This will allow us to train and test the neural network. Normal

data will be necessary to train the network, because, in this way, it will learn the normal

behaviour of the smart grid. Therefore, when feeding the neural network with the dataset

with attacks, it will be able to detect them. This process is explained in detail in Sect. 4.1.3.

Mosaik generates an HDF5 database with all the information of the simulation. For that

reason, the h5py library [13] is used, which is a python package that provides an interface

to the HDF5 binary data format. Each field of the database has 44640 values. These 44640

values are the result of generating data every minute for a month (60 minutes * 24 hours *

31 days).

In addition, as explained in Sect. 3.2.1, Mosaik generates different values of each compo-

nent of the grid: (i) Transformer and nodes of the grid, active and reactive power values and

their potential difference (P, Q, Va, Vl and Vm). (ii) Branches, active and reactive power

values (P from, P to and Q from). (iii) Photovoltaic panels, power generation values(P).

(iv) Households, power consumption values (P out).

All these data are related and influence each other. Among all these data, to detect

attacks has been chosen to study the evolution of the power consumption values of the

houses, which are the values that are modified by the attack. These values change every 15

minutes, but they are stored in the HDF5 database every minute. Thus, the same value is

stored 15 times and, therefore, the data has to be cleaned to remove all those unnecessary

values. Furthermore, in order to feed the autoencoder, some preprocessing has to be done

to the data so that they have an adequate format.

46

4.1. ARCHITECTURE

4.1.2 Data Preprocessing Module

This module is in charge of preprocessing the data generated by the ABMS module, ex-

plained in Sect. 4.1.1, so that they are in a suitable format to introduce them in the autoen-

coder. This process is divided into three different steps, which are data cleaning, feature

generation, and normalization.

1. Data cleaning. First, the data has to be cleaned in order to eliminate the values that

are not necessary. As explained before in Sect. 4.1.1, Mosaik model works with a

minute time step, but the residual load profiles of HouseHoldSim have a resolution of

15 minutes. However, this is not a problem for HouseHoldSim because it repeats the

same value 15 times until the power consumption value changes. This results in the

same value stored 15 times, so the purpose of this step is to clean all those unnecessary

repeated values.

2. Feature generation. Once the data has been cleaned, it has to be reorganized and

also new features have to be generated in order to help the autoencoder to learn the

existing relations between the data.

The reorganization consists of creating an overlapping sliding window [4] with the

power consumption values. The main advantage of using an overlapping sliding win-

dow versus a non-overlapping one is that, when it comes to detecting an attack

(anomaly), it will be detected earlier. In a non-overlapping window, the anomaly

can be identified only when the time is greater or equal to the time length of the win-

dow, whereas in an overlapping window this problem does not exist and the attack

could be detected every time step (15 minutes). A representation of the mentioned

overlapping sliding window is shown in Fig. 4.3.

Furthermore, after reorganizing the data, new features are generated to help the

anomaly detection process. These features are explained in detail in Table 4.1. In

addition, the temporal contextual features (day, hour and minute) are created because

power consumption depends on temporal seasonality [3]. Whereas the other features

provide more necessary information about the sliding window.

3. Normalization. All the features of the dataset have different scales so, in order to

all of them have the same weight, they have to be normalized. For that purpose,

the MinMaxScaler() function of the scikitlearn library has been used. This function,

showed in Equation 4.1, scales and translates each feature in a range between zero

and one.

47

CHAPTER 4. ARCHITECTURE

Figure 4.3: Overlapping Sliding Window

xscaled =
xi −min(x))

max(x)−min(x))
(4.1)

In addition, scaling the data between 0 and 1 allowed us to use activation functions

like the hyperbolic tangent (tanh) and the sigmoid function, in order to try more

methods to optimize the neural network model. Furthermore, it makes the training

faster.

4. Labelling. This step will only be executed when training and verifying the perfor-

mance of the neural network. This is because to calculate the F-Score it is necessary

to compare the predicted values of the classification in attacks or normal behaviour

with the label that that indicates whether or not such attack has actually occurred.

Therefore, in this step, a new column will be added to the dataframes created pre-

viously in which it will be indicated with a 0 if it is normal behaviour or with a 1 if

there has been an attack.

When performing the simulation with Mosaik, the parameters that indicate when the

attack starts and its duration are established by the user. Therefore, this information

will be used to know which labels have to be assigned to each data entry. This

dataframe column will not be used during training since for the operation of the

autoencoder is not necessary. It will be only used to calculate the precision, recall, and

F-Score of the neural network, that is to say, to evaluate its performance. Therefore,

the final user of the system, once the neural network is trained, does not have to

execute this step of the preprocessing.

48

4.1. ARCHITECTURE

Feature Description

Day Current day of the first window value

Hour Current hour of the first window value

Minute Current minute of the first window value

Pn Power consumption window values

x̄ Mean of the window values

s Standard deviation of the window values

x̄i - x̄i−1 Difference between the mean of the window values and the mean of the

previous window values

x̄i - x̄i+1 Difference between the mean of the window values and the mean of the next

window values

Pn - P1 Difference between the last and first value of the window

Q1 First quartile of the window values

Q2 Median of the window values

Q3 Third quartile of the window values

IQR Interquartile range of the window values

Table 4.1: Generated Features

Once these steps have been executed and the data has been preprocessed, a Pandas

DataFrame will be generated with all the data and features, becoming the input of the

autoencoder. These DataFrames will be stored in a pickle (.pkl file) in order to preprocess

the data only once and to be able to load them faster.

49

CHAPTER 4. ARCHITECTURE

4.1.3 Deep Autoencoder

Regarding to [6], autoencoders are a technique used to estimate the state of a smart grid.

This technique is a type of unsupervised learning, which does not require labeled training

datasets. In addition, the operation of an autoencoder is based on the assumption that

data can be reduced to a lower dimensional subspace. In that subspace, normal cases and

anomalies seem very different. In this way, using autoencoders and applying dimension

reduction techniques, it will be possible to detect anomalies [40].

An autoencoder learns from reducing or increasing the dimension of its input data in

order to try to reconstruct that data. In this process, the hidden layers are in charge of

prioritizing the properties that have more weight when reconstructing the output [43].

Depending on whether the hidden layers have more or fewer dimensions than the input

data, the autoencoder will have different properties. On the one hand, if they have fewer

dimensions than the input, the autoencoder will detect the most outstanding properties of

the data. On the other hand, if they have more dimensions than the input, the autoencoder

will be robust against noise or missing inputs. Moreover, autoencoders are not designed to

perfectly reconstruct the input because in this way patterns could not be detected in the

data.

An autoencoder consists of two parts: an encoder that maps the original input to a

hidden layer with an encoder function and a decoder that produces a reconstruction. The

representation of an autoencoder, where its different parts are identified, is shown in Fig. 4.4.

In order to implement the autoencoder, Keras has been used, which is a Python library.

It is a high-level neural network API capable of running on top of TensorFlow, explained

in Sect. 3.3.3.

The Python code implemented in order to create the autoencoder model, using Keras,

is shown in Lst. 4.4. The input dimension will be 20, which is the total number of features

explained in Table 4.1, and in the hidden layer, the dimension is going to be reduced to 8.

Finally, in the output layer, it will be reconstructed the input so, its dimension is the same

as the input, which is 20.

50

4.1. ARCHITECTURE

Output LayerHidden LayerInput Layer

Encode Decode

Figure 4.4: Autoencoder

Listing 4.4: Model Creation

def create_model(time_window_size, metric):

model = Sequential()

model.add(Conv1D(filters=8, kernel_size=5, padding=’same’,

activation=’tanh’, input_shape=(time_window_size, 1)))

model.add(GlobalMaxPool1D())

model.add(Dense(units=time_window_size, activation=’tanh’))

model.compile(optimizer=’adam’, loss=’mean_squared_error’, metrics=[

metric])

return model

The hidden layer is defined using the Conv1D Keras layer. This layer creates a con-

volution kernel that is convolved with the layer input over a single spatial (or temporal)

dimension to produce a tensor of outputs [27]. The input dimension is defined in the in-

put shape argument, which is set to time window size that is the dimension of the input

data.

In addition, the output layer is defined using the Dense Keras layer, which is a regular

51

CHAPTER 4. ARCHITECTURE

densely-connected layer. Its dimension is determined in the units argument, which is set to

time window size that is the input dimension.

The objective of the autoencoder is to reconstruct the input in the output after reducing

its dimensions and for that purpose, the metric that is going to be minimized is the Mean

Squared Error function. Being xi the input dataset and x̂i the output, the function to

minimize is shown in Equation 4.2.

MSE =
1

n

n∑
i=0

(x̂i − xi)2 (4.2)

Finally, the optimizer selected to train the neural network is the adam optimizer [30].

Adam is an algorithm for first-order gradient-based optimization stochastic objective func-

tions, based on adaptive estimates of lower-order moments. It is computationally efficient,

has little memory requirements and it is invariant to diagonal re-scaling of the gradients. In

addition, the selected activation function is the hyperbolic tangent, shown in Fig. 4.5, which

advantage is that negative inputs will result as strongly negative and zero inputs will result

near zero. Furthermore, being the parameters b the bias, w the weight and ϕ the activation

function, the mathematical expression is shown in Equation 4.3.

The advantage is that the negative inputs will be mapped strongly negative and the

zero inputs will be mapped near zero.

Figure 4.5: Hyperbolic tangent

yk = ϕ(
m∑
j=1

wkjxj + bk) (4.3)

52

4.1. ARCHITECTURE

Therefore, the aim of the autoencoder is to reproduce the input, after reducing its

dimension, in the output with a certain error. That error, the reconstruction error, will be

calculated and used in the Anomaly Detection Module, explained in Sect. 4.1.4, in order to

classify the data between normal or attacked.

For that purpose, the neural network has to be trained with normal data (which has

not attacks) and then, tested with attack data. That is the reason why the Multi-Agent

System, introduced in Sect. 4.1.1, generates the different explained datasets. Therefore, to

train the autoencoder, the following steps have been followed:

• First, the model has to be created. For this purpose, the function explained in Lst. 4.4

is used.

• Once the model has been created, the Keras fit() function is used to train it. This

function has the following parameters: (i) x and y are the input datasets, (ii) batch size

number of samples per gradient update. The chosen value is 32 which is the default

value assigned by Keras, (iii) epochs, number of iterations over the entire dataset

during training. The chosen value is 100, (iv) verbose, it indicates how the user wants

to see the progress of the training process for each epoch. The chosen value is 1, which

shows a progress bar, (v) callbacks, the callback used is the ModelCheckpoint of Keras

that saves the model after every epoch. In this way, if the training is interrupted,

the achieved results are saved into a file in order to recover the results that had been

already obtained.

Listing 4.5: Model Training

self.model.fit(x=input_timeseries_dataset, y=dataset,

batch_size=batch_size, epochs=epochs,

verbose=self.VERBOSE,

validation_split=validation_split,

callbacks=[checkpoint])

• After training the model, the next step is saving it into a file, as well as the different

weights calculated as a result of the training. Therefore, when the model is going

to be used to make predictions, it will have to be loaded, as well as the calculated

weights, from the generated files. In this way, the model only has to be trained once

since the training is one of the most time-consuming tasks and thus, a great deal of

time will be saved.

53

CHAPTER 4. ARCHITECTURE

Listing 4.6: Saving Model

open(architecture_file_path, ’w’).write(self.model.to_json())

self.model.save_weights(weight_file_path)

Once the training process is done, the autoencoder will have learned the correlations

between the different features of the normal dataset, that is to say, it will have learned the

normal behaviour of the grid. The predict function, showed in Lst. 4.7, is used to test the

autoencoder and generate the output. This function uses the predict function of Keras,

which generate the output predictions for the input samples and it makes the computation

in batches. The parameters used are the ones set by default, which the most important

one is the batch size with a value of 32. In addition, before introducing the data in the

autoencoder, it is necessary to resize them so that they have the appropriate dimensions.

Listing 4.7: Predict function

def predict(self, input_data):

input_dataset = np.expand_dims(input_data, axis=2)

predicted_dataset = self.model.predict(x=input_dataset)

return predicted_dataset

Therefore, if the autoencoder is tested with attack data (anomalous data), it will not

be able to perform the reconstruction of the data correctly since it has learned a normal

behaviour of the grid. This means that the reconstruction error of anomalous data will be

higher than the one of normal data. Thus, the Anomaly Detection Module will process

the data obtained from the autoencoder in order to calculate the reconstruction error and

therefore, be able to infer whether there has been an attack or not. This processing will be

mainly the comparison between the reconstruction error calculated with normal data and

with anomalous data.

54

4.1. ARCHITECTURE

4.1.4 Anomaly Detection Module

This module is in charge of classifying the data between normal or anomalous from the

data obtained from the autoencoder. Therefore, in order to detect attacks, the autoencoder

reconstruction error will be calculated and then analyzed.

As explained in Sect. 4.1.3, the autoencoder learns the existing correlations between the

different features of the data. Thus, the autoencoder has to be trained with normal data,

so that it learns the normal behaviour of the grid. Once trained, it has to be tested. This

test consists of two parts, first, it is tested using normal data and then with attack data,

calculating the reconstruction error in every test. That reconstruction error, when tested

with attack data, will be much higher than the one obtained when tested with normal data.

For this reason, it is important to calculate the reconstruction error of normal data because,

in this way, the different reconstruction errors can be compared. This is because the neural

network does not know how to reconstruct an anomalous behaviour since it has learned the

normal behaviour of the grid during training.

Furthermore, the absolute value of the error is not as interesting as its relation with the

error in a known normal situation. For this reason, the error is normalized and, in this way,

its comparison with the error obtained in a normal situation is easier. This normalization

consists in dividing the actual error obtained, by the error computed during training, that

is to say, the error computed with normal data. This error normalization is shown in

Equation 4.4.

enorm = etest
etrain

(4.4)

Regarding to [8], in order to classify the data between attack or normal behaviour,

the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE) are used.

Therefore, the reconstruction error previously discussed will be the MAE and the RSME.

In Equation 4.5 is shown the formula for calculating the MAE and in Equation 4.6 the one

used for RSME.

MAE =
1

n

n∑
i=1

|(xi − x̂i)| (4.5)

RMSE =

√√√√ 1

n

n∑
i=1

(x̂i − xi)2 (4.6)

55

CHAPTER 4. ARCHITECTURE

Both the MAE and the RMSE are calculated for the training and test datasets. In

addition, in order to compare them in an easier way, they are normalized as it is explained

before.

Therefore, the normalized training reconstruction error will be one, as it is divided by

itself. Furthermore, the normalized reconstruction error when testing the neural network

with normal data (without attacks) will be a value very close to one, as the network has

learned how the grid behaves in a normal situation. However, the normalized error when

testing with attacked data will be much higher than one, because the network does not

know how to reconstruct that data. Table 4.2 shows a summary of the different values that

the normalization error can take.

Normal Attack

Training 1 -

Test ∼1 >>1

Table 4.2: Normalized Error

This calculation of the reconstruction error and its normalization allow us to know in

which houses there has been an attack in case it is calculated for the whole month of data.

The data correspond to the power consumption values of the houses during a month as

this is what has been generated using Mosaik. For this purpose, a threshold has to be

calculated in order to be able to divide between normal houses and attacked houses. For

the calculation of this threshold, an initial value greater that one is set, since, as explained

before, the error has to be much greater than one. This threshold will be increased, testing

different values, to finally choose the one that offers the best result. Therefore, the data

has to be labelled, as explained before in Sect. 4.1.2, in order to calculate the optimal value

of the threshold and thus, be able to know which houses have been attacked. If the data

were not labelled, the threshold could not be calculated because there would be no way of

knowing whether the autoencoder has calculated the error correctly. Once this threshold is

calculated, the data no longer needs to be labelled.

The results of a simulation in which four houses suffered an attack are shown in Fig. 4.6.

The results show that houses number 9, 20, 22 and 27 have a much bigger error than the

rest of them, so this means that they are the four attacked houses. Comparing these results

with the labels that indicate whether there has been an attack, it can be seen that the

classification has been done correctly.

56

4.1. ARCHITECTURE

Figure 4.6: Reconstruction Error

However, in order to know the exact moment in which the attack takes place, different

operations have been applied to the error. In this way, it can be processed in order to make

inferences about it. For this purpose, instead of calculating the reconstruction error for the

entire simulation course, as it was done to know in which house had occurred an attack,

it is calculated for each entry (row) of the DataFrame that contains the different features,

explained in Sect. 4.1.2.

Therefore, once the reconstruction error has been calculated for each DataFrame entry,

it has to be processed in three stages: calculation of an accumulator window, calculation of

the optimal threshold and filtering of the results.

1. Accumulator window. First, a window is created with the values of the recon-

struction error. This window consists of modifying each value by the sum of all the

components of the window. An example of how the values are modified by the window

is represented in Table 4.3. The original values of the table are random values as it

is an example and a value of 3 for the window is suppose. Therefore, the modified

values will be the sum of each original value with the two previous ones.

57

CHAPTER 4. ARCHITECTURE

Original 0.8 1.1 0.85 3.4 4.5 3.8 1.2 1.4 1.1

Modified 0.8 1.9 2.75 5.35 8.75 9.15 9.5 6.4 3.7

Table 4.3: Window error

This accumulator window is useful to improve the detection of attacks. This is because

the window takes into account not only each value individually but also those near it.

The smart grid data provided by Mosaik is taken every 15 minutes, and it is normal

for an attack to have a longer duration. For this reason, by taking into account the

influence of the values that are close to each value, the detection of attacks could be

improved.

2. Getting the optimal threshold. Using the new error values obtained from the

previous step in which an accumulator window is applied to the reconstruction error, it

is necessary to calculate the optimal threshold that classifies the data between normal

or anomalous. As explained before, in order to calculate the optimal threshold, first

it is set to a value close to one, and then, by means of small increments, the different

results are evaluated. In this way, it can be found out which value provides the best

results. The obtained optimal threshold will allow us to classify the data in the same

way that it was done in Fig. 5.6.

Therefore, this error processing step classifies the data between normal and attacked.

But when analyzing the results obtained, it was concluded that this classification could

still be improved. This is due to the fact that in certain attacks, the classification is

not completely precise and that is why the next step, in which the results are filtered,

is necessary.

3. Filter the results. After calculating the new error values when applying the accumu-

lator window and calculating also the optimal threshold, the classification performed

can be improved by analyzing the results.

In an example case, where an attack is detected at 9 a.m., 10 a.m. and 11 a.m.,

but the values between them have not been detected as attacks, the attack could be

considered to have lasted the entire time slot between 9 a.m. and 11 o’clock in the

morning. Therefore, in order to improve the accuracy of attack detection, if in a time

slot (e.g. 10 hours) the 30% of the values have been detected as attacks, we can infer

that the attack has lasted all that time slot.

In addition, it has been concluded that this course of action is appropriate since supply

disruption attacks or, specifically, False Data Injection attacks are not usually carried

58

4.1. ARCHITECTURE

out intermittently or do not have a very short duration. These attacks usually last a

long time because the longer the attack lasts, the more money the attacker is going

to save.

Moreover, once the results were filtered the classification improved. It was thought

that this step could affect the performance of that classification since values detected

as normal were being changed by attacks. However, the classification of non-attacked

points did not get worse and therefore, the conclusion reached when analyzing the

results was satisfactory.

Furthermore, an additional modification to those mentioned above was made so that

higher-value errors were given more importance than lower-value errors. This modification

consisted in multiplying the error by a function, shown in Fig. 4.7, to then calculate the

accumulator window. In this way, through the multiplication of the value by the function,

the influence that values have on those of their environment would be increased. This is

because a reconstruction error close to the threshold is not the same as one with a much

higher value due to, the larger the error, the easier it will be to detect the error. Therefore,

when calculating the accumulator window, multiplying the data by this function should

improve the results, since it takes into account the environment in which each value is

located.

Figure 4.7: Error Modification

59

CHAPTER 4. ARCHITECTURE

In a hypothetical case, like the one represented in the figure, where the optimal threshold

was 5, the values below that threshold which are considered normal would not be modified,

that is to say, they would be multiplied by one. Furthermore, values above the threshold,

which are considered attacks, would be multiplied by the corresponding factor m. However,

in view of the results, this modification of the error was dismissed as it did not produce any

improvement in the classification accuracy.

In conclusion, in the anomaly detection module, the results obtained from the autoen-

coder are treated in order to classify between normal and attacked data. First, the recon-

struction error is calculated using the output and the input of the autoencoder. Then, with

the obtained reconstruction error, an accumulator window is calculated to take into account

the influence of the values close to each value. Once the accumulator window is obtained,

the optimal threshold is calculated which allows us to carry out the classification. Finally,

the results of the classification are filtered in order to improve it after having analyzed the

previous results. In addition, other error transformations were tested which were discarded

as they did not have any positive effect on the results.

60

CHAPTER5
Case study

In this chapter, the evaluation of the detection of different attacks by the system developed

in this project is presented.

61

CHAPTER 5. CASE STUDY

5.1 Topology Attack

The attack chosen for its implementation is the disconnection of a network element, specif-

ically a house. This is a type of disruption attack known as a Topology Attack [29].

On one hand, the possible origins of these attacks are the following:

• Act of vandalism. This attack could be originated as an act of vandalism in order to

harm a specific consumer, cutting off its electricity supply, or the electric company

damaging it economically or its reputation.

• False Data Injection Attack. Another possible origin of this attack could be the

modification of the value of power consumed by the user, which is a False Data

Injection attack. This could be done with the aim of defrauding economically the

electrical company [15].

On the other hand, these attacks could have different consequences:

• Blackout in the attacked house. This would harm its inhabitants and the reputation

of the company.

• Destabilization of the network. If this attack was made on a large number of smart

meters at the same time, it could cause a destabilization of the network because it

could bias the power system state estimation [31].

• Damage of network elements. They could cause the possibility of ending up with

several elements of the grid damaged, which will result in equipment having to be

reset or even replaced by a new one [15].

• Mislead the control center. In the event that these attacks are successful, they could

mislead the control center to take erroneous actions, or at least, make the control

center distrusts the state estimation.

A simplified smart grid scenario is represented in Fig. 5.1. In this scenario, the electrical

company manages the smart meters at the house of the customers through the AMI head-

end. This head-end is in charge of controlling the meters via the Data Concentrator Unit

(DCU). In addition, the DCU concentrates all the traffic of a Neighborhood Area Network

(NAN). Moreover, the Outage Management System (OMS) allows the electric company to

analyze and look for user reports [55].

62

5.1. TOPOLOGY ATTACK

DCU Control
AMI Head End

Customers

Outage report

Outage Management
System

Electric
Company

Attacker

Neighborhood Area
Network

Figure 5.1: Simplified scenario

Furthermore, a graphical representation of the whole scenario chosen for study, which is a

residential area, is shown in Fig.5.2. This area is composed of different elements: households,

photovoltaic panels, PQ buses, and the power grid’s transformer node. Households consume

energy, whereas the photovoltaic panels associated with them are generators. Furthermore,

the power grid’s transformer node supplies energy to all the residential area and the PQ

buses (P and Q are the active and reactive power), also called Load Buses, balance the

active and reactive power of the grid.

Figure 5.2: Attack Scenario [47]

63

CHAPTER 5. CASE STUDY

This representation is the one used by Mosaik, which is the ABMS tool used for simu-

lating smart grids, explained in Sect. 3.2.1. The different elements are represented by nodes

of different colors. The blue nodes are houses, the green ones are photovoltaic panels, the

grey ones are PQ Buses and the black one is the power grid’s transformer node.

Moreover, the attackers will be associated to the houses that will be disconnected and

it would depend on if it is an individual attack, that affects only one house or a large-scale

attack that affects to a large number of them.

The scenario to be studied is a residential area. This area has 38 houses, 20 of which

have solar panels. The number of houses attacked will vary depending on the attack being

studied.

Therefore, Mosaik is used with the new attack simulator implemented to generate dif-

ferent datasets. A dataset with a normal behavior of the grid is necessary, as explained

before, in order to train the autoencoder. In addition, several datasets with different False

Data Injection attacks are also generated in order to test the system. These datasets store

the power consumption values of the 38 houses over the course of the simulation, which is

one month (31 days).

The power consumption values of a house during a month, generated by Mosaik, are

represented in Fig. 5.3. These values represent a normal behavior of the grid, that is to say,

the house has not suffered any attack.

Figure 5.3: Power consumption values of a house

64

5.1. TOPOLOGY ATTACK

In the following subsections, the process of knowing in which house there has been an

attack in all the month that the simulation lasts is first explained. Then, the process to

know in which moment the attack has taken place is also explained.

5.1.1 Detection of which house has suffered an attack

For this case study, the attack that has been decided to study is the one depicted in Fig. 5.4.

This attack consists in that at a certain moment of the simulation, the value of the consumed

power becomes 30% of the real power consumption value. Therefore, it is a False Data

Injection attack. Specifically, in this case, 4 of the 38 houses of the scenario has suffered an

attack.

Figure 5.4: Power consumption values of an attacked house

Once the different datasets (normal and attacked) have been generated with Mosaik,

they have to be preprocessed. This preprocessing consists of cleaning the unnecessary data,

generating features and finally normalizing the data. In Fig. 5.5, the DataFrame obtained

is represented. Furthermore, a DataFrame is generated for each house and, in this way, the

data will be organized for saving time when analyzing them.

Concretely, a .pkl file will be generated with the data of all the houses in a normal

scenario and then, a .pkl file for each house in a scenario in which an attack has taken

place. In this way, we will facilitate the training process, having one single file as the input

of the autoencoder. Furthermore, when detecting an anomaly, it will be better for the

65

CHAPTER 5. CASE STUDY

Figure 5.5: Features

autoencoder having each house in separated files.

After the DataFrames have been created, they are stored in these .pkl files. In this

way, a lot of time is saved because when doing different tests, the DataFrames are only

generated once (which takes a lot of time) and then loaded directly from the file (which

does not consume much time).

Once all the dataframes have been generated, the autoencoder is trained with the one

that contains a normal grid behavior. After training, which takes a bit of time, the autoen-

coder is fed with the DataFrames that contains the attacks. Therefore, the reconstruction

errors (RMSE) of each DataFrame is calculated and normalized regarding the normal be-

havior one.

In Fig. 5.6, the normalized reconstruction error of each house that composes the scenario

and, in which four of them have suffered an attack, is represented.

Figure 5.6: Reconstruction Error

66

5.1. TOPOLOGY ATTACK

As can be seen, the houses 9, 20, 22 and 27 have a much bigger error than the rest

of them, which means that they are the four attacked houses. After the simulation was

carried out, it was analyzed to find out which houses had suffered an attack and they were

the ones detected by the autoencoder. In this way, by using a threshold, it is possible to

know which houses have suffered an attack. However, it is not possible to know when the

attack occurred because the reconstruction error is calculated throughout the whole month

that the simulation lasts.

In order to detect when the attack has taken place, it is necessary to calculate the

reconstruction error for each DataFrame entry and not for the entire DataFrame as has

been done in this case study. This process is explained in depth in the following section,

Sect. 5.1.2.

The result obtained for other False Data Injection Attacks, such as for example setting

the consumption to 0, is similar to the one presented. That is, the reconstruction error

obtained for houses that suffer attacks is much greater than those that do not suffer them

and therefore, they can be identified through a threshold.

Therefore, it can be concluded that the autoencoder has a good performance for this

purpose since it detects without problems the houses that have suffered an attack. In

addition, other attacks were tested, such as the reduction of power consumption values to

0%, 10% and 20%, in which the results were also satisfactory.

5.1.2 Detection of when the attack has occurred

In this subsection, the case study that consists of detecting when the attack has occurred

is presented. First, in Sect. 5.1.2.1 the False Data Injection attack that sets the power

consumption value to 0 is presented. Then, Sect. 5.1.2.2, Sect. 5.1.2.3 and Sect. 5.1.2.4,

explain the attacks that sets the power consumption value to 30%, 10% and 20% of the

original values, respectively.

The data generation process and the pre-processing of the data is the same as explained

above in Sect. 5.1.1. First, Mosaik generates the different datasets. Then, they are pre-

processed in order to generate the DataFrames. The main difference regarding what is

explained in Sect. 5.1.1, is that when calculating the reconstruction error, it is not calcu-

lated for the whole month of the simulation, but for each DataFrame entry. In this way, it

can be detected if in a certain moment there has been an attack.

67

CHAPTER 5. CASE STUDY

5.1.2.1 Attack 0%

In this section, an attack that consists of the total disconnection of a house since the

power consumption values become zero is going to be studied. Nevertheless, this attack is

theoretical, it does not usually occur in real life as there would always be a residue of noise

in the signal.

In Fig. 5.7, the power consumption values of an attacked house during the whole month

of the simulation are represented. As can be seen, at a certain moment the values of the

signal become zero.

Figure 5.7: Attack - 0

Once the autoencoder is trained with normal data, it is tested. For that purpose, it

is fed with the DataFrames that have the attacked data. With the results obtained, the

reconstruction error (RMSE) is calculated and normalized regarding to the one obtained

with normal data. In Fig. 5.8, it is represented the error obtained from one of the 38 houses

that compose the scenario.

68

5.1. TOPOLOGY ATTACK

Figure 5.8: Reconstruction Error - 0

As it can be seen, there is no problem in identifying attacks because the error is much

higher than the one obtained in a normal situation. Therefore, by calculating a threshold

it will be possible to identify which DataFrame entries are considered attacks. In this way,

it can be known when the attack occurs.

Precision Recall F1-score Support

0 1.00 0.99 0.99 66082

1 0.98 1.00 0.99 43771

micro avg 0.99 0.99 0.99 109853

macro avg 0.99 0.99 0.99 109853

weighted avg 0.99 0.99 0.99 109853

Table 5.1: Classification Report - 0

Once the classification is done, the classification report is calculated. Table 5.1 shows

the classification report obtained. As can be seen, the classification is almost perfect, with

an F1-score of 0.99, which was the expected result after seeing the representation of the

reconstruction error in Fig. 5.8.

69

CHAPTER 5. CASE STUDY

5.1.2.2 Attack 30%

In this section, an attack that consists of a False Data Injection attack that sets the power

consumption values to a 30% of the original values is studied.

Figure 5.9: Attack - 30%

In Fig. 5.9, the power consumption values of a house that has suffered this attack are

represented. As can be seen, in a certain moment of the simulation the values follow the

same trend as the original ones but with a value of 30% of them and after a period of time

the attack ends and the values are the original ones again.

Following the process explained before, the autoencoder is fed with the attacked data and

with the results obtained the reconstruction error (RMSE) is calculated. In Fig. 5.10, the

obtained reconstruction error is presented. If the graph is analyzed from a visual perspective,

it can be inferred that there has been an attack on a time frame of the simulation. However,

the main problem is that using a threshold, all the attacked points will not be detected as

attacks. This is due to the fact that, observing Fig. 5.10, there are many values in the

attacked time frame that are very similar to the values when no attack has occurred. These

values and the trend that they follow are very similar to those that exist during a normal

behaviour of the grid.

Therefore, in order to perform the classification between normal or attacked data, the

calculation of a threshold is not sufficient to detect which values are considered attacks.

70

5.1. TOPOLOGY ATTACK

Figure 5.10: Reconstruction Error - 30%

For this reason, certain transformations have to be applied to the reconstruction error

following the methodology explained in Sect. 4.1.4. These transformations are the following:

calculation of an accumulator window, calculation of the optimal threshold, and the filtering

of the results.

First, the accumulator window has to be calculated. This window consists in that each

value of the reconstruction error is modified by the sum of the previous values that are

inside that window. In this way, each value and those near it are taken into account. This

improves the detection of the attack since an attack does not usually last 15 minutes (which

is the time between each value generated by Mosaik) but usually have a longer duration.

Therefore, in this way, each value is taken into account and the influence that the values of

its environment have on it, too.

Once the accumulator window is determined, the optimal threshold that allows us to

perform the classification has to be calculated. For this purpose, a value greater than

one is set for it and it is increased gradually. Each time the threshold is increased, the

result obtained is observed, so that, after testing the different threshold values, the one

that provides the best result can be chosen. This optimal threshold calculation allows us

to perform the classification between normal data and attacked data.

The results obtained were analyzed and it was observed that there was still room for

71

CHAPTER 5. CASE STUDY

improvement. Therefore, it was concluded that if an attack was detected at 10 a.m., 11

a.m. and 12 a.m. but not in the intermediate values, it could be inferred that the attack

lasted for that entire time slot. In addition, false data injection attacks do not usually last

15 minutes, as these are mainly carried out by attackers that want to reduce the amount of

the electricity bill. Moreover, these attacks are usually of long duration. Consequently, the

results were transformed regarding to the analysis carried out.

Precision Recall F1-score Support

0 0.89 0.98 0.94 90174

1 0.89 0.53 0.66 22648

micro avg 0.89 0.89 0.89 112822

macro avg 0.89 0.76 0.80 112822

weighted avg 0.89 0.89 0.88 112822

Table 5.2: Classification Report - 30%

Once the explained transformations are carried out, the classification report is calcu-

lated. It is represented in Table 5.2. If the results are analyzed, it can be inferred that they

are good results. The worst result obtained is the recall of the attacks, but this is due to

what was explained before. Looking at the graph of the reconstruction error obtained in

Fig. 5.10, almost 80% of the values are very close to one, which makes very difficult to make

the classification. Nevertheless, thanks to the transformations that have been made, it has

been possible to improve the results. However, the value of the precision is quite high, and

therefore, a good value of F1-Score is obtained. In addition, if the attack instead of having

a certain duration was until the end of the simulation as in the previous section, the results

are very similar.

72

5.1. TOPOLOGY ATTACK

5.1.2.3 Attack 10%

In this section, the attack that consists of setting the power consumption values to 10% of

the original ones is studied.

In Fig. 5.11, the power consumption values of a house that has suffered this attack are

represented. As it can be observed, in a certain moment of the simulation the values become

the 10% of the original values.

Figure 5.11: Attack - 10%

Following the data processing explained above, the data is introduced into the autoen-

coder and with the results that are obtained, the reconstruction error is calculated. This

reconstruction error is represented in Fig. 5.12. As can be seen, now the attack is easier

to detect because the number of points with an error higher than one is greater than in

the previous case. Consequently, it can be deduced that the result will be better than the

previous case.

Therefore, if the reconstruction error is treated and the transformations explained above

are made, the classification report can be obtained. This classification report is represented

in Table. 5.3. The results obtained from the classification are almost perfect and very similar

to those obtained in Sect. 5.1.2.1, where the attack studied was total the disconnection of

the houses. Both the precision and recall values are very high, which means that the F-score

value is also high.

73

CHAPTER 5. CASE STUDY

Figure 5.12: Reconstruction Error - 10%

Precision Recall F1-score Support

0 0.97 0.98 0.98 67868

1 0.97 0.96 0.96 44954

micro avg 0.97 0.97 0.97 112822

macro avg 0.97 0.97 0.97 112822

weighted avg 0.97 0.97 0.97 112822

Table 5.3: Classification Report 10%

74

5.1. TOPOLOGY ATTACK

5.1.2.4 Attack 20%

In this section, the attack that consists of setting the power consumption values to 20% of

the original ones is studied.

Figure 5.13: Attack - 20%

In Fig. 5.13 are represented the power consumption values of a house that has suffered

this attack. As it can be observed, in a certain moment of the simulation the values become

the 20% of the original values.

After preparing the data and feeding it into the autoencoder, the reconstruction error,

represented in Fig.5.14, is calculated and the necessary transformations are carried out. In

this way, the classification report represented in Table 5.4 is obtained.

The results are better than those obtained in the attack of the 30% despite the fact

that the total F1-score is lower. This is because the number of attack entries is higher as

the duration of the attack increases. But the F1-score obtained for the attacks is higher.

In addition, the final values obtained from F1-score represent the good performance of the

autoencoder.

75

CHAPTER 5. CASE STUDY

Figure 5.14: Reconstruction Error - 20%

Precision Recall F1-score Support

0 0.80 0.98 0.88 67868

1 0.96 0.64 0.76 44954

micro avg 0.84 0.84 0.84 112822

macro avg 0.88 0.81 0.82 112822

weighted avg 0.86 0.84 0.84 112822

Table 5.4: Classification Report - 20%

76

5.2. ATTACK DETECTION USING ARIMA

5.2 Attack Detection using ARIMA

In this case study, the performance of ARIMA models, explained in Sect. 3.4.1, in detect-

ing attacks on smart grids is studied. Therefore, both the autoencoder and the anomaly

detection module, explained in Sect. 4.1, are replaced by the mathematical model ARIMA.

This module has not been included in the architecture of the main system as it has been

developed in order to compare its performance with the autoencoder.

The attack chosen for its study is the False Data Injection attack that reduces the power

consumption values to 30%, as it is represented in Fig. 5.4.

In order to apply the ARIMA model to the smart grid data, the DataFrames generated

with all the features, that have been explained in Sect. 4.1.2, are not necessary. Therefore,

the data used by the ARIMA model are only those that form the time series of power

consumption values.

Using ARIMA it is intended to make a prediction of the following values of power

consumed in the current instant so that when comparing them with the real values it can

be deduced if there has been an attack or not.

First, an attempt was made to make a prediction for all the values that compose the

following day (96 values), in order to compare that prediction with the actual power con-

sumption values. In this way, the error obtained in the prediction could be analyzed and

thus be able to infer if there has been an attack or not. However, when making the predic-

tion of a day, the values obtained were constant, that is to say, they converged to the mean

and therefore, it was decided to change the method of prediction.

Then, it was decided to predict only the next value of the time series. Once that

value was predicted, it was inserted into the training set in order to train the model again

and, in this way, be able to predict the next values of the time series recursively. The result

obtained was the same as when trying to predict an entire day, the values were constant and

converged to the average. This is because when the predict statsmodel function, represented

in Lst. 5.1, has start index and end index as parameters, it does the same as it has been just

explained. This function introduces the value that has just been predicted in the training

set in order to retrain the model and predict the next value.

Listing 5.1: ARIMA Model

forecast = model_fit.predict(start=start_index, end=end_index)

77

CHAPTER 5. CASE STUDY

Consequently, the method used to make the prediction had to be changed again. This

time instead of introducing in the training set the prediction that had just been made, the

real value of the time series was introduced. Once the actual value has been introduced

into the training set, the model is retrained in order to predict the following values. For

this purpose, the code that can be observed in Lst. 5.2 was used.

Listing 5.2: ARIMA Model

def arima_func(data,arima_order):

prepare training dataset

train_size = int(len(data) * 0.60)

train, test = data[0:train_size], data[train_size:]

history = [x for x in train]

make predictions

predictions = list()

for t in range(len(test)):

model = ARIMA(history, order=arima_order)

model_fit = model.fit(trend=’nc’, disp=0)

yhat = model_fit.forecast()[0]

print("Real", test[t], "predictions", yhat)

predictions.append(yhat)

history.append(test[t])

return test, predictions

In this code, the data is first divided into two sets: the training set and the test set.

Once the data is divided, the model is trained using the training set, and then the next

value is predicted. This prediction is then inserted into the training set and the model is

retrained to predict the next value of the test set. The for loop is used to iterate between

the different values that compose the test set and thus be able to predict them.

When creating the model, it is necessary to establish the (p,d,q) parameters of ARIMA.

In order to find the combination of these parameters that minimize the error between the

prediction and the real values, a grid search has been carried out. In other words, different

combinations of these parameters have been tested and the one that provides the lowest

reconstruction error has been chosen. In addition, the error chosen for its minimization

during the grid search was the RMSE.

The obtained values for parameters (p, d, q) as a result of the grid search are (5,1,1)

respectively. Therefore, this combination will be the arima-order used to make the predic-

tions.

78

5.2. ATTACK DETECTION USING ARIMA

First, the prediction of the power consumption values of a house that has not suffered

any attack, that is to say, during a normal behavior of the grid, was made. In Fig. 5.15, the

actual values as well as the predictions are represented. This graph allows us to compare the

obtained predicted results with the actual ones and, as can be seen, although the predictions

are not precise in the maximum power consumption values, they follow the trend of the real

values. Therefore, the accuracy of the prediction is quite good.

Figure 5.15: ARIMA predictions normal data

Once the behaviour of the model was analyzed in data without attacks, the model

was tested with attacked data. This attack, as explained before, is a False Data Injection

Attack, that sets the power consumption values to 30% of the original value. In Fig. 5.16,

it can be observed the obtained predicted results. This graph allows us to compare the

real data values with values of the predictions, and analyzing it allows us to draw different

conclusions. When it comes to detecting the attack, this prediction has a problem and it is

that the model ends up learning the behavior of the attack. This is because once a value

has been predicted, the corresponding actual value is inserted into the training set in order

to retrain the model. In this way, the following values can be predicted. However, when

the attack begins the predicted values deviate from the real values.

Therefore, in order to analyze the evolution of the reconstruction error obtained in the

prediction, its rolling mean was calculated. This allowed us to study the average error inside

a window. The chosen window is formed by 96 values since it is the number of values that

form a day. This moving average was calculated, assuming that the average of the error

while the attack was originated was going to be higher since the model had not learned the

behaviour of the attack yet.

79

CHAPTER 5. CASE STUDY

Figure 5.16: ARIMA predictions attacked data

In Fig. 5.17, the rolling mean of the error obtained in the predictions of a house in a

normal behavior can be observed. The values are in a range between 0 and 60.

Figure 5.17: Rolling mean error normal data

Whereas in Fig. 5.18, the rolling mean of the error obtained in the predictions of an

attacked house is represented. The attacked house is the same as the one represented in

Fig. 5.17 and as can be seen the initial values of the time series coincide until the moment

when the attack begins. However, at a certain moment, the rolling mean reaches values

close to 125, which is much higher than the maximum obtained when there was no attack.

80

5.2. ATTACK DETECTION USING ARIMA

Figure 5.18: Rolling mean error attacked data

By comparing Fig. 5.17 and Fig. 5.18, the attack can be easily detected. However, it

can only be detected the instant when the attack starts and this is because, as explained

above, the model ends up learning the behavior of the time series when there is an attack.

In addition, the rolling mean after the attack is lower, since the values of power consumed

are 30% of the original and as a consequence, the reconstruction error is lower.

Therefore, using ARIMA models, we obtain an alert generator. In order to do this, it

is necessary to calculate the rolling mean of the reconstruction error of a house without

attack in order to compare it with the one obtained in an attacked house. At the moment

the attack begins, the rolling mean will have a much higher value than the rest because the

model has not yet learned the behavior of the attack.

81

CHAPTER 5. CASE STUDY

5.3 Conclusions

As a conclusion of this section, the performance between the autoencoder and the ARIMA

model is compared.

On the one hand, the autoencoder allows us to know when an attack starts, as well as

its duration. Each point that forms the time series of the power consumed by the houses

can be classified between normal and anomalous behavior.

On the other hand, the ARIMA model has been implemented as an alert generator. It

allows us to know when there is a change in the trend of the data (an attack) but does not

allow us to classify all the points of the time series.

Therefore the autoencoder provides better performance because it allows us to classify

every power consumption value of the houses between normal or anomalous behaviour. In

addition, the autoencoder only has to be trained once, while the ARIMA model is trained

every time it is going to predict a new value. As a result, the ARIMA model is much slower

and consumes more computational resources.

82

CHAPTER6
Conclusions

In this chapter, the conclusions, the achieved goals, the problems encountered during the

development of this project and the future work are described.

83

CHAPTER 6. CONCLUSIONS

6.1 Conclusions

This master thesis presents the development of a system that allows detecting attacks in

smart grids automatically. For this purpose, deep learning techniques have been imple-

mented using Python libraries such as Keras and TensorFlow.

The developed system consists of four different modules: Multi-Agent System, Data

Preprocessing Module, Autoencoder, and Anomaly Detection Module. The Multi-Agent

System is responsible for generating the synthetic data of smart grids. In addition, it will

generate different datasets: ones with a normal behaviour of the grid and others where an

attack has taken place. Once the data is generated, they will be introduced in the Data

Preprocessing Module to carry out the necessary transformations in order to be able to feed

the autoencoder with them. In this module the data will be cleaned, features will be gen-

erated and finally, they will be normalized. The Autoencoder, with the features generated

in the previous module, creates a model that is in charge of reducing the dimensions of

the input data and then reconstruct them with a certain error. Lastly, this reconstruction

error will be used in the Anomaly Detection Module to classify the data between normal or

attacked.

The attack chosen for its study is a Topology Attack, specifically a False Data Injection

attack. This attack consists of modifying, through the smart meters, the value of the power

consumed by the user. Normally, this attack is carried out to economically defraud the

electric company.

The performance provided by the developed system has been measured in different ways:

• On the one hand, by calculating the reconstruction error for the entire month of data

available, it can be known if an attack has occurred, but not the time at which it

has started. This detection is perfect regardless of whether the attack sets the power

consumption values at 0, 10, 20 or 30% of actual consumption.

• On the other hand, in order to know if each value of power consumption is an attack or

not, the reconstruction error of the autoencoder is calculated in another way. Instead

of calculating it for the whole month of data, it is calculated for each dataframe

entry generated in the Data Preprocessing Module. In addition, after calculating the

reconstruction error, it is necessary to make certain transformations to be able to

classify with greater precision between normal or attacked data. The results obtained

have a higher F-score value for attacks of 0 and 10%, but in all cases, it is possible

84

6.2. ACHIEVED GOALS

to detect the attack without problems. In this way, it is possible to know at what

moment the attack starts, as well as its duration.

In addition, an ARIMA model, which is a mathematical model, has also been imple-

mented to detect attacks. This model would replace the autoencoder and the anomaly

detection module. In this way, the following power consumption values of the time series

are predicted and compared with the real ones. This comparison allows us to detect if an

attack has taken place or not. With this model, an alert generator has been implemented,

since it is possible to detect in which moment there is a change in the trend of the data.

If the autoencoder and the ARIMA model are compared, it can be seen that they have

different functionalities: the autoencoder allows us to know when an attack begins, as well

as its duration, while the ARIMA model is a generator of alerts, which allows us to know the

moment in which there is a change in the trend of the data (an attack) but does not allow

us to classify all the power consumption values between normal or anomalous behaviour.

In conclusion, in this project, a system that automatically detects smart grids attacks

using deep learning techniques has been developed.

6.2 Achieved Goals

In this section, the goals achieved during the development of the project are described.

The main objective of this project was to develop a system that automatically detects

different attacks that smart grids may suffer using deep learning techniques. In order to do

so, the following goals have been achieved:

• Study the current state of the art of different areas. At the beginning of the

project, it was necessary to carry out a state of the art study mainly of smart grids and

deep learning techniques. Regarding smart grids, it has been studied how they work,

the advantages they provide, the vulnerabilities they have, as well as the different

attacks they may suffer. Regarding deep learning techniques, those that allow data

to be analyzed in order to detect anomalies have been studied.

• Simulation of a smart grid using Agent Based Modelling Simulation. In

order to obtain data related to a smart grid, ABMS was used, due to the impossi-

bility of obtaining real data from them. This is because power consumption data is

85

CHAPTER 6. CONCLUSIONS

confidential. In addition, the tool used to simulate smart grids is Mosaik, which is a

smart grid simulator compositor.

• Preprocessing of the data obtained from smart grids. The data obtained from

Mosaik must be preprocessed in order to give them the necessary format to apply

deep learning algorithms on them.

• Implementation of an Autoencoder. In order to apply deep learning algorithms

to the smart grids data, an autoencoder has been implemented. With the data ob-

tained from the autoencoder, different attacks can be identified.

• Processing of the data obtained from the autoencoder to detect attacks.

With the data obtained from the autoencoder the reconstruction error is calculated,

and different transformations are applied to it in order to detect False Data Injection

Attacks.

• Implementation of an ARIMA model. An ARIMA model, which is a mathe-

matical model, has been implemented to develop an alert generator.

6.3 Problems Faced

During the development of this project, some problems have had to be faced. These prob-

lems are the following ones:

• Simulation of a smart grid. In order to simulate a smart grid, an attempt was made to

use the Maverig tool. This tool provides to Mosaik a visual and interactive interface,

which makes it easier to use. Several problems were encountered when generating a

grid and due to this, the software developers were contacted. The developers them-

selves discourage its use because it is no longer maintained. Therefore, the solution

to this problem was to use Mosaik, even though it is a more complex software.

• Implementation of the attack simulator in Mosaik. In order to simulate an attack, it

was necessary to develop a new simulator for Mosaik. This simulator communicates

with the HouseHoldSim simulator in order to modify the power consumption values of

the houses. For this purpose, the set data function provided by the Mosaik API was

used, with the appropriate data format, but the power values did not suffer any change.

After investigating this problem, we realised that HouseHoldSim was prepared to send

data to another simulator but not to receive it, as this was not necessary. Therefore,

86

6.4. FUTURE WORK

the solution finally applied was to modify this simulator so that it could receive data

and simulate attacks.

• Autoencoder reconstruction error. In order to detect when an attack starts and its

duration some problems arose. Mainly in the attack that sets the power consumption

values to 30% of the originals. The problem was that when there was an attack, not

all values were detected as an attack. This was due to the nature of the time series

containing the power consumption values. Therefore, in order to solve this problem,

several transformations had to be made to the reconstruction error in order to improve

the precision of the detection of the attacks.

• ARIMA model implementation. During the implementation of the ARIMA model, an

attempt was made to predict an entire day and then compare it with actual consump-

tion in order to infer whether an attack had occurred. The problem was that when

predicting an entire day, the values converged to the mean of the time series, so the

prediction method had to be changed. Therefore, the next value in the time series

was predicted and then the real value was introduced into the training set. Thus, the

model was retrained and the next value was predicted.

6.4 Future Work

In this section, the implementation of possible new features or improvements of the project

are presented.

• Implementation of new attacks in Mosaik. A possible improvement of the project is

the implementation of new attacks in the Mosaik tool. This is because now only False

Data Injection Attacks can be simulated. In addition, the simulation of new attacks

would allow us to evaluate the performance of the system when detecting them.

• Implementation of new algorithms to detect attacks. By implementing another way

of classifying the data, we will be able to compare the performance of the system. In

addition, with the other algorithms, an ensemble could be made and, in this way, the

results could be improved.

• Integration of the developed system with a real system. In this way, the performance of

the system using real data could be evaluated. The performed evaluation of the system

developed in this project was based on synthetic data obtained from a simulation

carried out with the Mosaik tool.

87

CHAPTER 6. CONCLUSIONS

88

APPENDIXA
Impact of the project

In this appendix, the possible impact that this project has on different areas is presented.

First, Sect. A.1 explains the social impact of the project. Then Sect. A.2 describes the

economic impact and Sect. A.3 the environmental impact. Finally, Sect. A.4 explains the

possible ethical implications of the project.

89

APPENDIX A. IMPACT OF THE PROJECT

A.1 Social Impact

The aim of this project is to develop a tool that will automatically detect possible attacks

that smart grids may suffer.

The detection of these attacks in a power grid will improve the quality of the supply,

as it will avoid various problems that can lead to power outages. Therefore, end users will

benefit because the quality of the supply will be improved.

On the other hand, electric companies could reduce the price of electricity (as explained

in Sect. A.2), which will also benefit consumers.

A.2 Economic Impact

Electricity fraud causes a great loss of money for electric companies. Only in Spain, it is

estimated that approximately one hundred and fifty million euros per year are lost due to

fraud.

The tool developed in this project allows the automatic detection of attacks suffered by

electrical grids. Therefore, by knowing when and where an attack has been originated, the

economic loss caused by fraud to electricity companies will be reduced.

In addition, fraud detection is not only a benefit for electricity companies, but also for

the state. This is because all the energy consumed fraudulently does not pay taxes, which

is also a great loss of money.

In addition, as the electric companies will have less economic losses related to fraud,

they could lower the final price to the consumer. This would be a benefit for consumers as

they would save money on the electricity bill.

A.3 Environmental Impact

The detection of attacks on electrical grids is the objective of the system developed in this

project. In addition to the economic loss caused by the attacks, as explained above, these

worsen the estimation of the energy that will be consumed.

For this reason, the detection of the attacks will improve the estimation of the energy

90

A.4. ETHICAL IMPLICATIONS

that is going to be consumed due to the fact that there is information about all the energy

that is consumed. A better estimation of energy has several benefits for the environment.

The energy estimation is used to know which power generation plants need to be in

operation. Therefore, a better estimation will ensure that only those plants that are really

needed are put into operation, which is a benefit to the environment as it will reduce the

emission of gases from them. In addition, a better estimation of energy encourages the use

of renewable energy. Furthermore, the system will improve the efficiency of the electricity

grid, reducing losses in the transport of energy.

Consequently, the system developed in this project will have a positive environmental

impact.

A.4 Ethical Implications

The power consumption data used by the system developed in this project does not involve

any ethical implications related to data collecting, because these data are already used by

the electric company that would use this system. In addition, the purpose of the treatment

of these data is to reduce electrical fraud.

The most important ethical implication of this project is to know who is defrauding the

electricity companies. Electricity fraud is a global problem and this project aims to reduce

its impact.

91

APPENDIX A. IMPACT OF THE PROJECT

92

APPENDIXB
Economic Budget

In this appendix, the adequate economic budget for the implementation of this project is

detailed. First, in Sect. B.1 the costs of the different material resources that are necessary

are presented. Then, in Sect. B.2 is done an estimation of personnel costs for the develop-

ment of the system and in Sect.B.3 the different licenses that are necessary are presented.

Finally, Sect. B.4 details the costs related to the payment of taxes.

93

APPENDIX B. ECONOMIC BUDGET

B.1 Material Resources

The material resources needed for the design and development of this project is mainly a

computer. This computer must be powerful enough to run and train deep learning models.

Therefore, the main features of the computer used are:

• CPU: Intel Core i7, 3,2 GHz.

• Hard Drive: 30 GB of free space.

• RAM: 8 to 16 GB.

Although it makes the price of the computer more expensive, the use of a GPU would

accelerate the training of the deep learning model, as this is what consumes the most

resources. Therefore, an estimation of the cost of a computer with these characteristics

today is 1000 euros.

B.2 Human Resources

In this section, the cost that this project would have in human resources is estimated. So,

to make this estimation, the time spent on its development is considered.

In order to estimate the number of hours worked in the development of this project,

the number of ECTS credits assigned to it has been considered. In addition, 1 ECTS is

approximately between 25 and 30 hours of work. Therefore, an estimation of the total

number of hours spent in the realization of this project is 900 hours.

The salary of an engineer working as a scholarship holder at the university is 500 euros

per month. Being the scholarship of 4 hours a day and 22 days of work per month, the

estimated time for the completion of the project is 10 months.

Therefore, the cost in human resources of the project is 5000 euros.

B.3 Licenses

This section presents the costs associated with software licenses used for the development

of the project.

94

B.4. TAXES

The tools and software used are all open source. Therefore, the licenses do not represent

an additional cost to this project.

B.4 Taxes

The system developed in this project could be sold to another company. In that case, taxes

related to that sale would have to be paid.

These taxes correspond to 15% of the final value of the sale of the product, according to

the Statue 4/2008 of the Spanish law. If the sale was to a foreign company, this tax would

be different.

95

APPENDIX B. ECONOMIC BUDGET

96

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for large-

scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[2] Fadi Aloul, AR Al-Ali, Rami Al-Dalky, Mamoun Al-Mardini, and Wassim El-Hajj. Smart grid

security: Threats, vulnerabilities and solutions. International Journal of Smart Grid and Clean

Energy, 1(1):1–6, 2012.

[3] Daniel B Araya, Katarina Grolinger, Hany F ElYamany, Miriam AM Capretz, and G Bitsuam-

lak. Collective contextual anomaly detection framework for smart buildings. In Neural Networks

(IJCNN), 2016 International Joint Conference on, pages 511–518. IEEE, 2016.

[4] Daniel B Araya, Katarina Grolinger, Hany F ElYamany, Miriam AM Capretz, and Girma

Bitsuamlak. An ensemble learning framework for anomaly detection in building energy con-

sumption. Energy and Buildings, 144:191–206, 2017.

[5] Niyazi Ari and Makhamadsulton Ustazhanov. Matplotlib in python. In 2014 11th International

Conference on Electronics, Computer and Computation (ICECCO), pages 1–6. IEEE, 2014.

[6] PN Pereira Barbeiro, J Krstulovic, H Teixeira, J Pereira, Filipe Joel Soares, and José Pedro

Iria. State estimation in distribution smart grids using autoencoders. In Power Engineering

and Optimization Conference (PEOCO), 2014 IEEE 8th International, pages 358–363. IEEE,

2014.

[7] Imad A Basheer and M Hajmeer. Artificial neural networks: fundamentals, computing, design,

and application. Journal of microbiological methods, 43(1):3–31, 2000.

[8] Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano, and Luca Benini.

Anomaly detection using autoencoders in high performance computing systems. arXiv preprint

arXiv:1811.05269, 2018.

[9] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier

Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, et al. Api

design for machine learning software: experiences from the scikit-learn project. arXiv preprint

arXiv:1309.0238, 2013.

[10] John A Bullinaria. Recurrent neural networks. Neural Computation: Lecture, 12, 2013.

[11] CL Philip Chen and Chun-Yang Zhang. Data-intensive applications, challenges, techniques and

technologies: A survey on big data. Information Sciences, 275:314–347, 2014.

97

BIBLIOGRAPHY

[12] Sam Clements and Harold Kirkham. Cyber-security considerations for the smart grid. In Power

and Energy Society General Meeting, 2010 IEEE, pages 1–5. IEEE, 2010.

[13] Andrew Collette. Python and HDF5: Unlocking Scientific Data. ” O’Reilly Media, Inc.”, 2013.

[14] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew

Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In

Advances in neural information processing systems, pages 1223–1231, 2012.

[15] Peter Eder-Neuhauser, Tanja Zseby, Joachim Fabini, and Gernot Vormayr. Cyber attack models

for smart grid environments. Sustainable Energy, Grids and Networks, 12:10–29, 2017.

[16] Alexandros Eleftheriou. Smart grid simulation platforms with cyber-attack capabilities. 2018.

[17] Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. Smart grid—the new and improved

power grid: A survey. IEEE communications surveys & tutorials, 14(4):944–980, 2012.

[18] Asja Fischer and Christian Igel. An introduction to restricted boltzmann machines. In

Iberoamerican Congress on Pattern Recognition, pages 14–36. Springer, 2012.

[19] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. An overview

of the hdf5 technology suite and its applications. In Proceedings of the EDBT/ICDT 2011

Workshop on Array Databases, pages 36–47. ACM, 2011.

[20] Peter Goldsborough. A tour of tensorflow. arXiv preprint arXiv:1610.01178, 2016.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[22] Antonio Gulli and Sujit Pal. Deep Learning with Keras. Packt Publishing Ltd, 2017.

[23] Vehbi C Gungor, Dilan Sahin, Taskin Kocak, Salih Ergut, Concettina Buccella, Carlo Cecati,

and Gerhard P Hancke. Smart grid technologies: Communication technologies and standards.

IEEE transactions on Industrial informatics, 7(4):529–539, 2011.

[24] Ping Han, Peng Xin Wang, Shu Yu Zhang, and De Hai Zhu. Drought forecasting based on

the remote sensing data using arima models. Mathematical and computer modelling, 51(11-

12):1398–1403, 2010.

[25] Simon S Haykin, Simon S Haykin, Simon S Haykin, and Simon S Haykin. Neural networks and

learning machines, volume 3. Pearson Upper Saddle River, NJ, USA:, 2009.

[26] Ryan Hledik. How green is the smart grid? The Electricity Journal, 22(3):29–41, 2009.

[27] Keras. https://keras.io, 2018. Accessed: 2019-02-18.

[28] Mehdi Khashei and Mehdi Bijari. An artificial neural network (p, d, q) model for timeseries

forecasting. Expert Systems with applications, 37(1):479–489, 2010.

[29] Jinsub Kim and Lang Tong. On topology attack of a smart grid: Undetectable attacks and

countermeasures. IEEE Journal on Selected Areas in Communications, 31(7):1294–1305, 2013.

98

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://keras.io

BIBLIOGRAPHY

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[31] Oliver Kosut, Liyan Jia, Robert J Thomas, and Lang Tong. Malicious data attacks on the

smart grid. IEEE Transactions on Smart Grid, 2(4):645–658, 2011.

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

[33] R Lincoln. Github repository for rwl/pypower. GitHub, November, 2012.

[34] Charles M Macal and Michael J North. Agent-based modeling and simulation. In Proceedings

of the 2009 Winter Simulation Conference (WSC), pages 86–98. IEEE, 2009.

[35] David Masad and Jacqueline Kazil. Mesa: an agent-based modeling framework. In Proceedings

of the 14th Python in Science Conference (SCIPY 2015), pages 53–60, 2015.

[36] Wes McKinney. pandas: a foundational python library for data analysis and statistics. Python

for High Performance and Scientific Computing, 14, 2011.

[37] Michael A Nielsen. Neural networks and deep learning, volume 25. Determination press USA,

2015.

[38] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[39] Ping-Feng Pai and Chih-Sheng Lin. A hybrid arima and support vector machines model in

stock price forecasting. Omega, 33(6):497–505, 2005.

[40] Yao Pan, Fangzhou Sun, Jules White, Douglas C Schmidt, Jacob Staples, and Lee Krause.

Detecting web attacks with end-to-end deep learning. 2018.

[41] Ivan LG Pearson. Smart grid cyber security for europe. Energy Policy, 39(9):5211–5218, 2011.

[42] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-

learn: Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830,

2011.

[43] Martin Renström and Timothy Holmsten. Fraud detection on unlabeled data with unsupervised

machine learning, 2018.

[44] Philipp Ringler, Dogan Keles, and Wolf Fichtner. Agent-based modelling and simulation of

smart electricity grids and markets–a literature review. Renewable and Sustainable Energy

Reviews, 57:205–215, 2016.

[45] Thilo Sauter and Maksim Lobashov. End-to-end communication architecture for smart grids.

IEEE Transactions on Industrial Electronics, 58(4):1218–1228, 2011.

[46] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–

117, 2015.

[47] Steffen Schütte, Stefan Scherfke, and Martin Tröschel. Mosaik: A framework for modular sim-

ulation of active components in smart grids. In Smart Grid Modeling and Simulation (SGMS),

2011 IEEE First International Workshop on, pages 55–60. IEEE, 2011.

99

BIBLIOGRAPHY

[48] Tobias Schwerdtfeger and Grid Simulationen. Erika root, gerrit klasen, hanno günther, jerome

tammen, marina sartison, marius brinkmann, michael falk, rafael burschik, rouven pajewski

sascha spengler, andrianarisoa a. johary ny aina und. 2015.

[49] Skipper Seabold and Josef Perktold. Statsmodels: Econometric and statistical modeling with

python. In 9th Python in Science Conference, 2010.

[50] R Shyam, Bharathi Ganesh HB, Sachin Kumar, Prabaharan Poornachandran, and KP Soman.

Apache spark a big data analytics platform for smart grid. Procedia Technology, 21:171–178,

2015.

[51] Pierluigi Siano. Demand response and smart grids—a survey. Renewable and sustainable energy

reviews, 30:461–478, 2014.

[52] Carina Silberer and Mirella Lapata. Learning grounded meaning representations with au-

toencoders. In Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), volume 1, pages 721–732, 2014.

[53] Daniel Svozil, Vladimir Kvasnicka, and Jiri Pospichal. Introduction to multi-layer feed-forward

neural networks. Chemometrics and intelligent laboratory systems, 39(1):43–62, 1997.

[54] Song Tan, Wen-Zhan Song, Qifen Dong, and Lang Tong. Score: Smart-grid common open

research emulator. In Smart Grid Communications (SmartGridComm), 2012 IEEE Third In-

ternational Conference on, pages 282–287. IEEE, 2012.

[55] William G Temple, Binbin Chen, and Nils Ole Tippenhauer. Delay makes a difference: Smart

grid resilience under remote meter disconnect attack. In SmartGridComm, pages 462–467, 2013.

[56] TensorFlow. https://www.tensorflow.org, 2018. Accessed: 2018-09-16.

[57] Alexandre Gustavo Wermann, Marcelo Cardoso Bortolozzo, Eduardo Germano da Silva, Al-

berto Schaeffer-Filho, Luciano Paschoal Gaspary, and Marinho Barcellos. Astoria: A framework

for attack simulation and evaluation in smart grids. In Network Operations and Management

Symposium (NOMS), 2016 IEEE/IFIP, pages 273–280. IEEE, 2016.

[58] Xinghuo Yu, Carlo Cecati, Tharam Dillon, and M Godoy Simoes. The new frontier of smart

grids. IEEE Industrial Electronics Magazine, 5(3):49–63, 2011.

[59] Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep autoencoders. In

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 665–674. ACM, 2017.

100

https://www.tensorflow.org

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	State of Art
	Smart Grids
	Vulnerabilities of Smart Grids
	Attacks on Smart Grids

	Deep learning
	Feed-forward neural network
	Recurrent neural network
	Restricted Boltzmann Machines
	Autoencoders

	Big Data
	Agent-Based Modelling and Simulation
	ABMS Tools

	Enabling Technologies
	Data managing libraries
	Pandas
	Numpy
	Matplotlib
	h5py

	ABMS
	Mosaik
	Maverig

	Machine Learning Technologies
	Scikit-learn
	Tensorflow
	Keras

	Mathematical models
	ARIMA
	Statsmodels

	Architecture
	Architecture
	Multi-Agent System
	Data Preprocessing Module
	Deep Autoencoder
	Anomaly Detection Module

	Case study
	Topology Attack
	Detection of which house has suffered an attack
	Detection of when the attack has occurred
	Attack 0%
	Attack 30%
	Attack 10%
	Attack 20%

	Attack Detection using ARIMA
	Conclusions

	Conclusions
	Conclusions
	Achieved Goals
	Problems Faced
	Future Work

	Appendix Impact of the project
	Social Impact
	Economic Impact
	Environmental Impact
	Ethical Implications

	Appendix Economic Budget
	Material Resources
	Human Resources
	Licenses
	Taxes

	Bibliography

