
GRADO EN INGENIERÍA DE TECNOLOGÍAS Y

SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DEVELOPMENT OF AN OCCUPATIONAL STRESS
PREDICTION SYSTEM EXPLOITING COMPUTER

INTERACTION DATA THROUGH MACHINE
LEARNING

SOFÍA PÉREZ CHAO
JULIO 2024

TRABAJO DE FIN DE GRADO

T́ıtulo: DESARROLLO DE UN SISTEMA DE PREDICCIÓN

DEL ESTRÉS LABORAL QUE EXPLOTA DATOS DE

LA INTERACCIÓN CON ORDENADORES MEDIANTE

APRENDIZAJE AUTOMÁTICO

T́ıtulo (inglés): DEVELOPMENT OF AN OCCUPATIONAL STRESS

PREDICTION SYSTEM EXPLOITING COMPUTER IN-

TERACTION DATA THROUGH MACHINE LEARNING

Autor: SOFÍA PÉREZ CHAO

Tutor: SERGIO MUÑOZ LÓPEZ

Ponente: PONENTE

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos

Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE GRADO

DEVELOPMENT OF AN OCCUPATIONAL STRESS
PREDICTION SYSTEM EXPLOITING COMPUTER

INTERACTION DATA THROUGH MACHINE LEARNING

JULIO 2024

Resumen

En la actualidad, el estrés laboral es un fenómeno ampliamente experimentado que se man-

ifiesta en nuestras vidas de manera consciente o inconsciente. En los últimos años está

aumentando su intensidad e incidencia debido en gran parte a las nuevas formas de or-

ganización del trabajo. La exposición prolongada al estrés mental contribuye a una mala

experiencia laboral e incluso a problemas de salud graves.

La intensidad y prevalencia cambiantes del estrés laboral subrayan la necesidad de solu-

ciones más accesibles y menos invasivas para su detección. Los avances en este campo han

conducido al desarrollo de nuevos métodos basados en la explotación de datos biométricos.

Sin embargo, estos métodos suelen plantear retos similares a los enfoques actuales, como

la necesidad de sensores intrusivos. Gracias al aprendizaje automático, es posible realizar

predicciones no invasivas del estrés, utilizando técnicas como el reconocimiento de la pos-

tura corporal, las expresiones faciales, el análisis de pulsaciones de teclas, el movimiento del

ratón e incluso el uso de teléfonos móviles

En este proyecto se ha dado prioridad a la aplicación de técnicas de detección que no

requieran hardware espećıfico adicional. Un enfoque ampliamente adoptado en este ámbito

consiste en analizar el comportamiento individual. Este proyecto pretende explorar cómo

pueden explotarse las interacciones de las personas con sus ordenadores cotidianos para

detectar sus niveles de estrés. Para ello, este proyecto evaluará el rendimiento predictivo del

estrés de varios patrones asociados a las interacciones con el ordenador, como la dinámica

del ratón y de las pulsaciones de teclas, la mirada, etcétera. Por lo tanto, el objetivo

principal será desarrollar un sistema de detección de estrés basado en la interacción con el

ordenador utilizando técnicas de aprendizaje automático.

Para lograr este propósito, se han identificado varias fases a seguir durante el desarrollo

del proyecto: un estudio exhaustivo de diferentes técnicas de detección, una revisión y

limpieza previa de los conjuntos de datos para eliminar elementos que puedan interferir en

el proceso, y la aplicación de diferentes enfoques de aprendizaje automático para extraer

conclusiones a partir de los datos recogidos. El desarrollo de este modelo se llevará a cabo

utilizando el lenguaje de programación Python.

Palabras clave: Estrés laboral, Detección no invasiva, Datos Biométricos, Inteligencia

artificial, Aprendizaje automático, Interacciones con el ordenador, Python.

VII

Abstract

Nowadays, occupational stress is a widely experienced phenomenon that manifests itself

in our lives consciously or unconsciously. It has always been present at work, however, in

recent years it is increasing in intensity and incidence due in large part to new forms of work

organization. Prolonged exposure to mental stress contributes to a poor work experience

and even to serious health problems.

The changing intensity and prevalence of occupational stress underscore the need for

more accessible and less invasive solutions for its detection. Significant advancements in the

field have led to the development of new methods based on the exploitation of biometric

data, whose reliability has been demonstrated. However, these methods often pose similar

challenges to current approaches, such as the need for intrusive sensors, despite the increas-

ing demand and interest in their accessibility and applicability in everyday life and work

environments. Thanks to machine learning, non-invasive stress predictions are feasible,

using techniques such as body posture recognition, facial expressions, keystroke analysis,

mouse movement, and even the use of mobile phones.

In this project, priority has been given to the application of detection techniques that

do not require additional specific hardware. A widely adopted approach in this domain

involves analysing individual behaviour. Specifically, this project seeks to explore how

people’s interactions with their everyday computers can be exploited to detect their stress

levels. To this aim, this project will evaluate the stress predictive performance of various

patterns associated with computer interactions, including mouse and keystroke dynamics,

eye gaze, and more. Therefore, the main objective will be to develop a stress detection

system based on computer interaction using machine learning techniques.

To achieve this purpose, several phases have been identified to be followed during the

project’s development: an exhaustive study of di↵erent detection techniques, a previous

review and cleaning of datasets to eliminate elements that may interfere in the process, and

the application of di↵erent machine learning approaches in order to draw conclusions from

the collected data. The development of this model will be carried out using the Python

programming language.

Keywords: Occupational stress, Non-invasive detection, Biometric data, Artificial

intelligence, Machine learning, Computer interactions, Python.

IX

Agradecimientos

Al llegar al final de mis años como estudiante, no puedo evitar reflexionar sobre todas las

experiencias vividas durante esta etapa que ha sido tan enriquecedora y desafiante para mı́.

Quiero expresar mi profundo agradecimiento a todas las personas que me han apoyado

y ayudado a lo largo de mis estudios en la Escuela Técnica Superior de Ingenieros de

Telecomunicación (ETSIT).

En primer lugar, agradezco profundamente a mi tutor, Sergio Muñoz López, por su

dedicación y orientación durante la realización de mi Trabajo de Fin de Grado. Gracias a

él, pude explorar un tema interesante y actual, superando los desaf́ıos que surgieron en el

proceso y expandiendo mis horizontes académicos.

También quiero reconocer el apoyo incondicional de mis compañeros y amigos de la uni-

versidad. Durante estos años de carrera, su solidaridad y colaboración fueron fundamentales

para superar los obstáculos y celebrar los éxitos juntos.

Aunque sin duda a quien más debo dar las gracias es a mi familia. Gracias por creer en

mı́ incluso cuando dudaba de mı́ misma, por haber estado siempre dispuestos a ayudarme

en todo lo posible y por animarme a no rendirme nunca.

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XV

List of Tables XVII

1 Introduction 1

1.1 Context . 2

1.2 Project goals . 3

1.3 Structure of this document . 4

2 State of Art 7

2.1 Related work . 8

2.2 Enabling Technologies . 10

2.2.1 Machine Learning . 10

2.2.1.1 Traditional Classifiers . 11

2.2.2 Python . 12

3 Datasets and Model Development 17

3.1 Dataset . 18

3.2 Data Preprocessing . 19

3.3 Architecture . 23

3.4 Algorithms . 24

3.4.1 Logistic Regression . 24

3.4.2 XGBoost . 25

3.4.3 CatBoost . 27

XIII

4 Evaluation 29

4.1 Metrics . 30

4.2 Results . 32

4.2.1 Case 1 . 33

4.2.1.1 Baseline . 33

4.2.1.2 Hyperparameters Optimization for Di↵erent Classification

Models Using GridSearchCV 34

4.2.1.3 Feature Selection and Model Evaluation Using RFECV . . 35

4.2.1.4 Combined Hyperparameter Optimization and Feature Selec-

tion Using GridSearchCV and RFECV 36

4.2.2 Case 2 . 39

4.2.2.1 Combined Hyperparameter Optimization and Feature Selec-

tion Using GridSearchCV and RFECV 39

5 Conclusions 41

5.1 Conclusion . 42

5.2 Achieved goals . 43

5.3 Problems Faced . 44

5.4 Future Work . 45

A Impact of the project i

A.1 Social impact . ii

A.2 Economic impact . ii

A.3 Ethical impact . ii

B Economic budget v

B.1 Physical resources . vi

B.2 Human resources . vi

B.3 Total budget . vii

Bibliography ix

List of Figures

2.1 Types of Machine Learning [1]. 10

2.2 The three steps of the tsfresh algorithm [2]. 15

3.1 Users with and without Stress. 21

3.2 Number of Users by Stress Interval. 22

3.3 General architecture representation of the proposed method. 24

3.4 Linear Regression vs Logistic Regression [3]. 25

3.5 The structure of the XGBoost algorithm [4]. 26

3.6 The structure of the CatBoost algorithm [5]. 28

4.1 Confusion matrix [6]. 31

4.2 Confusion Matrix XGB . 33

4.3 Confusion Matrix CAT . 33

4.4 Confusion Matrix LR . 33

4.5 Confusion Matrix XGB . 34

4.6 Confusion Matrix CAT . 34

4.7 Confusion Matrix LR . 34

4.8 Confusion Matrix XGB . 36

4.9 Confusion Matrix CAT . 36

4.10 Confusion Matrix LR . 36

4.11 Confusion Matrix XGB . 37

4.12 Confusion Matrix CAT . 37

4.13 Confusion Matrix LR . 37

4.14 Confusion Matrix XGB . 40

4.15 Confusion Matrix CAT . 40

4.16 Confusion Matrix LR . 40

XV

List of Tables

3.1 Overview of SWELL-KW Dataset Features [7]. 19

3.2 Mouse and Keyboard Features. 20

4.1 Summary of overall performance metrics by model (4.2.1.1) 33

4.2 Summary of overall performance metrics by model (4.2.1.2) 34

4.3 Summary of overall performance metrics by model (4.2.1.3) 35

4.4 Summary of overall performance metrics by model (4.2.1.4) 37

4.5 Comparison of Experimental Results . 38

4.6 Summary of overall performance metrics by model (4.2.2.1) 39

B.1 Total estimated budget . vii

XVII

CHAPTER1
Introduction

This chapter establishes the framework of the project, presenting the main theme and pro-

viding an overview of the objectives to be achieved. The relevance and importance of the

project in its corresponding field is explored, providing the necessary context to understand

the purpose and scope of the study.

1

CHAPTER 1. INTRODUCTION

1.1 Context

Stress is a universal phenomenon in modern life, a↵ecting individuals of all ages and back-

grounds. Its relevance lies in its significant impact on physical and mental health, as well as

on people’s performance and general well-being. In this context, occupational stress emerges

as an increasingly prominent concern due to its prevalence and negative consequences in

the work environment and beyond [8, 9].

In the midst of the fast pace of modern life, stress is a omnipresent force a↵ecting people

from all walks of life, profoundly impacting their physical and mental well-being, as well as

their overall performance and quality of life [8]. Within this dynamic context, work-related

stress has emerged as a significant concern due to its widespread prevalence and detrimental

e↵ects both inside and outside the workplace [9].

Work-related stress manifests itself when individuals face work demands and pressures

that exceed their capabilities, thus challenging their coping mechanisms [10, 11]. This phe-

nomenon occurs in a variety of work settings and tends to be exacerbated when employees

perceive inadequate support from supervisors and colleagues, or have limited control over

work processes [12].

The importance of addressing occupational stress lies in its adverse consequences for

workers’ health and well-being, as well as for organizational productivity and e↵ectiveness.

Prolonged exposure to occupational stress has been linked to a range of health issues, from

psychological disorders such as anxiety and depression to physical ailments like cardiovascu-

lar diseases and musculoskeletal disorders. Furthermore, occupational stress can negatively

impact morale, job satisfaction, and work quality, ultimately a↵ecting job performance and

employee retention [13, 14].

Current stress management techniques in organizations have focused on evaluating the

state of employees to implement approaches to help them face the negative e↵ects of stress.

However, the use of human experts in these interventions can be costly and impractical

for many organizations, which has led to the exploration of automated approaches [15].

In addition, advantages and limitations have been identified in traditional methods for

measuring stress in the work context, where questionnaires o↵er inexpensive data collection

but can be influenced by subjective perceptions, while physiological sensors provide accurate

measurements but can generate discomfort and a↵ect results due to the monitoring process

itself.

Technological advances and medical research are driving a more precise approach to

addressing stress, fatigue and emotions in the human body through physiological sensors

such as cortisol, skin conductance, skin temperature, heart rate and heart rate variability.

These indicators reveal mental states associated with stress and emotions, being useful for

2

1.2. PROJECT GOALS

understanding the impact of stress on the human body. However, despite the accuracy of

these approaches, they present challenges in work settings, such as individual discomfort

and interference with established work routines. In addition, privacy and acceptability are

major concerns when using these approaches, which may require significant changes in work

practices or interfere with the individual’s autonomy for e↵ective implementation [16].

Smartphones are also playing an important role in stress management by taking advan-

tage of the growing variety of built-in sensors, such as camera and microphones, to measure

stress and provide feedback to users. In addition to wearable devices and smartphones, ap-

proaches based on computer vision, speech and other linguistic features, as well as the use

of the computer mouse and keyboard are also being used to assess stress. These approaches

o↵er non-intrusive alternatives for measuring and managing stress in di↵erent environments

and situations, reflecting the diversity of options available to address this challenge in the

workplace [15].

This work focuses on studying di↵erent classification techniques and comparing them

to develop a model capable of accurately detecting a person’s stress based on keyboard and

mouse interaction patterns. For the analysis of these typing patterns and mouse movements,

we will use the dataset generated for the SWELL project [7].

1.2 Project goals

The main objective of this project is to develop a stress detection system based on user

interactions with the computer, taking advantage of advanced machine learning techniques

to analyze keyboard patterns and mouse movements. This system will seek to provide an

accurate and non-intrusive method to identify stress, which has important applications in

work and personal contexts. To achieve this goal, the project is structured into several key

tasks:

1. Review of the State of the Art to Analyze Current Solutions

The state-of-the-art review involves investigating the most recent and relevant stress

detection techniques, analyzing the approaches and classification models used in previous

studies to identify the most e↵ective strategies, and evaluating the advantages, limitations

and challenges of current solutions, focusing on non-intrusive methods.

2. Search and Acquisition of Datasets

The search and acquisition of datasets involves identifying and obtaining datasets that

are representative for model training, selecting those related to the analysis of typing pat-

terns and mouse movements.

3. Preprocess the Datasets

Prior to model training, the datasets will be preprocessed to remove any elements that

3

CHAPTER 1. INTRODUCTION

may adversely a↵ect the subsequent analysis. In addition, the labels of the datasets will be

checked and balanced if they are found to be out of calibration.

4. Design of Machine Learning Models

The design involves applying di↵erent machine learning techniques to each dataset,

allowing for the development of models that can e↵ectively detect stress based on the

available features.

5. Evaluation and Experimentation

This involves validating the models through experimentation and evaluation, facilitating

the selection and validation of a stress detection model.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is as follows:

Chapter 1 Introduction: Establishes the context of the project, presenting the main

topic and providing an overview of the objectives to be achieved. Explores the context

in which the project is being developed, highlighting its relevance and importance in the

corresponding field. This chapter serves as a starting point for understanding the purpose

and scope of the project, laying the basis for the development of the following chapters.

Chapter 2 State of Art: Conducts a comprehensive analysis of related work in the

field of study to contextualize the project within the current research landscape. Reviews

and compares di↵erent approaches, methodologies, and results obtained in similar or related

projects. Provides a detailed description of the technologies and environments used to carry

out the project, addressing aspects such as development tools, software libraries, and specific

platforms used during the process. O↵ers an essential frame of reference for understanding

the state of the art in the area of study and comprehending the technological decisions made

in the development of the project.

Chapter 3 Datasets and Model Development: Describes the datasets used for

training and evaluating the stress detection models, providing detailed information on their

characteristics, sources, and relevance to the project. Explores the preprocessing steps

required to prepare the data for model training, including cleaning, feature extraction, and

normalization. Finally, presents the design of the machine learning models, explaining the

architecture, algorithms, and classification techniques employed.

Chapter 4 Evaluation: Establishes the evaluation context of the classification models

developed, presenting the main metrics and providing a detailed description of the results

obtained. This chapter provides an understanding of the evaluative methods employed,

laying the basis for the detailed discussion of the results of the experiments. It focuses on

4

1.3. STRUCTURE OF THIS DOCUMENT

interpreting and assessing the performance of the models under several key metrics, showing

a comprehensive evaluation.

Chapter 5 Conclusion: Establishes the closure of the project analysis, summarizing

the key findings and highlighting the main contributions of the study. Explores the impli-

cations of the results obtained, emphasizing their importance in the context of developing

stress detection tools and improving personal and occupational well-being. This chapter

serves as a synthesis of the learnings and discoveries made, outlining the basis for the de-

velopment of future research and applications in this field. In addition, directions for future

research are proposed, highlighting opportunities to expand and deepen current findings.

5

CHAPTER 1. INTRODUCTION

6

CHAPTER2
State of Art

This chapter conducts a comprehensive analysis of related work in the field of study, sit-

uating the project in the current research landscape. Di↵erent approaches, methodologies

and results of similar or related projects are reviewed and compared. In addition, a detailed

description of the technologies and environments used to carry out the project is provided,

addressing aspects such as development tools, software libraries and specific platforms.

7

CHAPTER 2. STATE OF ART

2.1 Related work

In this section, a review of previous work related to the detection of occupational stress

through computer interaction is carried out. Due to the increasing importance of health

and well-being in the work environment, recent research has explored di↵erent techniques

and methodologies to identify and prevent stress in the workplace. Despite advances in

wearable sensor technology and machine learning (ML) methods over the past two decades,

as well as the considerable number of stress detection studies,there are still several challenges

related to stress detection in real-world contexts.

Androutsou et al. [17], presented a discrete and multimodal system for automatic mon-

itoring and detection of stress in o�ce workers using a computer. In this study, physiologi-

cal measurements recorded by the device are combined with behavioral parameters derived

from the use of the computer keyboard and mouse to detect users’ stress levels. Combined

analysis of physiological and behavioral parameters through feature-level fusion resulted

in models that demonstrated greater e�ciency compared to those using single modalities.

Their findings highlight the feasibility of using low-cost IoT devices and modules already

integrated into the work routine to monitor the status and stress levels of workers.

This approach complements the findings of Koldjik et al. [7], who, in their research

on automatic classifiers, investigated working conditions and mental states associated with

stress using multimodal sensor data. Although their results suggest that computer inter-

action features do not provide the most meaningful information about stress, their study

provides valuable insight into the possibilities and limitations of these technologies in the

work environment. Furthermore, the dataset collected by Koldjik et al. (SWELL-KW)

remains a reference resource for future research in this area.

Building on this foundation, Naegelin et al. [18] conducted a study simulating an o�ce

environment, where they assessed variability in keyboard, mouse and heart activity to

identify stress automatically. Their results showed that keyboard and mouse dynamics are

better indicators of work stress than heart rate variability.

Similarly, Pepa et al. [19] conducted a study where they collected experimental key-

board and mouse data from 62 volunteers in natural environments using a web application

specifically designed to induce stress. This study applied multiple instance learning (MIL)

to random forest (RF) classification to successfully distinguish three classes of stress levels

from keyboard (76% accuracy) and mouse (63% accuracy) data. These results provide a new

perspective on stress detection in real-world contexts and complement the findings of other

studies [17, 7, 18], that have explored di↵erent approaches to automatic stress detection in

the workplace.

In another approach, Sol et al. [20] investigated the possibility of identifying stress in

8

2.1. RELATED WORK

users by analysing common computer mouse operations and constructing a model of the

hand and muscles using a mass-spring-damper system.participants were asked to perform

three di↵erent activities: pointing and clicking, steering, and dragging and dropping. Each

of the tasks was performed in both a relaxed and stressed state. They concluded that

stress assessment can be more accurate using metrics derived from mouse activities than by

analysing electrocardiogram signals, especially when considering the within-subject model.

They also showed that a small amount of data can be used to assess stress state with 70%

accuracy.

Complementarily, Muaremi et al. [21] created a solution to assess people’s stress level

by using a smartphone and a wearable chest belt. During the workday, they collected

audio, communication, and physical activity data. They also recorded heart rate variability

(HRV) during the night. During the day, participants completed self-assessment surveys to

describe their feelings. Thirty-five employees were studied over 4 months. They achieved

55% accuracy using only the smartphone features and 59% accuracy using only the HRV

features. Combining these features, they achieved an accuracy of 61% for classifying stress

into three di↵erent levels.

Finally, Hernandez et al. [22] examined the possibility of detecting stress in users using

the keyboard and mouse. They focused on tactile pressure with a capacitive mouse and

a pressure-sensitive keyboard. Twenty-four participants completed three di↵erent tasks:

text input, expressive typing, and mouse clicking. The results indicated that stress had a

significant impact on keyboard touch pressure in more than 83% of the users. Although the

intensity of pressure did not change much with mouse clicking, the contact area increased

during stress.

The reviewed studies demonstrate the diverse approaches and technologies used in de-

tecting occupational stress through computer interaction. While some focus on physiological

measurements and others on behavioral parameters, the combination of multiple modalities

seems to o↵er the most promising results. However, we found challenges such as:

• Data Collection in Real-World Contexts: Many studies simulate o�ce environments,

but lack the complexity of real workplaces.

• Invasiveness: Wearable sensors can cause discomfort and interfere with established

work routines.

• Generalization and Customization: Stress models often lack adaptability across indi-

viduals due to personal di↵erences.

Following this analysis, our work aims to address these challenges by developing a non-

invasive system to predict work-related stress using machine learning (ML). We will focus

9

CHAPTER 2. STATE OF ART

on analyzing keyboard and mouse dynamics based on the SWELL dataset to design and

validate a robust stress detection model. By refining existing classification techniques and

integrating them into an accessible application, our project will contribute to the advance-

ment of non-intrusive stress detection in real-world work environments.

2.2 Enabling Technologies

In this section, the technologies and tools used in the development of this project will be

presented. With a central focus on the application of Machine Learning techniques, the

di↵erent libraries used to carry out the analysis and evaluation of data will be detailed. In

addition, the tools and platforms used during the work will be included.

2.2.1 Machine Learning

Before detailing the specific technologies employed in the project, it is essential to under-

stand the concept of Machine Learning(ML): is a field of computer science that studies

algorithms and techniques for automating solutions to complex problems that are hard to

program using conventional programming methods [23].

Machine Learning covers a wide range of applications, from speech recognition and

natural language processing to medical diagnostics and autonomous vehicle driving. By

exploiting large datasets and advanced algorithms, Machine Learning enables computer

systems to learn patterns and make autonomous decisions, making it a critical component

in the era of artificial intelligence and automation.

As shown in Figure 2.1, Machine Learning models are typically categorized into four

essential categories [24].

Figure 2.1: Types of Machine Learning [1].

10

2.2. ENABLING TECHNOLOGIES

• Supervised Learning: Supervised learning is an essential task in machine learning

that involves learning a function that maps inputs to outputs based on pairs of sample

data. This process uses labeled training data and a collection of training examples to

derive the function. It is used when specific goals are identified to be achieved from a

given set of inputs, following a task-oriented approach. The most common supervised

tasks are ”classification”, which organizes data into categories, and ”regression”, which

fits the data. An example would be predicting the class label or sentiment of a text,

such as a tweet or product review.

• Unsupervised Learning: Unsupervised learning deals with the analysis of unla-

beled datasets without human intervention, following a data-driven approach. This

method is widely used to extract generative features, identify trends and meaningful

structures, and to perform clustering and exploratory analysis. The most common

tasks in unsupervised learning include clustering, density estimation, feature learning,

dimensionality reduction, association rule search and anomaly detection.

• Semi-supervised Learning: Semi-supervised learning can be considered a com-

bination of supervised and unsupervised methods, since it uses both labeled and

unlabeled data. Therefore, it falls somewhere in between ”unsupervised” and ”su-

pervised” learning. The main goal of a semi-supervised learning model is to achieve

better prediction accuracy compared to using only labeled data. Some application

areas of semi-supervised learning include machine translation, fraud detection, data

labeling and text classification.

• Reinforcement Learning: Reinforcement learning is a machine learning approach

that allows software agents and machines to automatically identify optimal behavior

in a specific environment to improve their e�ciency, using an environment-driven

method. This type of learning is based on a system of rewards and penalties, the

goal of which is to take advantage of information obtained from interactions with the

environment to make decisions that increase rewards or reduce risks. Although it is a

very e↵ective tool for training artificial intelligence models, it is not ideal for solving

simple or basic problems.

Given the nature of the datasets used in this project, supervised learning will be our

focus.

2.2.1.1 Traditional Classifiers

Following our discussion on supervised learning, it’s pertinent to delve deeper into tradi-

tional classifiers, which are pivotal in many supervised learning scenarios. These classifiers

11

CHAPTER 2. STATE OF ART

are designed to predict categorical outcomes by learning from labeled input data.

Traditional classifiers [25] in machine learning are algorithms that have a long history of

use in classification tasks [23], where the goal is to assign labels to instances based on input

features. These classifiers typically rely on simpler, well-understood mathematical models,

and have been extensively studied and applied in a variety of fields.

Types of Traditional Classifiers [26]:

• Logistic Regression: A statistical model that predicts a binary outcome, determin-

ing whether an event happens or does not. It uses a logistic function to model the

probability of a certain class or event existing. Logistic Regression is widely used in

situations where the dependent variable is binary.

• Decision Trees: A supervised learning algorithm ideal for classification problems,

capable of sorting classes at a precise level. Decision Trees split the data into sub-

sets based on the value of input features, creating a tree-like structure. Each node

represents a decision rule, and each leaf node represents an outcome. This method is

particularly useful for its interpretability and simplicity.

• Support Vector Machines (SVM): An algorithm that trains and classifies data by

degrees of polarity, extending beyond simple X/Y predictions. SVM finds the optimal

hyperplane that maximizes the margin between di↵erent classes. It is highly e↵ective

in high-dimensional spaces.

• Naive Bayes: A probabilistic classifier that calculates the likelihood of a data point

belonging to a particular category based on Bayes’ theorem. It assumes independence

between predictors, which simplifies the computation.

• k-Nearest Neighbors (k-NN): A pattern recognition algorithm that identifies the

k closest data points in training datasets to classify new examples. The class of a new

data point is determined by the majority class among its k nearest neighbors. k-NN

is easy to implement and understand, and it performs well on smaller datasets where

the relationships between data points are more straightforward.

2.2.2 Python

Python is an interpreted, object-oriented, high-level programming language with dynamic

semantics [27]. Python’s built-in high-level data structures, along with its dynamic typing

and linking, make it especially attractive for rapid application development. It is also useful

as a scripting or integration language for connecting existing components. Python’s sim-

ple, easy-to-learn syntax promotes readability, which reduces program maintenance costs.

12

2.2. ENABLING TECHNOLOGIES

Python supports modules and packages, thus encouraging modularity and code reuse. The

Python interpreter and its extensive standard library are freely available in source or binary

format for all major platforms, and can be freely distributed.

In summary, Python is a modern programming language that supports object-oriented,

functional and imperative programming styles [28]. It is primarily a scripting language, but

it can also be compiled into computer-readable binaries. The advantage of all this is that

it allows programs to be written with fewer lines of code compared to equivalent programs

in C/C++ or Java.

Having established a basic understanding of the concept, we will move on to explore

the practical tools that make its implementation possible. Next, we will focus on some

of the most important Python libraries that were used in this project, highlighting their

fundamental role in the development and implementation of machine learning solutions.

• Pandas: Pandas is a Python library that provides fast, flexible and expressive data

structures, making it easy to work with ”relational” or ”tagged” data. It is designed to

be the fundamental high-level building block for performing practical, real-world data

analysis in Python. In addition, it has the goal of becoming the most powerful and

flexible open source data analysis and manipulation tool available in any language. It

is currently making progress towards this goal [29].

Built on top of NumPy, Pandas is intended to integrate seamlessly into a scientific

computing environment, along with many other third-party libraries. Its two main

data structures, Series (one-dimensional) and DataFrame (two-dimensional), cover

most of the typical use cases in finance, statistics, social sciences and various areas of

engineering.

Pandas is an exceptional tool for data scientists, providing robust functionality that

covers every stage of the data analysis process. This process generally involves several

steps: data acquisition and cleaning, data analysis and modeling, and ultimately,

structuring the analysis results in a manner that is suitable for visualization or tabular

presentation.

• Numpy: NumPy, short for Numerical Python, is an open source Python library

designed for scientific computing. It allows you to manipulate matrices and arrays

without hassle and o↵ers a comprehensive collection of mathematical functions, in-

cluding tools for linear algebra, Fourier transform, and random number generation.

NumPy e↵ectively serves as a substitute for some features found in MATLAB and

Mathematica, facilitating rapid interactive prototyping [30].

In essence, NumPy is indispensable for numerical processing in Python because of its

13

CHAPTER 2. STATE OF ART

clean and e�cient code, its high performance, and its ability to handle large datasets

in a scalable way. Much of its code is written in C, which gives it a significant speed

advantage over pure Python code. In addition, its C API allows it to extend its

functionality.

• Scikit-learn: Scikit-learn is a free and open source software designed to solve su-

pervised and unsupervised machine learning problems. It is based on Python and

is based on high-quality libraries such as NumPy and SciPy [31]. The main advan-

tage of scikit-learn’s popularity lies in the ability to quickly implement most of the

commonly used machine learning algorithms in a plug-and-play format, once the core

pipeline is understood. Also, popular classification algorithms, such as logistic regres-

sion and support vector machines, are implemented in Cython, which provides C-like

performance, making it possible to use scikit-learn in a highly e�cient manner.

Scikit-learn o↵ers solutions for several types of machine learning problems [32]:

– Classification: Determine the category to which an object belongs. Available

algorithms include decision trees (ID3, C4.5, etc.), kNN, SVM, Random forest,

Perceptron, and more.

– Clustering: Automatic grouping of similar objects into sets. Algorithms such

as k-Means and a�nity propagation are available.

– Regression: Prediction of a continuous-valued attribute associated with an

object. Includes algorithms such as linear regression and logistic regression.

– Dimensionality reduction: Reduce the number of random variables to con-

sider, using algorithms such as SVD and PCA.

• Tsfresh: Tsfresh is a Python library designed for systematic feature engineering from

time series and other sequential data. These data share the characteristic of being

ordered by an independent variable, with time being the most common independent

variable. To keep things simple, we refer to all the di↵erent types of sequential data

as time series [33]. In Figure 2.2 the three steps of the TSFresh algorithm are illus-

trated: feature extraction (1), p-value calculation (2), and multiple testing processing

(3) [2]. In particular, TSFresh provides 63 time series characterization methods, which

compute a total of 794 time series features.

14

2.2. ENABLING TECHNOLOGIES

Figure 2.2: The three steps of the tsfresh algorithm [2].

The first stage of the TSFresh process is feature extraction, where various statistical

and mathematical techniques are applied to extract relevant information from the

time series, such as mean, variance, median, among others.

In the second stage, the significance of the extracted features is calculated by hypoth-

esis testing, assigning p-values to each feature to determine its significance. This stage

is crucial to filter out irrelevant features and reduce the dimensionality of the dataset.

The third and final stage is multiple testing processing, where p-values are adjusted

using correction techniques, such as the Benjamini-Hochberg method, to control the

false discovery rate. This step ensures that the selected features are statistically

significant and relevant to the analysis.

The feature extraction submodule contains both the collection of feature calcu-

lators and the logic to apply them e�ciently to the time series data. The main public

function of this submodule is extract features [2].

15

CHAPTER 2. STATE OF ART

16

CHAPTER3
Datasets and Model Development

This chapter describes the datasets used for training and evaluation of the stress detection

models, providing detailed information on their characteristics, sources, and relevance to

the project. The preprocessing steps required to prepare the data, including cleaning, feature

extraction, and normalization, are explored. Finally, the design of the machine learning

models is presented, explaining their architecture, algorithms and classification techniques

used.

17

CHAPTER 3. DATASETS AND MODEL DEVELOPMENT

3.1 Dataset

For the project, the most suitable dataset and thus chosen to carry out our work is the

SWELL-KW. This dataset was specifically designed to investigate the e↵ects of stressors

on workers, collecting a wide range of both physiological and behavioral data. It provides

detailed information on how time pressure and interruptions a↵ect the subjective experience

of workload, mental e↵ort and emotions.

The SWELL-KW dataset was collected by Koldijk et al. with the participation of

25 individuals [7, 34]. Participants performed typical tasks such as report writing and

presentations, under three working conditions:

• Neutral (N): Participants could work on the tasks as long as they needed to.

• Time Pressure (T): Time to complete the tasks was reduced to 2/3 of the time

taken in the neutral condition, with a maximum limit of 30 minutes.

• Interruptions (I): Eight emails were sent during the task, some relevant and some

irrelevant, to simulate interruptions.

Each experimental block began with an 8-minute relaxation phase. Then, participants

received instructions on the tasks to be performed, writing reports and making presenta-

tions. Subsequently, they completed questionnaires about their subjective experience of

stress, emotions and workload.

The following data were collected [34]:

• Computer Interactions: Detailed timestamped information about each computer

event was recorded by the computer logging software. Examples of these events include

mouse clicks, mouse scrolls, and application changes. Additionally, several relevant

characteristics of mouse, keyboard, and application interactions were computed per

minute.

• Facial Expressions: Extracted from the video for each timeframe using FaceReader

software, the dataset includes characteristics such as quality, estimates on the orien-

tation of the head, and some global features like looking direction and the activation

of several facial action units.

• Body Posture: Data were extracted from 3D Kinect recordings using the Kinect

SDK. By fitting the Kinect skeletal model, coordinates of all body joints per frame

were obtained. Additionally, standard deviations were calculated for each minute to

identify features indicating the amount of movement and changes in joint angles.

18

3.2. DATA PREPROCESSING

• Physiology (ECG and Skin Conductance): Raw and preprocessed ECG data

are provided. Heart rate and heart rate variability were calculated. Additionally,

raw skin conductance data were provided, and the average skin conductance level was

determined by averaging the raw signal per minute.

In total, the dataset contains 149 features and 2688 instances, annotated according to

the conditions under which they were collected. These features are summarized in Table

3.1.

Modality Feature type

Computer

interactions (18)

Mouse (7)

Keyboard (9)

Applications (2)

Facial expressions

(40)

Head orientation (3)

Facial movements (10)

Action Units (19)

Emotion (8)

Body postures (88) Distance (1)

Joint angles (10)

Bone orientations (3x11)

(as well as stdv of the above for amount of

movement (44))

Physiology (3) Heart rate (variability) (2)

Skin conductance (1)

Table 3.1: Overview of SWELL-KW Dataset Features [7].

To conclude, in our project we have focused on computer interactions only. These data,

captured through a logging tool, provide valuable information on keyboard and mouse

usage patterns, allowing us to analyze correlations between typing and cursor movement

behaviors, and stress levels experienced by participants.

3.2 Data Preprocessing

This section details the preprocessing process applied to the SWELL-KW ensemble data to

ensure that they are ready for model training.

19

CHAPTER 3. DATASETS AND MODEL DEVELOPMENT

This dataset provides a wide range of features, but for this project, we only selected

features related to computer interactions, 16 in total. These features were chosen based

on their relevance to user behavior patterns that could indicate stress levels. The selected

characteristics are listed in the Table 3.2.

Name Type Description

Mouse Activity Mouse Number of all MouseEvents

Left Clicks Mouse Number of left clicks

Right Clicks Mouse Number of right clicks

Double Clicks Mouse Number of double clicks

Mouse Wheel Mouse Number of mouse wheel actions

Dragged Mouse Number of dragged events

Mouse Distance Mouse Distance of mouse movements

KeyStrokes Keyboard Number of all KeyEvents

Shortcut Keys Keyboard Number of shortcut keys (Ctrl+c/x/v/z/s/a;

Shift+Tab)

Direction Keys Keyboard Number of direction keys (arrow left/right/up/down)

Characters Keyboard Number of characters (a-z)

Characters Ratio Keyboard #characters divided by #keyStrokes

Error Keys Keyboard Number of error keys (Backspace, Delete, Ctrl+Z)

Error Key Ratio Keyboard #errorKeys divided by (#characters + #spaces)

Special Keys Keyboard Number of special keys

Spaces Keyboard Number of spaces

Table 3.2: Mouse and Keyboard Features.

Once the features were selected, duplicate values were eliminated. Rows containing null

values (NaN) were also removed to maintain data integrity. This cleaning process ensured

that the data fed into the model was of high quality and representative of actual user

interactions.

A remarkable aspect of the data preprocessing was the transformation of the target

20

3.2. DATA PREPROCESSING

variable, the stress level presented as a decimal number. To adapt this to a binary clas-

sification, we used the median value of the stress levels, which is 2.8. Other studies have

applied similar binarization methods using the median [35]. However, in this case, we did

not binarize per participant since we only had three di↵erent stress values, one for each

condition. Instead, we chose to calculate the median of all the samples.

Therefore, we converted the stress measurements into a binary format where values

greater than or equal to 2.8 were assigned a ’1’, indicating a stressed user, and values below

2.8 were assigned a ’0’, indicating a non-stressed user.

This median-based binarization makes the dataset balanced, providing a clear threshold

that reflects the central tendency of stress levels within the dataset, ensuring that the

classification process remains robust and meaningful.

The Figure 3.1 shows the number of stressed and unstressed users after binarization,

clearly illustrating how this methodology has succeeded in balancing the classes within the

dataset. In addition, Figure 3.2 classifies the stress values into intervals of 0-1, 1-2, so on

up to 10, providing a detailed view of the original distribution of stress levels.

Comparing both figures, it can be seen that the original distribution of stress levels is

varied, but the median-based binarization simplifies this variability into a clear and balanced

binary classification. This balance is critical for the model to e↵ectively learn to distinguish

between the two conditions without preference for the more frequent class.

Figure 3.1: Users with and without Stress.

21

CHAPTER 3. DATASETS AND MODEL DEVELOPMENT

Figure 3.2: Number of Users by Stress Interval.

Continuing with the preprocessing, we performed two di↵erent approaches to prepare

the SWELL ensemble data. In the first case, we worked directly with the original features

extracted from the typing patterns and mouse movements without applying the Tsfresh

library. This approach kept the original 2657 samples, allowing us to evaluate the impact

of feature reduction on the model’s performance.

In the second case, we used the Tsfresh library to summarize the 2657 samples of the

dataset into 3 samples per user, corresponding to each of the experimental conditions:

neutral, time pressure, and interruptions. This approach allowed us to consolidate the

information into 75 rows, resulting in 25 users with one sample for each condition. As a

result, 12432 features were generated, including statistics such as median, mean, variance,

length, entropy, root mean square, standard deviation, minimum, and maximum for each

feature of the original dataset. The use of Tsfresh has been essential to increase the number

of statistical features derived from the original data, providing a more complete and detailed

description of user behavior patterns. This process not only improves the model’s ability to

capture the complex patterns and nuances of user behavior, but also increases the quality

of the data used to train the classification system. By extracting and summarizing a wide

range of features, Tsfresh allowed us to more accurately and reliably identify user stress

levels, significantly improving the accuracy and reliability of the stress detection model.

22

3.3. ARCHITECTURE

3.3 Architecture

We will explore the structure of a system specifically designed to analyze how user inter-

actions with the computer can be indicative of stress levels. This model leverages data

from keyboard and mouse usage, integrating advanced processing techniques to predict af-

fective states. We will detail the fundamental components of this model, highlighting their

functionality and how they collectively contribute to accurate stress detection.

The architecture of our model, Figure 3.3, unfolds through a series of clearly defined

stages that turn everyday interactions with the computer into stress indicators. It begins

with the collection of data on specific keyboard and mouse interactions. From this data,

features categorized into four groups are extracted:

• Keyboard interactions: This group includes all features derived from the user’s

activity with the keyboard. The characteristics include total number of keystrokes

(SnKeyStrokes), typed characters (SnChars), use of special keys (SnSpecialKeys), use

of directional keys (SnDirectionKeys), erroneous or correction keystrokes (SnErrorKeys)

and the use of keyboard shortcuts (SnShortcutKeys). These data provide valuable in-

formation about the user’s typing frequency, intensity, and accuracy, which may be

related to stress levels.

• Mouse events: This group covers user interactions with the mouse, such as total

mouse activity (SnMouseAct), left clicks (SnLeftClicked), right clicks (SnRightClicked),

double clicks (SnDoubleClicked), mouse wheel use (SnWheel), dragging (SnDragged)

and mouse distance traveled (SnMouseDistance). These characteristics may indicate

nervous or relaxed user behaviors during work sessions.

• Keystrokes Combinations: This group focuses on specific key combinations that

the user employs. For example, the use of space keys (SnSpaces), application changes

(SnAppChange), and tab focus changes (SnTabfocusChange). Analysis of these com-

binations may reveal patterns in keyboard usage that could correlate with stress.

• Ratio Calculations: This group includes the analysis of specific ratios derived from

the above interactions. For example, the proportion of typed characters (Charac-

tersRatio) and the proportion of erroneous keys (ErrorKeyRatio). These ratios help

to better understand how di↵erent forms of interaction relate to each other and can

provide more subtle indicators of user behavior under stress.

Depending on the approach, these features are either compiled directly into vectors or

further processed using the Tsfresh library. As illustrated in Figure 3.3, these compiled

vectors are used to feed a classification algorithm. The classifier evaluates the feature

23

CHAPTER 3. DATASETS AND MODEL DEVELOPMENT

vectors and generates a prediction, determining whether the user is under stress based on

the patterns identified during training.

This dual approach allows us to compare the e↵ectiveness of raw versus extracted fea-

tures in accurately predicting stress levels.

Figure 3.3: General architecture representation of the proposed method.

3.4 Algorithms

We will describe the selected machine learning algorithms for stress detection based on

computer interactions. Each algorithm will be covered in detail in its own subsection, pro-

viding insights into both the theoretical foundations they are built upon and their practical

implementation.

3.4.1 Logistic Regression

For the project, we have decided to focus on the use of Logistic Regression (LR) as the main

algorithms. This type of statistical model (also known as a logit model) is a Machine Learn-

ing classification algorithm that is used to predict the probability of certain classes based

on some dependent variables [36, 37]. In simple terms, the logistic regression algorithms

computes a sum of the input features and calculates the logistic of the result.

The sigmoid function, central to logistic regression, transforms any real value into an-

other within the range 0 to 1, which facilitates its interpretation as a probability. This

function has an ”S” shape and is mathematically defined as:

24

3.4. ALGORITHMS

f(x) =
1

1 + e�x
(1)

where x is the weighted sum of the input features.

The logistic regression output always falls between 0 and 1, making it ideal for binary

classification tasks. A higher output value indicates a higher probability that the given

sample belongs to class=1, and a lower value suggests the opposite.

Continuing with the explanation of logistic regression, it is useful to compare it with

linear regression to highlight their specific di↵erences and applications. The main di↵erence

between the two models lies in the objective function they use and the type of output they

produce. The following graph, Figure 3.4, visually clarifies these fundamental di↵erences,

especially in how each model handles the relationship between the independent variables

and the dependent variable.

Figure 3.4: Linear Regression vs Logistic Regression [3].

3.4.2 XGBoost

XGboost [4], a scalable tree boosting system, was introduced by Chen et al. [38]. It is

essentially an enhanced gradient boosting algorithm that uses the training set to predict

future changes and trends in target variables. The core idea of XGBoost is to build multiple

Classification and Regression Trees (CART). Each tree makes predictions independently,

and the final prediction is obtained by combining the results of all trees. This model uses

decision trees as base learners, constructing multiple weak learners and then training the

model continuously along the gradient descent direction. The structure of the model is

illustrated in Figure 3.5.

25

CHAPTER 3. DATASETS AND MODEL DEVELOPMENT

Figure 3.5: The structure of the XGBoost algorithm [4].

The mechanism of XGBoost involves adding and training new trees to fit the residual er-

rors from the previous iteration. A predicted value is assigned to each instance by summing

all corresponding leaf scores:

ŷi =
Xk

k=1
fk (xi) , fk = F (2)

where k represents a tree of the decision tree, fk is an independent function in the

function space, and F is the function space defined by:

F =
�
f (x) = wq(x)

(3)

In this equation, q(x) indicates that the sample x is assigned to a leaf node, and w is

the leaf node weight.

The objective function of the XGBoost algorithm consists of two parts: the training

loss, which measures the di↵erence between the predicted and actual values, and the reg-

ularization term, which helps prevent overfitting and controls the model complexity. The

26

3.4. ALGORITHMS

objective function is given by:

L (�) =
X

i
l (ŷi, yi) +

X
k
⌦ (fk) (4)

⌦ (f) =⌥T +
1

2
� ||!||2 (5)

To minimize the objective function and set its derivative to zero, the weight of each leaf

node is:

!⇤
j = �

P
i✏Ij

gi

P
i✏Ij

hi + �
(6)

Based on this, the steps to construct the XGBoost prediction model are as follows:

1. Initialize the model and construct a sub-prediction model in each iteration.

2. Before each iteration, calculate the first derivative gi and the second derivative hi of

the loss function at each training sample point.

3. Generate a new decision tree and calculate the corresponding prediction value of each

leaf node as shown in Figure 3.5

4. After each iteration, the newly generated model is added to the previous model. After

several rounds of iteration, the final prediction model is obtained.

3.4.3 CatBoost

CatBoost is a gradient boosting library specifically designed to handle categorical data.

This advanced machine learning method improves upon the traditional gradient boosting

decision tree (GBDT) by addressing challenges such as noisy data, heterogeneous features,

and complex dependencies [5]. CatBoost excels in managing categorical features e↵ectively.

Typically, the traditional GBDT algorithm replaces categorical features with their corre-

sponding average label values, known as Greedy Target-based Statistics (Greedy TBS). The

GTBS is defined as follows:

Pp
j=1[xj,k = xi,k]YiPp
j=1[xj,k = xi,k]

(7)

Features usually contain more information than labels. If average label value is forcefully

used to represent features, it can lead to a conditional shift. CatBoost addresses this by

adding an initial value to Greedy TBS. Given a dataset of observations D = Xi, Yi I = 1,

27

CHAPTER 3. DATASETS AND MODEL DEVELOPMENT

. . . , n, and a permutation = (1, . . . , n), xp,k is substituted with:

Pp�1
j=1[x�(j,k) = x�(p,k)]Yi + aP
Pp�1

j=1[x�(j,k) = x�(p,k)] + a
(8)

where p is a prior value and a is the weight of the prior value. This method helps reduce

noise from low-frequency categories. CatBoost integrates multiple categorical features by

greedily combining all categorical features and their interactions in the current tree with all

categorical features in the dataset, as shown in Figure 3.6. Additionally, CatBoost addresses

gradient bias found in traditional GBDT by using a method called ordered boosting, which

alters gradient estimation in the classic algorithm. This technique mitigates prediction shift

caused by gradient bias and enhances the model’s generalization ability.

Figure 3.6: The structure of the CatBoost algorithm [5].

28

CHAPTER4
Evaluation

This chapter sets the context for the evaluation of the classification models developed, pre-

senting the main metrics and describing in detail the results obtained. It focuses on the

interpretation and assessment of the performance of the models under various key metrics,

providing a comprehensive evaluation.

29

CHAPTER 4. EVALUATION

4.1 Metrics

In the metrics section of this chapter, we will discuss the key criteria used to evaluate the

e↵ectiveness of the classification models used in our project.

In our case, we are dealing with a binary classification problem to detect whether certain

mouse and keyboard dynamics may be indicators of stress or have potential as predictors

of stress level. We will use specific metrics, as our goal is to determine the presence or ab-

sence of stress in individuals, categorizing each instance into one of two possible conditions:

stressed or not stressed.

Before detailing the specific metrics, it is essential to introduce the confusion matrix

(Figure 4.1), a powerful tool for visualizing the performance of a classification model. The

confusion matrix provides a summary of the correct and incorrect classifications made by

the model compared to the actual observed results. This matrix not only allows us to

see how many predictions were correct, but also to identify where and how the model is

wrong. It is particularly useful for understanding the relationship between true positives

(TP), true negatives (TN), false positives (FP) and false negatives (FN), which are critical

for calculating the various performance metrics.

To better understand these concepts, let’s define each component of the confusion ma-

trix:

• True Positive (TP): is predicted as True and is True in reality. This value represents

the cases in which the model was correct in identifying a positive condition.

• True Negative (TN): is predicted as False and is False in reality. This value in-

dicates the cases in which the model was correct in identifying a negative condition

correctly.

• False Positive (FP): is predicted as True and False in reality. This value points out

the errors of the model where it incorrectly identified a positive condition when it was

actually negative.

• False Negative (FN): is predicted as False and is True in reality. This value shows

the errors of the model where it failed to identify a positive condition, incorrectly

classifying it as negative.

30

4.1. METRICS

Figure 4.1: Confusion matrix [6].

We will detail each of the following metrics: precision, recall, F1-score, accuracy, macro

average, and weighted average. These metrics are fundamental to understanding not only

the overall e�ciency of the models but also their ability to handle unbalanced classes and

their performance in di↵erent aspects of classification. This detailed understanding of the

metrics will allow us to select and adjust models that are not only accurate, but also fair

and equitable in their predictions.

• Precision: measures the ratio of correct positive predictions to the total number of

positive predictions made [39, 40].

Precision =
TP

TP + FP
(9)

Where TP is the number of True Positives and FP is the number of False Positives.

• Recall: measures the ratio of correct positive predictions to the total actual posi-

tives [39, 40].

Recall =
TP

TP + FN
(10)

Where TP is the number of True Positives and FN is the number of False Negatives.

• F1-Score: calculates the harmonic mean of precision and recall, providing a balance

between the two [39, 40].

F1� Score =
TP

TP + 1
2(FP + FN)

(11)

It is especially useful when seeking a balance between Precision and Recall.

31

CHAPTER 4. EVALUATION

• Accuracy: computes a global average F1 score by summing the True Positives (TP),

False Negatives (FN), and False Positives (FP) [40].

• Macro average: computes the arithmetic mean (also known as unweighted mean)

of all per-class F1 scores [40].

• Weighted average: calculates the mean of all per-class F1 scores, considering each

class’s support [40].

4.2 Results

In this section, we present the results obtained from the experiments conducted on the

collected and preprocessed data. The experiments were conducted using various machine

learning classification techniques to evaluate their e↵ectiveness in detecting stress through

user interactions with the computer. Features extracted from typing patterns and mouse

movements were used to train and test the models. The results are analyzed against several

performance metrics, including precision, recall, and F1 score, providing a comprehensive

view of the models’ ability to correctly identify stress levels. This critical evaluation allows

for a better understanding of the strengths and limitations of each approach, as well as their

applicability in real-world contexts.

We evaluated the XGBoost, CatBoost, and Logistic Regression models to analyze their

ability to predict stress. The results are presented for two di↵erent cases: one without using

the tsfresh library for feature extraction and the other using it. This comparison will allow

us to understand the impact of feature extraction with tsfresh on the performance of the

models and their ability to detect stress levels in users.

In all the experiments performed, we evaluated the three models using StandardScaler

pipelines and cross-validation. To ensure consistency and robustness of the results, we

implemented the stratified KFold cross-validation method (StratifiedKFold) with 10 splits

(n splits=10), a random seed of 42 (random state=42) and with data shu✏ing (shu✏e=True).

This approach allows us to systematically and fairly evaluate model performance, ensuring

that each validation iteration includes a balanced representation of stress and non-stress

classes.

We have conducted several experiments to evaluate the two stress detection approaches.

In the first case, we used the original features extracted directly from mouse typing patterns

and movements, without applying additional feature extraction techniques. Experiments in

this case included hyperparameter optimization using GridSearchCV and feature selection

using RFECV to improve model performance.

In the second case, we applied the tsfresh library to increase the number of extracted

32

4.2. RESULTS

features, generating a more detailed dataset. This approach was mainly evaluated in the

last experiment, which combined hyperparameter optimization and feature selection, to

observe performance improvements.

4.2.1 Case 1

4.2.1.1 Baseline

In this first experiment we used all the features of the SWELL dataset and the results are

shown in Table 4.1.

Model Precision Recall F1-Score

XGB 0.55 0.55 0.55

CAT 0.58 0.58 0.58

LR 0.55 0.55 0.55

Table 4.1: Summary of overall performance metrics by model (4.2.1.1)

Figure 4.2: Confusion Matrix XGB Figure 4.3: Confusion Matrix CAT

Figure 4.4: Confusion Matrix LR

In this experiment the performance metrics showed that CAT is the most e↵ective model

33

CHAPTER 4. EVALUATION

in terms of precision, recall and F1-Score. The confusion matrices (Figures 4.2, 4.3 and 4.4)

reinforced these results, showing that CAT handles correct predictions better and reduces

classification errors compared to XGB and LR.

4.2.1.2 Hyperparameters Optimization for Di↵erent Classification Models Using Grid-

SearchCV

In this experiment, we optimized the hyperparameters of the di↵erent models using Grid-

SearchCV to improve stress prediction. GridSearchCV identified the best hyperparameters.

The results show that the optimization significantly improved the performance of the models

in stress detection, as detailed in the corresponding table.

Model Precision Recall F1-Score

XGB 0.57 0.57 0.57

CAT 0.59 0.59 0.59

LR 0.59 0.59 0.59

Table 4.2: Summary of overall performance metrics by model (4.2.1.2)

Figure 4.5: Confusion Matrix XGB Figure 4.6: Confusion Matrix CAT

Figure 4.7: Confusion Matrix LR

34

4.2. RESULTS

In the second experiment, all models showed improvements in their performance metrics

compared to the first experiment. CAT and LR emerged as the best performing models,

each achieving values of 0.59 in precision, recall and F1-Score. XGB also demonstrated a

marked improvement, with all metrics achieving 0.57. The confusion matrices (Figures 4.5,

4.6 and 4.7) support these results, showing that both CAT and LR significantly reduced

false negatives and false positives. XGB, although improved, still exhibited more classifi-

cation errors compared to CAT and LR. In conclusion, optimization of the models using

GridSearchCV resulted in an overall improvement in performance.

4.2.1.3 Feature Selection and Model Evaluation Using RFECV

In this experiment, we apply feature reduction techniques to improve model performance

and reduce training time. We use Recursive Feature Elimination with Cross Validation

(RFECV) to iteratively select the most relevant features. We evaluated all three models,

configuring di↵erent feature elimination steps for each model. The results detailed in the

corresponding table.

Model Precision Recall F1-Score

XGB 0.55 0.55 0.55

CAT 0.58 0.58 0.58

LR 0.55 0.55 0.55

Table 4.3: Summary of overall performance metrics by model (4.2.1.3)

35

CHAPTER 4. EVALUATION

Figure 4.8: Confusion Matrix XGB Figure 4.9: Confusion Matrix CAT

Figure 4.10: Confusion Matrix LR

Experiment 4.2.1.3, which involved feature selection by RFECV, showed that CAT stood

out slightly above the others with values of 0.58 in precision, recall and F1-Score, while XGB

and LR achieved values of 0.55 in all metrics. The confusion matrices (Figures 4.8, 4.9 and

4.10) confirm these results, indicating that CAT handles correct predictions better and

reduces classification errors compared to XGB and LR. In summary, although all models

showed good performance, CAT proved to be the most e↵ective in this experiment.

4.2.1.4 Combined Hyperparameter Optimization and Feature Selection Using Grid-

SearchCV and RFECV

In this experiment, we combine the features selected by RFECV in Experiment 4.2.1.3

with hyperparameter optimization using GridSearchCV for the three models. We accessed

previously selected features and performed GridSearchCV to adjust the hyperparameters.

This combination allowed us to find the best configuration for each model. The results

indicate that this strategy significantly improved the performance of the models in predicting

stress, as shown in the corresponding table.

36

4.2. RESULTS

Model Precision Recall F1-Score

XGB 0.57 0.57 0.57

CAT 0.59 0.59 0.59

LR 0.55 0.55 0.55

Table 4.4: Summary of overall performance metrics by model (4.2.1.4)

Figure 4.11: Confusion Matrix XGB Figure 4.12: Confusion Matrix CAT

Figure 4.13: Confusion Matrix LR

The analysis of Experiment 4.2.1.4 reveals improvement in performance metrics. CAT

continued to be the most e↵ective model, achieving values of 0.59 in precision, recall and

F1-Score. XGB showed moderate improvement with a value of 0.57 in all metrics, while LR

achieved values of 0.55. The confusion matrices (Figures 4.14, 4.15 and 4.16) showed that

CAT achieved a notable reduction in false positives and false negatives, showing a superior

balance in classification compared to XGB and LR. In conclusion, the application of feature

selection and hyperparameter optimization techniques resulted in an overall improvement

in performance, consolidating CAT as the most robust model for stress detection.

37

CHAPTER 4. EVALUATION

To provide a complete comparison of the results obtained in the four experiments, the

performance metrics for each model are summarized in the following table. This table

highlights the precision, recall and F1-Score of XGBoost (XGB), CatBoost (CAT) and

Logistic Regression (LR) across all experiments.

Experiment Algorithm Precision Recall F1-Score

XGB 0.55 0.55 0.55

Baseline CAT 0.58 0.58 0.58

LR 0.55 0.55 0.55

XGB 0.57 0.57 0.57

Hyperparameter Optimization CAT 0.59 0.59 0.59

LR 0.59 0.59 0.59

XGB 0.55 0.55 0.55

Feature Selection CAT 0.58 0.58 0.58

LR 0.55 0.55 0.55

XGB 0.57 0.57 0.57

Combination CAT 0.59 0.59 0.59

LR 0.55 0.55 0.55

Table 4.5: Comparison of Experimental Results

Throughout the four experiments, notable improvements in the performance of the stress

detection models were observed. Initially, in the Baseline (4.2.1.1) experiment, CatBoost

(CAT) proved to be the most e↵ective model, outperforming both Logistic Regression (LR)

and XGBoost (XGB). In the Hyperparameter Optimization (4.2.1.2) experiment, all models

showed performance improvements, with CAT again leading the way. The Feature Selection

(4.2.1.3) experiment, which incorporated feature selection with RFECV, maintained CAT’s

superiority with consistent values. Finally, in the Combination (4.2.1.4) experiment, CAT

continued to excel with a performance score. In conclusion, throughout all experiments,

CAT proved to be the most e↵ective model in stress detection, benefiting particularly from

hyperparameter optimization and feature selection techniques. This combination signifi-

38

4.2. RESULTS

cantly improved the model’s capability, consolidating CAT as the most robust model for

stress prediction in our study.

4.2.2 Case 2

In this case, we have decided to apply the tsfresh library only in the last experiment. This

decision is based on the observation that the improvement in results is more remarkable

when advanced feature extraction techniques are used in later stages of the modeling process.

By incorporating tsfresh in the last experiment, we were able to capture more complex

patterns and trends in the data, resulting in a significant increase in model performance for

stress detection.

4.2.2.1 Combined Hyperparameter Optimization and Feature Selection Using Grid-

SearchCV and RFECV

In this experiment, we combine the features selected by RFECV in Experiment 4.2.1.3 with

hyperparameter optimization using GridSearchCV for the three models. We used pipelines

with StandardScaler and configured model-specific hyperparameter ranges. We accessed

previously selected features and performed GridSearchCV with 10-fold cross-validation to

adjust the hyperparameters. This combination allowed us to find the best configuration for

each model. The results indicate that this strategy significantly improved the performance

of the models in predicting stress, as shown in the corresponding table.

Model Precision Recall F1-Score

XGB 0.92 0.92 0.92

CAT 0.82 0.81 0.81

LR 0.65 0.64 0.64

Table 4.6: Summary of overall performance metrics by model (4.2.2.1)

39

CHAPTER 4. EVALUATION

Figure 4.14: Confusion Matrix XGB Figure 4.15: Confusion Matrix CAT

Figure 4.16: Confusion Matrix LR

The analysis of Experiment 4 reveals a significant improvement in performance metrics.

XGBoost (XGB) showed outstanding performance with an precision, recall and F1-Score of

0.92, clearly standing out from the other models. CatBoost (CAT) also improved, reaching

values of 0.82 in precision and 0.81 in recall and F1-Score. On the other hand, Logistic

Regression (LR) had the lowest performance with values of 0.65 in precision and around

0.64 in recall and F1-Score. The confusion matrices (Figures 4.14, 4.15 and 4.16) highlighted

that XGB managed to minimize classification errors, while CAT and LR presented more

errors. In summary, the combination of feature selection and hyperparameter optimization

significantly favored XGB, consolidating it as the most e↵ective model for stress prediction

in this experiment.

40

CHAPTER5
Conclusions

This chapter closes the analysis of the project, summarizing the main findings and highlight-

ing the most important contributions of the study. The implications of the results obtained

are explored, emphasizing their relevance in the context of the development of stress detec-

tion tools and the improvement of personal and occupational well-being. In addition, the

problems faced during the development of the project are discussed, providing a comprehen-

sive overview of the challenges and how they were addressed.

41

CHAPTER 5. CONCLUSIONS

5.1 Conclusion

In this work, we have explored and developed classification models for stress detection using

user-computer interactions. Our main objective was to compare di↵erent classification tech-

niques and optimize their performance in accurate stress detection using Machine Learning

and User Behavior Analysis techniques.

In today’s digital era, stress related to work and continuous use of electronic devices has

increased significantly. Identifying and managing stress is crucial to improve the well-being

and productivity of individuals. However, accurate and non-intrusive detection of stress

remains a challenge. This project advances the creation of a system capable of predicting

stress using data from typing patterns and mouse movements.

The process began with a comprehensive review of the state of the art to identify the

most e↵ective methodologies and most promising classification techniques in the field of

stress detection. Then, we acquired and preprocessed the SWELL dataset, which provided

a solid basis for training and evaluating our models.

For feature extraction, we employed two di↵erent approaches: one without the use of

the tsfresh library and one using tsfresh to increase the number of features. The tsfresh

library was used to increase the number of extracted features, providing a total of 12432

advanced features. This allowed a better representation of the data, focusing on the most

significant aspects influencing stress perception.

Subsequently, experiments were carried out using various classification models, includ-

ing XGBoost, CatBoost and Logistic Regression, evaluating their performances using a

variety of key metrics. The models were optimized through feature selection and hyperpa-

rameter optimization techniques, using methods such as RFECV and GridSearchCV. These

techniques allowed us to identify the most e�cient configurations for each model.

The results showed significant performance improvements, especially when feature se-

lection and hyperparameter optimization were combined. In the approach without tsfresh,

the best model was CatBoost, which achieved an precision, recall and F1-Score of 0.59. On

the other hand, in the approach using tsfresh, the best model was XGBoost, achieving an

precision, recall and F1-Score of 0.92 .

In conclusion, this project has demonstrated the feasibility and e↵ectiveness of using ma-

chine learning models for stress detection through computer interactions. The combination

of feature selection and hyperparameter optimization techniques has significantly improved

the performance of the models. The comparison of the two approaches has provided insight

into the positive impact of feature extraction with tsfresh on the detection of stress levels

in users, suggesting that the increase in the number of features can lead to an improvement

in the precision and reliability of the classification models. The results obtained provide

42

5.2. ACHIEVED GOALS

a solid foundation for future research and applications, with the potential to contribute

significantly to the improvement of well-being and mental health in the work environment.

5.2 Achieved goals

This section presents the objectives achieved in the development of the project, which aimed

to create a stress detection system based on the user’s interactions with the computer.

• State-of-the-Art Review to Analyze Current Solutions

A comprehensive review of the state of the art in stress detection techniques was con-

ducted, investigating the most recent and relevant ones. Approaches and classification

models used in previous studies were analyzed, identifying the most e↵ective strategies

and evaluating the advantages, limitations and challenges of current solutions. The

review focused especially on non-intrusive methods, providing a solid foundation for

the development of the project.

• Preprocessing of the Datasets

The datasets were thoroughly preprocessed to remove elements that could adversely

a↵ect subsequent analysis. Duplicate and null values were removed, and the labels of

the datasets were checked and balanced. In addition, the Tsfresh library was used to

generate advanced features, consolidating the samples into a structure that improves

computational e�ciency and data quality.

• Machine Learning Model Design

Several machine learning techniques were applied to the datasets, developing mod-

els capable of detecting stress based on the available features. Algorithms such as

XGBoost, CatBoost and Logistic Regression were designed and evaluated, optimiz-

ing their hyperparameters and selecting the most relevant features using advanced

techniques such as RFECV and GridSearchCV.

• Evaluation and Experimentation

The performance of the models was thoroughly validated and evaluated through con-

trolled experiments. The models were subjected to cross-validation processes and key

performance metrics such as precision, recall and F1-score were used to evaluate their

e�cacy. The results showed significant improvements in performance, with the XG-

Boost model standing out especially after the combination of feature selection and

hyperparameter optimization.

43

CHAPTER 5. CONCLUSIONS

5.3 Problems Faced

In this section, we will discuss the main problems and challenges encountered during the

development of the project. These problems range from technical issues related to data

collection and preprocessing to di�culties in the optimization and evaluation of the machine

learning models. Some of the most significant problems encountered are detailed below.

• Availability of Combined Datasets

One of the most significant problems we faced was the lack of datasets that combined

mouse and keyboard interactions. In many research articles, although studies on

these interactions were mentioned, the datasets used were not provided publicly due

to privacy concerns. This limitation made it di�cult to obtain the data needed to

develop and train our stress detection models. However, we managed to find the

SWELL dataset, which includes both mouse and keyboard interactions, and decided

to use it for this project. This dataset turned out to be fundamental to be able to

carry out our experiments and validate our models e↵ectively.

• Balancing classes in the Dataset

Class balancing was another significant challenge during project development. The

original dataset had an unbalanced distribution of stress classes, which could bias

the machine learning models toward the majority class. To address this problem,

we applied a binarization technique based on the median stress levels, which allowed

balancing the classes in the dataset. Proper balancing of classes is crucial for models

to learn in a fair and equitable manner, and to ensure that predictions are accurate

and reliable for both stress classes.

• Model Training Time

Another significant problem we encountered was the amount of time the models took

to generate results. When using Tsfresh to extract features, we obtained 12432 fea-

tures, which increased the computational load considerably. Training the models with

so many features caused very long training times and, in some cases, even brought the

Jupyter Notebook kernel to a halt. This situation forced us to consider dimensionality

reduction and code optimization techniques to e�ciently handle the large volume of

data and ensure that training the models was more manageable and e↵ective.

44

5.4. FUTURE WORK

5.4 Future Work

This section focuses on possible improvements and extensions that can be made to the

current work. Some relevant tasks that could be addressed in the future are presented

below.

One important task would be the creation of new datasets. The lack of combined

datasets that include both keyboard and mouse interactions has been a significant limitation

in this study. Developing new datasets that collect these data in more detail and in a variety

of work contexts would improve the generalization and robustness of stress detection models.

Another essential task would be to allow users to verify whether the model’s prediction

of their stress level is correct or not. This direct feedback would not only improve the

precision of the model, but also increase the user’s confidence in the system. In addition,

this information could be used to adjust and customize models based on user feedback.

A possible extension of the current work could be the use of other non-intrusive tech-

niques for stress detection. Techniques such as tone of voice evaluation, or passive moni-

toring through wearable devices could complement the data obtained from computer inter-

actions and provide a more complete picture of the user’s stress state.

In addition, it would be beneficial to improve existing models. Although the results ob-

tained have been promising, increasing performance and obtaining better results is crucial

to provide more e↵ective tools. Experimenting with neural network architectures, such as

recurrent neural networks (RNNs) and convolutional neural networks (CNNs), as well as

implementing ensemble approaches, could lead to significant improvements and generaliz-

ability of models.

These directions for future work have the potential to significantly advance the precision

and utility of stress detection systems, providing more e↵ective and reliable tools for the

well-being of users in occupational and academic settings.

45

CHAPTER 5. CONCLUSIONS

46

APPENDIXA
Impact of the project

This section explores the multifaceted impact of our project on several domains, focusing

specifically on the social, economic, and ethical aspects. Understanding these impacts is

crucial to appreciating the broader implications of implementing stress detection models

based on computer interactions. The analysis will provide a complete picture of how the

project can influence society, generate economic benefits, and address ethical considerations.

i

APPENDIX A. IMPACT OF THE PROJECT

A.1 Social impact

Given the growing concern for health and well-being in the workplace, this work o↵ers a

non-intrusive and e↵ective tool to identify and prevent stress among workers.

The implementation of machine learning models that analyze typing patterns and mouse

movements provides an innovative solution to improve the quality of life of employees.

By facilitating early detection of stress, companies can take proactive measures to reduce

workload, improve working conditions, and promote a healthier and more productive work

environment.

In addition, the use of accessible and low-cost technologies allows this tool to be imple-

mented in a wide variety of settings, from small businesses to large corporations, promoting

equity and mental health care in the workplace.

A.2 Economic impact

This work not only improves the health and well-being of employees, but also has the

potential to generate significant economic benefits for companies.

Implementing machine learning models that analyze computer interactions can help

organizations identify and mitigate factors that contribute to workplace stress. By reducing

stress levels, absenteeism rates can be reduced, productivity can be improved, and costs

associated with stress-related health problems can be reduced.

In addition, the use of accessible and low-cost technologies allows even small and medium-

sized companies to implement this tool without prohibitive costs. This promotes equity in

mental health care in the workplace, allowing more companies to access advanced solutions

for the well-being of their employees.

On the other hand, the investment in human and physical resources for the development

and implementation of this project is justified by the long-term benefits to be gained.

The initial cost of development, which includes the acquisition of datasets, computational

infrastructure and training of personnel in machine learning techniques, will be o↵set by

reduced operating costs and increased organizational e�ciency.

A.3 Ethical impact

Our work focuses on stress detection through user interaction with the computer, which

involves the handling of personal and potentially sensitive data. It is crucial to ensure

the privacy and confidentiality of these data, adopting strict security and anonymization

measures to protect the identity of the participants.

ii

A.3. ETHICAL IMPACT

The use of advanced technologies such as artificial intelligence and machine learning

in this context raises important ethical issues related to transparency and fairness. It is

essential that the algorithms used are transparent and understandable, avoiding any bias

that may discriminate against certain groups of users. Transparency in methodology and

results ensures that the use of these technologies is fair and equitable.

In addition, it is essential that the tools are used responsibly, avoiding any misuse that

may result in invasion of privacy or non-consensual monitoring of employees.

iii

APPENDIX A. IMPACT OF THE PROJECT

iv

APPENDIXB
Economic budget

This section will detail the economic budget of the project, breaking down the physical

and human resources used. The costs associated with the equipment and tools used will be

analyzed, as well as the expenses derived from the participation of the personnel involved

in the development of the project. Finally, the total economic budget will be presented,

providing a clear and complete view of the financial resources required to carry out the

project.

v

APPENDIX B. ECONOMIC BUDGET

B.1 Physical resources

In order to carry out this project, various physical resources have been required that have

been essential for the implementation and development of the stress detection models. These

resources include both hardware and specialized software that have allowed the collection,

storage, processing and analysis of huge volumes of data. The main physical resources used,

as well as their respective costs, are detailed below.

• High-Performance Computer: 1500€ - 2500€

• Data Analysis Software such as Python or Anaconda [41, 42]: Free

• Cloud Services (AWS or Google Cloud) [43, 44]: 100€ - 500€ per month

• Data Input Devices (Quality Keyboard and Mouse): 50€ - 100€

B.2 Human resources

In addition to the physical and technological resources, a highly trained and specialized

team is also required. The human resources involved in the development of the project

are detailed below, highlighting the time and e↵ort dedicated to achieve the objectives set.

These professionals have been fundamental to ensure the quality and success of the project,

contributing their experience and knowledge in several key areas.

• Personnel cost: 300 hours x 13,80€ (Price per hour [45]).

vi

B.3. TOTAL BUDGET

B.3 Total budget

Resource Quantity Price per unit(€) Total price(€)

High-Performance Computer 1 2000 4000

Data Analysis Software 1 0 0

Cloud Services 1 year 3000 3000

Data Input Devices 2 100 200

Personnel cost 300 hours 15.38 4614

Total 11814

Table B.1: Total estimated budget

vii

APPENDIX B. ECONOMIC BUDGET

viii

Bibliography

[1] DatabaseCamp. Reinforcement learning. Accessed: April 5, 2024.

[2] Maximilian Christ, Nils Braun, Julius Neu↵er, and Andreas W. Kempa-Liehr. Time series

feature extraction on basis of scalable hypothesis tests (tsfresh – a python package). Neuro-

computing, 307:72–77, 2018.

[3] DataCamp. Understanding logistic regression in python, 2024.

[4] Xiaotong Yao, Xiaoli Fu, and Chaofei Zong. Short-term load forecasting method based on

feature preference strategy and lightgbm-xgboost. IEEE Access, 10:75257–75268, 2022.

[5] Shihab Ahmad Shahriar, Imrul Kayes, Kamrul Hasan, Mahadi Hasan, Rashik Islam, Nor-

rimi Rosaida Awang, Zulhazman Hamzah, Aweng Eh Rak, and Mohammed Abdus Salam.

Potential of arima-ann, arima-svm, dt and catboost for atmospheric pm2. 5 forecasting in

bangladesh. Atmosphere, 12(1):100, 2021.

[6] Towards AI. Deep understanding of confusion matrix. 2024.

[7] Saskia Koldijk, Mark A Neerincx, and Wessel Kraaij. Detecting work stress in o�ces by

combining unobtrusive sensors. IEEE Transactions on a↵ective computing, 9(2):227–239, 2016.

[8] American Psychological Association. Stress: Concepts, Definition, and History, Unknown.

Accessed on: January 20, 2024.

[9] University of York. Occupational Stress: Definition, Types, Causes Management.

[10] World Health Organization (WHO). Occupational health: Stress at the workplace, 2020.

[11] Harvard Health Publishing. Understanding Chronic Stress.

[12] Simply Psychology. Causes of work stress.

[13] Sabine Sonnentag and Michael Frese. Stress in organizations. In Walter C. Borman, Daniel R.

Ilgen, and Richard J. Klimoski, editors, Handbook of Psychology: Industrial and Organizational

Psychology, volume 12, pages 453–491. John Wiley Sons, Hoboken, NJ, 2003.

[14] Daniel C. Ganster and Christopher C. Rosen. Work stress and employee health: A multidisci-

plinary review. Journal of Management, 39(5):1085–1122, 2013.

[15] Davide Carneiro, Paulo Novais, Juan Carlos Augusto, and Nicola Payne. New methods for

stress assessment and monitoring at the workplace. IEEE Transactions on A↵ective Computing,

10(2):237–254, 2019.

ix

BIBLIOGRAPHY

[16] Yasin Sinan Can, Negin Chalabianloo, Duygu Ekiz, and Cem Ersoy. Continuous stress detection

using wearable sensors in real life: Algorithmic programming contest case study. Sensors,

19(8):1849, 2019.

[17] Thelma Androutsou, Spyridon Angelopoulos, Evangelos Hristoforou, George K Matsopou-

los, and Dimitrios D Koutsouris. Automated multimodal stress detection in computer o�ce

workspace. Electronics, 12(11):2528, 2023.

[18] Mara Naegelin, Raphael P Weibel, Jasmine I Kerr, Victor R Schinazi, Roberto La Marca,

Florian von Wangenheim, Christoph Hoelscher, and Andrea Ferrario. An interpretable machine

learning approach to multimodal stress detection in a simulated o�ce environment. Journal of

Biomedical Informatics, 139:104299, 2023.

[19] Lucia Pepa, Antonio Sabatelli, Lucio Ciabattoni, Andrea Monteriu, Fabrizio Lamberti, and

Lia Morra. Stress detection in computer users from keyboard and mouse dynamics. IEEE

Transactions on Consumer Electronics, 67(1):12–19, 2020.

[20] David Sun, Pablo Paredes, and John Canny. Moustress: detecting stress from mouse motion.

In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 61–70,

2014.

[21] Amir Muaremi, Bert Arnrich, and Gerhard Tröster. Towards measuring stress with smartphones

and wearable devices during workday and sleep. BioNanoScience, 3:172–183, 2013.

[22] Javier Hernandez, Pablo Paredes, Asta Roseway, and Mary Czerwinski. Under pressure: sens-

ing stress of computer users. In Proceedings of the SIGCHI conference on Human factors in

computing systems, pages 51–60, 2014.

[23] Gopinath Rebala, Ajay Ravi, Sanjay Churiwala, Gopinath Rebala, Ajay Ravi, and Sanjay

Churiwala. Machine learning definition and basics. An introduction to machine learning, pages

1–17, 2019.

[24] Iqbal H Sarker. Machine learning: Algorithms, real-world applications and research directions.

SN computer science, 2(3):160, 2021.

[25] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[26] Rachel Wol↵. 5 types of classification algorithms in machine learning, August 2020.

[27] Python Software Foundation. Python Essays.

[28] Sloan Kelly and Sloan Kelly. What is python? Python, PyGame and Raspberry Pi Game

Development, pages 3–5, 2016.

[29] Wes McKinney and PD Team. Pandas-powerful python data analysis toolkit. Pandas—Powerful

Python Data Analysis Toolkit, 1625, 2015.

[30] Ivan Idris. NumPy: Beginner’s Guide. Packt Publishing Ltd, 2015.

[31] Kevin Jolly. Machine learning with scikit-learn quick start guide: classification, regression, and

clustering techniques in Python. Packt Publishing Ltd, 2018.

x

BIBLIOGRAPHY

[32] GSIC-EMIC, Universidad Politécnica de Madrid. Introduction to Scikit-Learn, 2022.

[33] TSFresh Developers. TSFresh Documentation: Introduction.

[34] Saskia Koldijk, Maya Sappelli, Suzan Verberne, Mark A Neerincx, and Wessel Kraaij. The

swell knowledge work dataset for stress and user modeling research. In Proceedings of the 16th

international conference on multimodal interaction, pages 291–298, 2014.

[35] Varun Mishra, Tian Hao, Si Sun, Kimberly N Walter, Marion J Ball, Ching-Hua Chen, and

Xinxin Zhu. Investigating the role of context in perceived stress detection in the wild. In Pro-

ceedings of the 2018 ACM International Joint Conference and 2018 International Symposium

on Pervasive and Ubiquitous Computing and Wearable Computers, pages 1708–1716, 2018.

[36] IBM. Logistic regression, 2024.

[37] S. Jessica. How Does Logistic Regression Work? KDnuggets.

https://www.kdnuggets.com/2022/07/logistic-regression-work.html.

[38] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. 2016.

[39] Hercules Dalianis and Hercules Dalianis. Evaluation metrics and evaluation. Clinical Text

Mining: secondary use of electronic patient records, pages 45–53, 2018.

[40] Kenneth Leung. Micro, macro & weighted averages of f1 score, clearly explained. Towards Data

Science, 4, 2022.

[41] Anaconda. Anaconda, 2023.

[42] Python Software Foundation. Python, 2023.

[43] Amazon. Amazon web services pricing, 2023.

[44] Google. Google cloud pricing, 2023.

[45] Talent.com. Salario de ingeniero en 2024, 2024. Accedido: 20-06-2024.

[46] N Schneiderman, G Ironson, and SD Siegel. Estrés y salud: determinantes psicológicos, con-

ductuales y biológicos. Annu Rev Clin Psychol, 1:607–628, 2005.

[47] Govindasamy Shanmugasundaram, S Yazhini, E Hemapratha, and S Nithya. A comprehensive

review on stress detection techniques. In 2019 IEEE International Conference on System,

Computation, Automation and Networking (ICSCAN), pages 1–6. IEEE, 2019.

[48] Shawkat Ali and Kate A Smith. On learning algorithm selection for classification. Applied Soft

Computing, 6(2):119–138, 2006.

[49] Bradley J Erickson and Felipe Kitamura. Magician’s corner: 9. performance metrics for machine

learning models, 2021.

xi

