
GRADO EN INGENIERÍA DE TECNOLOGÍAS Y

SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A MOBILE
APPLICATION FOR ACTIVITY MONITORING IN AN

INTELLIGENT ENVIRONMENT

JUAN JOSÉ HERRERO BERMEJO
ENERO 2020

TRABAJO DE FIN DE GRADO

T́ıtulo: Diseño y desarrollo de una aplicación de móvil para

monitorizar la actividad en un entorno inteligente

T́ıtulo

(inglés):

Design and development of a mobile application for ac-

tivity monitoring in an intelligent environment

Autor: Juan José Herrero Bermejo

Tutor: Carlos Ángel Iglesias Fernández

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos

Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A MOBILE

APPLICATION FOR ACTIVITY MONITORING

IN AN INTELLIGENT ENVIRONMENT

Juan José Herrero Bermejo

Enero 2020

Resumen

El proyecto que se muestra a continuación explica detalladamente el desarrollo de

una nueva versión de la aplicación para smartphone Ewe Tasker, desarrollada en

Android, que permite la automatización de tareas a través del servidor web Ewe

Tasker, perteneciente al grupo GSI de la Escuela Técnica Superior de Ingenieros de

Telecomunicaciones.

Activity Recognition es la aplicación principal de esta nueva versión de la app

Ewe Tasker y su función consiste en reconocer, almacenar, analizar y procesar la

información de la actividad de un usuario a tiempo real, ya sea andar, correr, ir

en un veh́ıculo, etc con el fin de monitorizar su actividad, ofrecerle un entorno que

muestre estad́ısticas sobre su actividad y generar eventos de actividad de tal modo

que se puedan utilizar para la automatización de tareas desde el servidor Ewe Tasker

a través de la app.

Además, incluye una segunda aplicación, integrada de antiguas versiones de la

app, que ofrece un entorno inteligente que permite ejecutar tareas de automatización

creadas previamente en el servidor Ewe Tasker. Esta aplicación incluye la generación

de eventos de detección de movimiento mediante beacons, implementa el env́ıo de

los nuevos eventos de actividad y permite la interacción con distintos actuadores del

entorno inteligente, ofreciendo múltiples posiblidades a la hora de automatizar tareas.

Como resultado, este proyecto ofrecerá al usuario una app para tener acceso a

información sobre su actividad en todo momento y ejecutar reglas de automatización

personalizadas según sus necesidades, tanto en un entorno inteligente, como en su d́ıa

a d́ıa.

Palabras clave: Android, Java, Reconocimiento de actividad, Automa-

tización, EWE, Internet de las cosas, Google Play Services, Beacons

I

Abstract

The project shown below explains in detail the development of a new version of

the Ewe Tasker smartphone application, developed in Android, which allows the

automation of tasks through the Ewe Tasker web server. This server belongs to the

GSI group of the Higher Technical School of Telecommunications Engineering.

Activity Recognition is the main application of this new version of the app and its

function is to recognize, store, analyze and process user activity information in real

time in order to monitor his activity, offer user an environment that shows statistics

about his activity and generate activity events in such a way that they can be used

to automate tasks from Ewe Tasker server through the app.

In addition, it includes a second application, integrated from old versions of the

app, which offers an intelligent environment that allows users to execute automa-

tion tasks previously created on the Ewe Tasker server. This application includes

the generation of motion detection events through beacons, implements the send-

ing of generated activity events and allows interaction with different actuators in a

intelligent environment, offering multiple possibilities when automating tasks.

As a result, this project provides user an app to have access to information about

their activity at all times and allows to execute custom automation rules according

to their needs, both in an intelligent environment and in another context.

Keywords: Android, Java, Activity Recognition, Automation, EWE,

IoT, Google Play Services, Beacons

III

Agradecimientos

En primer lugar, queŕıa darle las gracias a Carlos Ángel por darme la oportunidad

de formar parte del GSI y de contribuir en él desarrollando una nueva versión de

una aplicación del grupo, además de agradecer la ayuda y la facilidades que me ha

proporcionado.

No obstante, queŕıa agradecer a todo el grupo del GSI la ayuda que en cada

momento me han dado y el gran conocimiento que me han ofrecido, sobre todo, a

Sergio, por todo lo que me ayudó en los momentos más dif́ıciles de este proyecto.

También queŕıa dar la gracias a mis compañeros de despacho y de oficina, con los

que compart́ı tanto horas de trabajo como momentos de risas y diversión.

Por otro lado, tengo que agradecer a muchas de las personas que han hecho posible

todo lo que he conseguido en mi vida, y lo que me ha hecho ser como soy actualmente:

Mi familia, por su apoyo incondicional, su cariño y su confianza, que son uno de

los pilares que me sostienen.

Mis amigos, que me apoyan, me ayudan, me cuidan... Gracias por estar ah́ı

siempre.

V

Contents

Resumen I

Abstract III

Agradecimientos V

Contents VII

List of Figures XI

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 3

1.3 Structure of this document . 3

2 Enabling Technologies 5

2.1 Google Play Services . 5

2.1.1 Activity Recognition . 6

2.1.1.1 Activity Recognition API 7

2.1.1.2 Activity Detection 7

2.1.1.3 Activity Recognition Transition 9

2.1.2 Firebase . 9

2.1.2.1 Realtime Database 10

VII

2.1.2.2 Cloud Firestore . 11

2.1.2.3 Firebase Auth . 12

2.2 Rule Automation . 13

2.2.1 Task Automation Services . 13

2.2.2 Notation3 . 14

2.2.3 EYE . 14

2.2.4 EWE ONTOLOGY . 15

2.2.5 Data Storage Technologies . 16

2.2.5.1 Fuseki . 16

2.2.5.2 MongoDB . 17

2.2.5.3 Elastic Search . 17

2.3 Beacons . 18

3 Requirement Analysis 19

3.1 Use cases . 19

3.1.1 System actors . 21

3.1.2 Conclusions . 22

4 Architecture 23

4.1 Overview . 23

4.2 Android Mobile APP Module . 25

4.2.1 Activity Recognition Channel 25

4.2.2 Statistics Channel . 26

4.2.3 Actions Trigger . 27

4.2.4 Devices Channel . 27

4.2.5 Beacons Channel . 27

4.3 EWE Tasker Server Module . 28

4.3.1 Rule Engine . 29

4.4 Rule Administration . 29

4.4.1 Rule Editor . 30

4.4.2 Rule Manager . 31

4.4.3 Rule Repository . 32

4.5 Channel Administration . 32

4.5.1 Channels Interface . 32

4.5.2 Channel Creation . 33

4.5.3 Channel Repository . 34

4.5.4 Events Manager . 35

4.5.5 Action Trigger . 35

4.5.6 Device Administration . 36

4.5.7 Device Manager . 36

4.5.8 Device creator . 36

4.5.9 Device Repository . 37

5 Case study 39

5.1 Introduction . 39

5.2 Automation Rules creation . 40

5.2.1 Login and Register . 40

5.2.2 Devices and rules creation . 41

5.3 Intelligent Office . 42

5.3.1 Environment description . 42

5.3.2 Use case development . 43

5.4 Daily Routine . 44

5.5 Conclusions . 46

6 Conclusions and future work 47

6.1 Conclusions . 47

6.2 Achieved goals . 48

6.3 Problems Faced . 49

6.4 Future work . 50

Appendix A Impact of the project i

A.1 Social Impact . i

A.2 Economic Impact . ii

A.3 Environment Impact . ii

A.4 Ethical and Professional Implications ii

Appendix B Economic budget iii

B.1 Human resources . iii

B.2 Material resources . iv

B.3 Licenses . iv

Bibliography v

List of Figures

2.1 Activity Recognition API . 7

2.2 Firebase Realtime Database . 10

2.3 EWE Class Diagram . 15

3.1 Use cases . 20

4.1 Architecture . 24

4.2 Statistics Channel . 26

4.3 Beacons Interface . 28

4.4 Rule Editor Interface . 30

4.5 Rule Manager Interface . 31

4.6 Channels Interface . 33

4.7 Channel N3 File . 34

4.8 Fuseki Server . 35

4.9 Events Manager Interconnection . 35

4.10 Device Manager Interface . 36

4.11 Device Creation Interface . 37

5.1 Ewe Tasker Login and Register . 40

5.2 Rules Created List . 41

5.3 Intelligent Office Environment . 43

5.4 Daily Routine Rules . 44

XI

5.5 User Activity Statistics . 45

CHAPTER1
Introduction

1.1 Context

Over the last few years, terms such as “smart-home” [1], “intelligent environments” [2]

or “Internet of Things” [3] are reaching a lot of importance in the technological world.

This popularity could be due to the increase in the use and number of electronic

devices which incorporate different wireless networks, either WiFi or Bluetooth. All

these wireless connections have a point in common, which allow connection between

devices. The possibilities these technologies based on connected devices offers are

uncountable, since they can be applied to any field, such as medicine or security, and

they are still under development, as new applications are still being discovered [3].

One of the most innovative features in new term that these technologies develop, is

the notion of automation, which is getting a lot of importance in simplifying people’s

life [4]. Automation replaces the actuation of people when performing tasks by a

device, that entails many-fold benefits for them, such as saving on time or greater

comfort in his life. In addition, automation has benefits for the system, such as

allowing activity logging, very useful for many systems when it comes to finding

possible failures. In fact, the possibility of monitoring, controlling and automating the

1

CHAPTER 1. INTRODUCTION

different acts of daily life such as turning on the light, opening the door, pulling down

the shutters... in an intelligent environment is being developed for a long time [5]

and now it is an available technology presents in all kinds of current projects [6].

Moreover, automation is quite demanded nowadays because it can be applied in a

lot of fields, from in health care [7] to in security systems [8], and it offers multiple

opportunities. One of them that is the cause of this project, is its integration with

human activity recognition software.

Activity recognition can reveal the activities the user is carrying out, such as riding

a bike, going in a vehicle, walking, running... [9] to monitoring the user activity, among

many other uses. Nowadays, this technology is present in a lot of different areas, such

as in health care, where it can infer users diary of physical activities and energy

expenditure based on Metabolic Equivalents [10]; in security, detecting abnormal

activities [11]; or in entertainment, improving the 3D data acquisition techniques [12].

This technology, of course, detects user activity using a device that user carries.

The mobile phone is the ideal device, because it has become one of those essen-

tials that we carry with us everywhere, and, also, it includes different sensors that

allow the rotation, location and even acceleration detection. Therefore, it has been

developed different activity recognition software using the mobile phone sensors in

last years [13], especially using the accelerometer, which ensure a high percentage of

accuracy [14], but also the gyroscope [15]. In fact, it has been studied that the use

of both sensors together gets better accuracy in the activity recognition, making the

recognition process more reliable [16]. Some multinational companies like Google,

has developed its own activity recognition software, offering users an API 1 to the

free application development using activity recognition [17].

In conclusion, to use the technologies explained before, specially automation tasks

and activity recognition, this project will try to integrate them and combine them in

a mobile application in order to monitor human activity and make automation task

using activity events.

1https://developers.google.com/location-context/activity-recognition

2

https://developers.google.com/location-context/activity-recognition

1.2. PROJECT GOALS

1.2 Project goals

The main goal of this project is developing an Android application that detects, ana-

lyzes and monitors human activity. This application will be integrated into a semantic

event-based automation framework so that it can enable activity-based automation.

This main objective includes:

• Develop and design a useful and simple user interface that allows users accessing

to both their activity recognition information and an intelligent automation environ-

ment.

• Develop a user interface that shows statistics and graphics about the user de-

tected activity information.

• Develop an intelligent automation environment that allows the use of automation

rules using detected activity events.

• Integrate a real-time database that allows to manage the detected activity data

at all times.

• Connect with a rule engine which is able to run the event driven rules and handle

its response

• Connect with action triggers in order to run actions generated by the rule engine.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document.

The structure is as follows:

Chapter 1 is the introduction for the project, that explain the reasons why the

project was chosen and the main goals are described.

Chapter 2 describes the main standards and technologies on which this project

is based.

Chapter 3 offers an overview of the main use cases, explaining the different

system actors and how interact with it.

Chapter 4 provides a full description of the project architecture and all the

3

CHAPTER 1. INTRODUCTION

components that includes.

Chapter 5 It provides a description of the study cases in this project. This

chapter tries to explain how a user can use the app since the start, using all available

functionalities.

Chapter 6 concludes the project, explain the problems encountered and the

future work to develop in the app.

4

CHAPTER2
Enabling Technologies

This chapter offers a brief review of the main technologies that have made possible

this project. Firstly, the technologies of Google Play Services are explained and then,

the task automation platform and the ontology implemented for its operation are

presented.

2.1 Google Play Services

Google Play Services 1 is a library developed by Google to allow developers use

different Google Services, that offers fold-many utilities such as, user identification or

location detection, to use free in a mobile application.

Nowadays, the Google Services are being used in many different projects [18] because

its useful and easy handling. In addition, although Google offers fast and frequent

updates on these services, it guarantees users its use in non-updated versions, which

makes it sustainable to use these services in any app and getting similar behavior

across different versions of Android and devices. Even the older versions of Android,

nowadays Android Jellybean 4.1, has still access to the last novelties. The use of

1https://developer.android.com/distribute/play-services

5

https://developer.android.com/distribute/play-services

CHAPTER 2. ENABLING TECHNOLOGIES

Google Services versus using other external or own services, provides advantages for

both the user and the developer.

• For a developer, these services involve a standardized and abstract way of ac-

cessing advanced functions such as location, maps or user login without the need

to include long lines of code that perform complex functions with worse results

than Google Services, which would greatly increase the size and complexity of

any project.

• For an user, although an app which use Google Play Services implies to need

internet connection, the Google services use has benefits in phone resources [19].

In fact, the most app and devices includes Google services and apps even in

the native configurations of the device [20]. Therefore, when an application

includes Google Play Services, it usually does not imply a new service that

requires installing other services, since it already includes the entry point to

communicate with Google.

By the reasons explained before, use Google Services is usually more efficient

when it comes to ensuring our battery and other resources on the smart-phone,

as well as in the improvement in the software, versus the other service use.

2.1.1 Activity Recognition

Activity Recognition, as we have explained, can reveal the activities the user is carry-

ing out to monitor the his activity and use information extracted from his activities to

perform statistics, among other uses. There are different systems of human activity

recognition currently available. They differ substantially among themselves by the

complexity and precision in detecting activities and by the different activities that

each one can detect, but also, by the process followed to obtain it. However, they

agree to use the phone’s sensors, especially the gyroscope and accelerometer, to detect

activities.

Because human activities are complex and sensor signals have varying amounts of

noise, classification algorithms are almost always probabilistic. Activity recognition

systems typically have three main components [21]:

• a low-level sensing module that continuously gathers relevant information about

activities using microphones, accelerometers, light sensors, and so on.

6

2.1. GOOGLE PLAY SERVICES

• a feature processing and selection module that processes the raw sensor data

into features that help discriminate between activities.

• a classification module that uses the features to infer what activity an individ-

ual or group of individuals is engaged such as walking, cooking, or having a

conversation.

2.1.1.1 Activity Recognition API

The Activity Recognition API 2 of Google is the activity recognition software devel-

oped by Google. It is built on top the different sensors available in a device, specially

accelerometer and gyroscope, which provides insights into what users are currently

doing. The API works detecting activities by periodically reading short bursts of sen-

sor data and processing them using machine learning models. To optimize resources,

the activity reporting is stopped if the device has been still for a while, and uses

low power sensors to resume reporting when it detects movement. Moreover, Google

Service removes the need to have a service constantly running in the background

for activity detection purpose, as older systems used to. This implies much better

management of system resources, especially the battery.

Figure 2.1: Activity Recognition API

2.1.1.2 Activity Detection

The obtainment of detected activities and the activity events consists in:

The app, that implements Google Services, extract from the Activity Recognition

software a list of detected activities, each of which includes confidence and type

properties. Type property means the name of the activity that user is undertaking

2"https://developers.google.com/location-context/activity-recognition"

7

"https://developers.google.com/location-context/activity-recognition"

CHAPTER 2. ENABLING TECHNOLOGIES

and confidence is a number that indicates the likelihood that the user is performing

the activity represented in the result.

Activity detection is not an exact science, so rather than returning a single activity

that the user is definitely performing, the Activity Recognition API returns a list of

activities that the user may be performing, with the confidence property for each

activity.

The possible activities that Google API can detect are:

• Still (not moving), including standing and seating.

• On foot, when the user is moving on foot, whether walking or running.

• Walking.

• Running.

• In a vehicle, such as a car, a train, a bus, etc.

• On a bicycle.

• Tilting, that is detects when the device angle relative to gravity changed signif-

icantly. This often occurs when a device is picked up from a desk or a user who

is sitting stands up.

• Unknown activity. It happens when it is unable to detect the current activity.

When an activity is accompanied by a high percentage of confidence property,

such as 90%, it indicates certainly that the user is currently doing the corresponding

detected activity. However, when “unknown activity” contains the higher confidence

percentage, indicates that there are not enough information to detect the activity and

it needs more time to track it.

In order to ensure smooth operation of the software, we had to decide the interval

of time to execute activity recognition tasks. We decided to choose a low interval of

3 seconds, because it guarantees a quick activity recognition, but it is not so low as

to continuously detect a different activity and consume too many resources.

8

2.1. GOOGLE PLAY SERVICES

2.1.1.3 Activity Recognition Transition

On the other hand, Google offers the Activity Recognition Transition API that allows

to know when a user start or stops a specify activity. The app subscribes to a transi-

tion in activities of interest and the API notifies your app only when needed, avoiding

the detecting activities periodically. Accordingly, it needs less resources in the device

than detected recognition API and it can be useful, for example, automating actions

after state transitions.

Nevertheless, this API do not allow the monitoring of detected activity in real time,

so this project does not focus on this API.

2.1.2 Firebase

Firebase 3 is a mobile and web application development platform developed by Google

that provides developers with a plethora of tools and services to help them develop

high-quality apps, grow their user base, and earn more profit. The main features that

make Firebase so attractive to developers are the following:

• Easily synchronize your project data without having to manage connections or

write complex synchronization logic, in the same way than other Google Play

Services make it.

• Use a multiplatform toolset: it integrates easily for web platforms and mobile

applications. It is compatible with many platforms, such as IoS, Android, web

applications, Unity, C++...

• Use Google’s infrastructure and automatically scale for any type of application,

from the smallest to the most powerful.

• Create projects without a server: The tools are included in the SDKs for mobile

and web devices, so it is not necessary to create a server for the project.

Thanks to all these functionalities, any developer can combine and adapt the platform

according to their needs.

One of the strength services that Firebase offers is its storage service. It supports

two ways to save the data into a real time database or into depending of the ap-

3https://firebase.google.com/

9

https://firebase.google.com/

CHAPTER 2. ENABLING TECHNOLOGIES

plication that developer want to give his data, can result interesting one or another

one.

2.1.2.1 Realtime Database

Firebase Realtime Database 4 is a powerful but simple, NoSQL database hosted in the

cloud that store the data in JSON format and they are synchronized in real time with

each connected client. When developers compile cross-platform applications with iOS,

Android and JavaScript SDK, all their clients enter an instance of Realtime Database

and receive updates automatically with the latest data. In other words, the real-

time activation of this database allows users to access their data information from

any device in real time, sharing an instance of Realtime Database, and each time a

user makes a modification to it, it is stored in the cloud and the other devices are

automatically notified.

Figure 2.2: Firebase Realtime Database

This database includes some interesting key functions that should be explained:

• Real time: Instead of typical HTTP requests, Firebase Realtime Database uses

data synchronization (every time data changes, connected devices receive that

update in milliseconds). It provides collaborative and enveloping experiences

without thinking about the network code.

• Offline support: Firebase apps continue to respond, even offline, as the Firebase

Realtime Database SDK makes your data persist on disk. When the connection

is reestablished, the client device receives the missing changes and synchronizes

them with the current state of the server.

4https://firebase.google.com/docs/database

10

https://firebase.google.com/docs/database

2.1. GOOGLE PLAY SERVICES

• Access from client devices: Firebase Realtime Database can be accessed directly

from a mobile device or a web browser; an application server is not required. Se-

curity and data validation are available through the Firebase Realtime Database

security rules: rules based on expressions that are executed when data is read

or written.

• Scaling in several databases: With Firebase Realtime Database developers can

meet the data needs of the large-scale app: they can divide the information

into several database instances within the same Firebase project. In addition,

they can use Firebase Authentication, explained in next lines, to optimize the

authentication process in the project. It allows authenticate users in various

instances of the database and control access to information in each database.

To do this, Firebase Realtime Database includes custom rules in each of the

instances of the database.

Firebase features make it an ideal database to our project to store activity in real

time in order to monitor user activity. Now, we are going to describe another

alternative that also we studied, Cloud Firestore.

2.1.2.2 Cloud Firestore

Cloud Firestore is another real time storage alternative based on Google Cloud Stor-

age 5, officially brought out of beta on January 31, 2019. This database is a powerful

flexible, scalable and cloud-based NoSQL database to store and synchronize data for

client and server side programming. Firebase SDKs for Cloud Storage add Google

security to file upload and download operations for Firebase apps, regardless of net-

work quality. Besides, developers can use its SDK to store images, audio, video and

other types of user-generated content. On the server, it be can used Google Cloud

Storage to access the same files.

It is the successor to Firebase’s original databasing system, Real-time Database, and

allows for nested documents and fields rather than the tree-view provided in the

Real-time Database.

In conclusion, having chosen this database would also have been a good option,

but finally, we chose the Realtime Database because it still offers an efficient and

low-latency solutions and it is more manageable and simple than this database.

5https://firebase.google.com/docs/storage/

11

https://firebase.google.com/docs/storage/

CHAPTER 2. ENABLING TECHNOLOGIES

2.1.2.3 Firebase Auth

It’s a cloud-hosted NoSQL database that lets store and sync between users, saving

data as JSON objects that the developers can manage in real-time, making easy to

access the data from any device.

Firebase Authentication provides easy-to-use back-end services, SDKs, and UI

libraries already developed to authenticate users in your app. It supports authenti-

cation through passwords, phone numbers, popular federated identity providers, such

as Google, Facebook and Twitter, and much more.

This service includes two ways to authenticate users:

• FirebaseUI Auth: FirebaseUI provides a direct authentication solution that con-

trols UI flows for users who access with email addresses and passwords, phone

numbers and popular federated identity providers, including Google Access and

Facebook Access. The FirebaseUI Auth component implements recommenda-

tions for authentication on websites and mobile devices, which can maximize the

conversion of access and registration of your app. It also handles extreme cases,

such as recovery and linking accounts, which can have security implications and

be prone to errors when trying to handle them correctly. Moreover, FirebaseUI

can be easily customized to fit the rest of the visual style of the app and is open

source.

• Firebase SDK Authentication: In addition to direct authentication, this service

includes integration with federated identity providers, such as Google, Facebook,

Twitter y GitHub, authentication by phone number, integration with custom

authentication systems or even anonymous authentication, that consist in cre-

ate temporary anonymous accounts to allow the use of functions that require

authentication.

Between both services, we chose to authenticate our users with FirebaseUI Auth

because we don’t consider necessary more complex ways to authenticate users than

the method of this service offers. This function is still in development and it will be

integrated as soon as is possible in Ewe Tasker app.

12

2.2. RULE AUTOMATION

2.2 Rule Automation

Rules is a way to represent the knowledge with conditions in the scope of logic. A

rule consist in If-then clauses to express logical functions and operations, expressed

in rule language. Generally, it is formed by antecedence and consequence containing

clauses, and logical quantifiers used to quantify possible domains of variables. The

antecedence contains conditions using logical operators, while the consequence part

contains actions. If the conditions are matched, the actions are operated. In the

form of subject-relation-object of a clause, the subject and object can be variables,

individuals, literal values or other data structures. The parameter used in the rules

can be defined in different variety of languages and formats [22].

In recent days, Rule-based task automation is being developed in many web sites

and mobile or desktop applications. Generally, platforms like this allows to defining

the custom rules, executing an specific action when some specific event is triggered.

Thus, it could be possible to create rules such as: ”When i get in my car, turn on the

Bluetooth and connect with the car” or ”When i sit at my desk, turn on the light of

the work lamp”. This services are called Task Automation Services (TASs) and offers

endless possibilities.

2.2.1 Task Automation Services

Task Automation Services provide users a visual programming environment to man-

age their own personal automation task. The rules are defined by Event-Condition-

Action, executing an action when a certain event is triggered. For example, in the

example ”When i get in my car, turn on the Bluetooth and connect with the car”,

when the event of get in the car is triggered, the turn on Bluetooth action will be

executed.

In last years, the number of TASs is growing intensely highlighting some of them,

such as Zapier, IFTTT or Integromat. They differentiates between them providing

different options and functions, trying offer its own particular mark [23]. The reason

of this variety of servicies could be linked to following TASs’s important features:

• Usability, offering a intuitive, simple but powerful intuitive interface for creation

of task automation.

• Customizability, allowing users to choose between different event triggered and

13

CHAPTER 2. ENABLING TECHNOLOGIES

actions executed.

• Integration with existing Internet services[24].

On the other hand, all TASs follows the same kind of thinking about rule-based

reasoning, a sequence of ’when this then that’ steps. Besides, they follows a steps in

a task automation process, from the definition of the task, a schedule of when the

task is done and its duration and what resources, equipment are needed to perform

it to the track system to control and monitor it.

They uses expressive engines that allow to maximizing configurability. One of the

languages that stands out from the rest is Notation3 6.

2.2.2 Notation3

As mentioned before, the rules are defined using Notation3 (N3), a Semantic Web

Logic based on the use of triples called Turtle [25]. Turtle is an RDF data serialization

format, capable both of describing everything using triples to describing rules to be

executed on those triples.

The World Wide Web Consortium (W3C) defined as targets of N3 [26]: to optimize

expressions of data and logic in the same language, to allow RDF to be expressed, to

allow rules to be integrated smoothly with RDF, to allow quoting so that statements

about statements can be made, to be as readable, natural and symmetrical as possible.

Besides the language achieves these with following features: URI abbreviation using

prefixes which are bound to a namespace (using @prefix) a bit like in XML; repetition

of another predicate for the same subject using a semicolon “;” and another object

for the same subject and predicate using a comma “,”; Bnode syntax with a certain

properties just put the properties between [and]; formulae allowing N3 graphs to be

quoted within N3 graph using and; variables and quantification to allow rules, etc to

be expressed; a simple and consistent grammar.

2.2.3 EYE

EYE(Euler YAP Engine) [27] is a high-performance reasoning engine that supports

the Semantic Web layers and it is capable of evaluating, according to what is specified

in the rules, whether the conditions for launching the actions have been met. It is

6https://www.w3.org/TeamSubmission/n3/

14

2.2. RULE AUTOMATION

written in Prolog and supports, among others, all built-in predicates defined in the

Prolog ISO standard

EYE can be configured with many options of reasoning, e.g., not proving false

model, output filtering, and providing useful information of reasoning, e.g., proof

explanation, debugging and warning logs.

The inference engine also supports using user-defined plugins. In addition to the

main supported language, Notation3, EYE also supports the RIF-BLD(Basic Logic

Dialect) rule language.

2.2.4 EWE ONTOLOGY

Evented WEb Ontology (EWE) [28] is a standardized data schema, typically referred

as ”ontology” or ”vocabulary”, designed to describe elements within TASs enabling

rule interoperability.

• Enable to publish raw data from Task Automation Services (Rules and Chan-

nels) online and in compliance with current and future Internet trends.

• Enable Rule interoperability.

• Provide a base vocabulary for building domain specific vocabularies.

Figure 2.3: EWE Class Diagram

15

CHAPTER 2. ENABLING TECHNOLOGIES

As shown in the above scheme, EWE ontology is formed by four main classes:

• Channel: It defines individuals, including sensors and actuators, which generate

events, provide actions or both.

• Event: This class defines the realization of a process that have no duration over

time. Events are generated by a certain Channel, and they are triggered by the

occurrence of a process which defines them. Their parameters can be modeled as

input or output parameters: The output parameters are configured within Rules

to customize Actions. However, the input parameters allows users configure the

events, describing under which conditions should they be triggered. Different

services may generate the same event.

• Action: It defines an operation or process whose nature depend on itself that

may be provided by a Channel. For example, an action could produce logs,

modify states on a server or even switch on a light. Actions can be configured

by means input parameters to react according to a specific Event, whose data

are the output parameters.

• Rule: Rule class defines an “EVENT-CONDITION-ACTION” (ECA) rule. An

action is executed when a rule is triggered by an event. Rules aim is to define

the connections between instances of Event and Action classes, including the

configuration parameters: output from Events to input of Actions.

2.2.5 Data Storage Technologies

2.2.5.1 Fuseki

Fuseki [29] is a SPARQL server based on Apache Jena framework. It is known to be

a solution as a storage layer for ontologies. To do so, it provides the SPARQL 1.1

protocols for query and update as well as the SPARQL Graph Store protocol. Among

its advantages stand out its security, by using Apache Shiro’s framework 9 , and its

interface which allows server monitoring and administration.

This tool has been developed by Jena, so it incorporates Jena’s text query and

spatial query. In addition, its uses are diverse. It can be used as an operating system

service, as a Java web application, and as a standalone server. In some cases, Fuseki

is used to provide the protocol engine for other RDF query and storage systems.

16

2.2. RULE AUTOMATION

In this project, Fuseki is used by EweTasker platform to store the definition of

channels, automation rules and devices in N3 through Ewe ontology.

2.2.5.2 MongoDB

MongoDB [30] is a NoSQL database, in other words, a non-relational database. The

way it works is simple. The database contains collections which are made up of

documents. These documents are, in turn, composed of fields, where information is

stored.

As we explained, it is oriented to documents and more specifically to JSON 6

documents. This is an advantage because JSON format is widely used in web appli-

cations. Moreover, the treatment of these documents is done in a flexible way, being

able to modify each data entry in the document dynamically. Another advantage is

that it facilitates data analysis using ad hoc queries, indexing, and real time aggrega-

tions. In addition, it is a distributed database, providing horizontal scaling and high

availability.

This database is one of the most used storage technologies, with more than 9

million of downloads around the world. It is a free and open-source tool. Newer ver-

sions are published under the Server Side Public License (SSPL) v1 7 and it provides

integration for more than ten programming languages as Python or Java.

In this project, MongoDB is used in Ewetasker platform to store user data.

2.2.5.3 Elastic Search

Elasticsearch [31] is a distributed, RESTful search and analytic engine highly scal-

able, designed to be a central data store and generally used as the underlying search

engine that powers applications that have complex search features and requirements.

Elasticsearch popular use is due to the fact that provides a HTTP web interface to

interact through queries based on JSON and responeses based in schemafafree JSON

documents.

Elasticsearch works with a complex search, but it provides great performance. In

order to get such a high performance algorithm, this tool is formed by indices which

are divided into shards. The shards are stored in distributed nodes, and each shard

can be replicated more than once. These nodes act as a coordinator to delegate

17

CHAPTER 2. ENABLING TECHNOLOGIES

operations involving different shards. This search server, which is based on Lucene

8 library (Java), provides clients in the main programming languages such as Java,

SQL, .NET, PHP or Python.

In this project, we use Elasticsearch in Ewetasker platform to store usage data.

2.3 Beacons

A beacon is an intentionally conspicuous device smart little devices based in Bluetooth

technology that emits a signal that uniquely identifies each device without a previous

synchronization need. This signal is emitted constantly in a broadcast Interval and

can be received by another device such as a smarthphone. Beacons are usually used

to detect people presence and generate certain actions in consequence. The main

features that they incorporate are:

• There are small devices so that they can be easily placed at any point.

• Beacon are base in Bluetooth technology so that can detect users presence with-

out internet connections. This feature is really interesting when it comes to use

it in environments with poor coverage or difficulty in accessing internet.

• They ensure a low consumption. The batteries that beacons incorporates has a

very long life, up to two years with a simple button cell.

• The signal emitted contain a unique number that identifies the beacon. There-

fore, their signal are unique and cant be confused with another one. Besides,

this signal allows the simultaneous connection with different devices, so that

different users can use the beacons utilities in the same time without connection

problems.

• The broadcast Interval to send the signal usually can be configurable, depending

on whether you want more battery life or better accuracy.

• Long dynamic range when Beacons detect the user distance, allowing to detect

the user presence in a relatively large space.

18

CHAPTER3
Requirement Analysis

In this chapter the requirements analysis are required using different situations. In

order to understand the software developed completely, it is necessary to make a

detailed analysis of the possible use cases. To be able possible explain the possible

use cases, we chose to provide a standard way to visualize the design of the system

using the Unified Modeling Language (UML)[32].

Therefore, this chapter will give an idea about the actors of the system and their

interactions, being able to understand the importance of each one in each case of use.

3.1 Use cases

The next chapter will explain the uses cases of this Project, defining the requisites,

the system uses and the actors that intervenes.

The next diagram defines the interactions between actors, which will be explained in

next lines.

19

CHAPTER 3. REQUIREMENT ANALYSIS

Mobile sensors

User

Actuator

Ewe Tasker APP

TASK AUTOMATION

SHOW STATISTICS

USER
AUTHENTICATION

<<include>>

<<include>>

ACTIVITY
RECOGNITION Activity Recognition API

Firebase

Ewe Tasker

Figure 3.1: Use cases

• Show statistics: This is one the main use case in the system. The final and main

actor is user, who access to this function to analyze his activity information

downloaded from Firebase in form of graphs, that shows the time that user

spent in each activity in last day, last week and last month. This use case use

both secondary uses cases, activity recognition and user authentication.

• Task Automation: Task automation system based on rules is clearly another

main use case, whose aim is to allow user use automation rules with the mobile

phone and interacting with the different actuators, which play a role of secondary

actors. User still being the main actor because is the responsible to create his

own rules and use it.

• User Authentication: User authentication is a function that includes both task

20

3.1. USE CASES

automation and show statistics.

• Activity Recognition: This secondary use case explains the process to detect the

activity that user is carrying out. This use case is the responsible to transform

the information provided by mobile sensors in probabilities of each activity and

consequently, the software obtains the activity carried out by user.

3.1.1 System actors

• User: The user that carries a smartphone is the one main actors of the app and

the final user of the system. It uses the app in its daily routine to get automation

task in intelligent environment and interacts with it through the app to interact

with different actuators through the Ewe Tasker Server. Moreover, he access to

the statistic channel to show his activity information.

• Activity Recognition API: This is a secondary actor. It uses the mobile phone

sensors, such as, accelerometer and gyroscope, to detect the activity that user is

undertaking at all time. This API intervenes in all cases of study, both sending

activity events in automation task and showing statistics about user activity.

• Ewe Tasker: This server is based on the automation task, thus it is an important

secondary actor in automation tasks. It allows the connection between the

mobile app and the actuators in order to realize an automation task. Ewe

Tasker receives events generated by actuators and users and sends them the

actions according the rules created.

• Firebase: Firebase is also a really important secondary actor which is encoun-

tered in all situations of this Project. On the one hand, it is the responsible to

monitor the activity, because it store all the information data in real time to

provide it when user requires. Therefore, it receives continuously activity data

from the app and it sends activity information packages when the app request it.

On the other hand, it provides the service to register and login users in activity

recognition application.

• Actuators (Smart devices): Smart devices form an important secondary actors

whose aim is, on the one hand, to send events to Ewe Tasker, such as presence

detection from beacons, and on the other, to carry out an action such as turning

on a light from a Smart light.

21

CHAPTER 3. REQUIREMENT ANALYSIS

• Mobile phone sensors: Accelerometer and gyroscope have the main responsible

in the activity recognition. They provides Google API information about the

orientation, position, and acceleration of mobile phone and consequently the

user, very useful when detecting user activity. These sensors form the last

secondary actor.

3.1.2 Conclusions

After this section, we can understand how the system works and how its elements

interact between them. In the Case Study Chapter we study in details a series of

study cases that have been carried out. Theses cases combine the different use cases

in different contexts to get a different functionalities of the Mobile APP.

22

CHAPTER4
Architecture

In this chapter, we cover the design phase of this project, as well as implementation

details involving its architecture. Firstly, we present an overview of the project,

divided into several modules. This is intended to offer the reader a general view of

the architecture. After that, we present each module separately and in much more

depth.

4.1 Overview

The system is composed of the following several modules, that they are explained in

details later:

• Android Mobile App:

This mobile app is the main module of this project and it focus into the activity

recognition, as well as the connection task using activity events. Basically, the

mobile app process a list of detected activities coming from activity recognition

software of Google, in order to get the most probably activity in every moment

and generate activity events. These events are sent to EWE Tasker Server,

23

CHAPTER 4. ARCHITECTURE

allowing the use of activity events in rules creation. Moreover, the app collects

and saves relevant information of the detected activities into a Firebase realtime

database to offers a series of graphs and statistics on user activity at different

time scales. On the other hand, the app provides the Beacon Channels utilities,

created in an old version of the EWE Tasker app[33].

• EWE Tasker:

The main aim of this Task Automation Server is to handle events, such as

activity events, and to trigger accordingly an action generated by a rule engine

in order to sent it to the mobile app or even another device. It include functions

for creating and managing rules and for user authentication, in addition to

display several user information dashboards. Ewe Tasker is composed of four

sub-modules: Rule Engine, Rule Administration, Channel Administration and

Action Trigger.

Channel
Editor

Channel
manager

INTERNET

Actions TriggerRecognition Activity
Channel

Channel
Repository

Events Manager

Rule Editor

Rule
Manager

Rule
Repository

 Channel Administration

Rule Administration

High
confidence

activity event

designated actions

Possible
activities

Rule Engine

Statistics Channel

Actions Trigger

Devices channel

Wifi Bluetooth

Notifications

Devices Channel

Detected
activity

Sí

Beacons channel

Presence Temperature
Device
Creator

Device
Manager

Devices
repository

Figure 4.1: Architecture

24

4.2. ANDROID MOBILE APP MODULE

4.2 Android Mobile APP Module

The mobile APP module is the main pillar of this project. It is a new version of

EweTasker mobile app [34] developed in Android with Java. This version is centered in

the activity recognition, so that it includes different functionalities using the activity

information and it allows the sending of activity events in the EWE Tasker Server to

use them in automation tasks. The app provides three different functionalities:

• Firstly, generating and sending activity events to Ewe Tasker. In order to gen-

erate the events, it handles a list of detected activities coming from activity

recognition software of Google, processing it to get the most probably activity

in every moment. If this activity has a high percentage of confidence is sent as

an activity event to Ewe Tasker.

• Secondly, triggering and execute returned actions by Ewe Tasker. The actions

which Ewe returns, such as turn Blueetooth or Wifi on or show a notification,

are executed by the smartphone.

• Finally, providing user information about the activity tracked in every moment,

and offers graphics and statistics about user activity at different periods of time.

Activity data generated by activity recognition software are handled by “Activity

Recognition Channel” sub-module. After being processed, they are sent to EWE

Tasker. The server generates actions according a rules before designed, and it send

to the Mobile App. These actions are triggered by the Actions Trigger sub-module.

Finally, the device channel, which receive the actions and understand it, is the re-

sponsible to execute the action.

4.2.1 Activity Recognition Channel

In order to detect the activity of user, the app starts the activity tracking of the

Activity Recognition API of Google. To do it, the app needs to icorporate the Google

Play Services, providing Google permission to use the smartphone sensors such as

the gyroscope and the accelerometter, among others permissions. Then, this Google

Service starts to detect changes in the smartphone sensors, getting activity results

every few seconds.

25

CHAPTER 4. ARCHITECTURE

When a new activity result is detected (the user activity has changed), the API

subtracts the list of activities from the result. This list of activities includes the re-

spective confidence percentage of each activity. Then, the app proceed to save the list

in Firebase real time database with the detection date (useful for the statistics chan-

nel). Besides, when a specific activity has more than 80% of confidence percentage, it

is saved as the activity that the user is carrying out in the smartphone “shared pref-

erences”, replacing the previous one. Finally, the module makes an HTTP connection

to the EWE Tasker server to send the activity.

4.2.2 Statistics Channel

This channel provides user the information about his activity in the current day, in

last week, or in last month, as well the current activity list tracked.

In order to get that information, the app access to the Firebase Realtime Database

to download the activity information in the corresponding time interval. Then, it

calculates the time used in carrying out each activity by the user in that time interval,

and generates a graphics showing it.

Figure 4.2: Statistics Channel

26

4.2. ANDROID MOBILE APP MODULE

4.2.3 Actions Trigger

This sub-module goal is to trigger actions after EWE Tasker sends them to the app

mobile. The actions that are received by the smart phone are specified in the smart

phone channel inside the Ewe Tasker and they includes technologies that mobile phone

incorporates such as: Wifi, Bluetooth, notifications tools, etc.

4.2.4 Devices Channel

The app device channel is a sub-module whose aim is to access to the different func-

tionalities of the technologies that mobile phone incorporates, such has Wifi, Blue-

tooth, toast notification, etc to execute the actions triggered by the actions trigger

module, so that it turn Wifi or Bluetooth on, it show a toast notification in the screen,

it start a call to someone...

4.2.5 Beacons Channel

Additionally, this projects also includes an updated beacon channel, whose module

has been incorporated from the last version of EWE Tasker APP, as we explained

before. The aim of this channel is to allow the connection between beacons and the

mobile app, so that users can use beacons events in their rules and creates automation

task with them. The beacons interface 4.3 consist in an intelligent environment to

listen beacons near user. When the app detects one, the beacons events are sent to

the EWE Tasker. If exists rules configured by that beacon, the actions are returned

to the mobile phone.

27

CHAPTER 4. ARCHITECTURE

Figure 4.3: Beacons Interface

4.3 EWE Tasker Server Module

This web server developed by GSI manages the rules defined by the user, allowing the

task automation between the activity events and different actions, customized by the

user. A user has two possibilities to choose the executable actions when he creates

a rule using activity events: It can to choose actions from the smartphone channel

or another channel defined in EWE Tasker. In the first case, the module send the

actions back to the mobile phone when a detected activity is received, so that the

mobile phone can execute them. In the other case, the module send the actions to the

device which the respective channel refers, such as a smart light, a beacon, a “chrome

cast”, etc.

28

4.4. RULE ADMINISTRATION

4.3.1 Rule Engine

The Rule Engine is a module based ontology model whose goal is the rules creation,

so that it is an essential module in EWE Tasker. This module architecture is divided

into two parts: EYE Server and EYE Helper.

• Eye Server is an Euler Yap Engine reasoner implemented in JavaScript whose

aim is process the events and rules written in Notation3 and generates a response

with an action in text format.

• Eye Helper is a module implemented in PHP responsible for the reception of

events from the Channel Administration and loading of stored rules in the Rules

Administration module. After retrieves the events and rules, it sends them to

EYE Server for being processed. Once Eye process them, it send back the

response, containing the actions that must be triggered and EYE Helper sends

to Channel Administration.

The process of handling events and triggering actions consist in:

EWE Tasker server receives a new event which is sent to Eye Helper. This module

captures it and loads the available rules that uses this event from the Rule Admin-

istration module. Then, those rules and events are sent to the EYE Server[35], that

analyze and obtain conclusions from them using the ontology model inferences. These

conclusions are the actions represented by triples. The response is generated using

Notation3 in a text format, so it is parsed later. It’s important to know that the EYE

Server is stateless. Thus, all events and rules are loaded before a new interference

and removed after the inferences have been made. The same happens with actions

when they are inferred.

4.4 Rule Administration

The main goal of this module is to offer users an automation rule creator and editor

that allows to configure custom rules using the available events and actions in the

existing channels. Besides, Rule Administration store these rules and it provides

them to Rule Engine. The three main parts of this module are: Rule Manager, Rule

Editor, Rule Repository.

29

CHAPTER 4. ARCHITECTURE

4.4.1 Rule Editor

The rule editor provides a graphical interface to the creation, edition and remov-

ing rules, as shown figure 4.4. In order to make the process easy and intuitive the

interaction is based on icons and “drag and drop” actions.

As explained in chapter 2.2, the rule creation process follows the structure “If this

then that”. “This” correspond to the chosen event available in a channel and “That”

means the action existing in another or same channel. The module allows to create

all possible rules between the available events and actions.

Figure 4.4: Rule Editor Interface

The parameters required to create a new rule are specifics of the channel and the

device that the action or event belongs. Consequently, the parameter “user name”

is required to create a Spotify Action or the “activity detected name” is required to

create the specific activity event. For example, if i want to create the automation

rule: “When i am running, play a song in Spotify”, i should drag the event icon into

the activity recognition channel and drop into the area reserved to events, writing

“Running” in the event parameter space and choosing the activity recognition sensor

device.

Then , i perform the same for action “play a song in Spotify”: I drag and drop the

play song event icon from Spotify channel to the actions area, specifying the Spotify

parameters, such as a song, and the Spotify device assigned to my Spotify user name.

30

4.4. RULE ADMINISTRATION

Finally, i can set the name and description of the rule before push the submit button

to create the rule, which will be registered in the Rule Repository.

4.4.2 Rule Manager

Rule manager is a module created to manage the user rules and developed in PHP

following the MVC patterns, whose architecture follows a three layered architecture:

Model, View, Controller. User can access the pages that the View includes. These

pages offers all the functionalities to create, edit and remove rules, processed by the

Controller. The Controller manage all the data provided by the View and the Model.

Also, this layer manage the requests sent from the user: requests made to the REST

interface and the View pages requests. The Model is an abstract information layer

whose aim is to access the information under the Controller request, so that create a

connection to the corresponding database, extracting the information and returning it

to the Controller. Rule manager graphic interface includes the existing rules including

their details as shown the figure 4.5.

Figure 4.5: Rule Manager Interface

31

CHAPTER 4. ARCHITECTURE

The interface functionalities consist in:

• Create rules, allowing to access to the rule editor to create a new rule from

scratch.

• Edit rules, accessing to the rule editor of an existing rule. There the user can

edit some parameters or change the rule completely.

• Remove rules using the “delete” button in a existing rule.

4.4.3 Rule Repository

All the rules are stored in a Fuseki Database 1 via N3 using EWE ontology, whose

data is accessible through the SPARQL queries defined in the server.

4.5 Channel Administration

Channel Administration is a module which provides user an interface to visualized all

created channels. Unlike the Rule Administration, this interface does not allows to

create or delete channels. These functions are supported by Fuseki database server.

This channel takes care of both providing the channels and events to and to triggering

the actions coming from Rule Engine.

4.5.1 Channels Interface

The Channel Interface is based on a set of extendable boxes representing each channel,

which offers the available events and actions for each one as is shown in figure 4.6.

The channels can include events, actions or both, depending of the type of channel.

For example, a sensor channel usually provides only events, or a Spotify Channel

just offers actions. However, there are channels that includes both of them, such has

Smartphone Channel.

1https://jena.apache.org/

32

4.5. CHANNEL ADMINISTRATION

Figure 4.6: Channels Interface

4.5.2 Channel Creation

As we explain above, the creation of channels in EWE Tasker is handled by the

Fuseki Server using N3 files. N3 files follows a EWE ontology structure as shown in

the example 4.7. In order to create the Activity Recognition Channel of EWE Tasker,

three elements have been defined:

• Activity Recognition Sensor which represents the human activity recognition

channel in EWE Tasker.

• Detected Activity Event as Event definition. This sensor defines the activity

events defining detected activity as output parameters. Activity recognition

channel provides events but no actions. Thus, the detected activity sensor is

only created to trigger activity events.

• Detected Activity as Parameter definition, which defines the activity event as

the detected activity: still, in a vehicle, walking...

33

CHAPTER 4. ARCHITECTURE

Figure 4.7: Channel N3 File

4.5.3 Channel Repository

In the same way as rules, the channels are stored in Fuseki database via N3 using

EWE ontology. In order to create new channels it is necessary to access to the Fuseki

database server 4.8 and upload the N3 files defining the new channel, so that users

can use their actions and/or events. Everytime that Ewe Tasker is loaded, the server

request all the channel information from the Fuseki server.

34

4.5. CHANNEL ADMINISTRATION

Figure 4.8: Fuseki Server

4.5.4 Events Manager

The Event Manager aim is to handle events from any device, in this project, from

the smartphone and send them to the Rule Engine.

Figure 4.9: Events Manager Interconnection

4.5.5 Action Trigger

The Action Trigger module handles the actions that comes from Rule Engine and send

them to any device, such as a smart light or the Smartphone. The actions returned

to Smartphone may belong to the Smartphone Channel, such as turn on Wifi or show

a toast notification, that uses the mobile phone internal services. However, there are

actions belongs other channels that uses another application in the mobile phone,

such as, play a song in Spotify (In Spotify Channel) or send a WhatsApp Message

(in WhatsApp Channel).

35

CHAPTER 4. ARCHITECTURE

4.5.6 Device Administration

The same way as the device channel module from phone module, this module incor-

porates all the devices created by the user, such as the user smartphone, the activity

recognition sensor, a Spotify device with user credentials...

4.5.7 Device Manager

The devices interface includes functionalities to create, edit or remove devices, so that

users can manage the devices they need use it. The delete button allows to remove a

device.

Figure 4.10: Device Manager Interface

• Push a device allow to access to the editor interface so that user cam edit device

information

• Edit button redirects user to the creation interface where user can create a new

device.

• Delete button allows to remove the selected device.

4.5.8 Device creator

The device creator goal is to allow users the devices creation. As we explained in

the rule creation section 4.4.1, before use a channel in a rule, users must create a

36

4.5. CHANNEL ADMINISTRATION

personal device assigned to a available channel. Thus, for example, users create a

device representing an activity recognition sensor before use the activity events, as

shown in figure 4.11, or they create a device assigned to a smartphone channel in

order to use the smartphone actions, such as turn on Wifi. The channel name and

the description are the only parameters required so that users can define the new

device created and difference it from other devices of the same channel.

Figure 4.11: Device Creation Interface

4.5.9 Device Repository

The devices are stored in Fuseki database. The devices that user creates are unique

and exclusive of the user. Thus, when the user connects he can access to the own

devices but not access to devices which other users create.

37

CHAPTER 4. ARCHITECTURE

38

CHAPTER5
Case study

5.1 Introduction

In this chapter we are going to describe the study cases. This description will cover

the main features, and its purpose is to understand the utility of both the activity

recognition and the automation tasks as well as the activity monitoring in different

contexts. The main actor in this project is the user, as we explained in chapter 3.1,

whose aim is divided in two:

• to automate tasks using activity and beacons events and other actuators in a

intelligent environment.

• to use the activity recognition to register his activity and know information and

statistics about his activity both in the his work routine and in a normal activity

routine, as well as automate custom rules using the activity events.

To achieve these objectives, two study cases have been tested. The first one

recreates a intelligent environment in a office where user uses automation tasks that

interacts with different actuators and his activity in work is monitored. The second

39

CHAPTER 5. CASE STUDY

situation proves the utility of monitor user activity and uses automation tasks in a

real daily routine.

5.2 Automation Rules creation

Firstly, in order to start using automation tasks, user has to create the rules that he

wants to manage in the Ewe Tasker Server 1. He can access to the server from app

or to any device with internet.

5.2.1 Login and Register

On the access to Ewe Tasker, the server will request a user login or register. User

can creates a new account or just login if he already has a existing account. User

authentication is need by the fact that the server stores personal devices and rules

which only own user must use.

Figure 5.1: Ewe Tasker Login and Register

1http://ewetasker.gsi.upm.es/

40

http://ewetasker.gsi.upm.es/

5.2. AUTOMATION RULES CREATION

5.2.2 Devices and rules creation

One he access the server, he proceeds to create the devices that he want to use

(Beacons, a smartphone, smart lights and the activity recognition sensor), specifying

parameters required such as name and description.

After do this, the system will interpret that the devices exists and user will be able

to use it to create rules. Thus, user access to the rules manager interface and starts

new rule creation. He creates a list of rules to automate tasks in his work routine, as

is shown in figure 5.2. Finally, user can use the EWE Tasker service and the rules

that he has created from Ewe Tasker app. To create other rules, the process followed

is the same as the one explained here, but choosing other actions, events and devices.

Figure 5.2: Rules Created List

41

CHAPTER 5. CASE STUDY

5.3 Intelligent Office

This use case recreates an user that wants to automate tasks in his office in order to

make more comfortable staying there, and also, to monitor his work activity so that

he can know the spent time in the office working, resting or just making other things.

5.3.1 Environment description

This environment has been recreated in the laboratory of the Intelligent Systems

Group 2 (GSI), that offers users an automation environment providing actuators such

as beacons, smart lights or even, a smart door.

Figure 5.3 shows the described laboratory that includes different actuators: 3

beacons, 3 smart lamps and a smart door; and the different rooms where the user can

work or rest.

The rooms defined are:

• Hall. It is the entrance of the office. This room incorporate a smart main door

which only open with identification; the ”hall beacon” which detects the users

who are going to enter the office; and the ”Hall Light” which turn on when

someone is in hall.

• Rest room. It is the rest area where workers drink coffee and chat. The room

includes the ”Rest Beacon” to detect users resting.

• Work room. The room where workers spend more time working. It incorporates

a beacon and a smart light in each desk, called “Work Beacon” and “Work

Light”.

2http://www.gsi.dit.upm.es/

42

5.3. INTELLIGENT OFFICE

Figure 5.3: Intelligent Office Environment

5.3.2 Use case development

The use case starts when user arrives to the office and starts the EWE Tasker app,

starting both the intelligent environment and the activity recognition. In order to

open the main door, mobile phone receives a signal from the “Hall Beacon” and send

the beacon event to Ewe Tasker, who process it and trigger the action associated to

the rule “presence detected at door”, allowing to open the door. Besides, another

rule is executed, causing the “hall Smart light” turn on.

Once inside, user goes to the “rest room” to take a coffee and chat, when app

detects the “Rest Beacon” signal and start tracking his activity in resting room and

counting how long the user is there. After he drinks his coffee, he walks to the “Work

Room” to start working.

In the “Work Room”, the “Work Beacon” sends a signal that mobile phone detects,

and it starts the activity recognition to monitor user work activity. In this room, user

has got a personal smart lamp in his desk. In order to turn on the lamp, user has

to be in the Work Room still in his desk during a time (a “still” activity event is

required), so the beacon event is not enough to turn light on. The Ewe Tasker rule

43

CHAPTER 5. CASE STUDY

forces him to stand still for a while to prevent that the light is turning on and off

continuously or it is turning on when he is doing something outside his desk. Finally,

this rule causes that the mobile phone turn on silent mode, so that notifications do

not bother the user while he is working.

5.4 Daily Routine

This scenario represents a user who uses the app in his diary routine, making it more

comfortable. Firstly, he wants to know information about his physical activity, such

as how much time he has ran or he has ridden his bicycle, or about how long he has

driven his car today. Secondly, he wants to automate tasks in his daily routine in

order to avoid small actions that may result annoying, such as turn on silent mode

in his mobile phone when he is sleeping, and turn off when he wakes up or turn Wifi

off when he leaves home.

Before starting his daily routine, the user created the following rules in Ewe Tasker

in order to use automation tasks in his daily routine:

Figure 5.4: Daily Routine Rules

Once the rules have been created, user starts monitoring his daily routine. To

do it, he initializes the app at morning, before go to work. In order to arrive at the

office, he walks ten minutes to get the subway station, where he stay 30 minutes,

approximately, and walks other 10 minutes since the station from the building where

he works. He finishes working at 2 o’clock and goes back on the same way to home.

In the afternoon he decides to go to run for a while. He usually goes to a park

44

5.4. DAILY ROUTINE

that is a little far from home to go walking, so he rides his bike for ten minutes to

get the park. How he always listens music while he is running, he created a rule in

EWE Tasker, in order to play music in Spotify when he starts to run. After run

approximately 40 minutes, he comes back home ridding his bike again.

At night he watches the statistics and graphics of his diary routine and checks the

carried out time in each activity today. Moreover, he access to the total information

of his activity in the day, week and month to evaluate if the time he spends in physical

activity has increased. Finally, he falls asleep from tiredness, but the “sleeping time

rule” caused that mobile phone put the silent mode on from 00:00 o’clock to 7 o’clock,

as he programmed.

The figure below shows the mobile app interface where the statistics about the

activity which app tracked and collected in the day, in the week, and in the month,

respectively, are shown.

Figure 5.5: User Activity Statistics

45

CHAPTER 5. CASE STUDY

5.5 Conclusions

Although this chapter don’t show all the possible uses of the app, it give us an idea

of the different contexts where the system can be applied. Should be added that the

two main studied cases, in a smart office and in daily routine complement each other,

since the smart office use case can be given in the daily routine.

Therefore, we can understand that the app can be used at all times and in all

environments, whether it’s smart environment or not despite some features are not

available when the user is outside an environment intelligent.

46

CHAPTER6
Conclusions and future work

In this chapter we will describe the conclusions extracted from this project, problems

encountered, and the thoughts about future work.

6.1 Conclusions

Concluding all that we have explained in this document, a new version of Ewe Tasker

app have been developed. The new version includes the activity recognition applica-

tion, to monitor user activity, allow automation task using activity events and show

statistics about user activity information. Moreover, it includes an updated version

of Beacon application, to allow the automation task using beacons in a intelligent

environment.

To make this application, the system have covered several different technologies,

from powerful services of Google to web server technologies. The technologies used

and studied in order to make the project have been:

• Web technologies: Java, Python, PHP, HTML5 in the Ewe Tasker server.

47

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• Database technologies: MongoDB, Fuseki, Elastic Search, Firebase real time

Database in order to save user data, server elements definitions, usage data and

activity information, respectively.

• Semantic technologies: Notation3, EYE, RDF in the rules and channels defini-

tion.

• Mobile development technologies: Java, Objective-C.

It is important to remember that a part of this project has a important influence

of the software architecture developed in a older project cited several times in this

document [36].

Finally, in the next steps, we will summarize the achieved goals and the problems

faced in the Project, as well as the future work and possible improvements in this

Project.

6.2 Achieved goals

In the following section the features and goals achieved in this Project are explained:

Detect the activity that users are carrying out at all time using an activity

recognition software. The Activity Recognition API of Google integrated in the

mobile app allows to send Google sensor and recognition data in order to receive

the tracked activities information from the API.

Generate the activity events to send it to Ewe Tasker. After detects the activity,

the mobile app process the list of activities to get the most probably activity

and if it has a high confidence the activity event is generated.

Create the activity recognition channel into Ewe Tasker in order to all users

can use the activity events to make automation rules. Ewe Tasker recognizes

this events and allows both the creation of recognition sensor devices and the

incorporation of activity events into rule creation process.

Store activity data into a real time database so that it can be accessible at

all time by the mobile app, making possible the activity monitoring.

Create a user graphic interface to display activity information. The mobile

app offers users information about their activity at all time, both the activity

48

6.3. PROBLEMS FACED

tracked in each time and activities undertaking by the user in the last day, week

or month via bar graphics.

Integrate and update the beacon task automation platform in the mobile

app. Beacons are a really useful tool in a office to detect the user at all time.

We decided to keep it in the mobile app so that user can totally monitor his

activity at work.

6.3 Problems Faced

During the development of the project we had to face some problems. These problems

are brie described in this section:

Rules storage. The rules storage has been changed over the last years. They

were stored using Linked Data Fragments and even in a MongoDB database.

Both ways had different problems. Thus, in this project we use Fuseki database

to store rules written in N3, similar than channels, and MongoDB to store

user information. This made difficult to retrieve the functionality of create and

manage rules in the own mobile app.

Activity Recognition accuracy. As we explained before, the activity recognition

needs to configure the activity detection interval of time. When users carry

out an specific activity for a long time, such as running or even in a vehicle,

they probably stop doing frequently because any factor, such as, a signal stop

or traffic. In these cases, software works definitely better with slow Interval of

time, such as 5 seconds because it waste much less resources and it get better

accuracy. On the other hand, when the activity is changing constantly, such

as in the office, the detection interval need to be really short, because a long

Interval make really difficult to track the carried out activity. Finally we decided

to take 3 second because get good results, as we explained before.

Beacons channel integration. The several changes in the updated versions An-

droid made difficult to adapt the application. So, the Ewe Tasker version has

not been migrated to Android X. This will be studied in future work.

49

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.4 Future work

In this section, some possible future features that could be developed will be explained

in order to improve the Ewe Tasker application.

• Develop more sophistic graphics and statistics offering more details about the

user dairy activity, such as specific graphics of each activity which shows the

time per hour that user carried out the activity.

• Develop the iOS version of the application, allowing users who own an Iphone

or any other IoS device to use EWE Tasker automation service.

• Implement the Google Play location API and integrate it into the Activity

Recognition application, thus improving accuracy when user activities are de-

tected and being able to create new automation tasks, including tasks combined

with activity recognition, such as executing a specific action only if user is run-

ning in a specific place.

• New Channel Integration: In the current version, there are some internet chan-

nels in EWE Tasker such as Twitter or Spotify. It would be really interesting

add more channels such as Instagram or LinkedIn, even Trello allowing new

automation tasks.

• Migrate app to Android X to get the last version of Android.

50

APPENDIXA
Impact of the project

In this appendix, we are going to talk about the possible social, economic and envi-

ronmental impact that this project could have in sections below. We will also give

the possible ethical and professional implications of such project.

A.1 Social Impact

The social impact of this project can be measured in terms of user experience. These

terms, extrapolated to the working context, imply an improvement in working results

and a easier working experience adapted to the nowadays jobs.

In physical exercise context, this app can motivate people to walk and run, exciting

them to get better time registers of both exercise.

Besides, it offers drivers to know the time they spent in a long travel and help them

in order to make a rest stop. For example, they can program automated notifications

to notify them when they are driving more than 2 hours.

i

APPENDIX A. IMPACT OF THE PROJECT

A.2 Economic Impact

The economic impact for the business is clearly an improvement by the fact that

they could monitor the worker activities with this app. A company could impose

minimum requirements on the time workers are working to avoid wasting more time

than necessary. This would entail to a higher worker performance and in consequently,

greater benefits for the company.

A.3 Environment Impact

The development of this project and the subsequent implementation of the resulting

system do not have a direct impact on the environment.

However, many times we spend light stupidly because we forget to turn it off, a fact

that in an intelligent environment could be avoided. On a large scale like a company,

it would reduce the total amount of energy consumed, therefore which would have an

impact on the environment if it is a important company.

A.4 Ethical and Professional Implications

The ethical implications of this project are related to data collection. Data collection

should always be carried out with users consent once they are informed of the purpose.

The terms of use, when using free software platforms such as Moodle, are defined by

the entities that implement these platforms in accordance with the legislation of each

country and the treatment that will be made of the data. However, our system only

collects user activity information when the user wish it and they can anytime decide

about when we are tracking it.

ii

APPENDIXB
Economic budget

In this appendix, we are going to resume the possible costs involved in this project

development. Firstly, in first section we are going to calculate the human resources

needed for this master thesis design and development. In addition, in next section

the costs of the material resources needed for this project are going to be described.

Finally, the licenses used in this project are going to be described in last section.

B.1 Human resources

In this section, we will take into account the time employed in the designing, devel-

oping and testing this system.

In this section, we will take into account the time employed in the designing,

developing and testing this system. We will give an approximation based on the

average salary of a Telecommunication Engineer, to find the cost of the development

of the project. The estimate of the working time used to carry out this project has

been calculated on the basis of ECTS credits 1. A master’s thesis consists of 12 ECTS

credits, each representing 25 to 30 hours of work. This makes a total of 360 hours of

iii

APPENDIX B. ECONOMIC BUDGET

work, or two months of half-time work. If we consider a gross salary of 1500 euros per

month, the cost of the project amounts to 2400 euros. This cost includes the design,

development and testing tasks for the creation of the system. The cost of system

maintenance and operation is not considered very high.

B.2 Material resources

The following material resources have been used to carry out this project. Firstly, a

personal computer in which the design, development and testing tasks can be carried

out. Secondly, a smartphone which has not to be necessarily powerful or modern.

The personal computer on which the project has been developed costs approxi-

mately 900 euros and the mobile phone cost 300 euros. Both of them has got good

technical characteristics. The laptot features are:

• CPU: Intel Core i5 2.7GHz

• Memory: 16GB RAM DDR4

• Hard Disk: 250GB SSD

The mobile phone characteristics are:

• Ram: 6GB RAM DDR4

• Rom: 64 GB

B.3 Licenses

The software used in the development of the project is open-source software.

iv

Bibliography

[1] Abhiditya Jha, Jess Kropczynski, Heather Richter Lipford, and Pamela J Wisniewski. An

exploration on sharing smart home devices beyond the home. In IUI Workshops, 2019.

[2] Catia Prandi, Lorenzo Monti, Chiara Ceccarini, and Paola Salomoni. Smart campus: Fostering

the community awareness through an intelligent environment. Mobile Networks and Applica-

tions, pages 1–8, 2019.

[3] Petar Radanliev, David De Roure, Jason RC Nurse, Razvan Nicolescu, Michael Huth, Stacy

Cannady, and Rafael Mantilla Montalvo. New developments in cyber physical systems, the

internet of things and the digital economy–discussion on future developments in the industrial

internet of things and industry 4.0. 2019.

[4] Chien-Yuan Liu. A smart home automation system. In Proceedings of the 3rd International

Conference on Intelligent Technologies and Engineering Systems (ICITES2014), pages 381–388.

Springer, 2016.

[5] Christopher Miller, Wende Dewing, Karen Haigh, David Toms, Rand Whillock, Christopher

Geib, Stephen Metz, Rose Richardson, Stephen Whitlow, John Allen, et al. System and method

for automated monitoring, recognizing, supporting, and responding to the behavior of an actor,

February 12 2004. US Patent App. 10/341,335.

[6] Pascal Dresselhaus, Sven Goldstein, Hans Beckhoff, and Ralf Vienken. Connection unit, mon-

itoring system and method for operating an automation system, January 31 2019. US Patent

App. 16/149,988.

[7] Smail Benzidia, Blandine Ageron, Omar Bentahar, and Julien Husson. Investigating automation

and agv in healthcare logistics: a case study based approach. International Journal of Logistics

Research and Applications, 22(3):273–293, 2019.

[8] Nishad Joshi and Nikita Virkud. Gsm based security automation system for building entry

management. 2019.

[9] Duc Ngoc Tran and Duy Dinh Phan. Human activities recognition in android smartphone

using support vector machine. In 2016 7th International Conference on Intelligent Systems,

Modelling and Simulation (ISMS), pages 64–68. IEEE, 2016.

[10] Kunlun Zhao, Junzhao Du, Congqi Li, Chunlong Zhang, Hui Liu, and Chi Xu. Healthy: A

diary system based on activity recognition using smartphone. In 2013 IEEE 10th International

Conference on Mobile Ad-Hoc and Sensor Systems, pages 290–294. IEEE, 2013.

v

BIBLIOGRAPHY

[11] Jie Yin, Qiang Yang, and Jeffrey Junfeng Pan. Sensor-based abnormal human-activity detec-

tion. IEEE Transactions on Knowledge and Data Engineering, 20(8):1082–1090, 2008.

[12] Jake K Aggarwal and Lu Xia. Human activity recognition from 3d data: A review. Pattern

Recognition Letters, 48:70–80, 2014.

[13] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten, and Paul JM

Havinga. A survey of online activity recognition using mobile phones. Sensors, 15(1):2059–2085,

2015.

[14] Song-Mi Lee, Sang Min Yoon, and Heeryon Cho. Human activity recognition from accelerometer

data using convolutional neural network. In 2017 IEEE International Conference on Big Data

and Smart Computing (BigComp), pages 131–134. IEEE, 2017.

[15] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis Reyes-Ortiz. A

public domain dataset for human activity recognition using smartphones. In Esann, 2013.

[16] Muhammad Shoaib, Hans Scholten, and Paul JM Havinga. Towards physical activity recog-

nition using smartphone sensors. In 2013 IEEE 10th international conference on ubiquitous

intelligence and computing and 2013 IEEE 10th international conference on autonomic and

trusted computing, pages 80–87. IEEE, 2013.

[17] Giuseppe Cardone, Andrea Cirri, Antonio Corradi, Luca Foschini, Raffaele Ianniello, and Re-

becca Montanari. Crowdsensing in urban areas for city-scale mass gathering management:

Geofencing and activity recognition. IEEE Sensors Journal, 14(12):4185–4195, 2014.

[18] May Thet Htar Nyo and Win Zaw Hein. Design and construction of navigation based auto

self-driving vehicle using google map api with gps. Int. J. Trend Sci. Res. Dev, 3:65–68, 2019.

[19] Giuseppe Cardone, Andrea Cirri, Antonio Corradi, Luca Foschini, and Rebecca Montanari.

Activity recognition for smart city scenarios: Google play services vs. most facilities. In 2014

IEEE Symposium on Computers and Communications (ISCC), pages 1–6. IEEE, 2014.

[20] Xiami includes more Google Services. https://elandroidelibre.elespanol.com/

2020/01/los-moviles-de-xiaomi-usaran-de-serie-mas-apps-de-google.

html. El android libre; accessed 3 November 2019.

[21] Tanzeem Choudhury, Gaetano Borriello, Sunny Consolvo, Dirk Haehnel, Beverly Harrison,

Bruce Hemingway, Jeffrey Hightower, Karl Koscher, Anthony LaMarca, James A Landay, et al.

The mobile sensing platform: An embedded activity recognition system. IEEE Pervasive Com-

puting, 7(2):32–33, 2008.

[22] Thanyalak Rattanasawad, Kanda Runapongsa Saikaew, Marut Buranarach, and Thepchai Sup-

nithi. A review and comparison of rule languages and rule-based inference engines for the se-

mantic web. In 2013 International Computer Science and Engineering Conference (ICSEC),

pages 1–6. IEEE, 2013.

[23] Amir Rahmati, Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Ifttt vs. zapier: A com-

parative study of trigger-action programming frameworks. arXiv preprint arXiv:1709.02788,

2017.

vi

https://elandroidelibre.elespanol.com/2020/01/los-moviles-de-xiaomi-usaran-de-serie-mas-apps-de-google.html
https://elandroidelibre.elespanol.com/2020/01/los-moviles-de-xiaomi-usaran-de-serie-mas-apps-de-google.html
https://elandroidelibre.elespanol.com/2020/01/los-moviles-de-xiaomi-usaran-de-serie-mas-apps-de-google.html

BIBLIOGRAPHY

[24] Miguel Coronado, Carlos A Iglesias, and Emilio Serrano. Modelling rules for automating the

evented web by semantic technologies. Expert Systems with Applications, 42(21):7979–7990,

2015.

[25] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers. Rdf 1.1 turtle.

World Wide Web Consortium, 2014.

[26] Tim Berners-Lee and Dan Connolly. Notation3 (n3): A readable rdf syntax. w3c team submis-

sion 28 march 2011, 2011. Last Accessed, 24, 2016.

[27] Thanyalak Rattanasawad, Marut Buranarach, Kanda Runapongsa Saikaew, and Thepchai Sup-

nithi. A comparative study of rule-based inference engines for the semantic web. IEICE TRANS-

ACTIONS on Information and Systems, 101(1):82–89, 2018.

[28] M Coronado, CA Iglesias, and E Serrano. Ewe ontology specification, 2015.

[29] Apache Jena. Apache jena fuseki. The Apache Software Foundation, 2014.

[30] Mongo DB. https://www.mongodb.com/es. MongoDB, accessed 10 October 2019.

[31] Elastic Search. https://www.elastic.co/es/products/elasticsearch. Elastic

Search, accessed 10 October 2019.

[32] UML. https://en.wikipedia.org/wiki/Unified_Modeling_Language. Unified

Modeling Language, Wikipedia; accessed 5 December 2019.

[33] Sergio Munoz López. Development of a Task Automation Platform for Beacon Enabled Smart

Homes. PhD thesis, Master’s thesis, ETSI Telecomunicación, Universidad Politécnica de

Madrid, 2016.

[34] EWE Tasker. https://github.com/gsi-upm/ewe-tasker-android. Ewe Tasker

GitHub.

[35] R. Verborgh and J. De Roo. Drawing conclusions from linked data on the web: The eye

reasoner. IEEE Software, 32(3):23–27, May 2015.

[36] Sergio Muñoz, Antonio F Llamas, Miguel Coronado, and Carlos Angel Iglesias. Smart office

automation based on semantic event-driven rules. In Intelligent Environments (Workshops),

pages 33–42, 2016.

[37] Oscar Araque. Design and Implementation of an Event Rules Web Editor. Trabajo fin de

grado, Universidad Politécnica de Madrid, ETSI Telecomunicación, July 2014.

[38] J. Fernando Sánchez-Rada. Design and Implementation of an Agent Architecture Based on

Web Hooks. Master’s thesis, ETSIT-UPM, 2012.

[39] Master’s thesis.

[40] Allan Askar. Internet of things (iot) device registration, May 14 2019. US Patent 10,291,477.

[41]

vii

https://www.mongodb.com/es
https://www.elastic.co/es/products/elasticsearch
https://en.wikipedia.org/wiki/Unified_Modeling_Language.
https://github.com/gsi-upm/ewe-tasker-android

BIBLIOGRAPHY

[42] Jayeeta Saha, Arnab Kumar Saha, Aiswarya Chatterjee, Suyash Agrawal, Ankita Saha, Avirup

Kar, and Himadri Nath Saha. Advanced iot based combined remote health monitoring, home

automation and alarm system. In 2018 IEEE 8th annual computing and communication work-

shop and conference (CCWC), pages 602–606. IEEE, 2018.

[43] Ozlem Durmaz Incel, Mustafa Kose, and Cem Ersoy. A review and taxonomy of activity

recognition on mobile phones. BioNanoScience, 3(2):145–171, 2013.

[44] Mohammad Derawi and Patrick Bours. Gait and activity recognition using commercial phones.

computers & security, 39:137–144, 2013.

[45] Jordan Frank, Shie Mannor, and Doina Precup. Activity recognition with mobile phones. In

Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages

630–633. Springer, 2011.

[46] Mikko Rinne, Seppo Törmä, and D Kratinov. Mobile crowdsensing of parking space using

geofencing and activity recognition. In 10th ITS European Congress, Helsinki, Finland, pages

16–19, 2014.

[47] Jad Helmy and Ahmed Helmy. The alzimio app for dementia, autism & alzheimer’s: Using

novel activity recognition algorithms and geofencing. In 2016 IEEE International Conference

on Smart Computing (SMARTCOMP), pages 1–6. IEEE, 2016.

[48] Sergio Muñoz, Oscar Araque, J Sánchez-Rada, and Carlos Iglesias. An emotion aware task

automation architecture based on semantic technologies for smart offices. Sensors, 18(5):1499,

2018.

[49] Yadid Ayzenberg, Javier Hernandez Rivera, and Rosalind Picard. Feel: frequent eda and event

logging–a mobile social interaction stress monitoring system. In CHI’12 extended abstracts on

human factors in computing systems, pages 2357–2362. ACM, 2012.

[50] Firebase. https://firebase.google.com/?hl=es-419. Firebase, accessed 5 September

2019.

viii

https://firebase.google.com/?hl=es-419

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technologies
	Google Play Services
	Activity Recognition
	Activity Recognition API
	Activity Detection
	Activity Recognition Transition

	Firebase
	Realtime Database
	Cloud Firestore
	Firebase Auth

	Rule Automation
	Task Automation Services
	Notation3
	EYE
	EWE ONTOLOGY
	Data Storage Technologies
	Fuseki
	MongoDB
	Elastic Search

	Beacons

	Requirement Analysis
	Use cases
	System actors
	Conclusions

	Architecture
	Overview
	Android Mobile APP Module
	Activity Recognition Channel
	Statistics Channel
	Actions Trigger
	Devices Channel
	Beacons Channel

	EWE Tasker Server Module
	Rule Engine

	Rule Administration
	Rule Editor
	Rule Manager
	Rule Repository

	Channel Administration
	Channels Interface
	Channel Creation
	Channel Repository
	Events Manager
	Action Trigger
	Device Administration
	Device Manager
	Device creator
	Device Repository

	Case study
	Introduction
	Automation Rules creation
	Login and Register
	Devices and rules creation

	Intelligent Office
	Environment description
	Use case development

	Daily Routine
	Conclusions

	Conclusions and future work
	Conclusions
	Achieved goals
	Problems Faced
	Future work

	Appendix Impact of the project
	Social Impact
	Economic Impact
	Environment Impact
	Ethical and Professional Implications

	Appendix Economic budget
	Human resources
	Material resources
	Licenses

	Bibliography

