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Resumen
La comunidad del aprendizaje automático es cada vez más consciente de las limitaciones
del paradigma actual de la inteligencia artificial, fuertemente basado en el reconocimiento
de patrones, donde los enfoques de aprendizaje profundo han dominado la mayoŕıa de los
problemas de aprendizaje automático en la última década. Aśı, los investigadores están
cada vez más interesados en aprender más sobre causas y efectos e incluir este conocimiento
causal en los modelos que apoyan la toma de decisiones en la actualidad. El Procesamiento
del Lenguaje Natural (PLN) es uno de los campos del Aprendizaje Automático que es cada
vez más consciente de la importancia de la causalidad para la interpretabilidad de los mod-
elos y para que éstos sean escalables y robustos. Sin embargo, la infancia de esta tendencia
en la intersección de la causalidad y el PLN produce una falta de herramientas para re-
alizar estudios de inferencia causal que incorporen tecnoloǵıas innovadoras que faciliten el
procesamiento y análisis de grandes cantidades de datos en forma de texto.

El objetivo principal de este proyecto es la integración de la tecnoloǵıa como herramienta
habilitadora para encontrar relaciones causales en presencia de texto. Esto aportará un valor
importante a la hora de acelerar la extracción de conocimiento causal en dominios en los que
predomina el texto. Para ello, implementamos modelos del estado del arte actual para inferir
efectos causales en presencia de datos textuales. Además, desarrollamos diferentes módulos
de extracción de caracteŕısticas lingǘısticas para fomentar y facilitar el estudio del efecto
de las propiedades lingǘısticas. De hecho el trabajo realizado para el módulo de análisis
de emociones culminó con el diseño y desarrollo de un modelo basado en transformers
que presentamos a la competición EmoEvalEs, enmarcada en la Conferencia IberLef 2021.
Hemos conseguido la primera posición en dicha competición, lo que nos ha llevado a publicar
el paper GSI-UPM in IberLEF2021: Emotion Analysis of Spanish Tweets by
Fine-tuning the XLM-RoBERTa Language Model en las actas del congreso. Por
último, hemos evaluado nuestro sistema en diferentes casos de uso para estudiar el efecto
del sentimiento, la emoción u otras propiedades lingǘısticas en redes sociales y plataformas
en las que predominan los datos de texto generados de forma colaborativa.

Palabras clave: Inferencia Causal, Aprendizaje Automático, Procesamiento
de Lenguaje Natural, Transformers, Análsis de Sentimientos, Análisis de Emo-
ciones
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Abstract
The machine learning community is increasingly aware of the limitations of the current
paradigm of artificial intelligence, strongly based on pattern recognition, where deep learn-
ing approaches have mastered most machine learning tasks in the last decade. Thus, re-
searchers are more and more interested in shifting to learn more about cause and effect
and include this causal knowledge in the models that support decision-making nowadays.
Natural Language Processing (NLP) is one of the Machine Learning fields that is becoming
increasingly aware of the importance of causality for model interpretability and scalable and
robust models. However, the infancy of this trend in the intersection of causality and NLP
produces a lack of tools to carry out causal inference studies which incorporate innovative
technologies that facilitate the processing and analysis of great amounts of textual data.

The main objective of this project is the integration of technology as an enabling tool
to find causal relations in the presence of text. This will provide an important value in
speeding up causal knowledge extraction in domains where the text is predominant. To
this purpose, we implemented state-of-the-art models to infer causal effects in the presence
of textual data. In addition, we developed different linguistic feature extraction modules
to foster and facilitate the study of the effect of linguistic properties. These modules have
been proven to be useful for sentiment and emotion analysis. In fact, the work done for
the emotion analysis module culminated in the design and development of a transformer-
based model that we submitted to the EmoEvalEs competition framed in the IberLef 2021
Conference. We have achieved the first position in the EmoEvalEs competition, which led
us to publish the paper GSI-UPM at IberLEF2021: Emotion Analysis of Spanish
Tweets by Fine-tuning the XLM-RoBERTa Language Model in the proceedings of
the conference. Finally, we have evaluated our system in different use cases to study the
effect of sentiment, emotion, or other linguistic properties in social media and platforms
where collaborative generated text data is predominant.

Keywords: Causal Inference, Machine Learning, Natural Language Process-
ing, Transformers, Sentiment Analysis, Emotion Analysis
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coincidido, en especial a mis amigos que me han acompañado durante todos estos años.
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CHAPTER1
Introduction

This chapter is going to introduce the context of the project, including a brief overview of
all the different parts that will be discussed in the project. It will also break down a series of
objectives to be carried out during the realization of the project. Moreover, it will introduce
the structure of the document with an overview of each chapter.

1



CHAPTER 1. INTRODUCTION

1.1 Context

“If we compare what machine learning can do to what animals accomplish, we observe that
the former is rather limited at some crucial feats where natural intelligence excels” [63].
The machine learning community is increasingly aware of the limitations of the current
paradigm of artificial intelligence. Thus, it is more and more interested in shifting to learn
more about cause and effect instead of pattern recognition, where deep learning approaches
have mastered most machine learning tasks in the last decade.

Causal inference is the process of determining the independent, actual effect of a par-
ticular phenomenon that is a component of a larger system. Causality, with its focus on
representing structural knowledge about the data generating process that allows interven-
tions and changes, can contribute towards understanding and resolving some limitations of
current machine learning methods [63].

When it comes to learning causality with data, we need to be aware of the differences
between statistical associations and causations. For example, when the car’s braking system
tell-tale lights up, the driver may observe it is harder to hit the brakes and slow down the
car. Accordingly, she would try to disconnect the tell-tale to be able to easily use the
brakes again, but, surprisingly, doing this does not work since the tell-tale was not causing
the brakes’ malfunction. In this case, usually, a low level of brake fluid is the common cause
of both the tell-tale warning and the car’s malfunction, and we say that it is a confounder
of the causality of the tell-tale warning on the car’s malfunction.

These new ideas are slowly landing and becoming more relevant in all machine learning
fields, such as in Natural Language Processing (NLP). However, the infancy of this trend in
the intersection of causality and NLP produces a lack of tools to reproduce current works
and experiment with new ideas.

Additionally, the digital transformation and the integration in our lives of internet-
based services in recent years have caused an explosion of data that only can be processed
automatically, creating new technical challenges in data-intensive applications. For this
reason, it is necessary to incorporate innovative technologies that facilitate the processing
and analysis of such data dimensions.

Therefore, the main objective of this project is the integration of technology as an en-
abling tool to find causal relations in presence of text in a reproducible and easy way. This
will provide an important value in speeding up causal knowledge extraction in domains
where the text is predominant. For this purpose, we implemented the state-of-the-art to
infer causal effects in presence of text, and different linguistic feature extraction modules.
One of them, the emotion analysis module was used to participate in the EmoEvalEs com-
petition framed in the IberLef 2021 Conference. With this model, we have achieved the first

2



1.2. PROJECT GOALS

position in the EmoEvalEs competition, which led us to publish the paper GSI-UPM at
IberLEF2021: Emotion Analysis of Spanish Tweets by Fine-tuning the XLM-
RoBERTa Language Model in the proceedings of the competition.

1.2 Project goals

The main objective of this project is to develop a tool capable of discovering causal relations
in settings where text is predominant. For this purpose, we have proven the possibility of
using current state-of-the-art models in different language settings. We have made these
models modular to gain flexibility in the inputs. Finally, we have built a system to extract
text characteristics using recent NLP model architectures the transformers. We have tested
our system on different use cases: First, messages are taken from the social network Twitter
directed towards ride-hailing companies such as Uber and Cabify, selecting both Spanish
and English-speaking users. The results obtained from these objectives will help us develop
a system that allows us to obtain the characteristics of the tweets that causally influence
the studied output, in this case, the time these companies take to answer the social network
users. The second use case is to estimate the effect of sentiment, emotion, and other
linguistic properties on the rating score and reviews per month of the Airbnb platform.

To achieve these objectives explained in the previous section, the following tasks have
been carried out during the project:

1. T1: Study the state of the art about Natural Language Processing and machine
learning technologies. Specifically, its intersection with causal inference.

2. T2: Reproduction of current state-of-the-art works on causal inference for Natural
Language Processing.

3. T3: Development of a machine learning system to estimate causal effects following
the next steps:

(a) Development of a simulated dataset to test the capabilities of the SOTA model
in different language settings.

(b) Extend the SOTA model to be able to use it with models in different languages.

(c) Create and implement different feature extracting modules to estimate different
linguistic features in the text. More specifically, modules for sentiment and
emotion analysis.

(d) Analysis of the results of the different machine learning modules.

4. T4: Evaluation of the causal inference system on different case studies:

3



CHAPTER 1. INTRODUCTION

(a) Effect of sentiment and emotion on reply time in the social network Twitter.

(b) Effect of different linguistic attributes on the rating of a product (apartments in
Airbnb)

1.3 Structure of this document

The remaining of this document is structured as follows:

• Introduction (Chapter 1). This chapter introduces the reader to the context where
the project is developed, giving a quick overview of the intersection of causal inference
and natural language processing, and how we pretend to develop a tool to estimate
causal effects in text easier. In addition, the goals of the project are presented along
with the specific tasks we will perform.

• Theory introduction (Chapter 2). This chapter describes briefly the main conceptual
foundations behind this work: what is causal inference and what are transformers.

• State of Art (Chapter 3). This chapter offers the reader a review of all previous
knowledge and works that have inspired ours. It explains the current approaches to
apply causal inference in the natural language processing domain.

• Enabling Technologies (Chapter 4). This chapter briefly reviews the main technolo-
gies that have made possible this project.

• Architecture (Chapter 5). This chapter describes the architecture of the project,
from the TextCause module, which is the core of the system, to the different modules
developed to extract accurate linguistic attributes of the text.

• Case studies (Chapter 6). This chapter describes the system used in two particular
use cases, where its validity is discussed and insights are extracted as a Proof-of-
Concept.

• Conclusions and future work (Chapter 7). This chapter details the achieved goals
and outcomes. In addition, future work lines are described.

• Project impact (Appendix A). This appendix shows the social, economic, and envi-
ronmental impact as well as ethical implications

• Project budget (Appendix B). This appendix describes the necessary project budget
regarding the material and human resources needed, as well as the taxes involved.

4



CHAPTER2
Theory

Tens of thousands of years ago, humans began to realize that certain things cause other
things and that altering the former can alter the latter. No other species has understood
this; certainly not to the same extent that we have. This discovery gave rise to organized
societies, towns, and cities, and eventually, to the scientifically and technologically rooted
civilization we enjoy today. And all for asking a simple question: Why?

- Judea Pearl, The Book of Why
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CHAPTER 2. THEORY

This chapter offers a theoretical introduction to the science and technology this work is
built. First, we will provide a brief introduction to causal inference to let the reader grasp
the basic ideas behind this science. Secondly, we will describe the main technology used in
this project, the Transformers. Finally, we will discuss the two main works that have lead
to the development of the CausalText algorithm and are the starting point for this project.

2.1 A Brief Introduction to Causal Inference

The science of Causal inference addresses questions regarding the cause-effect relations of
different events of everyday life. Examples of this kind of questions are:

• the effectiveness of a treatment to prevent or treat a disease

• what is the cost of obesity to the health system

• what is the effect of social media on mental health

• the increase in sales was caused by the new tax law or by our marketing campaign?

• does this HR employee have a gender/race/religion bias when hiring new staff accord-
ing to his history of hiring?

All these questions try to infer the effects of a treatment/policy/intervention on a de-
termined result and are addressed via different causal inference methods. Thus, causal
inference is essential for rigorous decision-making. In this project, we will analyze how to
answer this kind of question when some of the variables we are using are linguistic proper-
ties contained in the text, and we implement a system to ease the solution to this problem
under certain conditions. This section will discuss the main concepts of the science of causal
inference to facilitate the understanding of the objectives of the project. It has been written
based on the course “Introduction to Causal Inference” by Brady Neal [44].

2.1.1 Correlation does not imply causation

There is a good number of associations in the real world that we easily identify as spurious
due to the evident lack of causal relationships among them. For example, it seems that the
yearly number of people who died tangled in their bedsheets has a high degree of correlation
with the yearly per capita cheese consumption in the U.S. (see Figure 2.1). Does this mean
that cheese produces an uncommon side effect on certain parts of the population that
makes them uncontrollably move during their sleep until they die tangled? Do the cheese
companies advertise more their products when a person is found dead tangled in her sheets?
Or is there any other explanation?
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Figure 2.1: Yearly per capita cheese consumption in the U.S. correlates with the yearly
number of people who died tangled in their bedsheets1

Although in this case, it is obvious for most of us that there is no causal relation
between the variables, when working in studies using real-world observational data, it can
become harder to distinguish the spurious correlations from the actual causal associations.
Moreover, most of the associations are to some extent causal associations. This means that
for a given amount of association, a part of it might be a causal association and the other
part not.

For example, when the car’s braking system tell-tale lights up, the driver may observe
it is harder to hit the brakes and slow down the car. Accordingly, she would think that this
tell-tale caused the malfunctioning of the breaks and try to disconnect the tell-tale to be
able to easily use the brakes again. But, surprisingly, doing this does not work since the
tell-tale was not causing the brakes’ malfunction. In this case, usually, a low level of brake
fluid is the common cause of both the tell-tale warning and the car’s malfunction, and we say
that it is a confounder of the causality of the tell-tale warning on the car’s malfunction. We
will call this kind of association confounding association since the association is facilitated
by a confounder. Then the total association observed can be made up of both confounding
association and causal association.

Additionally, different cognitive biases play a role in the “correlation vs causation”
problem, making us predisposed to confound a statistical association with a causal one.
For example, the availability heuristic (we find a cause in something available in our minds)
and the motivated reasoning (I do not like spending time with my inlaws, then that time I
spent with them made me have a headache).

1Source: https://www.tylervigen.com/spurious-correlations
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2.1.2 Then, what does imply causation?

Before answering that question, we must define some concepts: we will use T to denote
the random variable for treatment, Y to denote the random variable for the outcome
of interest and C to denote covariates. The potential outcome Y (t) denotes what your
outcome would be if you were to take treatment t. A potential outcome Y (t) is distinct
from the observed outcome Y in that not all potential outcomes are observed. Rather all
potential outcomes can potentially be observed. The one that is actually observed depends
on the value that the treatment t takes on.

We define the individual causal effect or Individual Treatment Effect for a given indi-
vidual as:

ITE = Yi(do(T = 1))− Yi(do(T = 0))

where the i subscript refers to that specific individual and the treatment T is considered
binary (1 or 0). The do notation refers to actually intervening in the treatment to observe
the outcome Y . Then, the ITE is the difference between the outcome when the treatment
is given (do(T = 1)) and the outcome when the treatment is not given (do(T = 0)).

Unfortunately, this definition of causal effect runs up against the so-called “Fundamental
Problem of Causal Inference”: It is impossible to observe all potential outcomes for a given
individual. That is, if you observe the outcome given the treatment (Yi(do(T = 1))), you
cannot observe what would have happened if you don’t give the treatment ((Yi(do(T = 0)))).
The scenario you do not observe is known as counterfactual. It is a fundamental problem
because if you can not observe both Yi(do(T = 1)) and Yi(do(T = 0)), you can not observe
the causal effect.

The solution to this problem is to use the Average Treatment Effect (ATE), the average
over the ITEs:

ATE = E[Yi(do(T = 1))− Yi(do(T = 0))] = E[Y (1)− Y (0)]

However, to actually compute the ATE we need a statistical estimand and the first
option that comes to mind is the associational difference: E[Y |T = 1] − E[Y |T = 0].
Unfortunately, this associational quantity includes also confounding associations and thus,
is not equal to the causal quantity of interest. We need to make further assumptions so that
the ATE is simply the associational difference: ignorability (assume that the treatment was
randomly given) and exchangeability (the treatment groups are exchangeable in the sense
that if they were swapped, the new treatment group would observe the same outcomes as
the old treatment group).

Sadly, these assumptions are completely unrealistic because there is likely to be con-
founding in most observational data. A solution to this problem is the use of Randomized
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control trials (RCTs), which force the treatment to not be caused by anything (Figure 2.2).
When there are no confoundings, the ATE is equal to the difference in conditional expec-
tations.

Figure 2.2: Randomized Controlled Trials eliminate the association between the confounder
and treatment

2.1.3 Causation in observational studies?

Although Randomized Controlled Trials allow us to compute the causal effect, we can not
always randomize treatment due to ethical reasons (it would be unethical to make a group
smoke a pack of cigarettes a day to study its effect on lung cancer), infeasibility due to the
cost and resources needed to carry out the experiment, or because it is just less convenient.

To be able to use observational data, we need to fulfill the Exchangeability assumption.
To achieve that, we can control the relevant variables by conditioning the estimand on them.
In other words, we only compare groups with the same level of the confounding variable
(all individuals in group A have the confounding C = 1 and all in group B have C = 0) so
that the confounding association between treatment T and outcome Y is blocked. This is
known as backdoor adjustment (Figure 2.3).

E[Y (1)− Y (0)] = EC [E[Y |do(T = 1), C]− E[Y |do(T = 0), C]]

This project attempts to use recent advances in Natural Language Processing to ad-
just the text as a confounder and open a new range of causal inference studies based on
observation textual data.
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Figure 2.3: Backdoor adjustment

2.2 Transformers

The goal of this section is to provide a brief, not extensive understanding of the evolution
of Natural Language Processing (NLP) technologies until the conception of the transformer
architecture, and a description of the main foundations of this architecture. This section is
based on several previous works [4, 5, 39, 3, 2].

2.2.1 From Bag of Words to Transformers

The first attempts of automatic language processing relied on statistical patterns of human
word usage. In this line, techniques such as Bags of words [26] with their origin as early
as 1954 provided a statistical representation of the words in a document. However, it was
not extensively used until the 2000’s when the increase in computing power allowed to
processing big amounts of information.

Later, more complex information representations were created based on neural networks,
machine learning models based on linear and nonlinear functions. We have witnessed during
the last decade the exponential use of this type of model to tackle a wide number of problems
in different knowledge fields, proving their great capacity to generate and use meaningful
representations of information. This has led to the surge of new applications and solutions,
fostering the interest of society in this new Artificial Intelligence spring.

In the field of NLP, this success of neural networks is in great part due to the use of word
embeddings, numerical vector representations able to capture the information and associa-
tions of words. The better the word representation, the most useful is the information for
neural networks to learn. Word2vec [41] is a method to efficiently create word embeddings
from large text corpora. It is powered by two different algorithms, Continuous-Bag-of-
Words, which goal is to predict a word given its surrounding context; and Skip-gram, which
is tasked to predict the context given a word.
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The word embeddings produced by this method were successfully used by Recurrent
Neural Networks (RNNs), a more complex architecture with backward connections and
feedback loops that was able to simulate a “memory”. Since they used the information
from previous outputs, they could “remember” previous words, improving the retrieval of
information from the context. RNNs are combined in more complex architectures to create
encoder-decoder and attention-based models

Figure 2.4 depicts the architecture of a basic RNN. The input layers transform the
words into their vector representation, then, the hidden layers generate the hidden states
that are propagated to the next layers and themselves through a feedback loop, allowing the
hidden layers to use information from past time steps. Finally, the output layer provides a
probabilistic distribution using different activation functions.

Figure 2.4: Unfolded RNN2

During the training process, the network weights are updated, including a new weight
matrix with the information from past time steps that are used in the recurrent connections,
which allows having short-term memory.

Allowing new feedback loops from the surroundings of a neuron increases the number of
connections and the capacity of these architectures to make more complex operations and
simulate a longer memory. This creates recurrent neuron cells, which, when stacked, are
capable of learning tasks that require long-term memory over long sequences of data.

The most powerful RNNs are those based on Long Short-Term Memory (LSTM) [28]
cells, which combines the inputs and various hidden states to simulate both short and long-
term memory. The larger number of parameters and operations of these networks allow
them to work well even given long delays between significant events and to handle signals
that mix low and high-frequency components. However, this comes with an increased cost
due to their sequential nature and directly proportional to the exponential growth of the
number of parameters and connections, making them computationally expensive during

2By fdeloche - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=60109157
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both training and inference.
This problem motivated the definition of a simpler yet similar performance to the LSTM

cells, the Gated Recurrent Units [11] (GRUs). They have significantly fewer parameters and
connections, which makes them faster and more efficient. However, their main disadvantages
are their lower capacity to store long-term information and the fact that they are still
sequential.

These Recurrent Neural Networks were used to build Encoder-Decoder architectures,
which combine neural networks to build multi-input/multi-output models. In the NLP
domain, the goal of the encoder, built with an RNN, is to transform a sequence of words
into a numeric vector that preserves enough information from the sequence. On the other
hand, the decoder, which is also built using RNNs, is tasked to transform the numeric
vector into a sequence of words. This idea empowered many applications such as machine
translation, question answering, and style transfer.

Figure 2.5: Machine Traslation with a Encoder-Decoder architecture3

Their main problem was the lack of context information that these models used to
generate their predictions. For example, the inability to correctly translate a word that
could have different meanings in a determined context. This problem was approached
through finding inspiration in the human attention model: new weights are defined to be
able to compute numerically the importance of each word, which adds a new complexity
layer to these systems. The drawbacks of this solution are the need for ad hoc attention

3Alammar, J (2018). The Illustrated Transformer. Retrieved from
https://jalammar.github.io/illustrated-transformer/
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mechanisms for each architecture and their difficulty to take into account different factors
to compute the importance of a word.

2.2.2 Transformers

This problem was solved with the transformer architecture. Transformers [68] is a self-
attention-based architecture that allows computing complex representations of information
without using Recurrent Neural Networks, which have made it possible to parallelize the
training of large language models efficiently. The self-attention mechanism allows to asso-
ciate different positions of a sequence of words and compute a representation of the infor-
mation and its importance. The great advantage of this architecture is its simpler design,
allowing more efficient training and inference processes, achieving extraordinary results not
only in all NLP problems but in other domains such as Computer Vision or Reinforcement
Learning.

Introduced in 2017 by researchers at Google and the University of Toronto, unlike RNNs
they could be very efficiently parallelized allowing the training of large models. Really large
models as Figure 2.6 shows, where the latest transformer language models are not included
due to having a number of parameters out of scale: GPT-3 with 175 billion parameters
(2020) and Wu Dao 2.0 with 1.75 trillion parameters(2021).

Figure 2.6: Comparison of the parameters of each Transformer model until Turing-NLG4

The innovation behind Transformers boils down to three main concepts: Positional
Encoding, Attention, and Self-Attention.

4Corby Rosset (2020). Turing-NLG: A 17-billion-parameter language model by Microsoft. Re-
trieved from https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-
model-by-microsoft/
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The main idea of positional encoding is to append to each word a number with its order
in the sentence. Storing word order as data, not structure, makes it easier for the model to
learn the position of each word or the distance between different words in the sequence.

Attention is a mechanism that was already used in RNNs since it allows a text model
to “look at” the context of every single word in the input sequence when predicting the
output sequence. By seeing thousands of examples, the model learns what types of words
are interdependent. It learns how to respect gender, plurality, and other rules of grammar.

Self-attention allows a neural network to understand a word in the context of the words
around it. As the model processes each word (each position in the input sequence), self-
attention allows it to look at other positions in the input sequence for clues that can help
lead to a better encoding for this word. This self-attention mechanism is further refined by
adding a “multi-headed” attention mechanism that allows the model to focus on different
positions and gives the attention layer multiple representation subspaces, i.e., different
attention representations for each input embedding.

2.2.2.1 Transformer architecture

A transformer has an encoder-decoder architecture. The encoding component is a stack of
N encoders, while the decoding component is a stack of decoders of the same number.

Figure 2.7: Transformer diagram of two stacked encoder-decoders5

5Alammar, J (2018). The Illustrated Transformer. Retrieved from
https://jalammar.github.io/illustrated-transformer/
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The word is transformed to an embedding vector and a positional encoding is added to
it before entering into the first encoder. The encoders are divided into two sublayers: The
encoder’s inputs first flow through a self-attention layer, which helps the encoder look at
other relevant words in the input sentence as it encodes a specific word. The outputs of the
self-attention layer are fed to a feed-forward neural network, independent for each position
and thus the various paths can be executed in parallel while flowing through the feed-forward
layer. In addition, each sublayer has a residual connection followed by a layer-normalization
step, a technique to optimize the training process of neural network architectures.

The decoder has also both those layers, but between them, there is an encoder-decoder
attention layer that helps the decoder focus on appropriate places in the input sequence.
The output of the decoder is fed into a fully connected neural network that projects the
output into a logits vector of vocabulary size length. Finally, the softmax layer outputs the
predicted probability for each word of the model vocabulary, selecting the word associated
with the logit with the highest probability.

2.2.2.2 Transformers and transfer learning

One of the most popular Transformer-based models is called BERT, short for “Bidirectional
Encoder Representations from Transformers” [16]. It was trained by Google researchers on
a massive text corpus and open-sourced to be used as a readily available component for any
NLP pipeline.

BERT proved that you could build very good language models trained on unlabeled
data like text scraped from Wikipedia and Reddit and that these large “base” models could
then be adapted with domain-specific data to lots of different use cases. BERT is basically
a trained Transformer Encoder stack, that takes a sequence of words as input which keeps
flowing up the stack. At the output layer, and embedding that abstracts meaningful infor-
mation of the input sequence is generated and it can be used to feed a linear neural network
layer to classify the sequence among different classes. This process is known as finetuning
and basically provides a method to leverage large pre-trained language models to build a
model for a downstream task. BERT allowed researchers to smash multiple benchmarks
with minimal task-specific fine-tuning and provided the rest of the NLP community with
pre-trained models that could easily (with fewer data and less compute time) be fine-tuned
and implemented to produce state of the art results.

Since BERT, there have been several improvements in the architecture and training
process to create optimized pre-trained models (RoBERTa), more efficient architectures
(DistilBERT), or multilingual models (XLM- RoBERTa).
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CHAPTER3
State of Art

Causal inference from observational data is well-studied and has become a topic of growing
interest in many machine learning fields to enhance the predictions with causal knowledge.
This chapter offers the reader a review of all the previous knowledge and works that have
inspired ours. It explains the current approaches to apply causal inference in the natural
language processing domain.
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3.1 Causal inference and machine learning

The revolution of neural networks in the last decade has produced advances in almost all
fields of Artificial Intelligence and has been successfully applied in a wide range of problems
in all scientific domains. Yet the limitations of these methods have become obvious when
we try to solve more complex problems where pattern recognition is not enough. For this
reason, more and more researchers are showing interest in including causal knowledge in
new methods that go beyond pattern recognition, building new algorithms to advance the
field of causal inference leveraging the power of neural networks.

A recent publication by Luo et al. [37] discusses the main advances in causal relations
discovery using neural network algorithms. One of the most popular causal models is the
Bayesian Networks, which encode the conditional independencies between variables using
directed acyclic graphs. This model has shown its utility in several machine learning chal-
lenges, such as interpretable learning, which is a key factor to support decision making.
In this line, Kim and Bastani [33], propose a framework for learning causal interpretable
models from observational data outperforming or at least being equal to baseline models.
However, methods like this one are still computationally expensive due to their combina-
torial nature and inefficient search strategies. To solve this problem, a breakthrough work
by Zheng et al. [80] established an elegant mathematical connection between the classical
combinatorial optimization of the searching space of possible DAG solutions and the con-
tinuous optimization of machine learning. They re-formulate the problem of estimating
the structure of DAGs as a continuous optimization problem over matrices, avoiding the
combinatorial constraints.

Building on this framework, Lachapelle et all [35] proposed a novel score-based approach
to learning a directed acyclic graph (DAG) from observational data supporting nonlinear
relationships, analyzing the weights of a neural network to reveal the relations between
variables and the result. Also, Yu et al [78] proposed a deep generative model and applied
a variant of the structural constraint to learn the DAG. Moreover, the previous work by
Zheng et al. is further generalized to nonparametric models [81], outperforming Yu et
al. work. These advances provide neural architecture search algorithms that could be
further explored to achieve both model accuracy and transparency simultaneously. Shi
et al [64] address the use of neural networks for the estimation of treatment effects from
observational data to find whether it is possible to adapt the design and training of neural
networks to improve the quality of the final estimate of the treatment effect. They propose
a new neural network architecture that exploits the sufficiency of the propensity score for
estimation adjustment, and a regularization procedure that induces a bias towards models
that have non-parametrically optimal asymptotic properties.
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3.2 Causal inference: Text-based use cases

Causal inference is also a topic of interest in the Natural Language Processing field. The
Causal Inference field has taken advantage of the astonishing advances of NLP in recent
years, creating new methods to exploit the unstructured nature of the text to estimate the
causal associations present in the data.

A work by Egami et al [19] aims to connect the text as data literature with the growing
literature on causal inference. For that purpose, they introduced a conceptual framework
enabling researchers to discover high-dimensional textual interventions and estimate the
ways that observed treatments affect text-based outcomes while avoiding the problems of
identification and estimation when using text as the data source. This framework is based
on the idea of learning a latent representation of the text, that is sufficient for causal
inferences from that text. They identify the problems of identification and estimation when
using text data, and propose and formalize a solution: split the text data into a train and
test set. While this is not a novel solution, they provide a formal description of how this
solution works. Also, they provide two examples of using this framework: when the text is
a treatment and when the text is an outcome.

In the pursuit of meaningful and generalizable learning in text, a work by Paul [49]
proposes a matching technique for learning causal associations between word features and
class labels in document classification, to answer the question “which word features cause
documents to have the class labels that they do?” Experiments with binary sentiment classi-
fication on corpora from different domains show a superior performance of using propensity
score matching for document classification, allowing us to learn if a feature has a causal
effect on document classes.

A recent work by Veitch et al [71] develops a method to estimate causal effects from
observational text data, adjusting for confounding features of the text such as the subject
or writing quality. Say that we’re interested in finding what writing styles will help posts
become popular. Some authors list their genders on Reddit, and a user’s gender may also
affect popularity through tone, style, or topic choices. How do you decide what kind of lan-
guage to recommend to any person, regardless of their gender? The challenge is to produce
a low-dimensional representation of text that is sufficient for causal adjustment. Thus, they
adapt two modern tools for language modeling — BERT and topic modeling — to produce
representations that predict the treatment and outcome well. They find that modeling
language improves effect estimation and that the proposed causally sufficient representa-
tions adjust for confounding as expected, being able to learn document embeddings that
can predict both treatment and outcome. Also, they propose a methodology for empirical
evaluation that uses real text documents to simulate outcomes with confounding.
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Other authors have studied how features in the text influence crowdfunding campaigns
or irony detection. Yang et al [76] propose a neural network to quantify how persuasive is a
text and identify the persuasive strategies in advocacy requests. The method aims to model
persuasion in requests from crowdfunding websites and identify the different strategies at
the sentence level. McHardy et al [40] propose a novel method based on an adversarial
architecture to control the confounding variable (writing style of publication source) in the
automatic detection of satire in news. Using word embeddings to represent the news, the
encoder is encouraged to learn representations of the text which are unrelated to the con-
founds. They divide the problem into satire detection and publication source identification,
achieving comparable results to non-adversarial methods but with the correct modeling of
satire.

Pryzant has several works pursuing to make NLP models interpretable, which often
requires identifying features in the input that predict outcomes while also controlling for
potential confounds. In one of his works [56], they hypothesize that textual product descrip-
tions are also important determinants of consumer choice. Thus, they propose a method to
identify actionable writing styles and word usages that are highly predictive of consumer
purchasing behavior, while controlling for confounders (brand loyalty, pricing strategies).
Later, the problem is formalized as a new task [57]: inducing a lexicon that is predictive
of a set of target variables yet uncorrelated to a set of confounding variables. Also, two
deep learning algorithms are proposed: a bifurcated architecture to separate the explana-
tory power of the text and confounds, and an adversarial discriminator to force confound-
invariant text encodings.

Developing on his previous works, they present two methods for performance attribu-
tion [54]: finding the degree to which an outcome can be attributed to parts of a text
while controlling for potential confounders. One method uses a CNN to encode the text,
an adversarial objective function to control for confounders and projects its weights onto
its activations to interpret the importance of each phrase towards each output class. The
other method leverages residualization to control for confounds and performs interpretation
by aggregating over learned word vectors. Finally, in his last work (last quarter 2020), the
problem of estimating the causal effects of linguistic properties on downstream outcomes is
considered (i.e., How much will a positive product review increase sales?). They formalize
the causal quantity of interest, the effect of the writer’s intent, to be able to identify this
from observational data. Also, as it is only possible to have access to noisy proxies like
lexicons or classifiers, they propose an estimator composed of a model to adjust for the text
and distant supervision to improve the quality of noisy proxies. They make experiments
on two scenarios: predicting the effect of music reviews sentiment on sales, and complaint
politeness on response time.
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3.3 Causal Inference in social media

Several researchers have applied causal inference methods using observational data from
social networks, incorporating in recent years advances in NLP to also use data present in
text form.

Veitch et al [72] explore the use of networks as a proxy of the unobserved confounding,
creating embedding models of the most used network in Slovakia to yield inferences about
the response of a drug in people connected in the social network. Causal inference meth-
ods have demonstrated good results using observational data from social media. A study
carried by Pavalanathan & Eisenstein [50] tested whether the adoption of emojis in 2015 in
Twitter caused a decrease in the use of emoticons, using a dataset of tweets and obtaining a
significant decrease in emoticon use. In a recent study, Gencoglu and Gruber [20] propose a
causal inference approach to discover and quantify causal relationships between pandemic
characteristics (e.g. number of infections and deaths) and Twitter activity as well as the
public sentiment, with text data gathered from Twitter during the COVID-19 pandemic.
Their results show the ability to distinguish events that correlate with public attention from
events that cause public attention.

3.4 TextCause algorithm

The core of this project is based on a work started by Veitch et al. [71] that was further
developed by Pryzant et al. [55], where the TextCause algorithm was proposed. The goal
of this algorithm is to estimate causal effects from observational text data, adjusting for
confounding features of the text. This section will describe both works so the reader can
understand the foundation ideas behind this project.

3.4.1 Adapting Text Embeddings for Causal Inference - Veitch et al.

This work proposes the use of causally sufficient embeddings to adjust the confounding
features of the text. The underlying idea behind causally efficient embeddings is to learn
embeddings of text documents that retain only information that is predictive of the treat-
ment and outcome, and also relevant for language understanding.

Figure 3.1 shows the first assumption: The words of the text Wi carry sufficient in-
formation to adjust for confounding between treatment Ti and outcome Yi. The second
assumption is that only some properties of the text zi = f(wi) suffice for identification.
However, we do not observe zi but the raw text, so the goal is to reduce wi to a feature zi

with sufficient information to compute the causal effects. This problem is approached by
creating an embedding vector λ(w) from the words of each document, which would capture
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Figure 3.1: Text as a confounder

the confounding aspects of the text. The third assumption is that features of the text that
are useful for language understanding are also useful for eliminating confounding, so the
authors can rely on the recent advances in language modeling.

To produce these causally sufficient embeddings, the authors adapt language understand-
ing models to take in the words wi and produce the embedding λi along with the necessary
estimates to compute the causal effect. The authors develop two methods that produce
causally sufficient document embeddings: causal BERT and the causal topic model.

Causal BERT is a modification of the BERT transformer model and the method further
developed by Pryzant et al. Each input to BERT is the document text wi and the model
is tasked to produce three different outputs:

1. document-level embeddings

2. a map from the embeddings to treatment probability

3. a map from the embeddings to expected outcomes for the treated and untreated.

Then, a fine-tuning approach based on a neural net head on top of BERT is used to
predict the estimates of interests to compute the causal effect. In other words, the model
objective is designed to predict both the treatment and the outcome and thus adapt the em-
bedding to be useful for the downstream task, i.e., for causal inference. The authors prove
that this method is valid for causal inference, since if λ(w) carries the relevant. information
for the prediction task then it is also causally sufficient. That is, if λ(w) preserves the infor-
mation for both treatment and output prediction, it must also preserve the information for
causal effects estimation. They also validate this method in an empirical setup, addressing
the problem of unavailable ground causal effect data by using semi-synthetic data where an
outcome is simulated from a treatment and a confounder in a real text document dataset.

3.4.2 Causal Effects of Linguistic Properties - Pryzant et al.

Built on the results from the previous work, Pryzant et al. also consider the problem of
estimating the causal effect of linguistic properties on downstream outcomes. They approach
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two challenges in this problem:

1. Formalize the causal quantity of interest, the writer’s intent, and identify it from
observational data.

2. Identification: establish the assumptions we need to estimate effects with noisy proxies
to be able to build an estimator.

The first challenge is addressed by describing the hypothetical intervention correspond-
ing to the causal effect of interest. This is done by proposing the following causal model:

A writer uses a linguistic property T (the writer intent to be polite or not) and other
properties Z (topic, sentiment, etc), which may be correlated, to write text W. From the
text, the reader perceives the property of interest, captured by T̃ , and together with other
perceived information Z̃, produces the outcome Y (a faster response). The proxy label of
the property obtained via a classifier or lexicon is captured by T̂ (prediction made using a
model for politeness). This model makes clear that adjusting on the text W is sufficient
to block the backdoor path between T̃ and Y and thus allows to compute the Average
Treatment Effect (ATE) of the treatment adjusting for the confounders.

This is where the first problem appears: we want to evaluate the causal effect of the
writer’s intent T , but we have only access to the reader’s perception of the observational
data T̃ . To solve this problem, the authors prove that, assuming that the reader correctly
identifies the writer’s intent, the effect on the reader is equivalent to the effect on the writer.
The second problem is we do not observe the property T̃ directly, instead, we use a model
based on a classifier or domain-specific lexicon to predict the value of this property from the
text, producing a proxy label T̂ . The authors prove that this estimand only attenuates the
ATE we want to compute and it does not change the sign. That is, using a proxy label can
only decrease the magnitude of the effect due to the bias error and in any case, the effect
would be inverted, i.e., estimate a negative causal relation when it is positive in the ground
truth casual effect. This result led to the conclusion that constructing the most accurate
proxy treatment T̂ possible will produce the most accurate estimate of the ATE, as long as
we adjust for the text.

To this end, the authors propose an approach for improving the accuracy of proxy labels
using distant supervision to improve them. They train a classifier to predict the proxy label
T̂ and then using that classifier (logistic regression trained with bag-of-words) to relabel
examples which were labeled T̂ = 0 but look like T̂ = 1. Once we have the improved proxy
labels T̂∗, we can adjust for the confounding parts of the text as Veitch et al. proposed,
obtaining an estimator for the causal effect. Pryzant et al. implemented the TextCause
algorithm using the DistilBERT language model, a light Transformer model based on BERT
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architecture with 40% fewer parameters and 60% faster while preserving 97% of BERT’s
performance.

The algorithm performing these two steps, treatment boosting and text adjusting, was
named TextCause. It allows computing the ATE of treatment on the output in a text setting
with additional confounder covariates. The authors validated their proposed algorithm on
a semi-synthetic Amazon’s review dataset and they also conducted an applied study using
real-world complaints to find the effect of politeness on a timely response.
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CHAPTER4
Enabling Technologies

This chapter offers a brief review of the main technologies that have made possible this
project, as well as some of the related published works.
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4.1 Machine Learning Technologies

4.1.1 Scikit-learn

Scikit-learn[51] is an open-source machine learning Python library built on NumPy, SciPy,
and matplotlib that supports supervised and unsupervised learning. It also provides various
tools for model fitting, data preprocessing, model selection and evaluation, and many other
utilities.

This project was created by David Cournapeau as a Google Summer of Code project.
Later, Matthieu Brucher started work on this project as part of his thesis. Finally, INRIA
assumed the leadership of the project and made the first distribution in 2010. Since then,
they have published several releases with the help of a growing international community.

We have used this library to make some preprocessing steps and to evaluate different
models.

4.1.2 Numpy

Numpy [23] is the primary array programming library for the Python language, having an
essential role in research analysis pipelines in fields as diverse as physics, chemistry, astron-
omy, geoscience, biology, psychology, materials science, engineering, finance, and economics.
It provides a simple but yet powerful programming paradigm for organizing, exploring, and
analyzing scientific data.

Numpy is an open-source project aiming to enable numerical computing with Python.
It was created in 2005, building on the early work of the Numeric and Numarray libraries.

We have used this library to perform operations involving huge matrices.

4.1.3 Pytorch

PyTorch [48] is a Python package that provides two high-level features: Tensor computation
(like NumPy) with strong GPU acceleration and Deep neural networks built on a tape-
based autograd system. It accomplishes two goals, usability, and speed. Pytorch provides
an imperative and Pythonic programming style that supports code as a model, makes
debugging easy, and is consistent with other popular scientific computing libraries, while
remaining efficient and supporting hardware accelerators such as GPUs.

Usually, PyTorch is used either as a replacement for NumPy to use the power of GPUs
or as a deep learning research platform that provides maximum flexibility and speed. We
have used this library to build and modify the neural network architectures we developed.
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4.1.4 HuggingFace Libraries

HuggingFace is a company created from an open-source project to open the recent advances
on Natural Language Processing (NLP) to the wider machine learning community. They
provide several libraries to easily build, share, and have access to state-of-the-art trans-
former models, NLP datasets and to enable NLP pipelines with processing tools. We have
heavily leveraged Transformers library [73], an open-source library that consists of carefully
engineered state-of-the-art Transformer architectures under a unified API. Backing this li-
brary is a curated collection of pre-trained models made by and available for the community.
Transformers are designed to be extensible by researchers, simple for practitioners, and fast
and robust in industrial deployments

4.1.5 DistilBERT

DistilBERT [61] is a transformers model, smaller and faster than BERT, which was pre-
trained on the same corpus in a self-supervised fashion, using the BERT base model as a
teacher. It proofs that it is possible to reduce the size of a BERT model by 40% while
retaining 97% of its language understanding capabilities and being 60% faster.

We have used this transformer architecture as the model powering our system.

4.2 Data technologies

4.2.1 Pandas

Pandas [47] is an open-source Python library that provides high-performance, easy-to-use
data structures, and data analysis tools. It offers data structures and operations for ma-
nipulating numerical tables and time series. The principal features and functionalities that
provide pandas library are data grouping, merging, and querying operations as well as time
series analysis, reading and writing tools in different file formats, and data munging.

Development was started in 2008 by Wes McKinney to perform quantitative analysis
on financial data. In 2015, pandas became a NumFOCUS sponsored project, a non-profit
organization from the United States which promotes open-source projects.

Pandas was used in this work to manage, clean, and manipulate our datasets.

4.2.2 Matplotlib

Matplotlib [31] is a Python library that provides 2D plotting capabilities to produce publication-
quality figures such as plots, histograms, power spectra, scatterplots, and error charts with
just a few lines of code.
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It has been originally developed by John Hunter and has grown with the contribution
of a large community, becoming one of the NumFocus sponsored projects.

We have used this library to produce the figures shown in this work.

4.2.3 Twint

Twint [67] is an advanced Twitter scraping tool written in Python that allows for scraping
Tweets from Twitter profiles without using Twitter’s API. It provides most of the function-
ality needed to exploit Twitter as a data source. Twint makes it easier to gather data from
Twitter without the need for authentication and the limits of the API. It utilizes Twitter’s
search operators to let you scrape Tweets from specific users, scrape Tweets relating to
certain topics, hashtags & trends, or scrape user’s information.

We have used this library to easily utilize the Twitter Streaming API. In this work, we
used the Streaming API to download Twitter messages in real-time. It is useful for obtaining
a high volume of tweets, which suits perfectly our goal of collecting a tweet dataset.

4.3 Sentiment analysis

4.3.1 Senpy

Senpy [66] is a framework for sentiment and emotion analysis services. Its goal is to produce
analysis services that are interchangeable and fully interoperable. All services built using
Senpy share a common interface, which allows users to use them simply by pointing to a
different URL or changing a parameter.

The development started in 2014 and was carried out by the Intelligent Systems Group
at ETSIT, UPM, as part of the European Mixed Emotions project.

A Senpy plugin to easily use the LIWC dictionary has been developed. Furthermore,
this library has allowed us to perform sentiment and emotion analysis on our datasets to
carry out further analysis.

4.3.2 LIWC

Linguistic Inquiry and Word Count (LIWC) [52] is a transparent text analysis program
that counts words in psychologically meaningful categories. Empirical results using LIWC
demonstrate its ability to detect meaning in a wide variety of experimental settings, in-
cluding to show attentional focus, emotionality, social relationships, thinking styles, and
individual differences.

The heart of the program is a group of dictionaries that allow comparing each word
in the text against them. The dictionaries identify which words are associated with which
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psychologically relevant categories.
We have used this dictionary to extract meaningful features from the text.

4.3.3 Lexicons

We have made use of different sentiment lexicons. In particular, we have utilized the Spanish
lexicon from ML-Senticon [14], a set of sentiment lexicons at the lemma level for English,
Spanish, Catalan, Basque, and Galician. For each lemma, it provides an estimation of
polarity (from very negative -1.0 to very positive +1.0) and a standard deviation. Also, we
used the German positive lexicon from the multilingual sentiment open-source project [34].
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CHAPTER5
Architecture

This chapter presents the methodology used in this work. It describes the overall architec-
ture of the project, with the connections between the different components involved in the
development of the project.

31



CHAPTER 5. ARCHITECTURE

5.1 Framework

The main goal of our system is to find how different linguistic attributes produce an effect
on a specific output. For example, “how much is the effect of writing an angry message on
the response time in social networks?”. Our system makes it possible to answer this kind
of causal question, leveraging state-of-the-art methods to assess causality on text datasets
and different modules to describe the linguistic properties of interest such as the sentiment
or emotion of the text. It also allows computing the causal effect of any other treatment
on the desired output, making this a perfect tool to answer questions in a wide range of
fields where text is an important data source, such as social network analysis, marketing,
e-commerce, or other social science studies.

Figure 5.1 shows the architecture of the system. The core of the system is the TextCause
algorithm proposed by Pryzant et al., which was described in Section 3.4.2 and evaluated in
Section 5.2. This method has been modified to be able to test it in different settings and use
it for different languages. Linguistic properties like emotion or sentiment could be computed
from the text using any estimator. Our system proposes the use of three different modules to
compute different linguistic attributes from the text and evaluate their effect on the output.
Two of them are based on pre-trained language models with a transformer architecture,
the sentiment classification module (Section 5.4.1) and the emotion classification module
(Section 5.4.2). The third one is lexicon-based, the LIWC module (Section 5.5).

The system takes as input a dataset with text W , the output variable Y we want to
know how is affected by different variables CN or linguistic properties. These covariates
could also be used as confounder covariates. The different modules of the system compute
the proxy treatment for each of the desired linguistic attributes of the study. This is the
input information for the TextCause module, which outputs the Average Treatment Effect
(ATE) for each of the studied variables.
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Figure 5.1: System architecture
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5.2 TextCause module

This section describes the process followed to implement, validate, and evaluate the TextCause
algorithm proposed by Pryzant et al. First, we explain how we reproduced the results
claimed by the authors and provide further insights on the robustness of the method. Then,
we expose the modification made to the algorithm to ease the experimentation. Finally, we
propose a new multilanguage semi-synthetic dataset to test the algorithm in a new setting
from a different domain.

5.2.1 Reproducing paper

The first goal of this project was to implement and reproduce the results claimed by the
authors of the original paper. To this end, an exhaustive study of the work foundations,
proposal, and implementation was carried out aiming to understand and effectively imple-
ment the proposed algorithm. This has also allowed us to further study the robustness and
variability of the algorithm and extend it to fit our objectives.

5.2.1.1 Amazon reviews experiment

The first step was to reproduce the results obtained in the semi-synthetic Amazon reviews
dataset, a dataset with 200K examples of reviews scraped from Amazon containing the
product, the text of the review, and the rating score among other characteristics. We used
the script provided by the authors to reproduce the results with the parameters described
in their paper. The experiment was developed as follows:

1. The dataset was built by the authors from a corpus of Amazon reviews of music
products. They excluded reviews from products worth more than $100 or fewer than
5 words. The confounder covariate is a binary indicator for whether the associated
review is a CD or not. The treatment T̃ is whether the review is positive (5 stars)
or not (1 or 2 stars). This variable is used to simulate the outcomes and to calculate
ground truth causal effects for evaluation.

2. The proxy treatment T̂ is computed via a random noised version of T or with a
binary indicator for whether any words overlap with a positive sentiment lexicon.
The preprocessed dataset consists of 17,000 examples.

3. The language model used by the algorithm is DistilBERT, which was trained for 3
epochs and a batch size of 32.

4. We reproduced the 8 different experiments with all possible combinations of noise
(0 or 1), simulated confounding (-0.4 or 0.4), and simulated treatment (0.4 or 0.8).
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These variables were used to simulate the outcomes. Each experiment was replicated
using 100 different random seeds for robustness.

Each experiment for each seed took an average of 20 minutes on an NVIDIA GeForce
RTX 2080 Ti GPU, adding a total of 266 hours (8combinations ∗ 100seeds ∗ 20minutes).
Hence, it took us 5.5 days to reproduce the experiment on two GPUs. The environmental
impact and the cost of running these kinds of experiments are discussed in Section A.3 and
Chapter B.

Table 5.1 shows the ATE estimates obtained when reproducing the claimed results of
Pryzant et al. This effort to validate the claimed results led to finding small errors in
the published paper which were offset by the authors. The estimated ATE is the expected
change in click probability if one were to manipulate the sentiment of a review from negative
to positive. The true ATE is given in the top row (“oracle”), estimates closer to the oracle
are better. The last column gives the average difference between the estimated and true
ATEs; the lower, the better. Now we discuss each of the results:

• Although the semi-oracle method [75] obtains a slightly better result, it assumes addi-
tional access to the ground truth measurement model, i.e., the model that associates
T and T̂ , which is not a feasible assumption on observational data settings. We can
not know the exact relation between the real value of the treatment (how polite is a
text) and the measured value (the predicted politeness of a text).

• The unadjusted method is the expected difference in outcomes conditioned on T̂ , so
it does not take into account any confounding factor.

• The proxy baselines (proxy-lex and proxy-noised) perform backdoor adjustment for
the observed covariate (if the review is from a CD or not), using a random noised
version of T (to simulate a classifier with a 93% of accuracy) and a lexicon-based
proxy.

• T-boost is the result of the proposed method to improve the proxy labels and W-adjust
is the method to adjust for the text as we described previously.

• TextCause is the proposed algorithm that combines the previous two methods. We
observe that this algorithm significantly outperforms all previous methods (except for
the semi-oracle) with robust estimates to various levels of noise and treatment/con-
found strength.

These results show that adjusting for the text is crucial since the estimator which ad-
justed for the covariate C and not the text (proxy-lex) achieved poor results compared to
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Noise: Low High

Treatment: Low High Low High Mean delta

from oracleConfounding: Low High Low High Low High Low High

oracle 9.93 10.03 18.99 19.31 8.28 8.27 16.04 16.16 0.00

semi-oracle 9.73 9.82 18.78 19.08 8.25 8.26 16.02 16.19 0.12

unadjusted 6.85 7.67 13.53 14.50 5.79 6.42 11.51 12.26 3.56

proxy-lex 6.67 6.73 12.88 13.09 5.66 5.66 10.99 11.10 4.28

proxy-noised 8.26 8.27 15.90 16.12 6.69 6.72 13.22 13.34 2.31

+T-boost 7.73 8.60 14.97 16.12 6.62 7.23 12.94 13.73 2.38

+W-Adjust 7.73 8.60 14.97 16.12 6.62 7.23 12.94 13.73 2.38

+TextCause 9.44 10.28 18.19 19.32 7.85 8.50 15.47 16.32 0.37

Table 5.1: Reproduced results on Amazon review dataset from Pryzant et al.

the estimator which also adjusted for the text (W-adjust), even worse than the unadjusted
estimator. In addition, the better the accuracy of the proxy for the treatment, the better
the results. The proxy-noised estimator (which assumes a proxy accuracy of 93%) signifi-
cantly improves over the unadjusted estimator, and the TextCause algorithm (proxy label
boosting + text adjusting) achieves almost semi-oracle results. Indeed, the authors perform
a sensitivity analysis that demonstrates how the accuracy of the proxy for the treatment
significantly affects the ATE estimation.

We conducted small research about the variability of the results provided by the algo-
rithm and to discover to which end it is possible to use less random seeds and still have
robust results. Figure 5.2 shows the standard deviation of the proposed estimators. The
simulated True ATE (oracle) has low variability as expected, while the semi-oracle method
slightly increases it. The text adjusting method maintains a constant variability across the
different experiments, while those estimators using proxy label improvement increase the
variability. In any case, the variability remains almost constant for all estimators among
the different experiment settings.

One important drawback of the TextCause algorithm is the high number of random
seeds the authors used to provide robust results. We carried out a study to assess to
what extent this is necessary, comparing the differences in the results with less number of
seeds. We randomly sampled the results for several seeds from 10 to 100 in steps of 10,
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Figure 5.2: Standard deviation for each of the 8 experiments over the 100 random seeds

and we averaged this random sampling over 100 trials. Figure 5.3 shows the results of this
experiment with the number of seeds represented on axis X and the difference to the results
using 100 random seeds on-axis Y. We can observe how the larger the number of seeds we
use, the less difference we found to the experiment using 100 seeds (where the difference
becomes zero for evident reasons). We also observe a little difference of approximately
0.0006 between using 100 seeds or 10 seeds, so we assumed for the next experiments that
using 10 seeds is robust enough.

5.2.1.2 Consumer complaints experiment

We have also reproduced the other experiment described by the authors, an applied pilot
study that seeks to answer, “how does the perceived politeness of a complaint affect the
time it takes for that complaint to be addressed?”. As the code was not provided, we
implemented our own script following the steps described in the paper:

1. A corpus of complaints filed with the Consumer Financial Protection Bureau (CFPB)1

was used. This is a governmental agency that manages the complaints filed about
financial products, and it records the time a company takes to process the complaint.
We gathered a corpus of a total of 1.9M complaints arranging from dates from 2011-
12-01 to 2021-02-11. We do not have the exact dataset that was used in the original
experiment. This dataset has the financial product the complaint is about, the text
of the complaint, and the dates the complaint was registered and processed, among
other features.

2. The threshold for a quick response is in 15 days, which will become our outcome Y .

3. A confound covariate C is also considered to adjust for the type of financial product
1https://www.consumer-action.org/
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Figure 5.3: Average difference of TextCause results with different number of seeds

(whether the complaint is about Debt collection or not). This is another difference in
our experiment setting since the proposed confound adjusting (whether a complaint
was about mortgage or bank account) was not the most representative type of product
in the dataset.

4. To reduce other potentially confounding effects, we pair each Y = 1 complaint with the
most similar Y = 0 complaints according to the cosine similarity of TF-IDF vectors.
This has been a complex computing operation due to the huge size of the dataset.
After filtering the examples without the consumer complaint narrative, we ended up
with a dataset of 667K examples. This dataset is heavily unbalanced since only 15K
are from the “late response” class. Then, we compute the TF-IDF vectors of the
complaints. This vectorizer transform operation has linear time complexity O(N) and
generates a matrix of almost 150K features.

5. Now we want to compute the cosine similarity matrix between the quick-reply class
matrix of dimension 650k∗150k and late-reply class matrix of dimension 15.5K ∗150k,
so the memory requirements we need are: 650K ∗ 15.5K ∗ 64bits/(8bits/B) = 80GB.
This becomes a huge RAM requirement, so we implemented the cosine similarity
algorithms making use of the hard drive storage to compute the matrix in chunks.
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The computation of the matrix takes 25% more time but now we can take advantage
of I/O.

6. Finally, the 4,000 most similar pairs are selected for a total of 8,000 complaints.

7. For the proxy treatment (politeness), we used the same politeness prediction pack-
age [77] than the authors. This package reports a score from a trained classifier using
expert features of politeness and a hand-labeled dataset. We took the top 25% most
polite (T̂ = 1) and the top 25% least polite (T̂ = 0) complaints of our dataset, re-
ducing it to a total number of 4,000 complaints with their proxy label, the binary
confound value and the outcome.

8. As the authors, the TextCause algorithm was used with a training of 9 epochs and a
cross-validation fold of size 2000.

Table 5.2 shows the results obtained by the original work and ours. As we can observe,
there is a significant difference between the results of the two experiments, not only in the
actual magnitude of the effect but in the trends among the different estimators. While
in the original one the smallest ATE was produced by the unadjusted approach, ours is
produced by the proxy-lex approach. The W-Adjust and TextCause methods, which adjust
for covariates and text, produced the largest ATE estimates. We identified different possible
causes:

• Dataset: As we gathered our own version of the dataset in a wide timeframe, the
possible effects may have changed if the original authors used a shorter timeframe or
made any preprocess not described in the paper.

• Covariate C: We used a different product to create the binary confounder covari-
ate C. This might affect the total effect if the original covariate C was a strong
confounding factor because now it would heavily disturb the computed causal effect.

• Other confounding covariates: This experiment is performed in a complex sce-
nario, where might be several confounding factors not present in the dataset such
as the company’s situation when the complaint was registered (maybe there was a
severe incident that made several customers fill their complaints), the dates, those
complaints were made (there might be significant changes during holidays) or the
economic situation (the situation of most companies were not the same back in 2011
just after the global financial crisis than in 2021 after a year of a pandemic). For this
reason, the unconfoundness assumption does not hold and the results provided by the
algorithm should be taken with awareness, since the choice of the estimator can yield
highly varying conclusions.
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Estimator
ATE

Pryzan et al. Ours

unadjusted 3.01 1.70

proxy-lex 4.03 0.88

+T-boost 9.64 1.46

+W-Adjust 6.30 2.88

+TextCause 10.30 2.45

Table 5.2: Comparative of results in the complaints experiment

5.2.2 TextCause algorithm modifications

This section describes the modifications we performed to the original algorithm implemen-
tation, which are mainly three:

1. Simulation algorithm generalization: originally, the simulation was performed
ad-hoc for the characteristics of the Amazon review dataset. To be able to generate
simulations in new settings using different datasets, we modified how the output was
generated depending on how the dataset was balanced.

2. Parametrization: To foster faster experimentation, we modified all the algorithm to
be able to use different distilBERT-based architectures, different number of hyperpa-
rameters such as number of epochs or batch size, whether the model is cased or not,
the language of the dataset, the GPU id where the experiment should be deployed
and the root name for several output files we generate for analyzing and debugging
purposes.

3. Multi-language TextCause: Motivated by the significantly less research in the NLP
community for languages other than English, we evaluated the TextCause algorithm
in new languages: Spanish and German. To this end, we had to modify the algorithm
to allow the selection of different language models, lexicons, and preprocessing steps
to generalize the algorithm to different language settings. This is further discussed in
Section 5.2.3
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5.2.3 Simulations for causal inference evaluation

Since ground-truth causal effects are unavailable without randomized controlled trials, we
produce a semisynthetic dataset for different languages following the same approach Pryzant
et al. used in their work. Our goal is to prove the effectiveness of the proposed method in a
new context but with similar experiment settings, and for different languages. To this end,
we used a PlayStore app review dataset we gathered for this purpose from Cabify, Uber
and Lyft smartphone applications both in Spanish and English. Additionally, we studied
the validity of the algorithm on an Amazon general products review dataset in German.

5.2.3.1 Datasets

We collected the App Review dataset both in English and Spanish. We wanted to test
how well the algorithm performed in a different context (app reviews from ride-hailing
companies). This dataset contains the content of the review, the score given by the user,
and the application the user reviewed, among other features we have not used.

The English dataset has a total of 1.3M examples from almost 1M different users who
submitted reviews for the Uber and Lyft applications at the PlayStore. There are 1.2M
examples from Uber and 100K examples from Lyft. As more the 50% of the examples had
5 words or less, we filtered reviews under 5 words obtaining a dataset of 560K examples
with an average of 27 words per review. Figure 5.4 shows a histogram with the distribution
of reviews per number of words.

Figure 5.4: Reviews by word number

The confounder covariate C is a binary indicator for whether the review belongs to
Uber or Lyft. The treatment T̃ is whether the review is positive (5 stars) or not (1 or 2
stars). This variable is used to simulate with our adapted algorithm the outcomes Y and
to calculate ground truth causal effects for evaluation. The proxy treatment T̂ is computed
via a random noised version of T or with a binary indicator for whether any words overlap
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with a positive sentiment lexicon.
The Spanish dataset has a total of 750K examples from almost 525K different users

who submitted reviews for the Uber and Cabify applications at the PlayStore. There are
670K examples from Uber and 78KK examples from Cabify. We also filtered reviews under
5 words, obtaining a dataset of 387K examples with an average of 25 words per review.
Figure 5.5 shows a word cloud with the most frequent words in the dataset, where we
observe words related to the app operations and sentiments.

Figure 5.5: Spanish reviews word cloud

The dataset is prepared the same as the English version, but now the confounder co-
variate C indicates if the app belongs to Cabify or Uber.

Finally, we filtered the German dataset to take only two different product categories
to use them as our confounder covariate C, home and wireless. After filtering the reviews
with less than 5 words, we obtained a dataset of 45K reviews, where 25K were from home
products and 19K from wireless products.

5.2.3.2 Evaluation

The language model used in the English app review dataset is DistilBERT2, trained for
3 epochs with a batch size of 32; and it is compared against the multilingual version,
DistilMBERT3, which was trained for 3 epochs with a batch size of 16 (a smaller batch
size is needed to fit DistilMBERT in the GPU). The goal is to discover to what extent
it is possible to use the multilingual model for experiments using text from one of the
104 different languages DistilMBERT was trained on. Following the experiment done by
Pryzant et al., we evaluate the method in 8 settings with different combinations of noise,

2https://huggingface.co/distilbert-base-uncased
3https://huggingface.co/distilbert-base-multilingual-cased

42



5.2. TEXTCAUSE MODULE

treatment, and confounding levels and averaged over 10 random seeds for robustness, which
suffices as we explained in Section 5.2.1.1.

Table 5.3 shows the results obtained in the English App Review dataset, where the
column Mean delta from oracle shows the average difference to the true ATE across the 8
experiments. As expected, the semi-oracle method achieves the best performance although
it is not a feasible method in real-world settings. The unadjusted estimator, the expected
difference in outcomes conditioned on T̂ that does not take into account any confounder,
is the worst-performing estimator. Hence, the proxy baselines which perform backdoor
adjustment improve the previous estimator results. The T-boost estimator enhances the
effect predicted by the proxy based on the lexicon, although it does not achieve the efficacy
of the random noised proxy which simulates a proxy treatment of a 93% accuracy. This
led us to think that the proxy treatment based on lexicon may not be the most accurate
solution.

The four final rows show the methods using the language models. For the English-
specific model, W-adjust achieves a better result than the proxy baseline without text
adjustment. However, the multilingual model obtains a worse result than the baseline.
This situation is resolved using the full TextCause algorithm, where it achieves the best
score using the English-specific language model. Moreover, the TextCause algorithm using
the multilingual model improves significantly the W-adjust result. We observe how the
difference in the results of using the specific language model for English or multilingual one
is an approximate attenuation of 1% to the total effect. Hence, we conclude that the
TextCause algorithm could be easily implemented in different language settings
changing the language model and the lexicon used as a proxy.

Similarly, we carried out the same experiment with a Spanish-specific language model
extracted from the DIstilMBERT4, and the complete multilingual DIstilMBERT model.
Table 5.4 shows the results obtained in the Spanish App Review dataset, where the col-
umn Mean delta from oracle shows the average difference to the true ATE across the 8
experiments. The little improvement of the proxy treatment based on the lexicon over the
unadjusted estimator suggests a poor proxy accuracy. However, the treatment label boost-
ing technique enhances the proxy treatment and allows the TextCause algorithm to achieve
the best results for the Spanish-specific language model. Although the Spanish DistilBERT
achieves a pretty good result, the multilingual DistilBERT performs the best, achieving the
most accurate estimate of the ATE.

Finally, we evaluated the experiment for the German-specific language model 5 against
the multilingual DIstilMBERT model. Table 5.5 shows the results obtained in the German

4https://huggingface.co/Recognai/distilbert-base-es-multilingual-cased
5https://huggingface.co/distilbert-base-german-cased
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Noise Low High Mean delta

from oracleTreatment Low High Low High

Confounding Low High Low High Low High Low High

oracle 10.36 10.66 19.52 19.99 8.67 9.00 16.43 16.88 0.00

semi-oracle 9.95 10.05 19.10 19.26 8.38 8.45 15.99 16.09 0.53

unadjusted 7.37 7.97 14.26 14.92 6.06 6.56 11.84 12.35 3.77

proxy-lex 7.91 8.17 14.65 15.07 6.18 6.38 12.04 12.28 3.60

proxy-noised 7.80 8.03 15.25 15.75 6.40 6.54 12.73 12.82 3.27

+T-boost 7.73 7.83 14.79 14.97 6.75 6.85 12.79 13.01 3.35

+W-adjust 8.65 9.02 16.23 16.68 6.90 7.28 13.28 13.73 2.46

+TextCause 9.45 9.72 17.68 18.01 7.69 7.98 14.58 14.93 1.43

+W-Adjust

(multi)
7.39 7.94 14.26 14.87 6.13 6.69 12.00 12.51 3.71

+TextCause

(multi)
8.11 8.64 15.77 16.28 7.27 7.83 13.64 14.24 2.46

Table 5.3: Estimators comparison in semi-synthetic App Review dataset using specific
English distilbert and multilingual distilbert model. Lower mean delta from oracle is better.

Amazon Review dataset, where the column Mean delta from oracle shows the average dif-
ference to the true ATE across the 8 experiments. The worse result of the proxy treatment
based on the lexicon over the unadjusted estimator suggests a really poor proxy accu-
racy worsening the prediction. This problem is propagated to the T-boost, W-adjust, and
TextCause algorithms, although the former accomplish better results. In this case, although
text adjusting with the multilingual model gets worse results than the German model, the
TextCause algorithm with the multilingual version achieves the best score for the algorithm.
However, the best result is obtained using the proxy-noised estimator, which adjusts for the
covariate and approximates the proxy with a 93% accuracy. This outcome confirms that
ATE estimates can lose fidelity when the proxy is less than 80% accurate.
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Noise Low High Mean delta

from oracleTreatment Low High Low High

Confounding Low High Low High Low High Low High

oracle 9.83 9.90 18.88 19.12 8.11 8.21 15.90 16.10 0.00

semi-oracle 9.91 9.92 19.09 19.15 8.04 8.07 15.94 16.00 0.09

unadjusted 6.87 7.39 13.44 13.99 5.61 6.07 11.26 11.74 3.71

proxy-lex 7.18 7.20 13.77 13.92 5.93 6.01 11.63 11.77 3.58

proxy-noised 8.33 8.34 15.88 16.12 7.08 7.04 13.55 13.65 2.01

+T-boost 8.23 8.19 15.60 15.74 6.83 6.81 13.14 13.17 2.29

+W-adjust 6.53 7.07 12.56 13.09 5.27 5.73 10.23 10.66 4.36

+TextCause 8.61 9.30 16.71 17.38 6.88 7.37 13.62 14.11 1.51

+W-adjust

(multi)
7.48 8.09 14.32 14.94 6.74 7.26 12.24 12.80 2.84

+TextCause

(multi)
8.84 9.73 16.88 17.72 7.24 7.93 13.96 14.63 1.21

Table 5.4: Estimators comparison in semi-synthetic App Review dataset using specific
Spanish distilbert and multilingual distilbert model. Lower mean delta from oracle is better.
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Noise Low High Mean delta

from oracleTreatment Low High Low High

Confounding Low High Low High Low High Low High

oracle 9.18 9.27 18.30 18.54 7.00 7.03 14.84 14.88 0.00

semi-oracle 7.43 7.48 16.21 16.68 4.50 4.37 13.19 13.15 2.01

unadjusted 4.78 5.40 9.45 10.34 3.73 4.13 8.25 8.72 5.53

proxy-lex 3.65 3.69 7.79 8.02 2.27 2.21 6.41 6.40 7.33

proxy-noised 7.76 7.79 15.47 15.67 6.33 6.35 12.91 13.02 1.72

+T-boost 3.81 3.84 9.63 9.97 2.12 2.13 7.46 7.43 6.58

+W-adjust 5.59 5.95 10.19 10.84 4.75 4.90 9.05 9.42 4.79

+TextCause 5.68 5.65 11.70 12.14 4.97 5.03 10.47 10.47 4.12

+W-adjust

(multi)
5.29 5.58 10.29 10.99 3.89 4.24 8.67 9.00 5.14

+TextCause

(multi)
6.18 6.42 12.75 13.50 5.56 5.80 11.60 11.76 3.19

Table 5.5: Estimators comparison in semi-synthetic Amazon Review dataset using specific
German distilbert and multilingual distilbert model. Lower mean delta from oracle is better.
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5.2.4 Conclusions

This section has shown how we reproduced the experiment to validate the results obtained by
Pryzant et al., and we proposed further experiments in similar experiments yet in different
contexts and different languages. We found out that this algorithm is valid for different
languages, potentially any of those where DistilMBERT was trained on. Additionally, we
confirmed the importance of an accurate proxy treatment to achieve the best performance
when estimating the ATE. Finally, we discovered that the English language model trained
only on an English corpus performs better than the multilingual language model, although
the difference is not that relevant. However, for Spanish and German, the multilingual
model estimates better the ATE. This could be due to differences during the training of
the base model. Figure 5.6 shows the estimates of the different estimators compared to the
True ATE for the analyzed languages.

Figure 5.6: ATE estimates of TextCause algorithm for each language
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5.3 Model distillation: Is distilBETO really worth it?

Motivated by the empirical results we obtained in Section 5.2.3, where the performance of
the TextCause algorithm is greater when we use a language model for a specific language
rather than a multilingual model, we studied and implemented the necessary code to train
distilBETO, a distilled version of BETO [10], the Spanish version of BERT language model.

BETO is a BERT model trained on a big Spanish corpus [9] composed of different text
sources such as the web, Wikipedia, books, official documents, or subtitles that have been
curated. BETO is of a size similar to the BERT-Base model and was trained with the
Whole Word Masking technique. The benchmarks provided by their authors show a slight
improvement over the Multilingual BERT version.

Distillation is the method used to compress a large model, called teacher, into a smaller
model, called student. The idea is to train a student network to mimic the full output
distribution of the teacher network. This technique has been successfully applied to different
language models based on the transformer architecture [30]. The distilling process is possible
by using the Kullback-Leiber Loss, a measure of how one probability distribution is different
from a second reference probability distribution.

KL(p||q) =
∑

i

pilogpi −
∑

i

pilogqi

The training loss of the distilled model is a linear combination of the distillation loss
and the original masked modeling loss. This is a computationally expensive process, for
example, DistilBERT was trained using 8 Nvidia V100 16GB GPUs during 3.5 days.

We followed the implementation described in HuggingFace documentation [30] to pre-
pare the code to train distilBETO. First, we downloaded the 20GB of Spanish text data.
Then, we modified the provided scripts to use the BETO model and its corresponding tok-
enizer, so we can process our corpus into a suitable input for the model. As starting distilled
training with good initialization of the model weights is crucial to reach decent performance,
we also initialized a few layers of the teacher BETO model modifying the corresponding
script. At this point we would be ready to train our distilled version of BETO, however, we
decided not to carry out this process due to the large computing and time resources that
are needed since we only counted with 2 Nvidia GeForce RTX 2080 Ti 12GB GPUs. In
addition, the small expected improvement over the multilingual distilBERT model would
make the process not worth it and out of the scope of this project.
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5.4 Transfer learning and fine-tuning

The idea of transfer learning is to get the advantage of the knowledge obtained by a model
trained with lots of data to train a smaller model for another task. In the NLP domain,
and more specifically when using large pre-trained language models, this process is known
as fine-tuning.

This technique provides a means to not only train models faster, but to obtain pre-
trained models that yield better results. This is because pre-trained models have a statistical
understanding of the language used during pre-training. In practice, fine-tuning is applied
on a given model by throwing away its head, that is, its last layers focused on the training
objective, and replacing it with a new one that is randomly initialized and suitable for the
downstream task of interest. We will focus on building fine-tuned models for the Spanish
language, where we find fewer pre-trained models compared to English.

Figure 5.7: Fine-tuning process6

We followed the transformers library documentation7 to fine-tune our models for sen-
timent and emotion classification. Once we had the dataset for our desired supervised
downstream task, we prepared it using the tokenizer and data loader classes, which encode
the text to the input embeddings for the model and eases how the data is fed into the
model respectively. We used the Trainer class for the training process, which is optimized

6Alammar, J (2018). The Illustrated Transformer. Retrieved from
https://jalammar.github.io/illustrated-transformer/

7https://huggingface.co/transformers/training.html
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for transformer finetuning and provides a wide range of training options. Once the fine-
tuning process is finished, we can use our finetuned model leveraging on the power of the
pre-trained models.

5.4.1 Sentiment analysis module

This module is based on a finetuned model using the Spanish DistilBERT8, a model ex-
tracted from the multilingual version of DistilBERT. These fine-tuned models abstract the
input information to classify the text into the most probable class. Figure 5.8 shows the
words the model focuses on to predict the sentiment polarity. Here, it focuses on words like
“ben ##dicion” or “gracias” to predict a positive polarity.

Figure 5.8: Where does the model focus? Transformer attension on a tweet by @IbaiLlanos

5.4.1.1 Datasets

As a first experiment, we have trained on an Amazon product reviews dataset [32] with
200,000, 5,000, and 5,000 reviews in the training, development, and test sets respectively.
Each record in the dataset contains the review text, the review title, and the star rating,
among other information.

We considered reviews with 5 or 4 stars to be positive and those with 1 or 2 stars to be
negative, leaving the 3 stars’ reviews as neutral. As the star rating was uniformly distributed
in the dataset, we ended up with 80K, 2K, and 2K reviews per positive and negative classes
and 40K, 1K, and 1K reviews for the neutral class in the training, development, and test
sets respectively.

As a second experiment, we have finetuned the model using three different datasets::
the Amazon review dataset [32], Spanish Movie Reviews from Muchocine website [38], and
InterTASS Spanish Twitter Sentiment corpus [18].

The Muchocine reviews dataset contains 3,872 long-form movie reviews in the Spanish
language, each with a shorter summary review, and a rating on a 1-5 scale. We processed
the labels of the Spanish Movie Reviews dataset the same way we did with the Amazon

8https://huggingface.co/Recognai/distilbert-base-es-multilingual-cased
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reviews. Finally, we split the dataset into train, test, and development sets of 2478, 774,
and 620 examples, respectively.

The International TASS Corpus (InterTASS) is a corpus released in TASS 2017 for the
polarity classification at tweet level task. The final collection has 3,413 tweets separated into
1839 training examples, 324 development examples, and 870 test examples. The dataset is
annotated with the labels positive (P), negative (N), or neutral (NEU).

5.4.1.2 Evaluation

The metrics we have used to evaluate the performance are Recall (Rc), Precision (Pr),
Accuracy (Ac), and F1 Score (i.e., F1).

• Precision. Measures the percentage of true results among the total number of positive
predictions.

Precision = TP

TP + FP

• Accuracy. Proportion of correct predictions among the total number of cases exam-
ined.

Accuracy = TP + TN

TP + FN + TN + FP

• Recall. Measures the percentage of actual positives that is correctly classified

Recall = TP

TP + FN

• F1 score. Harmonic mean of precision and recall. It will be low if either precision or
recall are low.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

Once we have defined the metrics we can evaluate the performance of each model.
We performed the finetuning process for 3 epochs using a batch size of 16 for the first

experiments, and for 3 epochs and the same batch size number for the second experiment.
Then, we compared our model with other finetuned models for sentiment analysis in Spanish.
These baselines have shown good performance in their English version. In particular:

• beto-sentiment-analysis [58]: Model trained TASS 2020 corpus9 (around 5k tweets)
using the Spanish BERT, BETO [10] as the base model. Uses POS, NEG, NEU labels.

• bert-base-multilingual-uncased-sentiment [45]: This is a model finetuned for senti-
ment analysis on product reviews in six languages: English, Dutch, German, French,
Spanish and Italian. It predicts the sentiment of the review as a number of stars
(between 1 and 5).

9Dataset: http://tass.sepln.org/2020/?page_id=74
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• Twitter-xlm-roberta-base-sentiment (XLM-T) [7]: This is a XLM-roBERTa-base model
trained on 198M tweets and finetuned for sentiment analysis. The sentiment fine-
tuning was done in 8 languages (Ar, En, Fr, De, Hi, It, Sp, Pt).

Additionally, we also compared the predictions of our model with a commercial solution,
MeaningCloud. MeaningCloud offers a professional sentiment analysis service that can be
accessed via a web API 10. We extract the sentiment estimations for all examples using this
service.

The evaluation of the first experiment has been made on the three datasets: the Amazon
review dataset (only the test set of 5000 examples since we used this dataset for model
training), all examples from Spanish Movie Reviews from the Muchocine website, and all
examples from InterTASS Spanish Twitter Sentiment corpus. The second experiment has
been evaluated using only the test set of each dataset.

Table 5.6 shows the results obtained in the first experiment for each sentiment predic-
tor in each dataset. We observe how our model performs best on Amazon and Muchocine
datasets, although it does not perform well on the former. However, those models fine-
tuned on Twitter datasets overperform our model. This fact highlights the importance of
finetuning a model on a dataset similar to the downstream task where is going to be eval-
uated. Both MeaningCloud and M-BERT got the worst results, a step behind the rest of
the models.

Amazon Muchocine Twitter

acc f1 recall precision acc f1 recall precision acc f1 recall precision Weighted

F1 scoreM-BERT 0.627 0.559 0.627 0.583 0.395 0.280 0.395 0.365 0.471 0.375 0.471 0.313 0.405

XLM-T 0.713 0.682 0.713 0.671 0.460 0.425 0.460 0.439 0.773 0.770 0.773 0.771 0.626

BETO 0.696 0.703 0.696 0.712 0.472 0.452 0.472 0.454 0.815 0.816 0.815 0.817 0.657

MeaningCloud 0.642 0.627 0.642 0.635 0.425 0.423 0.425 0.444 0.557 0.547 0.557 0.558 0.532

DistilBERT (Ours) 0.793 0.789 0.793 0.786 0.477 0.466 0.477 0.475 0.495 0.471 0.495 0.472 0.576

Table 5.6: Sentiment analysis comparison of our model finetuned on Amazon review dataset.
Higher is better (bolded)

Table 5.7 shows the results obtained in the second experiment for each sentiment predic-
tor in each dataset. Base DistilBERT is the model we used in the first experiment, finetuned
only on the Amazon dataset. The rest of the models are finetuned on the three datasets and
are named by the order the model was finetuned on these datasets. For example, amt stands
for the model finetuned first on the Amazon dataset, secondly on the Muchocine dataset,
and finally, on the Twitter dataset. Shuffled is the model where all datasets were concate-

10https://www.meaningcloud.com/products/sentiment-analysis
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Amazon Muchocine Twitter

acc f1 recall precision acc f1 recall precision acc f1 recall precision Weighted

F1 scoreM-BERT 0.627 0.559 0.627 0.583 0.373 0.258 0.373 0.333 0.452 0.360 0.452 0.300 0.393

XLM-T 0.713 0.682 0.713 0.671 0.444 0.409 0.444 0.428 0.697 0.694 0.697 0.694 0.595

BETO 0.696 0.703 0.696 0.712 0.452 0.434 0.452 0.441 0.817 0.817 0.817 0.818 0.651

MeaningCloud 0.642 0.627 0.642 0.635 0.405 0.399 0.405 0.424 0.585 0.576 0.585 0.588 0.534

Base DistilBERT

(ours)
0.793 0.789 0.793 0.786 0.471 0.460 0.471 0.475 0.488 0.464 0.488 0.466 0.571

shuffled (ours) 0.795 0.783 0.795 0.778 0.508 0.494 0.508 0.512 0.530 0.520 0.530 0.519 0.599

amt (ours) 0.790 0.782 0.790 0.778 0.507 0.490 0.507 0.506 0.537 0.537 0.537 0.539 0.603

atm (ours) 0.791 0.784 0.791 0.781 0.506 0.479 0.506 0.511 0.551 0.546 0.551 0.545 0.603

mat (ours) 0.787 0.787 0.787 0.788 0.499 0.479 0.499 0.543 0.532 0.528 0.532 0.536 0.598

mta (ours) 0.795 0.786 0.795 0.782 0.494 0.490 0.494 0.488 0.532 0.531 0.532 0.531 0.602

tam (ours) 0.797 0.789 0.797 0.784 0.525 0.519 0.525 0.524 0.537 0.539 0.537 0.543 0.616

tma (ours) 0.796 0.788 0.796 0.784 0.514 0.495 0.514 0.510 0.526 0.521 0.526 0.527 0.601

Table 5.7: Sentiment analysis comparison of our model finetuned on the three datasets.
Higher is better (bolded)

nated and randomly shuffled. Those models trained on the three datasets achieve higher
performance on Muchocine and Twitter’s datasets as could be expected and on the Amazon
dataset although in this case is a slight increase. On Muchocine and Twitter datasets we
observe an enhancement of nearly 5 with

5.4.2 Emotion analysis module

The development of this module led to the participation of the Intelligent Systems Group
(GSI) at Universidad Politécnica de Madrid (UPM) in the Emotion Analysis competition
EmoEvalEs, part of the IberLEF 2021 Conference. The addressed challenge proposes an
emotion classification task of Spanish tweets, categorizing each message into seven emotions.
We propose the design and development of a fine-tuned language model based on XLM-
RoBERTa to tackle this challenge. We have obtained excellent results with this approach,
obtaining first place in the competition with a macro-averaged F1 score of 71.70%.

5.4.2.1 Dataset

The dataset for the EmoEvalEs task consists of Spanish tweets related to events that oc-
curred in April 2019 related to different domains: entertainment, catastrophe, political,
global commemoration, and global strike. The task presents an emotion classification chal-
lenge in the form of a multilabel classification task, where the emotions considered are
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anger, disgust, fear, joy, sadness, surprise, and others. The dataset is provided by the com-
petition organizers divided into three different sets: training, development, and test sets.
The latter’s labels are provided only after the end of the competition. The training set has
5723 examples, the development set 844, and the test set 1656 examples. The distribution
of the emotion labels is shown in Figure 5.9, where we can observe is highly unbalanced.

Figure 5.9: EmoEvalEs dataset

5.4.2.2 Fine-tuning XLM-T

The language model XLM-RoBERTa [12] stands out as a model pre-trained in 100 different
languages, achieving state-of-the-art performance on cross-lingual classification, sequence
labeling, and question answering. The lack of pre-trained language models in languages
different than English has geared researchers’ interest towards multilingual models that
have demonstrated that it is possible to have a single large model for all languages without
sacrificing too much performance for each language. However, previous research shows
that multilingual models tend to underperform monolingual models in language-specific
tasks [60]. This context framed the pre-trained language model we have used for this work,
XLM-T [7], a version of XLM-R that achieves better results in the Twitter domain than
its XLM-R baseline since it has been pre-trained on millions of tweets in over 30 different
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languages.
We have fine-tuned the Twitter-specific pre-trained language model in the downstream

task of emotion classification following parameter-efficient transfer learning techniques [29].

Figure 5.10: Where does the model focus? Transformer attention on a tweet by @IbaiLlanos.
Green highlighted words contributes positively towards the predicted class

We have implemented this architecture and run the training process using the modules
and the Trainer API from the HuggingFace Transformer library [73], which is optimized
and provides a wide range of training options and built-in features. We have tested three
different approaches to solve the problem:

• Multi-label classification problem: We have trained the model to predict the
class with higher probability among the seven possibilities.

• Binary classification problem: Frame the multilabel problem as a one-vs-all prob-
lem where seven different models are trained. To solve ties, the output from the model
with the highest confidence score is selected.

• Additional Features: We extend the classification head to use the additional fea-
tures, event and offensive, available in the dataset as new inputs encoded as one-hot
vectors.

The classification head consists of a dense layer at the output of the language model,
followed by a dropout layer with the default dropout probability of the language model,
and a final projection layer with the number of labels. For the Additional Features model,
we have added new inputs to the first dense layer.

We have made available our code for reproducibility at https://github.com/gsi-upm/
emoevales-iberlef2021. Also, the finetuned model is available at the HuggingFace
model hub as daveni/twitter-xlm-roberta-emotion-es.

The hyper-parameters used are the batch size of 16 per GPU, max length (tokenizer)
of 200, and training for 5 epochs. The rest of the parameters are the default in the Trainer
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Accuracy Weighted F1 score

XLM-T Multi-label classification 73.10 71.10

XLM-T Binary one-vs-all classification 72.39 70.01

XLM-T with Additional Features 71.80 69.89

Table 5.8: Evaluation on dev test of the finetuned models

Accuracy Weighted F1 score

XLM-T Multi-label classification 72.77 71.70

XLM-T Binary one-vs-all classification 71.43 68.93

XLM-T with Additional Features 71.67 69.66

Table 5.9: Evaluation on test test of the finetuned models

API. The trainer API also saves the checkpoint of the best epoch that usually occurs at
epoch 3. We run the training process for 1 hour on two 2 Nvidia GeForce RTX 2080 Ti
12GB GPUs.

Before tokenizing, we have slightly preprocessed the tweets with the Twitter preprocess-
ing module of the GSITK library [6]. We have found this helpful to achieve slightly better
results.

5.4.2.3 XLM-T evaluation

This section describes the performance of the different approaches we have followed during
the finetuning of the pre-trained model. Table 5.8 shows the accuracy and weighted F1
scores of the different approaches on the development set, where the model finetuned in the
multilabel classification problem has achieved the best results. Table 5.9 shows the same
information for the test set, where the best model is the multilabel estimator again.

These results show the superior performance of the multilabel classifier over the com-
bination of various binary classifiers, although better combination strategies could improve
the results of the latter. Moreover, including additional features without any preprocessing
and at the same level as the output produced by the pre-trained language model decreases
the classifier performance.

Figure 5.11 depicts the confusion matrix produced by the XLM-T Multi-label classifier
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on the test set. We observe the evident unbalancing of the dataset, where almost half of
the records belong to the others class. Moreover, this class is usually confounded with the
joy class. Additionally, this matrix shows the difficulty of distinguishing between emotions
that share similar features, such as anger and disgust. Finally, the low number of records
in some classes (anger, disgust, and surprise) is an additional challenge since the models
tend to fail in those classes.

Figure 5.11: Confusion matrix on test set produced by XLM-T Multi-label classifier
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5.4.2.4 Conclusions

This work led us to publish the paper GSI-UPM at IberLEF2021: Emotion Analysis
of Spanish Tweets by Fine-tuning the XLM-RoBERTa Language Model, where
we describe our participation in the EmoEvalEs competition framed in the IberLef 2021
Conference. Our proposal relies on the use of large pre-trained language models, outper-
forming previous methods with little effort using the HuggingFace library, which provides
an easy implementation of these pre-trained language models. The pre-trained model we
have used is a RoBERTa transformer trained on a multilingual corpus of tweets, XLM-T.
We have evaluated different strategies to approach the problem, finding that the finetuned
model for a multilabel classification task obtains better results than the combination of
various binary classifiers and the model with additional features. We have achieved the first
position in the EmoEvalEs competition with this model, obtaining a macro-averaged F1
score of 71.70% on the test set.
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5.5 LIWC module

This module has been built as a plugin for Senpy using the LIWC dictionary (see Sec-
tion 4.3). This way, we are able to provide the use of the dictionary as a service with linked
data features, a web interface, and a common API. We make it easier to use the dictionary
through an API call to the Senpy framework and compute different linguistic properties
from the variables of the dictionary. Selected variables11 are shown in Table 5.10. The
module computes the features extracted from the LIWC dictionary for the different linguis-
tic variables present in the dictionary.

Figure 5.12: Senpy architecture

Summary Variable Affect Words Social Words Time Orientation Cognitive Processes Informal Speech Personal Concerns

Analytical Thinking Positive emotion Family Past focus Insight Swear words Work

Clout Negative emotion Friends Present focus Cause Netspeak Leisure

Authentic Female referents Future focus Discrepancies Assent Home

Emotional Tone Male referents Tentativeness Nonfluencies Money

Certainty Fillers Religion

Differentiation Differentiation Death

Table 5.10: Selected LIWC dictionary variables

11More information about the variables at: https://liwc.wpengine.com/interpreting-liwc-output/
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CHAPTER6
Case studies

In this chapter, we are going to describe two different use cases reflecting how sentiment
and emotion attributes of text influence a specific outcome. We will use the text generated
by users of the social network Twitter towards ride-hailing companies and users of the
hospitality company Airbnb to find out to what extent it affects different aspects of their
operations. We use our system to perform sentiment and emotion analysis and compute the
Average Treatment Effect (ATE) of these attributes.
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6.1 Twitter interactions of ride-hailing companies

Several works have explored the role of social media on customer engagement and rela-
tionships [21, 79], and more specifically, the role of the social network Twitter [8, 42, 46].
Nowadays, social networks are a new channel for customer service and interaction with
potential clients, so they have become a tool of paramount importance for the marketing
goals of every company. Hence, new ways of obtaining insightful information on this new
channel are extremely useful to optimize marketing campaigns and enhance the companies
reputation.

To this end, being able to answer causal questions such as How much impact does
humorous posts have on social media interactions? or Does the writing style affect the
number of responses? To what extent? may help to improve a company’s reputation or
boost engagement with its customers. In this use case, we will explore the question How
does it affect the sentiment or emotion of a message on the reply time?. Our
first hypothesis is that negative or angry messages, probably related to complaints, get a
quicker reply from the official Twitter accounts. The answer to this question attempts to
uncover any possible bias of the community managers towards messages which display a
specific sentiment or emotion; or the effectiveness of ticket priority systems implemented
on the social media domain. We will focus on the ride-hailing companies Cabify, Uber,
and Lyft; both in English and Spanish language using the causal inference system we have
implemented to compute the effect of sentiment or emotion features on the reply time of
the official accounts.

6.1.1 Dataset

This section describes the dataset gathering process. We used Twint, a library that provides
several search options, to capture tweets matching our searching criteria. To create the
tweets dataset, the tweets had to meet the following criteria:

• The tweets language must be Spanish (Spanish dataset) or English (English dataset)

• They have been dated between January 1st, 2011 and April 23rd, 2021

• They can not be re-tweets (a re-post of a tweet originally posted by a different user).
Therefore we focus only on original tweets.

• They have to be directed to one of the ride-hailing companies’ accounts or written
by one of them (see Table 6.1). In short, we listed all Twitter accounts engaging
with the customers of the ride-hailing companies in the Spanish and English Twitter
community.
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Dataset Target Twitter usernames

Spanish
@cabify espana, @cabify, @Cabify Chile, @cabify arg, @cabify ecuador, @cabify colombia,

@Cabify Mexico, @Cabify Peru, @cabify uruguay, @Uber ES, @Uber MEX, @Uber ARG, @Uber CR

English @uber support, @asklyft, @lyft, @uber, @uber canada, @uberuk, @uber nz

Table 6.1: Target usernames to create dataset

The collected sample dataset matching this criterium contained a total number of
865,487 English tweets and 722,669 Spanish tweets. The distribution of tweets from the
different Twitter accounts is shown in Figure 6.1 and Figure 6.2 for the Spanish and En-
glish datasets, respectively. Is worth mentioning that tweets from other users directed to
the official accounts are not described in those figures. As we observe, the predominant
username in the Spanish dataset is uber mex and uber support in the English dataset.

Figure 6.1: Spanish dataset Figure 6.2: English dataset
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6.1.2 Processing

This section describes how we processed the datasets to produce the covariates needed to
answer our question. The tweets, collected in JSON format, are parsed to extract the at-
tributes we are interested in and then grouped by conversationid to generate conversations
between the companies and the customers.

Figure 6.3: Processing steps

The processing has been made as follows:

1. Preprocessing. The raw dataset is preprocessed to drop duplicates and select the
columns of interest.

2. Conversations. Tweets in the dataset are grouped by conversation id, generating
dialogues between the companies and other users. Those conversations and filtered to
get only those where:

(a) A company account is replying to another user.

(b) There are only two different usernames in the conversation (the company and
another user)

3. Reply time. The time took for the company account to reply is computed. Addi-
tionally, each conversation is tagged with the company account involved.

4. Costumer tweets selection. Finally, we filter out the tweets from official accounts
since we are only interested in the reply time to customers from the official accounts.

Through this process, we obtained 106,377 tweets from conversations in the Spanish
dataset, and 14,635 from the English dataset. Since the size of both datasets was similar,
this difference suggests that a wiser preprocessing could produce a larger English dataset
with additional information. Each dataset is composed of the tweets from users (costumers),
the ride-hailing company involved, and the time it took the company to reply. Only tweets
with 5 or more words were used.

6.1.3 Framework

This section describes how we used our system to answer the target causal question: How
does it affect the sentiment or emotion of a message on the reply time? Thus, we
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define the desired outcome Y of study as a late reply if the computed time is greater than
a defined threshold. That is, if the reply time to a message t is greater than a threshold th,
then the outcome is Y = 1.

For the proxy treatment T̂ we use the sentiment and emotion modules to perform
sentiment and emotion analysis on the dataset. This allows us to compute the effect of
a positive or negative message, or the effect of writing an angry, happy, or sad message. We
have used negative sentiment and angry emotions as a proxy treatment for our experiment.
As a confounder C we use the target company to adjust for the different companies’ cultures
and processes that may influence the final result. Hence, C will be a binary indicator of
the target account of a message: Cabify or Uber in the Spanish dataset, and Uber or Lyft
in the English dataset. Figure 6.4 shows the causal model for this experimental setting.

To adjust for other potential confounders, we match the most similar pairs with different
proxy treatment T̂ . To this end, we compute the TF-IDF vectors of each document and
calculate their cosine similarity matrix. Finally, we select the top 5000 most similar pairs,
obtaining a dataset of 10,000 examples. Finally, the TextCause algorithm is trained for 6
epochs and a batch size of 32, using the corresponding language model for each language
and averaging over 10 random seeds for robustness.

Figure 6.4: Causal model of Twitter use case

6.1.4 Results

This section describes the results obtained in this experiment. We have performed a search
of different thresholds for the outcome Y . That is, we have computed the estimated ATE
considering late replies, those greater than different thresholds: 5 minutes, 15 minutes, 30
minutes, 45 minutes, 60 minutes, 90 minutes, 120 minutes, 4 hours, 8 hours, 16 hours, 24
hours, and 48 hours. We have also considered different proxy treatments T̂ : if a tweet is
negative or not; and if a tweet displays anger or not.
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Figure 6.5 and Figure 6.6 show the results in the English dataset for both negative
sentiment and angry emotion, respectively. Each bar represents the expected percent change
in the likelihood of getting a late response when the message negative or angry level is
hypothetically increased.

Figure 6.5: Results in the English dataset for the negative sentiment proxy treatment

The first look at these results confirms our initial hypothesis: complaints in social media
get a faster response. As we can see, we obtained a negative ATE for all time thresholds for
both negative and angry proxy treatments. This means that when a message has negative
sentiment or displays anger, it gets a faster response from the ride-hailing official accounts.
Looking closer to the results obtained with the negative sentiment, we observe that the
TextCause algorithm, which adjusts for text and covariates, provides the largest effect for
each time threshold, suggesting that the effect size increases as we adjust for increasing
amounts of information. The “unadjusted” approach which does not perform any adjust-
ment produces the smallest ATE. “T-proxy”, which only adjusts for covariates, indicated
the second-smallest ATE. This effect reaches its maximum at 15 minutes, where a message
is a 12% more likely to get a faster response. The effect decays with time, being
negligible past the 24 hours.

This same trend is observed when the angry emotion proxy treatment is used (Fig-
ure 6.6). However, this time the TextCause algorithm attenuates the ATE computed with
the T-proxy and T-boost estimators which do not adjust for the text. In addition, we ob-
serve how the TextCause algorithm provides a positive effect when estimating the likelihood
to get a response later than five minutes. This could be due to the small-time threshold
used, which could provide very different results depending on the timeframe of the study.
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These results suggest that the text contains additional information that helps to infer the
true effect. Furthermore, as negative sentiment and angry emotions are related, we also
observe in this case the same decaying trend as we increase the time threshold.

Figure 6.6: Results in the English dataset for the angry emotion proxy treatment

We carried out the same experiment for the Spanish dataset with tweets from Cabify and
Uber. We used the modules we developed for sentiment and emotion analysis in Spanish.
Figure 6.7 shows the results obtained with the negative sentiment proxy treatment. Different
from the English dataset, we observe a positive ATE for all time thresholds. That is, you
are likely to get a late response if you write an angry message. Again, we see how the effect
mitigates for higher time thresholds, indicating that the sentiment is less relevant when
studying its effect of very late responses.

Figure 6.7: Results in the Spanish dataset for the negative sentiment proxy treatment
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Figure 6.8 shows the results obtained with the angry emotion proxy treatment. In
this case, the TextCause estimate is generally similar to the unadjusted ATE although it
suggests a slightly higher effect of the treatment. Those estimators which do not adjust for
the text (T-proxy and T-boost) indicate the highest ATE, which points out the importance
of taking into account the information contained in the text to infer the effect of a variable
in the output. Additionally, the TextCause estimator gives a result more similar to the
obtained using the negative sentiment proxy treatment, which would be coherent since
negative sentiment and angry emotion are related.

Figure 6.8: Results in the Spanish dataset for the angry emotion proxy treatment

6.1.5 Conclusions

We carried out a causal inference study using observational data from the social network
Twitter to estimate the effect of sentiment and emotion on the time taken by ride-hailing
companies to respond. Our results in the English dataset suggest that negative or angry
messages, usually complaints, get a faster response compared to the rest of the messages.
However, this trend is inverted in the Spanish dataset, showing that negative or angry
messages get a late answer. This could be due to many factors. First, the accuracy of
the proxies is key to the correct estimate of the treatment effect. The models we used
for Spanish may lack the necessary accuracy to provide meaningful results. Secondly, we
saw in Section 5.2 that the Spanish language model underperforms its English counterpart.
Additionally, the different policies and processes implemented in the companies may disturb
the effect estimation. Finally, this suggests that there is a significant amount of confounding
in real-world studies, and the choice of the estimator can yield highly varying conclusions.
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6.2 Case Study: Airbnb

Airbnb is an American company that operates an online marketplace for lodging, primarily
homestays for vacation rentals, and tourism activities. Users can use the platform to book
apartments for their holidays based on the location, price, description, photos, and reviews
of other users, among other available information. This context provides a perfect setting
to carry out new experiments using our system to find answers to new causal questions.
This time we are interested in three different causal questions:

1. What is the effect of positive reviews on the rating score of the apartment?

2. Which linguistic attributes of the description affect the rating score of the apartment?

3. Do they also affect the number of reviews per month received?

Modeling the effect of different linguistic attributes from the description and reviews
would help to optimize the bookings and ratings of an apartment, and would provide new
information on the dynamics of the platform.

6.2.1 Dataset

Figure 6.9: Airbnb listings in Madrid. Orange: Entire homes. Green: Rooms.

We used a dataset made freely available under a Creative Commons license by Murray
Cox that is dynamically scraped from the Airbnb website[13]. This dataset contains the
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listings, calendars, and reviews on the Airbnb platform for every city where they operate.
We focus the scope of the study on the city of Madrid (Spain), where there are 19,618
apartments or rooms listed currently. We also collected the reviews associated with those
listings, a total of 625,000 reviews. Figure 6.9 shows the distributions of the apartments in
the city.

After a first exploratory data analysis, we realized there were different languages in
the dataset. As we were only interested in the examples in English or Spanish, we used a
language detection library [43] to select only those examples with a description and reviews
in the desired languages. As it misclassified some examples with non-ASCII characters (i.e.,
Japanese, Chinese, Korean) we also used regular expressions to filter out these examples.
Additionally, we excluded examples with no description or zero reviews. Finally, we obtained
the datasets described in Table 6.2

Dataset #Examples

Spanish descriptions 3,174

English description 3,507

Spanish reviews 215,932

English reviews 240,654

Table 6.2: Airbnb datasets

6.2.2 Framework

This section describes how we used our system to answer the target causal questions. We
model each question with the causal models of Figure 6.10. For the first and second ques-
tions, we defined the outcome Y as the rating score of the apartment associated with the
description or review. Hence, the outcome Y is a binary indicator of whether the rating is
100 (maximum) or not.

For the proxy treatment T̂ we use the sentiment and emotion modules to perform
sentiment and emotion analysis on the reviews; and the LIWC module to extract other
linguistic attributes from the description. We have used positive sentiment and joy emotion
as a proxy treatment for our experiment on the reviews dataset. For the experiments
involving the descriptions of the listings, we used different variables discussed in the results
section. As a confounder C we use a binary indicator of whether the price is higher than
the percentile 75% or not, which is around 100€ both for the Spanish and English datasets.
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Figure 6.10: Causal models for the Airbnb study

To adjust for other potential confounders, we match the most similar pairs with different
proxy treatment T̂ for the reviews experiment. To this end, we compute the TF-IDF vectors
of each document and calculate their cosine similarity matrix. Finally, we select the top
5000 most similar pairs, obtaining a dataset of 10,000 examples. Finally, the TextCause
algorithm is trained for 4 epochs and a batch size of 32, using the corresponding language
model for each language and averaging over 10 random seeds for robustness.

6.2.3 Results

This section describes the results obtained in the Airbnb study. First, we want to answer
the question What is the effect of positive reviews on the rating score of the apartment?.
Figure 6.11 and Figure 6.12 show the results obtained in the reviews experiments both for
Spanish and English, respectively, for the positive sentiment (left) and joy emotion (right)
proxy treatments. We can see how in both cases the TextCause estimate (purple) attenuates
the unadjusted ATE (blue) and gives a lower ATE estimate than the rest of the estimators.
This suggests that there is important confound information in the text, and not adjusting
for it gives an exaggerated ATE. These results point at there is a positive causal relationship
between positive reviews and the rating score, as could be expected beforehand.

Figure 6.11: Results on Spanish dataset:
reviews effect on score

Figure 6.12: Results on English dataset:
reviews effect on score
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Figure 6.13: Effect of LIWC fatures on rating score

Figure 6.14: Effect of LIWC features on reviews per month

Secondly, we want to answer the question Which linguistic attributes of the description
affect the rating score of the apartment?. Figure 6.13 displays the ATE estimates of different
linguistic features computed using the LIWC module. Generally, the TextCause estimate
increases the ATE estimate over the unadjusted estimator. These results indicate that
giving information about health-related information such as cleanliness (bio feature), leisure
activities, culinary information (ingest feature), or using and informal language and the
second person (you feature) makes more likely to get the maximum rating score; while
giving information in the first person in singular or plural (I, we features) may reduce the
effect.

Finally, we want to know if these linguistic features also affect the number of reviews
per month received. Figure 6.14 shows the answer to this question. All features except the
first person (I feature) increases the likelihood to get more reviews each month, which could
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be directly associated with the number of guests an apartment hosts each month. Thus,
these results suggest that the more information provided in the description about activities
(leisure or ingest features), or positive sentiment (posemo feature), the more reviews a
listing could get.

6.2.4 Conclusions

We carried out this second study using observational data from Airbnb to estimate the
effect of different linguistic attributes on the rating score and the reviews per month (this
could be used as a proxy for the number of guests per month). We used our system to
compute the ATE estimate of those examples with a description and reviews in English
or Spanish. Our findings support the hypothesis that the more information and positive
sentiment in the description, the higher the score. Also, we confirmed something that could
be supposed beforehand: more positive reviews affect positively the rating of a listing.
Finally, the differences in the estimates of the different methods suggest that there is a
significant amount of confounding in real-world studies, as the rating could be influenced
by other confounder variables such as the neighborhood, the size of the apartment, or the
facilities provided.
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CHAPTER7
Conclusions

This chapter will describe the achieved goals done by the master thesis following some of
the key points developed in the project.
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7.1 Conclusion

In this project, we have developed a system to infer the causal effects of linguistic properties.
In addition, we have evaluated it on different use cases to demonstrate the applicability of
the system. The project has fulfilled the proposed objectives, but we must refer to each
one of these objectives to draw a general conclusion. First, we have been introduced to
the causal inference field along with its intersection with Natural Language Processing.
Secondly, we have replicated the state-of-the-art work that serves as a baseline for this
project and we have evaluated it in new datasets, extended it to allow the use of languages
different than English, and it has been modularized to be used as the core module of our
system. Then, we have developed a system based on different modules to extract linguistic
attributes from the text: emotion, sentiment, and other features extracted from the LIWC
dictionary. The emotion and sentiment modules have been developed using current state-
of-the-art technologies based on the transformer architecture. Finally, we have carried out
two different causal inference studies based on observational text data.

We would like to highlight that the development of the model used for the emotion anal-
ysis module led us to participate in the EmoEvalEs competition, framed in the IberLef 2021
Conference. With this model, have achieved the first position in the competition,
which allowed us to describe our model in the paper GSI-UPM at IberLEF2021: Emo-
tion Analysis of Spanish Tweets by Fine-tuning the XLM-RoBERTa Language
Model, which will be published in the proceedings of the conference.

In the first case study, we have computed the causal effect of the sentiment and emotion
of messages directed to ride-hailing companies on Twitter on the reply time. We have
observed how messages with negative sentiment or angry emotions get a faster response
in English, although we obtained the inverse effect in Spanish. Then, in the second case
study, we analyze the effect of several variables on our outcome of interest. First, we
checked something that, although we could have expected it beforehand, we confirmed
as true: positive reviews positively influence the score received by an apartment. Then,
we calculated the effect of different linguistic features on the score, finding that features
related to additional information about cleanliness, leisure activities, or gastronomy affect
positively, while those related to the tenant (I, we) affect negatively. Finally, we have studied
the effect of these features on the reviews per month (which could be used as a proxy for
the number of monthly guests of an apartment). As in the previous case, more information
related to these characteristics affects positively. However, this time the feature “we” has a
positive influence, which could indicate that there are more guests in the apartments that
refer to several hosts (a couple or family) rather than a single individual.

However, this study is subject to several limitations. First of all, the difficulty to take into
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account all possible confounders in real-world studies can yield highly varying conclusions
when we compute the causal effects using observational data. In addition, current works in
the intersection of causal inference and Natural Language Processing lack the complexity of
the real world, making it challenging to obtain valid conclusions from studies with multiple
causal relations.

Overall, we think this is an innovative work that demonstrates the utility and cost-
effectiveness of existing big data sources not produced by this research. It is a very promising
tool to evaluate the causal effects of linguistic properties in a variety of settings where text
is present and further work should be carried out in this line.

7.2 Future work

This section describes the possible new features or improvements that could be done in this
project.

• Model compatibility. Modify the TextCause module to leverage the last advances
of the transformer library and to make possible the use of different language models
not based on DistilBERT.

• Extension to higher dimensional outcomes and confounders. Extend the
causal effect computation to new scenarios where confounders and/or outcomes are
not encoded as binary indicators.

• Benchmark datasets. Develop new datasets based on paired randomized controlled
trials and observational studies to be able to fairly compare different causal inference
models.

• Emotion and sentiment datasets. Create comprehensive benchmarks for senti-
ment and emotion analysis in Spanish, since currently there are no reference bench-
marks as the SST-Sentiment analysis benchhmark [65].
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APPENDIXA
Project impact

This appendix reflects, quantitatively or qualitatively, the possible social, economic and
environmental impact jointly with ethical implications.

A.1 Social impact

This section describes the main social impacts our work might have. As a consequence
of the rise of social media in recent years, a huge amount of public-available data is daily
shared by people. Projects like this one are able to analyze and exploit this data for different
purposes.

In our case, the study and the tool developed will allow researchers to carry out mul-
tipurpose causal inference studies involving textual data much more easily benefiting from
public available big data. Also, this system could be considered as a starting point for
further work on the subject.

Studies using our system would be carried much faster, giving useful insights to estimate
the effect of different treatments on business metrics. This would be very useful to apply
policies that may benefit the organizations taking data-based decisions.
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A.2 Economic impact

In this section, we summarize the main economic impacts of our project. The possibility
of carrying out studies to determine the effect of different policies on a desired business
metric using using observational data instead of randomized controlled trials directly implies
less duration and cost in capital and resources. Our system allows to study this effects
in unstructured datasets where text is predominat and, thus, opens the range of causal
inference studies that can be performed.

A.3 Environmental impact

This section briefly describes the main environmental impacts of our project.
All systems based on machine learning and big data have an important ecological foot-

print due to the energy needed for, firstly, producing the huge amount of data these systems
need and, secondly, training the machine learning models, which may last several weeks.
Fortunately, we leverage on pre-trained models using transfer learning techniques and avoid-
ing to train from scratch each language model, which is a really computationally expensive
task.

In particular, we have to mention the energy consumption of the computer and big data
cluster needed for this project. Each study carried out using this system takes an average
of two days of computing using one GPU, but it depends on the amount of data used in the
studied so this time could be increased even to weeks, incrementing accordingly the power
consumption.

A.4 Ethical implications

Finally, this section depicts the main ethical considerations.
The main ethical issue that may concern us is related to privacy. Although the project

has been developed using publicly available data, most of the population is not concerned
about what really implies share their data publicly in social networks like Twitter. However,
people have agreed on the use of their data for different purposes, including projects like
this. We conclude that more education about the value of privacy is needed to be able to
not consider this issue.
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This appendix details an adequate budget to bring about the project. The project structure
is described along with the activities undertaken to complete it and costs are evaluated
including material and human resources, as well as taxes.

B.1 Project structure

In order of achieving the proposed goals, the project have been divided in the activities
shown in Table B.1, where details about its duration and dependencies are provided. All
activities require a person with good programming and machine learning background, a
telecommunication engineer for example. As the project has been carried by only one
person, effort of each task is not considered since it is directly related to the duration of
the activity. The total duration of the project has been 900 hours approximately,
taking into account that one day corresponds to 4 working hours.
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Activity Description
Dependencies

with other tasks

Duration

(days*)

1.- Causal Inference course
The fundaments of Causal Inference

and its relationship with Machine Learning
- 20

2.- State of art research Research about works related to the goal of our project - 15

3.- HuggingFace Library
Get to know how HuggingFace transformers library works

and create the first fine-tuned models.
- 25

4.- Data capture & Preprocessing Capture the datasets needed to evaluate SOTA models on new settings 2,3 15

5.- SOTA evaluation Implement and evaluate SOTA models on new settings. 2,3,4 30

6.- Sentiment analysis module Implement the sentiment analysis module 5 10

7.- Emotion analysis module Implement the emotion analysis module 5,6 15

8.- LIWC module Implement the LIWC module 5,6,7 7

9.- EmoEvalEs competition
Participation in the EmoEValEs competition,

improving our models and writing the paper for the conference proceedings.
7 25

10.- Twitter Case Study Use of the developed system on Twitter use case 5,6,7,8 20

11.- Airbnb Case Study Use of the developed system on Airbnb case 5,6,7,8 10

12.- Report writing Writing of the TFM 2,10,11 30

Table B.1: Project structure division by activity.
1
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B.2 Costs evaluation

This section summarizes the material resources needed to develop the project, divided in
software and hardware resources, as well as the human resources and taxes associated to it.

B.2.1 Material resources

B.2.1.1 Software

All the project has been developed using open-source software that is available on Internet
for free. For this reason, there is no cost associated to software.

B.2.1.2 Hardware

To carry out this project a computer and a big data cluster, both provided by the Intelligent
Systems Group, has been used.

The specifications of the computer are:

• Intel Core i5 CPU of 3.2GHzx4

• 8 GB of RAM

• Hard disk of 500 GB

On the other hand, the big data cluster specifications are:

• DELL PowerEdge R320

• Intel® Xeon® E5-2430 v2

• 4x32GB RDIMM

• 3x3TB, SATA

• 2x12GB NVIDIA GeForce RTX 2080 Ti GPU

A computer with this specifications costs 700€ approximately, while the approximate
cost of the big data cluster is 3600€. Thus, the hardware cost is 4300€. Although
it should have been taken into account, amortization has not been computed so the final
hardware cost should be lower or even 0€ if we consider the hardware have already been
amortized.
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B.2.2 Human resources

We have needed one telecommunication engineer to accomplish this project. The salary
have been based on the Cabify University-Industry Chair scholarship, through which this
project has been carried out, stipulated in 550€/month for 80 working hours (20 working
hours per week). Thus, the fee per hour would be 6,875€. Since the project duration has
been estimated in 900 hours, the total fee for the project ascend to 6187,5€. We have
multiplied this number by 1.3 to approximately include Social Security, thus, the total
cost of human resources is around 8045€.

B.2.3 Taxes

In case the final product is sold to an interested company, taxes related to a software
engineering project must be taken into account. The fees paid by the company would be
the corresponding VAT established in the local country

B.3 Conclusion

The project had a duration of 900 hours and the total cost ascends to 12350€.
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[24] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Vir-
tanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,

86

http://insideairbnb.com/get-the-data.html
http://insideairbnb.com/get-the-data.html
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/5556
http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/5556


BIBLIOGRAPHY

Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan
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Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. HuggingFace’s Transform-
ers: State-of-the-art Natural Language Processing. arXiv:1910.03771 [cs], July 2020. arXiv:
1910.03771.

90

https://github.com/twintproject/twint


BIBLIOGRAPHY

[75] Zach Wood-Doughty, Ilya Shpitser, and Mark Dredze. Challenges of Using Text Classifiers
for Causal Inference. In Proceedings of the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 4586–4598, Brussels, Belgium, October 2018. Association for
Computational Linguistics.

[76] Diyi Yang, Jiaao Chen, Zichao Yang, Dan Jurafsky, and Eduard Hovy. Let’s Make Your
Request More Persuasive: Modeling Persuasive Strategies via Semi-Supervised Neural Nets on
Crowdfunding Platforms. In Proceedings of the 2019 Conference of the North, pages 3620–3630,
Minneapolis, Minnesota, 2019. Association for Computational Linguistics.

[77] Michael Yeomans, Alejandro Kantor, and Dustin Tingley. The politeness Package: Detecting
Politeness in Natural Language. The R Journal, 10(2):489, 2019.

[78] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG Structure Learning with Graph
Neural Networks. In International Conference on Machine Learning, pages 7154–7163. PMLR,
May 2019. ISSN: 2640-3498.

[79] Mingli Zhang, Lingyun Guo, Mu Hu, and Wenhua Liu. Influence of customer engagement with
company social networks on stickiness: Mediating effect of customer value creation. Interna-
tional Journal of Information Management, 37(3):229–240, June 2017.

[80] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. DAGs with NO TEARS:
Continuous Optimization for Structure Learning. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 31, pages 9472–9483. Curran Associates, Inc., 2018.

[81] Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. Learning Sparse
Nonparametric DAGs. arXiv:1909.13189 [cs, stat], March 2020. arXiv: 1909.13189.

91


	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	Theory
	A Brief Introduction to Causal Inference
	Correlation does not imply causation
	Then, what does imply causation?
	Causation in observational studies?

	Transformers
	From Bag of Words to Transformers
	Transformers
	Transformer architecture
	Transformers and transfer learning



	State of Art
	Causal inference and machine learning
	Causal inference: Text-based use cases
	Causal Inference in social media
	TextCause algorithm
	Adapting Text Embeddings for Causal Inference - Veitch et al.
	Causal Effects of Linguistic Properties - Pryzant et al.


	Enabling Technologies
	Machine Learning Technologies
	Scikit-learn
	Numpy
	Pytorch
	HuggingFace Libraries
	DistilBERT

	Data technologies
	Pandas
	Matplotlib
	Twint

	Sentiment analysis
	Senpy
	LIWC
	Lexicons


	Architecture
	Framework
	TextCause module
	Reproducing paper
	Amazon reviews experiment
	Consumer complaints experiment

	TextCause algorithm modifications
	Simulations for causal inference evaluation
	Datasets
	Evaluation

	Conclusions

	Model distillation: Is distilBETO really worth it?
	Transfer learning and fine-tuning
	Sentiment analysis module
	Datasets
	Evaluation

	Emotion analysis module
	Dataset
	Fine-tuning XLM-T
	XLM-T evaluation
	Conclusions


	LIWC module

	Case studies
	Twitter interactions of ride-hailing companies
	Dataset
	Processing
	Framework
	Results
	Conclusions

	Case Study: Airbnb
	Dataset
	Framework
	Results
	Conclusions


	Conclusions
	Conclusion
	Future work

	Project impact
	Social impact
	Economic impact
	Environmental impact
	Ethical implications

	Project budget
	Project structure
	Costs evaluation
	Material resources
	Software
	Hardware

	Human resources
	Taxes

	Conclusion

	Bibliography

