
UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Grado en Ingenieŕıa de Tecnoloǵıas y Servicios de Telecomunicación

Departamento de Ingenieŕıa de Sistemas Telemáticos

Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DESIGN AND IMPLEMENTATION

OF A SCRAPING SYSTEM

FOR SPORT NEWS

Javier Ochoa Serna

Enero de 2017

TRABAJO FIN DE GRADO

T́ıtulo: Diseño e implementación de un sistema de Scraping de noti-

cias deportivas

T́ıtulo (inglés): Design and implementation of a Scraping system for Sport

News

Autor: Javier Ochoa Serna

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Mercedes Garijo Ayestarán

Vocal: Juan Fernando Sánchez Rada

Secretario: Álvaro Carrera Barroso

Suplente: Tomás Robles Valladares

FECHA DE LECTURA:

CALIFICACIÓN:

Resumen

Hoy en d́ıa, la forma en la que las personas leemos la prensa escrita ha cambiado. La venta

de periódicos en su formato impreso ha cáıdo en torno a un 60% en la última década. Este

hecho se ha producido a consecuencia de la invención de Internet y la posibilidad de acceder

a miles de contenidos a través de la World Wide Web.

Conociendo esta información, se ha realizado este proyecto de diseño e implementación

de un sistema de extracción de noticias en la Web para su posterior análisis. La temática

del proyecto podŕıa ser variada, pero se ha decidido centrarlo en noticias deportivas, más

concreto en las noticias sobre los equipos de fútbol más populares de España.

El proyecto se divide en varias fases relacionadas con el procesado de la información.

Para las tres primeras fases se ha utilizado un flujo de trabajo entre ellas utilizando Luigi.

La primera de estas fases es la extracción de datos desde la Web y para llevarlo a cabo se

han desarrollado varias arañas web utilizando Scrapy. Posteriormente, dicha información

ha sido analizada utilizando Senpy para extraer los sentimientos y emociones existentes en

cada art́ıculo. El último paso dentro del flujo es el de almacenar los datos obtenidos en

Elasticsearch.

La última fase del proyecto ha sido la de crear una interfaz gráfica con el fin de mostrar

los datos que han resultado del análisis y poder compararlos. Para ello se ha utilizado

Polymer Web Components junto a la libreŕıa de D3.js. Con estas herramientas se han

creado distintos widgets que permiten comparar resultados entre los distintos equipos y

periódicos.

Este proyecto permitirá al usuario realizar un análisis completo de los periódicos de noti-

cias junto con los equipos de fútbol gracias al conocimiento de las emociones y sentimientos

que se generan en la prensa escrita a lo largo del tiempo.

Palabras clave: Sefarad, Scrapy, Senpy, Elasticsearch, Luigi, Polymer, Web Scraping,

Deporte, Noticias, Fútbol

V

Abstract

Nowadays, the way people read print media has changed. The sale of newspapers in their

printed format has fallen by around 60% in the last decade. This has occurred as a result

of the invention of the internet and the capability of accessing content from thousands of

sites through the World Wide Web.

Based on this information we have completed this project of design and implementation

of a system of extracting news on the Web for further analysis. The thematic of the project

could be diverse, but it has been decided to focus on sports news, in particular news about

the most popular football teams in Spain.

The project is divided into several phases related to the processing of information. For

the first three phases it has been used a workflow between them using Luigi. First of those

phases is the extraction of data from the Web and to implement it several web spiders have

been developed using Scrapy. Subsequently, this information has been analyzed using Senpy

to extract feelings and emotions in each article. The last step in the workflow is to store

obtained data in Elasticsearch.

The last phase of the project has been to create a graphical interface in order to display

obtained data in the analysis and being able to compare them. To do this, Polymer Web

Components has been used in conjunction with D3.js library. Using these technologies,

different widgets have been created in order to compare results between different teams and

newspapers.

This project will allow the user to perform a complete analysis of the different news-

papers along with the different football teams thanks to the knowledge of emotions and

feelings that are generated in the written press over time.

Keywords: Sefarad, Scrapy, Senpy, Elasticsearch, Luigi, Polymer, Web pScraping,

Sport, News, Football

VII

Agradecimientos

En primer lugar quiero dar las gracias mi tutor, Carlos, por saber guiarme en cada momento

de la realización de este proyecto.

A toda la gente del GSI por brindarme todo su conocimiento en el momento que lo

necesitaba.

A mi familia en general, y en concreto a mis padres y mi hermana por apoyarme en

todo momento durante estos largos años de carrera.

A mis amigos de siempre por seguir ah́ı apoyándome después de tantos años.

A todas las personas con las que me he cruzado en este paso por la universidad por

aportarme cada uno algo diferente.

Y por último, a esas grandes personas que he conocido en este camino universitario y

que me llevo para siempre.

Gracias.

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XV

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.3 Project tasks . 2

1.4 Structure of this document . 2

2 Enabling Technologies 5

2.1 Introduction . 5

2.2 Sefarad 3.0 . 5

2.2.1 Senpy . 6

2.2.2 Luigi by Spotify . 7

2.2.3 Elasticsearch . 7

2.2.4 Polymer web components . 8

2.3 Scrapy and other web scraping tools . 8

XI

2.3.1 Definition of Web Scraping . 9

2.3.2 Some Web Scraping tools . 9

2.3.2.1 Apache Nutch . 9

2.3.2.2 Newspaper . 10

2.3.2.3 Event Registry . 10

2.3.2.4 SearchBlox . 10

2.3.2.5 Scrapy . 10

2.3.2.6 Conclusion . 11

2.4 Schema.org . 12

2.5 Conclusions . 12

3 Architecture 15

3.1 Introduction . 15

3.2 Architecture . 15

3.3 Orchestrator . 16

3.3.1 Workflow . 17

3.3.1.1 Scraper Task . 18

3.3.1.2 JSONParser . 18

3.3.1.3 Sentiment Analysis Task 18

3.3.1.4 Indexing Task . 18

3.4 News extraction system . 19

3.5 News analysis system . 23

3.5.1 EmoTextANEW . 24

3.5.2 meaningCloud . 25

3.5.3 affect . 27

3.6 Indexing system . 28

3.7 News visualization system . 28

3.7.1 Structure . 28

3.7.2 Elements and widgets . 31

3.7.2.1 Polymer elements . 31

3.7.2.2 D3.js widgets . 33

4 Case study 37

4.1 Introduction . 37

4.2 Extracting data . 37

4.3 Analyzing data . 38

4.4 Indexing data . 38

4.5 Displaying data . 38

4.6 Conclusions . 41

5 Conclusions and future work 43

5.1 Introduction . 43

5.2 Conclusions . 43

5.3 Achieved goals . 44

5.4 Problems faced . 44

5.5 Future work . 45

Bibliography 46

List of Figures

2.1 Sefarad 3.0 . 6

2.2 Sefarad 3.0 with Scrapy . 13

3.1 Architecture . 16

3.2 Activity workflow . 17

3.3 Example of a news article shown in Web browser. 20

3.4 Example of the JSON extracted from the news article in previous figure. . . 23

3.5 Senpy architecture . 24

3.6 Elasticsearch index displayed in browser . 28

3.7 Home tab mock-up . 29

3.8 Newspapers tab mock-up . 30

3.9 Teams tab mock-up . 30

3.10 Paper-drawer-panel widget . 32

3.11 Paper-tabs widget . 32

3.12 Trend-chart-multiple widget . 33

3.13 Spider-chart-multiple widget . 34

3.14 News-chart widget . 35

4.1 Home option . 39

4.2 Newspapers option . 40

4.3 Teams option . 41

XV

CHAPTER1
Introduction

1.1 Context

From the invention of the Internet, the way of communicating written news has changed.

Classic newspapers have had to open their own websites in order to satisfy what people

prefer.

It is much easier for people to get all the latest news from anywhere and with just one

click thru the Internet than buying the physical version. In addition, this option is less

expensive and better for the environment.

Thanks to these technological advances, today we can analyze the different news pub-

lished by each newspaper.

In this project we are focusing on the opinions given in every newspaper website about

one topic or event.

The topic we are managing is football because it is known that sporting events evoke

strong emotions amongst fans. The idea is to relate these sentiments generated in news

with these football events in order to analyze correlations between them.

To do so, we will use visualization techniques based on interactive widgets to provide

1

CHAPTER 1. INTRODUCTION

easy access to data.

1.2 Project goals

In this project we will carry out an analysis of the treatment of different sports news media.

To this end, the project will focus on obtaining analysis of sports news for further analysis.

This main goal includes two smaller ones:

• Design and implement a sports news extraction system.

• Evaluate the objectivity of these media regarding their opinions on teams, allowing

an analysis of both a specific fact and its feeling over time.

1.3 Project tasks

The following tasks have been programmed in the project:

• Review sports news aggregation systems using available APIs or scraping techniques.

• Design the news scraping system, focused on sports news.

• Integrate the designed system into a text analysis system based on a big data platform.

• Design a dashboard based on widgets that allow users interact with them which will

show the information collected.

• Evaluate the system.

1.4 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is the following:

Chapter 1 is an explanation of the context in which this project is developed, the main

goals to achieve, the tasks programmed and the structure of the document.

Chapter 2 provides a description of the technologies used in this project.

2

1.4. STRUCTURE OF THIS DOCUMENT

Chapter 3 explains the complete architecture of the project, the modules that compose

it and the workflow that manages it.

Chapter 4 presents experimentation details of a concrete case study with real data.

Chapter 5 exposes the problems faced in this project, the conclusions we have reached

and some suggestions for future work.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
Enabling Technologies

2.1 Introduction

In this chapter, we are going to give an insight into the techniques used in this project.

In order to carry out this project we have been helped by another project called Sefarad

3.0 and developed in the GSI of ETSIT-UPM. So far, the Sefarad project has been used to

analyze tweets, comments and brief opinions. In our case we will add the functionality of

extract, analyze, and display news.

To reduce our spectrum we will focus on the sport news about football from the main

newspapers in our country. But it could be extrapolated to any type of news topic.

2.2 Sefarad 3.0

First of all we will explain how Sefarad [1] is structured and what technologies it uses. It

uses four different technologies all gathered in a pipeline. This four technologies are shown

in Figure 2.1 :

5

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.1: Sefarad 3.0

2.2.1 Senpy

Senpy [2] is a technology developed by the GSI of ETSIT-UPM. It is an open source software

and uses a data model for analysis of feelings and emotions. It is based on NIF, Marl and

Onyx [3] vocabularies.

It aims to facilitate the adoption of the proposed data model to analyze feelings and

emotions, so that the services of different providers are interoperable. For this reason, the

design has focused on its extensibility and reuse.

There are six different plugins available to use1:

• emoTextAnew : it extracts the VAD (valence-arousal-dominance) of a sentence by

matching words from the ANEW dictionary [4] .

• emoTextWordnetAffect : it is based on the hierarchy of WordnetAffect [5] to calculate

the emotion of the sentence.

• vaderSentiment : it uses the software from vaderSentiment to calculate the sentiment

of a sentence.

• sentiText : it is a software developed during the TASS 2015 competition2:, it has been

adapted for English and Spanish.

• meaningCloud : it has been adapted from the sentiments analysis API developed by a

company called MeaningCloud.

1http://senpy.readthedocs.io/en/latest/demo.html
2https://gplsi.dlsi.ua.es/sepln15/en/node/36

6

2.2. SEFARAD 3.0

• affect : it is created in order to analyze sentiments and emotions at the same time.

The user has to choose one of the sentiment plugins explained above (“vaderSenti-

ment”, “sentiText” or “meaningCloud”) and another from the emotions plugins above

(“emoTextAnew” or “emoTextWordnetAffect”).

2.2.2 Luigi by Spotify

Luigi3 is a Python module that helps you build complex pipelines. It allows the user control

from the dependencies to the visualization.

Luigi’s purpose is to address all pipelines typically associated with long-lasting batch

processes. Many tasks can be chained and automated. These tasks can be anything,

but they are usually long running things like Hadoop jobs, downloading data to / from

databases, running machine learning algorithms or anything else.

Luigi handles a lot of workflow management so you can focus on the tasks themselves

and their dependencies.

In our project it is the tool used to create a pipeline that manages the different tasks of

which Sefarad is composed.

2.2.3 Elasticsearch

Elasticsearch4 is a search server based on Lucene. It provides a distributed, full-text search

engine with an HTTP web interface and schema-free JSON documents. Elasticsearch is

distributed, which means that indices can be divided into shards and each shard can have

zero or more replicas. Each node hosts one or more shards, and acts as a coordinator to

delegate operations to the correct shard(s).

The search API allows you to execute a search query and get back search hits that match

the query. The query can either be provided using a simple query string as a parameter, or

using a request body.

There are two main ways for adding data to an Elasticsearch index, the first one is based

on using Logstash to capture real-time data. In this case a configuration file is needed, this

file describes where data is going to be stored and the query terms that are going to be

indexed.

3https://luigi.readthedocs.io/en/stable/
4https://en.wikipedia.org/wiki/Elasticsearch

7

CHAPTER 2. ENABLING TECHNOLOGIES

Second way is much easier and faster, it consists in adding a whole index by using the

Elasticsearch’s bulk API. In this case you just need all your data stored in a JSON file. You

manually add the index where data is going to be stored. [6]

2.2.4 Polymer web components

Polymer56 is a lightweight library that helps you to take full advantage of Web Components.

The library is being developed by Google developers and contributors on GitHub. Modern

design principles are implemented as a separate project using Google’s Material Design

design principles.

Web Components7 are a set of features that are being added by the W3C to HTML and

DOM. They aim to introduce component-based software engineering on the World Wide

Web.

They allow the creation of widgets or reusable components in web documents and web

applications. As well as the encapsulation and interoperability of individual HTML ele-

ments.

Web Components consists of 4 main features:

• Custom Elements: APIs to create new elements.

• Shadow DOM: Encapsulated DOM and styling, with composition.

• HTML Imports: Import HTML documents into other documents.

• HTML Templates: Allows documents to contain inert chunks of DOM.

Using Polymer with Web Components, you can create reusable custom elements that

interoperate seamlessly with the browser’s built-in elements, or break your app up into

right-sized components, making your code cleaner and less expensive to maintain.

2.3 Scrapy and other web scraping tools

Once we know the features and functions of Sefarad 3.0, now it is time to explain how we

get the content of the news.

5https://www.polymer-project.org/1.0/
6https://en.wikipedia.org/wiki/Polymer (library)
7https://en.wikipedia.org/wiki/Web Components

8

2.3. SCRAPY AND OTHER WEB SCRAPING TOOLS

2.3.1 Definition of Web Scraping

Before describing some web scraping tools, it is necessary to explain the meaning of that

concept.

Web scraping8 is a computer software technique of extracting information from websites.

This is accomplished by either directly implementing the Hypertext Transfer Protocol or

embedding a web browser.

Web scraping is closely related to web indexing, which indexes information on the web

using a bot or web crawler and is an universal technique adopted by most search engines.

In contrast, web scraping focuses more on the transformation of unstructured data on

the web, typically in HTML format, into structured data that can be stored and analyzed

in a central local database or spreadsheet.

Web scraping is also related to web automation, which simulates human browsing using

computer software.

Applications of web scraping include online price comparison, contact scraping, weather

data monitoring, website change detection, research, web mashup and web data integration.

2.3.2 Some Web Scraping tools

In order to make sure that we are using the best technique for our possibilities and prefer-

ences, we have made a study of the different options available.

2.3.2.1 Apache Nutch

It is a highly extensible and scalable open source web crawler software project. It can be

used as a robot for crawling or as a search engine.

Nutch9 is coded entirely in Java, but data is written in language-independent formats.

It has a highly modular architecture, allowing developers to create plugins for media-type

parsing, data retrieval, querying and clustering.

8https://en.wikipedia.org/wiki/Web scraping
9https://en.wikipedia.org/wiki/Apache Nutch

9

CHAPTER 2. ENABLING TECHNOLOGIES

2.3.2.2 Newspaper

Newspaper10 is just a Python3 library for extracting and curating articles.

Some of its main features are the download framework for multi-threaded articles, news

URL identification, extraction of Google trends terms and works in more than 10 languages.

2.3.2.3 Event Registry

Event Registry11 is a tool capable of analyzing news articles and identifying in them different

world events.

The system is able to identify groups of articles that describe the same event and rep-

resent them as one, even in different languages.

From the data of each event, you can extract the basic information of the event, such

as the location, the date, who is involved and what is involved.

The extracted information is stored in a database. It can be queried through a user

interface that allows users to search for events using extensive search options.

2.3.2.4 SearchBlox

Searchblox12 is a business-oriented search engine solution that includes sentiment analysis

and text analytics.

It simplifies adding search functionality to portals, intranets, or websites. With a unique

combination of ease of customization and simplified search software management, it offers

the most cost-effective solution to corporate search challenges.

2.3.2.5 Scrapy

Scrapy [7] is a robust web framework for scraping data from various sources. It is built

upon years of experience in extracting massive amounts of data in a robust and efficient

manner. With Scrapy you are able to do with a single setting what would take various

classes, plugins, and configuration in most other scraping frameworks.

Some of the features of Scrapy are:

10https://github.com/codelucas/newspaper
11http://eventregistry.org/about
12http://www.searchblox.com/

10

2.3. SCRAPY AND OTHER WEB SCRAPING TOOLS

• Its event-based architecture allows us to disconnect latency from throughput by op-

erating smoothly while having thousands of connections open.

• Provides selectors and understands broken HTML code.

• It has a vibrant community that is always helpful.

• Well-organized code that is maintained by the community. It requires a standard way

of organization based in modules called spiders and pipelines.

• It allows you to export content to JSON or CSV.

Comparison between different web scraping tools

Tool Advantages Disadvantages

Nutch Highly scalable and robust
Not to make ”scrappers”,

just to index information

Newspaper
Multi-threaded article download

framework and 10+ languages

Limited to certain

newspapers

Event Registry

Capable to identify groups of

articles that describe the same

event and represent them as one,

even in different languages

Just a search engine already

developed

SearchBlox Includes all the features we need
Focused for Business and not

free

Scrapy
Highly customizable, plenty of

documentation and very used

It is not robust against

webpages changes

Table 2.1: Comparison between different web scraping tools.

2.3.2.6 Conclusion

We decided to use Scrapy because of the many opportunities it offers. It is also the best

option because we want a fine adjustment of the scraper and we need to generate a JSON-

11

CHAPTER 2. ENABLING TECHNOLOGIES

LD13. document according to a scheme. In addition, it is being used in the department and

it is always good to continue with the line followed in the department.

2.4 Schema.org

In our project we haven’t used just Scrapy connected to Sefarad 3.0, we have used some

other technologies like the one we are describing in this section, Schema.org14.

Schema.org15 is an initiative developed by the world’s largest search engines (Bing,

Google, Yahoo and Yandex). It has the mission to create, maintain and promote schemas

for structured data on the Internet.

Its vocabulary is used along with different encodings, including JSON-LD, RDFa [8] and

Microdata in order to mark up website content with metadata about itself. Such markup

can be recognized by search engine spiders and other parsers.

There are some other options for structuring data [9] One of these alternatives is

NewsML, a XML standard designed by the IPTC to provide a media-independent, struc-

tural framework for multimedia news. We didn’t use this technology because it is more

oriented to content providers.

SportsML is another XML standard created by the IPTC but in this case it is oriented

for the interchange of sports data. It is open and highly flexible. We haven’t used this

option neither because it is enough with the NewsArticle vocabulary of Schema.org.

In addition, we would like to point out that all the technologies commented on in this

section are Linked Data technologies [10] . They use this method that is based on publishing

structured data so that they can be interlinked and become more useful through semantic

queries.

2.5 Conclusions

We are familiar with all of the technologies involved in the project. Therefore, we can

represent the final structure of our project. It is composed of Scrapy connected to Sefarad

and it is shown in Figure 2.2.

13http://json-ld.org
14https://schema.org
15https://en.wikipedia.org/wiki/Schema.org

12

2.5. CONCLUSIONS

Figure 2.2: Sefarad 3.0 with Scrapy

13

CHAPTER 2. ENABLING TECHNOLOGIES

14

CHAPTER3
Architecture

3.1 Introduction

In this chapter we are going to explain the architecture of the project and how it is composed.

We will first give an overview of all the modules together and later we will explain separately

each module in more detail.

The explanation in this chapter will not be oriented just in showing the architecture of

our project. We will also show what we have created and we will give some examples of it.

3.2 Architecture

In this section we present the architecture of the project in general, defining the different

modules that participate in it. The project is composed of the following modules shown in

Figure 3.1 :

• Orchestrator: We get help from Luigi with the goal of building a pipeline to connect

different modules.

• News extraction system: This is the main part of the project, where we obtain

15

CHAPTER 3. ARCHITECTURE

data from different news websites.

• News analysis system: We use Senpy to analyze sentiments and emotions in the

extracted news.

• Indexing system: In this module we index the information obtained in previous

modules using Elasticsearch.

• News visualization system: This stage is responsible for processing data and show-

ing it in different views.

Figure 3.1: Architecture

3.3 Orchestrator

Our orchestrator is Luigi, a Python module developed by Spotify that helps us to build a

pipeline through the indexing system and the news analysis system of our project.

Luigi needs a script describing the pipeline to follow. The pipeline can be named work-

flow as well. This workflow is described next.

16

3.3. ORCHESTRATOR

3.3.1 Workflow

In this subsection we are going to explain the tasks that take part inside a pipeline called

pipelinenews.py that we have created using our orchestrator Luigi.

This pipeline is composed of these four different tasks: ScrapyTask , FetchDataTask ,

SenpyTask and Elasticsearch . They correspond to the stages shown in next figure:

Figure 3.2: Activity workflow

There has been a small inconvenience when using Luigi. We have had to add the

creation date of the JSON document to its name in ScrapyTask. The reason is because

Luigi is idempotent and it tries to rerun the same task if the parameters introduced are the

same. Luigi does it because when running big pipelines it is more effective to rerun just the

failed tasks and not all of them. In our case it is a disadvantage but we have solved it this

way.

17

CHAPTER 3. ARCHITECTURE

When running this workflow, we use the following commands to execute it:

Listing 3.1: Example of commands to execute the workflow

$ python pipelinenews.py Elasticsearch --filename1 marca --filename2 as --filename3 md

--filename4 sport --index footballnews --doc-type news --local-scheduler

3.3.1.1 Scraper Task

This is the first task that takes place in the workflow and it is in charge of executing the

necessary Scrapy commands in order to obtain the JSON documents with all the extracted

information.

As we have explained before, thanks to the addition of the date of creation in JSON’s

name, this task can work properly. This task is related with the News Extraction System

and it will be explained in detail in Section 3.4.

3.3.1.2 JSONParser

JSONParser or FetchDataTask is the next task after extracting data and it is in charge of

reading the JSON files that we indicate as parameter. In our case, we introduce as many

file parameters as newspapers we are analyzing.

3.3.1.3 Sentiment Analysis Task

This task corresponds to the News Analysis System. It loads data fetched with previous

task and sends it to Senpy tool in order to analyze sentiments and emotions.

When both analysis are done (sentiments and emotions), it gathers the analyzed data

and stores it in a JSON-LD document with the name analyzed-filename.jsonld. This docu-

ment is ready to be used in the next task.

3.3.1.4 Indexing Task

This is the last task and it corresponds to the Indexing System. It is in charge of loading

the JSON-LD document obtained from previous task in the indicated Elasticsearch index.

We also indicate the Elasticsearch doc-type as a parameter.

18

3.4. NEWS EXTRACTION SYSTEM

3.4 News extraction system

This is the most important stage of the project. It is responsible for the extraction of all

the information that we are going to use in the next stages.

As we have stated in chapter 2, we have chosen Scrapy as the ideal technology for this

task. Scrapy uses Python files called “spiders” to extract any information that is wanted

from any website. In our case, we have used it to extract news articles from the most

relevant sport newspapers from our country.

We already know that when using Scrapy, you have to create spiders in order to go

through a website and extract the specific information that you want. In our case, we

have created four different spiders because we are analyzing four different sport newspapers

(Marca, As, Mundo Deportivo and Sport).

Although we have different teams and news, it is only necessary to create one spider per

newspaper. The reason is because the structure of articles is the same in each website.

For each of these spiders, we had to analyze the CSS of each website, since the extraction

is done from CSS selectors.

The process that we have had to follow when creating every spider is described next:

• First of all, we have had to obtain the URL from the website we want to explore.

• The next step is to get the specific URL of each team inside every newspaper website.

• Once we know every team URL, we have had to explore the CSS code in order to

know the CSS selector to access every article in particular.

• Finally, inside every article, we have had to explore CSS code again in order to obtain

the CSS selectors of every part of article that we want to extract (headline, body,

images, videos, comments, etc.).

In the next figure and listing (Figure 3.2 and Listing 3.1) we are giving an example of

the same article comparing two points of view. Figure 3.2 represents the article when it is

shown in the Web and Listing 3.1 represents the Python code from the spider in charge of

extracting information from this article’s newspaper.

19

CHAPTER 3. ARCHITECTURE

Figure 3.3: Example of a news article shown in Web browser.

Listing 3.2: Example of the “Spider” in charge of extracting information from the news

article in previous figure.

-*- coding: utf-8 -*-

import scrapy

import re

import datetime

import random

class MarcaSpider(scrapy.Spider):

name = "marca"

start_urls = [

’http://www.marca.com/futbol/atletico.html’,

’http://www.marca.com/futbol/real-madrid.html’,

’http://www.marca.com/futbol/barcelona.html’

]

20

3.4. NEWS EXTRACTION SYSTEM

team = ""

teamsURL = [’atletico’,’real-madrid’, ’barcelona’]

teamsParse = [’atletico’,’madrid’, ’barca’]

ORDENES

$ scrapy crawl marca -o marca.json

def parse(self, response):

follow links to each news item

for href in response.css(’h3.mod-title a::attr(href)’).extract():

yield scrapy.Request(href, callback=self.parse_news)

def parse_news(self, response):

headline = response.css(’h1.js-headline.izquierda::text’)[0].extract()

articleBody = ’’.join(response.css(’div.row.content.cols-30-70 span.capital-

letter::text ,div.row.content.cols-30-70 p::text ,div.row.content.cols-30-70

p strong::text’).extract())

author = response.css(’ul.author strong::text’)[0].extract()

articleSection = response.css(’span.section-type::text’)[0].extract()

commentCount = response.css(’li.comments-tool strong::text’)[0].extract()

datePublishedString = response.css(’div.row.content.cols-30-70 time::attr(

datetime)’)[0].extract()

datePublished = datetime.datetime.strptime(datePublishedString, ’%Y-%m-%d %H:%M

:%S’).strftime(’%Y-%m-%dT%H:%M:%S+01:00’)

images = response.css(’div.row.content.cols-30-70 figure img::attr(src)’).

extract()

videos = response.css(’div.row.content.cols-30-70 meta[itemprop="contentURL"]::

attr(content)’).extract()

keywords = response.css(’ul.item-tags a::text’).extract()

comments = ’ - ’.join(response.css(’div.comentario strong.numero_comentario a::

text, div.comentario p.nombre span.nombre_usuario::text, div.comentario p.

nombre span.nick::text, div.comentario span.date::text, div.comentario span+

p::text, div.comentario p.nombre img::attr(src)’).extract())

dateCreated = datetime.datetime.now().isoformat()

url = response.url

_id = str(random.randint(0,10000)) + dateCreated

self.team = ""

for indexURL, elemURL in enumerate(self.teamsURL):

if bool(re.search(elemURL, url)):

self.team = self.teamsParse[indexURL]

if self.team == "":

return

item = {’@context’:’http://schema.org’,

’headline’:headline,

’articleBody’:articleBody,

’author’:author,

’articleSection’:articleSection,

’commentCount’:commentCount,

21

CHAPTER 3. ARCHITECTURE

’datePublished’:datePublished,

’images’:images,

’videos’:videos,

’keywords’:keywords,

’comments’:comments,

’dateCreated’:dateCreated,

’newspaper’: "marca",

’url’: url,

’team’: self.team,

’id’:_id

}

yield item

return

When we know all the CSS code required and we have created the spiders as we desire,

it is time to execute the following commands in order to obtain a JSON document with all

the information.

Listing 3.3: Scrapy commands to extract information from the news article in previous

figure.

$ scrapy crawl marca -o marca.json

Finally, as we have said before, we obtain four JSON documents (one document per

spider) with all the information extracted from the different media. An example of one of

those JSON documents is shown in Figure 3.3.

22

3.5. NEWS ANALYSIS SYSTEM

Figure 3.4: Example of the JSON extracted from the news article in previous figure.

To conclude, it is important to mention that it is necessary to name every JSON doc-

ument that is created with the name of its associated newspaper, but it is also important

to add the actual date of the moment it is created. We have explained this issue in Section

3.3.1.

3.5 News analysis system

In this project we have used one analytic service. It is called Senpy and we have used it to

analyze sentiments and emotions in the extracted news. (See Chapter 2)

With Senpy you can use several analyzers, but in our case we have used meaningCloud

to analyze feelings and EmoTextANEW to analyze emotions. In order to execute both

analyzers at the same time, we have used the affect plugin that allows to gather emotions

analysis and sentiments analysis in one execution. Other options have been ruled out as

they were not appropriate or did not admit the Spanish language.1

1http://senpy.readthedocs.io/en/latest/demo.html

23

CHAPTER 3. ARCHITECTURE

Figure 3.5: Senpy architecture

3.5.1 EmoTextANEW

We have used this plugin to analyze some emotions as anger, disgust, fear, joy, neutral

emotion or sadness.

This plugin uses the ANEW lexicon dictionary to calculate de VAD (valence-arousal-

dominance) of a news item and determinate which emotion is closer to this value.

It looks for the words in the article that appear in the ANEW dictionary and calculates

the average VAD score for this news article. Once this score is calculated, it is going to

seek the emotion that is closest to this value.

The way of using this plugin is by accessing an specific URL with the required param-

eters. We have introduced three parameters when running this URL. The first parameter

is called “algo” and here is where we introduce the type of analysis that we are running,

algo=EmoTextANEW in this case. The second parameter is called “language” and as its

name says, it refers to the language in what the content to analyze is written. In the last

parameter we introduce the text that we want to analyze, it is called “input”.

An example of the URL used and its output are given next.

Listing 3.4: Example of Senpy EmoTextANEW access URL

http://senpy.cluster.gsi.dit.upm.es/api/?algo=EmoTextANEW&language=es&input=alegre

Listing 3.5: Example of Senpy EmoTextANEW output

"entries": [

{

"@id": "Entry_1483214337.57",

"emotions": [

24

3.5. NEWS ANALYSIS SYSTEM

{

"@id": "Emotions0",

"onyx:hasEmotion": [

{

"@id": "Emotion0",

"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#arousal": 7.66,

"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#dominance": 6.37,

"http://www.gsi.dit.upm.es/ontologies/onyx/vocabularies/anew/ns#valence": 8.41,

"onyx:hasEmotionCategory": "http://gsi.dit.upm.es/ontologies/wnaffect/ns#joy"

}

]

}

],

"language": "es",

"nif:isString": "alegre"

}

]

3.5.2 meaningCloud

We have used this plugin to analyze sentiments. It classifies feelings as positive, negative,

or neutral. It extracts sentiment at a document and aspect-based level. To do this, the

local polarity of the different sentences in the text is identified and the relationship between

them evaluated, resulting in a global polarity value for the whole text.2

This plugin has the following differentiators:

• Extracts aspect-based sentiment.

• Discriminates opinions and facts.

• Detects polarity disagreement and irony.

This plugin is used the same way as EmoTextANEW plugin. In this case, the URL is

different but we also use those two parameters that we have explained in previous section.

In addition, it is needed to introduce a new parameter when using this plugin because

MeaningCloud API requires to use an “apiKey” for accessing its tools. This parameter is

called “meaningCloud-key”.

2https://www.meaningcloud.com/developer/sentiment-analysis

25

CHAPTER 3. ARCHITECTURE

Next, we give an example of the URL used and output in this case.

Listing 3.6: Example of Senpy meaningCloud access URL

http://senpy.cluster.gsi.dit.upm.es/api/?algo=meaningCloud&meaningCloud-key=

XXXXXXXXXXXXX&language=es&input=alegre

Listing 3.7: Example of Senpy meaningCloud output

{

"@context": "http://reed.gsi.dit.upm.es:4000/api/contexts/Results.jsonld",

"@id": "Results_1484767496.34",

"analysis": [

{

"@id": "meaningCloud_1.0",

"@type": "marl:SentimentAnalysis",

"author": "GSI UPM",

"description": "Sentiment analysis with meaningCloud service",

"extra_params": {

"apiKey": {

"aliases": [

"meaningCloud-key",

"apiKey"

],

"required": true

},

"language": {

"aliases": [

"language",

"l"

],

"default": "en",

"options": [

"en",

"es"

],

"required": true

},

"model": {

"aliases": [

"model"

],

"default": "general",

"options": [

"general"

],

"required": true

}

},

26

3.5. NEWS ANALYSIS SYSTEM

"is_activated": true,

"maxPolarityValue": 1.0,

"minPolarityValue": 0.0,

"module": "meaningCloud",

"name": "meaningCloud",

"requirements": {},

"version": "1.0"

}

],

"entries": [

{

"@id": "Entry0",

"nif_isString": "alegre",

"sentiments": [

{

"@id": "Opinion0",

"marl:hasPolarity": "marl:Positive",

"prov:wasGeneratedBy": "meaningCloud_1.0"

}

]

}

]

}

3.5.3 affect

This is the plugin that we have really used, both two plugins described in previous subsec-

tions are gathered when using this other plugin.

We have used this plugin to analyze sentiments and emotions at the same time. It allows

us to take advantage of the features of both EmoTextANEW and meaningCloud plugins.

This plugin is used in a similar way as the previous ones. In this case, it is needed

to specify which plugins are wanted to be used. Because of this reason, “sentiplug” and

“emoplug” parameters are added to the other parameters explained before.

Next, we give an example of the URL used.

Listing 3.8: Example of Senpy affect access URL

http://senpy.cluster.gsi.dit.upm.es/api/?algo=affect&sentiplug=meaningCloud&meaningCloud

-key=XXXXXXXXXXXXX&emoplug=EmoTextANEW&language=es&input=alegre

An output example is not shown in this case because it is similar as the ones we have

shown in EmoTextANEW and meaningCloud plugins.

27

CHAPTER 3. ARCHITECTURE

3.6 Indexing system

This system is in charge of indexing all the news information extracted and analyzed in

the previous tasks. It is composed of Elasticsearch, the searching server that connects the

analyzed information with the news visualization system.

There are two different ways for adding data to an Elasticsearch index. In our case,

we have chosen the easier and faster way; it consists in adding a whole index by using the

Elasticsearch’s bulk API. We just need to store all the data in a JSON file and manually

add the index where data is going to be stored.

Although at the beginning we were thinking about making one index per newspaper

and team, we later realized that it is faster and more effective to make just one index with

all information gathered. We have called this index “footballnews”.

To conclude, Elasticsarch allows you to consult indices status by accessing this URL:

http://localhost:9200/ cat/indices . We are showing an example of results next.

Figure 3.6: Elasticsearch index displayed in browser

3.7 News visualization system

Although this is the last part of the project, it is very important. It depends on if the target

user understands what it is wanted to show and transmit. It doesn’t matter how good the

previous stages are if you are not able to show clearly what you have developed.

This visualization server is based on Polymer Web Components and is developed from

Sefarad 3.0 [1]. We have also used D3.js [11] library to design some new dynamic Web

Components.

3.7.1 Structure

When creating any new visual project, first step always should be to create a sketch or

mock-up. Is the first stage, but also the most important stage because it is necessary to

know what structure is wanted the project will have at the end. There will always be time

28

3.7. NEWS VISUALIZATION SYSTEM

to make changes if you change your mind.

In our case, we were creating a website with the need of showing correctly how the

emotions and sentiments extracted change between different newspapers and football teams.

We reached the conclusion that it was needed to use some different charts that allow

the user to compare between those different medias and teams. It was also a good idea to

show some other interesting information like headlines or number of news.

The second conclusion that we reached is that we needed to structure the website with

a sidebar to access different views and different tabs inside every view. The reason was

because we had different information interconnected that needed to be compared.

Knowing these conclusions, we have created the following mock-ups using draw.io3.

They are shown next in Figure 3.6 and Figure 3.7 :

Figure 3.7: Home tab mock-up

3https://www.draw.io/

29

CHAPTER 3. ARCHITECTURE

Figure 3.8: Newspapers tab mock-up

Figure 3.9: Teams tab mock-up

30

3.7. NEWS VISUALIZATION SYSTEM

3.7.2 Elements and widgets

Once we knew how our website was going to be structured, it was time to create it and

find some different widgets that satisfied our requirements. Some of them were from the

Polymer Element Catalog4 and other from the D3.js [11] library. This second one needed

to be developed in order to be adapted to the structure and requirements of Polymer.

3.7.2.1 Polymer elements

We have used some different Polymer elements, but two of them are more important than

the others because they are responsible of building and organizing the main structure of

the website. They are described next:

• Paper-drawer-panel

This element is in charge of building the sidebar that contains the main menu of the

website. In our case, we have divided this sidebar and our website in three views

explained next:

– Home: It is the view in charge of giving a good welcome when accessing the

website and gives you a summary of the data extracted.

– Newspapers: This view is in charge of giving a comparison between the three

different teams analyzed when selecting the desired newspaper.

– Teams: This view is in charge of giving a comparative between the four different

newspapers analyzed when selecting the desired team.

In addition, we want to mention that this element is dynamic and it disappears on

the left when the device is small, more room on the screen is needed for the main

information

• Paper-tabs

This second element is in charge of arranging the secondary menu that appears in

newspapers and teams view. It shows one option per newspaper and per team de-

pending in what view it is being displayed.

4https://elements.polymer-project.org

31

CHAPTER 3. ARCHITECTURE

Figure 3.10: Paper-drawer-panel widget

Figure 3.11: Paper-tabs widget

32

3.7. NEWS VISUALIZATION SYSTEM

3.7.2.2 D3.js widgets

We have also used and adapted some D3.js widgets because Polymer Element Catalog is

not enough sometimes, when representing charts for example.

• Trend-chart-multiple

This widget is used to show how the sentiment results change among the days in the

specific case chosen by selecting the different tabs.

The way of showing information in this widget is by displaying a lines chart with as

many lines as newspapers or teams are being compared. Time evolution is represented

on x-axis and sentiment polarity on y-axis.

Figure 3.12: Trend-chart-multiple widget

• Spider-chart-multiple

This other widget is used to show how the different news extracted are distributed

if we put our eye in the most significant emotion analyzed on each of them. The

information shown changes depending which tabs are selected.

33

CHAPTER 3. ARCHITECTURE

In this case, the information is shown using a radar chart with six axis, one per

emotion analyzed. Each vertex of the hexagon changes with the number of articles

with the same predominant emotion. The results are displayed with a different color

for every newspaper or team compared.

Figure 3.13: Spider-chart-multiple widget

• News-chart

We are using news-chart widget in order to display some news by representing their

headline, their author and their newspaper or team. The news shown change depend-

ing which tabs are selected.

The most relevant information that this widget provides is displayed in the background

of each article’s container. It changes the color depending if the news represented

has positive, negative or neutral sentiment. The color can be green, red or grey

respectively.

34

3.7. NEWS VISUALIZATION SYSTEM

Figure 3.14: News-chart widget

35

CHAPTER 3. ARCHITECTURE

36

CHAPTER4
Case study

4.1 Introduction

This chapter is a description of the process followed in order to extract news information,

analyze it, store it and show it in a specific case.

The main actor in this case is the user who consults our web site with the objective to

find some information about teams or newspapers in a concrete moment.

4.2 Extracting data

As we have said in previous chapters, we have been extracting information from football

news in some Spanish newspapers. The first step was to decide which data to extract.

We had had to decide which teams, which newspapers and which period of time we were

interested in.

In our case, what we have chosen to extract data is shown next:

• Teams: the best three football teams in our country (Atlético de Madrid, Real Madrid

37

CHAPTER 4. CASE STUDY

and F.C. Barcelona).

• Newspapers: the four most relevant newspapers in our country when talking about

football.

• Period of time: the days that involve round 19 of La Liga Santander 2016-2017, that

is the weekend from Friday 20 of January to Monday 23 of January, both included.

Once we knew what data we wanted, the second step was to configure the Scrapy cron

to be executed automatically during that period of time obtaing the required data. In this

lapse of time we obtained 400 news.

4.3 Analyzing data

After obtaing all the data, the next step was to analyze it using Senpy. As we had set

up two different analyzers, we have two different results of analysis. First one is emotion

analysis and we have detected 196 negative-fear, 187 joy, 0 disgust, 2 sadness, 1 anger and

14 neutral emotion news. Second analyzer is sentiment analysis and we have obtained 0

neutral, 195 negative and 205 positive news.

4.4 Indexing data

Once the data was analyzed, it was time to store and index it using Elasticsearch. Although

at the beginning we were thinking of creating one index per newspaper and team, we finally

decided to create just one for all the data. This final solution is more compact and easy to

use.

Our index name is “footballnews” and it is structured with two subindex in it. There

are one subindex per analysis and their names are “sentiments” and “emotions”.

4.5 Displaying data

The data is displayed using a dashboard based on a sidebar, tabs and widgets. The sidebar

is placed on the left and it has three different options (“Home”“Newspapers” and “Teams”).

We will talk about widgets and tabs when they appear in the different views.

38

4.5. DISPLAYING DATA

When a user opens the website, first option (“Home”) in the sidebar is selected and a

welcome message is displayed along with a summary of the analyzed data. There aren’t

tabs inside this first view and there is an example shown in Figure 4.1.

Figure 4.1: Home option

The second and the third options in the sidebar have a similar structure. Both of them

display a view with three main widgets, two widgets on the top and one on the bottom.

First widget on top is placed on the left side and shows a line chart with the evolution of

the sentiment analysis along the time. Second widget on top is placed on the right side and

shows a summary of the emotion obtained using a radar chart. Last widget displays a list

of different articles represented with different colors depending on how the sentiment is in

each of them.

Although they have a similar structure, second and third option in the sidebar have

differences such as number of tabs displayed or information compared.

“Newspapers” is second option and it has four different tabs (“MARCA”, “AS”, “MUNDO

DEPORTIVO” and “SPORT”), one tab per analyzed newspaper. When clicking on dif-

ferent tabs, the information shown change. For example, if you click on “MARCA” tab,

the widgets mentioned before change their values with the data obtained only in this Marca

newspaper. In addition, if we compare with next option in the sidebar, the information

compared in the widgets placed on top are the different teams that have been analyzed. An

example of this view is shown in Figure 4.2.

39

CHAPTER 4. CASE STUDY

Figure 4.2: Newspapers option

The last option in the sidebar is “Teams” and it has one tab per analyzed team (“Atlético

de Madrid”, “F.C. Barcelona” and “Real Madrid C.F.”). As it occurs in “Newspapers”

option, the information to be displayed is different if we click in one tab or another. For

example, if you click on “Atlético de Madrid” tab, the widgets mentioned before change

their values with the data obtained only about the Atletico de Madrid team. In this case,

the information compared in the widgets on top are the different newspapers where we have

obtained the information. An example of this view can be observed in Figure 4.3.

40

4.6. CONCLUSIONS

Figure 4.3: Teams option

4.6 Conclusions

In this chapter we have presented the steps we have followed for extracting data and ana-

lyzing it. We have explained the widgets displayed and the different views developed, and

also how the website could be used.

These results together with the information shown have allowed us to reach some con-

clusions shown below:

• We can conclude that Mundo Deportivo offers really good opinions of Atlético de

Madrid and F.C. Barcelona. Real Madrid C.F. articles aren’t that positive.

• It can be seen a positive zone in Real Madrid C.F news right after its match on

Saturday 21, 16:15. The reason could be the match result, they won (2-1) versus

Malaga C.F.

• It can be seen a negative zone in Atlético de Madrid news right after its match on

Sunday 22, 16:15. The reason could be the match result, they tied (2-2) versus Athletic

Club de Bilbao.

• It can be seen a positive zone in F.C. Barcelona news right after its match on Sunday

22, 20:45. The reason could be the match result, they won (0-4) versus S.D. Eibar.

41

CHAPTER 4. CASE STUDY

• It can be concluded that AS newspaper offers mostly positive articles of all three

analyzed teams.

42

CHAPTER5
Conclusions and future work

5.1 Introduction

In this chapter we are going to explain the conclusions extracted from this project, achieve-

ments, problems faced and options to develop in future work.

5.2 Conclusions

In this project we have created a scraping system for sentiment and emotion analysis of

football news. In addition, we have created a dashboard based on widgets in order to make

it interactive and accessible, and to show clearly the extracted data.

The project has the characteristic of being scalable since it is formed by five different

modules. The first module is News Extraction System which is in charge of obtaining all the

available in the required URLs. The second module is the Orchestrator of all the tasks in

the project. News Analysis System is the third module and it is based in finding sentiments

and emotions in the articles extracted. The fourth module is the Indexing System which is

in charge of storing and classifying this data. The last module is News Visualization System

and it finally displays in a dashboard all the information processed before.

43

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.3 Achieved goals

This section is made in order to explain the progress made in comparing the initial impres-

sions and the final results as presented in this document.

Design and implement a sports news extraction system When creating a new project

one of the key parts is data. Consequently, our project is nothing without a good tool

to extract the information desired. This is the reason why this achievement was crucial

to continue with the project. To reach this goal we have used Scrapy.

Build a pipeline for sentiment and emotion analysis Once we obtained the data us-

ing the news extraction system, next step was to analyze it in order to have useful

information to be compared. So it was necessary to implement this pipeline using

Luigi. Inside this pipeline we used Senpy to effect the analysis and Elasticsearch to

index data.

Design a dashboard based on widgets All that analyzed data was useless if we didn’t

create a dashboard with different views and widgets to show the user the sentiment

and emotion evolution. We achieve this goal using Polymer Web Components and

D3.js library.

Evaluate the objectivity of different medias This final goal couldn’t be done without

the previous achievements. We used the dashboard created previously and all data

analyzed to show different widgets comparing sentiments and emotions in different

medias.

5.4 Problems faced

During the development of this project, not everything went as expected on first try, so we

had to face some problems listed next.

• Sentiment analysis: Our first idea when talking about sentiment analysis was to

use the Senpy plugin called “sentiText”. After a while using it, we realized that some

theoretically positive news talking about happiness and joy were classified as negative.

In this point we decided to implement other plugin called “meaningCloud” that was

much more accurate.

44

5.5. FUTURE WORK

• Elasticsearch version: We had to face this problem when developing News Visual-

ization System. Polymer Web Components and Elasticsearch need to be connected in

order to display the desired content. The way of connecting this two technologies has

changed thru versions and our problem came when we were using the latest Elastic-

search version with the way of connecting used in previous versions. Because of this

reason it was needed to update Polymer code.

5.5 Future work

Although this project has been developed as much as possible, there are always new im-

provements to make. Some possible features to add in the future are explained next.

Adding new teams and newspapers At the moment we have analyzed information from

just four newspapers and three football teams. Next step would be to add new teams

and newspapers in order to compare them with the ones that we have and make the

study of sentiments and emotions more complete.

Creating new dashboard about different topic In our project we have focused in foot-

ball news, but this development could be extrapolated to other different topics. First

example could be other sports, but it also could be focused in topics like music news

comparing songs and singers or cinema news comparing movies and actors.

Adding new widgets We have implemented a dashboard with a few widgets, but there

are lots of other possibilities when using Polymer Web Components and D3.js. New

widgets could be added with new data being compared or shown.

45

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

46

Bibliography

[1] E. Conde-Sánchez, “Development of a Social Media Monitoring System based on Elasticsearch

and Web Components Technologies,” Master’s thesis, ETSI Telecomunicación, June 2016.

[2] J. F. Sánchez-Rada, C. A. Iglesias, I. Corcuera-Platas, and O. Araque, “Senpy: A Pragmatic

Linked Sentiment Analysis Framework,” in Proceedings DSAA 2016 Special Track on Emotion

and Sentiment in Intelligent Systems and Big Social Data Analysis (SentISData), October 2016.

[3] C. A. Iglesias, J. F. S’anchez-Rada, G. Vulcu, and P. Buitelaar, “Linked Data

Models for Sentiment and Emotion Analysis in Social Networks,” in Sentiment Analysis

in Social Networks. Morgan Kauffman, October 2016, ch. Linked Dat, pp. 46–

66. [Online]. Available: http://store.elsevier.com/Sentiment-Analysis-in-Social-Networks/

Federico-Alberto-Pozzi/isbn-9780128044124/[1]

[4] M. M. Bradley and P. J. Lang, “Affective norms for english words (anew): Instruction man-

ual and affective ratings,” Technical report C-1, the center for research in psychophysiology,

University of Florida, Tech. Rep., 1999.

[5] T. Pedersen, S. Patwardhan, and J. Michelizzi, “Wordnet:: Similarity: measuring the related-

ness of concepts,” in Demonstration papers at HLT-NAACL 2004. Association for Computa-

tional Linguistics, 2004, pp. 38–41.

[6] A. Pascual Saavedra, “Development of a dashboard for sentiment analysis of football in twitter

based on web components and d3. js,” 2016.

[7] D. Kouzis-Loukas, Learning Scrapy. Packt Publishing Ltd, 2016.

[8] G. Klyne and J. J. Carroll, “Resource description framework (rdf): Concepts and abstract

syntax,” 2006.

[9] J. R. Smith and P. Schirling, “Metadata standards roundup,” IEEE MultiMedia, vol. 13, no. 2,

pp. 84–88, 2006.

[10] D. Wood, M. Zaidman, L. Ruth, and M. Hausenblas, Linked Data. Manning Publications Co.,

2014.

[11] M. Bostock, “D3. js-data-driven documents (2016),” URL: https://d3js. org, 2016.

47

http://store.elsevier.com/Sentiment-Analysis-in-Social-Networks/Federico-Alberto-Pozzi/isbn-9780128044124/ [1]
http://store.elsevier.com/Sentiment-Analysis-in-Social-Networks/Federico-Alberto-Pozzi/isbn-9780128044124/ [1]

BIBLIOGRAPHY

48

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Project tasks
	Structure of this document

	Enabling Technologies
	Introduction
	Sefarad 3.0
	Senpy
	Luigi by Spotify
	Elasticsearch
	Polymer web components

	Scrapy and other web scraping tools
	Definition of Web Scraping
	Some Web Scraping tools
	Apache Nutch
	Newspaper
	Event Registry
	SearchBlox
	Scrapy
	Conclusion

	Schema.org
	Conclusions

	Architecture
	Introduction
	Architecture
	Orchestrator
	Workflow
	Scraper Task
	JSONParser
	Sentiment Analysis Task
	Indexing Task

	News extraction system
	News analysis system
	EmoTextANEW
	meaningCloud
	affect

	Indexing system
	News visualization system
	Structure
	Elements and widgets
	Polymer elements
	D3.js widgets

	Case study
	Introduction
	Extracting data
	Analyzing data
	Indexing data
	Displaying data
	Conclusions

	Conclusions and future work
	Introduction
	Conclusions
	Achieved goals
	Problems faced
	Future work

	Bibliography

