
GRADO EN INGENIERÍA DE TECNOLOGÍAS Y

SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A
REINFORCEMENT LEARNING-BASED INTELLIGENT

AGENT FOR SOLVING TEXT GAMES USING
TEXTWORLD

BRUNO GONZÁLEZ LÓPEZ
JUNIO 2020

TRABAJO DE FIN DE GRADO

T́ıtulo: Design and Development of a Reinforcement Learning-based

Intelligent Agent for Solving Text Games using TextWorld

T́ıtulo (inglés): Design and Development of a Reinforcement Learning-based

Intelligent Agent for Solving Text Games using TextWorld

Autor: Bruno González López

Tutor: Carlos Ángel Iglesias Fernández

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A

REINFORCEMENT LEARNING-BASED

INTELLIGENT AGENT FOR SOLVING TEXT

GAMES USING TEXTWORLD

Bruno González López

Junio 2020

Resumen

El objetivo de este proyecto es entrenar dos agentes inteligentes para que sean capaces de

resolver juegos de texto, en concreto, un juego simple inspirado en la ETSIT. Además se

compararán métricas para medir su rendimiento en relación a un agente que toma decisiones

de forma aleatoria.

Los juegos basados en texto (muy populares en la década de los 80s) son simulaciones

complejas e interactivas en las que el texto describe el estado del juego y los jugadores

progresan introduciendo comandos textuales. Para resolver este tipo de juego, un agente in-

teligente debe ser capaz de explorar el entorno, aprender mecánicas, identificar su propósito,

entender texto y adquirir una cierta percepción temporal.

Para conseguir esto, el proyecto se apoyará en la rama del machine learning, concre-

tamente en el deep reinforcement learning que ha demostrado ser la mejor solución para

entornos virtuales en los que agentes tienen que aprender a escoger las mejores acciones

para alcanzar determinados objetivos. Esta rama se ha convertido en una de las ramas más

prometedoras dentro del área de la inteligencia artificial. Los algoritmos de deep reinforce-

ment learning DQN y A2C han demostrado un gran rendimiento en este tipo de entornos

por lo que nuestros agentes se basan en estas arquitecturas.

Al tratarse de un entorno puramente textual, el proyecto utilizará herramientas propias

del campo del procesamiento del lenguaje natural. La comprensión del lenguaje requiere

habilidades como la memoria a largo plazo, la planificación y el sentido común, cualidades

que nuestro agente necesitará.

Para la gestion y creacion de juegos textuales se utilizará Textworld. TextWorld es

una biblioteca de Python desarrollada por microsoft que gestiona estos juegos además de

proporcionar funciones de seguimiento y control de recompensas. También permite crear

nuevos juegos o generar automáticamente otros. Sus mecanismos generativos dan un control

preciso sobre la dificultad, ámbito y el lenguaje de los juegos construidos.

Palabras clave: Machine learning, Deep Reinforcemen Learning, Textworld, Natural

Lenguage Processing.

I

Abstract

The objective of this project is to train two intelligent agents to be able to solve text games,

in particular, a simple game inspired by ETSIT. In addition, metrics will be compared to

measure their performance in relation to a random decision making agent.

Text-based games (very popular in the 80s) are complex and interactive simulations

in which the text describes the state of the game and the players progress by introducing

textual commands. To solve this type of game, an intelligent agent must be able to explore

the environment, learn mechanics, identify its purpose, understand text and acquire some

temporal perception.

To achieve this, the project will be based on the machine learning field, specifically on

deep reinforcement learning that has proved to be the best solution for virtual environments

where agents have to learn to choose the best actions to achieve certain objectives. This

branch has become one of the most promising branches in the area of artificial intelligence.

The deep reinforcement learning algorithms DQN and A2C have demonstrated a great

performance in this kind of environments, so our agents are based on these architectures.

As games are a purely textual environment, the project will use tools from the field

of natural language processing. Understanding language requires skills such as long-term

memory, planning and common sense, qualities that our agent will need.

Textworld will be used for the management and creation of textual games. TextWorld is

a Python library developed by Microsoft that handles these games in addition to providing

tracking and reward control functions. It also allows us to create new games or automatically

generate others. The generative mechanisms it offers give precise control over the difficulty,

scope and language of the games built.

Keywords: Machine learning, Deep Reinforcemen Learning, Textworld, NaturalLen-

guage Processing.

III

Agradecimientos

Gracias en primer lugar a mis padres por apoyarme y motivarme durante toda la carrera

además de financiarla.

Gracias a Carlos Ángel Iglesias por orientarme y guiarme durante este proyecto además

de potenciar mi interés en el campo de la Inteligencia Artificial.

Gracias a mis amigos por estar siempre dispuestos a compartir cualquier momento y

ayudar en cualquier situación.

Gracias a todos los compañeros y profesores que han conseguido hacer de esta una gran

etapa de aprendizaje.

Gracias a todas las personas anónimas que suben conocimiento a internet de forma

desinteresada.

V

Contents

Resumen I

Abstract III

Agradecimientos V

Contents VII

List of Figures XI

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.3 Structure of this document . 2

2 State of the art 3

2.1 Machine Learning . 3

2.2 Reinforcement Learning (RL) . 4

2.2.1 Environment and actions . 5

2.2.2 Definitions . 6

2.2.3 Reinforcement Learning algorithms 8

2.2.3.1 Model-free algorithms . 8

2.2.3.2 Model based algorithms . 10

2.3 Deep Reinforcement Learning . 10

VII

2.3.1 Deep neural networks . 11

2.3.2 Deep Q-learning . 11

2.3.3 Advantage Actor Critic (A2C) . 12

2.4 Natural Language Processing (NLP) . 14

2.5 Conclusion . 16

3 Enabling Technologies 17

3.1 GYM . 17

3.2 PYTORCH . 18

3.3 TextWorld . 18

3.3.1 Game Generation . 19

3.3.1.1 World Generation . 20

3.3.1.2 Quest Generation . 20

3.3.1.3 Text Generation . 21

3.3.2 Learning Enviroment . 22

4 Development of the Games 23

4.1 ETSIT game . 23

4.1.1 Creating the world . 24

4.1.2 Structure of the world . 24

4.1.3 Add objects . 25

4.1.4 Create the key and door . 26

4.1.5 Record the quest . 27

4.2 Random games . 30

5 Deep Reinforcement Learning Agents 31

5.1 Overview . 31

5.1.1 Agents . 32

5.1.2 Games . 33

5.1.3 Observations . 34

5.1.4 Play function . 35

5.2 Random agent . 35

5.3 Agents’ architecture . 36

5.3.1 Text pre-processing . 37

5.3.2 Processing . 37

5.3.2.1 Embeddings . 38

5.3.2.2 Temporal encoders . 39

5.4 DQN . 39

5.5 A2C . 41

6 Experiments 43

6.1 Training . 43

6.2 Validation . 45

6.3 Test . 45

7 Conclusions and future work 47

7.1 Conclusions . 47

7.2 Achieved goals . 48

7.3 Future work . 48

Appendix A Impact of this project i

A.1 Social impact . i

A.2 Environmental impact . i

A.3 Ethical implications . ii

Appendix B Economic budget iii

B.1 Human resources . iii

B.2 Physical resources . iii

B.3 Cloud computing . iv

B.4 Licences Taxes . iv

Bibliography v

List of Figures

2.1 The perception-action-learning loop [1]. 7

2.2 Open AI - Taxonomy of algorithms in modern RL [2]. 9

2.3 Phases of NLP architecture [3]. 15

3.1 An overview of Textworld’s framework architecture [4]. 19

4.1 Final structure of the world. 24

4.2 A world with a player in a hall, and a library and a coffee shop adjacent. . 25

4.3 The world after adding notes, recipients (table and microwave) and an apple. 26

4.4 Final structure of the world. 27

4.5 The quest record process using record quest() method (part1). 28

4.6 The quest record process using record quest() method (part2). 29

5.1 Models’ action-perception loop. 32

5.2 Model’ class. 33

5.3 Models’ learning phases. 34

5.4 Models’ Arquitecture. 36

5.5 Vocabulary class. 37

5.6 One hot encodding example. 37

5.7 Word embeddings visualization. 38

5.8 DQN Arquitecture. 40

5.9 A2C Arquitecture. 41

XI

6.1 DQN model training results. 44

6.2 A2C model training results. 44

CHAPTER1
Introduction

This chapter includes a summarized explanation of the context concerning this project and

a list of the objectives to be achieved.

1.1 Context

Text-based games [4] are complex, interactive simulations in which text describes the game

state and players make progress by entering text commands. They are fertile ground for

language-focused machine learning research.

Language understanding [5] requires skills like long-term memory and planning, explo-

ration, and common sense. Intelligent agents are able to implement these properties with

the combination of natural language processing and deep reinforcement learning.

In this work, Textworld [4] has been selected as an enviroment for testing and training

intelligent agents. TextWorld is a Python library that handles interactive playthrough of

text games and provides functions to tracking and control rewards. It also enables users to

handcraft their own games or automatically generates new ones. Its generative mechanisms

give precise control over the dificulty, scope, and language of constructed games.

1

CHAPTER 1. INTRODUCTION

1.2 Project goals

The objectives of this work are the following:

• Understand the uses and limitations of the Textwold learning environment.

• Study and analyze the state of the art of reinforcement learning and in particular of

natural lenguage processing and the resolution of text-based games.

• Train and test different agents using the state of the art algorithms.

• Create a custom game using TextWorld and use it as a benchmark for trained agents.

• Compare and measure the performance of algorithms.

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is as follows:

1. Introduction: this chapter provides a global vision of the project.

2. State of the art: the most recent stage in the development of all main technologies

involved in the project.

3. Enabling Technologies: this chapter describes all the tools and technologies that

have been used.

4. Development of the Games: description of the games creation process.

5. Deep Reinforcement Learning agents: description of the design details involving

the intelligent agents.

6. Experiments: the results of the intelligent agents in the training process and the

etsit game test.

7. Conclusions and future work: this chapter provides a description of the conclu-

sions that have been obtained as a result of this thesis as well as a proposed approach

to apply in future works.

2

CHAPTER2
State of the art

This chapter is a summary of the latest developments in the fields of Natural Language

processing, Machine Learning and specifically Reinforcement Learning.

The constant stream of innovation and success on this areas has made it possible to

solve challenges previously deemed impossible for computer systems.

2.1 Machine Learning

Machine Learning (ML) [6] is a branch of artificial intelligence, whose objective is to develop

techniques that enable to emulate human intelligence by learning from the surrounding

environment. It is said that an agent learns when its performance improves with experience,

that is to say when the skill was not present in initial conditions. That yields not to program

explicitly the rules that a model follows. These models must be able to generalize behaviors

and inferences to a broader set of data.

Techniques based on machine learning have been applied successfully in diverse fields

ranging from pattern recognition, natural language processing, art, computer vision, finance,

spacecraft engineering, entertainment, and computational biology to biomedical and medical

3

CHAPTER 2. STATE OF THE ART

applications.

The different machine learning algorithms are grouped according to their output. The

main types are [6]:

1. Supervised learning: Algorithms that establish a correspondence between the in-

puts and the desired outputs of the system. It is often used to solve classification

problems, where the learning system tries to label (classify) a series of vectors using

one among several categories (classes).

2. Unsupervised learning: The entire modeling process is carried out on a set of ex-

amples consisting of system inputs only. There is no information about the categories

of these examples. Therefore, in this case, the system has to be able to recognize

patterns in order to label the new entries.

3. Semi-supervised learning: This type of algorithm combines the two previous al-

gorithms in order to classify properly. Marked and unmarked data are taken into

account.

4. Reinforcement Learning: The algorithm learns by observing and interacting the

world around it. The model input is the feedback it gets from the outside world in

response to its actions. Therefore, the system learns on an assay-error basis in order

to increase a reward system.

This thesis focuses in the Reinforcement learning area.

2.2 Reinforcement Learning (RL)

Reinforcement Learning (RL) [7] is an area of machine learning (ML) whose occupation is

to determine what actions a software agent should choose in a given environment in order

to maximize some reward. To achieve this goal the agent must learn behavior through trial

and error interactions with a dynamic environment. In the standard reinforcement learning

model, an agent is connected to its environment via perception and action .The environment

changes when the agent acts on it, but may also change on its own.

The agent also perceives a reward signal from the environment, it is a scalar that mea-

sures the quality of the decision. The goal of the agent is to maximize its cumulative reward.

Reinforcement learning methods are ways that the agent can learn behaviors to achieve its

goal.

4

2.2. REINFORCEMENT LEARNING (RL)

The great promise and goal of reinforcement learning are agents that can learn to solve

a extensive range of important problems. According to some definitions, an agent that can

learn to perform at or above human level across a vast variety of tasks is an artificial general

intelligence [8].

The agent has two main objectives exploration of the unknown environment and ex-

ploitation of current knowledge. To achieve this the agent must address three challenges

simultaneously [9]:

1. Generalization: be able to learn efficiently from data it collects.

2. Exploration: interact and learn the rules of the environment prioritizing the right

experience to learn from.

3. Long-term consequences: consider effects on future states, beyond a single time

step.

2.2.1 Environment and actions

The environment is a fundamental part of understanding RL, depending on the type of en-

vironment, some algorithms can be used or others. The different environments are normally

modeled in consonance with to the following characteristics [1]:

• According to the world’s access to information it can be fully observable (it is always

known the state of the environment at any time, chess is an example of this) and

partially observable, not all information in the environment is accessible with poker

as an example.

• In relation to the number of agents interacting in the environment it can be single

agent or multi agent.

• According to the influence of the azaar on the development of the future states of the

system, the enviroments are deterministic (there is no azaar influence) or stochastic

(the influence of the azaar appears).

• Depending on the range of values or states in which the environment can be found

discrete enviroments, or continuous enviroments.

5

CHAPTER 2. STATE OF THE ART

2.2.2 Definitions

A state s [6] is a complete description of the state of the world. An observation o [6] is a

partial description of a state, which may omit information.

The action space [6] is the set of all valid actions in a given environment. Some

environments, have discrete action spaces, where the agent has a limited number of actions

available. Other environments have continuous action spaces, where the agent has a infinite

number of actions available.

A policy [6] is a rule used by an agent to decide what actions to take. It can be

deterministic, in which case it is usually denoted by µ:

at = µ(st) (2.1)

or it may be stochastic, in which case it is usually denoted by π:

at ∼ π(·|st) (2.2)

A trajectory [6] or episodes is a sequence of states and actions in the world, it is

denoted by τ :

τ = (s0, a0, s1, a1, ...) (2.3)

State transitions depend on only the most recent action, at. They can be either

deterministic,

st+1 = f(st, at) (2.4)

or stochastic,

st+1 ∼ P (·|st, at) (2.5)

Since the transitions only depend on the most recent state-action and no prior history,

they are modeled as Markov Decision Processes (MDP) [7].

An MDP is a 5-tuple, 〈 S, A, R, P, ρ0 〉, where S is the set of all valid states, A is the

set of all valid actions, R is the reward function, with R : S ×A×S → Rrt = R(st, at, st+1),

6

2.2. REINFORCEMENT LEARNING (RL)

P is the transition probability function P : S ×A→ P(S).

The general case of a model with an intelligent agent in an environment is as follows:

Figure 2.1: The perception-action-learning loop [1].

.

On each step of interaction, the agent receives as input i an observation of the current

state of the environment (could be partial or total) s. Based on this information the agent

chooses an action a to generate as an output to perform, this action changes the estate of

the environment. To measure the quality of the agent’s decision, a reward function gives

the agent a reinforcement signal, rt = r(st, at) and producing the succeeding state st+1.

The agent’s behavior B should choose actions that tend to increase the long-run values

of the reinforcement signal. The task of the agent is to learn a policy, for selecting the next

action at based on the current state Π : S → A, such that the reward V is maximised [9] :

∑
V π(st) = rt + γrt+1 + γr2rt+2 + ... =

∞∑
i=0

γrirt+i (2.6)

where γ is a constant between 0 and 1 that determines the relative value of delay reward

versus immediate rewards. The optimal policy is often denoted Π* and the corresponding

cumulative reward V* .

The agent’s job is to find a policy, mapping states to actions, that maximizes some

long-run measure of reinforcement [7].

7

CHAPTER 2. STATE OF THE ART

Video games provide plenty of problems for agents to solve, making their perfect envi-

ronments for AI research. There are virtual environments safe and controllable. In addition,

these game environments provide a large supply of useful data for reinforcement learning

algorithms.

These characteristics make games the unique and favorite domain for AI research.

Games are an excellent testbed for reinforcement learning research. Studying games, we

can learn about human intelligence, and the challenges that human intelligence needs to

solve [10].

2.2.3 Reinforcement Learning algorithms

One of key points in an RL algorithm is the question if the agent has access or learns a

model of the environment. A model of the environment is a function which predicts state

transitions and rewards.

An agent with access to the model of the environment can plan by thinking ahead, pre-

dicting what would happen for a range of possible choices, and explicitly deciding between

its options. Agents can then select the best results from planning into a learned policy.

A famous example of this approach is AlphaZero [11]. Model-based algorithms have sow

improvement in sample efficiency over methods that do not have a model.

The problem is very difficult or impossible to know the ideal model in advance, therefore

the agent must learn the model through pure experience. This brings a series of challenges

that must be analyzed as the possibility that the agent learns a biased model that still

allows him to reach his goal.

Algorithms which use a model are called model-based methods, and those that do not

are called model-free. For each of these types the agents have different challenges in terms

of optimization and learning.

2.2.3.1 Model-free algorithms

On model-Free Algorithms, there are many different ways of using models. The following

is a list of the most popular ways. In each case, the model may either be given or learned

[2].

• Policy Optimization Methods: The policy is represented explicitly as πθ(a|s).

8

2.2. REINFORCEMENT LEARNING (RL)

Figure 2.2: Open AI - Taxonomy of algorithms in modern RL [2].

The objective is optimize the parameters θ by gradient ascent on the performance

objective J(πθ), or by maximizing local approximations of J(πθ). Each update only

uses data collected while acting according to the most recent version of the policy.

Policy optimization also usually involves learning an approximator Vφ(s) for the on-

policy value function Vπ(s), which is used the update of the policy.

Examples of these algorithms are A2C, A3C or PPO that have proven to be the most

efficient for certain problems.

• Q-Learning Methods: In this family the agents learn, for the optimal action-value

function, Q∗(s, a), an approximator Qθ(s, a) . Typically they use an objective function

based on the Bellman equation. This optimization is performed off-policy, the data

collected at any time by the agent during the training is accessible for each update,

regardless of how the agent has explored the environment. The corresponding policy

is obtained via the connection between Q∗ and π∗: the actions taken by the Q-learning

agent are given by:

a(s) = arg max
a

Qθ(s, a). (2.7)

A couple of examples of policy Q-learning methods are DQN, used for solving Atari

games for DeepMind or C51 a variant of DQN.

9

CHAPTER 2. STATE OF THE ART

2.2.3.2 Model based algorithms

In the model-based reinforcement learning algorithms, there are many orthogonal ways of

using models. This is a list of the most used and highest performed methods. In each case,

the model may either be given or learned [2].

• Background Pure Planning. It do not represents the policy instead, uses pure

planning techniques like model-predictive control (MPC) to select actions. In MPC,

In fixed time windows, this family of algorithms calculates the optimal series of actions

based on the model and discards the rest. MBMF is an example of this type of

algorithms.

• Expert Iteration. The agent uses a planning algorithm (like Monte Carlo Tree

Search) in the model. Pure planning generates possible actions by sampling an explicit

representation of the policy, πθ(a|s). AlphaZero is an example of this approach.

• Data Augmentation for Model-Free Methods

This methods Uses a model-free RL algorithm to train a policy and fictitous experience

for updating the agent. or augment real experiences. MBVE or World Models are an

example of this approach.

• Embedding Planning Loops into Policies.This approach makes model bias less

of a problem. The action plan is produced into a policy as a subroutine this allows

the policy learn to choose how and when to use the plans. I2A is an example of this

type of agents.

2.3 Deep Reinforcement Learning

Deep reinforcement learning combines artificial neural networks with a reinforcement learn-

ing techniques that gives reinforcement learning agents the ability to solve complex problems

of the environment [12].

While deep neural networks are behind recent AI breakthroughs in a plenty kind of

problems like machine translation and time series prediction they can also combine with re-

inforcement learning, as demonstrated by Deepmind and OpenIA, allowing them to achieve

much higher performance than those obtained without using deep neural networks. They

have designed algorithms than can beat human experts playing numerous Atari video games

[12], Starcraft II and Dota-2, as well as the world champions of Go. This is a large im-

10

2.3. DEEP REINFORCEMENT LEARNING

provement over reinforcement learning’s previous accomplishments. With the help of deep

neural networks, the state of the art is progressing rapidly.

2.3.1 Deep neural networks

A standard Neural Network (NN) [13] consists of many simple, connected processors called

neurons, Each one producing a sequence of real value activations. Input neurons are acti-

vated through sensors that measure the environment, other neurons are activated through

weighted connections of active neurons. Some neurons are able to effect the environment

by causing actions and generating emerging behaviors. Depending on the problem and how

the neurons are connected, such behaviour may require long causal chains of computation

stages. The Deep Neural Network (DNN) refers to many of these stages [13].

A deep neural network [6] is an neural network with multiple layers between the input

and output layers. DNN moves through the layers by calculating the probability of each

output finding the correct mathematical manipulation to convert input to output, whether

it is a linear or non-linear relationship [6].

Deep neural networks can model complex non-linear relationships through the following

process: At first, the DNN assigns random numerical values, or weights, to connections

between neurons. The weights and inputs are multiplied and return an output. Then,

an machine learning algorithm would adjust the weights, until it determines the correct

mathematical manipulation to fully process the data.

Since the emergence of Deep Neural Networks as a prominent technique in many different

fields, many different architectures have emerged, each with its own peculiarities such as

recurrent neural networks (RNNs), in which data can flow in any direction, are used in

language modeling, long short-term memory (LSTM) is particularly effective for this use.

Or convolutional deep neural networks (CNNs) which are used in computer vision and

speech recognition [3].

2.3.2 Deep Q-learning

This approach has several advantages over standard Q-learning. Each step of experience is

potentially used in many weight updates, which enables greater data efficiency [12].

The weight of a step from a state ∆t is calculated as γ∆t, the discount factor γ is

a number between 0 and 1 (0≤ γ ≤ 1) and evaluates rewards received previously with a

higher value than those received later. It makes rewards from the uncertain far future less

11

CHAPTER 2. STATE OF THE ART

important for our agent than the ones in the near future. γ can also be interpreted as the

probability of succeeding (or surviving) at each step of ∆t.

The algorithm, therefore, has a function that calculates the quality of a state-action

combination [12]:

Q : S ×A→ R. (2.8)

Before learning begins, Q is initialized to an arbitrary random value. Then, at each time

t the agent selects an action at, observes a reward rt, introduces a new state st + 1(which

depends on the previous state st, and Q is updated. The core of the algorithm is an update

of the simple iteration value, making the weighted average of the old value and the new

information. However, it does not have access to Q* because the world is complex and

huge. But, neural networks are used as universal function approximators to create an

approximation to Q*. To update rule, it is used fact that every Q function for some policy

obeys the Bellman equation, for a deterministic environment [12]:

Q(s, a)new = Q(s, a) + α[rt + γmaxQ(st+1, a)−Q(st, at)] (2.9)

Q function predicts what the return would be, then it is easy to construct a policy that

maximizes our rewards [12]:

π(s) = arg max
a

Q(s, a). (2.10)

2.3.3 Advantage Actor Critic (A2C)

Actor-Critic algorithms [14] is a Policy-Based algorithms that try to find the optimal policy

directly. Actor-Critics try to find or approximate the optimal value function, which is a

mapping between an action and a value. The higher the value, the better the action.

The principal idea is to split the model in two: one for computing an action based on a

state and another one to produce the Q values of the action.

The actor [15] takes as input the state and outputs the best action. It essentially controls

how the agent behaves by learning the optimal policy (policy-based). The critic [15], on

the other hand, evaluates the action by computing the value function (value based). Those

two models participate in a game where they both get better in their own role as the time

12

2.3. DEEP REINFORCEMENT LEARNING

passes. The result is that the overall architecture will learn to play the game more efficiently

than the two methods separately.

The actor used to be a function approximator like a neural network and its task is to

produce the best action for a given state.

The critic is another function approximator, which receives as input the environment

and the action by the actor, concatenates them and output the action value (Q-value) for

the given pair.

Policy gradient [14]:

∆J(Q) = Eτ [
T−1∑
t=0

∇QlogπQ(at, st)Gt] (2.11)

Rewriting [14]:

∆J(Q) = Eτ [

T−1∑
t=0

∇QlogπQ(at, st)Q(st, at)] (2.12)

The Q value can be learned by parameterizing the Q function with a neural network as

DQN methods do. Then the Critic estimates the value function, this could be the action-

value (the Q value) or state-value (the V value). On the other hand Q-learning algorithm

critiques the action that the actor selected, providing feedback on how to adjust.The Critic

network and the Value network are updated at each update step.

The advantage value is called to the subtract the Q value term with the Value, this

represents how much better it is to take a specific action compared to the average, general

action at the given state [14]:

A(st, at) = Q(st, at)− V (at) (2.13)

The objetive of the agent is minimizing policy loss and value loss [14].

Policyloss =
T−1∑
t=0

∇QlogπQ(at, st)A(st, at) (2.14)

V alueloss =
1

2
(V (at)− Eτ)2 (2.15)

13

CHAPTER 2. STATE OF THE ART

2.4 Natural Language Processing (NLP)

Natural Language Processing (NLP) [16], is a branch of computer science, artificial intelli-

gence and linguistics that studies the interactions between computers and human language.

Its objective is to read, decipher, understand and make sense of the human languages [16].

Natural Language Processing is generally used on text summary, the algorithm should

find the central idea of an article and ignore what is not relevant. ChatBots, they should

be able to have a fluid chat with the user and answer his questions automatically. Au-

tomatic keyword generation and text generation following a particular style. Entity

Recognition, find People, Commercial, Government Entities or Countries often used this

approach. Sentimental Analysis, identify subjective moods or opinions in large amounts

of text, including sentiment mining and average opinions, it is in charge of analyzing and

detecting the feelings associated with a communication and classifying it, widely used in

social networks, politics, product reviews and recommendation engines. Automatic Lan-

guage Translation, automatic classification of texts into pre-existing categories or from

full texts, detecting recurrent topics and creating the categories.

An NLP model should typically solve the following high-level problems [6]:

1. Content Categorization: A linguistics-based summary of the document, including

search and indexing, content alerts, and duplication detection.

2. Topic discovery and modeling: Accurately capture meaning and topics in text

collections, and apply advanced analytics to text, such as optimization and forecasting.

3. Contextual extraction: Automatically extract structured information from text-

based sources.

4. Speech-to-text and text-to-speech conversion: Transforming voice commands

into written text and vice versa.

5. Summarizing documents: Automatic generation of synopses of large bodies of

text.

6. Machine based translation: Automatic translation of text or speech from one

language to another.

NLP [16] includes different techniques for interpreting human language, ranging from

statistical and machine learning methods to rule-based and algorithmic approaches. Text-

based and speech-based data vary widely, as do practical applications.

14

2.4. NATURAL LANGUAGE PROCESSING (NLP)

Figure 2.3: Phases of NLP architecture [3].

Basic NLP tasks include symbolization and syntactic analysis, derivation, speech la-

beling, language detection, and identification of semantic relationships. NLP tasks break

language into shorter elementary pieces, attempt to understand relationships between the

pieces, and explore how the pieces work together to create meaning.

A text is a set of words formed by letters with a specific disposition, to process text you

must first treat it, the techniques generally used to treat the text and make it accessible to

the algorithms are the following [6]:

• Tokenization is the process of demarcating and possibly classifying sections of a

string of input characters, separating words from text into entities called tokens.

• Tagging Part of Speech (PoS): is the process of marking up a word corresponding

to a particular part of speech based on its definition and context. Classifying sentences

in verb, noun, preposition adjective, etc.

• Shallow parsing : used to understand the grammar in sentences. The tokens are

parsed and a structure tree is created from their PoS.

• Meaning of the words: lexical semantics and word sense disambiguation.

• Pragmatic Analysis: it focuses on taking a structure set of text and figuring out

what the actual meaning was. Is used to detecting how things are said such as irony

or sarcasm.

15

CHAPTER 2. STATE OF THE ART

• Bag of words: this is a way of representing the vocabulary that will be used in a

model.

• Word2vec: this is a technique that learns from reading huge amounts of text and

memorizing which words appear to be similar in different contexts. Similar words are

placed close together. By using pre-trained vectors, we are able to have a wealth of

information to understand the semantic meaning of the texts.

Advances in techniques and hardware for deep neural network training have recently

provided significant improvements in the accuracy of many critical NLP tasks. Their needs

fewer engineering features due to achieving high performance. The main examples of these

new techniques are convolutional neural networks (CNN) and recurrent neural networks

(RNN). Gateway mechanisms have been developed to alleviate this. Some limitations of

basic RNN, resulting in a long term memory (LSTM) and a closed recurrent unit (GRU)

[17].

2.5 Conclusion

As shown in the previous sections, the machine learning field, in particular the deep learning

field has had an explosive development in the last years. These advances have been reflected

in the reinforcement learning models due to the use of these techniques have achieved

superhuman performances in different environments.

On the other hand advances in NLP are abundant allowing researchers to create intel-

ligent models capable of working with text at much deeper levels.

At the intersection of these two worlds appear frameworks like Textworld that mixes

the best of NLP and RL. This opens the way to new lines of research that, if the trend

continues, will grow over the next few years.

This will allow the training of intelligent models in purely textual environments with the

aim of achieving some kind of goal, which will have a great impact on emerging technologies

such as chatbots.

16

CHAPTER3
Enabling Technologies

This chapter provides an overview about the technologies in which this project is based.

3.1 GYM

OpenAI Gym [18] is a toolkit for developing and comparing reinforcement learning algo-

rithms. Gym is an open source interface to reinforcement learning tasks. It is a flexible

interface that does not have a predefined structure of the agents and is compatible with any

numerical computation library, such as Pytorch.

Gym is based on the construction of environments in a structured way that allows

intelligent agents to interact with the environment in an orderly and quantifiable way. The

core gym interface is Env, which is the unified environment interface. There is no interface

for agents. Env’s main methods that will be used in this project are:

• Reset(self), reset the environment’s state and returns observation (object), an environment-

specific object representing your observation of the environment.

• Step(self, action), step the environment by one timestep and returns the observation

(object), reward (float), the amount of reward achieved by the previous action, if the

17

CHAPTER 3. ENABLING TECHNOLOGIES

episode is done (boolean) and inf (dict), it is diagnostic information for debugging. It

can be useful for learning.

• Render(self), render one frame of the environment.

Gym provides a list of pre-built enviroments where to train the smart models although

in this project we will not use any of this list. Instead we will build our custom enviroment.

3.2 PYTORCH

PyTorch [19] is a library for Python programs that facilitates building deep learning projects,

it emphasizes flexibility and allows deep learning models to be expressed in a easy compress-

ible way. It is a scientific computing package that uses the power of graphics processing

units.

It provides tensor computations with strong GPU acceleration support and building

deep neural networks on a tape-based autograd systems.

In addition to this, PyTorch offers dynamic computational graphs that can be changed

during runtime. Provides classes and functions implementing automatic differentiation.

3.3 TextWorld

TextWorld [4] is an extensible Python framework for generating text-based games and

train and test AI agents in abilities such as language understanding, memory, planning,

generalization and transfer learning. This framework has two main components: a game

generator and a game engine. The game generator returns a executable game based on

some game specifications, such as number of rooms, number of objects, game length, and

winning conditions. The game engine allows us to play and test different models.

18

3.3. TEXTWORLD

Figure 3.1: An overview of Textworld’s framework architecture [4].

Inform 7 and Git-Glulx are third-party libraries, they works as follow: some game

definitions are first converted to Inform 7 code and compiled into a Glulx executable file.

The way agents interact with the game is by communicating with the Git-Glulx interpreter

via TextWorld.

3.3.1 Game Generation

TextWorld’s game generator takes the game specification values: the number of rooms and

objects, the length of the quest, the winning conditions and options for the text generation.

Texworld uses all this information to outputs the corresponding executable game. It made

possible to generate a combinatorial set of games [4].

19

CHAPTER 3. ENABLING TECHNOLOGIES

The way to use it is as follows:

textworld.make(world_size=1, nb_objects=5, quest_length=2, grammar_flags

={}, seed=None, games_dir=’’)

Where it is posible to control the number of rooms in the world worl size, the num-

ber of objects nb objects, the number of actions the quest requires to be completed

quest length and modify the grammar options. Also, it is possible to track the random

games generation with a seed.

In order to build the executable game by high-level specifications, TextWorld must deal

with the world generation, the quest generation and the text generation.

3.3.1.1 World Generation

To generate a world, Textworld first create a map of the world. The map generation

process is parameterized by the grid size of the world, the number of rooms, and whether

room connections should have doors or not. With this information the framework generates

maps using the random walk algorithm [20], this made possible to create a huge variety of

configurations.

After the map is generated, objects are added to the world randomly across the rooms.

There are two main types of objects, portable ones which means they can be grab in the

inventary or throw and the fixed in place objects which can not be grabed, this object can

be supporter or container of portable ones.

3.3.1.2 Quest Generation

A quest [4] is a sequence of actions the player must perform to win the game. This sequence

does not have to be optimal or unique. Many trajectories could lead to a winning state

but no all paths are interesting, for example, the ones which contain cycles. The Textworld

process of determining interesting end goal is defining the nature of a quest and choosing

significant rewards for the agent.

Therefore, the framework’s forward quest generation algorithm produces all possible

quests from an initial condition then searches for those that complete the ending constraint.

However, this approach becomes intractable if the length of the desired quest increases. To

remedy this, TextWorld also supports backward chaining. Backward chaining starts from a

specified end state rather than an initial state. This approach solves the complexity problem

20

3.3. TEXTWORLD

of forward quest generation.

The generative process can add missing objects and facts to the world as needed, which

yields more diverse quests and games.

3.3.1.3 Text Generation

The Text Generation module [4] renders coherent text using logical elements of the game

state. The engine uses a context-free grammar of Chomsky, to generate object names, room

descriptions, and quest instructions in constrained natural language. Using a context-free

grammar gives a degree of textual variation, while also ensuring strict control over the

results.

The module is essentially a set of grammars, each generating distinct aspects. These

grammars can be extended and modified easily with additional production rules, enabling

the generation of simpler or more complex sentence structures that may act as a level of

game difficulty. On a high level, it is possible to differentiate the following text generation

groups [4]:

Object Names are randomly selected from the context-free grammar and uniquely

assigned to objects. An object name is decomposed in adjective and noun. The adjective

is optional and is used to create more complex object names and descriptions.

The Room Descriptions are the concatenation of every object they contain. Textworld

detects an on-game change to the states of objects in the room and updated the description.

Quest Instructions are used to explain to the player what should do in a game. An

instruction describes a particular action. It is possible to manage the difficulty by adjusting

how often the descriptions are shown, descriptions can be displayed for every action of a

quest for an easier game, only the final action, or never, this force the player to figure out

what to do from scratch.

Text options offer some control over different aspects of the text generation. Two

themed grammars are available to choose: the house grammar describes the world as if the

game takes place in a modern house and the basic grammar uses a simple grammar with

almost no linguistic variation. The basic grammar reduces the vocabulary and the language

complexity to ease the training of agents.

21

CHAPTER 3. ENABLING TECHNOLOGIES

3.3.2 Learning Enviroment

TextWorld can be used to play any text-based game that are interpretable either by Z-

machine or by Glulx. The framework handles launching and interacting with the necessary

game processes, it provides a simple API for game interaction. Textworld also contains

additional information about the game course in the game state object that can be used to

train intelligent agents [4].

The game state object contains useful information such as: The interpreter’s response

to the previous command, the description of the current room, the player’s inventory, the

current location, the name of the current room and the current score.

It can also include Additional information: A text describing what the player must do

to win the game, a list of commands that are Admissible, an intermediate reward and a

list of commands that guarantees to win the game starting from the current game state the

winning policy.

Determine a winning policy for any game state is possible by tracking the state of the

player. Textworld guaranteed that a winning policy exists from the player’s initial position,

then it is possible to update the winning policy by monitoring state changes. The policy

attaches to the last action the agents perform depending on if this action made the agent

closer, farther o equal to the goal.

TextWorld can provide a final reward [4] and an intermediate reward which is tied to

the winning policy. After every command, if the winning policy increases, meaning that

as a result of the last action, additional commands are required to solve the game, then a

negative reward is assigned. If the winning policy shortens, meaning the last action brought

the agent closer to the goal, a positive reward is assigned.

22

CHAPTER4
Development of the Games

This chapter provides an explanation of how Textworld works. This framework made possi-

ble an easy way to build random or custom games that will be used for training and testing

intelligent agents. Furthermore, it will be designed a custom game for a more natural and

real world environment inspired in a ETSIT quest.

4.1 ETSIT game

This section provides an explanation of the process of building a game using Textworld

than will be used as a benchmark to test our intelligent agents and be able to measure their

performance in a simulated real environment.

Textworld provides a simple way to build our custom handcrafting text-based games

using the GameMaker API. Also It is possible to visualize the world, rooms, doors and

objects.

This game will be inspired by the “Escuela Técnica Superior de Ingenieros de Teleco-

municación” (ETSIT). The player will start in the hall and his goal will be to eat an apple

hidden in the microwave of the coffee shop, the door to the cafeteria will be locked by a

23

CHAPTER 4. DEVELOPMENT OF THE GAMES

key, so the player must explore the school to find the key that will open the door and then

explore the cafeteria to find the apple.

Figure 4.1: Final structure of the world.

An intelligent system must be able to explore the world, learn mechanics, identify its

purpose automatically, understand text and acquire a certain sense of temporal and semantic

meaning of words in order to complete their mission. All this makes it an ideal environment

to test our agents.

The steps to build this game will be explained in the following points.

4.1.1 Creating the world

First of all, it is needed a wold than contains all the elements we want, to do that it is used

the GameMaker() constructor of the textworld library.

World = GameMaker()

The object World() has the functions to test and play the game. It will contain all

the objects but for now it is empty.

4.1.2 Structure of the world

First of all, it is needed to design the structure that the world will have. It is necessary to

have a clear design taking into account the different rooms, the corridors that connect them

and where the player will start using the new room connect and set player methods

respectively. It could also be possible to add items to the character’s inventory, but it will

not be done in this case.

24

4.1. ETSIT GAME

hall = World.new_room("Hall")

coffee_shop = World.new_room("Coffee shop")

library = World.new_room("Library")

corridor_hall_coffee_shop = World.connect(hall.east, coffee_shop.west)

corridor_hall_library = World.connect(hall.west, library.east)

World.set_player(hall)

Our world will be composed of 3 rooms: the hall, the coffee shop and the library. The

player will start in the hall without any object in his inventory.

It is possible to visualize the current world structure using World.render() method:

Figure 4.2: A world with a player in a hall, and a library and a coffee shop adjacent.

4.1.3 Add objects

The engine allows us create different objects with the new() method of several types :

“r” room can contain objects and can be connected with other rooms, “d” door can be

lockable, openable or closable, “c” container can hold objects and can be lockable, openable

or closable, “s” supporter can hold objects, “o” portable object can be carried by the player.

Portable objects have the subtypes “k” key, match a door or container’s lock, “f” food, can

be eaten, “oven” oven, provide a heat source to cook food item, “stove” stove, provide a

heat source to cook food item.

Our world will have 2 notes that will serve the player as clues, a table, a closed microwave

and an apple that is the ultimate goal.

25

CHAPTER 4. DEVELOPMENT OF THE GAMES

note_welcome = World.new(type=’o’, name="Welcome", desc = "You are in an

ETSIT game!, You can go west (library) or east (Coffee shop). Eat an

apple to win!")

note_library = World.new(type=’o’, name="Hint", desc = "This is the library,

find the coffee shop key.")

table = World.new(type=’s’, name= "Table")

apple = World.new(type=’f’, name="Apple")

microwave = World.new(type=’c’, name="microwave")

World.add_fact("closed", microwave)

In order to insert objects to the rooms the add() method is used.

coffee_shop.add(microwave)

microwave.add(apple)

hall.add(note_welcome)

library.add(table)

library.add(note_library)

The world visualization after that is the following:

Figure 4.3: The world after adding notes, recipients (table and microwave) and an apple.

4.1.4 Create the key and door

It is possible to add the following properties to the interactive objects using the add fact()

method: “match” creates a connection between a key and the container or door’s lock,

“open”, “closed” and “locked” are the states of containers and doors, “edible” made the

food is consumable, otherwise needs to be cooked first.

The world will have a looked door in the corridor between the hall and the coffee shop

26

4.1. ETSIT GAME

and the key to open it will be on a table in the library.

door_coffee_shop = World.new_door(corridor_hall_coffee_shop, name="Coffee

shop door")

World.add_fact("locked", door_coffee_shop)

key = World.new(type="k", name="Coffee Shop Key")

World.add_fact("match", key, door_coffee_shop)

table.add(key)

Our world has already finished, his final structure is the following:

Figure 4.4: Final structure of the world.

4.1.5 Record the quest

We have the full structure of the world but there is not a defined goal or objective to

complete the game. Textorld allows us create different quests ussing the record quest()

method.

quest = World.record_quest()

This throws an instance of the game that allows us to type all commands (or steps) to

include in the quest. It will be recorded the optimal path to achieve the goal: go west,

take coffee shop key from table, go east, unlock coffee shop door with coffee shop key, open

coffee shop door, go east, open microwave, take apple from microwave, eat apple.

27

CHAPTER 4. DEVELOPMENT OF THE GAMES

Figure 4.5: The quest record process using record quest() method (part1).

28

4.1. ETSIT GAME

Figure 4.6: The quest record process using record quest() method (part2).

29

CHAPTER 4. DEVELOPMENT OF THE GAMES

4.2 Random games

Textworld has the possibility to create multiple random games using a predefined tw-make

[21] command. It provides a systematic way to create plenty of different games with chosen

characteristics.

The most interesting features to measure the difficulty of the games are the following:

the reward frequency, it can be dense, balanced, or spars, and the description of the game’s

objective shown at the beginning of the game, it can be detailed, bried, or none.

tw-make tw-simple [-h] [--output PATH] [--seed SEED] [--format {ulx,z8}]

[--overview] [--save-overview] [--third-party PATH] [-f]

[--list] [--silent | -v] --rewards {dense,balanced,sparse}

--goal {detailed,brief,none} [--test]

We will use these games to train our model in different types of environments with

different difficulties in order to guarantee generalization before our agent deal with a custom

real game.

30

CHAPTER5
Deep Reinforcement Learning Agents

In this chapter, it will be cover the agents’ design, the implementation details involving its

architecture and an explanation of the environment where these agents will interact.

5.1 Overview

The purpose of this project is to build two agents (A2C and DQN) that are able to solving

text games in addition to comparing their performance in relation to a random agent. To

achieve this objective we will use Deep Reinforcement Learning. The intelligent agents

will learn based on the interaction with the environment, in this case games generated by

Textworld.

The agents will interact in the environment (the games) in an action-perception loop

that will be as follows:

31

CHAPTER 5. DEEP REINFORCEMENT LEARNING AGENTS

Figure 5.1: Models’ action-perception loop.

The main elements are: the games, differentiated by their use (training, validation

and test), the observations made by the agent in the environment and the play() function

that loads the games and acts as a pipeline between the decisions of the agent and the

environment. These elements are fixed and are used for each experiment.

The problem of solving a text game is extensive, an intelligent system must be able to

explore their environment, learn mechanics, identify its purpose automatically, understand

text, have a vocabulary of the words it know, acquire a certain sense of temporal and

semantic meaning of words in order to complete their mission.

To complete all these tasks it will be used two agents composed of different neural

networks that will decompose these problems to solve them separately.

5.1.1 Agents

The objective of the agents is to choose a command among those available, they receive the

game information in text form (string), process it and decide a command, interact with the

world and receive new game information, this cycle is repeated.

Through this cycle we can reward the behaviors that bring the agents closer to the goal

and punish the undesired ones causing to converge over time into desired behaviors.

The agents have two states: “train” where it deals with learning, minimizing the error

calculated in the compute loss function and updating the weights of their neural networks.

32

5.1. OVERVIEW

And “test” in which the agents act without modifying their networks, this will be explained

in depth in the 5.3 point.

Figure 5.2: Model’ class.

The agents have a vocabulary object where it stores the words it knows. It also has

parameters to control training: learning rate and update frequency, this allows us to adjust

the training of the model.

5.1.2 Games

To train the model it is necessary that it faces different games with different situations and

environments in order to the agents will be able to generalize the knowledge learned.

As explained in section 4.2, Textworld allows us to generate random games with variable

characteristics. Two sets of games will be created, one for training and the other for

evaluation with the following characteristics: rewards will be plentiful and game status

descriptions detailed.

The training games set will contain 200 games:

seq 1 200 | xargs -n1 -P4 tw-make tw-simple --rewards dense --goal detailed

--output games/training_games/ --seed

The validation games set will contain 20 games:

seq 1 20 | xargs -n1 -P4 tw-make tw-simple --rewards dense --goal detailed

--test --output games/testing_games/ --seed

33

CHAPTER 5. DEEP REINFORCEMENT LEARNING AGENTS

The validation set will be used to guarantee generalization and prevent the model from

overfitting to training games set. These games will be stored and not modified, this allows

to compare the performances of the agents in the same environments.

After successfully completing these two phases, the agents will progress to the texting

phase where they will face the game developed in point 4.3, this game is also the same for

both agents.

Figure 5.3: Models’ learning phases.

To overcome these 3 steps guarantees that the agents have reached a certain cognitive

level and are able to face real environments.

5.1.3 Observations

As shown in chapter 4, TextWorld can provide us information in a more structured way,

giving information about admissible commands, intermediate reward, inventory and even

path to the solution.

This information is stored in an environment object (env) wich Textworld provides in

every game created. It is possible requesting for this information to passing specific flags

on environment creation, the dict returned contains the following fields:

• admissible commands: a list of commands that can be executed from the current

state.

• description: a string of generic description of the scene (observation).

34

5.2. RANDOM AGENT

• intermediate reward: it shows if the agent is on the right or wrong track upon

completing the game. It equals +1 every time path to the solution becomes shorter,

-1 if the agent goes away from the final game goal state and 0 if the if the distance to

the solution remains the same. The objective of the model will be to maximize this

variable.

• inventary: a string of description of things the agent is carrying.

• policy commands: a list of commands we need to execute to get to the goal from

the current state.

The agents will have access to all this information except policy commands because

to solve the problem with this information is trivial. Both models will be fed with the same

environmental observations to ensure a comparison under the same conditions.

5.1.4 Play function

The play function is used to perform the experiments in a structured way.

This function has the following functions: manage the environment, extract the infor-

mation provided by Textworld and make a pipeline between the agent and this information.

It also execute the actions decided by the agent inside the environment.

In addition this function collects basic statistics such as number of movements and score.

def play(agent, path, max_step=100, nb_episodes=10, verbose=True):

...

while not done:

command = agent.act(obs, score, done, infos)

obs, score, done, infos = env.step(command)

nb_moves += 1

...

5.2 Random agent

This model is the simplest one, it chooses a command from the admissible ones randomly.

It will be used as a baseline, any other model should beat its performance.

35

CHAPTER 5. DEEP REINFORCEMENT LEARNING AGENTS

class RandomAgent(textworld.gym.Agent):

...

self.rng = np.random.RandomState(self.seed)

...

def act():

return self.rng.choice(infos["admissible_commands"])

5.3 Agents’ architecture

In this section it will be shown the agents design. They receive the environment information

in the form of strings and must make a decision within the available commands.

Figure 5.4: Models’ Arquitecture.

To achieve that the agent design has these steps: text pre-processing where words

are transformed into a sequence of perpendicular vectors. The processing phase where

the perpendicular vectors are transformed into a fixed size vector sequence. This vector

represents the current state of the game, it contains semantic and temporal information.

And a final phase where the agent chooses an action based on the codified state and learn

from their choices based on the reward. The different learning mechanisms will also be

36

5.3. AGENTS’ ARCHITECTURE

explained.

Both models have the same two first stages, differing in the training method and the

choice of commands.

5.3.1 Text pre-processing

The agents are not able to process strings so it is necessary to pre-process the information

coming from the environment (observations) and transform them into vectors that model

can understand. The Vocabulary class 5.5 will make this transformation.

The vocabulary contains a list of words and a single id. It will be filled when the agent

finds an unknown (unlisted) word until it reaches a fixed size (MAX VOCAB SIZE).

Figure 5.5: Vocabulary class.

The function process will collect information that comes as strings of characters, it will

tokenize it filtering the punctuation marks and it will return a vector that associates the

word and the position in vocabulary word’s id (one-hot encoding).

Figure 5.6: One hot encodding example.

5.3.2 Processing

The agent receives the observations and commands as strings, these pass through the pre-

processing phase transforming it into token sequences, then through embeddings, this se-

quence is transformed into a dense vector sequence (in which the semantic content of the

37

CHAPTER 5. DEEP REINFORCEMENT LEARNING AGENTS

words is coded). This is a variable size vector due to the fact that the size of the text

is not fixed. This variable size vector is then inserted into the encoders to code the time

information and to create a fixed vector size.

As a result of all these steps we are able to transform a string of characters taken as

observation into a fixed size vector that has the semantic and temporal information of the

text encoded, this defines the current state of the game. Finally, this information is received

by the agent to perform an action.

Each of these phases will be explained in more detail in the following sections.

5.3.2.1 Embeddings

At the output of the pre-processing we have a vector of vocabulary size dimension for each

world in the text, this is a sequence of vectors that encode each word. However there are

words with similar semantics as “man” and “woman” that are very different from “table”,

this fact is what tries to represent this stage.

Figure 5.7: Word embeddings visualization.

After going through this phase we have a sequence of vectors smaller than the vocabulary

size, now each word is not a perpendicular vector, the closer the semantics between words

the closer these vectors are in a multidimensional space.

There are pre-trained models that perform this function as GloVe [22], however they are

designed for larger vocabularies so we will choose to train our own word embedding.

It will be use pytorch’s nn.Embedding module.

38

5.4. DQN

self.embedding = nn.Embedding(input_size, hidden_size)

5.3.2.2 Temporal encoders

Communication through language is intrinsically temporary. It does depend on the total

string of characters and not on the final word. Widely dispersed words in the timeline may

have more weight in the information to be transmitted, in order to encode this information

it will be used recurrent neural networks, specifically it will be used Gated Recurrent Unit

(GRU).

The vector sequence coded by the embedding are received by the GRU encoder (encoder gru),

it is used to extract temporal features at the current game step. Those features are then

provided as input to another GRU (state gru) that serves as a state history and spans

the whole episode.

The same idea applies to the temporary encoding of commands, another GRU encoder

(cmd encoder gru) receives the available commands embedded and encode each command

separately.

self.encoder_gru = nn.GRU(hidden_size, hidden_size)

self.cmd_encoder_gru = nn.GRU(hidden_size, hidden_size)

self.state_gru = nn.GRU(hidden_size, hidden_size)

After going through this phase we have a fixed size vector, this phase normalize size for

all situations. In this normalized vector the semantic and temporal content of the text is

encoded and will be used as the state of the game.

5.4 DQN

We already have all the structure needed to train a DQN agent, they are pairs state (the

temporary and semantic observations encoded) action (the output of the command selector)

and a reward that textworld provides (1 if it approaches the solution and 0 if not).

Q∗ : S ×A→ R (5.1)

39

CHAPTER 5. DEEP REINFORCEMENT LEARNING AGENTS

If the future reward is known for each action, choosing the best action is as simple as

selecting the action witch returns the biggest reward. However, the reward is known after

taking an action, so we do not have access to Q∗. But, it is possible to resemble Q∗ using

a neural network and training our agent according to the experiences it gets from playing

and exploring the world.

Figure 5.8: DQN Arquitecture.

The procedure to train the agent is as follows:

Initially it is necessary to ensure exploration of the environment and collect as much

information as possible. To do this the first movements will be random and the probability

of performing a random movement will decrease over time as convergence approaches. We

will use EPS DECAY to control the decline of random elections.

The agent will store the status, the action it took and the result (the reward) in memory,

once he have enough samples, each UPDATE FREQUENCY step, the model will be updated

with the experience stored in the memory in such a way that minimize the mean square

error between the Q(s,a) reward prediction and the real reward. The optimal policy defined

by the Bellman equation is:

Q(s, a)∗ = rt + γmaxQ(s′, a′) (5.2)

The difference between the two sides of the equality is known as the temporal difference

error, δ :

δ = Q(s, a)π∗ −Q(s, a) (5.3)

Learning consists of minimizing the mean square error of δ.

40

5.5. A2C

def compute_loss():

...

state_action_values = policy_net(state_batch).gather(1, action_batch)

expected_state_action_val = (next_state_val * GAMMA) + reward

loss = (.5 * (state_action_val - expected_state_action_val) ** 2.).sum()

5.5 A2C

As shown in DQN agent, the Q value can be learned by parameterizing the Q function with

a neural network. It is possible to use the Q fuction to build Actor Critic Methods. This

method is composed of two parts, the actor who makes the decisions and the critic who

measures how good these actions are.

Figure 5.9: A2C Arquitecture.

A simple neural net is used to output a score for each pair state-action (observation-

command). This score must be normalized and transformed into a probability using the

softmax function, the selected command will be chosen based on this probability.

The actor must decide what action to take within all possible. The Critic estimates the

value function and correct the actor’s actions, to do this, A2C use the advantages.

Advantages are calculated subtracting the Q value term with the Value. This is the

measure the critic will use to decide how much better it is to take a specific action compared

to the average general action at the given state.

A(st, at) = Q(st, at)− V (at) (5.4)

41

CHAPTER 5. DEEP REINFORCEMENT LEARNING AGENTS

And the spected return that will be used to assemble Q correctly.

Eτ = rt + γmaxQ(s′, a′) (5.5)

def _discount_rewards(self, last_values):

R = last_values.data

for t in reversed(range(len(self.transitions))):

rewards, _, _, values = self.transitions[t]

R = rewards + self.GAMMA * R

adv = R - values

The critic scores the possible decisions and the actor decides what action to take, the

most likely being the one that the critic gave the highest score. This allows the model to

sporadically choose actions in which it predicts a bad result, promoting exploration.

Learning consists of minimizing policy gradient loss (what choice to make in each situ-

ation) and value loss (the predictions of how much reward the model will get).

Policyloss =

T−1∑
t=0

∇QlogπQ(at, st)A(st, at) (5.6)

V alueloss =
1

2
(V (at)− Eτ)2 (5.7)

The model also uses entropy regularization to promote the selection of more stochastic

policies and to improve policy optimization.

def compute_loss():

...

advantage = advantage.detach()

probs = F.softmax(outputs_, dim=2)

log_probs = torch.log(probs)

log_action_probs = log_probs.gather(2, indexes_)

policy_loss = (-log_action_probs * advantage).sum()

value_loss = (.5 * (values_ - ret) ** 2.).sum()

entropy = (-probs * log_probs).sum()

loss += policy_loss + 0.5 * value_loss - 0.1 * entropy

42

CHAPTER6
Experiments

In this chapter it will be explained the training and validation of our models. Also the

models will be tested in the real world game.

6.1 Training

The training process will be similar for both models. The agents will be faced with 200

different games created by the “tw-make” command explained in point 4.2. The model will

face each game 5 times with a batch size of 1000 steps. The following statistics will be

collected to measure model training for each batch:

• Max score: it is a direct measure of the agent’s performance in the game, it is the

highest score achieved in the batch.

• Vocabulary: this is the number of words that the agent has collected, it does not

imply that he has full semantic knowledge of each one however it is a measure of the

agent’s lexical range.

• Reward: this is a measure of the quality of the agent’s learning. The agent must

maximize this variable so it is a measure of the training process of the model.

43

CHAPTER 6. EXPERIMENTS

The result of DQN and A2C agents after playing 200 and facing each other 5 times is

as follows:

Figure 6.1: DQN model training results.

Figure 6.2: A2C model training results.

All indicators have a positive trend which may imply a correct training. However, a

positive trend does not ensure correct learning, so it will be necessary to check the results

of the following phases.

The DQN noise of the reward chart may reflect relative minimums when the agent reach

a maximum in the punctuation for a concrete case, but when find a different situation the

model leaves the relative minimum, entering a phase of low performance to later reach a

more optimal minimum.

44

6.2. VALIDATION

The A2C reward has a constant growth which indicates that the agent is being able

to increase his reward over time and agent performance in the games improves. Although

without the following phases study a possible overfeeding cannot be excluded.

The DQN score graph has a constant growth, which implies that agent performance

in the games improves, although without the following phases study a possible overfeeding

cannot be excluded.

The A2C score graph has a rapid growth at the beginning to stabilize. This may reflect

a fast convergence of the model.

The vocabulary graphs grows very quickly at first, the agents do not know any word,

and slows down as fewer new words appear. The DQN agent finish the training with a

vocabulary of 771 words and the A2c with 816 words.

6.2 Validation

To ensure the generalization of the models we will measure their performance with another

20 games created in a similar way as explained in point 4.2. In this case the model has not

faced any of these games in the training phase, they are completely new to the agents so

we can measure the generalization of our models and detect possible overfitting.

Each model will face each game 5 times with a maximum limit of 200 steps.

Validation A2C DQN

Average steps 90.5 83.1

Average score 0.8 0.9

Since the games are completely unknown to the agent we can guarantee a certain level

of generalization of the model and dismiss overfitting.

6.3 Test

Once the models have passed the training and validation phases, they can face the real

problem, a game created to simulate a natural environment in the ETSIT school as explained

in point 4.3.

45

CHAPTER 6. EXPERIMENTS

This scenario is completely unknown for the models and the process of creating the

game has no relation with the previous points process, this make this problem much more

difficult for the agents. This also makes useless possible biases or strategies based on taking

advantage of the random Textworld’s game generation structure.

The agent will face the game 500 times to avoid statistical variations in performance

and ensure convergence in results.

Test A2C DQN Random

Average steps 135.8 158.2 185.9

Average score 0.7 0.5 0.2

It can be seen that the performance of DQN and A2C agents are far superior to a

random choice of commands.

The A2C model is slightly higher than the DQN at this stage despite the fact that in

the validation phase the result was higher

This could be due to the fact that the DQN agent tends to stand in relative minimum

because it lacks ways to boost its exploration causing a worse generalization. On the other

hand, the A2C model has mechanisms that promote the exploration of the environment,

making it more generalizable.

This fact can be checked in the training phase by looking the number of words each

vocabulary reaches. Each agent faces the same number of times the same games, so the

higher the number of words, the higher the exploration of the environment.

46

CHAPTER7
Conclusions and future work

In this chapter we will describe the conclusions extracted from this project and thoughts

about future work.

7.1 Conclusions

The results obtained in this project have demonstrated the potential that reinforcement

learning has within the world of natural language processing. In this project our models

surpassed the performance of a random agent which means they were able to explore their

environment, learn mechanics, understand text, identify its purpose automatically, increase

their vocabulary and acquire a certain sense of temporal and semantic meaning of words in

order to complete their mission.

We do not know what cognitive level they are compared to the average human, since

the performance of different humans in the game has not been measured. However it is

possible that they may not reach human performance but should not be too far.

In this project we have been able to train intelligent agents to reach a specific objective in

a textual environment. These results open the door to possible implementations in chatbots

47

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

where it is desired to achieve a objective such as a loggin, where the objective is to reach

the state in which all the necessary data has been provided by the user, or even the sale of a

product where the final objective is to reach the state in which the client buys the product.

7.2 Achieved goals

As a result of this study, the following objectives have been achieved:

• Understand the uses and limitations of the Textwold learning environment.

• Study and analyze the state of the art of reinforcement learning and in particular of

natural language processing and the resolution of text-based games.

• Train and test different agents using the state of the art algorithms.

• Create a custom game using TextWorld and use it as a benchmark for trained agents.

• Compare and measure the performance of algorithms.

7.3 Future work

There are many ways to improve this project but we can highlight 3 general lines:

• Analysis: the models are composed of many parts and it is not clear what impact each

one has on the performance of the model. For this line we propose to improve the

understanding of what mechanisms underlie the learning process. For this purpose,

it is proposed to analyze in depth the data of each model and to extract new ones if

necessary. By this way it could be found semantic relations of the vocabulary, possible

situations that are difficult for the agents and to understand how the learning process

works in depth.

• Model: in this line we propose to increase the size of the model and try different

architectures. In general, increasing the size of the model generates better results

by increasing the training time, one possibility would be to increase the size of each

module and measure the performance. On the other hand, there are modules in

the architecture that could be replaced by others of better performance. As a word

embedding could be used pretrained models like word2vec or glove. For temporary

48

7.3. FUTURE WORK

processing of sequences we could try to use LSTM. And for training, new agents like

A3C could be tested.

• Applications: this section proposes possible applications of these results. The most

obvious one is a chatbot where the user tries to interact in order to achieve an objective

or reach a final state of the conversation.

49

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

50

APPENDIXA
Impact of this project

This appendix reflects, quantitatively or qualitatively, on the possible impact impact that

the work carried out in this thesis may suppose.

A.1 Social impact

The results of this project could lead to more persuasive chatbots. Due to their conversa-

tional character, chatbots are potentially effective tools for engaging with customers, and

are often developed with commercial interests at the core. However, chatbots also represent

opportunities for positive social impact, they can make needed services more accessible,

available, and affordable.

A.2 Environmental impact

The environmental impact is very reduced, the only impact that exists is that of the com-

puters used, these are composed of polluting parts.

i

APPENDIX A. IMPACT OF THIS PROJECT

A.3 Ethical implications

Users need to know that the interactions they have with chatbots will remain private and

secure. Chatbot responses, and all other communications, should also include some level of

empathy and sensitivity when it comes to interacting with users.

In the worst case an advanced artificial intelligence might be able to persuade using bad

techniques such as lie or manipulation.

ii

APPENDIXB
Economic budget

This section exposes a detailed budget table of the whole project, covering aspects such

as labor costs, material resources, and cloud computing. Most part of the final budget is

derived from the developer salary.

B.1 Human resources

This section deals with the different economic aspects of human resources used in this thesis.

The estimated salary for the developer is 15e per hour.

The necessary hours to carry out the project have been around 320 hours, therefore the

total earnings is 4,800 e.

B.2 Physical resources

The budget for the physical devices necessary for the development of this project is a

computer whose minimum requirements allow the development the system. It consists

basically of the personal computer.

iii

APPENDIX B. ECONOMIC BUDGET

Its features are: Ubuntu 18.04, 16GB RAM, Intel i7, 500GB HDD.

The price is around 750e.

B.3 Cloud computing

To train different models it may be necessary to use cloud computing, the price per hour

for a c5.4xlarge AWS machine is: 0.65e/hour.

An estimate of 100 hours is 65e.

B.4 Licences Taxes

When it comes to licences, this project has been accomplished with Open Source Software

(OSS), which means that they are free and it is no needed to pay for the use of any of the

technologies.

Related to taxes we should take into account the Spanish legislation which establishes

that a company must pay an extra 32.6 % of the employee’s salary. This amount breaks

down as follows:

• 23.6% for common contingencies.

• 5.5% for unemployment.

• 3.5% for possible work-related accident.

iv

Bibliography

[1] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. A brief

survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

[2] OpenAI. A taxonomy of rl algorithms. url https://spinningup.openai.com. Accesed

on 26-05-2020.

[3] Diksha Khurana, Aditya Koli, Kiran Khatter, and Sukhdev Singh. Natural language processing:

State of the art, current trends and challenges. CoRR, abs/1708.05148, 2017.

[4] Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine,

James Moore, Matthew J. Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, and Adam

Trischler. Textworld: A learning environment for text-based games. CoRR, abs/1806.11532,

2018.

[5] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building

machines that learn and think like people. CoRR, abs/1604.00289, 2016.

[6] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall

Press, USA, 3rd edition, 2009.

[7] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A

survey. CoRR, cs.AI/9605103, 1996.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-

mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-

level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[9] Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Ka-

trina McKinney, Tor Lattimore, Csaba Szepezvari, Satinder Singh, et al. Behaviour suite for

reinforcement learning. arXiv preprint arXiv:1908.03568, 2019.

[10] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep

reinforcement learning in video games. arXiv preprint arXiv:1912.10944, 2019.

[11] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur

Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,

Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general

reinforcement learning algorithm, 2017.

v

https://spinningup.openai.com

BIBLIOGRAPHY

[12] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

[13] Jürgen Schmidhuber. Deep learning in neural networks: An overview. CoRR, abs/1404.7828,

2014.

[14] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Society for Industrial and Applied

Mathematics, 42, 04 2001.

[15] Vijay Konda and John Tsitsiklis. Onactor-critic algorithms. SIAM Journal on Control and

Optimization, 42, 01 2000.

[16] Alla Kravets, Maxim Shcherbakov, Marina Kultsova, and Olga Shabalina. Creativity in In-

telligent Technologies and Data Science: First Conference, CIT&DS 2015, Volgograd, Russia,

September 15-17, 2015. Proceedings, volume 535. Springer, 2015.

[17] Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich Schütze. Comparative study of CNN and

RNN for natural language processing. CoRR, abs/1702.01923, 2017.

[18] OpenAI. Gym. https://gym.openai.com/docs/. Accesed on 26-05-2020.

[19] Pytorch. Pytorch. https://pytorch.org/docs/stable/index.html. Accesed on 26-

05-2020.

[20] Karl Pearson. The problem of the random walk. Nature, 72(1867):342–342, 1905.

[21] Microsoft. Textworld. https://textworld.readthedocs.io/en/stable/. Accesed on

26-05-2020.

[22] Stanford. Glove. https://nlp.stanford.edu/projects/glove/. Accesed on 26-05-

2020.

[23] Oscar Araque. Design and Implementation of an Event Rules Web Editor. Trabajo fin de

grado, Universidad Politécnica de Madrid, ETSI Telecomunicación, July 2014.

[24] J. Fernando Sánchez-Rada. Design and Implementation of an Agent Architecture Based on

Web Hooks. Master’s thesis, ETSIT-UPM, 2012.

[25] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural network

models for practical applications. CoRR, abs/1605.07678, 2016.

[26] Bruno González López. Codigo. https://lab.gsi.upm.es/tfg/

tfg-brunogonzalezlopez, May 2020.

vi

https://gym.openai.com/docs/
https://pytorch.org/docs/stable/index.html
https://textworld.readthedocs.io/en/stable/
https://nlp.stanford.edu/projects/glove/
https://lab.gsi.upm.es/tfg/tfg-brunogonzalezlopez
https://lab.gsi.upm.es/tfg/tfg-brunogonzalezlopez

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	State of the art
	Machine Learning
	Reinforcement Learning (RL)
	Environment and actions
	Definitions
	Reinforcement Learning algorithms
	Model-free algorithms
	Model based algorithms

	Deep Reinforcement Learning
	Deep neural networks
	Deep Q-learning
	Advantage Actor Critic (A2C)

	Natural Language Processing (NLP)
	Conclusion

	Enabling Technologies
	GYM
	PYTORCH
	TextWorld
	Game Generation
	World Generation
	Quest Generation
	Text Generation

	Learning Enviroment

	Development of the Games
	ETSIT game
	Creating the world
	Structure of the world
	Add objects
	Create the key and door
	Record the quest

	Random games

	Deep Reinforcement Learning Agents
	Overview
	Agents
	Games
	Observations
	Play function

	Random agent
	Agents' architecture
	Text pre-processing
	Processing
	Embeddings
	Temporal encoders

	DQN
	A2C

	Experiments
	Training
	Validation
	Test

	Conclusions and future work
	Conclusions
	Achieved goals
	Future work

	Appendix Impact of this project
	Social impact
	Environmental impact
	Ethical implications

	Appendix Economic budget
	Human resources
	Physical resources
	Cloud computing
	Licences Taxes

	Bibliography

