
	

	

	

	

	

	

	

	

	

	

	

	

GRADO EN INGENIERÍA DE TECNOLOGÍAS Y
SERVICIOS DE TELECOMUNICACIÓN	

	

TRABAJO FIN DE GRADO	

	

	

	

DEVELOPMENT OF A MONITORING
DASHBOARD FOR SENTIMENT AND

EMOTION IN GEOLOCATED SOCIAL MEDIA	

	

	

	

	

	

JORGE GARCÍA CASTAÑO	

2017	

	

TRABAJO DE FIN DE GRADO

T́ıtulo: Desarrollo de un panel de monitorización de sentimientos y

emociones en redes sociales geolocalizadas

T́ıtulo (inglés): Development of a monitoring dashboard for sentiment and

emotion in geolocated social media

Autor: Jorge Garćıa Castaño

Tutor: Juan Fernando Sánchez Rada

Departamento: Grupo de Sistemas Inteligentes

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE GRADO

DEVELOPMENT OF A MONITORING

DASHBOARD FOR SENTIMENT AND

EMOTION IN GEOLOCATED SOCIAL MEDIA

Jorge Garćıa Castaño

Julio de 2017

Resumen

Esta memoria es el resultado de un proyecto cuyo objetivo es diseñar y desarrollar un panel

con una interfaz gráfica muestre información sobre el análisis de sentimiento de los tweets

publicados en una zona geografica. El elemento principal de este panel es un mapa de calor

que mostrará en forma de gradiente la variación de los valores obtenidos en el análisis de

sentimiento y, por otro lado, la clasificación emocional de los tweets.

Ademas del mapa de calor, el dashboard debe estar preparado para incluir mas elemntos

que expandan sus funcionalidades. Este proyecto ofrece dos: uno que muestra el listado de

todos los tweets que se estan mostrando y otro que permite hacer un filtrado por fechas de

los mismos.

Todos estos componentes requieren la obtencion y tratamiento de grandes cantidades de

datos, lo cual también se encuentra recogido en este documento. Desde la obtencion de los

tweets hasta la provisión de datos al panel, se ha definido un pipeline de procesos que realiza

varias transformaciones sobre ellos, con intención de simplificar la carga de trabajo que debe

hacer la aplicación web y su velocidad de interactuación con el usuario. Cabe recalcar que

todo el desarrollo se ha hecho siguiendo la arquitectura definida por el proyecto Sefarad,

mantenido por el Grupo de Sistemas Inteligentes.

Por último, recogemos las conclusiones extráıdas del proyecto, las tecnoloǵıas que hemos

aprendido durante el desarrollo del mismo, los problemas encontrados y las posibles ĺıneas

de trabajo futuro en relación con la continuación de este proyecto.

Palabras clave: Sefarad, dashboard, Polymer, WebComponents, Luigi, ElasticSearch,

Javascript, Python, Leaflet, Twitter, big data, Senpy

VII

Abstract

This thesis comes from a project which goal is to design and develop a dashboard with a

graphic interface that shows information about the analysis of tweets posted in a geographic

zone. The dashboard’s main element is a heatmap that shows the value variation of cer-

tain sentiment parameters with a color gradient. Furthermore, this map will also clasify

emotionally all analyzed data.

Besides the map, the dashboard has to be ready to host more elements that may in-

crease its functionality. This project offers two: a list of all tweets being displayed, and a

component which allows filtering the dataset by date.

All this elements require getting and preparing a large amount of data, which is also

covered in this document. Since tweet fetching until dashboard data provision, a batch

processing pipeline that makes several transformations to data has been defined. This is

because it is interesting to simplify the web’s workload and imporve user interaction speed.

It is worth mentioning that this development has been made following the architecture

defined by Sefarad project, mainained by Grupo de Sistemas Inteligentes.

Finally, there are more topics included in this document, such as final conclusions, learnt

technologies, problems found during it, and possible future lines of work.

Keywords: Sefarad, dashboard, Polymer, WebComponents, Luigi, ElasticSearch, Javascript,

Python, Leaflet, Twitter, big data, Senpy

IX

Agradecimientos

A mis padres, por siempre haberme ayudado a cumplir a mis metas.

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XVII

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.3 Structure of this document . 2

2 Enabling Technologies 5

2.1 Analysis and annotation . 5

2.1.1 Emotional Analysis . 5

2.2 Luigi . 6

2.3 Storage . 7

2.3.1 ElasticSearch . 7

2.3.2 JSON lines . 8

2.4 Visualization . 8

2.4.1 Polymer and WebComponents . 8

XIII

2.4.2 Leaflet . 9

2.4.3 Sefarad . 10

2.5 Deployment . 11

2.5.1 Docker engine . 11

2.5.2 Docker compose . 12

2.5.3 DockerHub . 12

2.6 Bower . 13

3 Requirement Analysis 15

3.1 Introduction . 15

3.2 Use cases . 15

3.2.1 Use case 1: Heatmap representation 16

3.2.2 Use case 2: Tweet filtering by date 17

3.2.3 Use case 3: Emotion map representation 18

3.2.4 Use case 4: Tweet listing representation 19

4 Architecture 21

4.1 Introduction . 21

4.2 Modules Description . 22

4.2.1 Luigi Pipeline - Data provision . 22

4.2.2 ElasticSearch Index . 24

4.2.3 Dashboard . 24

4.3 Dashboard Polymer Components . 25

4.3.1 HappyMap Element . 25

4.3.1.1 Heatmap Layers . 27

4.3.1.2 Clustering Layer . 28

4.3.2 Tweet List Element . 29

4.3.3 Date Slider Element . 30

5 Case study 33

5.1 Introduction . 33

5.2 Use case 1: Heatmap representation . 33

5.3 Use case 2: Tweet filtering by date . 36

5.4 Use case 3: Emotion map representation . 37

5.5 Use case 4: Tweet listing representation . 39

6 Conclusions and future work 41

6.1 Conclusions . 41

6.2 Achieved goals . 42

6.3 Problems faced . 42

6.4 Future work . 43

A Component Integration and Demo Deployment 45

A.1 Modular Integration Among Polymer Components 45

A.2 Demo deployment . 46

A.3 Dockerfile . 46

A.3.1 docker-compose.yml . 47

List of Figures

2.1 Senpy Architechture . 6

2.2 Web UI of the Luigi Central Scheduler . 6

2.3 Polymer Web Stack . 9

2.4 Sefarad Architechture . 10

2.5 Docker VS. Virtual Machines . 11

3.1 Use Case 1 . 16

3.2 Use Case 2 . 17

3.3 Use Case 3 . 18

3.4 Use Case 4 . 19

4.1 General Architecture . 22

4.2 Luigi Pipeline . 22

4.3 Dashboard Data Flow . 25

4.4 HappyMap Snapshot - HappyMap Mode . 26

4.5 HappyMap (up), PowerMap (left), and IntenseMap (right) 27

4.6 EmojiMap Snapshot . 28

4.7 From left to right, respectively: joy, sadness, anger, disgust, negative-fear . 29

4.8 Tweet List Element Snapshot . 30

4.9 Date Slider Element Snapshot . 30

5.1 Dashboard displaying Happymap . 34

5.2 Dashboard displaying IntenseMap . 35

XVII

5.3 Dashboard displaying PowerMap . 35

5.4 Date Slider selecting few tweets . 36

5.5 Date Slider not selecting any tweets . 37

5.6 Dashboard displaying EmojiMap . 38

5.7 Heatmap points recalculation when zooming 38

5.8 Tweet selected and marker clicked . 39

CHAPTER1
Introduction

1.1 Context

As Internet connection capabilities increase in the world, so does user interaction with social

networks. Hence, data analysis has become a main ingredient to big data commercial ex-

ploitation. Nowadays there are petabytes of raw information in all worldwide servers, which

are not suitable for actual human analysis. Some data-based decision making applications

are entirely made by AI, but some cases need human operational analysis. Therefore, if a

human-friendly comprehension of certain data is wanted, there will be a necessity of data

synthesis and clear visualization. The solution of this problem is a dashboard.

A dashboard is a graphic representation of key points which are important for certain

decision making analysis, especially those related to enterprise. Some aspects are very

important for the creation of a useful dashboard, such as data accuracy, simple visualization,

data comparison, and customization capacity. Thus, as it would be expected, it is difficult

to find a design that accomplish all this points.

Of course, a single dashboard is useless without data to back it up. Data analysis is a

particular matter that can be different for each use case, as it solves specific data related

problems. A very relevant kind of data analysis that is essential in this thesis is sentiment

1

CHAPTER 1. INTRODUCTION

and emotional analysis. Sentiment analysis aims to provide synthesized sentiment and

emotional data in order to understand social behavior. The analysis tends to be focused on

specific domains or environments: cities, catastrophes, crises, celebrations... The analysis

involves several processing methods, such as natural language processing, text analysis or

computational linguistics.

Some developments with similar goals are Geography of Hate[14] or Hedonometer [9]

projects.

1.2 Project goals

This project aims to provide a customizable dashboard to visualize emotion and sentiment

in geo-located social network data. All data will be fetched from Twitter and analyzed

through Senpy, a framework for sentiment and emotion analysis services. However, the

dashboard would not be limited to the scope of this project itself, since the it is friendly

with the introduction of new widgets developed in the future using simple interfaces.

The main goals for this project are the creation of:

• A dashboard that launches custom data queries to ElsaticSearch and distributes data

to widgets. This component must follow the Sefarad interface for data sharing among

widgets.

• A map widget that fetch analyzed data and shows a sentiment bsed heatmap and an

emotion based Emoji visualization.

• A widget that shows all tweets that are being analyzed within the dashboard.

• A widget that allows to filter tweets by date in a graphic mode.

• A processing pipeline which can perform all the necessary operation in ElasticSearch

to serve the data to the dashboard. This also include data fetching from Twitter and

tweet annotation following the analysis provided by Senpy engine.

• A self-contained (dockerized) demo that can be run easily in any local environment.

1.3 Structure of this document

The document is structured as follows:

2

1.3. STRUCTURE OF THIS DOCUMENT

Chapter 1 provides an introduction to the context in which this project is developed.

Besides, it describes the main objectives to achieve once concluded. Chapter 2 offers a

description of the main standards and technologies on which this project rely. Chapter 3

describes a brief requirement analysis of the system of this project. Chapter 4 describes

the complete architecture of the system, decomposing it into several modules that will

interact between them. Chapter 5 offers an overview of use cases and Chapter 6 sums

up the conclusions extracted from this project, and we offer a brief view about the lines of

future work.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
Enabling Technologies

2.1 Analysis and annotation

2.1.1 Emotional Analysis

Senpy[12] is a sentiment and emotion analysis server in Python that allows to get sentiment

and emotion analysis with REST API requests. There are several plugins available to use

with Senpy, e.g. different analysis methodologies which will affect to our analyzing tweets.

Figure 2.1 summarizes how analysis process works. Once the JSON response is received, it

is possible to process this data in every system or language.

In this work we will use the emotion-anew plugin, which applies parameters that measure

the Affective Norms for English Words[15] (ANEW) metrics to its analysis. Also, it provides

a distinctive emotion tag between: joy, sad, negative-fear, disgust and anger. This tag is

given thanks to the influence of three certain parameters:

• Valence: pleasantness of a stimulus

• Arousal: intensity of emotion provoked by a stimulus

• Dominance: degree of control exerted by a stimulus

5

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.1: Senpy Architechture

2.2 Luigi

Luigi[11] is a Python library that allows to run batch pipelines with several features. It

informs about execution failures, missing dependencies, failed steps... during the task exe-

cution. Luigi is useful for this project since it lets encapsulate sequences of function calls

such as pushing into a database, fetching information from the Internet, or transforming

certain database registry.

Figure 2.2: Web UI of the Luigi Central Scheduler

Furthermore, Luigi has other great features when running a batch pipeline, such as

skipping already done tasks if they are dependencies for the current one. This accelerates

the process if before some previous steps for certain task were done.

Besides, Luigi has a scheduler which can be used intensively in development phase.

With this, it is possible to make sure two instances of the same task are not running

simultaneously, and get a visualization of everything which is going on.

6

2.3. STORAGE

2.3 Storage

As all project data ingestion is locally or remote storage oriented. The chosen database

system has been ElasticSearch.

2.3.1 ElasticSearch

ElasticSearch1 is a distributed, RESTful search and analytics engine capable of solving a

growing number of use cases. This product offered by Elastic is based in Lucene 2 and is

characterized by the use of documents instead of conventional tables. The deletion of the

table concept means the inclusion of JSON. Every register in the database is done saving a

JSON object in which each key would be the equivalent to a table column, and each value,

to the own cell.

When a query is made, it directly flows through all saved documents with an inverse

indexing technique, which traduces in fractions of seconds for million of documents.

Thanks to the inclusion of a so spread standard like JSON, there is a wide availability

of database clients for every mainstream language. Anyway, curl it is always an option as

ElasticSearch responds to a REST API [?].

Some of the features that makes ElasticSeach more interesting for this project over other

database solutions are:

• Search function. The search API allows to pass an easily formatted JSON and get

back search hits that match the query, which can either be provided using a simple

query string as a parameter, or using a request body. This calls can be applied across

multiple types within an index, and across multiple indices.

• Scalability. This project only uses one ElasticSearch server, but in a future it could

use a cluster of them. One server can hold one or more parts of one or more indexes.

Every such index, or part of it, is called a shard, and Elasticsearch shards can be

moved around a cluster very easily. This means that, all index shards can be located

in the same machine or not, fact that gives flexibility for distributed data processing.

• Active community and development. Such a popular technology results on a big

community of users. It is very simple to find custom clients, implementation in other

1http://elastic.co/
2A Java text search engine library maintained by Apache Foundation (https://lucene.apache.org/core/)

7

CHAPTER 2. ENABLING TECHNOLOGIES

technologies, loads of information... Elastic has a quality documentation and keeps

on the development of its products in a constant basis.

2.3.2 JSON lines

This project has been tested and developed in a local machine that launches an ElasticSearch

dockerized service, so a persistent local storage was necessary to stock all our testing data.

The solution provided is a file containing lots of JSONs separated by a /n character. This

help us to index JSONs to ElasticSearch indexes directly pointing our indexing pipeline to

this file.

2.4 Visualization

The visualization technologies used are the front-end core of all the user experience. Several

technologies has been selected to get the maximum value of open source software and to

ensure a modular development.

2.4.1 Polymer and WebComponents

The main purpose of the WebComponents[8] standard is the creation of HTML independent

and reusable modules that can be imported very easily to any web project (with a Javascript

engine), and can work independent of the app which is integrated on. A component like

this usually receives some input parameters, expose other ones based on that inputs, and

show a certain user interface to interact with. As it can be expected, this idea leads to a

very big community that can provide lots of fully auto-functional components.

Polymer[7] is a JavaScript library developed by Google that let build progressive modern

apps taking advantage of the WebComponents technology. Polymer adds some syntactic

sugar that make a component easier to develop and also includes some interesting features:

• Data binding and events. Each custom component can share certain resources and

events with other components and the main app. Thus, it helps to make the web app

completely responsive to user interaction and data ingestion.

• Shadow DOM. Every component is composed of a Shadow DOM, that implies a fully

functional HTML space, in which declare conventional HTML features and Polymer

8

2.4. VISUALIZATION

Figure 2.3: Polymer Web Stack

directives such as iterable or conditional tags. Also, more Polymer elements can be

nested inside a shadow DOM.

• Support to all browsers. Standard WebComponents saves some functionalities to

Firefox and fully crosses out Microsoft’s Edge.

2.4.2 Leaflet

Leaflet3 is a very light open-source JavaScript library for creating interactive maps. Its

implementation in a project does not require any credentials and world maps are available

for free. Leaflet maps are fully customizable: since control elements as legends or user

interaction events, to several kinds of responsive layers that can be put over the map itself.

The huge community is one of the reasons to choose it. More specifically, the community

is responsible for its strongest suit: leaflet plugins. Some plugins have been indispensable

for this project:

• Leaflet-Heat4. A light, simple, and fast Leaflet heatmap plugin. It uses simpleheat

library under the hood, additionally clustering points into a grid for performance.

3http://leafletjs.com/
4By Vladimir Agafonkin (https://github.com/Leaflet/Leaflet.heat)

9

CHAPTER 2. ENABLING TECHNOLOGIES

This heatmap is located in a Leaflet layer that is easily added or removed from the

map itself

• Leaflet-markercluster 5. It provides animated marker clustering functionality for

Leaflet. As well as before, this applies to a Leaflet layer.

2.4.3 Sefarad

Sefarad [10] is a light environment developed to explore, analyze, and visualize data. Its

main application is graphic interfaces, which is achievable due to the possibility to create

complex custom dashboard with Polymer components. This Polymer instances are called

widgets and they are developed separately from the dashboard, since they can be reusable.

However, the fact that the widgets can be developed individually implies the necessity of a

interface definition that let the dashboard communicate with the widgets.

Figure 2.4: Sefarad Architechture

The main Sefarad components are:

• Luigi. The pipelines defined in Luigi retrieve Twitter data from Twitter API, send

it to Senpy analysis endpoint, and push it to ElasticSearch.

• ElasticSearch. This is where Luigi pushes all data obtained to.

5By Dave Leaver (https://github.com/Leaflet/Leaflet.markercluster)

10

2.5. DEPLOYMENT

• Dashboard and widgets. The dashboard is a web instance which requests certain

data to ElasticSearch and distribute them among the widgets it implements. All

widgets and dashboards are made with Polymer and uses its more important features.

Sefarad’s principal focus is to warranty fast development of dashboards and widgets,

as well as centralized visualization of data in all the ways that the widgets let. All

components share data the same way: they ask for queries specifying certain filters and

constraints, the dashboard itself calls the ElasticSearch client to retrieve the query

data, and received data is distributed among widgets in a efficient way. Sefarad’s

internal data management defines makes a performance difference very important to

the widget visualization fluidity.

2.5 Deployment

Nowadays, the most interesting way to deploy a service may be one that is unique, available

for all operative systems, and easily maintainable. All this is possible with Docker.

2.5.1 Docker engine

Docker[3] is a software container platform characterized by the isolation it creates with the

system is launched on. Unlike virtual machines, containers do not wrap a whole operating

system over another, they pack libraries and settings in order to make certain service work.

Besides the efficiency improvement, Docker solves lots of compatibility issues between sys-

tems, as the service will run the same regardless of where is deployed. One interesting use

case would be, for example, to launch several Docker Microsoft’s SQL Server instances on

a AWS Linux machine.

Figure 2.5: Docker VS. Virtual Machines

11

CHAPTER 2. ENABLING TECHNOLOGIES

Hence, with a command line access in a machine and a Docker Image, it is possible to

launch any kind of service as long as the necessary interfaces are mapped among host and

container.

2.5.2 Docker compose

Docker Compose [2] is the CLI tool that allows to actually define and deploy custom services

using the standard containerization defined by Docker. Some configuration is needed before

running the command that executes the launcher:

• Dockerfile. Environment definition for a single container that will be deployed. This

guidelines allows to install all dependencies and set working directories independently

of the host operative system.

• docker-compose.yml. Definition of the services which the app will communicate to.

All this instances will be containerized and, hence, isolated from the host. Further-

more, for each service it is possible to define disk partitions to install dependencies

and save data.

An important part of this file when working with containers behaving as a service

is networks creation and assignment. A network in docker-compose allows communi-

cation among the containers, which would be impossible unless a custom routing is

set in each container. Networks allows naming discovery, so it is not needed to know

which are the containers IP address each time they are deployed.

Lastly, it is also important to know that dependencies between services can be defined,

so a database can be declared before a services that communicated with it.

Finally, running docker-compose up, docker-compose will manage all necessary tasks in

order to have the declared services deployed with the required configuration.

2.5.3 DockerHub

As it would be expected, a technology like this has repositories where anyone can upload

custom Docker Images that encapsulates different services, databases, operative systems,

etc... DockerHub[4] has let this project to have images of ElasticSearch, Luigi, and Sefarad.

12

2.6. BOWER

2.6 Bower

Bower[13] is a package and library manager for Javascript projects. It allows keeping track

of all dependencies and making sure they are up to date. A Bower configuration is defined

by a bower.json file, that contains the project name and all dependency names, among other

information. All installed dependencies using this tool are saved under bower components

folder, which is located at the project root path. This allows to upload projects without

dependencies in its content, only a bower.json is needed.

The most interesting actions that can be done with Bower are:

• bower install [package] –save. Install ¡package¿ under bower components folder

and saves the dependency declaration in bower.json

• bower install bower.json. Installs all the dependencies already defined in bower.json.

This command is extremely useful when cloning a remote project in a local machine.

It is very convenient to use Bower in this project, because it integrates very well with

Polymer. Besides, a massive quantity of WebComponents and Polymer elements are avail-

able via Bower.

13

CHAPTER 2. ENABLING TECHNOLOGIES

14

CHAPTER3
Requirement Analysis

3.1 Introduction

The result of this chapter is a requirement analysis which will enable a more complete vision

of the system to be developed. Besides, this chapter also helps the reader in what to expect

from an informative dashboard.

The analysis will use the Unified Modeling Language (UML)[5]. This language allows us

to specify, build and document a software system using graphical language. In the following

UML diagrams it has been represented only the elements and attributes that concern each

use case.

3.2 Use cases

This section identifies the main project’s use cases. This helps to obtain the use specifica-

tions of the system, and therefore, a list of requirements for the development phase.

It is important to note that all use cases exposed below have pre-requisites. Namely,

these requisites are service deployment, data fetching, data pre-processing, data analysis,

15

CHAPTER 3. REQUIREMENT ANALYSIS

data post-processing, and data indexing. Except for the deployment, all of them are encap-

sulated in the Luigi pipeline and explained in Section 4.2.1.

3.2.1 Use case 1: Heatmap representation

Figure 3.1: Use Case 1

• Use Case: Sentiment-based Heatmap representation

• Primary Actor: User

• Scope: HappyMap component

• Description: When dashboard is loaded, the user should see a widget that contains

a map with a heatmap point representation. That points should correspond to tweets

geographically located which have been analyzed by sentiment and emotion. The

score on that analysis should define the intensity of each point in the heatmap. When

zooming the map, the heatpoints should be recalculated relatively to the visible zone

instead of remain the same.

The map should show a legend depending on the color gradient. Besides, it also should

wait to a tweet insertion in its selected property to create a marker layer and assign

one to that tweet.

• Basic flow: The map should get all analyzed tweets with Polymer’s property bind-

ing. Once it have them, the map should represent the coordinates saved in coordinates

tweet property with an intensity determined by the score saved in sentiment analysis

tweet property. Each moment the map is zoomed in or out, all points should scale

relatively to the zone displayed by spreading the points if they are separated or use

16

3.2. USE CASES

an average value if they are superposing. Within map construction process, all infor-

mative labels such as the gradient legend should be created.

3.2.2 Use case 2: Tweet filtering by date

Figure 3.2: Use Case 2

• Use Case: Filter tweets by date

• Primary Actor: User

• Scope: Dashboard query and Date Slider component

• Description: In the first dashboard load, the minimum and maximum date of tweets

saved in ElasticSearch have to be fetched in order to set the minimum and maximum

selectable bounds for the filter. When dashboard is loaded, the user should see a clear

element that suggest a interactive date filter selecting a date range. Once the user

has interacted with that element, the query should automatically be requested, the

dashboard data updated, and all widgets in dashboard refreshed. The selector bounds

should be the same as the date property of data bounds. When some requested filter

returns an empty data set, the user should be noticed.

• Basic flow: In the first query that the dashboard launches against ElasticSearch, two

aggregates will be added to it to get minimum and maximum date of all database.

Given that the user makes a modification in the selected filter range, that element

should expose to its parent, the dashboard, all dates that it is representing: selected

minimum date and selected maximum date are the most important ones. When the

17

CHAPTER 3. REQUIREMENT ANALYSIS

dashboard already has the two dates, it realizes a new query with that filter, which

will return a new dataset that will be passed to the data dashboard Polymer property.

Since all widgets have to be data-bounded to the dashboard, every one of them will

be updated, showing a change in its visualization.

3.2.3 Use case 3: Emotion map representation

Figure 3.3: Use Case 3

• Use Case: Emotion-based clustered map representation

• Primary Actor: User

• Scope: HappyMap component

• Description: When the dashboard is loaded, there should be an option for selecting

the emotion based map on HappyMap, called EmojiMap. This button should make

disappear the previous visualized heatmap and display a map that bases on emotion

tags obtained in the tweet analysis. Each one of that tags should be paired with an

Emoji icon, which should be of the same nature of the emotion and should appear as

a tweet point in the map. When lot of points appear near to each other, they should

clusterize in one icon that reflects the emotion of maximum cardinality within that

zone. When zooming in or out, the clusters should be recalculated and updated.

• Basic flow: When the EmojiMap is selected, previous layer should be removed from

HappyMap. Instead of it, a new one with Leaflet.markercluster library should be

added. One by one, all points inside data variable should add their coordinates and

18

3.2. USE CASES

emotion tag to the new layer. While adding that points, there should be a one to one

mapping between emotion tags and Emoji images.

3.2.4 Use case 4: Tweet listing representation

Figure 3.4: Use Case 4

• Use Case: Tweet list responsive representation

• Primary Actor: User

• Scope: Tweet List element and HappyMap element

• Description: When the dashboard is loaded, there should be an clear representation

with all tweets that are being displayed in the map. This display should be in a form

of a list and they should be clickable. A click in one of that list items should inform

the user to the exact tweet location in HappyMap. A second click over an already

selected item will remove it from the map.

• Basic flow: After the first query has made to ElasticSearch and a dataset have been

retrieved, Tweet List element should take the very data Polymer property to iterate

over and put some of information of them in each item. When a item is clicked, its

information is saved in selected Polymer property, which will be read by HappyMap

in order to insert markers over the map that is being displayed. A second click over

an already selected item will remove it from selected.

19

CHAPTER 3. REQUIREMENT ANALYSIS

20

CHAPTER4
Architecture

4.1 Introduction

In this chapter, we cover the design phase of this project, as well as implementation details

involving its architecture. Firstly, we present an overview of the project, divided into several

modules. This is intended to offer the reader a general view of this project architecture.

After that, we present each module separately and in much more depth.

This project’s main goal is to serve sentiment-based analyzed data into a customiz-

able and modular dashboard. Sefarad’s interfaces are followed in order to make easier

the integration with already developed components and ensure compatibility with future

developments.

A diagram of the general architecture is shown in Figure 4.1.

21

CHAPTER 4. ARCHITECTURE

Figure 4.1: General Architecture

4.2 Modules Description

4.2.1 Luigi Pipeline - Data provision

Luigi enables the definition of pipelines, which have been used used in this project for tweet

processing. Several tasks have been defined in order to provide quality information to the

dashboard. At the end of the pipeline, the result is a reduced set of tweets, since several

tweets that lack certain information (e.g. geo-location) are discarded.

Figure 4.2: Luigi Pipeline

The pipeline defined for this project consists of several tasks:

22

4.2. MODULES DESCRIPTION

1. Data fetching. As it was explained before, the social network selected for this data

processing has been Twitter. Thus, in order to obtain tweets, it is needed a commu-

nication with the servers, via REST API. Twitter offers the Twitter API [6], which

can retrieve almost every type of information hosted publicly by the organization. In

this case, the only wanted entities are Tweet Objects, modeled as JSONs with lots of

properties.

Therefore, in this pipeline task, thousands of tweets between two dates are got using

the Python Twitter Client. There are not further filters applied to this query. Once

all tweets have been fetched, they are saved in a JSON lines files (2.3.2).

It is important to mention that, if this generated JSON file already exists, luigi will

skip this step, making a faster pipeline procesing.

2. Pre-processing. This step is necessary for avoiding unuseful tweets taking space

in the ElasticSearch database. A selection of the fetched dataset is made following

certain criteria.

The most important step is to ensure the current processing tweet has enough geolo-

cation information. As Twitter App allows to disable tweet geolocation, only approx-

imately 15% of tweets have accurate coordinates. However, it is possible to calculate

a non accurate position that can suite this case. Thanks to the Places1 key present in

the tweet JSON object, a zone from which a tweet could be posted is defined. Actu-

ally, this object contains latitude and longitude values for vertices that correspond to

a polygon which delimit the space range guessed by Twitter. Therefore, the medium

point for that coordinates is calculated and used as true geolocation for the tweet.

Finally, this step also includes restrictions to ensure that the results in the dashboard

will be meaningful, such as ensuring tweet dates are separated in time or space.

3. Senpy Analysis. After the previous step, the pipeline takes advantage of Senpy’s

REST API. Emotion-anew, the plugin used in Senpy for emotion and sentiment analy-

sis, only requires the message string, so a POST call is sent towards Senpy’s endpoint

with the tweet message in the payload. In order to send that, Python’s Requests

library is used.

Senpy response is a JSON containing valence, arousal and dominance punctuation,

as well as a tag for emotion among joy, sadness, negative-fear, disgust, anger and

neutral. The current task takes that information and pushes them into the tweet

object as value for ”sentiment analysis” field.

1In Twitter docs: Tweets associated with places are not necessarily issued from that location but could

also potentially be about that location. (https://dev.twitter.com/overview/api/places)

23

CHAPTER 4. ARCHITECTURE

4. Post-processing. Now that the current tweet has been analyzed, a filter can also be

applied to ensure the analysis quality. The biggest disturbance added in previous task

is the quantity of results tagged as neutral. Neutral tweets could reach the 85% of the

dataset, so in this step they are discarded for graphic representation simplicity in the

dashboard. Obviously, there are lot of information lost in this step, but is important

to understand that this decision is only made because of the nature of this project

and it should not be done in a professional environment. Due to this decision, the

future emotional representation will not be dominated deterministically by any tag.

5. DB indexing. Like its name reads, this task mission is to push into the ElasticSearch

the already selected tweets, which complies with all the restrictions explained before.

Owing to Luigi’s integration with ElasticSearch, it is easy to finish all this flow with

an indexation. Few simple code lines tells Luigi which is the DB’s IP address, and

what index it must post the tweet into.

Finally, after all this steps, Luigi has ended its work in this project and all the data is

provisioned.

4.2.2 ElasticSearch Index

Elasticearch is organized in documents contained within indexes (refsec:elasticsearch). Se-

lecting a structure of indexes and a well-oriented mapping for the documents is crucial for

performance. However, the use cases in this project do not require such tuning. Thus, Elas-

ticsearch will only have one index, called tweets happymap, and there will not be a fixed

mapping for it. All data provisioned will be only posted once and we assumed that data

will only be stored via the pipeline.

4.2.3 Dashboard

The dashboard is, as the widgets it covers, a Polymer component. Its main purpose is to

fetch tweets from ElasticSearch and to distribute them to each widget that demands them.

This is possible due to the inclusion of certain Polymer properties into the dashboard, which

makes transparent the data flow between components.

This dashboard counts with properties named below:

• Data. The most important property and the only that is compulsory independently of

the widgets included. It is an array, and it contains the result of the last ElasticSearch

24

4.3. DASHBOARD POLYMER COMPONENTS

Figure 4.3: Dashboard Data Flow

query. With this project’s widget setup, data only flows downwards, in other words,

data is never changed by the widgets, but all widgets receive data. This is not the

only way to establish the data flow, but it is for sure the safest for stability.

• Selected. This property is a dependency fixed by Happymap Component and Tweet

List Component. It is, as the previous property, an array that saves tweets. However,

in selected there will only be those tweets selected by the user in interaction with the

UI. Selected allows a interaction between the tweet selection in Tweet List Element

and the appearance of a pin in HappyMap Element.

• MinDate, MaxDate, DefaultSelectedMin, DefaultSelectedMax, Selected-

Min, SelectedMax. All this properties are dependencies fixed by Date Slider Ele-

ment, and they concern the position of the bar that defines the time filter set to the

ElasticSearch query. This will be better explained in the next section.

4.3 Dashboard Polymer Components

In this section, each one of the developed Polymer components will be explained with detail.

Note that this components are not the only ones that can be added to the dashboard, since

the modularity actually allows the inclusion of new ones very easily.

4.3.1 HappyMap Element

HappyMap Element is the core widget in the dashboard, as it is the only one that actually

represents the sentiment analysis applied to the tweets got from Twitter.

25

CHAPTER 4. ARCHITECTURE

Figure 4.4: HappyMap Snapshot - HappyMap Mode

This Polymer component is composed visually only by a Leaflet map with some elements

above it:

• Information tag: Shows which of the layers is being displayed at the moment. Its

location is up-right.

• Heatmap legend: In case a heatmap is active, a color leyend shows whether each

color means a positive or negative value of the correspondent VAD value. It is located

down-right.

• Switch buttons: Some buttons are placed at the map’s left side in order to toggle

the layer currently being displayed.

• Layers: They are superposed to the map and there is only one active at the same

time. Each layer will be described later.

HappyMap counts with two of the previously explained properties: data and selected.

They are used, as it was exposed, for defining tweets inputs for the map. Within Hap-

pyMap’s logic, all dataset got is iterated, retrieving geographic coordinates, emotion tag,

tweet text, tweet user, and score for the VAD values. Every one of these available vari-

ables are used for the active layer representation, which can be classified in two categories:

heatmap layers and clusterization layers.

26

4.3. DASHBOARD POLYMER COMPONENTS

4.3.1.1 Heatmap Layers

A heatmap layer is adequate to represent the variations of a numeric value over a geographic

zone. This layer’s purpose is to provide flashy information to the user, taking advantage of

attractive color gradients. In this case, the project focus has been centred into representing

Valence, Arousal, and Dominance values over the map. In order to clearly differentiate each

one, different colors have been chosen.

	
	
	
	
	

Figure 4.5: HappyMap (up), PowerMap (left), and IntenseMap (right)

• HappyMap: Representation of the Valence value, which means the pleasantness

evoked by the text tweet. The chosen gradient comes from negative blue to positive

lime.

• PowerMap: Representation of the Dominance value, which means the control degree

felt over the text tweet. The chosen gradient comes from negative black to positive

passion red.

• IntenseMap: Representation of the Arousal value, which means the intensity of

emotion provoked by the text tweet. The chosen gradient comes from negative purple

to positive orange.

27

CHAPTER 4. ARCHITECTURE

When any of that three layers are selected, legend and info tag are refreshed and changed

accordingly.

4.3.1.2 Clustering Layer

As last named layers focused over VAD values representation, with this clustering layer the

objective is to give a general emotion overview over the zone. This layer is called EmojiMap,

and the value it represents is each tweet’s emotion tag retrieved in the sentiment analysis.

Figure 4.6: EmojiMap Snapshot

When activating the EmojiMap and depending on the dataset size and tweets position,

the map becomes divided into polygonal zones. These zones inform users of the geographic

coverage of a certain cluster point, and they are generated joining all coordinates of tweets

bounded by a circle with center in the cluster point and constant pre-defined radio. The

vertices of the polygon are the furthermost points to the center and it is displayed in blue

(visible while hovering the mouse over it).

There are several tweets contained withing the zone, and the emotion of the majority of

them defines the emoji shown over the polygon. If the icon is clicked or scroll is used, the

map will zoom, the polygons will be recalculated over the new part of the map displayed,

and the emojis reset. Besides, the icon changes are smoothly animated with a nice fading.

Furthermore, it is noticeable that there are big and small face icons. This is because

28

4.3. DASHBOARD POLYMER COMPONENTS

they have two meanings: the big ones represent a tweet cluster, and the small ones represent

a only tweet. In the last case, the the click event over the emoji pops up tweet information

as tweet text, tweet user, and emotion tag name.

Figure 4.7: From left to right, respectively: joy, sadness, anger, disgust, negative-fear

Next Figure represents each one of the emojis available in this layer. All of them have

been chosen from a open-source provider 2.

The source code of HappyMap is available as a public git repository3.

4.3.2 Tweet List Element

Tweet List is a Polymer component whose purpose is to facilitate the representation of any

tweet quantity, and the possibility of tweet selection by the user. It is visually composed by

iterative Polymer directives and Bootstrap styled list items. From the logic point of view,

it only implement data and selected Polymer properties, which already have been named

many times.

This element is the only one in this project’s dashboard setting that can add tweet

to the selected variable, via the onClick event in list items. Since Polymer data binding

enables automatic data flows between components, the dashboard and map are aware of this

changes and react conveniently about it. Nevertheless, Tweet List also reacts automatically

to data property changes, to reflect the queries requested from the dashboard.

Each one of the list items displayed are fulfilled with tweet text, user, and timestamp.

Tweet List is available as a public git repository4.

2https://www.emojione.com
3https://lab.cluster.gsi.dit.upm.es/sefarad/happymap
4https://lab.cluster.gsi.dit.upm.es/sefarad/tweet-list

29

CHAPTER 4. ARCHITECTURE

Figure 4.8: Tweet List Element Snapshot

4.3.3 Date Slider Element

Date Slider is a Polymer component that allows to select date ranges between two bounding

dates. These dates, in this project’s case, are used to tell the dashboard which limits has

to establish in its query to ElasticSearch. Of course, in other application, as modularity is

guaranteed, that dates could be used with other goals.

Figure 4.9: Date Slider Element Snapshot

Visually, this component have taken advantage from a open-souce jquery library called

jQRangeSlider [1], which provides a customizable slide-able bar that accepts Date Javascript

objects as values. The selected date range bounds are always displayed in order to be easier

to understand by the user.

From the logical point of view, Date Slider has several Polymer properties that let the

dashboard know what the selected range is, and the user which are their decision capability

over the filter.

• Min, Max: Absolute bounds of the slider, in other words, selection limits for the

user when moving the bar. This properties are set by the dashboard when, with

30

4.3. DASHBOARD POLYMER COMPONENTS

the ElasticSearch’s ”aggs” response, minimum and maximum tweet timestamp are

retrieved. Min and Max properties will never change unless the dataset indexed in

ElasticSearch has been modified.

• DefaultSelectedMin, DefaultSelectedMin: Default bounds for the slider selected

zone. They are also provided in first instance by the dashboard, since they correspond

to the limit timestamps of the first not-filtered query.

• SelectedMin, SelectedMax: This are the bounds of the slider selected zone chosen

by the user. Until the user interacts with Date Slider, they have default values. Once

the bar has moved, the current selected bounds are stored in this properties.

All Date Slider properties are modelled as integers and they represent millisecond times-

tamps since epoch 5. The reason for this is that is easier for the dashboard to use a mil-

lisecond mark to filter its queries to ElasticSearch. Furthermore, the aggregations to obtain

maximum and minimum date are lot simpler. Of course, although all date management is

with millisecond timestamps, each UI date representation is preceded by a transformation

to a Date Javascript object.

Date Slider is available as a public git repository6.

5The time kept internally by a computer system is usually expressed as the number of time units that

have elapsed since a specified date. Unix-like systems and most programming languages takes January 1,

1970
6https://lab.cluster.gsi.dit.upm.es/sefarad/date-slider

31

CHAPTER 4. ARCHITECTURE

32

CHAPTER5
Case study

5.1 Introduction

In this chapter we are going to describe a normal use of the dashboard, and cover all use cases

defined in 3.2. Its main purpose is to completely understand the dashboard functionalities.

From now on, it is supposed that all deployments and data provisioning have been executed

and properly succeeded.

5.2 Use case 1: Heatmap representation

First, the user has to enter in any modern internet browser the assigned dashboard endpoint

in port 8080 (in case of the provided demo, the endpoint is localhost:8080). The dashboard,

as reflected in Figure 3.1, firstly get a set of tweets from Elasticsearch. Specifically, it makes

a match all query with a limit of 100 hits, for demo simplicity sake. Once this data is got,

it is assigned to data Polymer property, which will be passed along to HappyMap element

(and all other widgets). The heatmap boots with a non empty data field, what implies that

will be content displayed in the map at first instance.

Figure 5.1 shows the initial screen provided by the service.

33

CHAPTER 5. CASE STUDY

Figure 5.1: Dashboard displaying Happymap

Default layer displayed in the map is HappyMap. The positiveness (valence value) of

each tweet is what is being represented by the color gradient. At this point, the user can

interact with any of the three widgets. For example, they could click the switching map

buttons at the left of the map, what would change the analysis tweet value to arousal

or dominance. What the map component is doing is setting all layers but the selected

by the button as detached from the actual Leaflet map. If there are any markers in the

map, they will not be erased, in order to maintain user selection if they want to make

comparisons. Figures 5.2 and 5.3 are the results of pushing IntenseMap and PowerMap

buttons respectively.

34

5.2. USE CASE 1: HEATMAP REPRESENTATION

Figure 5.2: Dashboard displaying IntenseMap

Figure 5.3: Dashboard displaying PowerMap

35

CHAPTER 5. CASE STUDY

5.3 Use case 2: Tweet filtering by date

The default query made by the dashboard will get data with no criteria, however this use

case lets apply some logic to that request. Once all dashboard is loaded and widgets are

actively showing its UI, the user could resize and move Date Slider selection bar. This

overrides data Polymer propery saving the new dataset retrieved from ElasticSearch. As

explained before, data is transferred to all widgets thanks to Polymer’s property binding,

thus all other components will be updated in a very short (almost inappreciable) amount of

time. From a user point of view, when moving Data Slider, all components react accordingly

in order to display the data withing the dates set by them.

Figure 5.4 is an example selection of a very low date range.

Figure 5.4: Date Slider selecting few tweets

If this selection defines a date range that has no response from the database, no points

will be displayed in the map and an informative message will be shown by Tweet List, as

in Figure 5.5.

36

5.4. USE CASE 3: EMOTION MAP REPRESENTATION

Figure 5.5: Date Slider not selecting any tweets

5.4 Use case 3: Emotion map representation

In HappyMap element, all layers are created and fed with data, it is the user interaction with

buttons provided what determines if a layer become active or not. Therefore, EmojiMap,

the map for emotional representation, is already there but non-visible. In case that the user

would want to know how emotions are classified in the current geographic zone, they should

push the EmojiMap button. All heatmaps will be detached from Leaflet map, EmojiMap

will become active, and Figure 5.6 would be displayed.

The clusterization of all points displayed will vary from query to query, as each point

likely has a unique geographical location within the dataset. This means that, if EmojiMap

is activated and Date Slider is used to modify the ElasticSearch query, all icons will change

in order to reflect which are the emotion tags of the new dataset.

Furthermore, the user could want to get a more geographically accurate information

about one of the values represented in the heatmaps. Then, they can zoom in the map,

which would make the map recalculate relatively all heatmap points, showing a more defined

representation of each tweet. If zoom is applied into Figure 5.8, what would be got is Figure

5.7

37

CHAPTER 5. CASE STUDY

Figure 5.6: Dashboard displaying EmojiMap

Figure 5.7: Heatmap points recalculation when zooming

38

5.5. USE CASE 4: TWEET LISTING REPRESENTATION

5.5 Use case 4: Tweet listing representation

In a normal scenario in which there are several points represented in any of the map, the

user could click in any of the Tweet List items to get a marker in HappyMap. This would

show visually to the user the exact location of this tweet. Besides, that marker is also

clickable, popping up message information. This is shown in Figure 5.8.

When clicking, Tweet List will simply add the selected tweet to selected Polymer prop-

erty, which automatically will be passed to the dashboard and, then, to HappyMap element

or others that would use the that array.

Figure 5.8: Tweet selected and marker clicked

All this dashboard integration and a simple demo can be checked at https://lab.cluster.gsi.dit.upm.es/sefarad/happymap-

dashboard.

39

CHAPTER 5. CASE STUDY

40

CHAPTER6
Conclusions and future work

In this chapter we will describe the conclusions extracted from this project, and the thoughts

about future work.

6.1 Conclusions

This project has achieve the creation of a monitoring dashboard that provides information

about sentiment-emotion analyzed tweets. The panel has several widgets that, in spite of

being independent with each other, implement interfaces which allows interaction between

them. Besides, it is not limited to these widgets, instead there are some defined interfaces

easily applied that let introduce new interactive elements.

All development has been based on GSI UPM Sefarad standard, which establishes the

ecosystem defined in 2.4.3. Extending Sefarad’s developments has been one of this thesis

purposes, along with offering a good experience browsing analyzed tweet data. Furthermore,

all elements that the dashboard implements can be used in other new developments based

on Sefarad.

41

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.2 Achieved goals

• Developing a map Polymer element with sentiment and emotion based

layers. There has been achieve a main data representation for the dashboard. With

it it is possible to easily recognize the analyzed information and where is it located.

• Developing new Sefarad widgets. One important goal has been creating Polymer

elements that allows to construct a dashboard complying the requirements defined in

3. Specifically, it has been developed two: a tweet list and a date slider bar.

– Tweet List Element This element is basic to browse between all tweets dis-

played, and it allows a easy and intuitive interaction with the user when selecting

items.

– Date Slider Element. Since it is not desirable to change the deployment

configuration each time a user want to get less data, a element for filtering was

necessary. Finally, was has been achieved is a bar that allows movement and

resizing for selecting a date range that will be added into dashboard’s database

query.

• Developing a dashboard that integrates all previous elements. It is necessary

a union point between all widgets in order to get the data and pass it to them. This

dashboard has implemented all interfaces defined by each one of the Polymer elements.

• Luigi data pipeline. The creation of pipeline to store and process geo-located

tweets was a requisite in this project. This has been accomplished using Luigi and

implementing all steps described in 4.2.1. Luigi’s batch jobs are the entry point for

using all elements that concerns the dashboard.

6.3 Problems faced

As in any other software project, the development faced several problems. Identifying these

issues and producing a technically sound solution has been a challenge. Therefore, they are

detailed here:

• Technology crossed implementation. A long list of technologies has been used in

this project. It has been a challenge to face all of them one by one and, then, make

them work together. The most problematic integration has been Leaflet within a Poly-

mer element, since the pairing between Leaflet customization and Polymer properties

42

6.4. FUTURE WORK

is not trivial. Furthermore, some libraries have been modified with community pull

requests code, because they are not not maintained anymore and they had problems

working with other technologies.

• Implementation of technologies in development. Mainly, Sefarad and Polymer

have advanced their development and suffered drastic API and conceptual changes

during the development of this project. These changes implied refactoring big parts of

the code code and integrating new technologies. On the other hand, although Polymer

2.0 version has been released and it includes many improvements, this project could

not take advantage of it because some of the dependencies had not migrated to the

new version yet.

• Low dataset data quality. Tweets can be posted from lot of different devices, by

diverse kinds of people. Hence, they are very heterogeneous. For instance, they do are

not always geo localted, and many of them are simply spam. Besides, after receiving

Senpy analysis response of many tweets, it has been noticeable that approximately

85% of them are tagged with neutral emotion. For the sake of simplicity, all neutral

tweets have been discarded. Consequently, the dataset needed was much bigger than

expected.

6.4 Future work

There are several lines that can be followed to extend some of the this project’s features.

For the sake of brevity, we will mention only a highlight:

• Improving filtering. Tweet filtering options could be extended with more param-

eters. This could be done with interactive polymer elements that could select, for

example, emotion tags or dataset’s most influenciable Twitter usernames.

• Twitter login. With a personal Twitter login, the user could chose to be redirected

to some tweet in Twitter web in order to follow the user ot browse responses.

• Statistics widget. An interesting option would be a new widget that dinamically

shows dataset statistics as number of tweets, number of joy tagged tweets, most

retweeted tweet. This could be implemented by integrating or extending an exist-

ing widget such as number-chart.

43

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

44

APPENDIXA
Component Integration and Demo

Deployment

A.1 Modular Integration Among Polymer Components

So far, a total of three dashboard widgets have been described functional and logically. As

it was mentioned before, one of this project development core purposes is the full reusabil-

ity of each Polymer element. Lastly, this has been accomplished only introducing some

dependencies that concern Polymer properties, any further internal logic will need changes.

Therefore, since every component can be understood as an independent library, each

one is saved in an individual Git repository and registered separately in bower. Any can be

installed from anywhere easily with bower:

$ bower install happymap

$ bower install date-slider

$ bower install tweet-list

In order to integrate HappyMap, Date Slider, or Tweet List in other project, it is recom-

mended to read the provided documentation in Git repository’s readme at https://lab.cluster.gsi.dit.upm.es/sefarad/happymap-

45

APPENDIX A. COMPONENT INTEGRATION AND DEMO DEPLOYMENT

dashboard.

A.2 Demo deployment

In order to let users try this project’s dashboard in their own machine, a demo have been

developed and a Docker deployment configuration have been provided. The demo is a

simple index.html that imports and instantiates the dashboard Polymer component, which

actually shows the content in the web page. For the deployment, it is necessary to have a

Dockerfile and docker-compose.yml in the project root.

A.3 Dockerfile

This file shows Docker how to build the environment in which all project is going to be

deployed.

FROM node:7.10.0

ENV NODE_PATH=/tmp/node_modules APP_NAME=TFG-JorgeGarciaCastano

RUN npm install -g http-server bower

ADD bower.json /usr/src/bower.json

RUN cd /usr/src && bower install --allow-root

ADD . /usr/src/app

WORKDIR /usr/src/app/

CMD [/usr/src/app/init.sh]

This lines meaning are, respectively:

1. The FROM instruction sets the Base Image for subsequent instructions. In this case,

a Node.js image is chosen as server core.

2. The ENV instruction sets the environment variable ¡key¿ to the value ¡value¿. In this

case, node.js path and app name are set.

3. The RUN instruction will execute any commands in a new layer on top of the current

image and commit the results. In this case, Http-Server and Bower packages are

installed via npm.

4. The ADD instruction copies new files, directories or remote file URLs from ¡src¿ and

adds them to the filesystem of the image at the path ¡dest¿. In this case, bower.json

file is added to images’s filesystem in /usr/src/.

46

A.3. DOCKERFILE

5. Bower dependencies are installed in /usr/src/ path.

6. All repository content is copied into /usr/src/app image’s path.

7. The WORKDIR instruction sets the working directory for any other instructions that

follow it in the Dockerfile. /usr/src/app/ path is set as working directory

8. The CMD instruction allows the execution of a command line and its main purpose

is to provide defaults for an executing container. In this case, /usr/src/app/init.sh

script is executed. init.sh is a shell script that copies all bower dependencies inside

the app folder and launches the previously downloaded Node’s Http-Server.

Once the Dockerfile is present in the project, there is only lack for one more file: docker-

compose.yml.

A.3.1 docker-compose.yml

This file is the one that docker-compose will take as scheme for its service deployment.

version: ’2’

services:

sefarad:

build: .

ports:

- 8080:8080

volumes:

- .:/usr/src/app

networks:

- sefarad-network

depends_on:

- elasticsearch

elasticsearch:

image: elasticsearch

ports:

- 9200:9200

- 9300:9300

volumes:

- ./elasticsearch/nodes:/usr/share/elasticsearch/data/nodes

- ./elasticsearch/config:/usr/share/elasticsearch/config

networks:

- sefarad-network

luigi:

build:

context: luigi/

47

APPENDIX A. COMPONENT INTEGRATION AND DEMO DEPLOYMENT

volumes:

- ./luigi:/usr/src/app

networks:

- sefarad-network

depends_on:

- elasticsearch

environment:

- PYTHONUNBUFFERED=0

networks:

sefarad-network:

driver: bridge

All services defined are detailed in the next points:

• Sefarad. This is actually the container that serves the whole application. It is mounted

in /usr/src/app image’s path and it exposes 8080 port as entrypoint for the dashboard.

• ElasticSearch. The latest ElasticSearch version is the base image for this container.

It exposes 9200 and 9300 ports for database communication with Sefarad’s container,

and a couple of mounting points are defined for configuration and nodes.

• Luigi. Mounted in usr/src/app/luigi folder and built from luigi’s repository folder.

PYTHONUNBUFFERED environment variable is set to 0 in order to have the stdout

of Luigi’s pipeline at the terminal when calling docker-compose.

Sefarad, ElasticSearch, and Luigi are contained in the same Docker network, called sefarad-

network, which allows a network communication between the three containers.

48

Bibliography

[1] Guillaume Gautreau. Jqrangeslider documentation

http://ghusse.github.io/jqrangeslider/. 2017.

[2] Docker Inc. Docker-compose documentation https://docs.docker.com/compose/. 2017.

[3] Docker Inc. Docker documentation https://docs.docker.com. 2017.

[4] Docker Inc. Dockerhub repositories https://hub.docker.com. 2017.

[5] Object Management Group Inc. Uml documentation http://www.uml.org. 2017.

[6] Twitter Inc. Twitter api documentation https://dev.twitter.com/rest/public. 2017.

[7] Chrome organization. Polymer documentation https://www.polymer-project.org.

2017.

[8] WebComponents Organization. Webcomponents repositories

https://www.webcomponents.org. 2017.

[9] Matt McMahon (The MITRE Corporation) Peter Dodds, Chris Danforth (Computa-

tional Story Lab). Andy Reagan (University of Vermont Complex Systems Center).

Brian Tivnan. Hedonometer http://hedonometer.org. 2013.

[10] Juan Fernando Sánchez Rada. Sefarad documentation http://sefarad.readthedocs.io.

2017.

[11] Spotify. Luigi documentation http://luigi.readthedocs.io. 2017.

[12] J. Fernando Sánchez-Rada, Carlos A. Iglesias, Ignacio Corcuera-Platas, and Oscar

Araque. Senpy: A pragmatic linked sentiment analysis framework. In Proceedings

DSAA 2016 Special Track on Emotion and Sentiment in Intelligent Systems and Big

Social Data Analysis (SentISData). 00001.

[13] Alex MacCaw (Twitter). Bower documentation https://bower.io. 2017.

[14] Dr. Monica Stephens (Humboldt State University). Hatemap

http://users.humboldt.edu/mstephens/hate/hate map.html. 2017.

49

BIBLIOGRAPHY

[15] Kuperman V. & Brysbaert M. Behav Res 45: 1191 Warriner, A.B. Norms of valence,

arousal, and dominance for 13,915 english lemmas. 2013.

50

