
Pergamon

PII:S0967-0661 (96)00076-7

Control Eng. Practice, Vol. 4, No. 6 pp. 839-845, 1996
Copyright © 1996 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0967-0661/96 $15.00 + 0.00

MULTIAGENT-BASED CONTROL SYSTEMS: A HYBRID 1
A P P R O A C H TO DISTRIBUTED PROCESS CONTROL

J.R. Velasco*, J.C. Gonzfilez*, L. Magdalena* and C.A. Iglesias**

*Universidad Politdcnica de Madrid - E.T.S.I. TelecomunicaciSn, Ciudad Universitaria s/n., E-28040 Madrid, Spain
(jvelasco @ gsi.dit, upm. es)

**Universidad de Valladolid- E.TS.I. Telecomunicaci6n, C/Real de Burgos s/n, E-47011 Valladolid, Spain

(Received October 1995; in final form March 1996)

A b s t r a c t . This paper presents a general architecture and a platform developed to
implement distributed applications as a set of cooperating intelligent agents. It also
shows how this architecture has been used to implement a distributed control system
for a complex process: the economic control of a fossil-fuel fired power plant. Agents in
this application encapsulate different distributed hardware/software entities: neural
and fuzzy controllers, a data-acquisition system, presentation manager, etc. These
agents are defined in ADL (Agent Description Language), a high-level specification
language, and interchange data/knowledge through service requests using a common
knowledge-representation language.

K e y w o r d s . Agents, distributed control, fuzzy expert systems, machine learning,
power generation

1. I N T R O D U C T I O N

This paper deals with a way of approaching a
distr ibuted control problem from a multiagent sys-
tems point of view. To summarize, agents are au-
tonomous entities capable of carrying out specific
tasks by themselves, or through cooperation with
other agents. Multiagent systems offer a decentral-
ized control model, use the mechanisms of message-
passing for communicat ion purposes, and are usu-
ally implemented from an object-oriented perspec-
tive.

1 This research is funded in part by the Commission of
the European Communities under the ESPRIT Basic Re-
search Project MIX: Modular Integration of Connection-
ist and Symbolic Processing in Knowledge Based Systems,
ESPRIT-9119, and by CDTI, Spanish Agency for Re-
search and Development CORAGE: Control rnediante Ra-
zonamiento Aproximado y Algoritmos Gendticos, PASO-
PC095.

The multiagent architecture developed here can
be used to implement general distributed appli-
cations, not just a distributed control system. In
this general framework, several software elements
(the agents) cooperate with each other to reach
their own goals. The system designer has to de-
cide on the set of ageftts to be involved in the task,
specifying their particular capabilities. At a high
level, this part of the design work is carried out
by describing the agents in ADL (see below and
(GonzAlez, et al., 1995)). The problem of how to
interchange data between agents is solved by using
a common knowledge-representation language.

As an example of how to apply this architecture
to distributed control, an actual system is shown:
a fossil-fuel fired power plant. In particular, the
goal is to achieve strategic (not tactical) control:
the system has to reduce the heat rate (the ratio
f u e l / g e n e r a t e d power) , suggesting appropriate set
points for automat ic controllers or human opera-

839

840 J.R. Velasco et al.

tors.

At present, two versions (distributed and non-
distributed) of a control system for a real power
plant sited in Palencia (Spain) (Garcfa, et al.,
1993) are being implemented. This paper focuses
principally on the distributed one.

2. D E S C R I P T I O N OF AGENTS

The proposed architecture has been designed ac-
cording to the following principles:

• Use of the mechanisms of encapsulation, iso-
lation and local control: each agent is a semi-
autonomous, independent entity.

• No assumptions are made about the indi-
vidual agents' knowledge or their problem-
solving methods.

• Flexible and dynamic organization is allowed.

Every agent is composed of a control block, a
database (including a model of the agent, a model
of the environment, the state of the agent, private
objects and global data) , and a communication
block (the network communicat ions model and a
mailbox) (see Fig. 1).

Any agent may include goals (that is, processes
which start when the agent is "born"), services
offered (the agent offers a set of services to the rest
of the agents, and these services may be executed
in a concurrent - as an independent process or
non-concurrent way) and services required (a list
with the names of the services that this agent may
need).

AGENT OBJECT

CONTROL

Mailbox Destination
Policy Policy

Service Network
Policy Lister7

COMMUNICATION

Network
Model

Mailbox

DATABASE ~ _

Environment Self-Model
Model

Private
Agent State Object s

Fig. 1. Model of a multiservice agent

One of the major features of these agents is that
their services (if concurrent) are executed as sep-
arate processes, so the agent control loop can con-
tilme its job. In this way, the same (concurrent)
service can be executed several times, each one
called from a different agent.

3. THE MIX MULTIAGENT PLATFORM

The MIX nmltiagent platform defines a layered
model of the network (Iglesias, et al., 1996) that
provides agents with a uniform view of the net.
This model distinguishes two kinds of agents: net-
work agents, which offer services for maintain-
ing the network, and application agents, which
address a particular problem. A network agent,
called YP ("yellow pages"), provides different net-
work facilities for registering network addresses,
services offered, services an agent is interested in,
etc. YP selectively gives information on the dy-
namic changes of the society of agents. There is
also the possibility of communicat ion with groups
of agents, which can be configured dynamically.
In this way, a service petition can be performed
with point-to-point communicat ion or with point-
to-multi-point communicat ion (in a broadcasting
or nmlti-casting mode).

YP agents continuously update the information
needed by their registered agents. Therefore, ap-
plication agents can establish direct communica-
tion links anlong themselves, so avoiding collapse
due to YP saturation or network failures. If any
YP agent disappears, registered agents will not
receive new information. But they can still work
with their known network and services model.

Regarding agent communication, several priini-
tives are offered, including different synchroniza-
tion mechanisms (synchronous, asynchronous or
deferred) and higher-level protocols, such as Con-
tract Net.

At present, the MIX platform (Gonzglez, et al.,
1995) is made up of four elements:

• MSM (Multiagent System Model) C + + li-
brary, with the low-level functionality of the
platform. This is a modified version of the
work carried out. by l)om/nguez, (1992).

• A DL translator. The Agent Description Lan-
guage has been designed to specify agents.
ADL files gather descriptions of agents, and
the translator generates C + + files and the
appropriate makefile to obtain executables.

• CKRL ToolBox. A reduced version of Com-
mon Knowledge Representation Language, by
the MLT consortium (Causse, et al., 1992),
has been implemented to interchange infor-
mation between agents 1 This toolbox in-
cludes static and dynamic translators from
CKlqL descriptions to C '++ classes and ob-
jects, and vice-versa.

t The platform allows the use of any other language for
in tercommunicat ion between processes. In this way, KIF
(Knowledge Interchange Format) (Genesereth and Fikes,
1992), ano ther widely used language, is being considered
as the second native language of the platform.

Multiagent-Based Control Systems 841

• Standard ADL agent definitions and CKRL
ontologies.

4. AN APPLICATION: ECONOMIC
CONTROL OF A FOSSIL-FUEL FIRED

P O W E R PLANT

A fossil-fuel fired power plant is a very complex
process with a large number of variables which op-
erators can actuate. The objective of this control
system is to reduce the fuel consumption while
generated power is kept constant. The first prob-
lem is that no reliable model of the process exists;
so the system needs to learn how the power plant
works. The second problem is that the quality of
fuel used - a mix of anthracite and soft coal in the
particular case of the power plant where the con-
trol system is going to be installed - changes every
5 minutes. There is a limited homogenization of
the last hour's fuel, so the coal quality changes
with a smooth curve. This coal quality is used for
the heat rate calculation, that is the optimization
variable.

POWER PLANT

ACQUISITION
SYSTEM CONTROLLERS

OPERATORS

OPTIMIZATION
SYSTEM

LEARNING
SYSTEM

Fig. 2. Application diagram

This last problem implies that the control system
can only have access to an indirect estimation of
the real heat rate. To solve it, a new performance
criterion has to be determined. At design time,
two variables are being analyzed to substitute for
the heat rate:

(1) Principal air flow to the boiler: This air flow
carries the coal powder from the mills to the

boiler. So if this variable decreases, the fuel
consumption decreases, whatever the coal qual-
ity.

(2) .Boiler output gas temperature: A common-
sense analysis says that a low temperature at
the output of the boiler is better than a high
one. If the temperature is high, heat is being
wasted, so the plant is burning too much coal.

In both cases, the real optimization variable will
be the ratio selected-variable/generated power, to
obtain a relative consumption. After various per-
formance tests in the power plant, one of these
variables will be selected as the objective.

In order to obtain good-quality values for the con-
trol variables, a data-acquisition system filters the
signals that reach the control system from sensors.
The acquisition module receives 200 variables, and
produces 23 to the optimization module. These 23
variables are known as the context vector. The op-
timization module will make suggestions over 11
operation variables (the so called operation vec-
tor) to the controllers or operators. The acquisi-
tion/filtering module is a very important part of
the whole system: reliable inputs are even more
urgently needed than in the case of conventional
control systems.

The control system (for some variables, a sugges-
tion system) uses fuzzy logic to obtain the oper-
ation vector every 10 minutes. In order to make
this fuzzy controller more accurate, the space of
the known states is divided into several large areas
(called macrostates). These maerostates can be
defined by experts (Velasco, et al., 1992), or com-
puted using fuzzy clustering techniques (Velasco
and Ventero, 1994) or a neural network. In this
case, the second approach is used.

The control system has as many rule bases as
macrostates. To create the fuzzy knowledge bases,
a modified version of the C4.5 algorithm (Quinlan,
1993) was used. This modification creates fuzzy
rules from sample data files: to make the C4.5
function learn the system must provide it with a
set of input vectors (context vectors) and the ap-
propriate class for each vector. The system com-
pares two consecutive vectors to determine when
a cost reduction has been obtained, and thereby
to classify the actions in the operation vector as
bad, indifferent or good. After this classification,
the algorithm creates fuzzy control rules.

When a new data vector is obtained, the control
system asks the fuzzy clustering function about
the appropriate macrostate. Since a given state
may belong, to different degrees, to several macro-
states, the function selects the knowledge bases
(KB in the following) to be used, along with their
respective validity degrees.

If the performance of the power plant is bad after

842 J.R. Velasco et al.

several input vectors and several suggestions, the
control system will ask the rule-base generator for
a new KB. This new KB will replace the old, bad
one.

Finally, suggestions made by the control system
are used as set points by conventional controllers
or human operators.

5. ADL AND CKRL SPECIFICATION

(co=, ,o . ,) (co°,..,,..,)

PROCESS

D a t a f rom~ """
s,naorm "i !'xJk fo= daea

(ACQUISITION)

~ , : ~ ° , ° ' t ' C ; -i[.i-k fo. ~ = . , . ~

¢ s (), "="

U.i u,(':-
LEARNING ~ r""!': I CLASS STATES

Alk for data file

Fig. 3. Description of agents

For the design of this application using the MIX
platform, this distr ibuted control system has to
be seen as a set of agents with their respective
goals and services, communicat ing among them-
selves through the exchange of messages. Figure
3 shows a graphical description of this system,
where each main action or group of actions may
be seen as an agent with several goals/services.

The Acquisition agent obtains da ta from process
sensors periodically, and gives context vectors to
the Optimizer upon demand. The Optimizer agent
asks the Class_state agent for the appropriate ma-
crostate, and will use the corresponding Knowl-
edge Base(s) to obtain the operation vector. The
values of the variables of this vector will be sent to
specific Controllers as set points, or will be shown
to operators for a manual adjustment. The Op-
timizer agent will ask the Learning system for a
new KB if it sees that the cost value (the indirect
heat rate) is increasing.

The MIX architecture uses ADL as a specifica-
t ion/design language. From the ADL file, the MIX
platform creates C + + agent files. After compil-
ing and linking these files with the libraries, each
agent will be an independent executable program
which can run on different computers. The com-
plete ADL file for this application is shown in Ap-
pendix A. In this section just the agent definition
process is presented and it is focused on the Op-
timizer agent and the Learning agent.

The Optimizer agent has as its own goal the opti-
mization of the heat rate. The pseudocode for this
goal is as follows:

Repeat for ever
Get context vector
If heat rate is bad for n times

Ask for new K n o w l e d g e Bases
Ask for maeros ta te (s)
Generate operation vector
Set o p era t io n po in t s to the control lers
Tell operators manua l act ions
Wait delay-time

In the code, bold type-face lines show service peti-
tions that will be requested from different special-
ized agents: the Acquisition agent gives the con-
text vector, the Learning agent creates new KBs,
the Class_states agent classifies the context vector
and each Controller tries to adjust the different
set points.

However, at the design level, the agent description
only needs to know the name of the services re-
quired (it does not have to know which agents will
be available to perform them), the names of the
functions that implement the services and goal,
and the C + + file where these functions are de-
scribed. The ADL description of the Optimizer
agent is:

A G E N T Optimizer -> BaseAgent
R E S O U R C E S

R E Q _ L I B R A R I E S : "optimizer.C"
R E Q _ S E R V I C E S :

Give_Last_Data;
G i ve _RB;
Classif~qtate;
Set_Point;
Send _Vector

G O A L S
Optimize: C O N C U R R E N T optimize

E N D Optimizer

When a service is specified, input and output types
must be specified too. For instance:

A G E N T Lea rn ing -> BaseAgent
R E S O U R C E S

R E Q _ L I B R A R I E S : "learning.C"
R E Q _ S E R V I C E S : Give_Histo_Classified

S E R V I C E S
Give_RB: C O N C U R R E N T giveJ 'b

R E Q _ M S G _ S T R U C T powplant::Class
A N S _ M S G ~ T R U C T powplant::Rules

E N D Learning

optimizer. C and learning. C are C + + files where
service and goal functions are defined. At design
time, only function names and inpu t /ou tpu t da ta
are needed. Of course, programmers must write
the C + + code according to this specification. The

Multiagent-Based Control Systems 843

"Makefile" generated by the MIX platform links
source files and libraries to construct agents as
independent executable files.

In the Learning agent, classes and rules are CKRL
structures defined in the CKRL file. The MIX
platform provides translation mechanisms to con-
vert CKRL objects into C + + variables and vice-
versa. P rogrammers need to know only the CKRL
specification to be able to manage input and out-
put messages. The complete CKRL file for this
example is shown in Appendix B.

6. R E A L - T I M E ISSUES

Restrictions on space in this paper prevent the
presentation of further details of other interest-
ing aspects of the MIX platform, in particular
those relevant to real-t ime applications. This kind
of critical application was always borne in mind
during the design phase of the platform. There-
fore performance, efficiency in the use of resources,
fault tolerance, flexibility, etc. were key design cri-
teria. In particular, some architectural decisions
and built-in mechanisms that are useful for real-
t ime systems are b r ie fy addressed:

• Network model
In the MIX network model, communications
are established directly between the agents
tha t demand and provide a service, without
intermediaries (routers, or facilitators in other
architectures). Besides, agents have complete
and continuously updated knowledge on net
addresses of the agents providing the services
tha t they may require. Therefore, there is no
need to find out these addresses (supplied by
specialized agents, sometimes called traders).

• Concurrency
As pointed out before, services can be exe-
cuted in a concurrent or non-concurrent way.
The first method implies start ing a new pro-
cess for carrying out the task. So, it allows the
agent to continue its internal working (taking
care of new incoming messages and executing
new services). The second method blocks the
agent, stopping its control loop, as a way of
ensuring perfect control over the global agent
activity, or to improve efficiency.

• Loose/ t ight coupling
A salient feature of the MIX architecture is
the possibility of incorporating two levels of
integration. Agents are, by default, loosely
coupled. This means that inter-agent com-
municat ion is carried out via message pass-
ing. However, a tighter coupling mechanism
is often needed (mainly for the sake of effi-
ciency). This happens when there is a contin-
uous flow of interaction among agents. MIX-
ADL permits users to specify that a group of

agents has to be treated as a strongly coupled
society. Only part of the services offered by
the society as a whole are exported (known
from the outside). The r ema in ing - internal
- services are offered only to the agents in
the society. Petitions for these internal ser-
vices are executed by the platform as func-
tion calls, instead of using message passing.
However, the concrete method used for ser-
vice handling is kept hidden from the user.

• Contracting policies
The architecture allows the integration of dif-
ferent protocols between the agent demand-
ing a service and candidate providers: one
of these protocols is Contract Net (Smith,
1988). In order to use this protocol it is nec-
essary that services have an associated cost
function. In this way, potential providers eval-
uate this function and send back the result
to the agent that initiated the protocol. Cost
functions may involve different criteria and,
therefore, have different interpretations: price
to be charged to the petitioner, est imation
of the error made when performing the ser-
vice, estimation of complexity, resources con-
sumed (e.g., completion time), etc. The agent
that initiated the protocol decides, by ana-
lyzing the results received, which agent (or
agents) is (are) awarded the contract. This
protocol can be combined with the establish-
ment of constraints on response times. For in-
stance, t ime-outs may be applied, after which
no more answers to a service petit ion will be
taken into account.

• Synchronization
Three synchronization modes can be used for
communicat ion purposes: synchronous, asyn-
chronous and deferred. In the first one, the
sender remains completely blocked until the
peer agent replies. This situation does not
occur in asynchronous mode, in which the
sender is able to continue executing other
processes. Deferred mode can be used when
the sender does not require an immediate an-
swer. In this case, it can continue carrying
out the same task until the t ime the response
is required (synchronization point).

7. CONCLUSIONS

Multiagent systems are proposed as an effective
approach for the design and implementat ion of
distributed control systems. In particular, the mul-
tiagent platform developed for the MIX ESPRIT-
9119 project is being used for the economic con-
trol of a fossil-fuel fired power plant. Although full
evaluation of the system has not yet been com-
pleted, some preliminary conclusions can be ad-
vanced. In comparison to the conventional (cen-

844 J.R. Velasco et al.

tralized) architecture previously used, the distrib-
uted solution shows evident advantages:

• Interfaces are simpler, thus speeding up the
development phase of the system's life-cycle.

• Systems are more reliable in terms of fault-
tolerance and protection against noise.

• Control is more versatile, in the sense that
this approach facilitates the simultaneous use
of several controllers based on different tech-
niques (each with its own errors and response
time depending on the problem state). As a
consequence, if the system has several con-
trollers to perform a particular action or pro-
cess, the error estimation received can be used
to improve system accuracy by selecting the
best controller.

• The MIX architecture is specially suitable
for real-time applications due to the architec-
tural decisions and built-in mechanisms ex-
plained in the previous section.

8. ACKNOWLEDGEMENTS

This work would have never been done without
the experience accumulated over the years and the
tools developed by Mercedes Garijo and Tomgs
Doinfnguez in their Multiagent System Model, the
basis for the MIX agent model. The authors are
also indebted to Jaime Alvarez and Andr& Es-
cobero (from their own group) and Marc Vuilleu-
mier (from Universit4 de Gen~ve, Switzerland) for
their contribution to the implementation of the
platform.

9. REFERENCES

Causse, K., M. Csernel and J. Kietz (1992). Fi-
nal specifications of the Common Knowledge
Representation Language (CKRL) of the ML-
Toolbox. Deliverable D2.2. MLT Consortium,
ESPRIT project 2154.

Domfnguez, T. (1992). Definicidn de un modelo
concurrente orientado a objetos para sistemas
multiagente. PhD thesis. E.T.S.I. Telecomn-
nicacidn, Universidad Polit~cnica de Madrid.
(In Spanish).

Garcfa, J., J.R. Velasco, J.A. Castineira and
J. Martfn (1993). CORAGE: Control pot ra-
zonamiento aproximado y algoritmos genti-
cos. propuesta de proyecto. Technical report.
UITESA, DIT-UPM, IBERDROLA, Grupo
APEX. (In Spanish).

Genesereth, M. and R. E. Fikes. (1992). Knowl-
edge Interchange Format, version 3.0. Refer-
ence manual. Technical report. Computer Sci-
ence Department, Stanford University.

Gonz~ilez, J. C., J. R. Velasco, C. A. Iglesias, J. A1-
varez and A. Escobero (1995). A multiagent
architecture for symbolic-connectionist inte-
gration. Deliverable D1. MIX Consortium,
ESPRIT project 9119.

Iglesias, (:. A., J. C. Gonz~lez and J. R. Ve-
lasco (1996). MIX: A general purpose multia-
gent architecture. In: Intelligent Agents Vol-
ume II Proceedings of the 1995 Workshop
on Agent Theories, Architectures, and Lan-
guages (ATAL-95). Wooldridge, M., Miiller,
J. P. and Tambe, M., (Eds.) Lecture Notes in
Artificial Intelligence. Springer-Verlag.

Quinlan, J.R. (1993). C4.5: Programs for Ma-
chine Learning. Morgan Kaufinann. San Ma-
teo, CA, USA.

Smith, R. G. (1988). The contract net proto-
col: High-level communication and control in
a distributed problem solver, pp. 357 366.
In: Readings in Distributed Artificial Intelli-
gence. Bond, Alan H. and Gasser, Les, (Eds.).
Morgan Kaufmann. San Mateo, CA, USA.

Velasco, J.R. and F.E. Ventero (1994). Some ap-
plications of fuzzy clustering to fuzzy control
systems. In: 3rd Int. Conf. on Fuzzy Theory
and Technology. Durham, NC, USA.

Velasco, J.R., G. Ferngndez and L. Magdalena
(1992). Inductive learning applied to fossil
power plants control optimization. In: Con-
trol and Power Plants and Power Systems.
E. Welfondera, G.K. Lausterer and H. Weber,
(Eds.). pp. 205-210. Number 9. IFAC Sire-
posia series. Pergamon Press. Oxford, UK.

Multiagent-Based Control Systems 845

Appendix A. ADL FILE

: / / :DOMAIN "power_plant_domain"
#YP_SERVER

"tcp//madrazo.gsi.dit.upm.es 6050'
/ / S e r v e r of Yellow Pages Agent
C O M M _ L A N G U A G E CKRL
M I X L I B R A R Y

" / home / mix/ tools/ MIX current"
¢ p O N T O L O G Y "powplant.ckrl"

A G E N T Acquisition-> BaseAgent
R E S O U R C E S

R E Q I I B R A R I E S : "acquisition.C"
GOALS

Collect_Data: C O N C U R R E N T collect_data
SERVICES

Give_Last_Data:
C O N C U R R E N T give_last_data

A N S _ M S G = S T R U C T powplant::Vector
E ND Process

A G E N T YP_Agent -> YPAgent
E N D YP_Agent

A G E N T Interface-> BaseAgent
R E S O U R C E S

R E Q _ L I B R A R I E S : "interface.C"
G O A L S

Show: C O N C U R R E N T show_actions
S E R V I C E S

Send_Vector: C O N C U R R E N T send_vec
R E Q _ M S G _ S T R U C T powplant::Vector

E N D Interface

A G E N T Optimizer-> BaseAgent
R E S O U R C E S

R E Q _ L I B R A R I E S : "optimizer.C"
R E Q _ S E R V I C E S :

Give_Last_Data;
Give_RB; Classif.State;
Set_Point; Send_Vector

G O A L S
Optimize: C O N C U R R E N T optimize

E N D Optimizer

A G E N T Controller_l -> BaseAgent
R E S O U R C E S

R E Q _ L I B R A R I E S : "controllers.C"
GOALS

Control: C O N C U R R E N T control
SERVICES

Set_Point: C O N C U R R E N T set_point
REQAVISG_STRUCT powplant::Point

E N D Controller_l

A G E N T Controller_n-> BaseAgent
R E S O U R C E S

R E Q J ~ I B R A R I E S : "controllers.C"
G O A L S

Control: C O N C U R R E N T control
SERVICES

Se t_Po in t :CONCURRENT set_point
REQAVISG_STRUCT powplant::Point

E ND Controller~n

A G E N T Class_States -> BaseAgent
R E S O U R C E S

R E Q _ L I B R A R I E S : "class~states.C"
G O A L S

Create_States: C O N C U R R E N T create_states
S E R V I C E S

Classif~State: C O N C U R R E N T classif_state
R E Q _ M S G ~ S T R U C T powplant ::Vector
A N S _ M S G = S T R U C T powplant ::Class;

Gi veA-Iisto_Classified:
C O N C U R R E N T giveJfisto

A N S _ M S G ~ S T R U C T powplant::Vector
E N D Class_States

Appendix B. CKRL

defsor t intpos range (integer (1:*));
d e f p r o p e r t y class_number sortref intpos;
defconcept Class

relevant class_number;

defsor t data list (real (0.0:1.0));
defsor t valid list (integer (0:1));
d e f p r o p e r t y vectordata sortref data;
d e f p r o p e r t y vectorvalid sortref valid;
defconcept Vector

relevant vectordata,vectorvalid;

A G E N T Learning-> BaseAgent
R E S O U R C E S

R E Q _ L I B R A R I E S : "learning.C"
R E Q _ S E R V I C E S : GiveAtisto_Classified

S E R V I C E S
Give_RB: C O N C U R R E N T giveJ'b

R E Q _ M S G = S T R U C T powplant::Class
A N S _ M S G ~ S T R U C T powplant::Rules

E N D learning

defsor t point range (real (0.0:l.0));
d e f p r o p e r t y pointdata sortref point;
defconcept Point

relevant pointdata;

defsor t regla~s range string;
d e f p r o p e r t y regla_p sortref regla_s
defconcept Rules

relevant regla_p;

