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A b s t r a c t .  This paper  presents a general architecture and a platform developed to 
implement  distributed applications as a set of cooperating intelligent agents. It  also 
shows how this architecture has been used to implement a distributed control system 
for a complex process: the economic control of a fossil-fuel fired power plant. Agents in 
this application encapsulate different distributed hardware/software entities: neural 
and fuzzy controllers, a data-acquisition system, presentation manager,  etc. These 
agents are defined in ADL (Agent Description Language), a high-level specification 
language, and interchange data/knowledge through service requests using a common 
knowledge-representation language. 

K e y w o r d s .  Agents, distributed control, fuzzy expert systems, machine learning, 
power generation 

1. I N T R O D U C T I O N  

This paper  deals with a way of approaching a 
distr ibuted control problem from a multiagent sys- 
tems point of view. To summarize,  agents are au- 
tonomous entities capable of carrying out specific 
tasks by themselves, or through cooperation with 
other agents. Multiagent systems offer a decentral- 
ized control model, use the mechanisms of message- 
passing for communicat ion purposes, and are usu- 
ally implemented from an object-oriented perspec- 
tive. 

1 This research is funded in part by the Commission of 
the European Communities under the ESPRIT Basic Re- 
search Project MIX: Modular Integration of Connection- 
ist and Symbolic Processing in Knowledge Based Systems, 
ESPRIT-9119, and by CDTI, Spanish Agency for Re- 
search and Development CORAGE: Control rnediante Ra- 
zonamiento Aproximado y Algoritmos Gendticos, PASO- 
PC095. 

The multiagent architecture developed here can 
be used to implement  general distributed appli- 
cations, not just  a distributed control system. In 
this general framework, several software elements 
(the agents) cooperate with each other to reach 
their own goals. The system designer has to de- 
cide on the set of ageftts to be involved in the task, 
specifying their particular capabilities. At a high 
level, this part  of the design work is carried out 
by describing the agents in ADL (see below and 
(GonzAlez, et al., 1995)). The problem of how to 
interchange data  between agents is solved by using 
a common knowledge-representation language. 

As an example of how to apply this architecture 
to distributed control, an actual system is shown: 
a fossil-fuel fired power plant. In particular,  the 
goal is to achieve strategic (not tactical) control: 
the system has to reduce the heat rate (the ratio 
f u e l / g e n e r a t e d  power) ,  suggesting appropriate  set 
points for automat ic  controllers or human opera- 
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tors. 

At present, two versions (distributed and non- 
distributed) of a control system for a real power 
plant sited in Palencia (Spain) (Garcfa, et al., 
1993) are being implemented.  This paper focuses 
principally on the distributed one. 

2. D E S C R I P T I O N  OF AGENTS 

The proposed architecture has been designed ac- 
cording to the following principles: 

• Use of the mechanisms of encapsulation, iso- 
lation and local control: each agent is a semi- 
autonomous,  independent entity. 

• No assumptions are made about the indi- 
vidual agents' knowledge or their problem- 
solving methods.  

• Flexible and dynamic organization is allowed. 

Every agent is composed of a control block, a 
database (including a model of the agent, a model 
of the environment,  the state of the agent, private 
objects and global data) ,  and a communication 
block (the network communicat ions model and a 
mailbox) (see Fig. 1). 

Any agent may  include goals (that is, processes 
which start  when the agent is "born"),  services 
offered (the agent offers a set of services to the rest 
of the agents, and these services may be executed 
in a concurrent - as an independent process or 
non-concurrent way) and services required (a list 
with the names of the services that  this agent may 
need). 

AGENT OBJECT 

CONTROL 

Mailbox Destination 
Policy Policy 

Service Network 
Policy Lister7 

COMMUNICATION 

Network 
Model 

Mailbox 

DATABASE ~ _ 

Environment Self-Model 
Model 

Private 
Agent State Object s 

Fig. 1. Model of a multiservice agent 

One of the major  features of these agents is that  
their services (if concurrent) are executed as sep- 
arate processes, so the agent control loop can con- 
tilme its job. In this way, the same (concurrent) 
service can be executed several times, each one 
called from a different agent. 

3. THE MIX MULTIAGENT PLATFORM 

The MIX nmltiagent platform defines a layered 
model of the network (Iglesias, et al., 1996) that  
provides agents with a uniform view of the net. 
This model distinguishes two kinds of agents: net- 
work agents, which offer services for maintain- 
ing the network, and application agents, which 
address a particular problem. A network agent, 
called YP ("yellow pages" ), provides different net- 
work facilities for registering network addresses, 
services offered, services an agent is interested in, 
etc. YP selectively gives information on the dy- 
namic changes of the society of agents. There is 
also the possibility of communicat ion with groups 
of agents, which can be configured dynamically. 
In this way, a service petition can be performed 
with point-to-point communicat ion or with point- 
to-multi-point communicat ion (in a broadcasting 
or nmlti-casting mode). 

YP agents continuously update  the information 
needed by their registered agents. Therefore, ap- 
plication agents can establish direct communica- 
tion links anlong themselves, so avoiding collapse 
due to YP saturation or network failures. If any 
YP agent disappears, registered agents will not 
receive new information. But they can still work 
with their known network and services model. 

Regarding agent communication,  several priini- 
tives are offered, including different synchroniza- 
tion mechanisms (synchronous, asynchronous or 
deferred) and higher-level protocols, such as Con- 
tract  Net. 

At present, the MIX platform (Gonzglez, et al., 
1995) is made up of four elements: 

• MSM (Multiagent System Model) C + +  li- 
brary, with the low-level functionality of the 
platform. This is a modified version of the 
work carried out. by l)om/nguez, (1992). 

• A DL translator. The Agent Description Lan- 
guage has been designed to specify agents. 
ADL files gather descriptions of agents, and 
the translator generates C + +  files and the 
appropriate makefile to obtain executables. 

• CKRL ToolBox. A reduced version of Com- 
mon Knowledge Representation Language, by 
the MLT consortium (Causse, et al., 1992), 
has been implemented to interchange infor- 
mation between agents 1 This toolbox in- 
cludes static and dynamic translators from 
CKlqL descriptions to C '++ classes and ob- 
jects, and vice-versa. 

t The platform allows the use of any other  language for 
in tercommunicat ion between processes. In this way, KIF  
(Knowledge Interchange Format)  (Genesereth and Fikes, 
1992), ano ther  widely used language, is being considered 
as the second native language of the platform. 
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• Standard ADL agent definitions and CKRL 
ontologies. 

4. AN APPLICATION:  ECONOMIC 
CONTROL OF A FOSSIL-FUEL FIRED 

P O W E R  PLANT 

A fossil-fuel fired power plant is a very complex 
process with a large number of variables which op- 
erators can actuate. The objective of this control 
system is to reduce the fuel consumption while 
generated power is kept constant. The first prob- 
lem is that  no reliable model of the process exists; 
so the system needs to learn how the power plant 
works. The second problem is that  the quality of 
fuel used - a mix of anthracite and soft coal in the 
particular case of the power plant where the con- 
trol system is going to be installed - changes every 
5 minutes. There is a limited homogenization of 
the last hour's fuel, so the coal quality changes 
with a smooth curve. This coal quality is used for 
the heat rate calculation, that  is the optimization 
variable. 

POWER PLANT 

ACQUISITION 
SYSTEM CONTROLLERS 

OPERATORS 

OPTIMIZATION 
SYSTEM 

LEARNING 
SYSTEM 

Fig. 2. Application diagram 

This last problem implies that the control system 
can only have access to an indirect estimation of 
the real heat rate. To solve it, a new performance 
criterion has to be determined. At design time, 
two variables are being analyzed to substitute for 
the heat rate: 

(1) Principal air flow to the boiler: This air flow 
carries the coal powder from the mills to the 

boiler. So if this variable decreases, the fuel 
consumption decreases, whatever the coal qual- 
ity. 

(2) .Boiler output gas temperature: A common- 
sense analysis says that a low temperature at 
the output of the boiler is better than a high 
one. If the temperature is high, heat is being 
wasted, so the plant is burning too much coal. 

In both cases, the real optimization variable will 
be the ratio selected-variable/generated power, to 
obtain a relative consumption. After various per- 
formance tests in the power plant, one of these 
variables will be selected as the objective. 

In order to obtain good-quality values for the con- 
trol variables, a data-acquisition system filters the 
signals that reach the control system from sensors. 
The acquisition module receives 200 variables, and 
produces 23 to the optimization module. These 23 
variables are known as the context vector. The op- 
timization module will make suggestions over 11 
operation variables (the so called operation vec- 
tor) to the controllers or operators. The acquisi- 
tion/filtering module is a very important  part of 
the whole system: reliable inputs are even more 
urgently needed than in the case of conventional 
control systems. 

The control system (for some variables, a sugges- 
tion system) uses fuzzy logic to obtain the oper- 
ation vector every 10 minutes. In order to make 
this fuzzy controller more accurate, the space of 
the known states is divided into several large areas 
(called macrostates). These maerostates can be 
defined by experts (Velasco, et al., 1992), or com- 
puted using fuzzy clustering techniques (Velasco 
and Ventero, 1994) or a neural network. In this 
case, the second approach is used. 

The control system has as many rule bases as 
macrostates. To create the fuzzy knowledge bases, 
a modified version of the C4.5 algorithm (Quinlan, 
1993) was used. This modification creates fuzzy 
rules from sample data files: to make the C4.5 
function learn the system must provide it with a 
set of input vectors (context vectors) and the ap- 
propriate class for each vector. The system com- 
pares two consecutive vectors to determine when 
a cost reduction has been obtained, and thereby 
to classify the actions in the operation vector as 
bad, indifferent or good. After this classification, 
the algorithm creates fuzzy control rules. 

When a new data vector is obtained, the control 
system asks the fuzzy clustering function about 
the appropriate macrostate. Since a given state 
may belong, to different degrees, to several macro- 
states, the function selects the knowledge bases 
(KB in the following) to be used, along with their 
respective validity degrees. 

If the performance of the power plant is bad after 
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several input vectors and several suggestions, the 
control system will ask the rule-base generator for 
a new KB. This new KB will replace the old, bad 
one. 

Finally, suggestions made by the control system 
are used as set points by conventional controllers 
or human operators.  

5. ADL AND CKRL SPECIFICATION 

(co=, ,o . , )  (co°,..,,..,) ....... 

PROCESS 

D a t a  f rom~ """ 
s,naorm "i !'xJk fo= daea 

( ACQUISITION ) 

~ , : ~ ° ,  ° ' t ' C ;  -i[.i-k fo. ~ = .  , . ~  

¢ s (  ), "=" 

U.i ..... u,(':-  
LEARNING ~ r""!': I CLASS STATES 

Alk for data file 

Fig. 3. Description of agents 

For the design of this application using the MIX 
platform, this distr ibuted control system has to 
be seen as a set of agents with their respective 
goals and services, communicat ing among them- 
selves through the exchange of messages. Figure 
3 shows a graphical description of this system, 
where each main action or group of actions may 
be seen as an agent with several goals/services. 

The Acquisition agent obtains da ta  from process 
sensors periodically, and gives context vectors to 
the Optimizer upon demand.  The Optimizer agent 
asks the Class_state agent for the appropriate  ma- 
crostate, and will use the corresponding Knowl- 
edge Base(s) to obtain the operation vector. The 
values of the variables of this vector will be sent to 
specific Controllers as set points, or will be shown 
to operators  for a manual  adjustment.  The Op- 
timizer agent will ask the Learning system for a 
new KB if it sees that  the cost value (the indirect 
heat rate) is increasing. 

The MIX architecture uses ADL as a specifica- 
t ion/design language. From the ADL file, the MIX 
platform creates C + +  agent files. After compil- 
ing and linking these files with the libraries, each 
agent will be an independent executable program 
which can run on different computers.  The com- 
plete ADL file for this application is shown in Ap- 
pendix A. In this section just the agent definition 
process is presented and it is focused on the Op- 
timizer agent and the Learning agent. 

The Optimizer agent has as its own goal the opti- 
mization of the heat rate. The pseudocode for this 
goal is as follows: 

Repeat for ever 
Get context  vector  
If heat rate is bad for n times 

Ask for new K n o w l e d g e  Bases 
Ask for maeros ta te ( s )  
Generate operation vector 
Set o p era t io n  po in t s  to  the  control lers  
Tell operators  manua l  act ions  
Wait delay-time 

In the code, bold type-face lines show service peti- 
tions that  will be requested from different special- 
ized agents: the Acquisition agent gives the con- 
text vector, the Learning agent creates new KBs, 
the Class_states agent classifies the context vector 
and each Controller tries to adjust the different 
set points. 

However, at the design level, the agent description 
only needs to know the name of the services re- 
quired (it does not have to know which agents will 
be available to perform them), the names of the 
functions that  implement the services and goal, 
and the C + +  file where these functions are de- 
scribed. The ADL description of the Optimizer 
agent is: 

A G E N T  Optimizer ->  BaseAgent 
R E S O U R C E S  

R E Q _ L I B R A R I E S :  "optimizer.C" 
R E Q _ S E R V I C E S :  

Give_Last_Data; 
G i ve _RB; 
Classif~qtate; 
Set_Point; 
Send _Vector 

G O A L S  
Optimize: C O N C U R R E N T  optimize 

E N D  Optimizer 

When a service is specified, input and output  types 
must be specified too. For instance: 

A G E N T  Lea rn ing ->  BaseAgent 
R E S O U R C E S  

R E Q _ L I B R A R I E S :  "learning.C" 
R E Q _ S E R V I C E S :  Give_Histo_Classified 

S E R V I C E S  
Give_RB: C O N C U R R E N T  giveJ 'b 

R E Q _ M S G _ S T R U C T  powplant::Class 
A N S _ M S G ~ T R U C T  powplant::Rules 

E N D  Learning 

optimizer. C and learning. C are C + +  files where 
service and goal functions are defined. At design 
time, only function names and inpu t /ou tpu t  da ta  
are needed. Of course, programmers  must  write 
the C + +  code according to this specification. The 
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"Makefile" generated by the MIX platform links 
source files and libraries to construct agents as 
independent executable files. 

In the Learning agent, classes and rules are CKRL 
structures defined in the CKRL file. The MIX 
platform provides translation mechanisms to con- 
vert CKRL objects into C + +  variables and vice- 
versa. P rogrammers  need to know only the CKRL 
specification to be able to manage input and out- 
put messages. The complete CKRL file for this 
example is shown in Appendix B. 

6. R E A L - T I M E  ISSUES 

Restrictions on space in this paper  prevent the 
presentation of further details of other interest- 
ing aspects of the MIX platform, in particular 
those relevant to real-t ime applications. This kind 
of critical application was always borne in mind 
during the design phase of the platform. There- 
fore performance,  efficiency in the use of resources, 
fault tolerance, flexibility, etc. were key design cri- 
teria. In particular,  some architectural decisions 
and built-in mechanisms that  are useful for real- 
t ime systems are b r ie fy  addressed: 

• Network model 
In the MIX network model, communications 
are established directly between the agents 
tha t  demand and provide a service, without 
intermediaries (routers, or facilitators in other 
architectures). Besides, agents have complete 
and continuously updated knowledge on net 
addresses of the agents providing the services 
tha t  they may  require. Therefore, there is no 
need to find out these addresses (supplied by 
specialized agents, sometimes called traders). 

• Concurrency 
As pointed out before, services can be exe- 
cuted in a concurrent or non-concurrent way. 
The first method implies start ing a new pro- 
cess for carrying out the task. So, it allows the 
agent to continue its internal working (taking 
care of new incoming messages and executing 
new services). The second method blocks the 
agent, stopping its control loop, as a way of 
ensuring perfect control over the global agent 
activity, or to improve efficiency. 

• Loose/ t ight  coupling 
A salient feature of the MIX architecture is 
the possibility of incorporating two levels of 
integration. Agents are, by default, loosely 
coupled. This means that  inter-agent com- 
municat ion is carried out via message pass- 
ing. However, a tighter coupling mechanism 
is often needed (mainly for the sake of effi- 
ciency). This happens when there is a contin- 
uous flow of interaction among agents. MIX- 
ADL permits  users to specify that  a group of 

agents has to be treated as a strongly coupled 
society. Only part  of the services offered by 
the society as a whole are exported (known 
from the outside). The r ema in ing -  internal 
- services are offered only to the agents in 
the society. Petitions for these internal ser- 
vices are executed by the platform as func- 
tion calls, instead of using message passing. 
However, the concrete method used for ser- 
vice handling is kept hidden from the user. 

• Contracting policies 
The architecture allows the integration of dif- 
ferent protocols between the agent demand-  
ing a service and candidate providers: one 
of these protocols is Contract  Net (Smith, 
1988). In order to use this protocol it is nec- 
essary that  services have an associated cost 
function. In this way, potential  providers eval- 
uate this function and send back the result 
to the agent that  initiated the protocol. Cost 
functions may involve different criteria and, 
therefore, have different interpretations: price 
to be charged to the petitioner, est imation 
of the error made when performing the ser- 
vice, estimation of complexity, resources con- 
sumed (e.g., completion time),  etc. The agent 
that  initiated the protocol decides, by ana- 
lyzing the results received, which agent (or 
agents) is (are) awarded the contract.  This 
protocol can be combined with the establish- 
ment of constraints on response times. For in- 
stance, t ime-outs may be applied, after which 
no more answers to a service petit ion will be 
taken into account. 

• Synchronization 
Three synchronization modes can be used for 
communicat ion purposes: synchronous, asyn- 
chronous and deferred. In the first one, the 
sender remains completely blocked until the 
peer agent replies. This situation does not 
occur in asynchronous mode, in which the 
sender is able to continue executing other 
processes. Deferred mode can be used when 
the sender does not require an immediate  an- 
swer. In this case, it can continue carrying 
out the same task until the t ime the response 
is required (synchronization point). 

7. CONCLUSIONS 

Multiagent systems are proposed as an effective 
approach for the design and implementat ion of 
distributed control systems. In particular,  the mul- 
tiagent platform developed for the MIX ESPRIT-  
9119 project is being used for the economic con- 
trol of a fossil-fuel fired power plant. Although full 
evaluation of the system has not yet been com- 
pleted, some preliminary conclusions can be ad- 
vanced. In comparison to the conventional (cen- 
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tralized) architecture previously used, the distrib- 
uted solution shows evident advantages: 

• Interfaces are simpler, thus speeding up the 
development phase of the system's life-cycle. 

• Systems are more reliable in terms of fault- 
tolerance and protection against noise. 

• Control is more versatile, in the sense that 
this approach facilitates the simultaneous use 
of several controllers based on different tech- 
niques (each with its own errors and response 
time depending on the problem state). As a 
consequence, if the system has several con- 
trollers to perform a particular action or pro- 
cess, the error estimation received can be used 
to improve system accuracy by selecting the 
best controller. 

• The MIX architecture is specially suitable 
for real-time applications due to the architec- 
tural decisions and built-in mechanisms ex- 
plained in the previous section. 
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Appendix A. ADL FILE 

: / / :DOMAIN "power_plant_domain" 
#YP_SERVER 

"tcp//madrazo.gsi.dit.upm.es 6050' 
/ / S e r v e r  of Yellow Pages Agent 
# C O M M _ L A N G U A G E  CKRL 
# M I X L I B R A R Y  

" / home / mix/  tools/ MIX current" 
¢ p O N T O L O G Y  "powplant.ckrl" 

A G E N T  Acquisition-> BaseAgent 
R E S O U R C E S  

R E Q I I B R A R I E S :  "acquisition.C" 
GOALS 

Collect_Data: C O N C U R R E N T  collect_data 
SERVICES 

Give_Last_Data: 
C O N C U R R E N T  give_last_data 

A N S _ M S G = S T R U C T  powplant::Vector 
E ND Process 

A G E N T  YP_Agent -> YPAgent 
E N D  YP_Agent 

A G E N T  Interface-> BaseAgent 
R E S O U R C E S  

R E Q _ L I B R A R I E S :  "interface.C" 
G O A L S  

Show: C O N C U R R E N T  show_actions 
S E R V I C E S  

Send_Vector: C O N C U R R E N T  send_vec 
R E Q _ M S G _ S T R U C T  powplant::Vector 

E N D  Interface 

A G E N T  Optimizer-> BaseAgent 
R E S O U R C E S  

R E Q _ L I B R A R I E S :  "optimizer.C" 
R E Q _ S E R V I C E S :  

Give_Last_Data; 
Give_RB; Classif.State; 
Set_Point; Send_Vector 

G O A L S  
Optimize: C O N C U R R E N T  optimize 

E N D  Optimizer 

A G E N T  Controller_l -> BaseAgent 
R E S O U R C E S  

R E Q _ L I B R A R I E S :  "controllers.C" 
GOALS 

Control: C O N C U R R E N T  control 
SERVICES 

Set_Point: C O N C U R R E N T  set_point 
REQAVISG_STRUCT powplant::Point 

E N D  Controller_l 

A G E N T  Controller_n-> BaseAgent 
R E S O U R C E S  

R E Q J ~ I B R A R I E S :  "controllers.C" 
G O A L S  

Control: C O N C U R R E N T  control 
SERVICES 

Se t_Po in t :CONCURRENT set_point 
REQAVISG_STRUCT powplant::Point 

E ND Controller~n 

A G E N T  Class_States -> BaseAgent 
R E S O U R C E S  

R E Q _ L I B R A R I E S :  "class~states.C" 
G O A L S  

Create_States: C O N C U R R E N T  create_states 
S E R V I C E S  

Classif~State: C O N C U R R E N T  classif_state 
R E Q _ M S G ~ S T R U C T  powplant ::Vector 
A N S _ M S G = S T R U C T  powplant ::Class; 

Gi veA-Iisto_Classified: 
C O N C U R R E N T  giveJfisto 

A N S _ M S G ~ S T R U C T  powplant::Vector 
E N D  Class_States 

Appendix B. CKRL 

defsor t  intpos range (integer (1:*)); 
d e f p r o p e r t y  class_number sortref intpos; 
defconcept  Class 

relevant class_number; 

defsor t  data list (real (0.0:1.0)); 
defsor t  valid list (integer (0:1)); 
d e f p r o p e r t y  vectordata sortref data; 
d e f p r o p e r t y  vectorvalid sortref valid; 
defconcept  Vector 

relevant vectordata,vectorvalid; 

A G E N T  Learning-> BaseAgent 
R E S O U R C E S  

R E Q _ L I B R A R I E S :  "learning.C" 
R E Q _ S E R V I C E S :  GiveAtisto_Classified 

S E R V I C E S  
Give_RB: C O N C U R R E N T  giveJ'b 

R E Q _ M S G = S T R U C T  powplant::Class 
A N S _ M S G ~ S T R U C T  powplant::Rules 

E N D  learning 

defsor t  point range (real (0.0:l.0)); 
d e f p r o p e r t y  pointdata sortref point; 
defconcept  Point 

relevant pointdata; 

defsor t  regla~s range string; 
d e f p r o p e r t y  regla_p sortref regla_s 
defconcept  Rules 

relevant regla_p; 


