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Abstract—Over the last years, mobile applications and their
corresponding distribution platforms have gained momentum.
Applications stores allow users to write reviews and ratings about
the apps, giving feedback to developers. User ratings and reviews
may help to improve software quality, solve bugs and develop
new features. However, this data is hard to be handled by an
individual due to the ever growing amount of textual reviews.
This paper proposes the use of cognitive computing technologies
for addressing this challenge, by developing a smart agent able to
mine bugs reports, feature suggestions and sentiment expressed in
mobile app reviews. The main contributions of this paper are: the
design of a cognitive agent for assisting developers in managing
their interaction with their users, the application of machine
learning algorithms for bug and feature request detection, and
the agent implementation in a real scenario.

Index Terms—cognitive agent, review, app, bugs, suggestions,
sentiment analysis

I. INTRODUCTION

Nowadays, app development for the smart phone ecosystem
is quite faster and easier than ever [1]. At the time of writing
this paper, Google Play Store offers over 3.000.000 mobile
apps, mostly developed by third-party companies, organiza-
tions and individual developers [2]. For mobile product devel-
opers, to maintain their apps in the top of the store rankings
results crucial, and this is only possible by implementing new
features and solving bugs regularly [3].

However, iOS and Android market platforms only provide
customer feedback with an average rating of 1 up to 5, and
sometimes including a short review with the user experience.
In most cases, this information is not enough to identify the
reason of a bad acceptance for an app, and consequently a
bad positioning in the store [4]. This lack of data provided by
marketplaces about how users feel using an app results in a
problem for developers [5]. Furthermore, for translating bad
ratings into good ones, companies should interact with their
users writing a well-formed response [6]. This response must
be personalized for better results, and this becomes a problem
for high number of reviews [7].

As the number of reviews increases, reading them and
getting insight becomes a bigger challenge. This has boosted
the interest of researchers in applying mining techniques to
application stores reviews, in order to extract and analyze the
expressed user opinions and sentiments [8].

Mining apps reviews and performing a sentiment or emotion
analysis enables the obtention of more detailed information
about the app. This information is useful for identifying how
users feel. In addition, comparing reviews from a given user
in similar apps enables the extraction of information about
users’ preferences in related apps, allowing developers to make
recommendations based on this data.

This paper proposes the use of cognitive computing [9] to
address the above challenges. The main contribution of the
paper is the design and development of a cognitive agent for
Android devices able to: (i) perform sentiment and emotion
analysis for Play Store1 apps; (ii) interact with the user
through voice or text sentences, which are converted into
specific actions using Natural Language Understanding; (iii)
write automatic custom replies to Play Store reviews; (iv)
identify if users mention bugs or propose feature requests; and
(v) manage and analyze the status of the market of mobile
applications in a given domain. In addition, this paper also
describes the implementation and evaluation of the developed
agent in a real scenario.

The rest of the paper is organized as follows. Firstly, and
overview about cognitive computing is given in Sect. II.
Sect. III describes the architecture of the developed system,
describing the main components and modules; and the features
and bug classification is explained in Sect. IV. The implemen-
tation of the system in a real scenario and its evaluation is
described in Sect. V and, finally, the drawn conclusions are
presented in Sect. VI.

II. BACKGROUND

A. Cognitive computing

Cognitive computing refers to smart systems that learn at
scale, reason with purpose, and interact with humans and
other smart systems naturally [9]. Cognitive systems are able
to learn from incoming data and from their interactions with
humans, opening new possibilities to produce better products
taking advantage of the combination of computers’ analytic
capability and encyclopedic knowledge and humans’ creativity
and expertise [10].

1https://play.google.com/store/



Over the last few years, the research and commercial interest
in cognitive computing has considerably grown [11]. The use
of Natural Language Interface (NLI) [12] has arrived to a
number of commercial products based on these technologies,
such as Amazon’s Alexa2, Google’s DialogFlow3, Microsoft’s
Luis4, IBM’s Watson5, Facebook’s Wit6 and Apple’s SiriKit7.

These systems rely on two concepts for performing Natural
Language Understanding (NLU) operations: intent and entity.
An intent represents a mapping between what a user says and
what action should be taken by the agent. An entity, instead,
is a tool for extracting parameter values from natural language
inputs [13].

B. Dialog Flow

DialogFlow, previously known as api.ai, is a NLU cloud
platform owned and maintained by Google. It is a free to
use conversational platform that supports various languages,
different programming languages, and has a series of built-in
integration with other chatbot-based platforms (e.g., Telegram,
Google Assistant, Amazon Alexa) [13].

There are four key concepts involved in any DialogFlow im-
plementation: Agents, Entities, Intents and Contexts. Agents
can be described as NLU modules for applications. Their
purpose is to transform natural user language into actionable
data. This transformation occurs when a user input matches
one of the intents or domains. Entities represent concepts
and serve as powerful tool for extracting parameter values
from natural language inputs. The entities that are used in
a particular agent will depend on the parameter values that
are expected to be returned as a result of agent functioning. In
other words, a developer does not need to create entities for
every concept mentioned in the agent, being necessary only for
those that require actionable data. Intents represent a mapping
between what user says and what action should be taken by
your software. An intent is composed by several modules. First
of all, what user says in natural language is required. Then
it is necessary to set up the corresponding action, and the
response, which is provided by the external application service.
Finally, contexts are designed for passing on information from
previous conversations or external sources, such as user profile
or device information. Also, they can be used to manage
conversation flow.

In addition, DialogFlow provides machine learning capa-
bilities, a tool that allows agents to understand user inputs
in natural language and convert them into structured data,
extracting relevant parameters. In the DialogFlow terminology,
the developed agent uses machine learning algorithms to match
user requests to specific intents and uses entities to extract
relevant data from them. The agent learns both from the data
is provided in it and from the language models developed by

2Amazon’s Alexa (https://developer.amazon.com/alexa)
3Google’s DialogFlow (https://developers.google.com/actions/dialogflow)
4Microsoft’s Luis (https://www.luis.ai)
5IBM’s Watson (https://www.ibm.com/watson)
6Facebook’s Wit (https://wit.ai)
7Apple’s SiriKit (https://developer.apple.com/sirikit)

DialogFlow. Based on this data, it builds a model for making
decisions on which intent should be triggered by a user input
and what data needs to be extracted. The model is unique per
agent.

III. ARCHITECTURE

The proposed architecture can be divided into three groups:
the server side; the DialogFlow agent; and, lastly the mobile
smart agent. The complete global architecture of the system
is shown in Fig. 1.

A. Server

Server side section is composed by several modules. At
first, we have the controller class from where every request
made to the server is handled. This controller adapts the input
parameters to the final components which will carry out single
functionalities.

All the requests are received through the API webhook,
that is linked to the DialogFlow agent. An API REST has
been defined and implemented in Flask. It provides methods
for extending easily the functionality of cognitive agent. This
API acts as a controller that redirects to the corresponding
module depending on the application workflow, as shown in
in Table I.

The controller interacts with three submodules. The Play
Store module is formed by all the procedures required for
app info extraction from Google Play website. Scrapping and
filter tasks are performed inside this component. Afterwards,
the Senpy module is responsible for connecting with the
sentiments and emotions analysis. In this class we can find
some functions to adapt and process the response received
from Senpy service, an online sentiment and emotion analysis
service [14] described in [14]. Finally, the last module is
composed by bug and features classifiers which are previously
trained. Each of these components interacts with external
applications, like Google Play, Senpy or Slack by extracting
relevant information from their website, or using other API
REST services.

Some of the information obtained inside these modules is
saved in a database, such as recent analysis carried out or the
trained classifiers pickles, in order to cache most requested
information and speed up the communication process between
the smart agent and the server.

The DialogFlow module acts as an intermediary between
the logic hosted by the Google server and the smart mo-
bile agent. All this behaviour is orchestrated by an Agent
remotely configured using the DialogFlow web interface. This
component is responsible for interpreting the request made
by the smartphone, translating the voice clip into a text
sentence, identifying the meaning of the query and extracting
the relevant parameters with pattern recognition and carry
out the consequent action. This action might be as simple
as replying with a simple text string, or more complex and
require to communicate with the API webhook to use other
modules (e.g. detect users’ reviews mentioning a bug).



Fig. 1: Global architecture of the system developed

Method Route Params Description

GET /getAppInfo appName Retrieve complete information about the app requested. This
information is scraped from the Play Store website and
inserted in a JSON file.

POST /analyze appName
analysisType
maxReviews

Perform an analysis for specified application, obtaining the
information form Play Store if necessary. Analysis types are
sentiments and emotions.

POST /classify appName
classificationType
maxReviews

Perform a classification for specified application, obtaining
the information form Play Store if necessary. Classification
types are bugs and features.

GET /checkQueue taskId Check a task status inside the server queue in case it requires
a long execution time and the DialogFlow agent throws a
request timeout exception.

TABLE I: API REST

B. DialogFlow agent
Then, we are going to introduce the structure of the Di-

alogFlow agent, explaining the intents and events implemented
to carry out the client requests. This aids to understand the
basic model of the agent and its architecture.

Intents refer to actions that our agent will execute. These
intents could have dependencies from previous interactions
with the agent, so it’s necessary to contextualize each one
of them. The intents handled by the agent are:

• Analyze: Reflects the analysis action. The agent receives
the analysis type and the application desired to be
analyzed as input parameters, offering the Senpy [14]
analysis result as output. This intent uses the webhook

option enabled because it needs to interact with the
developed server.

• Classify: it represents the bug or feature classifier call,
being necessary to communicate with the remote server.
The input parameters are the classification type and
the application in case it can’t be extracted from the
conversational context.

Every intent is prepared for being summoned with missing
parameters, training the DialogFlow agent to request those
that are mandatory, or package them inside the conversation
context, from where the system can extract them. For example,
if the classify intent is called like Would you kindly perform
a sentiments analysis for WhatsApp application, the system



collects the app name parameter and the analysis type for a
while, in case future requests have these values empty. After-
wards, if we ask the agent Could you perform a bug classifier,
The bot will extract the missing app name parameter from the
context, referring to the last app used in the conversational
process.

This humanizes the natural language understanding and
accelerates the conversation, interacting with the bot through
real natural sentences instead of sending simple commands or
instructions to a robot.

Entities refer to the element which represents concepts
involved in the intent event triggering. The entities defined
for the agent are:

• App: refers to the application that wants to be processed,
the name of any application available in the Google Play
marketplace. This entity remains at session context since
it can be different for every user session.

• Analysis Type: refers to the analysis types that can
be performed. The value is bounded, being possible
to run a sentiments or emotions analysis exclusively.
The scalability offered by our architecture based on the
defined API enables us to add more analysis types in the
future.

• Classifier Type: specify which type of trained classifier
would you like to call. The available values for this
attribute are also limited to the detection of mentions
about bugs or feature requests.

The agent has also enabled the Small Talk bundle, that
includes predefined phrases to the most popular requests, what
makes the bot to look more like a human [10].

C. Client

The client module is developed through an Android appli-
cation that receives user requests and redirects them directly to
the DialogFlow agent. This behaviour is implemented through
the DialogFlow extension library, which provides us all the
needed methods to talk with the DialogFlow service.

The application is structured in several modules.The main
module manages the voice and text inputs from users in a
chat bot interface, and is linked to DialogFlow, representing
the response obtained from the DalogFlow server. The second
module provides support to developers, and allows them to
define automatic responses for the applications they have
published in the play Store. Finally, there is an analysis module
that review the top free apps in the Play Store marketplace
This analysis shows an evolution of the app sentiment over
time. This provides users insight about which product trends
for succeeding in the app market

IV. FEATURE AND BUG CLASSIFIER

The idea for the proposed architecture is to train a model
that can then be used for prediction. In this way, the server
controller can insert review inputs and extract the classification
result without the need of creating, training and testing the
model at each iteration. This enables the interaction with the
classification module in a fast and efficient manner.

In order to perform the feature and bug classification, four
machine learning algorithms have been used, trained for binary
prediction: Logistic Regression [15], Naive Bayes [16], and
both Linear and Gaussian SVM [17], [18]. This selection is
done in order to compare the performance of these frequently
used models.

The implemented classifiers have been trained and tested
with a mobile application review dataset [19], obtained from
[20]. This dataset is composed by reviews previously tagged as
bug or not bug, and feature or not feature. Said data collection
offers a supervised dataset composed by multiple reviews
posted inside the iOS app store. However, this data has been
extrapolated, using them for Google Play marketplace context.

Processed data is formed by 3,117 instances corresponding
to bug reviews, and 1,924 reviews related to feature requests.
Due to original data distributions, the labelling is not balanced
in both bugs and features categories. Table II shows the dataset
statistics, including the percentage of positive and negative
classes.

Category Size #instances %

Bug
3,117

2,740 54%

Not Bug 377 7%

Feature request
1,914

1,619 32%

Not Feature request 295 5%

TABLE II: Dataset sizes for supervised learning.

Information included in this dataset can be divided in two
types, of which we use in the experiment the following. Firstly,
the text of the review, which includes a preprocessed version
with stopwords removed and lemmatization, used verbal tenses
-present, past and future-, and number of words. Secondly,
review-oriented metadata; the rating provided by the user.
Consequently, we feed the learning models with Bag-of-
Words features from the preprocessed text, and a normalized
representation of the rest of features.

The training and testing methodology is based in a 10-
fold cross validation using the aforementioned dataset. This
strategy has also been used to tune model hyper-parameters.
Bug and feature requests are treated separately, since as
stated in previous work [20], our experimental results validate
that this separation greatly enhances the final performance.
Besides, in order to gain insight into each model, we use
precision, recall and micro-averaged f-score as metrics.

Experiment results are summarized in Table III. It can be
seen that, although there is no model that yields the best
performance on all metric and the two categories, gaussian
SVM does not reach as good numbers as the rest of the
classifiers. This could be explained attending to the fact that
gaussian SVM is the most powerful model, which can also
lead to overfitting when training will a small number of data
samples, as it is the case for this experiment (Table II). Also,
results seem to indicate that linear SVM yields the better
performance, if attending to all metrics.

In order to gain further insight into the classification



Algorithm
Bugs Feature requests

Precision Recall F1 micro Precision Recall F1 micro

Logistic Regression 95.06 92.01 89.22 93.91 83.61 81.59

Naive Bayes 93.65 95.52 90.19 79.71 86.08 78.71

Linear SVM 94.28 95.00 90.70 91.51 88.68 83.43

Gauss SVM 94.23 94.89 90.60 93.76 83.74 81.54

TABLE III: Performance metrics for the four learning models. In bold, the best value for each metric in each data category.

process, we have extracted most relevant words from both
categories as computed by the model. When considering bugs,
those are: annoy, broken, hopefully, responsive, implementa-
tion. For feature requests, the model considers ask, reinstall,
game, closes, rethink.

Given that linear SVM has the higher F1 micro in both cat-
egories, we finally select this algorithm to be implemented in
the developed system architecture. As commented above, this
model is deployed in the system through pickle serialization.

V. CASE STUDY

The proposed scenario consists in a start-up whose business
activity focuses on developing mobile applications for third
companies, or by their own initiative. This new company
is trying to explore the mobile application market, so they
decided to use the smart agent designed in this work so they
can study using sentiment analysis techniques how users feel
about their own applications, and similar apps that directly
compete with their products.

As discussed previously, it’s desirable to process automat-
ically the feedback obtained from their users and extract
valuable data from it, such as bugs and crashes encountered, or
features and improvements that could increase their audience
opinion. Moreover, it will be great to redirect these results
to a team management platforms like Trello or Slack, so the
developer team could stack those reviews and solve it as soon
as they can.

In the following, three different scenarios are presented for
showing how the smart agent can be applied, and including
some screen captures with the result obtained inside the
Android app.

A. Market Explorer

The start-up is looking for a project management appli-
cation in order to improve their inter-department commu-
nications and track their external project status from their
smartphones. Therefore, the CIO has decided to explore the
market looking for applications that are able to solve this
upcoming idea. For this, he will perform a sentiment and
emotion analysis for popular team management apps, more
concretely he will focus on Trello, Slack, Basecamp, Todoist
and Evernote apps. The main goal is to observe the sentiment
and emotion on these apps and choose one to incorporate it
within the activity of the company. To carry out this procedure,
he will use the chat smart agent. In concrete, the CIO will

perform a sentiment and emotion analysis for each published
app and later compare them depending on the results.

Using the chat module, the user can insert the queries
through text or voice input format. Figure 2 shows an example
of the conversation the CIO has inside the proposed scenario.
The agent accepts multiple input format for queries, so it could
exist multiple possible dialog flows to obtain the same analysis
output. The user interface given by the agent is really simple,
acting as a task assistant answering any user input thanks
to the DialogFlow platform. After the analysis process, final
results are grouped in Table IV. The application enables to
examine more in detail the results obtained by clicking the
card, being able to extract even the sentiment or emotion of a
single review, as shown in Figure 3.

Fig. 2: Sentiment analysis for Trello

To conclude, observing the results obtained from both
analysis the CIO has to determine which third-party platform
is better considered by the Play Store user community. Most of
the applications have present the same emotion, so generally
are good applications. On the other hand, the sentiment varies
depending on the app, probably due to a recent updates that
users don’t like at all.



Application Reviews Sentiment Emotion

Trello 15

Slack 15

Basecamp 15

Todoist 15

Evernote 15

TABLE IV: Results of sentiments and emotions analysis in project management applications

Fig. 3: Detailed sentiment analysis view

B. Feature mining

This section describes a scenario where the start-up receives
a project plan offer from a well-recognized digital newspaper,
which requests a second version of their Android mobile app
named The Guardian. Due to the low budget the company
had to face the project in the first version, they decided
to implement only basic functionalities to reach a higher
audience developing a simple application for smart-phones.
Now, the company wants to order a second version with
advanced functionalities to our scenario company, and the
start-up developer team members are not able to identify in-

teresting improvements or features for the application. For this
reason, they decided to obtain them from the current published
version, in order to implement those mostly demanded in the
Play Store reviews section.

To carry out this operation, they use the proposed smart
agent, performing a feature classification over the The
Guardian application, so they can detect new features and
improvements without having to read every single comment
and extract interesting values. So a feature classification is
run for the app. The feature analysis is executed for a total
of 30 reviews, considering that this number is enough to
extract a significant amount of relevant features. The result
is represented in Fig. 4

Some of the reviews tagged as features can be checked
in Table V. It shows the classification result and the value
obtained from a natural language comprehension, being able
to detect if the classification output matches with a human
understands after read that user review.

As shown, most of the improvements extracted match with
the classification result. After this process, the developer team
meet together and brainstorm about the most common features
demanded by the users, prioritizing those that seems to be
more interesting for the client. Without usage, the developer
team would have had to fetch every single review, filter those
that refer to bugs, user experience, opinion, etc.; and finally
evaluate their importance in the second version.

C. Automated reply for bugs detection

In this scenario, the start-up has just published the second
version for the digital newspaper introduced in Sect. V-B, and
the next step is to carry out a maintenance process during
the first month since launch. The objective is to analyze the
user experience over the app, extracting relevant comments
from app reviews and trying to solve the errors detected as
soon as possible. It seems really tedious to read each review



Review Classification Result Value

...by default, it does tend to send quite lot of notifications... Feature Customize notification subscription system

... however, your news source doesn’t update like CNN, you
stay on the same old news headline... Feature Update more frequently the news title, in

case an important new come up suddenly.

Very good, lots of interesting articles, good podcasts, easy to
read posts and videos... Not Feature None

TABLE V: Results

Fig. 4: Features classification details

and manually filter those that refers to bugs. For this reason,
the development team think that the developer-oriented section
included in the proposed smart agent could speed up this task.

The main objective is to collect the application feedback
posted in Play Store, to classify it using the bug classifier, and
finally to answer accordingly to that bug.

The developer accesses to the developer-oriented tab and
visualizes which is represented in Fig. 5. We suppose that the
agent has previously been linked to the Google Play developer
company account. The input data must be the application
name and the version that is currently published in production.
The package name is also mandatory in order to identify the
application.

Fig. 5: Input parameters requested for developer-oriented
scanning.

After pressing the SCAN button, the smart agent com-
municates with the Reply to Reviews API, and in case the
app belongs to the authenticated account, it will obtain all
the review comments posted in last 15 days. After obtaining
them, it is necessary to evaluate them calling the remote bug
classifier. If any review is tagged as a bug, the system will
randomly extract a friendly response from a bug collection
replies. The result is shown in Fig. 6. As can be seen, the
user is complaining about a crash that happens after the
app log in process, so it is clearly a bug. The system has
extracted the following recommended answer: We apologize
for inconvenience, we will try to solve it in the next version.
Thanks for your patience.

Fig. 6: Result obtained after retrieving recent app reviews,
classify them as a bug or not, and finally recommend a suitable
reply.

When the REPLY button is pressed, all the recommended
reviews for reviews classified as bugs will be posted to the Play
Store endpoint. The reply will also be sent to the author as an
email, but that process acts regardless of the agent. Anyway,
the publishing process can take a while until it appears in the
website. Afterwards, the output will looks like the Fig. 7.

Fig. 7: Automated reply visualization inside Play Store web-
site.



VI. CONCLUSIONS

In this paper, a smart agent for Android devices based on
DialogFlow has been developed. The agent offers a great
possibility to evaluate and analyze the feedback obtained
from the Play Store market place using sentiment analysis
techniques and binary classifiers, revealing interesting data
about user experience. It also offers an innovative design for
smart-phone apps, with an intuitive interface that handles voice
commands to interact with all system components.

The proposed architecture follows a modular approach
based on a REST interface of a controller module for extend-
ing the agent capabilities, and exploit the benefits of cognitive
computing technologies for integrating natural language con-
versations.

The designed system can be used by freelance developers
in order to analyze the application market status and track
the feedback obtained, being able to extract a real meaning
from user opinions and redirect those feedback directly to
improvements or error detection tasks. This kind of tool isn’t
common nowadays, and earn so much time and money to
newly created company that has limited budget to manually
analyze their user feedback.

The high scalability offered by the developed systems raises
a lot of possible improvements or future work to be done.
One of these possible lines is to develop new classification
methods based on the average rating or the user experience
detection in order to extract even more valuable information
from app reviews. In addition, it would be also interesting to
obtain latest application downloaded by the user and develop
a recommendation system based on application of the same
category place in a high position inside the ranking.
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