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Abstract. Bike-sharing systems (BSS) have been implemented in
numerous cities around the world to reduce the traffic generated by
motorized vehicles, due to the benefits they bring to the city, such as
reducing congestion or decreasing pollution generation. Caused by their
impact on urban mobility, the research community has increased their
interest in their study, trying to understand user behavior and improving
the user experience. This paper has the goal of analyzing the impact of
different policies of incentives on the user experience and their impact on
the BSS service. An agent-based simulation model has been developed
using data collected from the BSS service of Madrid, so-called BiciMad.
Route generation has been calculated based o n OpenStreetMaps. The
system has been evaluated, analyzing the results generated on different
incentive policies. The main conclusion is that variable incentives out-
perform the current incentive policy of the service. Finally, a sensitivity
analysis is presented to validate the proper variability of results for the
model parameters.

Keywords: Bike sharing systems · Incentives · Agent based social
simulation

1 Introduction

According to a recent study of the United Nations [20], 55% of the world’s pop-
ulation was concentrated in urban areas in 2018. This proportion is expected
to increase to 68% by 2050. One of the consequences is increasing congestion
in the urban areas that brings other problems such as the increase in air pollu-
tion. Since today 64% of all travels are made within urban environments [27],
urban mobility demand has exploded, and its improvement has become a global
challenge.

The future of urban mobility is foreseen as a transition to integrated mobil-
ity [2] that integrates efficiently different types of transport, including new forms
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of mobility. Specific attention should be paid to sustainable mobility projects
whose objective is to reduce pollution in urban areas [21]. Many fast-moving
trends are shaping the future of urban mobility, such as autonomous driving,
vehicle electrification, shared mobility, decentralization of energy systems, and
smart public transit systems [2].

New shared mobility options (i.e., bike-sharing, car-sharing, and ride-
sourcing) complement public transport and are growing in significance [9].

In this article, we pay attention to bike-sharing systems. Numerous com-
panies are supporting their use through the creation of Bike-sharing systems
(BSS) [17,29]. Bike-sharing technology has evolved for decades exponentially.
As a matter of fact, according to the Bike-sharing World Map [16], in February
2018, there were more than 1500 active BSS all over the globe. However, accord-
ing to data provided in the European bicycle market research by Confederation
of the European Bicycle Industry [5], the adoption of the bicycle is different
depending on the country. European countries such as Germany, France, and
Great Britain account for more than half of total sales in Europe being the three
countries with the highest numbers.

On the other hand, other countries such as Spain, Poland, and Italy barely
manage aggregate 20% as a whole. Comparing the first set of countries with the
second one, the big difference in the level of sales (+150%) contrasts with the
population differences (+50%). One of the main challenges that BSS must face
is the demand management, to avoid situations where there is a lack of bicycles
for rent or docks to park them and thus causing a deficit of service availability.
For this reason, the existence of policies to reduce inequality in the occupation
of stations provides benefits to both users and BSS providers [6].

This paper aims at analyzing the bike-sharing service of the city of Madrid,
Spain, so-called BiciMad, managed by the Municipal Transport Company of
Madrid, Empresa Municipal de Transportes (EMT). In particular, we are inter-
ested in analyzing alternative incentive models to the models already in use in
the city. For this, we have used the data available of this service to develop a
realistic simulation model based on multiagent simulation. Then, the variable
incentive policy is included in the model. The remainder of this article is struc-
tured as follows. Section 2 presents the related works. Section 3 describes the
BSS of Madrid, which is used for evaluating our proposal. Section 4 introduces
the proposed model, the policies implemented, and the external modules used.
Section 5 studies the evaluation of the results obtained. Finally, Sect. 6 closes
with a conclusion and outlook.

2 State of the Art

Following systematic review methods [19,23], several questions have been formu-
lated to review the state of the art. Particular emphasis has been put to analyze
research papers where the bike-sharing systems have a similar context to our
case study.

These questions are the following: (Q1) Does the work deal with bicycle
traffic?; (Q2) Does it study a bicycle renting service case?; (Q3) Does it involve
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Table 1. State of the art papers. Check mark: yes, empty space: No

Ref [13] [14] [4] [24] [15] [11] [12] [28] [10] [25] [22] [26] [8] [7]

Target Q1 � � � � � � � � � � � � � �
Q2 � � � � � � � � � � � �
Q3 � � � � � � � �
Q4 � � � � � � � � � � � � �

Method Q5 � � � � �
Q6 � � � � �
Q7 � � �
Q8 � �

a Spanish city?; (Q4) Is real data employed in the study?; (Q5) Does it include
a visualization of the traffic simulated?; (Q6) Is there an agent-based social
simulation?; (Q7) Does it contrast different policy results?; and (Q8) Does it
implement a system of variable incentives? They can be classified into two types:
type of target (Q1–Q4) and method used (Q5–Q8). The summary of the selected
papers is shown in Table 1.

Several studies use machine learning techniques for predicting bike demand
for rebalancing purposes in New York [4,13,14,24], Washington DC stations [24]
and Barcelona [11]. The principal used variables are time, speed, traffic as well
as meteorological data (e.g., temperature, humidity, and visibility). One of the
most used techniques is the applications of clustering methods for stations [4,13]
for predicting the over-demand of each cluster.

Agent-based modeling is another popular technique for studying BSSs [3].
These techniques propose bottom-up modeling of the individual behaviour of
bikes and stations as well as their interactions. Model realism is frequently val-
idated with real data, as discussed for many cities such as Sydney [12], Sala-
manca [15], Madrid [10], or Barcelona [26], to name a few. The analysis of traffic
flows can help to understand the bike-riders’ preferences (e.g., shorter routes [12])
or the impact of factors such as peripheral areas on city traffic [28]. Besides, mul-
tiagent models provide the capability to experiment with different policies, such
as passive occupation balance [10] and analyze their effects.

Other modeling factors are user satisfaction with the service [22] or their
willingness to accept incentives if they contribute to rebalancing the system [25].

Also, machine learning techniques and agent-based mode ling are frequently
combined by integrating the predicting capabilities of a machine learning module
into a multiagent simulation model. Some examples are the integration of a
probabilistic prediction module of station loads [8] using synthetic data or a
neural network forecasting model the number of empty parking slots based on a
dataset of the city of Valencia [7].

In summary, social behavior around BSSs has been widely studied. However,
there are gaps in the possibilities of modifying it. In particular, with variable
incentive policies, there are still a large number of variables to be studied in
order to optimize results.
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3 Case Study

As previously introduced, this work is focused on the study of the BSS of the
city of Madrid, Spain, so-called BiciMAD, which is operated by EMT. This ser-
vice was inaugurated in the summer of 2014 with the novelty of the utilization
of electric bicycles. In 2015, the number of stations and bicycles was expanded,
reaching the current number of 171 stations and 2028 bicycles. These stations
are distributed throughout the city of Madrid in an area of approximately
5 × 5 km2.

Table 2. Description of the variables selected from BiciMAD Open Data plaftorm.

Variable Description
idplug station Destination station identi-

fier
idunplug station Origin station identifier
travel time Trip duration
unplug hourTime Time when the bike was

rented
user type Type of user (subscriber,

casual, EMT employee)

(a) Routes Dataset

Variable Description
id Station integer identifier
date Date of recording
name Station name including address
total bases Number of docks at the station
free bases Available docks without bikes
dock bikes Available docks with bikes
latitude latitude
longitude longitude

(b) Stations Dataset

Open data are provided by EMT1 information about usage by users and
hourly records of the state of the stations. This open data service provides two
main kinds of data: the trips made during every month, and the situation (i.e.,
load/occupancy) of the stations with a one-hour time gap. For modeling pur-
poses, data from August to November 2018 have been used. The selected vari-
ables for our work are shown in Table 2 and properly subdivided per dataset.

Regarding the trip routes, the variables selected are shown in Table 2a. The
most relevant fields for the study we have carried out are the ids of origin and
destination stations, which show us the route followed by users on every trip.
It is also important to track information about the time at which the bicycle
was rented. However, due to user privacy terms, only hours are tracked, without
providing the minute details. Thus, we will assume an even distribution of trips
during that hour. Besides, the duration of the trip is preserved to enable its
comparison with the simulation results. Lastly, we keep the variable user type,
which indicates the type of user who has made the trip (subscriber, casual, or
EMT employee), since these records contain the balancing measures carried out
by EMT employees. The trips not belonging to public users are discarded.

1 BiciMAD Open Data: http://opendata.emtmadrid.es/Datos-estaticos/Datos-
generales-(1).

http://opendata.emtmadrid.es/Datos-estaticos/Datos-generales-(1)
http://opendata.emtmadrid.es/Datos-estaticos/Datos-generales-(1)
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Regarding the station status, selected variables are shown in Table 2b. Most
relevant variables have been identified, and the rest have been filtered. In partic-
ular, we use ids and station names to identify stations and be able to link them
with the routes dataset. Also, the date variable provides the temporal context.
The most relevant variables are the total bases, which, along with the informa-
tion of the bases that are occupied (dock bikes) and the empty ones (free bases),
indicate the base occupation. Moreover, lastly, the station position represented
by its longitude and latitude variables.

A preliminary analysis of the BSS use has been carried out for understand-
ing better the behavior of the system and its users. For this purpose, we have
considered the hourly and weekly distribution of trips according to the type of
user. The data collected for this study contain information about more than 1.5
million trips made during these four months (August-November 2018), which
are distributed according to the user type. The distribution of trips through-
out the week can be characterized as follows. For subscribed users, we found
a high usage on Monday and Tuesday, which decreases the following two days.
The days corresponding to the weekend (Friday, Saturday, and Sunday) show
a higher amount of use. As for the EMT employees, we observe a practically
homogeneous use throughout the week.

The purpose of the simulation model is to study the effect of implementing
a policy of variable incentives for BiciMad, the BSS of Madrid. To do this, we
have followed the following methodology based on the methodology described
in [23]. The first task has been a data analysis of BSS data. Apart from the
exploratory analysis previously presented, decision matrices have been created
to calculate the points of origin and destination of users. Then, the next phase
has been model construction. Different agent types have been identified (bike,
station, and truck), and their behavior has been specified and implemented,
as detailed in Sect. 4.1. The next phase has been model validation, where the
realism of the model is validated with the real data, as detailed in Sect. 5, which
is described in an independent section for the sake of clarity. Once the model is
validated, the next phase has been policy experimentation. Taking as a baseline
the policy used in BiciMad, we have implemented other strategies to see their
effects as detailed below.

The data offered by EMT during August and November 2018 have been
analyzed to estimate the real behavior of the users. Two logs are provided: trip
records and the logs of the station status every hour After filtering the data as
described in this section, the resulting dataset includes information about the
origin station, destination, time spent in the trip, type of user, and date. Besides,
the study has filtered weekends and ha s been focused on the workweek.

4 Model Description

Two probability matrices have been created. These matrices will be used by the
agents when deciding their origin and destination stations. In order to achieve
a more realistic behavior of the actions of the users, the probabilities will be
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Fig. 1. UML activity diagram for BikeAgent.

calculated based on the time of the system. In this way, it is possible to simulate
the use changes according to the time of day.

The first matrix O is the origin station probability matrix. The matrix ele-
ment Ohi represents the probability that a user takes a bicycle from the station
i at hour h. This probability has been calculated, as shown in Eq. 1, where Nhi

is the number of routes whose origin is the station i at hour h, and Nh is the
total number of routes at hour h.

Ohi = Nhi/Nht (1)

The second matrix is the destination station probability matrix, which has
three dimensions. The matrix element Dhij represents the probability that a
user takes a bicycle from the origin station i to the destination station j at hour
h. This probability has been calculated as shown in Eq. 2, where Nhi is the
number of routes whose origin is the station i and the destination is the station
j at hour h and Nh is the total number of routes whose origin is the station i at
hour h.

Dhij = Nhij/Nhi (2)

The number of available bicycles and bases is calculated as the average of
the actual records. This value is set at the beginning of the simulation. As the
simulation starts at 0 o’clock, this will be the hour used to calculate the average.

4.1 Agents Description

Three types of agents have been identified: BikeAgent, StationAgent, and Truck-
Agent, which are described below.

The BikeAgent is the principal agent of the system. It represents each user
of the system that makes use of the BSS service. Its variables contain information
about its status, whether the agent is currently on the move, has rented or
parked the bike, position, and the route to be carried out. Given that we know
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the position and speed of the agents, we have implemented a simple short-term
prediction of the station’s load: the station registers Bike Agents that are less
than 10 min away from their destination station, including if their intention. (i.e.,
renting or parking a bike).

The behavior of the agent is described in the diagram shown in Fig. 1. When a
BikeAgent starts, the system assigns the values of origin and destination stations
based on the decision matrices. The incentives are calculated at the moment the
agent is created, so that the BikeAgent’s routes should not be changed during the
trip. Then, the agent decides whether to participate in the incentive program,
depending on the extra distance to be covered and the incentive offered. We
have used the data obtained in the survey carried out by Singla et al. [25] are
used. In this survey, an approximation of the participation probability evolution
is made, based on the incentive offered and the extra distance. The economic
reward offered depends on the scenario. If the agent participates, origin, and
destination stations are updated accordingly.

The next step is calculating the route based on a GIS system. Once the route
has been calculated, the agent walks to the initial station. When it has arrived,
a bike is rented if available. Otherwise, a new origin station is calculated, and
the agent walks towards it. This is repeated until the BikeAgent can rent a bike.
Once it rents a bike, it rides to the destination station. Finally, it parks the bike
at the destination station if it has available bases. If not, it looks for a station
with an available base within the area covered by its maximum riding distance
and heads for it. If not found, the agent simply waits until the next step. As
in the real case, the agent gets the discount associated with the incentive if it
rents/parks the bicycle at a station with a lack of bicycles/bases, respectively.

The StationAgent acts like a bicycle container. It is also responsible for
updating its status. In particular, it should keep updated the load of the station.
This load variable will enable the identification of stations needing a balancing
action. Based on Ban et al. [1], their value is low if the capacity is less than 30% of
the maximum station capacity; high if it exceeds 70% of the maximum capacity;
and normal between 30% and 70%. The model has made a simplification, not
taking into account the charging time of electric bikes. Therefore the parked
bikes are available for rental by another user instantly.

TruckAgent. They are the agents that represent the rental company workers
who travel throughout the city, relocating the bicycles between stations. Their
primary mission is balancing the station load so that fewer stations are out of
service because of a lack of bikes or docks. As far as the truck policy is concerned,
there is no precise information on actual usage. It is therefore assumed that the
deployed fleet is similar to the hourly distribution of journeys made by company
employees. The choice of the station is based on both the distance and the
number of bikes or free bases. Due to the nature of the study, the trucks’ behavior
remains unchanged in every scenario.



Improving Sustainable Mobility with a Variable Incentive Model 165

4.2 Scenarios Description

Different scenarios have been designed, taking as a reference the actual behavior,
to evaluate the effects of the policies.

Base Model (BM): This model simulates the real behavior of BiciMAD,
that is, a system that implements an incentive policy with an amount of
0.10e and the policy of repositioning bicycles with trucks.

Base Model with 0.50e Incentive Reward (BM50): In this policy, an
incentive reward of 0.5e will be used instead of the existing 0.10e. With this
incentive amount, according to Singla et al. [25], a participation of half of the
users is achieved. Similarly, according to the study carried out by Ban et al. [1]
with an incentive of between 0.5 and 0.6 USD, an average walking distance of
about 500 and 600 meters is obtained.

Variable Incentives with Logarithmic Urgency (VI-LOG): A vari-
able incentive policy is now introduced according to the urgency of balancing
the station’s load. The objective of this type of incentive is to increase user inter-
est during periods of high system load. Two variables are taken into account to
calculate the amount of the incentive: the distance to the new station and the
short term estimation of that station. This estimation has been calculated as
described in the behavior of the BikeAgent in Sect. 4.1. The first step is to deter-
mine the price at which agents have a 100% chance of accepting the incentive.
We have used the results from the survey carried out by Ban et al. [1]. From
this, we obtain data about the influence of the extra distance to be covered and
the economic reward. Once this amount is obtained, a level of urgency is stated
to apply the policy, based on the current status and short term changes of the
concerned station. An approximation is then made, according to a logarithmic
distribution, of the level of urgency. The threshold value for action is set at 30%
of the station capacity.

Pi = Bi − CIi + COi (3)

Ui = max(min((T + Pi) ∗ log(e), 0.0), 1.0), Ui ∈ [0, 1] (4)

Bi being the number of bicycles or available decks at the station i; CIi the
number of agents intending to rent in a range of fewer than 10 min of the station
i; COi the number of agents in a range of fewer than 10 min intending to park
at the station i; Ui the urgency for the station i; T is the threshold value for
action; and Pi the short term estimation for the station i.

According to the urgency calculated for station i and the price for guaran-
teed participation at a distance m (Pgm ), the price offered to the BikeAgent is
adjusted as follows, and the probability of acceptance by the agent is calculated.

Pim = Ui ∗ Pgm, Pim ∈ [0, 2] (5)

Variable Incentives with Lineal Urgency (VI-LIN): This scenario
includes the same policies as the previous case, 0.10e incentives, variable incen-
tives, and trucks. However, there is a difference in the way the level of urgency
is calculated. A linear distribution is now followed according to the number of
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bikes or docks available in the forecast. The rest of the process for applying the
incentive remains unchanged.

Pi = Bi − CIi + COi (6)

Ui = max(min((T − Pi)/(2 ∗ T ), 0.0), 1.0), Ui ∈ [0, 1] (7)

This research work has used the agent-based simulation framework MESA2,
an Apache2 licensed Agent-based model (ABM) framework in Python. Its use-
fulness is to facilitate the creation of agent-based models using built-in core
components. It also displays results in a browser-based interface, allowing its
subsequent analysis of the resulting data. Regarding route calculation, we have
used OpenRouteService (ORS), a library developed by GIScience Research
Group3 in Java, which offers a route calculation service, customizable depend-
ing on the vehicle type (bicycle or truck). Finally, a Tornado Web Server4

deployment has been used for providing a visual interface.

5 Evaluation

In order to obtain results, seven simulations of a 4-day use situation have been
performed, since the ABM represents 1 min per step. This gives us a total of 5760
steps per simulation. Certain variables are set according to real values to com-
pare the results between behaviors. In particular, the following setting has been
used: bike speed (18 km/h), truck speed (40 km/h), number of trips (74.000),
the maximum number of trucks (6), truck capacity (20), the maximum walking
distance (1 km) and the maximum riding distance (1 km). We have studied the
distribution of the trip, the evolution of the station load, the unavailability rate
(ratio between failed trips and total trips), and the total profit (the difference
between travel income and incentive costs).

Model realism has been evaluated by correlating the distance of both Bici-
MAD trips and BM simulated ones Fig. 2b shows the distribution of the trip
duration of both BM and BiciMAD datasets. Both define a skew normal distri-
bution, being BM durations average slightly higher. This may indicate a higher
real speed than that used in the simulations. Higher dispersion of values in the
BM is also observed. Despite the differences, both cases show apparent similar-
ities, so we assume a correct functioning of the BM, and it will be taken as a
reference from now on.

The distribution of the duration for each model is shown in Table 3a. There
are no significant differences between the results of the different scenarios. How-
ever, the best results are obtained for BM50, obtaining an average duration
of half a minute less than BM. Regarding the occupancy of the stations
in Table 3b, the data about the number of stations in an unbalanced situation
can be found. The best results are obtained for the BM50 scenario with an
2 https://github.com/projectmesa.
3 https://github.com/GIScience.
4 https://github.com/tornadoweb/tornado.

https://github.com/projectmesa
https://github.com/GIScience
https://github.com/tornadoweb/tornado
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Table 3. Unavailability rates and load of stations.

Trips duration Unavailability rate
µ (sec.) σ (sec.) µ (%) σ (%)

BM 972.53 535.96 0.1024 0.061
BM50 941.42 587.67 0.0507 0.034
VI-LOG 962.29 592.79 0.072 0.044
VI-LIN 951.48 535.39 0.0659 0.044

(a) Mean (µ) and standard deviation (σ) of trips
duration and unavailability rate.

Scenario LL µ LL σ HL µ HL σ
BM 34.853 20.37 16.27 9.94
BM50 25.894 17.30 10.544 8.154
VI-LOG 33.09 24.92 15.158 9.14
VI-LIN 32.826 19.4 15.26 9.18

(b) Mean (µ) and standard deviation (σ) of the
number of low and high load stations. Low
Load (LL) and High Load (HL).

Fig. 2. Failure evolution and trip duration distribution.

Table 4. Morris analysis: values ranges and indices for unavailability rate.

Variable Value
Bike speed [10,30] (km/h)
Max. distance walking [250,1000] (m)
Max. distance riding [250,1000] (m)
Incentive amount [0.1,0.5] ( )

(a) Value ranges for Morris analysis.

Parameter µ µ* σ
bike speed -0.00621 0.0086 0.0088
walking max -0.6649 0.0664 0.0119
riding max -0.01362 0.0136 0.0139

base incentive -0.0121 0.0133 0.0112

(b) Morris indices for the unavailability
rate.

improvement of 25.7% and 35.2% in the number of low and high load stations,
respectively. This stands out against the small improvements achieved by the
policy of variable incentives. Peaks can be observed corresponding to the rush
hours (17:00 to 20:00). The study of the unavailability rate, which can be
seen in Fig. 2a and Table 3a, allows us to indicate what percentage of users have
not been able to make their journey and therefore have had to leave the system.
This ratio has been calculated according to the failed trips with relation to the
totals. Where F is the number of failed trips, and S is the number of completed
trips.
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UR = F/(F + S) (8)

An agent leaves the system when it is unable to find an available bicycle at its
station or elsewhere in its area of action. This area is bounded by the maximum
walking distance. When the agent fails to find an available base to park, it
decides to wait. The dataset provided by BiciMAD has only the trips completed
satisfactorily, so it is not possible to make a comparison. An improvement in the
unavailability rate can be observed, especially in the case of BM50, with a 50%
reduction. In the case of VI-LOG and VI-LIN models, no assumptions can be
made as their levels do not vary significantly from each other.

As for the total income, since the trips made in the different models follow
the same distribution, the income received is practically identical, 37,000e. As
for the expenses associated with the incentives we observe a very similar dis-
tribution for the VI-LOG and VI-LIN scenarios with BM, reaching a total of
approximately 5,000e spent. With this, the profit associated with these three
scenarios is approximately 32,000e. On the other hand, in the BM50 scenario,
the incentive costs are increased to 22,000e, resulting in a profit of 15,000e.

The model has been evaluated using the sensitivity analysis Morris [18]
method with the support of the SALib5 library. Those have been set as out-
put variables: the number of full stations (without available bases) and empty
stations (without bicycles), the duration of the journeys, the unavailability rate,
and the total income. The study of the variation of these outputs has been
focused on the following input variables: the speed of the bike, the maximum
walking distance, the maximum riding distance, and the basic incentive offered.
There have been generated five trajectories that give us a total of 25 samples of
variables that will simulate 4-day of usage of the system. In Table 4a, the value
ranges for these parameters are shown.

The maximum walking distance (walking max) is one of the most influential
parameters in several outputs, such as the number of empty and full stations
or the unavailable rate, Table 4b. This is due to the increase in the number of
possible check-in stations. Another variable that stands out is the base amount
of the incentive (base incentive), which has a great impact on the number of
stations in an unbalanced load and on the system’s income. The maximum riding
distance mainly influences the duration of the trips, indicating that the waiting
time to find a free base is one of its main factors.

6 Conclusions

A multiagent social model has been designed to analyze the influences of pas-
sive repositioning policies on a BSS. In this model, four scenarios with different
policies have been implemented. We have also tested the influence of increasing
the incentive amount in a separate way, even though this reduces the reported
income.

5 https://salib.readthedocs.io/en/latest/.

https://salib.readthedocs.io/en/latest/
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The main contribution is the proposal of a variable incentive policy using
the validated simulation model. These incentives are offered during hours of
high levels of system use. Simulations show a reduction in the amount of money
invested in incentive payments in these scenarios. It also shows better results in
balancing the load between the stations and reducing the unavailability rate in
making the trips. This policy yields positive results over the reference scenario
in every variable studied.

The main future work in this research line is the integration of a machine
learning system to forecast user demand on the stations. With this, we will be
able to predict inequality in the stations and act before it happens.
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Chair Cabify for Sustainable Mobility. The authors want also to thank EMT for pro-
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Preface

Research on agents and multi-agent systems has matured during the last decade and
many effective applications of this technology are now deployed. An international
forum to present and discuss the latest scientific developments and their effective
applications, to assess the impact of the approach, and to facilitate technology transfer,
became a necessity and was created almost two decades ago.

PAAMS, the International Conference on Practical Applications of Agents and
Multi-Agent Systems, is the international yearly tribune to present, discuss, and dis-
seminate the latest developments and the most important outcomes related to real-world
applications. It provides a unique opportunity to bring multi-disciplinary experts,
academics, and practitioners together to exchange their experience in the development
and deployment of agents and multi-agent systems.

This volume presents the papers that were accepted for the 2020 edition of PAAMS.
These articles report on the application and validation of agent-based models, methods,
and technologies in a number of key application areas, including: advanced models and
learning, agent-based programming, decision-making, education and social interac-
tions, formal and theoretic models, health and safety, mobility and the city, swarms,
and task allocation. Each paper submitted to PAAMS went through a stringent
peer-review process by three members of the Program Committee composed of 136
internationally renowned researchers from 27 countries. From the 64 submissions
received, 12 were selected for full presentation at the conference; another 17 papers
were accepted as short presentations. In addition, a demonstration track featuring
innovative and emergent applications of agent and multi-agent systems and tech-
nologies in real-world domains was organized. In all, 17 demonstrations were shown,
and this volume contains a description of each of them.

We would like to thank all the contributing authors, the members of the Program
Committee, the sponsors (IBM, Armundia Group, EurAI, AEPIA, AFIA, APPIA,
FBKI, CINI, CNRS, KUL, AIR Institute, and UNIVAQ), and the Organizing
Committee for their hard and highly valuable work. We are thankful for the
funding/support from the project “Intelligent and sustainable mobility supported by
multi-agent systems and edge computing” (Id. RTI2018-095390-B-C32). Their work
contributed to the success of the PAAMS 2020 event.

Thanks for your help – PAAMS 2020 would not exist without your contribution.

April 2020 Yves Demazeau
Tom Holvoet

Juan M. Corchado
Stefania Costantini
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