
PROYECTO FIN DE CARRERA

T́ıtulo: Desarrollo de un Asistente Personal integrado con un Sis-

tema de Indexación Semántica de Información

T́ıtulo (inglés): Design of a personal agent integrated with a Linked Data

Indexing System

Autor: Alberto Mardomingo Mardomingo

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Mercedes Garijo Ayestarán

Vocal: Tomás Robles Valladares

Secretario: Carlos Ángel Iglesias Fernández

Suplente:

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

PROYECTO FIN DE CARRERA

DESIGN OF A PERSONAL AGENT

INTEGRATED WITH A LINKED

DATA INDEXING SYSTEM

Alberto Mardomingo Mardomingo

Julio de 2015

42

Resumen

Este proyecto se ha centrado en el diseño y la implementación de un asistente personal inte-

grado con un sistema de indexación semántica de la información, permitiendo la interacción

con el usuario mediante el empleo de lenguaje natural.

Para ello, hemos estudiado las tecnoloǵıas actuales que nos permiten analizar el lenguaje,

recuperar e indexar información semántica y presentársela al usuario.

Aśı pues, hemos propuesto una arquitectura para nuestro sistema que permitiese llevar

a cabo las tareas deseadas, integrando un sistema de pregunta-respuesta, un agente de

conversación con capacidad para procesar lenguaje natural, y un sistema de recuperación

de la información junto con un un modulo de indexado de dicha información.

Hemos desarrollado varios prototipos para probar nuestra arquitectura, uno de ellos

centrándose en un ejemplo sencillo de apoyo a la enseñanza, proporcionando una plataforma

para resolver dudas sobre el lenguaje de programación Java, respondiendo las preguntas de

los alumnos en castellano, y sugiriendo nuevos temas para que los alumnos profundicen en

su estudio.

Otro de los prototipos ha analizado la implementación de un sistema similar para un

conjunto heterogéneo de documentos en inglés, poniendo a prueba la capacidad del alumno

para diseñar un sistema modular y fácilmente ampliable.

Finalmente, hemos analizado el primer prototipo en un entorno real, recogiendo infor-

mación sobre la eficiencia del sistema, la tasa de aciertos que presenta ante un corpus de

preguntas, a la vez que propońıamos y realizábamos un experimento con usuarios com-

parando el sistema con interfaces de pregunta-respuesta tradicionales, analizando la mejora

en los resultados, la experiencia de uso, y los patrones de comportamiento de los usuarios

cuando se enfrentaban a un sistema como el nuestro por primera vez.

Palabras clave: Tecnoloǵıas semánticas, Linked data,recuperación de la información,

scrapy, scrappy, ChatScript, Solr, WSGI, asistente personal.

VII

Abstract

This project has focused on the design and implementation of a Personal Agent integrated

with a Linked Data System, allowing users to interact with it using natural language.

In order to achieve our goal, we have studied current technologies that would allow us

to analyse natural language, retrieve and index semantic information, and present it to the

user.

We have therefore proposed an architecture for our system that would allow us to

perform these tasks, integrating a question answering system, a conversational agent with

natural language processing capabilities, as well as an information retrieval system, along

with a linked data indexing system.

Based on this architecture, we developed several prototypes that would allow us to test

the architecture. The first one of them focus on a simple example of e-learning in Spanish,

providing students with a platform to solve their questions about the Java programming

language, and offering new topics so they can delve into their study.

A different prototype has analysed the implementation of a similar system for a hetero-

geneous collection of documents in English, testing the student ability to design a modular

system that can be easily extended.

Finally, we have studied our first prototype in a real scenario, gathering information

about its efficiency, the success rate while tested with a corpus, as well as proposing an

experiment with users. The experiment compared the system with traditional question

answering systems, analysing the improvement in the results, the user experience, as well

as the patterns in user behaviour when faced with a system like ours for the first time.

Keyword: Semantic technologies, Linked data, Information retrieval, scrapy, scrappy,

ChatScript, Solr, WSGI, Personal Assistant

IX

Contents

Resumen VII

Abstract IX

Contents XI

List of Figures XVII

List of Tables XIX

Listings XXI

Acronyms XXIII

1 Introduction 1

1.1 Context . 3

1.2 Goals . 4

1.3 Structure of the document . 4

2 Enabling technologies 7

2.1 Overview . 9

2.2 Conversational Agents . 9

2.2.1 Artifcial Intelligence Markup Language (AIML) 10

2.2.1.1 AIML 2.0 . 11

2.2.1.2 AIML implementations . 11

XI

2.2.2 ChatScript . 12

2.2.2.1 Basic syntax, topics and rules 13

2.2.2.2 Deploying a bot with ChatScript 15

2.3 Question Answering Systems . 15

2.4 Linked Data Systems . 16

2.4.1 Apache Lucene and Solr . 16

2.4.2 Linked Media Framework and Apache Marmotta 18

2.4.3 Fuseki and Apache Jena . 19

2.5 Information retrieval . 19

2.5.1 Scrappy . 20

2.5.2 Scrapy . 21

2.6 Web technologies . 23

2.6.1 Client technologies . 23

2.6.2 Server technologies . 24

2.6.2.1 WSGI Servers in Python 24

2.7 Summary . 25

3 Architecture 27

3.1 Overview of the modules . 29

3.1.1 Conversational Agent . 30

3.1.2 Question Answering . 31

3.1.3 Information Extractor . 32

3.2 Work process . 32

3.2.1 Simple sentence . 32

3.2.2 Question with Knowledge-Base (KB) lookup 33

3.3 Summary . 34

4 Case study: Java elearning platforms 35

4.1 Overview of the system . 37

4.2 Overall process . 37

4.3 Scrapping process . 38

4.3.1 RDF for Java . 39

4.3.2 JSON data . 41

4.4 Chat client . 42

4.5 Front end controller . 45

4.5.1 Functional Model . 46

4.5.2 Structural Model . 47

4.6 Chatbot . 52

4.6.1 The rules . 52

4.6.2 The server . 55

4.7 Solr instance . 56

4.7.1 Data schema . 56

4.7.2 Faceted query . 59

4.7.3 Gambit query . 60

4.8 Summary . 62

5 Case study: GSI Bot 63

5.1 Overview of the system . 65

5.2 Recovering and storing the data . 65

5.2.1 Projects . 65

5.2.2 Publications . 65

5.2.3 People . 67

5.3 User interface . 70

5.4 Controller . 70

5.4.1 Structural Model . 71

5.5 Chatbot . 73

5.5.1 The rules . 73

5.5.2 The server . 74

5.6 Solr instance . 74

5.6.1 Solr Schema . 74

5.6.2 Solr queries . 78

5.6.2.1 Questions about quantities 79

5.6.2.2 General questions . 79

5.6.2.3 Gambit queries . 81

5.7 Summary . 81

6 Evaluation 83

6.1 Overview . 85

6.2 Requirements and Benchmark . 85

6.3 Corpus tests . 87

6.4 User experience . 88

6.4.1 Experiment procedure . 88

6.4.2 Measurements . 91

6.4.2.1 Usage of different type of queries 91

6.4.2.2 Impact of suggestions . 92

6.4.2.3 Satisfaction . 92

6.5 Summary . 93

7 Conclusion and future work 95

7.1 Conclusion . 97

7.2 Achieved goals . 97

7.3 Future work . 98

A Installation Manual 101

A.1 Order of deployment . 101

A.2 Chatscript . 102

A.3 Front-end controller . 103

A.3.1 Using apache mod wsgi . 104

A.4 Front-end client . 105

A.5 Apache Solr . 105

B Solr Uploader 107

B.1 Command syntax . 107

B.2 Uploader code . 109

Bibliography 113

List of Figures

2.1 Demo interface for Program-O. 12

2.2 Linked Open Data cloud . 17

2.3 Web interface for Solr queries. 18

3.1 Global view of the architecture proposed . 29

3.2 Simple sentence process . 33

3.3 Question with KB lookup process . 34

4.1 Overall cycle for the system. 37

4.2 Example mapping for the vademecum. 39

4.3 Web interface for the client. 43

4.4 Web interface after a question. 45

4.5 UML diagram of the process followed by the controller. 46

4.6 Front end controller structure . 47

5.1 Resource Description Framework (RDF) exporter for the projects. 66

5.2 Web interface for the client. 70

5.3 Front end controller structure . 71

6.1 Memory consumption from ChatScript and the Controller 86

6.2 CPU usage for ChatScript and the controller 86

6.3 Times for queries . 87

6.4 QA interface after asking about the for loop 89

XVII

6.5 Interface for our system about the for loop 89

6.6 Average number of interactions per user using each query type for each sys-

tem configuration . 92

6.7 User interaction metrics sorted by its satisfaction 93

List of Tables

4.1 Fields used representing a Java Object. 40

4.2 Json fields and its equivalence. 41

4.3 Parameters in the query received by the front end controller. 49

4.4 Parameters in the query sent back to the client. 49

4.5 Parameters in the query sent back to the client. 51

4.6 Fields for the request to ChatScript . 55

4.7 Fields for the documents stored in the Solr schema. 58

5.1 Classes for the bibtex documents. 66

5.2 Common fields for different types of documents. 75

5.3 Fields associated with personal data . 76

5.4 Fields for the publications. 77

5.5 Fields for the projects. 78

6.1 Memory and CPU usage for each system under low load 85

6.2 Memory and CPU usage for each system under low load 86

6.3 Results for the test with the corpus . 88

B.1 Parameters for the uploader to Solr. 108

XIX

Listings

2.1 Example AIML code . 10

2.2 Example topic file for ChatScript . 13

2.3 Example extractor for scrappy . 20

2.4 Example person extracted with Scrappy . 21

2.5 Example scrapy spider . 22

4.1 Example extractor . 40

4.2 Example JSON document from the Vademecum 42

4.3 Ajax performing the request to the controller 42

4.4 Example response for the chat client . 44

4.5 Control process for ChatScript . 52

4.6 fields defined for the Java documents in the schema 56

4.7 Definition for the text search es fieldType 59

4.8 Example JSON query for Solr . 60

4.9 Example Extended Disjunction Max (eDisMax) query for Solr 61

5.1 Example bibtex document converted to RDF 67

5.2 Example semantic data about a member of the group 67

5.3 Extractor for the GSI people section . 68

5.4 Definition for the text search fieldType . 75

5.5 Example JSON query for Solr . 79

5.6 Example query asking for Linked Open Data 80

5.7 Query asking for the data about a user . 80

XXI

5.8 Query asking for the data about a user . 80

6.1 Fragment of the test corpus built for the system. 87

A.1 Libraries for ChatScript . 102

A.2 ChatScript build command . 102

A.3 ChatScript Server running . 102

A.4 Libraries for the front end controller . 103

A.5 Running the front end controller . 104

A.6 Installing mod wsgi . 104

A.7 Apache WSGI configuration . 104

A.8 Tomcat context for solr . 105

B.1 Example command to upload the vademecum data into Solr 107

B.2 Uploader to index the scrapped data in solr 109

Acronyms

BML Behavior Markup Language

IR Information Retrieval

KB Knowledge-Base

NL Natural Language

PoS Part of Speech

QA Question Answering

SPARQL SPARQL Protocol and RDF Query Language

OWL Web Ontology Language

OoB Out of Band

eDisMax Extended Disjunction Max

RDF Resource Description Framework

AIML Artifcial Intelligence Markup Language

LMF Linked Media Framework

WSGI Web Server Gateway Interface

FOAF Friend of a Friend

SIOC Semantically-Interlinked Online Communities

XXIII

CHAPTER1
Introduction

In this chapter we will introduce the objectives of this Master Thesis as well as the

motivation for them, and describe the structure of this document.

1

CHAPTER 1. INTRODUCTION

2

1.1. CONTEXT

1.1 Context

Personal agents are present in many fields, from educative platforms [1] to virtual city

tours [2] or database querying [3]. In this document we present our project, an architecture

for conversational systems over linked data, as well as two prototypes, one applied to the

educative platforms field, and the other about academic information of a research group.

In both cases there has been an increase in the influx of information over the last few years,

in a way that made necessary for the end users to have a platform that would allow them

to easily access said information.

One alternative for accessing the desired information is using conversational agents,

allowing the end user to express their requests and desires in natural language, simplifying

the interactions with the system. We will therefore study the technologies available for

understanding natural language, as well as information retrieval and indexing technologies,

allowing us to build a system that will interact with the users, both answering their questions

in natural language, and proposing related topics to look into.

Understanding Natural Language involves using grammars and semantics, statistical

methods or templates to identify keywords from the user’s input and understand what they

are requesting. Maintaining these services whilst reducing the cost and improving their

knowledge presents an important challenge for researches, specially when considering than

including assistance into the system also involves modelling the new actions the system will

have to be able to respond to.

In order to be able to suggest new topics, we will study linked data systems. According

to the W3C, the semantic web is “a Web of Data — of dates and titles and part numbers and

chemical properties and any other data one might conceive of ”, and Linked Data implies

making the data available in a standard format, reachable and manageable by Semantic Web

tools, as well as the relationships among data, therefore creating a collection of interrelated

datasets, that can be referred as Linked Data1.

Finally, the heterogeneous nature of systems being used by the user, makes it interesting

to develop the interface for our system as a web application, allowing access from any

platform with access to a web browser.

1http://www.w3.org/standards/semanticweb/data

3

http://www.w3.org/standards/semanticweb/data

CHAPTER 1. INTRODUCTION

1.2 Goals

The main goal of this Master Thesis is to develop a system that would allow users to interact

using Natural Language with a Linked Data System, receiving the information they have

asked for, as well as suggestions and information about related topics.

We present a web application that can be used to navigate the information, ask questions

and chat with the agent. The system will then be able to find the answer in the Linked Data

System, a knowledge base that can be improved using information retrieval techniques.

We will analyse the state of the art systems for Natural Language Processing, in order

to chose the most adequate for our system, as well as the systems capable of storing linked

data, to be able to select the one that best fit our necessities.

Furthermore, we will study the implementation of our system for two different knowledge

fields, the first one with a simple collection of similar documents, and the other with multiple

data sources and document structures, but both of them presenting a similar interface for

the end user.

Finally, we will evaluate our system, both taking measures regarding its general perfor-

mance, and designing an experiment with real users to study their responses and experience

with our system.

1.3 Structure of the document

In this section we will provide a brief overview of the structure of this Master Thesis. Each

chapter is as follows:

Chapter 1 provides an introduction to the project, explaining the basic concepts, as well

as the goals for the project.

Chapter 2 list all the technologies used in this project, along with some other systems

that are thematically related to the one proposed in this Master Thesis.

Chapter 3 describes the architecture proposed for our system, justifying and explaining

each module and its functions.

Chapter 4 shows the functionality of one of the prototypes developed for the project,

a system to facilitate the search of information about the Java programming language,

explaining the function of each module as well as the interactions between them.

4

1.3. STRUCTURE OF THE DOCUMENT

Chapter 5 demonstrates a prototype for a different knowledge field, the information

about the Intelligent Systems Group2, its members, publications and projects.

Chapter 6 discuss the results of the first prototype, showing the performance and

analysing the methodology and results of a test with real users.

Chapter 7 analyses the overall result of the Master Thesis, summarizing the goals, and

considering possible future developments.

2http://www.gsi.dit.upm.es/

5

http://www.gsi.dit.upm.es/

CHAPTER 1. INTRODUCTION

6

CHAPTER2
Enabling technologies

In this chapter, a brief introduction of the state of the art for conversational agents

and Question Answering is presented. Likewise, we will take a short look at some

Linked Open Data systems, and the ways to recover data for them.

7

CHAPTER 2. ENABLING TECHNOLOGIES

8

2.1. OVERVIEW

2.1 Overview

Conversational agents, presented in section 2.2, are systems that allow users to interact

with them using natural language, the same way they would interact with another human

being. This is achieved by using engines that analyse the user input, process it, and provide

the best possible answer given the knowledge of the system.

Question answering systems work in a similar way, but rather than provide a response

in natural language, they present the user the resource where the answer to their question

is located, usually by translating the question to a specialised query for a given database.

The aforementioned database is usually a Linked Open Data System. This systems

allow the publication of Semantic Data, connecting it to the world and therefore making it

easily accessible and linkable.

Finally, we will study the way of populating the system, using web scrapping techniques

in order to recover the information when it is not presented as Linked Open Data.

2.2 Conversational Agents

In this section we will discuss the evolution of conversational engines, and present a few

of the techniques and technologies utilized implementing them. We will provide a small

overview to AIML and some engines implemented with it, to finalise with a small description

of ChatScript.

One of the starting points when studying conversational agents is A.L.I.C.E. an free

natural language artificial intelligence chat robot that utilizes AIML for creating responses

based on the user input to the system. ALICE won the 2000, 2001, and 2004 Loebner

prizes, becoming a starting point while developing conversational agents. It makes use

of the pattern-matching ability of AIML, with 120.000 patterns that can either trigger a

response or redirect the input to another pattern. ALICE was inspired by Eliza, on the first

examples of natural language processing using simple patterns, written at MIT by Joseph

Weizenbaum between 1964 and 1966.

Along with ALICE, a number of other AIML conversational agents have been presented

to the Loebner contest, by different authors, usually getting good results, like Mitsuku, by

Steve Worswick, who won the 2013 edition of the contest, and was among the 4 finalists

in 2014, three of them using AIML. Another example of an AIML bot is Izar, by Brian

Rigsby, who achieved second place in the 2014 contest

9

CHAPTER 2. ENABLING TECHNOLOGIES

The winner of the 2010, 2011 and 2014 contests was Bruce Willcox, using different

Chatbots, all of them written in ChatScript. Chatscript was presented in 2010, written

in C++, and later released as Open Source. Whilst AIML aims to pattern-match words,

ChatScript claims to match in a general meaning basis, focusing on detecting equivalence

and paying heavy attention to sets of words and canonical representation, and providing a

simple way of storing user data, in a machine readable format.

2.2.1 AIML

AIML [4] is a widely used XML dialect for creating conversational language. It was de-

veloped between 1995 and 2002 by Richard S. Wallace and the free software community,

and has remained relevant to this date, including the draft for a major upgrade, AIML 2.0.

This draft was released in the early 2013, and is currently being worked on. The original

version of AIML had seven design goals, stated in its primer:

1. Shall be easy to learn.

2. Shall encode the minimal concept set necessary to enable a stimulus-response knowl-

edge system modelled on that of the original A.L.I.C.E.

3. Shall be compatible with XML.

4. It shall be easy to write programs that process AIML documents.

5. AIML objects should be human-legible and reasonably clear.

6. The design of AIML shall be formal and concise.

7. AIML shall not incorporate dependencies upon any other language.

There are more than twenty tags for the AIML language [5], but the most important

units are aiml, the tag that defines a document as AIML, category marking a “unit of

knowledge” in the bot’s knowledge base, pattern, containing a simple pattern that will be

compared with the user input, and template containing the response to a user input.

1 <category>

2 <pattern> WHO ARE YOU </pattern>

3 <template>I am a bot </pattern>

4 <category>

Listing 2.1: Example AIML code

10

2.2. CONVERSATIONAL AGENTS

The free A.L.I.C.E. AIML 1 includes a knowledge base of 41.000 categories, and can be

used as a base for others bots.

2.2.1.1 AIML 2.0

In January 2013 the ALICE A.I. Foundation released a draft specification for a major

update for AIML2, aiming to provide new features while trying to keep AIML as simple as

possible. AIML 2.0 combines Pandorabots’ extensions to the language, Out of Band tags

and a collection of new features. The full list of new features can be found in the Working

Draft [6], some of the most relevant are:

� Zero+ wild-cards, allowing to match zero or more words

� Setting matching priority for certain words.

� Loops.

� Out of Band tags.

� Local variables.

2.2.1.2 AIML implementations

AIML has been implemented in multiple languages, including Java, Python, PHP or C++.

Some of those implementations are listed in the ALICE downloads page 3, and we will

briefly describe some of them bellow:

1. Program D is a Java implementation, open source, implementing the AIML specifi-

cation. It supports multiple bots per instance, and provides multiple ways to interfaces

to interact with the service, providing a J2EE release allowing deployment as a web

service. However, the development of this project has been stagnated for years, with

its last release in 2006.

2. ChatterBean is another Java implementation, aiming to be AIML 1.0.1 compliant,

using a JavaBeans plug-in architecture, and released under a GPL license. However,

the last version was released on 2006 and the development since then seems to have

stopped.

1http://www.alicebot.org/downloads/
2http://alicebot.blogspot.com.es/2013/01/aiml-20-draft-specification-released.

html
3http://www.alicebot.org/downloads/programs.html

11

http://www.alicebot.org/downloads/
http://alicebot.blogspot.com.es/2013/01/aiml-20-draft-specification-released.html
http://alicebot.blogspot.com.es/2013/01/aiml-20-draft-specification-released.html
http://www.alicebot.org/downloads/programs.html

CHAPTER 2. ENABLING TECHNOLOGIES

3. Program O, written in PHP with MySQL, is an AIML engine with a web interface

providing a number of remarkable features, including an administration panel, with

configuration, teaching an testing interfaces. It stores the AIML files in a MySQl

database in order to improve its performance, and can assign different personalities

to each bot. It is under active development by Ellizabeth Perreau and Dave Morton,

with it latest version released in May 2014.

Figure 2.1: Demo interface for Program-O.

2.2.2 ChatScript

ChatScript, written in C++ by Bruce Willcox, is a chatbot engine aiming to overcome

the limitations of AIML by providing pattern matching on general meaning rather than

particular words. It was originally created for Avatar Reality, a start-up company that

wanted to create a virtual world called Blue Mars [7], and it was eventually released as

open source as per the requirements for the Loebner prize.

Since then, ChatScript has been updating and introducing improvements, up to version

5.4 [8]. Some of the features in ChatScript include:

� Efficient, easily readable output rules

� Zero-length wild-cards

12

2.2. CONVERSATIONAL AGENTS

� Concise pattern matching through the use of concepts

� Built-in data covering multiple subjects and topics

By matching in meaning, ChatScript claims to be able to provide a better user experience

than AIML, with a much smaller rule set, improving maintainability and ease to modify

the bot whenever necessary.

2.2.2.1 Basic syntax, topics and rules

In Chatscript, rules are grouped in topics, and stored in “.top” files, allowing the designer

to map the point of the conversation, therefore making a better response for the user. An

example topic file can be found in listing 2.2. In this example, the topic will be triggered

when the user writes an input containing the words “name”, “here”, “what”, or any other

word specified in the system dictionaries “emogoodbye”, “emohello” or “emohowzit”. Then,

it will attempt to match the user input with the patterns “what is your name” and “what

be”. If no pattern matches, it will output the gambit “Have you been here before?”.

topic: ˜INTRODUCTIONS (˜emogoodbye ˜emohello ˜emohowzit name here what

)

#!x issued only once, then erased

t: Have you been here before?

#! what is your name

u: (what is your name)

My name is Harry.

#! what are you ?

?: (what be)

I am a bot. Are you also a bot?

a: (˜no)

Oh, a human... How can I help you?

Listing 2.2: Example topic file for ChatScript

In this simple example, we find some of ChatScript syntaxes elements. We can see

responders, gambits and rejoinders, as well as the use of topics and concepts. These are

part of ChatScript rules structure, but there are some more elements not shown here. A

slightly more comprehensive list is as follows:

13

CHAPTER 2. ENABLING TECHNOLOGIES

� Input matching: The pattern can start with either “s:”, “?:” or “u:”, indicating

they are supposed to respond to statements, questions or both. The parenthesis then

indicate the pattern itself, which can have multiple elements:

General words: A simple word to look for on the sentence. ChatScript handles

plurals and verb conjugations.

Concepts: Starting with ∼ , a concept is a set of words with a common general

meaning. There are a number of concepts built-in, and they can be expanded.

Wild-cards: Allowing to match any word, or using a cardinal, can specify the

number of words to match with the wild-card.

Start and end of sentence: Using > and <, its possible to indicate whether the

pattern should match the start or the end of the sentence. << and >> will match

any position in the sentence.

Variables: Starting the pattern element, whether is a wild-card, a concept or a

word, using “ ”, will store the matched word in a variable for future use, be it in the

response or somewhere else.

� Gambit: Lines starting with “t:” indicate a gambit, that will be triggered when the

bot cannot find an appropriate response.

� Bot Response: Immediately after the pattern, the following lines until the next

ChatScript syntax element indicate how the bot response is formed.

� Variables: Not shown in the previous example, any word starting with “$” is a global

variable, and can be assigned a value that will be remembered for the user. If the

variable starts with “$$”, the variable will be local, only lasting until the end of the

current answer.

� Rejoinders Starting with single letters from “a:” through “q:” to indicate nesting

depth, these indicate patterns that will trigger when the user responds to a specific

bot output.

� Concepts: Sets of words with a specific meaning, when referring to a concept in a

pattern, it will match if any word in the set matches the input. ChatScript includes

a large set of concepts by default, but the user can define its own sets.

� Topics: rules are grouped in topics. Rules inside the topic will only be tested against

the input when the input itself contains any of the words specified while defining the

topic.

14

2.3. QUESTION ANSWERING SYSTEMS

A more detailed approach to ChatScript rules, matching and functions can be found in

its documentation4.

2.2.2.2 Deploying a bot with ChatScript

By default, ChatScript can be run in local or server mode. Local mode allows for direct

interaction from the command line, using the standard input and output to communicate

with the user. This mode is specially useful for debugging the rules when developing bots,

since it gives access to debugging commands built with the system.

For production environments, ChatScript can be run in server mode, where it listens it

offers a TCP interface. This interface will receive messages containing the bot name, the

user name and the user input, and return the bot response for the given input.

2.3 Question Answering Systems

Question Answering (QA) is a discipline concerned with automatically provide answers to

questions presented in natural language, using a number of different approaches in order to

process the question into a query the system can understand, and, therefore, answer.

In general, we can differentiate six major general approaches [9]:

� Controlled natural languages: The system only takes into account a well-defined

subset of a given natural language that can be unambiguously interpreted.

� Formal grammars processing: Relaying on linguistics to assign syntactic and

semantic representations to lexical units, as well as compositional semantics, these

systems compute a representation of the question. Two examples of this approach

could be ORAKEL [10] and Pythia [11]

� Mapping linguistics to semantic structures: Systems designed under this prin-

ciple rely on a measure of similarity between elements in the query and the predicates,

subjects or objects in the knowledge base. PowerAqua [12] and Aqualog [13] are two

examples of this approach.

� Template-based: Taking two stages, this approach first constructs a query based

on the linguistic analysis of the input question, and the matches the expressions in

the question with elements from the dataset. TBSL [14] implements this approach.

4http://sourceforge.net/projects/chatscript/files/

15

http://sourceforge.net/projects/chatscript/files/

CHAPTER 2. ENABLING TECHNOLOGIES

� Graph exploration: This approach maps elements of the question to entities in the

knowledge base, and proceeds navigation from these pivot elements to navigate the

graph, seeking to connect the entities to yield a connected query. This example is

taken by the TREO [15] system

� Machine learning: Question Answering has been considered a machine learning

problem, with either models for joint query interpretation and response ranking, aim-

ing at learning semantic parsers given a knowledge base and a set of questions and

answers, or systems with an algorithm for matching natural language expressions and

ontology concepts, as well as an algorithm for storing matches in a parse lexicon.

To the aforementioned systems, we have to add another one: IBM Watson’s DeepQA.

Designed to be a contestant in the Jeopardy! quiz show, the DeepQA system had multi-

ple information sources. The DeepQA system focused on extracting and scoring evidence

from unstructured data, although it also used structured an semantic data sources. It was

build as a massively probabilistic evidence-based architecture using more than 100 differ-

ent techniques for analysing natural language. It used Apache UIMA5, an Unstructured

Information Management system.

2.4 Linked Data Systems

Linked Data consists in a set of rules about publishing Semantic Data in the web so it

can be interlinked and accessed using semantic queries. The term was first used by Tim

Berners-Lee while talking about the Semantic Web project. Additionally, Linked Open

Data is an extension of the Linked Data concept, requiring that the data provided is open

content.

There are a number of Linked Data Systems publicly available to the public, like DB-

pedia6, as long as multiple projects allowing to deploy your own linked data services. Some

of them are described in the next sections.

2.4.1 Apache Lucene and Solr

Not considered Linked Data Systems on its own, Apache Lucene7 is a high-performance,

full-featured text search engine, that can be used as the foundation of many systems. Apache

5http://uima.apache.org/
6http://wiki.dbpedia.org/
7http://lucene.apache.org/

16

http://uima.apache.org/
http://wiki.dbpedia.org/
http://lucene.apache.org/

2.4. LINKED DATA SYSTEMS

Figure 2.2: Linked Open Data clouda

ahttp://lod-cloud.net/

17

http://lod-cloud.net/

CHAPTER 2. ENABLING TECHNOLOGIES

Solr is built on top of Lucene, providing distributed indexing, replication and querying, with

multiple features and functionalities8:

� Full-text search, with powerful matching capabilities, powered by Lucene.

� Optimized for High Volume traffic.

� Standards Based Open interfaces, including JSON, XML and HTTP.

� Comprehensive Administration Interfaces, making it easy to handle Solr instances.

� Easy Monitoring, publishing relevant data via JMX

� Highly scalable and Fault tolerant, using Apache ZooKeeper, is easy to scale and

distribute the load.

Apache Solr is used as a base in many other systems, including some of the described

in the following sections, and can also be used as a QA system of its own [16].

Figure 2.3: Web interface for Solr queries.

2.4.2 Linked Media Framework and Apache Marmotta

Started as the Linked Media Framework9, this project aimed to provide an easy to setup

server to offer linked media management, publishing Linked Data and allowing interactions

8http://lucene.apache.org/solr/
9https://bitbucket.org/srfgkmt/lmf/

18

http://lucene.apache.org/solr/
https://bitbucket.org/srfgkmt/lmf/

2.5. INFORMATION RETRIEVAL

with it. Linked Media Framework (LMF) is built in modules, some of them optional,

allowing the extension of the functionalities in the Linked Media Server. Some of the

implemented modules are:

� LMF Semantic Search allowing for a search service on top of Apache Solr.

� LMF Stanbol Integration, using Apache Stanbol for content analysis and interlinking.

� LMF SKOS editor, to manage SKOS thesauruses imported in the Linked Media Server.

The core functionalities of LMF were set aside to incubate Apache Marmotta, an Open

Platform for Linked Data within the Apache Software Foundation10, aiming to provide an

implementation for Linked Data that can be used to both publish Linked Data and build

custom applications for Linked Data.

2.4.3 Fuseki and Apache Jena

Fuseki, built using Apache Jena11, is a SPARQL Protocol and RDF Query Language

(SPARQL) server that provides a REST-style interface for SPARQL queries. It is built

using Apache Jena, an open source Semantic Web framework for Java. Apache Jena pro-

vides an API to extract data and write it to RDF graphs, that are represented as an abstract

model. A model can be sourced with data from files, databases, URLs or any combination

of them. It also provides support for Web Ontology Language (OWL), and comes with

several internal reasoners, as well as having support to use the Pellet12 reasoner for OWL

2.5 Information retrieval

The amount of information available in the web has grown exponentially over the last years,

with standards such as Linked Data helping exchange data among heterogeneous systems.

However, many times these standards are not followed, and so it becomes necessary to

recover and convert the data into compatible formats. There are multiple frameworks

capable of crawling the web and recovering the relevant pieces of information, but we will

focus here in Scrappy, a framework in ruby that allows extracting information from web

pages and producing RDF data, and Scrapy, a Python tool that allows extracting data from

websites into any format, with powerful capabilities.

10http://www.apache.org/
11http://jena.apache.org
12https://www.w3.org/2001/sw/wiki/Pellet

19

http://www.apache.org/
http://jena.apache.org
https://www.w3.org/2001/sw/wiki/Pellet

CHAPTER 2. ENABLING TECHNOLOGIES

2.5.1 Scrappy

Scrappy [17] is a ruby framework with multiple functionalities, including web and REST

interface, storing the scrapped data in a RDF repository, and outputting it in multiple

formats. For our system, we will discuss the web scrapping and RDF output capabilities.

To recover data from a web page, Scrappy utilizes an ontology13 to define the mapping

between the web data and the Semantic Web resources. An example extractor can be found

in listing 2.3 will take the link to the GSI’s staff page and return a FOAF object with the

name of each member. As seen in the extractor, it matches CSS elements in the page to

semantic properties. Although not shown in this particular example, it can also use XPath

and regular expressions as selectors.

dc: http://purl.org/dc/elements/1.1/

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

sioc: http://rdfs.org/sioc/ns#

sc: http://www.gsi.dit.upm.es/ontologies/scraping.rdf#

_:gsipeople:

rdf:type: sc:Fragment

sc:type: foaf:Person

sc:selector:

*:

rdf:type: sc:UriPatternSelector

rdf:value: "http://www.gsi.dit.upm.es/index.php?option=com_jresearch&

view=staff&layout=positions"

sc:identifier:

*:

rdf:type: sc:BaseUriSelector

sc:subfragment:

*:

sc:type: foaf:Person

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: ".jrperson"

sc:identifier:

*:

rdf:type: sc:CssSelector

rdf:value: "a"

sc:attribute: "href"

sc:subfragment:

13http://www.gsi.dit.upm.es/ontologies/scraping/

20

2.5. INFORMATION RETRIEVAL

*:

sc:type: rdf:Literal

sc:relation: foaf:givenName

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: "a"

Listing 2.3: Example extractor for scrappy

An example of data generated with that extractor is shown in listing 2.4. It can be seen

how the elements matched in the extractor have been converted into properties.

1 <rdf:RDF

2 xmlns:foaf="http://xmlns.com/foaf/spec/#term_"

3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

4 xmlns:sioc="http://rdfs.org/sioc/ns#">

5

6 <foaf:Person rdf:about="http://www.gsi.dit.upm.es/index.php?option=

com_jresearch&view=member&task=show&id=84">

7 <foaf:givenName>Alberto Mardomingo Mardomingo</foaf:givenName>

8 </foaf:Person>

9 <foaf:Person rdf:about="http://www.gsi.dit.upm.es/index.php?option=

com_jresearch&view=member&task=show&id=16">

10 <foaf:givenName>Carlos A. Iglesias</foaf:givenName>

11 </foaf:Person>

12 </rdf:RDF>

Listing 2.4: Example person extracted with Scrappy

Using the appropriate selectors, scrappy can follow the links on a page, automating the

scraping of big web sites, and converting all the data into RDF, N-Triples or JSON-LD.

2.5.2 Scrapy

Scrapy14 is a fast high-level web crawling framework, used to extract structured data from

websites. It is written in Python, and by default outputs data to JSON, although it accepts

custom exporters, giving the user the ability to export into any format it requires.

14http://scrapy.org/

21

http://scrapy.org/

CHAPTER 2. ENABLING TECHNOLOGIES

The crawlers are Python classes that extend the Spider class in scrapy.

import scrapy

from vademecum.items import VademecumItem

import re

import bs4

import json

class vademecumSpider(scrapy.Spider):

Test spider to get the vademecum.IO

name = "vademecum"

allowed_domains = ["http://www.dit.upm.es/"]

url_base = "http://www.dit.upm.es/˜pepe/libros/vademecum/topics/{}.html"

start_urls = [url_base.format(str(i)) for i in xrange(4, 394)]

def parse(self, response):

doc = VademecumItem()

doc["resource"] = response.url

header = response.xpath(

"//p[@class=\"MsoHeader\"]/ancestor::div/*[2]/descendant::*/*/

text()")

.extract()

header = ’’.join(header).strip()

match = re.search("(\d+)\.\s*(.+)\s\[(.+)\]\s?\((.+)\)",

header, flags=re.U)

if match and match.lastindex == 4:

doc["title"] = match.group(2)

doc["alternative"] = match.group(3)

doc["concept"] = match.group(4)

return doc

Listing 2.5: Example scrapy spider

Listing 2.5 shows part of a scrapy spider that will return a JSON object containing the

URL of the scrapped page, as well as the title, alternative and concept fields scrapped from

the document.

22

2.6. WEB TECHNOLOGIES

2.6 Web technologies

Known simply as “The web”, the World Wide Web is an information system where hypertext

documents are accessed via the internet. First proposed by Tim Berners-Lee in 1989 [18],

it has grown to be used by two out of five people around the world15.

The technologies used in web services can be divided in Client technologies, executed in

the user’s computer, and Server technologies, executed in the server side of the service. We

will provide a short description of some of the technologies available for each side, focussing

on those used in this project.

2.6.1 Client technologies

Web browsers are usually responsible for running the code of a website. Usually, that code

consists on CSS, HTML and JavaScript files, that are interpreted by the browser to present

the page, and respond to the user actions.

� HTML: or HyperText Markup Language is the standard markup language used to

create web pages. It consists on a collection of pairs of tags that identify the different

elements on a page, describing the structure of the page. It can also include images

and other objects, allowing for complex user interaction.

� CSS: for Cascading Style Sheets is a style sheet language, used mostly to describe the

look and formatting of documents written in a markup language such as HTML. It is

designed to allow separation of content from document presentation, providing more

flexibility and control of the presentation, while also improving accessibility.

� JavaScript is a programming language used to run scripts to interact with the user

inside the browser window. Along with JavaScript, its most used library16 is jQuery,

which is designed to simplify many of the usual tasks performed with JavaScript.

These technologies are often used with Ajax (Asynchronous Javascript XML), a group

of web development techniques used to create asynchronous web applications. Using Ajax,

web applications can interact with the server in the background, therefore not interfering

with the behaviour and graphical display of the rest of the page.

15http://webfoundation.org/about/vision/history-of-the-web/
16http://libscore.com/#libs

23

http://webfoundation.org/about/vision/history-of-the-web/
http://libscore.com/#libs

CHAPTER 2. ENABLING TECHNOLOGIES

2.6.2 Server technologies

The interactions presented by the web client are the processed in the server side, usually

communicating using HTTP. There are multiple applications capable of handling this inter-

action, known as HTTP servers. Apache, NginX or Microsoft Windows Server® are some

of the most popular servers17.

For our service, we have used Apache [19], an Open Source HTTP-Server. First launched

in 1995, it has continued development to this date, with version 2.4.12 being released on

January 201518. It is currently developed and maintained by an open community of de-

velopers under the Apache Software Foundation, and made available in a wide variety of

operating systems, including GNU/Linux and Microsoft Windows®. It features a module-

based system, allowing the core functionality to be expanded by compiled modules. Some

of the most popular modules include:

� mod php Enabling the use PHP to execute server side code, this module can be found

in many Apache installations, allowing the deployment of services like WordPress or

Joomla.

� mod auth basic Handling basic user authentication, this module allows the server

administrator to block sections of the server from being accessed by the general public.

� mod proxy Allows the use of Apache as a proxy, masking other services behind it.

Over the last few years, there has been an important trend in the use of evented web

technologies, a vision of the traditional web APIs complemented with other APIs that pro-

duce events, and provide a callback mechanism, making the Web more like a giant network.

Node.js19 is one of the most popular environments to build this kind of applications.

2.6.2.1 WSGI Servers in Python

Web Server Gateway Interface (WSGI) is a specification for simple interfaces between web

servers and web applications for the Python programming language. First defined in PEP

333 [20], and updated in PEP 3333 [21], it has been adopted as a standard for Python web

application development.

17http://news.netcraft.com/archives/2015/05/19/may-2015-web-server-survey.html
18http://httpd.apache.org/
19https://nodejs.org/

24

http://news.netcraft.com/archives/2015/05/19/may-2015-web-server-survey.html
http://httpd.apache.org/
https://nodejs.org/

2.7. SUMMARY

There are multiple implementations and frameworks of WSGI for Python, some of the

most popular are:

� Bottle is a simple lightweight WSGI framework, focusing on simplicity. It is dis-

tributed as a single-file module, with no other dependencies than the Python standard

library. However, it has capabilities to handle routing, easy access to web data such

as cookies and HTTP headers, and includes a built-in server for development. It also

has support for templates, both with a built-in engine, and using external modules

such as mako or jinja2.

� Django is a full-fledged Python web framework, offering fast and scalable services,

with multiple built-in options, such as security and administration tools. It is slightly

higher level than other frameworks, and emphasizes reusability of components and

plugins, as well as rapid development.

� Flask, a micro web application framework, based on the jinja2 template engine, and

the Werkzeug WSGI toolkit. It focuses on providing a simple interface, whilst still

providing multiple features such as RESTfull request dispatching, cookies and request

handling and unicode support. It also includes native support for unit testing, as well

as a development server and debugger. It supports extensions for extra functionalities.

In our application, we have chose Apache as the gateway server, using mod wsgi, and

Flask for the application itself.

2.7 Summary

In this section, we have discussed the technologies related to the system we are developing.

First, we took a look at conversational agent systems. We saw that AIML and its

implementations provide a robust technology, that is still evolving despite its age. It has

been widely used, and still has an large community and volume of users, and is working on

the new AIML 2.0. We also considered ChatScript characteristics, with better performance

and a new language for writing bots, with a simpler syntax and features not present in

AIML 1.

We then considered Question Answering systems and its different approaches, also tak-

ing a look at some systems that use each approach.

As for Linked Data Systems, we studied the concept of the Semantic Web and Linked

Data, to then take a look at multiple systems used for it: Apache Solr, not a linked data

25

CHAPTER 2. ENABLING TECHNOLOGIES

system on its own, but used in many of them, the Linked Media Framework, a full-fledged

Linked Data server built around Apache Marmotta, and Fuseki, a SPARQL server with

reasoning capabilities built with Apache Jena.

After considering the data indexing systems, we studied two Information Retrieval tools:

Scrappy, a ruby web crawler capable of exporting RDF documents from the data extracted

from the web, and Scrapy, a Python framework for web spiders, with support for multiple

functionalities as well as allowing the export of the data in personalised formats.

Finally, we took a quick look at web technologies, both for client-side applications,

as well as server side systems that would allow complex interactions with the user. We

focussed specially on the server side, studying different implementations of WSGI modules

for Python, and considering their characteristics.

26

CHAPTER3
Architecture

In this section, we describe the overall architecture of a Question Answering system

that features social dialogue in a learning environment. First, we will summarize the

requirements for the system, and discuss the global architecture, to then explain in

detail each of the modules for the system. Finally, we will follow the process of two

use cases, and describe the process for each of them.

27

CHAPTER 3. ARCHITECTURE

28

3.1. OVERVIEW OF THE MODULES

3.1 Overview of the modules

In this section we will describe the architecture of our system, starting with the modules

identified in the requirements. These requirements are:

(i) Present users with a simple interface for their questions, and to present them with

the answers.

(ii) Classify each input and handle it to the appropriate module.

(iii) Track dialogue options according to the speech.

(iv) Implement a QA system that would be able to search the document library and extract

a short answer.

(v) Extend the documents library, scrapping external documents and producing semi-

structured indexes.

(vi) Follow up the learning process, and use it to improve the learning experience.

In figure 3.1 we show the global architecture of the system, identifying the main modules:

Conversational Agent, Question Answering and Information Extraction Agent. In the rest

of this section we will discuss the function of each module.

Figure 3.1: Global view of the architecture proposed

29

CHAPTER 3. ARCHITECTURE

The classifier receives the user queries. It provides an endpoint that the user-agent

(or different user-agents) uses to post the requests and obtain responses (i.e. the system

interface). The classifier then routes the user query to the conversational agent or the

QA modules depending on how the input is classified. Nevertheless, the architecture may

be extended with additional modules for multiple types of input. This classifier is usually

implemented using a supervised machine learning approach with algorithms such as decision

trees or naive Bayes that provide decent results for this purpose [22, 23]. The classifier

carries out a preliminary analysis of the query, since other modules will perform a deeper

analysis of the input depending on the kind of input they handle.

3.1.1 Conversational Agent

The Conversational Agent is responsible for handling the social dialogue of the conversation

(also referred by other authors as small talk or chit chat). It also traces the topic of the

conversation that stores in the fact KB, along with the former utterances and pills of

information learned or devised from the user. It is responsible for understanding the whole

meaning of the user query when he/she omits information already provided in previous

utterances. The Input Analyser inside the Conversational Agent, performs a script based

analysis of the input by matching regular expressions against the input. Some advanced

implementations of script based analysers also use dictionaries and perform Part of Speech

(PoS) tagging and parsing.

The Conversational Agent, by means of the Answer Generator, is also in change of

generating the answers that will be sent to the users. These are also stored in the dialogue

scripts. In the most common scenario, the small talk input is analysed by the Input Analyser

and tells the Answer Generator to given a particular answer in response. However, the QA

can also instruct the Answer Generator to send a response to the user. In that case, the

Conversational Agent generates the answer according to the topic and former utterances,

giving it a particular touch when needed. Besides the textual response that is presented to

the user, the answer is decorated with meta-data to provide further information about the

state of the Conversational Agent. Typically, they indicate the mood of the agent, its facial

expressions and gestures (possible implemented using Behavior Markup Language (BML)),

etc.

30

3.1. OVERVIEW OF THE MODULES

3.1.2 Question Answering

The Question Answering takes part with those user queries where he/she asks for a par-

ticular piece of information, i.e. as with a regular QA system. The QA Analyser uses

domain-specific grammars to extract the precise meaning of the query. This is, it classifies

the type of query, extracts the relevant concepts, and categorize them according to the on-

tologies considered. The effectiveness of the process depends of the accuracy and degree of

detail of the grammars applied, which includes the precision of the concept categorization.

The QA Analyser combines general-scope dictionaries with domain-specific ones to enhance

its effectiveness. If there is no grammar that can be applied to the query, the analysis

simply does not return any outcome.

As with regular QA systems, the Information Retrieval (IR) is consulted to obtain the

relevant documents where the answer is contained. The IR works with a set of documents

that has been previously indexed. In this case, given the semantic nature of the IR system,

it also acts as a SPARQL endpoint that may be queried for precise pieces of information.

Thus, it supports a dual working mode depending on the nature of the query. With semantic

queries the results are more precise and the information returned has better structure, the

better categorization of the fields returns the more accurate results. Semantic queries also

enable the use of linked data not only for enhancing results but for query expansion. When

the semantic IR is not available –either because the incoming query is too general, or because

there is no relevant structured documents–, the IR module will do its best to return a piece

of information as accurate as possible. At least, it retrieves a set of documents that are

related to the query. It will try to categorize the nature of the documents, which brings the

category of the concept searched, that can be used to expand the query and reformulate

the query. If no relevant document is returned by the IR, the QA is not capable to give a

response, and thus the Answer Generator will inform the user.

Moreover, the Semantic IR may also be queried by external modules. The treatment

given to the query is the same as when it comes from the QA Analyser. Finally, the

conversational agent may derive a query to the QA in those cases where the Classifier

miss-classifies the query, and more frequently with those utterances where the user asks for

more information. In this case, the QA system needs further information to perform the

document retrieval. Thus, the conversational agent will expand the query and route it to

the QA.

31

CHAPTER 3. ARCHITECTURE

3.1.3 Information Extractor

In case there is no relevant document for the query performed, the system will try update the

KB. The Information Extractor Agent ’s main function consists on analysing unstructured

documents in order to extract fields, categorize them and generating a semi-structured

document.

This is a slow process, so it cannot be performed in near real-time; instead, unresolved

query may trigger its execution, that will be available for future queries. This automatic

information extraction mechanism is a best-effort process that relies on the information on

the sources, and the ontologies used to map that information. Semantic scrappers such

as Scrappy [17] may boost this process. Alternatively, a system administrator may also

manually include documents on the IR index, but also mark them to be processed by the

Information Extractor Agent and index them afterwards.

3.2 Work process

In this section we will describe the process a question introduced into the system will follow.

Depending on the user input, the aforementioned process may differ. Here, we will consider

two types of user input, the first one being a simple social dialogue sentence, that won’t

require a look up in the KB. The other type of input to be considered is an actual question,

requiring a lookup in the KB.

The classifier will differentiate between the distinct types of input, and trigger the

appropriate processes.

3.2.1 Simple sentence

Our system is ready to handle social chat, which aims to provide a richer experience to the

user, encouraging him to keep chatting and having a better learning experience. In this

case, a KB lookup is not required, and therefore, the process is as stated:

1. The user inputs the sentence into the system.

2. The classifier tags the input as social dialogue.

3. The input analyser decides which type of social interaction we are facing, such as a

greeting, a identifying question (“Are you the teacher? “) or an insult, among others.

32

3.2. WORK PROCESS

4. The answer generator provides an appropriate response and returns it to the user.

This process is shown graphically in Figure 3.2.

Figure 3.2: Simple sentence process

3.2.2 Question with KB lookup

In this process, the question input into the system does require a lookup in the KB, via the

QA system. The process to produce the output will be the following:

1. The user inputs the question into the system.

2. The classifier tags the input as an actual question.

3. The QA Analyser process the question and performs a search in the KB.

4. The QA Analyser returns the response for the question to the Answer generator.

5. The answer generator process the response and returns a natural question, as well as

the required Out of Band (OoB) command with the data.

Figure 3.3 shows the process graphically.

33

CHAPTER 3. ARCHITECTURE

Figure 3.3: Question with KB lookup process

3.3 Summary

In this chapter, we presented the proposed architecture for our system.

We started by taking a look at the requirements that any proposed system should

accomplish, and taking a look at the module structure we propose, as well as a short

description for the function of each module.

We then proceeded to take a look at each module in detail, analysing its functionality,

as well as how each module interacts with each other.

Finally, we study two possible use cases for the systems, the first one without requiring

a look up on the Knowledge Base, an the second requiring a full lookup to answer the

question and supply with a relevant document for the user.

34

CHAPTER4
Case study: Java elearning platforms

In this chapter, we will describe the prototype we developed for a Java Bot following

the architecture described in the previous chapter. We will start with a short overview

of the implemented modules for the system, to then take a detailed look to each one

of them, describing how they work, and how they connect to each other.

35

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

36

4.1. OVERVIEW OF THE SYSTEM

4.1 Overview of the system

For this system, we developed a prototype utilizing the architecture explained in chapter 3.

To do so, we deployed the following modules and subsystems:

1. A Javascript client, that will connect to the system and act as a user interface.

2. A Front-end controller, written in Python, that will handle the interaction between

the different modules.

3. A chatbot using ChatScript, to handle question analysis and social dialogue.

4. An Apache Solr instance, where all the semantic data will be loaded.

In parallel to all this we developed both a web scraper using scrapy to recover the

relevant data, and an uploader to post the data to Solr.

4.2 Overall process

In this section we will provide a short explanation on how each module of the system interact

with each other. Figure 4.1 shows a schematic view of the process the system follows, first

for the retrieval of the information and, when the system if fully deployed, facing a query

from a user.

Figure 4.1: Overall cycle for the system.

First, the data from the Vademecum need to be scrapped into RDF documents, in an

automatic process that can be supervised by a human administrator, but can also be fully

37

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

automated. More details on this process can be found on section 4.3. The generated RDF

data is then stored into our Knowledge Base, so it can be easily queried. The process of

scrapping the data and indexing it can be performed periodically to include new data as it

appears.

Once the system is deployed, users can input questions using the interface explained in

section 4.4. Questions from the users will be packaged in a JSON request and then sent to

the controller, that will process the query.

The controller, described in section 4.5, will start the process sending the question to

the Chatbot (section 4.6). The Chatbot will process the Natural Language input from the

user, and classify it, attending on whether the question is simple social dialogue or requires

a knowledge base lookup. In the former case, the Chatbot will simply generate a Natural

Language response and send it to the controller, which will process it and sent it back to

the chat client and the user.

For the questions requiring Knowledge Base lookup, the Chatbot will identify the topic

of the question and will send an Out of Band command to the controller, asking for the

lookup. The controller will then form the query to retrieve the requested data, and perform

the query. With the retrieved information, the controller will form a new out of band

command, and send it back to the Chatbot. It will then process the data, and form a

natural language response, sending it back to the controller for its final processing before

being returned to the user in the chat client. The detailed information about the Knowledge

Base can be found in section 4.7.

4.3 Scrapping process

The data for this prototype comes from Professor Jose A. Mañas’ Java Vademecum1, con-

verted into RDF and JSON format using scrapy to be uploaded to a Solr instance. In this

process, we will study the structure of a Vademecum document and match it to the schema

described in section 4.7.1. An example of that conversion is shown in figure 4.2.

The process for that document is automated using Python, XPath and regular expres-

sions, using jinja22 templates to generate the data. The scrapy spider will go through every

entry in the Vademecum and create a list of items, which will in turn be exported in the

required format. We have considered two formats for the export, JSON and RDF. Both of

them are based on a taxonomy using SKOS and Dublin Core. However, it is worth noting

1http://dit.upm.es/˜pepe/libros/vademecum/
2jinja.pocoo.org

38

http://dit.upm.es/~pepe/libros/vademecum/
jinja.pocoo.org

4.3. SCRAPPING PROCESS

Figure 4.2: Example mapping for the vademecum.

that we are using JSON rather than JSON-LD, so we also provide the RDF as Semanic

Data.

4.3.1 RDF for Java

The first part of the process is to define a taxonomy for the Java elements in the Vade-

mecum. We have chosen to do this using SKOS3 and Dublin Core4, both of them used

for the representation of documents as Linked Data. We have therefore modelled a single

Vademecum page with the fields shown in table 4.1. Along with the objects representing

the Vademecum documents, our scrapper will generate a SKOS ConceptScheme, with all

the concepts identified in the Vademecum.

The data will be exported in RDF/XML format. An example of an object can be shown

in listing 4.1. It’s worth noting that the URL for the described document is present as the

rdf:about field.

3http://www.w3.org/TR/skos-reference/
4http://dublincore.org/documents/dcmi-terms/

39

http://www.w3.org/TR/skos-reference/
http://dublincore.org/documents/dcmi-terms/

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

Parameter Source Description

title Dublin Core The name of the document, in Spanish.

alternative Dublin Core The English equivalent for the title.

definition SKOS A short description of the term.

description Dublin Core The full text of the document.

exmaple SKOS An example of the element described.

related SKOS A topic related to the one being described.

inScheme SKOS The SKOS concept scheme this element is part of.

broader SKOS The parent SKOS concept for this element.

Table 4.1: Fields used representing a Java Object.

1 <skos:Concept rdf:about="http://www.dit.upm.es/˜pepe/libros/vademecum/

topics/26.html">

2 <dcterms:title xml:lang="es">Asignacion</dcterms:title>

3 <dcterms:alternative xml:lang="en">assignment</dcterms:alternative>

4 <skos:definition>Se llaman sentencias de asignacion a las que cargan

un nuevo valor en una variable</skos:definition>

5 <dcterms:description>Se llaman sentencias de asignacion a las que

cargan un nuevo valor en una variable: El tipo de la variable

debe ser igual al de la expresion en tipos primitivos: asignable

por promocion (ver \" Promocion\") asignable por reduccion (ver

\" Reduccion\") en objetos: asignable por Upcasting (ver \"

Casting\") asignable por Downcasting (ver \"Casting\")</dcterms:

description>

6 <skos:related>http://www.dit.upm.es/˜pepe/libros/vademecum/topics

/122.html</skos:related> <skos:related>http://www.dit.upm.es/˜

pepe/libros/vademecum/topics/242.html</skos:related> <skos:

related>http://www.dit.upm.es/˜pepe/libros/vademecum/topics/247.

html</skos:related> <skos:related>http://www.dit.upm.es/˜pepe/

libros/vademecum/topics/288.html</skos:related> <skos:related>

http://www.dit.upm.es/˜pepe/libros/vademecum/topics/47.html</skos

:related> <skos:related>http://www.dit.upm.es/˜pepe/libros/

vademecum/topics/86.html</skos:related> <skos:related>http://www.

dit.upm.es/˜pepe/libros/vademecum/topics/47.html</skos:related> <

skos:related>http://www.dit.upm.es/˜pepe/libros/vademecum/topics

/3.html</skos:related> <skos:related>http://www.dit.upm.es/˜pepe/

40

4.3. SCRAPPING PROCESS

Json field RDF equivalent Description

title dcterms:title The name of the document, in Spanish.

alternative dcterms:alternative The English equivalent for the title.

definition skos:definition A short description of the term.

description dcterms:description The full text of the document.

example skos:example An example of the element described.

links skos:related A topic related to the one being described.

id An unique identifier for this document,

matching the html document.

concept skos:broader The corresponding concept in the concept

scheme.

Table 4.2: Json fields and its equivalence.

libros/vademecum/topics/27.html</skos:related> <skos:related>http

://www.dit.upm.es/˜pepe/libros/vademecum/topics/28.html</skos:

related>

7 <skos:example>variable = expresion ;</skos:example>

8 <skos:broader>concepto</skos:broader>

9 <skos:inScheme>VademecumScheme</skos:inScheme>

10 </skos:Concept>

Listing 4.1: Example extractor

4.3.2 JSON data

Aside from the generated RDF, the scrapper has also de ability to generate JSON. However,

this format comes with some limitations, such as not including the concept scheme, and

not keeping the source of the fields. As can be seen in listing 4.2, a single JSON document

will take the URL as identifier, and have similar fields than the RDF. The correspondence

between the RDF and the JSON fields is shown in table 4.2

41

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

This format will be used to upload the data about the Vademecum documents to Solr.

1 "http://www.dit.upm.es/˜pepe/libros/vademecum/topics/26.html": {
2 "definition": "Se llaman sentencias de asignacion a las que cargan un nuevo valor en una variable",

3 "concept": "concepto",

4 "description": "Se llaman sentencias de asignacion a las que cargan un nuevo valor en una variable: El tipo

de la variable debe ser igual al de la expresion en tipos primitivos: asignable por promocion (ver

\"Promocion\") asignable por reduccion (ver \"Reduccion\") en objetos: asignable por Upcasting (ver

\"Casting\") asignable por Downcasting (ver \"Casting\")",

5 "links": [

6 "http://www.dit.upm.es/˜pepe/libros/vademecum/topics/122.html",

7 "http://www.dit.upm.es/˜pepe/libros/vademecum/topics/242.html",

8 "http://www.dit.upm.es/˜pepe/libros/vademecum/topics/247.html",

9 "http://www.dit.upm.es/˜pepe/libros/vademecum/topics/288.html",

10 "http://www.dit.upm.es/˜pepe/libros/vademecum/topics/47.html",

11 "http://www.dit.upm.es/˜pepe/libros/vademecum/topics/86.html",

12 "http://www.dit.upm.es/˜pepe/libros/vademecum/topics/47.html",

13 "http://www.dit.upm.es/˜pepe/libros/vademecum/topics/3.html",

14 "http://www.dit.upm.es/˜pepe/libros/vademecum/topics/27.html",

15 "http://www.dit.upm.es/˜pepe/libros/vademecum/topics/28.html"

16],

17 "example": "variable=expresion;"

18 "title": "Asignacion",

19 "alternative": "assignment",

20 "id": "26"

21 },

Listing 4.2: Example JSON document from the Vademecum

4.4 Chat client

In our prototype, the interaction with the system is done via a web client that provides a

chat box and an iframe where the content is located. When the user first opens the page,

it’s greeted by the bot, and provided with a short explanation of how the client works.

The client is made using web technologies: HTML, CSS and Javascript, and uses Ajax

to communicate with the server, sending the user questions and handling the response,

waiting for the user to send a question and then making the request to the server, as shown

in listing 4.3.

1 $.ajax({ url: form.attr(’action’),

2 data: json_data,

3 dataType: ’json’,

4 contentType: ’application/json;charset=UTF-8’,

5 success: populateForm,

6 error: function(data_resp) {

7 $(’#screen’).append(constructDialogEntry(’Duke’,

8 ’Vaya, parece que he tenido algún error

conectando con el servidor... Whoops’))

;

42

4.4. CHAT CLIENT

Figure 4.3: Web interface for the client.

9 console.log("Error connection to the controller");

10 return false;

11 }

12 });

13 return false;

14 });

15

16 function populateForm (data_resp) {

17 console.log(data_resp);

18 if (data_resp.answer) {

19 data_resp.answer.forEach(function(answer) {

20 $(’#screen’).append(constructDialogEntry(’Duke’, answer));

21 scrollDisplay();

22 if (data_resp.resource) {

23 if (data_resp.resource.indexOf(’vademecum’) != -1){

24 // This links to the vademecum

25 var name_start = data_resp.resource.lastIndexOf(’/’

)+1

26 var filename = data_resp.resource.substring(

name_start)

27 $(’#iframe-qa’).attr(’src’, vademecum_base +

filename);

28 current_url_shown = vademecum_base + filename;

29 } else {

30 //I have some other link

43

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

31 $(’#iframe-qa’).attr(’src’, data_resp.resource);

32 current_url_shown = data_resp.resource;

33 }

34 }

35 });

36 } else {

37 $(’#screen’).append(constructDialogEntry(’Duke’,

38 ’Lo siento, no puedo responder a esa

pregunta’));

39 scrollDisplay();

40 }

41 scrollDisplay();

42 }

Listing 4.3: Ajax performing the request to the controller

Upon the user submitting a question through the interface, the client will send a GET

request to the controller, as described in section 4.5, and will receive a JSON response,

containing the answer and the page to be shown to the user, if existent. An example

response to the question “¿Qué es un for?” is shown in listing 4.4.

1 {
2 "answer": [

3 "Esto es lo que s\u00e9 sobre for",

4 "Si quieres, creo que bucles for degenerados tienen algo

que ver con esto"

5],

6 "definition": "Los bucles for se ejecutan un n\u00famero

determinado de veces",

7 "links": [

8 "http://www.dit.upm.es/˜pepe/libros/vademecum

/topics/3.html",

9 "http://www.dit.upm.es/˜pepe/libros/vademecum

/topics/139.html",

10 "http://www.dit.upm.es/˜pepe/libros/vademecum

/topics/140.html",

11 "http://www.dit.upm.es/˜pepe/libros/vademecum

/topics/141.html",

44

4.5. FRONT END CONTROLLER

12 "http://www.dit.upm.es/˜pepe/libros/vademecum

/topics/142.html",

13 "http://www.dit.upm.es/˜pepe/libros/vademecum

/topics/143.html"

14] ,

15 "resource": "http://www.dit.upm.es/˜pepe/libros/

vademecum/topics/138.html"

16 }

Listing 4.4: Example response for the chat client

Figure 4.4 shows the web interface after a few interactions with the user.

Figure 4.4: Web interface after a question.

4.5 Front end controller

The Front end controller is the main control module in our system. It handles the requests

received from the client described in 4.4, and proceeds to triggers the required modules,

as well as executing the Out of Band commands received from each module. This mod-

ule is provided as a web service, and therefore we have chosen Flask [24] and Apache’s

45

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

mod wsgi [25] to deploy it. In the following subsections we will describe how it works as

well as its work-flow structure.

4.5.1 Functional Model

The function of this module is returning the answer to the user, formed as JSON, by

triggering the appropriate modules and reacting to their responses. To do so, it follows a

process explained in the UML diagram shown in Figure 4.5.

Figure 4.5: UML diagram of the process followed by the controller.

� Request parsing: The client sends the query as JSON using a HTTP request to the

front-end controller. This JSON is recovered and processed into a Python dictionary.

46

4.5. FRONT END CONTROLLER

� Send to ChatBot: The user query is sent to the ChatBot so it’s processes and a

response, either Natural Language (NL) or Out of Band, is generated.

� Split NL response and Ouf of Band commands The response in the previous

step is split in NL and Out of Band commands, to process each one appropriately.

� Out of Band command processing: Read the Out of Band commands and take

the appropriate steps for each one of them.

� Solr Lookup: If a lookup in the Knowledge base is required, send the query to Solr.

� Form Response: Once there are no more Out of Band commands, the controller

forms the actual response in JSON and send it to the user.

4.5.2 Structural Model

In this section we will describe the structure followed designing the front end controller. In

figure 4.6 we show the method structure of the controller.

Figure 4.6: Front end controller structure

Now we will proceed to describe each of the methods shown in the figure.

� rootURL() will be triggered whenever the base URL for the controller is requested.

It will act in the same way than the qa() method.

47

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

� qa() this function will recover the request parameters, shown in table 4.3, and start

the process to understand the user query, in order to return the appropriate response,

whose parameters are shown on table 4.4.

� runQuestion() in this function, we will simply run the question once through ChatScript,

and then start the main command processing.

� runCommands() Given the NL response from ChatScript, it will split the Out of

Band commands and start processing each one of them, as well as their responses,

adding commands to the queue as needed.

� processSolr() For the Solr command, this method will construct the solr query, and

keep sending it to Solr increasing its fuzziness level, until an answer is found, or a

maximum fuzziness is reached, in which case it will return the empty Solr response.

� splitCommands() Taking a NL sentence as a parameter, this method will return

both a list with all the Out of Band commands in the sentence, as well as the NL

part of the sentence, or an empty string if the sentence was made only of Out of Band

commands.

� processGambit() when a direct search does not return any answer, the system will

perform a broader search in Solr. This is further explained in section 4.7.

� sendChatScript() This function will process the interaction with ChatScript, both

sending the questions and handling the responses. For more details, see section 4.6.

� sendSolrDefault() Given a question and no other parameters or information, this

function will send said question to Solr, so it will go through the default processing.

This is mainly unused.

� sendSolrEDisMax() When a gambit is needed, send the question to Solr using an

eDisMax query, which will search in different fields, valuing each field using a given

weight.

� sendSolr() Used by the rest of the Solr related methods, this function will handle

sending the payload given as parameter to Solr, and returning the JSON response.

48

4.5. FRONT END CONTROLLER

Parameter Name Description

question User’s question The question submitted by the user.

bot Bot The bot the query will be send to.

username The user A random identifier for the user communicat-

ing with the bot.

Table 4.3: Parameters in the query received by the front end controller.

Parameter Name Description

Answer The Bot’s response The NL response generated by the bot.

Resource An URL The URL of the relevant document where the

information is, if existent.

Table 4.4: Parameters in the query sent back to the client.

Finally, we will describe the Out of Band commands that the system will be able to

process.

� sendSolr this command is issued whenever a question matches the pattern specified

to request information about a Java topic.

� solrResponse after a search is performed in Solr, this command is issued to indicate

whether or not a response has been found, and returning said response.

� solrLinks a special Solr search, looking for related topics in Solr.

� solrLinksResponse as a response to the solrLinks command, returns a list with the

related topics.

� gambit perform an eDisMax search in Solr, using the full user question.

� gambitResponse returns the title of the most relevant document found in the

eDisMax search.

� gambitUnknown issued when no document with a high enough score is found in

Solr.

49

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

� resource sets the URL to be displayed in the final response returned to the client.

� label sets the title of the found document as the label for the response.

The syntax of the commands is specified in table 4.5.

50

4.5. FRONT END CONTROLLER

Command Syntax Description

sendSolr sendSolr reqfield doctitle Searchs in solr for the doctitle

and returns the reqfield field.

solrResponse
solrResponse unknown The requested document was

not found in Solr.

solrResponse reqfield response Returns as response the data of

the field reqfield.

solrLinks solrLinks linklist Asks for a search in Solr for the

name of the topics given as an

uri in the linklist

solrLinksResponse solrLinksResponse nameslist Sets the response for the solr-

Links command, returning the

first name of the links.

gambit gambit topic Asks for a eDisMax search on

Solr, passing the full question.

gambitResponse gambitResponse gambittopic After performing an eDisMax

search, returns gambittopic as

the suggested topic.

gambitUnknown gambitUnknown After performing an eDisMax

search, indicates that no rele-

vant document has been found.

resource resource URL Sets URL as the resource to be

displayed in the client

label label topic Sets topic as the concept of the

response

Table 4.5: Parameters in the query sent back to the client.

51

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

4.6 Chatbot

The Chatbot handles the processing of the natural language input from the user, and

controls the conversation. To do so, it uses the chat engine ChatScript, described in section

2.2.2. We will first describe the Chatbot rules, and how they process the user input, and

then proceed to describe how to launch and communicate with the ChatScript server.

4.6.1 The rules

Chatscript responds to a series of rules, specified in its topic files. These rules will match

the user input and produce an appropriate response, or output a rejoinder if no rule is

matched. A more in depth description of how Chatscript rules work can be found in section

2.2.2.

We have separated our topics across several files, each containing related topics, as well

as the control script for the bot. We will start describing the control process, shown in

listing 4.5

topic: ˜control system ()

on startup, do introduction

u: (%input<%userfirstline)

gambit(˜tsaludos)

u: (< shut up >) $shutup = 1

u: (< talk >) $shutup = null

u: () # main per-sentence processing

$$currenttopic = %topic # get the current topic at start of volley

if (%response == 0) {nofail(TOPIC ˆrejoinder())} # try for

rejoinders. might generate an answer directly from what we are

looking for.

Check if it is a java question

if (%response == 0) {nofail(TOPIC ˆrespond(˜JAVA))}

if (%response == 0) {nofail(TOPIC ˆrespond(˜EJEMPLOS))}

if (%length == 0 AND %response == 0)

{

52

4.6. CHATBOT

nofail(TOPIC ˆgambit($$currenttopic)) # gambit current topic since

no input (usually start of conversation)

}

if (%response == 0) { nofail(TOPIC ˆrespond($$currenttopic)) } #

current topic tries to respond to his input

if (%response == 0) # see if some other topic has keywords matching his

input (given we have no response yet)

{

@8 = ˆkeywordtopics() # get topics referred in input

loop()

{

$$topic = first(@8subject)

nofail(TOPIC ˆrespond($$topic))

if (%response != 0) # stop when we find something to say

{

ˆend(RULE) # we are done, this terminates the loop (not

the rule)

}

}

}

if we have rejoinders for what we said OR we asked a question, stop

here

if (%outputrejoinder)

{

end(TOPIC)

}

if (%response == 0 AND ˆmarked($$currenttopic)) { nofail(TOPIC ˆgambit(

$$currenttopic)) } # gambit current topic since keywords match

current topic

if no topic reacts, go to the TSALUDOS keyworldless topic

if (%response == 0)

{

nofail(TOPIC ˆrespond(˜TSALUDOS))

}

if (%response == 0){ nofail(TOPIC ˆgambit($$currenttopic)) } # gambit

from current topic even though no keywords matched

if (%response == 0)

53

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

{

ˆrepeat()

[Lo siento, no te he entendido. Podrias reformularlo, por favor?]

[Perdona, no te he entendido bien. Decias?]

[Eins? Podrias repetir eso ultimo?]

}

Listing 4.5: Control process for ChatScript

In this process, we first check if we are currently in any conversation and have any

pending rejoinders ready to match the output. Then proceed to check for rules looking for

matches in the JAVA and EJEMPLOS topics. If no answer is provided, we will look for

gambits and proper responses in the current topic, and then in the rest of the topics with

keywords associated. In the case no match have been found yet, the user input will be test

against the keywordless topic, looking for both responses and gambits, and, finally, if there

is still no response, a generic answer will be provided, asking the user to modify its question.

As we have just mentioned, there are several topics, both with and without keyword,

spread across several files, containing both said topics and the sets of concepts used in the

bot. These files and the topics contained in them are:

� topic.top This file has most of the concepts used in the other files, as well as three

generic topics:

– TENCUESTA5 to answer questions regarding the poll that will be presented to

the user.

– EXAMENES containing generic responses to questions about the exams.

– INTRO with information that will allow the bot to identify himself.

� java.top This file contains the two main topics for answering the Java questions.

– JAVA will answer the questions related to Java concepts, as well as produce

gambits and question the user when the bot has the control over the conversation.

– EJEMPLOS a slight variation from the previous topic, this will handle example

requests from the user.

5Since we had a concept defined as “encuesta”, we needed to differentiate this topic, thus the starting

“T”

54

4.6. CHATBOT

Field Description

user The string identifying the user performing the

question.

bot The bot that the question is directed to, in

case there are several bot available in the

server.

question The user question

Table 4.6: Fields for the request to ChatScript

� javaconcepts.top contains the list of all the Java concepts that the bots knows about.

It is automatically generated from the data stored in Solr.

� insults.top with the topic of the same name (INSULTOS), responds to insults and

bad words input by the user.

� estado.top a single topic file, responsible of responding when the user enters infor-

mation about himself, or asks the bot about its status.

All these files need to be compiled into binary data to be used by the ChatScript server.

4.6.2 The server

ChatScript provides two ways of interaction. For debugging purposes, it has a command

line interface, and can also be deployed as a service listening in a TCP socket for user

input. This server is what we have choose to use to interact with ChatScript. The full

deployment instructions can be found in the appendix, and we will proceed to describe here

the communication process.

As stated ChatScript listens on a TCP socket, waiting for requests containing three null

separated strings, described in table 4.6

The server will then return in the same connection the response generated using the

process previously explained, and close the connection. If a new interaction is needed, a

new socket will be opened, following the same process.

55

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

4.7 Solr instance

In this section we will describe how the Solr instance is set up, as well as the schema and

the search procedure. We are using Apache Solr 4.10.2 as a document and search engine.

The search queries will be send by the controller described in section 4.5. The server will

contain the data recovered from the Vademecum, structured in documents (one for each

topic), and will allow us to perform the required searches. We will first describe the schema

for the aforementioned documents,

4.7.1 Data schema

The scrapped data is stored using a Solr core containing every relevant document. This is

done by describing the structure of said documents in the schema.xml for Solr. In this file,

we can consider three main groups of fields:

� Stock solr fields: These fields are internal for Solr, and we will not describe them

here.

� Document fields: the fields scrapped from the Vademecum, they are described in

table 4.7.

� titleDefinition field: this field is generated concatenating the definition and title

fields, to facilitate general search.

The XML for these fields is as in listing 4.6

1 <!-- Fields for elearning -->

2

3 <field name="title" type="text_search_es" indexed="true" stored="true"

multiValued="false"/>

4 <field name="alternative" type="lowercase" indexed="true" stored="true"

multiValued="false"/>

5 <field name="concept" type="lowercase" indexed="true" stored="true"

multiValued="false"/>

6 <field name="resource" type="string" indexed="true" stored="true"

multiValued="false"/>

7

8 <!-- First sentence of the scrapped text -->

9 <field name="definition" type="text_search_es" indexed="true" stored="

true" multiValued="false"/>

56

4.7. SOLR INSTANCE

10

11 <!-- Full text -->

12 <field name="description" type="text_search_es" indexed="true" stored="

true" multiValued="false"/>

13

14 <!--relations -->

15 <field name="links" type="text_ws" indexed="true" stored="true"

multiValued="true"/>

16

17 <!-- Each topic can have different examples -->

18 <field name="examples" type="text_general" indexed="false" stored="true"

multiValued="true"/>

19

20 <!-- Field for text search -->

21 <field name="titleDefinition" type="text_es" indexed="true" stored="false

" multiValued="true" termVectors="true" termPositions="true"

termOffsets="true" />

22 <copyField source="title" dest="titleDefinition"/>

23 <copyField source="definition" dest="titleDefinition"/>

Listing 4.6: fields defined for the Java documents in the schema

As shown in the table, the fields have a “field type” associated, that will determine how

they are stored and how they are tokenized and processed when performing the indexing

and the search. The fieldTypes we are using are as follow:

� string This field is a default Solr field, and stored verbatim using the solr.StrField

class.

� text general A default Solr field, using the sorl.TextField class.

� lowercase A variation on the default lowercase fieldType by Solr, it used the default

keyword tokenizer and the lowercase filter, and we have added the ASCIIFolding filter.

� text search es Based on Solr’s Spanish fields, this field will contain general text

to perform a search. It uses a standard tokenizer, as well as the following filters:

– Lowercase filter: converts all words to lowercase

– Stopfilter factory using Spanish stopwords and the snoball stemming algorithm

– Spanish light stem filter, a default solr stemmer for Spanish.

57

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

Field Field Type Description

title text search es The title of this particular

document.

alternative lowercase If exists, the English name

for the document.

concept lowercase What concept does this

document refers to.

resource string The link for this document.

definition text search es The first sentence of the

document.

description text search es The text of the document.

links text ws Related documents to this

one.

examples text general The scrapped text of the

examples.

Table 4.7: Fields for the documents stored in the Solr schema.

58

4.7. SOLR INSTANCE

– Only for the query processing, a worddelimiter filter to do the QA.

The listing 4.7 shows the description of the text search es fieldType.

1 <!-- Based on Solr default spanish fields-->

2 <fieldType name="text_search_es" class="solr.TextField"

positionIncrementGap="50">

3 <analyzer type="index">

4 <tokenizer class="solr.StandardTokenizerFactory"/>

5 <filter class="solr.LowerCaseFilterFactory"/>

6 <filter class="solr.StopFilterFactory" ignoreCase="true"

7 words="lang/stopwords_es.txt" format="snowball" />

8 <filter class="solr.SpanishLightStemFilterFactory"/>

9 </analyzer>

10 <analyzer type="query">

11 <tokenizer class="solr.StandardTokenizerFactory"/>

12 <!-- Lowecase and spanish stemming-->

13 <filter class="solr.LowerCaseFilterFactory"/>

14 <filter class="solr.StopFilterFactory" ignoreCase="true"

15 words="lang/stopwords_es.txt" format="snowball" />

16 <filter class="solr.SpanishLightStemFilterFactory"/>

17 <!--<filter class="solr.EdgeNGramFilterFactory" minGramSize="2"

maxGramSize="15" side="front"/>-->

18 <!-- Replace puntuaction marks -->

19 <filter class="solr.WordDelimiterFilterFactory"

20 generateWordParts="1"

21 splitOnCaseChange="0"

22 splitOnNumerics="0"

23 stemEnglishPossessive="0"

24 />

25 </analyzer>

26 </fieldType>

Listing 4.7: Definition for the text search es fieldType

With this configuration we will be able to do the queries described in the following

sections.

4.7.2 Faceted query

In the event that ChatScript identifies the question and the topic the user is asking for, we

will perform a faceted search in Solr, looking for the fields requested in the Out of Band

59

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

command. The query will be done in JSON format. An example of a query is shown in

listing 4.8, and the meaning of each field is described next:

1 {
2 "q" : "title:for˜0",

3 "wt" : "json",

4 "fl" : "*,score",

5 "rows" : "1"

6 }

Listing 4.8: Example JSON query for Solr

� q contains the actual query sent to the server, with the filter for the query and the

fuzziness. In the example, we are searching for documents containing the given string

in the title, with a fuzziness of 0 (an exact match).

� wt the format the data will be returned in. In the example, we want the data in

JSON format.

� fl the list of fields we want for the documents in the response. In the example, this is

set to all the fields in the document, specified in the query as a wild card “*”, as well

as the score for the match.

� rows the number of documents to return.

With this search, we will try to look up the documents when the ChatScript module

clearly identifies the topic the user is asking about, and, properly defining the returning

fields for the search, the controller will show the relevant data. In case the question is not

clearly identified, but ChatScript recognizes the user is talking about some topic related to

Java, this query won’t be valid, and we will have to perform an eDisMax query, described

in the next section.

4.7.3 Gambit query

When ChatScript identifies a sentence talking about a Java concept, but does not recognize

a question, we will perform a search in Solr using the entire question, treating it as a QA

system. To do so, we will perform an eDisMax query, taking advantage of the stemmers

60

4.7. SOLR INSTANCE

and tokenizers we have configured in section 4.7.1. This type of query is designed to process

user input directly, searching for the keyword across multiple fields, with different boosts

based on the significance of each field, and allowing multiple options to influence the score

on a case to case basis.

Like the regular Solr query, this query is perform using a JSON format, and sent to the

Solr service as the payload to a GET request. An example of an eDisMax query is shown

in listing 4.9

1 {
2 "q": "hablame de los bucles for",

3 "defType": "edismax",

4 "qf": "titleˆ10.0 descriptionˆ2.0",

5 "fl": "*,score",

6 "rows": "1",

7 "wt": "json",

8 "lowercaseOperators": "true",

9 "stopwords": "true"

10 }

Listing 4.9: Example eDisMax query for Solr

The significance of each in the query is as follows:

� q The question as sent by the user, with no processing.

� defType Explicitly set the query type as eDisMax.

� qf Set the weights for each field to consider in the query.

� fl The fields to return.

� rows The number of documents to return.

� wt The format for the response.

� lowercaseOperators Interpret lowercase words as boolean operators, such as “and”

and “or”.

� stopwords Use the stopwords defined in the schema.

61

CHAPTER 4. CASE STUDY: JAVA ELEARNING PLATFORMS

This search will provide a broader match than the faceted query, finding matches when

the topic of the question is not clear, and offering the answer to the user. To prevent

completely unrelated topics to be offered to the user, the score is retrieved and only the

answers with a minimum score will be returned.

4.8 Summary

In this Chapter, we have described a prototype of the proposed architecture for a system

focussing on supporting lessons about the Java Programming Language.

We started providing a general overview of the system, describing how each module is

related to the others.

We then talked about the information retrieval module, and how the information about

the Java programming language was recovered from the Java Vademecum, using scrapy,

and how we mapped it to a RDF taxonomy. We then studied the JSON format that would

be used to upload the data to Solr.

We moved onto the web interface that presents the system to the final user, explaining

the interface and how the system works to the final user. We also presented the interactions

of the client with the server.

The client connects with the Front end controller, and we studied its implementation.

We showed how the controller connects with the other modules, as well as analysed the

Out of Band commands the different modules use to communicate with each other, and the

workflow of the controller.

Taking a look at the conversational agent, we studied ChatScript and the rules used in

our system, as well as how they were triggered and the output they produce.

Finally, we analysed the Solr instance configuration, taking a close look at the schema

and the fields for the stored documents. We then proceeded to discuss the types of queries

the system, the regular faceted query for user questions, and the eDisMax queries for gam-

bits.

62

CHAPTER5
Case study: GSI Bot

In this chapter, we will describe the prototype of a bot we developed for the GSI web

page following the architecture described in chapter 3. We will first present the process

to recover the data as Linked Data, to them describe the interface and the modules of

the system.

63

CHAPTER 5. CASE STUDY: GSI BOT

64

5.1. OVERVIEW OF THE SYSTEM

5.1 Overview of the system

Along with the prototype described in chapter 4, we have also developed a system with the

data from the GSI web page, including data from the projects, publications and staff. For

this, we have similar modules:

1. A Javascript client acting as the user interface.

2. A Python controller, handling the flow of the information in the system

3. A different ChatScript bot, handling the conversation.

4. An Apache Solr core, with all the data.

In this prototype, the data was recovered using a mix of techniques, and integrated into

a single core in Solr.

5.2 Recovering and storing the data

Similarly to the previous chapter, the data for this prototype has been recovered and con-

verted into RDF and JSON formats,

We considered three types of data from the GSI web page: the information about the

members of the group, their publications and the projects the group has taken part of.

Each type comes from a different part of the website, and therefore will be considered

independently.

5.2.1 Projects

For the projects information, the data is available in different formats in the web page itself,

including RDF/XML, as shown in figure 5.1

5.2.2 Publications

Each publication listed in the GSI web page has an attached bibtex citation. Therefore,

it is possible to use a bibtex ontology1 to map the elements in the bibtex files to semantic

data. The mapping for the classes is shown in table 5.1.

65

CHAPTER 5. CASE STUDY: GSI BOT

Figure 5.1: RDF exporter for the projects.

Bibtex tag Ontology mapping Description

article bibtex:Article An article from a journal or magazine.

book bibtex:Book A book with an explicit publisher.

conference bibtex:Conference An article in a conference proceedings.

inbook bibtex:Inbook A part of a book, which may be a chapter (or

section or whatever) and/or a range of pages.

incollection bibtex:Incollection A part of a book having its own title.

masterthesis bibtex:Masterthesis A Master’s thesis

phdthesis bibtex:Phdthesis A PhD thesis.

proceedings bibtex:Proceedings The proceedings of a conference

techreport bibtex:Techreport A report published by a school or other insti-

tution, usually numbered within a series.

Table 5.1: Classes for the bibtex documents.

66

5.2. RECOVERING AND STORING THE DATA

As seen in listing 5.1, the mapping for the properties follows a simple pattern, similar

to the mapping of the classes. To this mapping we have added the source of the document

using Dublin Core, so the original bibtex can be referenced as needed.

1 <bibtex:Conference rdf:about="gsi:serranoTwitter2015">

2 <bibtex:hasTitle>A survey of Twitter Rumor Spreading Simulations</

bibtex:hasTitle>

3 <bibtex:hasAuthor>gsi:eserrano</bibtex:hasAuthor>

4 <bibtex:hasAuthor>gsi:ciglesias</bibtex:hasAuthor>

5 <bibtex:hasAuthor>gsi:mgarijo</bibtex:hasAuthor>

6 <dcterms:source>http://www.gsi.dit.upm.es/index.php/es/investigacion/

publicaciones.bibtex?controller=publications&task=export&

id=364</dcterms:source>

7 <bibtex:hasYear>2015</bibtex:hasYear>

8 <bibtex:hasMonth>September</bibtex:hasMonth>

9 <bibtex:hasBooktitle>7th International Conference on Computational

Collective Intelligence Technologies and Applications</bibtex:

hasBooktitle>

10 </bibtex:Conference>

Listing 5.1: Example bibtex document converted to RDF

5.2.3 People

Finally, the information available in the GSI web page about the members of the group

cannot be exported in any format, so we have used scrappy, described in section 2.5.1

to crawl the data and export it into an appropriate format. In order to do so, we used

the Friend of a Friend (FOAF)2 ontology as well as some elements from the Semantically-

Interlinked Online Communities (SIOC) ontology3 to represent each person in the group.

An example mapping can be found in listing 5.2

1 <foaf:Person rdf:about="gsi:amardomingo">

2 <foaf:workInfoHomepage>http://www.gsi.dit.upm.es/index.php?option=

com_jresearch&view=member&task=show&id=84</foaf:

workInfoHomepage>

1http://purl.oclc.org/NET/nknouf/ns/bibtex
2http://xmlns.com/foaf/spec/
3http://rdfs.org/sioc/spec/

67

http://purl.oclc.org/NET/nknouf/ns/bibtex
http://xmlns.com/foaf/spec/
http://rdfs.org/sioc/spec/

CHAPTER 5. CASE STUDY: GSI BOT

3 <sioc:Role>5> Becario de Grado</sioc:Role>

4 <foaf:givenName>Alberto Mardomingo Mardomingo</foaf:givenName>

5 <foaf:homepage>http://gsi.dit.upm.es/˜amardomingo/</foaf:homepage>

6 <foaf:img>http://www.gsi.dit.upm.es/uploads/jresearch/assets/members/

Foto.jpg</foaf:img>

7 </foaf:Person>

Listing 5.2: Example semantic data about a member of the group

This data was generated using scrappy, running the extractor shown in listing 5.3.

_:gsipeople:

rdf:type: sc:Fragment

sc:type: foaf:Person

sc:selector:

*:

rdf:type: sc:UriPatternSelector

rdf:value: "http://www.gsi.dit.upm.es/index.php?option=com_jresearch&

view=staff&layout=positions"

sc:identifier:

*:

rdf:type: sc:BaseUriSelector

sc:subfragment:

*:

sc:type: foaf:Person

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: ".jrperson"

sc:identifier:

*:

rdf:type: sc:CssSelector

rdf:value: "a"

sc:attribute: "href"

sc:subfragment:

*:

sc:type: rdf:Literal

sc:relation: foaf:givenName

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: "a"

_:gsiperson:

68

5.2. RECOVERING AND STORING THE DATA

rdf:type: sc:Fragment

sc:type: foaf:Person

sc:selector:

*:

rdf:type: sc:UriPatternSelector

rdf:value: "http://www.gsi.dit.upm.es/index.php?option=com_jresearch&

view=member&task=show&id=*"

sc:identifier:

*:

rdf:type: sc:BaseUriSelector

sc:subfragment:

*:

sc:type: rdf:Literal

sc:relation: foaf:homepage

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: ".personalpage a"

*:

sc:type: rdf:Literal

sc:relation: foaf:img

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: ".persimg"

sc:attribute: "href"

*:

sc:type: rdf:Literal

sc:relation: foaf:phone

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: ".jrpf"

*:

sc:type: rdf:Literal

sc:relation: sioc:Role

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: ".jrposition"

*:

sc:type: rdf:Literal

sc:relation: foaf:based_near

sc:selector:

*:

69

CHAPTER 5. CASE STUDY: GSI BOT

rdf:type: sc:CssSelector

rdf:value: ".jrlocation"

Listing 5.3: Extractor for the GSI people section

5.3 User interface

For this system, the user interface is similar to the one described in section 4.4, with some

minor changes.

Figure 5.2: Web interface for the client.

5.4 Controller

The controller handles the requests received from the client described in the previous sec-

tion, interacting with the required modules as needed, and interpreting the Out of Band

commands generated by each module. This module is very similar to the one described in

section 4.5 of the previous chapter, and is developed using the same technologies. It follows

the same functional model described in section 4.5.1.

70

5.4. CONTROLLER

5.4.1 Structural Model

In this section we will describe the structure followed by the controller of this prototype.

The relevant methods of said structure are shown in figure 5.3.

Figure 5.3: Front end controller structure

The function for each of those methods is described next:

� rootURL() triggered when the base URL for the controller is requested, it acts in

the same way as the qa() method.

� qa() Parsing the request parameters shown in table 4.3, this method will start the

process to process the user question, and return the response once said process is

complete, following the structure on table on table 4.4.

� runQuestion() Send the question to ChatScript once, to generate the first Out of

Band commands and start processing them.

� runCommands() Parse the response from ChatScript and split the Out of Band

commands, in order to start processing each one of them, as well as their responses,

adding commands to the queue as needed.

71

CHAPTER 5. CASE STUDY: GSI BOT

� solrPublication() When the user is asking about a publication, parse the parameters

and perform the relevant Solr lookup.

� solrProject() Parse handle the queries to Solr when the question involves projects.

� solrPerson() Handle requests regarding members of the GSI.

� solrCount() When the user ask about quantities rather than about the documents

themselves, perform the appropriate Solr lookup.

� processGambit() As a last resource, perform a broad search in Solr with the user

query. This is further explained in section 4.7.

� sendChatScript() This function will process the interaction with ChatScript, both

sending the questions and handling the responses. For more details, see section 4.6.

� sendSolrDefault() Given a question and no other parameters or information, this

function will send said question to Solr, so it will go through the default processing.

This is mainly unused.

� sendSolrEDisMax() Send the question to Solr using an eDisMax query, usually for

a gambit.

� sendSolr() Send a direct query to Solr. Mainly used by the rest of the Solr lookup

methods.

Finally, we will describe the Out of Band commands that the system will be able to

process.

� solrPublication and solrResponsePublication handle the interactions when the

user question is about the publications.

� solrProject and solrResponseProjects are issued for the query and response when

performing lookups about the projects.

� solrPerson and solrResponsePerson handle the queries for the lookups related

with the GSI members.

� solrCount and solrcounted perform the query for the number of documents relevant

to a given filter.

� solrLinks a special Solr search, looking for related topics in Solr.

� gambit performs an eDisMax search in Solr, with the user query.

72

5.5. CHATBOT

� gambitResponse returns the response of the gambit eDisMax query.

� gambitUnknown issued when the gambit does not return any relevant document.

� resource sets the URL to be shown to the user in the client.

5.5 Chatbot

Using the ChatScript chat engine, the Chatbot handles the conversation and process the

natural language interactions with the user. However, to adapt to the fact that the docu-

ments stored in Solr for this prototype are not homogeneous, the rule structure has been

changed.

5.5.1 The rules

We have separated the rules regarding different types of documents in one topic file per

type, and therefore, we will have the following files and topics:

� people.top This file has the interactions regarding the members of the group.

� projects.top with the topics regarding the projects.

� publications.top contains the topics relevant to the publications.

� introductions.top contains simple chat about the bot, as well as greetings and

farewells.

� mixed.top in this file are stored topics with questions regarding more than one of

the fields.

Finally, the control script used for this bot is very similar to the one provided by default

with ChatScript, since we do not have the limitations regarding changing the language in

this bot.

This control script will first look for rejoinders in the current topic, to then proceed

to offer a gambit if no rejoinder is found and the keyword match. If there is no gambit

available for the current interaction, the system will look for standard responders, both in

this topic and in any other topic whose keywords match the current volley. If no topic

reacts, the systems will then try to match the responders from the keywordless topics, to

finally gambit any keyword topic. If there is no response at that point, it forces a gambit

73

CHAPTER 5. CASE STUDY: GSI BOT

from the current topic, to finally offer a generic response, indicating the system does not

know how to respond.

5.5.2 The server

The ChatScript server for this prototype is deployed in the same way than the server in the

previous chapter, explained in section 4.6.2. However, it is worth mentioning that a single

ChatScript instance cannot hold both bots, so if the same physical (or virtual) server is to

run both bots, it would be needed to run two ChatScript instances, each one of them in a

different port.

5.6 Solr instance

In this section we will describe how the Solr instance has been configured for this system,

as well as the search procedure. As in section 4.7, we are using Apache Solr 4.10.2, which

will receive the queries from the controller described in section 5.4. The Solr instance will

contain a core with the data scrapped from the web page, allowing us to have all the data

in a single place.

The data was merged into a single RDF file, to then be imported and uploaded into the

Solr instance.

5.6.1 Solr Schema

For this system, we have stored all the scrapped data in the same Solr core. Therefore, we

can classify the fields according to the type of document they are associated with. We will

consequently look at the fields grouping them according to said type of document:

� Stock solr fields: Fields internal for Solr, we will not describe them here.

� Document fields: the fields scrapped from the web.

Fields for the projects: These fields are derived from the project exported struc-

ture.

Fields for the members of the GSI : Describing the people at the GSI, these fields

are based on FOAF fields.

Fields for the publications: Based on the bibtex ontology described in section

5.2.2.

74

5.6. SOLR INSTANCE

Field Field Type Description

about lowercase URI for the document be-

ing described

type lowercase RDF Class of the document

url string URL for associated filed for

this document, like a per-

sonal page or the full text

of a publication

searchField text search A field with information

from all the document

types, to perform regular

searches

Table 5.2: Common fields for different types of documents.

� searchField field: this field is generated concatenating fields from all three types of

fields, to allow a default search with a single field.

A short description of each field and the associated field types can be seen in table 5.2

for the common general purpose fields, table 5.3 for the members of the group, table 5.5 for

the projects and 5.4 for the publications.

The “text search” field is based on the default English fields, and is defined as shown

in listing 5.4

1 <fieldType name="text_search" class="solr.TextField"

positionIncrementGap="50">

2 <analyzer type="index">

3 <tokenizer class="solr.StandardTokenizerFactory"/>

4 <filter class="solr.LowerCaseFilterFactory"/>

5 <filter class="solr.StopFilterFactory" ignoreCase="true"

6 words="lang/stopwords_en.txt" format="snowball" />

7 </analyzer>

8 <analyzer type="query">

9 <tokenizer class="solr.StandardTokenizerFactory"/>

10 <filter class="solr.LowerCaseFilterFactory"/>

75

CHAPTER 5. CASE STUDY: GSI BOT

Field Field Type Description

givenname text search The name of the person be-

ing described

homepage string The personal page for this

person

img string A link to an image of this

person

based near lowercase The location for the person

described

phone string Their phone number

workinfohome string The page in their workplace

describing this person

role text search The position for this person

Table 5.3: Fields associated with personal data

76

5.6. SOLR INSTANCE

Field Field Type Description

Journal lowercase Journal for the described publication

volume string The volume this document appeared in

year string The year the document was published

month lowercase The month the document was published

title text search The title for this document

note text search A comment associated with the bibliographic citation

school text search The name of the School where the document was writ-

ten

series string The series for the publication this document appeared

in

publisher text search The publisher for the Journal of the document

number string The number of a work in a series

abstract text search An abstract about the document described

address lowercase The address for the publisher or the school

editor text search The editor for this document

author text search The list of authors of this document

pages string The page numbers of the Journal in which this publi-

cation appeared

chapter string The chapter of a book for this publication

source string The bibtex original file

Table 5.4: Fields for the publications.

77

CHAPTER 5. CASE STUDY: GSI BOT

Field Field Type Description

label text search The tittle for this project

status lowercase Whether the project is active or not

startdate string The date the project is supposed to start

enddate string The date project finished

funding text search The origin of the funding for the project

imageurl string A link to an image associated with the project

researcharea lowercase The field this project is associated with

origin lowercase A document with all the info about this project

Table 5.5: Fields for the projects.

11 <filter class="solr.StopFilterFactory" ignoreCase="true"

12 words="lang/stopwords_en.txt" format="snowball" />

13 <filter class="solr.WordDelimiterFilterFactory"

14 generateWordParts="1"

15 splitOnCaseChange="0"

16 splitOnNumerics="0"

17 stemEnglishPossessive="0"

18 />

19 </analyzer>

20 </fieldType>

Listing 5.4: Definition for the text search fieldType

With this configuration we will perform the queries described in the next sections.

5.6.2 Solr queries

For this system, we have considered several types of queries. We have considered questions

about the different objects and its relations, questions about quantifying specific subsets,

and gambit queries.

78

5.6. SOLR INSTANCE

5.6.2.1 Questions about quantities

This query is performed when ChatScript identifies a question about the about of some

type of document. This query will recover the number of documents in Solr matching the

required criteria, and return it in an Out of Band command. For example, for a question

about the number of publications in 2014, the query will be as shown in listing 5.5. The

meaning of each field is described next:

1 {
2 "q" : "type:*bibtex* AND year:2014",

3 "wt" : "json",

4 "rows" : "0"

5 }

Listing 5.5: Example JSON query for Solr

� q contains the actual query sent to the server, specifying the fields we are filtering

with. In the example, we are searching for documents for year 2014. Since “year” is a

field unique to publications, there is no real need to add the type filter, and is added

only for clarity purposes.

� wt the format the data will be returned in. In the example, we want the data in

JSON format.

� rows the number of documents to return. Since we only want the actual result count,

rather than the documents, in the example it is set to 0.

This search will return a JSON with the number of documents matching the criteria,

which in turn will be pass to ChatScript, generating the appropriate NL response.

5.6.2.2 General questions

ChatScript can also identify general questions about the different objects stored in Solr. In

those cases, Solr will perform a regular search, returning the document with the highest

score, which will them offered to the user as a response.

For example, if ChatScript identifies a question about the work the research group does

about Linked Open Data, the query send to Solr will be as shown in 5.6. and will return

79

CHAPTER 5. CASE STUDY: GSI BOT

the document with the highest score regarding the question, whether it is a publication or

a project.

1 {
2 "q" : "searchfield:linked\\ open\\ data",

3 "wt" : "json",

4 "rows" : "1"

5 }

Listing 5.6: Example query asking for Linked Open Data

A different search could be performed for people in the group. For example, if ChatScript

receives a question asking for the publications of a user, two queries will be sent. The first

one to identify the user, as shown in listing 5.7, which will return the “about” field with

the identifier for the user, as well as the page with the list of publications for this user. The

controller will then use the recovered identifier to search for publications that match the

author, as shown in listing 5.8.

1 {
2 "q" : "givenname:mardomingo",

3 "wt" : "json",

4 "fl": "about,workinfohomepage",

5 "rows" : "1"

6 }

Listing 5.7: Query asking for the data about a user

1 {
2 "q" : "author:gsi\:amardomingo",

3 "wt" : "json",

4 "fl": "about",

5 "rows" : "10"

6 }

Listing 5.8: Query asking for the data about a user

80

5.7. SUMMARY

5.6.2.3 Gambit queries

In the event that ChatScript is incapable of identifying the question the user is making, the

system will perform an eDisMax query, looking for a match in the relevant fields for each

document type, and offering the answer only if the score of the match is over a predetermined

minimum score. The process is quite similar to the previous prototype, described in section

4.7.3.

5.7 Summary

In this chapter we have talked about a different prototype for our system, including docu-

ments with different structures, indexed into the system.

We first studied the three main sources of data, proposing a RDF mapping to export the

scrapped data into semantic data. We also discussed the different techniques and tools used

while recovering the data. We recovered the data from the GSI members, their publications

and their projects.

Then we analysed the user interface for this prototype, very similar to the previous one.

We move on to analyse the new Front-end controller, which, although having the same

functional model, has a different structural model, in order to account for the different

structure of the documents indexed for this system. We analyse the new Out of Band

commands, as well as their parameters.

Like with the controller, the new conversational agent is studied in this section, analysing

the new file structure and control system.

To finish this chapter, we take a look at the Solr fields and schema built for this system,

with the different analysers, accounting for the recovered documents being in English rather

than Spanish. We also analyse the different queries that can be performed with this system.

81

CHAPTER 5. CASE STUDY: GSI BOT

82

CHAPTER6
Evaluation

In this chapter we will analyse the behaviour and performance of the system. We will

also evaluate the accuracy of its responses, and the end user experience compared to

a regular QA system.

83

CHAPTER 6. EVALUATION

84

6.1. OVERVIEW

6.1 Overview

The systems developed for this project have multiple differentiate modules, each one of

them with different hardware requirements. Therefore, we will first take a look at the

performance for each module, to then focus in measuring the response of the entire system.

Together with the performance analysis, we have run a experiment to analyse the effect

on the end user experience of the system, compared to a regular QA system, using the Java

prototype [26]. To do so, we implemented a simple QA and then presented a reduced group

of users with both systems, asking them to evaluate both systems.

6.2 Requirements and Benchmark

For our system, we will first analyse the memory and CPU usage under low load for each

of the modules. The results can be seen in table 6.1.

The specifications of the system running the tests are shown in table 6.2

Figures 6.2 and 6.1 show CPU and memory usage for the controller and ChatScript over

time. It clearly shows the difference between the system under low load, and the peaks in

usage during the stress tests. Since Solr is deployed under Tomcat, it is not possible to

plot its data independently from the rest of the Java processes, and we can only access the

figures available in Solr’s web interface, that indicate a consumption between 381.16MB

and 788.50MB.

We have also measured the response time for the system for different queries. Figure

6.3 shows the measured times. We associate the three peaks shown in the graph, around

10ms, 40ms and 75ms with queries directly answered by ChatScript, such as social dialogue,

queries with simple Solr lookups, and queries requiring a gambit (i.e. multiple Solr lookups)

Module CPU Usage Memory

ChatScript 0.1 % 152MB

Solr 1.9 % 533.74MB

Python Controller 0.4 % 153.91MB

Table 6.1: Memory and CPU usage for each system under low load

85

CHAPTER 6. EVALUATION

Operating System Debian Jessie x64, Kernel 3.16.0-4

Motherboard Asus V-P7H55E

CPU Intel i5 650 3.20GHz

Memory 2x Kingston DDR3 1333MHz 4096MB

Hard Drive Western Digital 7200rpm 1TB

Table 6.2: Memory and CPU usage for each system under low load

Figure 6.1: Memory consumption from ChatScript and the Controller

Figure 6.2: CPU usage for ChatScript and the controller

86

6.3. CORPUS TESTS

Figure 6.3: Times for queries

6.3 Corpus tests

During the development of the system, we prepared a corpus, to be able to test it in an

automated way. The test corpus was made of questions and their expected responder, as

well as the answer and resource for the expected topic. A short fragment of the corpus is

shown in listing 6.1

Pregunta,Concepto,CS_RESPONSE,ANSWERER,RESOURCE

Hola,,"Hola",chatscript

que es un while?,while,sendSolr definition while,solr,http://www.dit.upm.es

/˜pepe/libros/vademecum/topics/302.html

que es un while,while,sendSolr definition while,solr,http://www.dit.upm.es

/˜pepe/libros/vademecum/topics/302.html

eres el profesor,,"bot",chatscript

Listing 6.1: Fragment of the test corpus built for the system.

The results of the tests using the corpus are shown in table 6.3

87

CHAPTER 6. EVALUATION

System Success rate

Overall System 78.26%

Solr 80.43%

ChatScript 69.57 %

Table 6.3: Results for the test with the corpus

6.4 User experience

Finally, we tested the system in a trial with users, comparing the Java prototype to a regular

QA system. The users are presented both interfaces, shown in figures 6.4 and 6.5, with a

similar aspect to prevent the effect of different interfaces to have an impact on the results.

The QA will search for the information in the indexed documents, and show the result in

the screen, whereas our system will behave as described in chapter 4

The participants of the experiment ranged in age from 20 to 30 years old, most of them

being under 25. 15% of them where female, and 69% of them where students. All of them

had indicated they had experience with computers, and knowledge of the Java programming

language, but none of them had participated in any previous study involving conversational

agents.

6.4.1 Experiment procedure

We proposed the participants to interact with two different configurations of our prototype.

They are presented a QA configuration and a Conversational Agent configuration (both

with similar interfaces in order to avoid the effect of the possible confounding variable).

The QA search for the information in the documents available and shows the result. With

this configuration, the QA system is working as an IR since it does not extract any infor-

mation from the document. This is simple but yet valid and useful configuration since the

documents we worked with were relatively small. The second configuration consist on the

conversational agent we developed in chapter 4, that have access to the same information

as the former system (and uses the same IR module), with the added features of social

dialogue and proactive recommendation of related topic and suggesting examples. In both

cases, some answers will be served with suggestions of related topics and examples to ask

for. Instead of implementing four different configurations of the system, this approach was

88

6.4. USER EXPERIENCE

Figure 6.4: QA interface after asking about the for loop

Figure 6.5: Interface for our system about the for loop

89

CHAPTER 6. EVALUATION

selected because the influence of the suggestions can still be measured, and otherwise the

learning and fatigue effects of within-subjects evaluation with too many interfaces (that are

very similar) may falsify the results.

We hypothesise that participants will prefer using natural language rather than keywords

search to query the system, and that they will mostly follow the suggestions given, specially

in the Conversational Agent configuration. Particularly we state the following hypothesis:

� Hypothesis 1: Participants will interact more times with the conversational agent

interface than with the QA interface.

� Hypothesis 2a: Participants will use natural language queries significantly more

times than keyword queries to consult the system.

� Hypothesis 2b: In particular, participants will use natural language queries slightly

more times with the conversational agent interface than with the QA interface.

� Hypothesis 3a: Participants will prefer to follow suggestions and ask for related

topics significantly more times rather than asking for different topics.

� Hypothesis 3b: In particular, participants will prefer to follow suggestions when

these are offered so that they have to accept or reject them.

� Hypothesis 4: Participants who engage in social dialogue will show significantly

more satisfaction in the questionnaire.

The 12 participants that volunteered for this evaluation process were randomly assigned

to one of two groups, varying the order in which they will evaluate the two interfaces for

counterbalancing (50% of the participants will test the QA configuration first and then the

Conversational Agent). Each group receives a evaluation guide and a questionnaire. Each

participant is given the task consisting on questioning the system (to add extra motivation

we encouraged them to try to trick it or find a relevant topic where to which the system has

no answer). They are requested to perform this task with both system configuration. The

evaluation consist on: first, the participants fill in a demographics questionnaire; second,

they are given the general instructions to follow in the whole evaluation process; then they

are given the task and the URL of the system they will test first (according to the group the

belong to); after that, they are requested to fill in a questionnaire of satisfaction about the

first system configuration; then they are given the URL of the second system to test (and

the same task to perform); a second satisfaction questionnaire about the second system

configuration is delivered; and finally they are requested to fill in a global satisfaction

90

6.4. USER EXPERIENCE

questionnaire. The average time for performing the whole evaluation process was 9.13

minutes (SD=4.26).

6.4.2 Measurements

During the process, two different measurements were taken: the questionnaires of satisfac-

tion delivered three times during the process, and the interaction measurements taken from

the logs resulting from the interaction of each participant with the system. The question-

naires and the interaction measurements were paired using unique session identifiers. After

the evaluation process the logs were computed to obtain five metrics: the number of total

interactions of each participant with each system configuration, the number of suggestions

received by each participant with each configuration, the number of suggestions followed

by each participant with each configuration, the format of each participant’s query (Nat-

ural language or keywords) with each configuration, and the number of participants that

interacted using social dialogue with each configuration.

6.4.2.1 Usage of different type of queries

We split the user queries into two groups: those formed of NL and those that formed of

keywords. Although in different measure 75% of the participants used a keyword query at

least once, and all of them used NL queries. The average number of NL queries per user was

6.79, 1.26 times greater than the average number of keyword-based queries. It is statistically

significant (F1,11=9.82, p=0.004 < .005) that prefer NL to consult rather than keyword-

based queries. This is also verifiable when we split the data of both interfaces. Resulting

p values are 0.011 and 0.008 for QA and conversational agent configurations respectively.

This support out hypothesis 2a.

However, it is not statistically significant that users use more often NL than keywords

with the Conversational Agent than with the QA configuration, so hypothesis 2b cannot be

validated. Figure 6.6 shows this distribution, and it can be appreciated that the number

of interactions increases with the Conversational Agent configuration for both query types.

We concluded this is because, users in general have their own preferences about use natural

language or keywords (or possibly influenced by the nature of the interface used) regardless

of the nature of the answers received. It is important to point out that only two out of

12 users in the experiment used more often keyword queries than NL queries. Here there

exists a subtle group effect, since users from Group B (which interacted first with the

conversational agent) slightly reduced the usage of Keyword queries when they interacted

91

CHAPTER 6. EVALUATION

with the QA interface.

Figure 6.6: Average number of interactions per user using each query type for each system

configuration

6.4.2.2 Impact of suggestions

An average of 57% of the times a user was given a suggestion he/she followed that suggestion

in the next interaction. Besides, users rated the usefulness of suggestions with 3.41 over 4.

However, 96% of the suggestions followed were close-ended questions, e.g. “Do you want to

check for inheritance too?”. Thus we can conclude that users are interested in suggestions

when they only need to accept or reject them (hypothesis 3b), but not that they follow

suggestions of any type (hypothesis 3a).

6.4.2.3 Satisfaction

According to the results shown in Fig. 6.7, no correlation between interaction metrics and

user’s satisfaction is appreciated. Thus we cannot validate hypothesis 4.

92

6.5. SUMMARY

Figure 6.7: User interaction metrics sorted by its satisfaction

6.5 Summary

In this chapter we have analysed the performance of the prototype for the Java programming

language.

First, we took a look at the resources the system used, both under low load and for a

period of time while we performed multiple stress tests. We also studied the response times

of the system under a high number of queries, and analyse the results.

Then, we used a corpus with multiple questions and interactions to automatically test

for the success rate of the system, in comparison with each of the modules.

Finally, we described the process followed to test the system with real users, comparing

our system with a regular QA system, and presented the results.

93

CHAPTER 6. EVALUATION

94

CHAPTER7
Conclusion and future work

In this chapter we present the final results of this Master Thesis, take a look at the

goals we started this project with and its completion, to finally propose several possible

improvements for future work.

95

CHAPTER 7. CONCLUSION AND FUTURE WORK

96

7.1. CONCLUSION

7.1 Conclusion

For this project, we have developed multiple conversational agents that allowed users to in-

teract with Linked Data Systems in Natural Language. We will now present the conclusions

we have deduced from our work.

We started this document specifying several requirements and goals we aimed to achieve

with the architecture and prototypes developed for this Master Thesis. It has been shown

that with the technologies available at this point is possible build personal assistants using

conversational agents and Linked Data to help final users find the information they are look-

ing for. Building these systems comes from the appropriate knowledge of this technologies,

and how they can communicate with each other.

The Natural Language processing and understanding capabilities of ChatScript have al-

lowed us to present an interface that users with low technical capabilities can use, effectively

lowering the entry barrier for the fields we can adapt the system for. However, it is impor-

tant to remark that Natural Language processing still needs to improve, as can be shown by

the results of the evaluation. This is specially true for languages other than English, since

most frameworks for natural language processing are aimed at English speaking users, and

adapting them for different languages has proved that can be a daunting task if performed

in full.

By developing two different prototypes for the proposed architecture, with different

types of documents, we have shown that our system can be adapted to different fields with

relatively low effort, although it was shown than the first prototype was not ready for an

environment formed by heterogeneus documents containing the required data.

The tests with the users have allowed us to check the hypotheses formulated at the start

of this project, confirming several of them and being unable to support others.

Finally, the offering of our conversational agent as a web application, has proved a

fundamental tool to spread the usage of our system, since it permits access form any device

with an Internet connection.

7.2 Achieved goals

In chapter 1 we discussed the goals we wanted to achieve with this project. This can be

summarize as follows:

97

CHAPTER 7. CONCLUSION AND FUTURE WORK

(i) Develop a system that would be able to take a natural language requests and provide

answers using a Linked Data System.

(ii) Evaluate different natural language and linked data systems to use with our own.

(iii) Study the implementation of the system in multiple fields of knowledge.

(iv) Analyse the behaviour of the system, as well as the experience of the users using it.

For the first goal, we have proposed and architecture that can fulfil that objective, as well

as developed two prototypes proving it was possible to successfully follow that architecture

while developing a system with a Natural Language Interface.

We studied the systems for Natural Language processing available, analysing their ca-

pabilities and their weaknesses, focusing on the possibilities of using languages other than

English for the processing. We also analysed multiple Linked Data systems, as well as

Linked Open Data systems, finally choosing the one we judged the most appropriate for

our system. Therefore, we consider the goal (ii) to have been reached.

The first prototype developed for our system was focused on providing assistance for

an e-learning platform for the Java programming language, focusing on very simple and

structured documents, therefore not presenting significant challenges to index. We then

developed a system focused on finding information about a research group, with documents

of different structures and formats, dealing with different topics. We achieved this by

extending our first system into a new one capable of handling these new requirements.

Accordingly, we consider goal (iii) to be achieved.

Finally, we proposed a methodology to test the system, and test whether our hypotheses

about user experience and behaviour were correct. We perform an experiment comparing

our system with a QA interface, with real users, and gathering data from their usage of the

system, leading to the publication of the findings [26]. We also performed tests to check

the performance of the system under different loads, showing the final results in chapter 6.

These tests achieved goal (iv).

7.3 Future work

Working on the systems developed for this Master Thesis, we have achieved an under-

standing of the possibilities of Natural Language Processing, as well as the benefits of the

Semantic Web and the Linked Open Data initiative. With this knowledge, we can suggest

future areas of study that can improve the functionality of the project and extend its goals:

98

7.3. FUTURE WORK

1. Spanish dictionaries: Although it is possible to use the Chatbot engine chosen for our

prototypes, ChatScript, with Spanish, it has a distinct lack of support, and nowhere

near the capabilities for the English language. To improve this, it would be necessary

to build Spanish dictionaries, or translate the existing ones from English, as well

as analyse the processing ChatScript does for English sentences and mimic it with

Spanish, adapting it when necessary.

2. Using SPARQL: integrating a SPARQL query system would allow to easily adapt our

system for multiple knowledge fields, as well as providing support for more complex

interactions with the user, given the huge capabilities of the Linked Data.

3. Automating the indexing process: Although at this point the scrapping process is

mostly automated and can be done without human interaction, it is still necessary

for a person to gather the scrapped data and index it in Solr. In order to make our

system work in semi-real time, it would be necessary to fully automate the process,

from launching the multiple scrappers to combining the information and adding it to

the system, be it Solr or a SPARQL server.

4. Extend the evaluation experiment to the second prototype: The described experiment

with the users was performed with the first prototype. Adapting the methodology to

the second one, and gathering the users feedback may be useful for further improve-

ments of the system.

5. Adding audio interface: Whilst we consider interacting with our system with natural

language an improvement in comparison with traditional interfaces, it could be further

improved by including support for speech recognition and text-to-speech capabilities,

simplifying user interactions, and greatly improving accessibility.

6. Administrative interface: Adding an interface to handle the different modules of the

system, as well as checking their status and success rate in real time will allow ad-

ministrators to easily manage the systems and respond to any possible problem that

may appear.

7. Responsive web client : Given the current limitations of html and iframes, our system

does not behave well in smaller screens. Trying to overcome this limitation will greatly

improve the user experience when using our system.

In conclusion, we have developed a robust and functional system, but it can still be

greatly improved with new modules, enhancing the user experience. As new ideas and new

99

CHAPTER 7. CONCLUSION AND FUTURE WORK

developers come forward, they could take this system as a base to develop better and more

powerful personal assistants.

100

APPENDIXA
Installation Manual

This chapter aims to provide a general walk-trough on how to deploy our prototypes bot

on a fresh system. It assumes basic knowledge on both the system and the tools used, and

the required tools.

A.1 Order of deployment

Our system is composed of several submodules, and it is reccomended that they are started

in a specific order:

1. Chatscript

2. Apache Solr

3. Front-end controller

4. Front-end client

101

APPENDIX A. INSTALLATION MANUAL

A.2 Chatscript

Before being able to launch ChatScript, if you are using a 64 bit system, you need to install

several 32-bit libraries, as shown in A.1:

:˜/$ sudo dpkg --add-architecture i386

:˜/$ sudo apt-get update

:˜/$ sudo apt-get install lib32gcc1 lib32stdc++6

Listing A.1: Libraries for ChatScript

For the first launch of Chatscript, you need to compile the corpus. Therefore, you have

to launch chatscript on localmode first, issue the build commands, and then launch it as a

server. The commands are shown in A.2 for the build, and, once de process is complete,

exit the local interface with “:quit”, and launch it as a server, as shown in A.3:

:˜/calista-bot/ChatScript$./LinuxChatSscript64 local

[...]

Enter user name: username

username: > :build Dent

[...]

username: > :quit

Listing A.2: ChatScript build command

Keep in mind that, even though we refer to our bot as “Duke”, the files for this project

are the ones from the “Dent” folder, since the existing “Duke” files are related to a previous

iteration and where keep independent.

:˜/calista-bot/ChatScript$./LinuxChatScript64 port=1025

arg[1] = port=1025

evserver child fork requests: 0

evserver: running

Server EVSERVER ChatScript Version 5.1 64 bit LINUX compiled Feb 1 2015

23:00:53

EVSERVER ChatScript Version 5.1 64 bit LINUX compiled Feb 1 2015 23:00:53

Params: dict:720895 fact:800000 text:35000kb hash:50000

buffer:22x80kb cache:1x50kb userfacts:100

102

A.3. FRONT-END CONTROLLER

WordNet: dict=190271 fact=84865 stext=12742900 Jan31’15-15:26:50

Build0: dict=68775 fact=130830 dtext=1162676 stext=0 Feb01’15-15:07:58

0.txt

Build1: dict=8 fact=7 dtext=356 stext=3664 Jun27’15-22:42:15 Niko.txt

Error(2) opening LIVEDATA/ENGLISH

Used 49MB: dict 259,059 (24869kb) hashdepth 17/3 fact 215,702 (8628kb) text

13910kb

buffer (1760kb) cache (50kb) POS: 0 (0kb)

Free 44MB: dict 461,836 hash 1136 fact 584,298 text 21,089KB

Dictionary building disabled.

Postgres disabled.

======== Began EV server 5.1 compiled Feb 1 2015 23:00:53 on port 1025 at

Tue Jun 30 23:41:37 2015 serverlog:1 userlog: 0

======== Began EV server 5.1 compiled Feb 1 2015 23:00:53 on port 1025 at

Tue Jun 30 23:41:37 2015 serverlog:1 userlog: 0

evserver: parent ready (pid = 12435), fork=0

EVServer ready: LOGS/serverlog1025.txt

Listing A.3: ChatScript Server running

Keep in mind it will bind to the 1025 port.

A.3 Front-end controller

The controller need two libraries to be installed with pip. It is recommended to do it in a

virtualenvironment, as shown in A.4.

:˜/$ mkvirtualenv askbot

(askbot):˜/$ pip install websocket-client unidecode

Listing A.4: Libraries for the front end controller

103

APPENDIX A. INSTALLATION MANUAL

The askbot controller binds, by default, to the 4242 port, although it can be changed

in the askbot.py file. Once the changes have been made, it can just be run with python as

in A.5

(askbot):˜/calista-bot/FE-Controller$ python askbot.py

Listing A.5: Running the front end controller

A.3.1 Using apache mod wsgi

Using the provided askbot.wsgi, the system can be run using Apache and mod wsgi. After

installing and enabling the mod (in Debian systems, see listing A.6, set the virtualenviron-

ment in the configuration files, as well as the appropriate Aliases, as shown in A.7

(askbot):˜/$ sudo apt-get install libapache2-mod-wsgi

(askbot):˜/$ sudo a2enmod wsgi

(askbot):˜/$ sudo apache2ctl restart

Listing A.6: Installing mod wsgi

Run with the virtual environment

WSGIDaemonProcess talkbot python-path=/path/to/virtualenvsfolder/VEnvs/

talkbot/lib/python2.7/site-packages

The path for the .wsgi

WSGIScriptAlias /AskBot /path/to/calista-bot/FE-Controller/askbot.wsgi

<Location /AskBot>

WSGIProcessGroup talkbot

Order deny,allow

Allow from all

</Location>

Listing A.7: Apache WSGI configuration

104

A.4. FRONT-END CLIENT

A.4 Front-end client

The client for the bot is a web application. You just need to place the Ask-client files on

a webserver (like Apache or Nginx) html folder, and edit the index.html file, so the action

attribute in the form points to the host and port from the previous step, or to the Apache

alias is set up with mos wsgi.

A.5 Apache Solr

Apache Solr can be run in a Tomcat installation. You will need to indicate the solr.home in a

context specific for Solr, where the schemas and the Solr libraries are located. An example

context is shown in A.8. This file should be stored inside the “conf/Catalina/localhost”

folder, and with the same base name as the .war. For example, for an application solr.war,

the appropriate context file will be solr.xml

1 <Context docBase="/Path/to/tomcat/Tomcat/webapps/solr.war" debug="0"

crossContext="true">

2 <!-- The path to the folder where the solr installation is located

3 Production environments should avoid using the example Solr instance

-->

4 <Environment name="solr/home" type="java.lang.String" value="/home/

amardomingo/PFC/Solr/example/solr" override="true"/>

5

6 <!-- Allow access to Solr only from localhost -->

7 <Valve className="org.apache.catalina.valves.RemoteHostValve" allow="

localhost"/>

8 </Context>

Listing A.8: Tomcat context for solr

105

APPENDIX A. INSTALLATION MANUAL

106

APPENDIXB
Solr Uploader

The complete RDF scrapped for this document is avaliable in http://github.com/

gsi-upm/calista-bot, since the files are too long to be included here. We will show,

however, the uploader developed to index the files in solr:

B.1 Command syntax

The uploader can handle rdf and json files, and takes the arguments explained in table B.1

. And example usage is shown in listing B.1

:˜/calista-bot/RDF$./uploader.py -u http://localhost:8080/solr -c

elearning -r vademecum.rdf -e

Listing B.1: Example command to upload the vademecum data into Solr

107

http://github.com/gsi-upm/calista-bot
http://github.com/gsi-upm/calista-bot

APPENDIX B. SOLR UPLOADER

Argument Short argument Parameter Explanation

–help -h Shows the help

–url -u URL Sets URL as the Solr endpoint

–core -c CORE Uses CORE as the Solr core to upload the

data to

–data -d JSONFILE Reads the json data in the JSONFILE file to

upload it to solr

–rdf -r RDFFILE Reads the rdf data in the RDFFILE file to

upload it to solr

–verbose -v Prints debug information

–empty -e Clears all the data in solr before uploading

any document

–output -o Logfile to output to

Table B.1: Parameters for the uploader to Solr.

108

B.2. UPLOADER CODE

B.2 Uploader code

#!/usr/bin/python

-*- coding: utf-8 -*-

from __future__ import print_function

import sys

import argparse

import requests

from xml.dom import minidom

import json

solr_url="{url}/{core}/update"

solr_commit="<commit/>"

solr_clear="<delete><query>*:*</query></delete>"

solr_charset =’utf-8’

def get_tags():

"""

Read the taglist file for the equivalences between rdf and json

structure

"""

flines = open(’taglist.txt’).readlines()

eq = {}

for line in flines:

if line != ’’:

line_data = line.split(’,’)

eq[str(line_data[0])] = str(line_data[1].strip())

print(eq)

return eq

def commit(args):

’’’

Commits the changes

’’’

url = solr_url.format(url=args.url, core=args.core)

headers = {’Content-type’:’text/xml’, ’charset’:solr_charset}

requests.post(url, data=solr_commit, headers=headers)

109

APPENDIX B. SOLR UPLOADER

def clear(args):

’’’

Clears the solr core

’’’

url = solr_url.format(url=args.url, core=args.core)

headers = {’Content-type’:’text/xml’, ’charset’:solr_charset}

requests.post(url, data=solr_clear, headers=headers)

commit(args)

def read_xml(data_file):

"""

Read the data from the xml file

"""

Correspondence

rdf2json = get_tags()

xmlfile = minidom.parse(data_file)

Each element in this file, is an rdf:Description

itemlist = xmlfile.getElementsByTagName(’rdf:Description’)

documents = []

for element in itemlist:

doc = {}

First, read all this attributes

for node in element.attributes.items():

if node[0] in rdf2json:

doc[rdf2json[node[0]]] = node[1]

Now, repeat for the children

for childnode in element.childNodes:

name = str(childnode.nodeName.strip())

if name in rdf2json:

value = ""

the value for rdf:type is sometimes stored as an

attribute

if len(childnode.attributes.items()) != 0:

value = childnode.attributes.items()[0][1]

else:

value = childnode.firstChild.nodeValue

doc[rdf2json[name]] = value

The doc is complete

110

B.2. UPLOADER CODE

documents.append(doc)

return documents

def read_json(data_file):

’’’

Read the data from the provided json

’’’

json_file = open(data_file, ’r’)

data = json.loads(json_file.read())

return data

def upload_doc(doc, args):

’’’

Upload a doc to solr

’’’

url = solr_url.format(url=args.url, core=args.core)

operations = {’add’:{’doc’:doc}}

headers = {’Content-type’:’application/json’, ’charset’:solr_charset}

requests.post(’{url}/json’.format(url=url), data=json.dumps(operations)

, headers=headers)

def main(args):

’’’

Perform the necessary requests

’’’

Clears the core, if asked

if args.empty:

clear(args)

if args.verbose:

print("Data in core {core} cleared".format(args.core), file=

args.output)

if args.verbose >2:

print("Reading data from {file}".format(args.file), file=args.

output)

data = []

if args.data:

data += read_json(args.data)

elif args.rdf:

data += read_xml(args.rdf)

111

APPENDIX B. SOLR UPLOADER

else:

print("Need at least an rdf or json file to read", file=sys.stderr)

exit(1)

There is no actual numeric id, so...

i = 1

for doc in data:

if ’id’ not in doc:

doc[’id’] = i

i+=1

upload_doc(doc, args)

commit(args)

print("Uploaded all {number} doc to solr".format(number=str(len(data)))

, file=args.output)

if __name__==’__main__’:

parser = argparse.ArgumentParser(description="Uploader for solr",

add_help=True)

parser.add_argument(’-u’, ’--url’, default="http://localhost:8080/solr"

, help="URL for the solr install")

parser.add_argument(’-c’, ’--core’, default="gsidata", help="The core

in use")

parser.add_argument(’-d’, ’--data’, default="gsisemanticdata.json",

help="A file with json data")

parser.add_argument(’-r’, ’--rdf’, default=None, help="A file with rdf

data")

parser.add_argument(’-v’, ’--verbose’, action=’count’, help="Print

debug info")

parser.add_argument(’-e’, ’--empty’, action=’store_true’, help="Clear

the data before upload")

parser.add_argument(’-o’, ’--output’, default=sys.stdout, help="Log

output file")

parser.set_defaults(empty=False)

args = parser.parse_args()

Get log output

if args.output != sys.stdout:

args.output = codecs.open(args.output, ’w+’, ’utf-8-sig’)

main(args)

Listing B.2: Uploader to index the scrapped data in solr

112

Bibliography

[1] F. A. M. Fonte, J. C. Burguillo, and M. L. Nistal, “An intelligent tutoring module controlled

by bdi agents for an e-learning platform,” Expert Systems with Applications, vol. 39, no. 8,

pp. 7546–7554, 2012.

[2] A. Bogdanovych, K. Ijaz, and S. Simoff, “The city of uruk: Teaching ancient history in a

virtual world,” in Intelligent Virtual Agents (Y. Nakano, M. Neff, A. Paiva, and M. Walker,

eds.), vol. 7502 of Lecture Notes in Computer Science, pp. 28–35, Springer Berlin Heidelberg,

2012.

[3] A. Augello, G. Pilato, G. Vassallo, and S. Gaglio, “A semantic layer on semi-structured data

sources for intuitive chatbots,” in Complex, Intelligent and Software Intensive Systems, 2009.

CISIS’09. International Conference on, pp. 760–765, IEEE, 2009.

[4] R. Wallace, N. Bush, T. Ringate, A. Taylor, and J. Baer, “Airtifical intelligence markup lan-

guage version 1.0.1 - A.L.I.C.E. AI foundation working draft.” http://www.alicebot.org/

TR/2001/WD-aiml/, 2001. Accessed: 2015-06-12.

[5] “AIML: Artificial intelligence markup language.” http://www.alicebot.org/aiml.

html. Accessed: 2015-06-12.

[6] R. S. Wallace, “Aiml 2.0 working draft.” https://docs.google.com/document/d/

1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub.

[7] B. Wilcox and S. Wilcox, “Suzzete, the most human computer,” 2010.

[8] B. Wilcox, “Chatscript.” http://sourceforge.net/projects/chatscript/. Ac-

cessed: 2015-06-17.

[9] C. Unger, A. Freitas, and P. Cimiano, “An introduction to question answering over linked data,”

in Reasoning Web. Reasoning on the Web in the Big Data Era (M. Koubarakis, G. Stamou,

G. Stoilos, I. Horrocks, P. Kolaitis, G. Lausen, and G. Weikum, eds.), vol. 8714 of Lecture Notes

in Computer Science, pp. 100–140, Springer International Publishing, 2014.

[10] P. Cimiano, P. Haase, J. Heizmann, M. Mantel, and R. Studer, “Towards portable natural

language interfaces to knowledge bases - the case of the orakel system,” Data and Knoledge

Engineering, vol. 65, no. 2, pp. 325–354, 2008.

[11] C. Unger and P. Cimiano, “Pythia: Compositional meaning construction for ontology-based

question answering on the semantic web,” in Natural Language Processing and Information

Systems (R. Muñoz, A. Montoyo, and E. Métais, eds.), vol. 6716 of Lecture Notes in Computer

Science, pp. 153–160, Springer Berlin Heidelberg, 2011.

113

http://www.alicebot.org/TR/2001/WD-aiml/
http://www.alicebot.org/TR/2001/WD-aiml/
http://www.alicebot.org/aiml.html
http://www.alicebot.org/aiml.html
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-HkXRXusukADpFnDs4/pub
http://sourceforge.net/projects/chatscript/

BIBLIOGRAPHY

[12] V. Lopez, M. Fernández, E. Motta, and N. Stieler, “Poweraqua: Supporting users in querying

and exploring the semantic web,” Semantic Web, vol. 3, no. 3, pp. 249–265, 2011.

[13] V. Lopez, V. Uren, E. Motta, and M. Pasin, “Aqualog: An ontology-driven question answering

system for organizational semantic intranets,” Web Semantics: Sience, Services and Agents on

the World Wide Web, vol. 5, no. 2, pp. 72–105, 2007.

[14] C. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo, D. Gerber, and P. Cimiano,

“Template-based question answering over rdf data,” in Proceedings of the 21st international

conference on World Wide Web, pp. 639–648, ACM, 2012.

[15] A. Freitas, J. G. Oliveira, S. O’Riain, E. Curry, and J. C. P. Da Silva, “Querying linked

data using semantic relatedness: a vocabulary independent approach,” in Natural Language

Processing and Information Systems, pp. 40–51, Springer, 2011.

[16] G. Ingersoll, T. Morton, and A. Farris, Taming Text: How to Find, Organise, and Manipulate

it. Manning Pubs Co Series, Manning, 2013.

[17] J. I. Fernández-Villamor, C. A. Iglesias, and M. Garijo, “A Framework for Goal-Oriented

Discovery of Resources in the RESTful Architecture,” IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 44, pp. 796–803, June.

[18] T. Berners-Lee, “Information management: A proposal,” 1989.

[19] T. A. S. Foundation, “Apache http server project.” http://httpd.apache.org/ABOUT_

APACHE.html. Accessed: 2015-06-22.

[20] P. J. Eby, “Python web server gateway interface v1.0,” Tech. Rep. PEP 333, December 2003.

[21] P. J. Eby, “Python web server gateway interface v1.0.1,” Tech. Rep. PEP 3333, September

2010.

[22] B. Samei, H. Li, F. Keshtkar, V. Rus, and A. C. Graesser, “Context-Based Speech Act Classifi-

cation in Intelligent Tutoring Systems,” in Intelligent Tutoring Systems, pp. 236–241, Springer,

2014.

[23] C. Moldovan, V. Rus, and A. C. Graesser, “Automated speech act classification for online chat,”

CEUR Workshop Proceedings, vol. 710, pp. 23–29, 2011.

[24] “Flask, a uwsgi framework for python.” http://flask.pocoo.org/. Accessed: 2015-05-14.

[25] “Wsgi for apache.” https://github.com/GrahamDumpleton/mod_wsgi. Accessed:

2015-05-14.

[26] M. Coronado, C. Iglesias, and A. Mardomingo, “A personal agents hybrid architecture for ques-

tion answering featuring social dialog,” in 2015 IEEE International Symposium on Innovations

in Intelligent Systems and Applications (INISTA 2015), (Madrid, Spain), September 2015.

114

http://httpd.apache.org/ABOUT_APACHE.html
http://httpd.apache.org/ABOUT_APACHE.html
http://flask.pocoo.org/
https://github.com/GrahamDumpleton/mod_wsgi

	Resumen
	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Context
	Goals
	Structure of the document

	Enabling technologies
	Overview
	Conversational Agents
	AIML
	AIML 2.0
	AIML implementations

	ChatScript
	Basic syntax, topics and rules
	Deploying a bot with ChatScript

	Question Answering Systems
	Linked Data Systems
	Apache Lucene and Solr
	Linked Media Framework and Apache Marmotta
	Fuseki and Apache Jena

	Information retrieval
	Scrappy
	Scrapy

	Web technologies
	Client technologies
	Server technologies
	WSGI Servers in Python

	Summary

	Architecture
	Overview of the modules
	Conversational Agent
	Question Answering
	Information Extractor

	Work process
	Simple sentence
	Question with KB lookup

	Summary

	Case study: Java elearning platforms
	Overview of the system
	Overall process
	Scrapping process
	RDF for Java
	JSON data

	Chat client
	Front end controller
	Functional Model
	Structural Model

	Chatbot
	The rules
	The server

	Solr instance
	Data schema
	Faceted query
	Gambit query

	Summary

	Case study: GSI Bot
	Overview of the system
	Recovering and storing the data
	Projects
	Publications
	People

	User interface
	Controller
	Structural Model

	Chatbot
	The rules
	The server

	Solr instance
	Solr Schema
	Solr queries
	Questions about quantities
	General questions
	Gambit queries

	Summary

	Evaluation
	Overview
	Requirements and Benchmark
	Corpus tests
	User experience
	Experiment procedure
	Measurements
	Usage of different type of queries
	Impact of suggestions
	Satisfaction

	Summary

	Conclusion and future work
	Conclusion
	Achieved goals
	Future work

	Installation Manual
	Order of deployment
	Chatscript
	Front-end controller
	Using apache mod_wsgi

	Front-end client
	Apache Solr

	Solr Uploader
	Command syntax
	Uploader code

	Bibliography

