
PROYECTO FIN DE CARRERA

T́ıtulo: Diseño e implementación de un sistema de administración y

búsqueda para un metadirectorio de servicios telco

T́ıtulo (inglés): Design and implementation of an administration system and

search engine for a telco services metadirectory

Autor: Pablo Moncada Isla

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Gregorio Fernández Fernández

Vocal: Mercedes Garijo Ayestarán

Secretario: Carlos Ángel Iglesias Fernández

Suplente: Tomás Robles Valladares

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

PROYECTO FIN DE CARRERA

DESIGN AND IMPLEMENTATION OF AN

ADMINISTRATION AND SEARCH SYSTEM

FOR A TELCO SERVICES

METADIRECTORY

Pablo Moncada Isla

Marzo de 2014

Resumen

Esta memoria es el resultado de un proyecto cuyo objetivo ha sido realizar un repositorio

semántico de servicios y widgets.

Dicho repositorio tiene la facultad de poder ser rellenado de contenido de forma au-

tomática gracias a técnicas de descubrimiento automático en Internet, haciendo uso de

arañas o scrappers que recogen el contenido y posteriormente lo convierten a formato es-

tructurado o semántico.

Para que dicho repositorio tenga contenido de utilidad se han presentado algoritmos

que son capaces de calificar los servicios y además se ha desarrollado una herramienta

que permite organizar y administrar todo el contenido extráıdo por las herramientas de

descubrimiento automático.

Posteriormente se ha presentado otra herramienta que permite al usuario final explorar

el repositorio de servicios y ayudarle a buscar y a encontrar el contenido deseado mediante

técnicas de búsqueda semántica.

Por último, se han presentado las conclusiones extráıdas del trabajo, las posibles ĺıneas de

continuación del proyecto, aśı como los siguientes pasos en cuanto a desarrollo y aprovechamiento

de la plataforma.

Palabras clave: Tecnoloǵıas semánticas, Linked data, OpenRDF Sesame, Linked Me-

dia Framework, RDF, SPARQL, PHP, JavaScript, Java, Knowckout JS

V

Abstract

This thesis is the result of a project whose objective is to develop and deploy a semantic

repository of services and widgets.

The repository has the faculty of been populated of content in a automated way thanks

to Internet automated discovery techniques. Scrappers would fetch the content and after

this it would be converted into structured or semantic data.

In order the repository to be useful we will present algorithms that would be able to

rank services and widgets. We also present a tool that allow us to organize and administer

the content extracted by the automated discovery tools.

To continue, another tool will be presented. It will allow the final user explore the

service repository and will help the user to search and find the desired content through

semantic search techniques.

Finally, we gather the extracted conclusions plus some lessons learnt, the possible line

of work regarding the continuance of the platform as well as the next step regarding devel-

opment and exploitation of the service.

Keywords: Semantic technologies, Linked data, OpenRDF Sesame, Linked Media

Framework, RDF, SPARQL, PHP, JavaScript, Java, Knowckout JS

VII

Agradecimientos

Quiero aprovechar estas ĺıneas para agradecer a toda la gente que me ha acompañado

durante este magńıfico viaje que tanto he disfrutado.

A mi familia, por su apoyo incondicional y por sus intentos de entender siempre a lo

que me dedicaba, a pesar de que raras veces comprend́ıan de que hablaba.

A mis amigos y compañeros de la Escuela. A todos aquellos con los que me he cruzado

en el camino y me han permitido aprender de ellos. En especial a mis amigos Adrián,

Marcos, Juan Fernando, David, Gonzalo y con mención de honor a Beatriz.

Gracias también a mis compañeros de Delegación de Alumnos y de Eurielec, con ellos

he aprendido un montón y vivido experiencias inolvidables.

A todos los del Grupo de Sistemas Inteligentes y en especial a Carlos, que siempre ha

confiado en mi y me ha apoyado.

A cualquiera que leyendo estas ĺıneas sabe que ha significado algo para mi.

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XVII

List of Tables XXI

1 Introduction 1

1.1 Context . 3

1.2 Master thesis description . 3

1.3 Master thesis goals . 5

1.4 Structure of this Master Thesis . 5

2 Enabling Technologies 7

2.1 Overview . 9

2.2 OMELETTE mash-up Registry . 10

2.2.1 RDF model . 10

2.3 Automated Discovery . 13

2.3.1 Introduction . 13

2.3.2 Discovery techniques . 17

XI

2.4 Conclusions . 20

3 Requirement Analysis 21

3.1 Overview . 23

3.2 Use cases . 23

3.2.1 Actors dictionary . 23

3.2.2 OMR composition and search use case 25

3.2.2.1 Keyword search . 26

3.2.2.2 Mash-up browse by category 27

3.2.2.3 mash-up search by query 28

3.2.2.4 mash-up compose . 29

3.2.2.5 Ask suggestion . 30

3.2.3 OMR discovery and administration use case 31

3.2.3.1 Automatic mash-up feeding 32

3.2.3.2 HTML Form discovery and description 33

3.2.3.3 mash-up registry integration 34

3.2.3.4 API based integration . 35

3.2.3.5 Scraping based integration 36

3.2.3.6 Manual mash-up management 37

3.2.3.7 Browse pending mash-ups and services 38

3.2.3.8 Validate a mash-up / service 39

3.2.3.9 Reject a mash-up / service 40

3.2.4 Web interface use case . 41

3.2.4.1 Request available mash-ups 42

3.2.4.2 Search mash-ups by query 43

3.2.5 Conclusions . 43

4 Architecture 45

4.1 Introduction . 47

4.2 Automated discovery . 48

4.3 Semantic repository . 50

4.4 Ranking module . 51

4.5 OMR Admin Interface . 52

4.5.1 Main component . 54

4.5.2 Functions library . 54

4.5.2.1 Facet boxes . 55

4.5.2.2 Result lists . 56

4.5.2.3 Widget or service . 56

4.5.2.4 Generate charts . 56

4.5.2.5 Admin authentication . 57

4.5.2.6 Cache and performance . 57

4.5.2.7 Repository wrapper . 60

4.5.2.8 Sparql Library . 60

4.5.2.9 Validating resource . 62

4.5.2.10 Rejecting resource . 63

4.5.2.11 Wadl generation . 64

4.5.2.12 LMF integration . 66

4.6 OMR Client Browser . 67

4.6.1 Back-end . 67

4.6.2 Front-end . 69

4.7 Conclusions . 71

5 Prototype and example usage 73

5.1 Introduction . 75

5.2 Automatic service discovery . 77

5.3 Ranking algorithm . 81

5.4 OMR administrative interface . 82

5.4.1 Available general actions . 83

5.4.1.1 Filtering . 83

5.4.1.2 Searching . 83

5.4.1.3 Obtaining help . 84

5.4.1.4 Statistics . 84

5.4.2 Reject a resource . 84

5.4.3 Validating resource example . 85

5.5 Web developer interface . 86

5.6 Conclusions . 89

6 Conclusions and future lines 91

6.1 Conclusions . 93

6.2 Achieved goals . 93

6.3 Future work . 94

A Installing and configuring Scrappy 97

A.1 Installation . 97

A.1.1 Requirements . 97

A.1.2 Installation steps . 98

A.2 User manual . 99

A.2.1 Command line interface . 100

A.2.2 Web admin interface . 100

A.2.3 Web service interface . 101

A.2.4 Ruby interface . 102

A.2.5 Integration with Sesame . 103

A.2.6 Extractors . 104

B OMELETTE Mashup Registry (OMR) 113

B.1 Installation of Sesame with uSeekM (+PostgreSQL +PostGIS) 113

B.2 Installation of the DataGridService . 116

B.3 User manual . 117

C OMR Administrative interface 121

C.1 Installation and configuration . 121

D OMELETTE Ranking System 123

Bibliography 125

List of Figures

1.1 Omelette general picture . 4

2.1 Omelette mash-up Registry RDF model . 11

2.2 ProgrammableWeb . 14

2.3 Yahoo Pipes . 15

2.4 Opera Widgets . 16

2.5 Mapping example for data extraction . 17

2.6 Mapping example for data extraction . 18

2.7 Execution page of a Yahoo Pipe’s mash-up 19

3.1 Composition and Search use case . 25

3.2 OMR discovery and administration use case 31

3.3 Web interface use case . 41

4.1 General Architecture . 48

4.2 Scrappy sequence diagram . 49

4.3 Sequence diagram for ranking index generation 52

4.4 Simile Exhibit example interface . 53

4.5 OMR Admin Interface architecture . 53

4.6 OMR Admin Interface . 54

4.7 Generating Facet Boxes . 55

4.8 Pie chart . 57

4.9 Sequence diagram for chart generation . 58

XVII

4.10 Sequence diagram if query is not in cache 59

4.11 Sequence diagram if query cached . 59

4.12 OMR admin top menu . 62

4.13 OMR admin validate and reject buttons . 62

4.14 Sequence diagram for validating RDF resource 63

4.15 OMR admin search box . 63

4.16 Sequence diagram for rejecting RDF resource 64

4.17 Sequence diagram for WADL file generation 66

4.18 Scrappy sequence diagram . 68

4.19 OMR client interface . 68

4.20 Search fields in OMR client interface . 70

5.1 Original site and corresponding LiMOn mapping 79

5.2 Main view OMR Administrator . 82

5.3 OMR admin top menu . 82

5.4 Filtering by LiMOn properties . 83

5.5 OMR admin search box . 83

5.6 OMR admin help . 84

5.7 OMR see statistics . 84

5.8 Bad charset encoding in widget description 85

5.9 Google maps api service in admin interface 85

5.10 OMR Developer interface main . 86

5.11 Search service button . 87

5.12 Select saved search or create a new one . 87

5.13 Select filters for the search . 87

5.14 Show results . 88

5.15 Found services by the semantic module . 88

5.16 Extended service info . 89

A.1 Scrappy command line interface . 101

A.2 Web admin interface of Scrappy . 102

A.3 Extractors Admin Interface . 102

List of Tables

3.1 Actors list . 24

4.1 Runnable components in OMR . 50

4.2 Execution query time comparison . 58

4.3 Sparqllib output example . 61

5.1 Actors list . 75

5.2 Execution enviroment . 76

5.3 Scrappy execution statistics . 77

5.4 OMR components summary . 77

5.5 Ranking algorithm execution statistics . 81

XXI

CHAPTER1
Introduction

This chapters provides an introduction to the problem which will be approached in

this project. It provides an overview of the benefits of mash-ups and linked data

technologies. Furthermore, a deeper description of the project and its environment is

also given.

1

CHAPTER 1. INTRODUCTION

2

1.1. CONTEXT

1.1 Context

The convergence of Telecom, IT and content services drives new emerging service markets

based on an open Internet of Services. mash-ups have gained big success in the so-called

Web 2.0. The success of the Web 2.0 services has encouraged Telcos to expose their services

as Telco mash-ups, in order to provide third parties with facilities to build their business.

Moreover, the exposure of network infrastructure as services is facilitating the entry of

new API-driven telco agents that bring traditional telco services (telephony, messaging, IP

location, etc.) to the Web.

Yet, the technologies underlying each of the different mash-up types are heterogeneous,

which makes integration challenging. Also, mash-ups do not offer a universal composition

model either, since mash-up development is not vendor independent. A mash-up developed

within a specific technology has to be re-coded in order to be deployed in another engine.

This master thesis is developed as part of OMELETTE [1] project which in turn is

part of a FP71 project that aims at researching on the development, management, gover-

nance, execution and conception of converged services with a specific focus on the Telco

domain. OMELETTE will create a sound model of mash-ups that follows the REST ar-

chitectural style (also supported by standard widget technology), as well as a standard

specification of a mash-up-containing platform that may guarantee portability and inter-

operability among different vendors and versions. These concepts will be based on a solid

theoretical model of mash-up foundations and the specific requirements gained from the

telco domain. OMELETTE will foster as well the reuse of existing components and mash-

ups, thanks to its automated service discovery functionalities. Project OMELETTE aims

at developing an open platform for building convergent mash-ups for the telco domain to

be used within several industry-driven use cases.

1.2 Master thesis description

OMELETTE project provides end users an environment for developing and running widgets

and mash-ups. Users can create mash-ups with a mash-up editor and then run these mash-

ups in the Live OMELETTE Environment as depicted in figure 1.1.

The Live OMELETTE Environment interacts with the Service mash-up Environment

(for direct deployment of new mash-ups), with the web, and with the OMELETTE Infor-

1FP7-ICT-2009-5

3

CHAPTER 1. INTRODUCTION

mation Store (semantic storage of existing widgets and services).

For this master thesis we are going to focus on how to discover and manage

widgets and services to develop new mash-ups (OMELETTE Information Store). We

will integrate discovering techniques with the OMELETTE mash-up register (OMR) which

is already developed and deployed.

Figure 1.1: Omelette general picture

Inside the OMELETTE information store we distinguish the following modules:

OMELETTE mash-up Registry is the element that registers components for their us-

age by the rest of elements in the OMELETTE platform. A component can be a

mash-up, a service, or a widget. Component descriptions and accompanying binary

content will be stored in the OMR so that other elements from the OMELETTE

architecture can query the OMR for them and use them. To describe components,

a unified RDF component model has been defined. This unified component model

provides a unified way to query components and identify, e.g., appropriate widgets for

composition, interesting new services to be used when creating a widget, or relevant

mash-ups of a particular domain.

Automatic Discoverer is the system responsible for populating the OMR with up-to-date

components. In the current Web plenty of services and widgets are released every day,

4

1.3. MASTER THESIS GOALS

and developers need to be aware of these services in order to build state-of-the-art

mash-ups. To achieve this, a module that crawls service and widget repositories reg-

istries these components into the OMR. This automatic discoverer produces semantic

descriptions of the components found in the Web out of the unstructured HTML

documents they are contained into.

OMR admin interface will allow to organize the components fetched by the automatic

discoverer. Some of the components inserted into the OMR might be undesirable, and

the administrator user within the admin interface will be responsible filter them.

Web developer interface will be used by final developer users allowing them to query

by needs and recommending other services by using semantic search technologies.

1.3 Master thesis goals

The main purpose of this master thesis is to have a repository of widgets and services

to build new mash-ups. First we need to feed the repository and we have to do it

automatically using discovery techniques. The content fetched from the internet must be

structured before it is inserted into the repository and therefore the repository has to be

able to store the data with the same structure, this is done using semantic repositories.

All the information stored in the repository has to be managed manually by an admin-

istrator. This is the main goal of this master thesis, create an administration interface that

permits an administrator user chose which widgets and services automatically fetched and

stored are useful. The administrator interface will provide several tools to the administrator

user and will use ranking algorithms to help him decide which ones are usefull.

Finally, there is a web interface for final users that will allow them find services and

services using semantic search technologies.

1.4 Structure of this Master Thesis

In this section we will provide a brief overview of all the chapters of this Master Thesis. It

has been structured as follows:

Chapter 1 provides an introduction to the problem which will be approached in this

project. It provides an overview of the benefits of mash-ups and linked data technologies.

Furthermore, a deeper description of the project and its environment is also given.

5

CHAPTER 1. INTRODUCTION

Chapter 2 contains an overview of the existing technologies on which the development

of the project will rely.

Chapter 3 describes one of the most important stages in software development: the

requirement analysis using different scenarios. For this, a detailed analysis of the possible

use cases is made using the Unified Modeling Language (UML). This language allows us to

specify, build and document a system using graphic language. The result of this evaluation

will be a complete specification of the requirements, which will be matched by each module

in the design stage. This helps us also to focus on key aspects and take apart other less

important functionalities that could be implemented in future works.

Chapter 4 describes the architecture of the system, dividing it into 3 groups and differ-

encing front-end and back-end modules.

Chapter 5 describes a selected use case. It is going to be explained the running of all the

tools involved and its purpose. It is based on how to crawl the web to find new mash-ups,

then feed the repository, do the validation and rejections of the mash-ups, and finally the

developer will be able to use the discovered services.

Chapter 6 sums up the findings and conclusions found throughout the document and

gives a hint about future development to continue the work done for this master thesis.

Finally, the appendix provide useful related information, especially covering the instal-

lation and configuration of the tools used in this thesis.

6

CHAPTER2
Enabling Technologies

This chapter introduces which technologies have made possible this project. First of

all there must be a place (repository) to store all the mash-ups, this is achieved by the

OMELETTE mash-up register, explained in section 2.2. Second, the technology that

has made possible feeding the repository in section 2.3. Finally, the technologies that

have been used to develop the web interfaces that enable browsing the mash-ups.

7

CHAPTER 2. ENABLING TECHNOLOGIES

8

2.1. OVERVIEW

2.1 Overview

In the current Web, developers enjoy the availability of plenty of services and widgets that

can be reused to build new web applications. This ecosystem of reusable web components

comprises elements such as data feeds of various domains, telco services or desktop and

mobile widgets. Additionally, there is a growing set of tools for the creation of mash-

ups such as MyCocktail [2] or mashArt [3] that facilitate developers in the combination of

services into new applications. Also, Programmable Web, Yahoo Pipes or Opera widgets

are examples of registries that reference services and widgets of many different kinds. Users

can query them in order to search useful applications and services that they can reuse for

mash-up composition.

However, developers face some difficulties when working on development of mash-ups.

First, it is not easy for a developer to find the most appropriate services for a mash-

up she is building, as although many of them are available but the information might be

scattered across various repositories in the web in different formats on multiple levels of

granularity.

Second, services are annotated using different description standards and semantics, thus

requiring deep study of the documentation by the developer.

Third, due to this lack of consistent standardized descriptions, services need to be

adapted in order to be used in a mash-up platform.

This master thesis describes the creation of a searchable repository populated with

services and widgets that will serve in wich a developer user will be able to find those

components that he needs to create new mash-ups.

The main goal of this project is to create an interface that permits the developer fulfil his

requisites finding the suitable services or widgets in the repository. To create this interface

first there must be a repository and this repository must have widgets and services. The

structure and the functionalities that this repository must have are described in section 2.2

and we call it the OMELETTE mash-up Registry (OMR).

The repository is fed automatically using automated discovery techniques. These tech-

niques are described in section 2.3 and exposed those existing websites on the Internet where

the automatic algorithms fetch the data from.

9

CHAPTER 2. ENABLING TECHNOLOGIES

2.2 OMELETTE mash-up Registry

The Omelette mash-up Registry (OMR) has a component model that aggregates necessary

information for querying web components and searching the most appropriate ones. Addi-

tionally, this model reuses other underlying standards, such as WSMO, WSDL, WADL or

W3C widgets, as low-level grounding standard description languages that allow components

to be readily executable by referencing to them whenever available. These descriptions are

built automatically, when possible, in a discovery phase that allows populating the registry

with new reusable software artefacts from the Web.

Components stored in the OMR use the Linked mash-ups Ontology (LiMOn) RDF

model [4].

2.2.1 RDF model

The objective of the OMELETTE mash-up Registry is to provide an integrated centralized

reference of web components to facilitate querying and selection of relevant ones when

building new mash-ups. To achieve this, an RDF model based format is employed to

describe the components. It is defined in this section along with the interface that supports

querying and selection of components from the registry.

The registry integrates heterogeneous components that can be potentially used in various

web applications. More specifically, mash-up applications and services from the Web are

the ones under consideration. mash-up is treated as a first-class object that is comprised

of any web applications. Examples of mash-ups and services can be found in repositories

such as Yahoo Pipes or Programmable Web.

In order to make these components available for developers, the registry stores relevant

metadata that can be used by the developers for selecting components. Additionally, these

metadata should be available in the web in order to make it possible to automate the

population of the registry with real components. Usually, web component repositories

contain metadata such as a component’s name, textual description, tags or categorization.

Other specific properties that depend on the nature of the component can also be found,

such as inputs, endpoints, web service dependencies, or underlying formal descriptions like

WSMO or WSDL.

With these considerations in mind, the OMELETTE team has defined the model pre-

sented in Figure 2.1: LiMOn (Linked mash-up Ontology). It is a model that integrates

the properties and fields that are provided by current component repositories in the web.

10

2.2. OMELETTE MASH-UP REGISTRY

Technical aspect

Trust aspectBusiness aspect

Rating
Integer

Application

Developer key
required
Boolean

API forum
URL

Homepage
URL

Client install
required
Boolean

Authentication
scheme

Data
format

Usage fees

API
URL

Commercial
License

SSL support
Boolean

Example
Literal

Terms &
Conditions
URL

Protocol

Provider
URL

Source
URL

Endpoint
URL

Concept
skos:Concept Category

Tag
ctag:Tag

Description
WSMO/ROSM
WSDL
W3C Widget
WADL

Widget

Service

Component
API blog
URL

rdf:type

rdfs:subClassOf

rdfs:subClassOf

:uses
rdfs:subClassOf

:describedBy

ctag:tagged

:categorizedBy

:endpoint

dc:source

:provider

:protocol

:termsAndConditions

:example:sslSupport

:commercialLicense

:api

:usageFees

:dataFormat :authentication

:clientInstallRequired

sioc:homepage

:apiForum

:developerKeyRequired

:rating

:apiBlog

Figure 2.1: Omelette mash-up Registry RDF model

Its name comes for its approach of bringing Linked Data to mash-up-Driven Development.

It allows describing mash-ups and their components for integrating and sharing mash-up

information such as categorization or dependencies.

This model covers aspects such as general categorization metadata, licensing or usage,

and basic aspects of component execution. It reuses Simple Knowledge Organization System

(SKOS1), Friend of a Friend (FOAF2), Dublin Core (DC3) and Common Tag (CTag4) on-

tologies in order to follow the guiding principle of Semantic Web, which manifest reusability

as one of the main postulates.

The OMELETTE schema also makes use of work done in SOA4All [5] FP7 project

1http://www.w3.org/2009/08/skos-reference/skos.html
2http://xmlns.com/foaf/spec/
3http://dublincore.org/
4ttp://commontag.org/Home

11

CHAPTER 2. ENABLING TECHNOLOGIES

on RESTful services with ROSM/WSMO service descriptions. Every component might

reference an additional description, such as WSDL, WSMO or W3C widget. As shown in

the discovery section, ROSM will be used as the basis for describing REST services.

A registry with component descriptions according to the presented model can be queried

using a SPARQL query as the one below:

Listing 2.1: Example SPARQL

PREFIX om: <http ://www.ict -omelette.eu/schema.rdf#>

PREFIX ctag: <http :// commontag.org/ns#>

PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

SELECT ?service

WHERE

{ ?service rdf:type om:Service;

om:categorizedBy om:Telco;

ctag:tagged [rdfs:label "video"];

ctag:tagged [rdfs:label "conference"];

om:developerKeyRequired "false ". }

This query retrieves telco services with video conferencing functionality. The next

SPARQL query asks the registry for services able to search a picture by keywords. It

also retrieves the actual endpoint or URL that needs to be accessed to run the service:

Listing 2.2: Example SPARQL keywords

PREFIX om: <http ://www.ict -omelette.eu/schema.rdf#>

PREFIX ctag: <http :// commontag.org/ns#>

PREFIX rosm: <http :// www.wsmo.org/ns/rosm /0.1#>

PREFIX hrests: <http ://www.wsmo.org/ns/hrests#>

PREFIX rdfs: <http :// www.w3.org /2000/01/rdf -schema#>

SELECT ?service ?endpoint

WHERE

{ ?service rdf:type om:Service;

ctag:tagged

[rdfs:label "photos"];

om:describedBy [rdf:type

rosm:Service;

rosm:requestURIParemeter [ctag:tagged [rdfs:label "keywords"]];

hrests:hasAddress

?endpoint]. }

12

2.3. AUTOMATED DISCOVERY

2.3 Automated Discovery

Automated discovery is one of the tasks present in the scope of this project. Its objective

is to enable OMELETTE users to access a wide amount of web components (i.e. both

widgets and services) inside the OMR. Thanks to the automated discovery capabilities

OMELETTE users will be able to use services and widgets as soon as they are published

on external repositories.

2.3.1 Introduction

Three repositories were mined for services, widgets and mash-ups at this stage of the project,

namely Programmable Web5, Opera Widgets6 and Yahoo Pipes7.

ProgrammableWeb

Programmable Web, shown in 2.2, is the most popular registry of APIs and mash-ups

on the Web, and allows developers to include their APIs or mash-ups for other de-

velopers. It currently contains more than 3,000 APIs and more than 5,000 mash-ups.

Information about which APIs are used by mash-ups, licensing issues, or categoriza-

tion information can be found in Programmable Web too.

Yahoo Pipes

Yahoo Pipes, shown in 2.3, is a mash-up environment developed by Yahoo, where

developers can build data feeds that make use of other feeds by visually dragging

and dropping operators and sources. The resulting so-called ”pipes” can be run as

any other feed, also accepting input parameters and providing a standardized RSS

output. The pipes, or mash-ups, are categorized by tags, data format, sources, and

also include short textual descriptions.

Opera Widgets

Opera Widgets, shown in 2.4, is a repository of mainly W3C widgets that are shared

among the community of users of Opera Web Browser. These widgets can be used in

OMELETTE because they follow W3C Widget standard. The repository provides a

categorized collection of widgets, along with short textual descriptions of the widget’s

functionality.

5http://www.programmableweb.com/
6http://widgets.opera.com/
7http://pipes.yahoo.com/

13

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.2: ProgrammableWeb

14

2.3. AUTOMATED DISCOVERY

Figure 2.3: Yahoo Pipes

15

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.4: Opera Widgets

16

2.3. AUTOMATED DISCOVERY

2.3.2 Discovery techniques

In order to mine the mentioned websites, a common approach was employed to extract the

data. As part of the World Wide Web, the three repositories show a RESTful architecture,

where a set of interlinked resources are published with resource specific descriptions. The

format of the returned representations of the web resources is not standard, as they do not

use any form of semantic annotations on top of the HTML data.

To map the HTML representations of the web resources available in these repositories to

the RDF model defined for the OMELETTE mash-up Registry, the Scraping Ontology [6]

[7] has be used by the Open Source screen scraper called Scrappy [8], both developed in

the context of OMELETTE.

Figure 2.5 shows an example of mapping out of an unstructured HTML document into

an OMELETTE RDF graph. In that example, a set of fragments in the HTML page are

described along with the RDF data they represent. After processing that information on a

particular sample HTML document, a scraper can produce the resulting RDF graph.

Figure 2.5: Mapping example for data extraction

The methodology followed for the discovery assumes that first of all it is necessary to

define a set of mappings for each of the repositories. These mappings state what data could

be extracted, and how it could be done. Then prepared mappings are used by Scrappy to

17

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.6: Mapping example for data extraction

crawl the sites and build an RDF knowledge base that is dumped into the OMR.

In the case of Programmable Web, each web resource either represents a mash-up or

an API. For each of them, the fields shown are mapped into an element of the ontology,

covering the components’ metadata such as categorization or tagging.

Similarly, for Opera Widgets each web resource represents a widget, so the information

about the widget is mapped to the terms from the ontology. Also, its widget package (which

uses WGT extension8) is mapped as well as the widget’s endpoint.

In Yahoo Pipes, more advanced scraping has been performed, thanks to an implicit

service description that is available as an HTML form. For each pipe, a form for its execution

is available in the mash-up’s webpage, as shown in Figure 2.7.

These HTML forms are mapped to a Resource-Oriented Service Model (ROSM) or a

Web Service Modeling Ontology (WSMO) description in order to get detailed information

of the service’s interface.

8http://www.w3.org/TR/2011/REC-widgets-20110927/

18

2.3. AUTOMATED DISCOVERY

Figure 2.7: Execution page of a Yahoo Pipe’s mash-up

An example of ROSM description, extracted from the pipe shown in the Figure 2.5,

which accepts a set of textual keywords on a URL, is shown next:

Listing 2.3: Example ROSM definition

<rosm:Service>

<rosm:supportsOperation>

<rosm:Operation>

<hrests:hasAddress

rdf:resource="http://pipes.yahoo.com/pipes/pipe.info?_id=c32fa09"/>

<rosm:requestURIParameter>

<rdf:Description>

<ctag:tagged>

<rdf:Description>

<rdfs:label>text</rdfs:label>

</rdf:Description>

</ctag:tagged>

<rdfs:label>keyword</rdfs:label>

</rdf:Description>

</rosm:requestURIParameter>

</rosm:Operation>

</rosm:supportsOperation>

</rosm:Service>

19

CHAPTER 2. ENABLING TECHNOLOGIES

2.4 Conclusions

In this chapter we have introduces some of the technologies wich are part of the OMELETTE

project and conform the base for this master thesis.

It is necessary to understand first what a repository is for and how the automated dis-

covery is done. We have also introduced the websites scrapped and this helps to understand

what kind of services and widgets populate the repository.

20

CHAPTER3
Requirement Analysis

This chapter describes one of the most important stages in software development:

the requirement analysis using different scenarios. For this, a detailed analysis of the

possible use cases is made using the Unified Modeling Language (UML). This language

allows us to specify, build and document a system using graphic language.

21

CHAPTER 3. REQUIREMENT ANALYSIS

22

3.1. OVERVIEW

3.1 Overview

The result of this chapter will be a complete specification of the requirements, which will be

matched by each module in the design stage. This helps us also to focus on key aspects and

take apart other less important functionalities that could be implemented in future works.

3.2 Use cases

These sections identify the use cases of the system. This helps us to obtain a complete

specification of the uses of the system, and therefore define the complete list of requisites

to match. First, we will present a list of the actors in the system and a UML diagram

representing all the actors participating in the different use cases. This representation al-

lows, apart from specifying the actors that interact in the system, the relationships between

them.

These use cases will be described the next sections, including each one a table with their

complete specification. Using these tables, we will be able to define the requirements to be

established.

3.2.1 Actors dictionary

The list of primary and secondary actors is presented in table 3.1. These actors participate

in the different use cases, which are presented later.

23

CHAPTER 3. REQUIREMENT ANALYSIS

Actor identifier Role Description

ACT-1 User

End user that uses Omelette

mash-up Editor to find a mash-up

based on her goals, which are

expressed using keywords

ACT-2 Developer
Technical developer which uses the

OMR.

ACT-4 Admin

Administrator of the OMR, in

charge of tasks such as inserting,

deleting mash-ups, as well as

including new available mash-up

repositories..

ACT-5 MDP

mash-up Delivery Platform,

component of the ”Live Omelette

Environment” that executes

mash-ups..

ACT-6 External service
External services for executing

actions.

Table 3.1: Actors list

24

3.2. USE CASES

3.2.2 OMR composition and search use case

This use case package collects the search functionalities of OMR, as shown in 3.1.

The use cases presented in this section are as shown in the Figure 3.1:

• keyword search detailed in sub-section 3.2.2.1.

• mashup browse by category detailed in sub-section 3.2.2.2.

• ask question detailed in sub-section 3.2.2.5.

• mashup search by query detailed in sub-section 3.2.2.3.

• mashup compose detailed in sub-section 3.2.2.4.

User

Developer

Editor

Keyword
search

Mashup browse
by category

Mahsup search
by query

Ask
question

Mashup
compose

<<include>>

<<include>>

<<include>>

OMR

Figure 3.1: Composition and Search use case

25

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.2.1 Keyword search

Use Case Name keyword search

Use Case ID UC1.1

Pre-Condition OMR has been fed with mash-ups and individual services

Post-Condition
Optionally, the developer completes the MDL definition to make

a mash-up executable

Flow of Events Actor Input System Response

1

The user / developer

expresses her goals by using

textual keywords

Ranked result list of

mash-ups and individual

services. The mash-up can be

an existing mash-up or a new

dynamically composed

mash-up, which can be

executable or not. In the

same way, the service can be

automatically available in the

editor or could require

human intervention.

2a

The user / developer access

service / mash-up metadata

and selects one service /

mash-up in order to use it

System shows details of the

metadata service / mash-up.

2b

The developer has obtained a

non executable mash-up and

opens the editor to complete

it

The system opens the

mash-up editor, which allows

the user to finish the

mash-up composition (giving

API details, etc.), completing

the MDL, and finally,

publishing the resulting

mash-up in the OMR.

26

3.2. USE CASES

3.2.2.2 Mash-up browse by category

Use Case Name mash-up browse by category

Use Case ID UC1.2

Primary Actor User, Developer

Pre-Condition

OMR has been fed with mash-ups and services and has

categorized the service / mash-ups according to one or more

categories. For example, users can follow a taxonomy based on

their needs and types of applications, such as Appstore, while

developers can follow a taxonomy based on the technology,

integration needs, etc.

Post-Condition -

Flow of Events Actor Input System Response

1
The user / Developer selects

a category

Ranked list of service /

mash-ups belonging to that

category

2

The user / developer refines

the search with filtering

options

Filtered result set based on

filtering options

27

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.2.3 mash-up search by query

Use Case Name mash-up search by query

Use Case ID UC1.3

Primary Actor Developer

Pre-Condition OMR has been fed with service / mash-ups

Post-Condition -

Flow of Events Actor Input System Response

1

The developer executes a

query using a query language

(for example, SPARQL)

Result set of matching

service / mash-ups

28

3.2. USE CASES

3.2.2.4 mash-up compose

Use Case Name mash-up compose

Use Case ID UC1.4

Primary Actor User, developer

Pre-Condition OMR has been fed with individual services and mash-ups

Post-Condition
Optionally, the developer completes the MDL definition to make

a mash-up executable

Flow of Events Actor Input System Response

1

The User / Developer

expresses her goals using

textual keywords

Since there is no service

mash-up that fulfills the user

goals, the system analyses

potential combinations of

available mash-ups in OMR

and provides a composed

mash-up or a template of a

potential composition

29

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.2.5 Ask suggestion

Use Case Name Ask suggestion

Use Case ID UC1.5

Primary Actor Editor

Pre-Condition OMR has been fed with individual services and mash-ups

Post-Condition

Flow of Events Actor Input System Response

1

The mash-up editor requests

a list of available service /

mash-ups to suggest them to

the user

Ranked result list of service /

mash-ups expressed in MDL.

The mash-up can be an

existing mash-up or a new

dynamically composed

mash-up, which can be

executable or not

30

3.2. USE CASES

3.2.3 OMR discovery and administration use case

This use case package collects the main administration use cases of the OMR, as shown in

3.2

• automated mash-up feeding detailed in subsection 3.2.3.1

• manual mash-up feeding detailed in subsection 3.2.3.6

• form discovery and description detailed in subsection 3.2.3.2

• mash-up registry integration detailed in subsection 3.2.3.3

• mash-up registry API based integration detailed in subsection 3.2.3.4

• mash-up registry Scrappy based integration detailed in subsection 3.2.3.5

• manual mash-up management detailed in subsection 3.2.3.6

• browse pending detailed in subsection 3.2.3.7

• validate service detailed in subsection 3.2.3.8

• reject service detailed in subsection 3.2.3.9

Figure 3.2: OMR discovery and administration use case

31

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.3.1 Automatic mash-up feeding

Use Case Name Automatic mash-up feeding

Use Case ID UC2.1

Primary Actor Admin

Pre-Condition Availability of external service mash-up repositories or web sites

Post-Condition Service / mash-ups are added to OMR

Flow of Events Actor Input System Response

1
The admin selects a mash-up

source

The system connects to the

service mash-up source and

obtains potential mash-ups,

their metadata, and

catalogues them

2

he system generates

automatically the MDL

(partial MDL or executable

MDL).

3a

(Optional) the admin reviews

results and approves them for

its inclusion in the registry.

3b

The discovered mash-ups are

automatically integrated in

the registry.

32

3.2. USE CASES

3.2.3.2 HTML Form discovery and description

Use Case Name Automatic mash-up feeding

Use Case ID UC2.2

Primary Actor Admin

Pre-Condition Availability of external web sites offering services

Post-Condition Service / mash-ups are added to OMR

Flow of Events Actor Input System Response

1

The admin selects a

interesting domain and a

description schema for that

domain (mash-up metadata).

Optionally, the admin selects

a set of potential interesting

web domain as well as a

black list

The system crawls the web

looking for web sites which

match the domain. The

system identifies interesting

HTML forms, characterizes

these HTML forms as well as

their results. Then, it

classifies the identified

mash-up, generates its MDL

and adds it to the OMR.

2a

(Optional) the admin reviews

the results and approves

them for its inclusion in the

registry.

2b

The discovered service /

mash-ups are automatically

integrated in the registry.

33

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.3.3 mash-up registry integration

Use Case Name mash-up registry integration

Use Case ID UC2.3

Primary Actor Admin

Pre-Condition Availability of external mash-up repositories

Post-Condition mash-ups are added to OMR

Flow of Events Actor Input System Response

1

The admin selects a mash-up

source as well as the polling

conditions.

The system connects to the

mash-up source and obtains

mash-up descriptions and

catalogues them.

2a

(Optional) the admin reviews

the results and approves

them for its inclusion in the

registry.

2b

The discovered service /

mash-ups are automatically

integrated in the registry.

34

3.2. USE CASES

3.2.3.4 API based integration

Use Case Name API based integration

Use Case ID UC2.4

Primary Actor Admin

Pre-Condition Availability of external mash-up registries offering an API

Post-Condition mash-ups are added to OMR

Flow of Events Actor Input System Response

1

The admin selects a mash-up

source and the polling

options.

The system connects to

mash-up source and obtains

potential mash-ups, their

metadata, and catalogues

them

2a

(Optional) the admin reviews

the results and approves

them for its inclusion in the

registry.

2b

The discovered service /

mash-ups are automatically

integrated in the registry.

35

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.3.5 Scraping based integration

Use Case Name Scraping based integration

Use Case ID UC2.5

Primary Actor Admin

Pre-Condition
Availability of external mash-up registries not offering an

available API or a restrictive API

Post-Condition mash-ups / Services are added to OMR

Flow of Events Actor Input System Response

1

The admin selects a mash-up

source and defines a

description schema

The system scrapes mash-up

registry, obtaining potential

mash-ups / services, and

catalogues them

2a

(Optional) the admin reviews

the results and approves

them for its inclusion in the

registry.

2b

The discovered service /

mash-ups are automatically

integrated in the registry.

36

3.2. USE CASES

3.2.3.6 Manual mash-up management

Use Case Name Manual mash-up management

Use Case ID UC2.6

Primary Actor Admin

Pre-Condition -

Post-Condition A mash-up is added, deleted to OMR

Flow of Events Actor Input System Response

1a

The admin selects a mash-up

/ service and execute one

CRUD operation

he system executes the

operation and returns the

result.

1b

(Optional) the system uses

filtering options to find the

mash-up (by source, based on

properties, etc.)

37

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.3.7 Browse pending mash-ups and services

Use Case Name Browse pending mash-ups and services

Use Case ID UC2.7

Primary Actor Admin

Pre-Condition OMR has been fed with service / mash-ups

Post-Condition -

Flow of Events Actor Input System Response

1 The admin filters using facets

The system executes the

corresponding queries and

shows the matching

mash-ups and services

2a

(Optional) The admin can

request at any moment

statistics about the filtering

The system shows the

requested statistics using

charts

2b

(The admin requests

information about a mash-up

/ service

The system gets the

requested information

38

3.2. USE CASES

3.2.3.8 Validate a mash-up / service

Use Case Name Validate a mash-up / service

Use Case ID UC2.8

Primary Actor Admin

Pre-Condition OMR has been fed with service / mash-ups

Post-Condition Services / mash-ups validated into OMR

Flow of Events Actor Input System Response

1 The admin filters using facets

The system executes the

corresponding queries and

shows the matching

mash-ups and services

2a

The admin checks the

services / mash-ups wanted

to be validated

The system validates the

services / mash-ups into

OMR

39

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.3.9 Reject a mash-up / service

Use Case Name Reject a mash-up / service

Use Case ID UC2.9

Primary Actor Admin

Pre-Condition OMR has been fed with service / mash-ups

Post-Condition Services / mash-ups rejected into OMR

Flow of Events Actor Input System Response

1 The admin filters using facets

The system executes the

corresponding queries and

shows the matching

mash-ups and services

2a

The admin checks the

services / mash-ups wanted

to be rejected

The system rejects the

services / mash-ups into

OMR

40

3.2. USE CASES

3.2.4 Web interface use case

This section contains a web interface use case. The client web interface interacts with the

OMR in order to obtain consult the registry, which could involve service composition. This

use case includes some use cases described previously, as shown in 3.3.

• request available mash-ups detailed in 3.2.4.1

• search mash-ups by query in 3.2.4.2

• compose is not detailed as it is part from the OMELETTE project but not part of

this master thesis.

MDP

Request
Available
mashups

Search Mahsups
by Query Compose

OMR

<<include>> <<include>>

Figure 3.3: Web interface use case

41

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.4.1 Request available mash-ups

Use Case Name Request available mash-ups

Use Case ID UC3.1

Primary Actor Web interface

Pre-Condition Web interface requests dynamic mash-up binding

Post-Condition Web Interface receives a mash-up list

Flow of Events Actor Input System Response

1a
Web Interface requests a

service / mash-up.

The system provides a feed

with the ranking of available

mash-ups / services.

1b

(Optional) The system does

not find a matching service /

mash-up and composes a new

one on the fly and returns it

42

3.2. USE CASES

3.2.4.2 Search mash-ups by query

Use Case Name Search mash-ups by query

Use Case ID UC3.2

Primary Actor Web interface

Pre-Condition Web interface requests dynamic mash-up binding

Post-Condition Web Interface receives a mash-up list

Flow of Events Actor Input System Response

1a
Web Interface requests a

service / mash-up.

The system provides a feed

with the ranking of available

mash-ups / services.

1b

(Optional) The system does

not find a matching service /

mash-up and composes a new

one on the fly and returns it

3.2.5 Conclusions

With the use cases described we have introduced the basic functionalities that have been

implemented in this project. They help us to understand the different actors that can

interact. They can serve as a base for further development and different use cases that can

come to mind. They do not cover mash-up composition, this could be considered for future

work lines.

43

CHAPTER 3. REQUIREMENT ANALYSIS

44

CHAPTER4
Architecture

This chapter describes in depth how the system is structured in different modules and

how the users interact with them and also how the modules interact with other modules

by themselves.

45

CHAPTER 4. ARCHITECTURE

46

4.1. INTRODUCTION

4.1 Introduction

The main purpose of this master thesis is to have a repository of widgets and services

to build new mash-ups. First we need to feed the repository and we have to do it

automatically using discovery techniques. The content fetched from the internet must be

structured before it is inserted into the repository and therefore the repository has to be

able to store the data with the same structure, this is done using semantic repositories.

All the information stored in the repository has to be managed manually by an admin-

istrator. This is the main goal of this master thesis, create an administration interface that

permits an administrator user chose which widgets and services automatically fetched and

stored are useful. The administrator interface will provide several tools to the administrator

user and will use ranking algorithms to help him decide which ones are usefull.

Finally, there is a web interface for final users that will allow them find services and

services using semantic search technologies.

We will fill a semantic repository in a automated way as introduced in section 2.3. To

achieve this we use Scrappy [6] explained in section 4.2. The former module inserts the

semantic data into one of the semantic repositories detailed in section 4.3. This repository

needs to be managed by an administrator user through the administrator interface explained

in section 4.5. The final developer user will access the semantic repository trough the

developer or client interface detailed in 4.6.1.

A diagram of the architecture is shown in Figure 4.1. Each module is detailed in the

following sections.

47

CHAPTER 4. ARCHITECTURE

Figure 4.1: General Architecture

4.2 Automated discovery

The automated discovery module’s finality is to fetch several services data from different

websites. We fetch this data from ProgrammableWeb, Yahoo! Pipes and Opera Widgets.

More information about the type of services and widgets this websites contain is described

in section 2.3.

To achieve this we will use Scrappy [6], an opensource tool developed by GSI. It can be

downloaded from the Github repository of the main contributor of the project1.

It allows us to extract information from web pages and producing RDF data. Within

the OMELETTE project, it has been used for developing the Discovery Module and mining

1https://github.com/josei/scrappy

48

4.2. AUTOMATED DISCOVERY

several repositories of mashups, widgets and services in order to feed the Omelette Mashup

Registry with these components.

Scrappy is developed using Ruby and it uses the Webkit library for visual processing of

web resources.

Scrappy access a determined website, gets the corresponding HTML, converts the data

into RDF using the defined ontology and inserts the result into the OMR (Figure 4.2).

:Web :Scrappy :OMR

Return HTML

2
Get HTML

1

Generate RDF

Loops

Insert RDF

3

Figure 4.2: Scrappy sequence diagram

In order to fetch the desired information from a website, Scrappy needs to know how is

the structure of it. This is done by defining a mapping file written in YARF2 which reflects

the structure of the html file using CSS selectors.

To create the mapping file we need first to analyze manually the HTML. Significant

changes in the HTML of the website to be fetched could break the mapping and re-analyzing

would be required.

An example of mapping is shown in Listing A.1, which allows extracting all titles from

Yahoo! Pipes.

Scrappy will use the Linked Mashup Ontology (LiMOn) when mapping the resources as

seen in 2.1.

The total number of components scrapped from Yahoo! Pipes and Opera Widgets can

be consulted in table 5.4.

2format supported by LightRDF gem, as well as RDFXML, JSON, NTriples formats, which can also be

used to define the mappings

49

CHAPTER 4. ARCHITECTURE

Table 4.1: Runnable components in OMR

Number of runnable services 1542

Number of runnable WSDL3 services 296

Number of runnable REST4 services 1246

Number of runnable widgets 1804

Total number of runnable components 3346

4.3 Semantic repository

All the services and widgets fetched by the automated discovery module described in the

former section 4.2 have to be stored somewhere. This place is what we call the OMELETTE

Mashup Registry (OMR).

The objective of the OMELETTE Mashup Registry is to provide an integrated cen-

tralized reference of web components to facilitate querying and selection of relevant ones

when building new mashups. To achieve this, an RDF model based format is employed to

describe the components (see section 2.2.1).

The registry or repository integrates heterogeneous components that can be potentially

used in various web applications. More specifically, mashup applications and services from

the Web are the ones under consideration. Mashup is treated as a first-class object that

is comprised of any web applications. Examples of mashups and services can be found in

repositories such as Yahoo Pipes or Programmable Web.

In order to make these components available for developers, the registry stores relevant

metadata that can be used by the developers for selecting components. Additionally, these

metadata should be available in the web in order to make it possible to automate the

population of the registry with real components. Usually, web component repositories

contain metadata such as a component’s name, textual description, tags or categorization.

For developing purposes Sesame is used instead of the OMR to help us to solve some

problems we were experiencing with different versions of SPARQL. SPARQL is in continuos

development and some of the functionalities needed were not implemented in the first 1.0

version but they were in 1.1 version. We chose Sesame between various alternatives as it is

50

4.4. RANKING MODULE

one of the most popular.

Both Sesame and OMR complies the same REST API interface.

Sesame is a de-facto standard framework for processing RDF data. This includes pars-

ing, storing, inferencing and querying of/over such data. It offers an easy-to-use API that

can be connected to all leading RDF storage solutions.

Sesame has been designed with flexibility in mind. It can be deployed on top of a variety

of storage systems (relational databases, in-memory, file systems, keyword indexers, etc.),

and offers a large scale of tools to developers to leverage the power of RDF and related

standards. Sesame fully supports the SPARQL query language for expressive querying and

offers transparent access to remote RDF repositories using the exact same API as for local

access. Finally, Sesame supports all main stream RDF file formats, including RDF/XML,

Turtle, N-Triples, TriG and TriX.

4.4 Ranking module

There are thousands of services and widgets fetched and stored in the semantic repository

as shown in Table 4.1. The administrator user will have to search for useful components in

this repository. By default there is no way to distinguish bewteen relevant or not relevant

ones. To solve this, we apply the ranking algorithms described by Tilo Zemke [9].

This module is implemented as a separate component written in Java which runs inde-

pendently. It connects to the semantic repository and executes the algorithms to calculate

the indicators in each component. It is scheduled to run periodically and re-calculate the

indexes when new mashups or services are incorporated to the meta-directory.

51

CHAPTER 4. ARCHITECTURE

:Ranking Module :OMR

GET service (SPARQL)

1

Calculate degree centrality

Insert limon:DegCent

2

Insert limon:ClosCent

3

Calculate closeness centrality

Insert limon:RatSoc

4

Calculate GSO

Loops

Figure 4.3: Sequence diagram for ranking index generation

4.5 OMR Admin Interface

The automated discovery module fetches thousands of services and widgets and store them

in the semantic repository, therefore they are ranked to make the best matches show up

when quering the repository. After this an administrator user has to selelect the appropriate

one manually. This must be done within a interface that helps that person to do the job,

helping him by browsing trough the different categories and properties defined in the RDF

model (section subsec:rdfmodel).

On a first instance we decided to build this interface using Simile Exhibit5. The de-

scription of Exhibit says:

Exhibit lets you easily create web pages with advanced text search and filtering function-

alities, with interactive maps, timelines, and other visualizations.

That description seemed exactly what we looked for, but some problems occured, for

example high load and poor perfomance or unexpected bugs related to non mature tech-

nology. We decided to create our own administrator interface based on the principles of

Exhibit with faceted search.

Out OMR administrator interface is built using PHP6, HTML, CSS and Javascript.

5http://simile.mit.edu/wiki/Exhibit
6http://www.php.net

52

4.5. OMR ADMIN INTERFACE

Figure 4.4: Simile Exhibit example interface

A general view of the class diagram is shown in 4.5. All the components are executed

from the index.php file, which we will consider as the main file.

One of the big benefits of Exhibit was the easiness for developers to change the main

view. The OMR admin interface is done the same way, using the functions library detailed

in subsection 4.5.2 the developer can change the behavior and functionalities of the web

interface.

index.php

omr.php

+ endpoint

+ insert()
+ query()

sparqllib.php

functions.omelette.php

+ get_limon_block()
+ get_results()
+ get_predicates()
+ adminAuth()
+ generateWadl()
+ cache()

lmf.php

wadl.php

log.php

graphic.php

Figure 4.5: OMR Admin Interface architecture

53

CHAPTER 4. ARCHITECTURE

4.5.1 Main component

The main file of the OMR Admin interface is the index.php. It is the execution point. The

rest of components and functions are called from this execution point.

In the index.php the developer can decide how to visualize everything and just adding

few lines of code it will generate the facet boxes and the results container.

It is mostly HTML with CSS and Javascript. It also uses the javascript framework

jQuery7 and svglizer8 to render the result of SPARQL SELECT queries into charts.

The functions available that will generate the HTML automatically are described in

functions.omelette.php and will be detailed in the sub-section 4.5.2.

Figure 4.6: OMR Admin Interface

4.5.2 Functions library

The file functions.omelette.php is a library of functions used by the rest of the classes. These

functions will help to generate the HTML code in the interface.

7http://jquery.com
8http://sgvizler.googlecode.com/

54

4.5. OMR ADMIN INTERFACE

4.5.2.1 Facet boxes

This is one of the functions of the library. By creating facet boxes we can do facet searching.

We can create one facet box for each of the properties defined in the RDF model (section

2.2.1).

We can create facet boxes using the following function in the main file of our interface.

Every time we call the get limon block() function it will render a facet box.

Listing 4.1: ”Creating facet box”

<?php get_limon_block ("limon:categorizedBy",filter); ?>

In the Figure 4.7 we can see the code on the right that will render the facet boxes on

the left.

Figure 4.7: Generating Facet Boxes

55

CHAPTER 4. ARCHITECTURE

4.5.2.2 Result lists

The results of the search are shown in the result list. We can create a result list container

with the following PHP function of the library:

Listing 4.2: ”Creating result container”

<?php get_results(filter ,order ,dir); ?>

4.5.2.3 Widget or service

If we want to see all the information regarding to a selected widget or service we can do it

by using the code listed here. This information is showed when clicking on a hyperlink of

the result list.

Listing 4.3: ”Creating information view”

<?php elseif(isset(_GET[’uri ’])): ?>

<?php get_predicates(_GET[’uri ’]); ?>

<?php endif; ?>

4.5.2.4 Generate charts

We can generate charts to see in a graphical way the information regarding to the repository

as different services shown in different categories.

It uses an external module named svglizer to generate charts. The system will generate

the proper SPARQL SELECT query and insert it into the module to generate the pie chart.

Listing 4.4: ”Generating pie charts”

<div id="chart"

data -sgvizler -endpoint ="http :// krusti.gsi.dit.upm.es

:8080/LMF -3.0.0/ sparql/select"

data -sgvizler -query="<?php echo base64_decode(_GET[’

query ’]); ?>"

56

4.5. OMR ADMIN INTERFACE

data -sgvizler -chart=" gPieChart"

data -sgvizler -endpoint_output ="xml"

style ="width :800px; height :400px;"></div

</body >

Figure 4.8: Pie chart

To generate a chart to visualize statistics, the user has to browse trough the OMR

administrator, selecting filters and making search queries using free text. When the user is

satisfied with the results showed he can cick on the button to generate the pertinent chart.

The flow can be visualized in figure 4.9.

4.5.2.5 Admin authentication

The OMR Admin interface provides of basic athentication for write operations on the

repository. This authentication is HTTP based9 using PHP.

4.5.2.6 Cache and performance

When working with thousands of components in the semantic repository some perfomance

issues came up. To solve this we created some helpers written as funtions inside the library

that creates a file based cache.

The cache system works as follows. When a query to the OMR is executed (Figure 4.10)

it stores the result shown in 4.6 using a no collision hash calculated using the SPARQL query.

Every time a query is launched it will look for a stored result in the cache file list 4.5 and

9http://php.net/manual/es/features.http-auth.php

57

CHAPTER 4. ARCHITECTURE

:User :OMR Admin :OMR

Show pending

1

Show results

2
SPARQL Select query

Return RDF results

2

Select filters

3

SPARQL Select query

Return RDF results

4

Show results

Free text search

5

SPARQL Select query

Return RDF results

6

Show results

Loops

Show chart

7

SPARQL Select query

Ok

4

Returns chart
Generate chart

Figure 4.9: Sequence diagram for chart generation

it will be served in case there is a matching (Figure 4.11). The cached result is parsed the

same way using sparqllib. This is quite important when working with a repository with

thousands of services that will demand high processing time for all of them to be retrieved

and filtered.

Table 4.2: Execution query time comparison

OMR Quering Local Sesame Cached query

Maximun time 120 seconds 15 seconds 0 seconds

Minimun time 3 secods 1 second 0 seconds

58

4.5. OMR ADMIN INTERFACE

:User :OMR Admin :OMR

Show pending

Show results

SPARQL Select query

:Cache

No query cached

Check if query cached

Return RDF Data

Store query

Figure 4.10: Sequence diagram if query is not in cache

:User :OMR Admin :OMR

Show pending

Show results

:Cache

Returns cached query

Check if query cached

Figure 4.11: Sequence diagram if query cached

Listing 4.5: Cache file list example

pmoncada@lisa :/omr -admin/cache$ ls

07 dd77d2e719486edf4c3fadd73bc57e.cache 607674268 eb15fddb1f3f68966e60d8f.cache

afaef680863102e8717d8cf653607b00.cache

08 e71b54c1ba078409a63b0514e05e5e.cache 63 d0c0b4fddb2233ca11be1b05a90ff5.cache

b169c9805f3617f2bc54934dbca3f60f.cache

Listing 4.6: Cache file out example

pmoncada@lisa :/omr -admin/cache$ cat 07 dd77d2e719486edf4c3fadd73bc57e.cache

<?xml version ="1.0" encoding ="utf -8"?>

<sparql xmlns="http :// www.w3.org /2005/ sparql -results#">

<head >

<variable name="o" />

<variable name="total" />

</head >

<results >

<result >

<binding name="o">

<uri >http ://www.ict -omelette.eu/omr/categories/shopping </uri >

</binding >

59

CHAPTER 4. ARCHITECTURE

<binding name="total">

<literal datatype ="http :// www.w3.org /2001/ XMLSchema#integer ">37</literal >

</binding >

</result >

</results >

</sparql >

4.5.2.7 Repository wrapper

To connect to the semantic repository we use a wrapper that is in charge to do it using the

sparql library (sub-section 4.5.2.8) and also using the cache system described in sub-section

4.5.2.6.

The class omr.php allows allows the system to connect to the different repositories

available providing an API to it.

• connect(), connects to the repository endpoint.

• query(), executes a query in SPARQL language

• insert(), inserts a new element into the repository.

The posible repositories are the OMR, Sesame and LMF.10

4.5.2.8 Sparql Library

In order to handle RDF processing and SPARQL queries responses parsing, the system uses

a third party library, sparqllib.php11.

It has been modified to allow queries using POST method and HTTP authentication

(which is a requisite for connecting to the OMR).

The library provides functions very similar to PHP mysql * for comfort.

Listing 4.7: Sparqllib usage example

<?php

require_once("sparqllib.php");

$db = sparql_connect("http ://rdf.ecs.soton.ac.uk/sparql /");

$db ->ns("foaf","http :// xmlns.com/foaf /0.1/");

10Linked Media Framework
11http://graphite.ecs.soton.ac.uk/sparqllib/

60

4.5. OMR ADMIN INTERFACE

$sparql = "SELECT * WHERE { ?person a foaf:Person . ?person foaf:name ?name } LIMIT

5";

$result = $db ->query($sparql);

$fields = $result ->field_array($result);

print "<p>Number of rows: ".$result ->num_rows($result)." results.</p>";

print "<table class=’example_table ’><tr >";

foreach($fields as $field){ print "<th >$field </th >"; }

print "</tr >";

while($row = $result ->fetch_array ()){

print "<tr >";

foreach($fields as $field){

print "<td>$row[$field]</td >";

}

print "</tr >";

}

print "</table >";

?>

Table 4.3: Sparqllib output example

Person Name

bf4120a00000000 Bob

bf4120a1200000e Alice

The output is shown in Table 4.3

61

CHAPTER 4. ARCHITECTURE

4.5.2.9 Validating resource

The users browses into the repository trough the OMR admin interface going into the

”Browse pending” section (Figure 4.12), selecting filters from the facet boxes (Figure 4.7)

and using the free text search box (Figure 4.15) finally reaches a resource to be validated.

Figure 4.12: OMR admin top menu

When selecting the validate button (Figure 4.13), a SPARQL update query will be

executed using the Sparql library to modify the OMR to indicate that the selected resource

is already validated. Additionally, the RDF resource will be stored into the LMF to be

indexed by SOLR.

Figure 4.13: OMR admin validate and reject buttons

Then, the validated services are shown in the Show approved section that can be accessed

through the top menu as seen in Figure 4.12.

The whole sequence is shown in Figure 4.14.

62

4.5. OMR ADMIN INTERFACE

:User :OMR Admin :OMR :LMF

Show pending

1

Show results

2
SPARQL Select query

Return RDF results

2

Select filters

3

SPARQL Select query

Return RDF results

4

Show results

Free text search

5

SPARQL Select query

Return RDF results

6

Show results

Loops

Select and validate

7

SPARQL Update query

SPARQL Insert query

Ok

Ok

4

Ok

Figure 4.14: Sequence diagram for validating RDF resource

4.5.2.10 Rejecting resource

The users browses into the repository trough the OMR admin interface going into the

”Browse pending” section (Figure 4.12), selecting filters from the facet boxes (Figure 4.7)

and using the free text search box (Figure 4.15) finally reaches a resource to be validated.

When selecting the reject button (Figure 4.13), a SPARQL update query will be executed

using the Sparql library to modify the OMR to indicate that the selected resource has been

rejected by the administrator.

Figure 4.15: OMR admin search box

63

CHAPTER 4. ARCHITECTURE

:User :OMR Admin :OMR

Show pending

1

Show results

2
SPARQL Select query

Return RDF results

2

Select filters

3

SPARQL Select query

Return RDF results

4

Show results

Free text search

5

SPARQL Select query

Return RDF results

6

Show results

Loops

Select and reject

7

SPARQL Update query

Ok

4

Ok

Figure 4.16: Sequence diagram for rejecting RDF resource

4.5.2.11 Wadl generation

The system can generate a WADL12 file for those services with rosm13 description. Im-

portant: This is only available for services scrapped from Yahoo Pipes.

It returns a WADL file where it is specified the target URL and parameters for the

REST service. This data is easily fetched executing SPARQL query as shown in 4.8.

12 is a machine-readable XML description of HTTP-based web applications (typically REST web services)
13http://www.wsmo.org/ns/rosm/0.1/

64

4.5. OMR ADMIN INTERFACE

Listing 4.8: Retrieving information for WADL with SPARQL

SELECT DISTINCT ?parameter ?getUrl WHERE{

uriresource limon:describedBy ?a .

?a rosm:supportsOperation ?b .

?b hrests:hasAddress ?getUrl .

?b rosm:requestURIParameter ?c .

?c rdfs:label ?d .

?d rdfs:label ?parameter

}

An example of WADL output is shown in 4.9.

Listing 4.9: WADL example

<?xml version ="1.0" encoding ="UTF -8" standalone ="yes"?>

<application xmlns="http :// research.sun.com/wadl /2006/10" >

<resources base="http :// localhost :9998/ storage/">

<resource path ="/ containers">

<method name="GET" id=" getContainers">

<response >

<representation mediaType =" application/xml"/>

</response >

</method >

<resource path ="{ container }">

<param xmlns:xs="http ://www.w3.org /2001/ XMLSchema"

type="xs:string" style =" template" name=" container "/>

<method name="PUT" id=" putContainer">

<response >

<representation mediaType =" application/xml"/>

</response >

</method >

<method name=" DELETE" id=" deleteContainer "/>

<method name="GET" id=" getContainer">

<request >

<param xmlns:xs="http ://www.w3.org /2001/ XMLSchema"

type="xs:string" style="query" name=" search"/>

</request >

<response >

<representation mediaType =" application/xml"/>

</response >

</method >

</resource >

</resource >

</resources >

</application >

To generate WADL, the user has to browse trough the OMR Admin and select a mashup

65

CHAPTER 4. ARCHITECTURE

or service. Afterwards, if it is supported by the selected service, the user can request the

OMR Admin to generate a WADL file. This sequence is described in figure 4.17.

:User :OMR Admin :OMR

Show pending

1

Show results

2
SPARQL Select query

Return RDF results

2

Select filters

3

SPARQL Select query

Return RDF results

4

Show results

Free text search

5

SPARQL Select query

Return RDF results

6

Show results

Loops

Get WADL

9

SPARQL Select query

Ok

4

Returns WADL
Generate WADL

Select service

7

SPARQL Select query

Return RDF results

6

Show results

Figure 4.17: Sequence diagram for WADL file generation

4.5.2.12 LMF integration

There is an extra module14 that adapts the queries to insert selected services into an LFM

repository. This enables SOLR indexing for the client service browser.

It connects to the sparql/update endpoint of LMF, in wich SPARQL insert queries can

be executed.

14lmf.php

66

4.6. OMR CLIENT BROWSER

4.6 OMR Client Browser

This interface is used by the final user when he wants to find suitable widgets or services

to build new mash-ups. It connects to the repository and reads the components approved

formerly by the administrator user via the OMR Admin interface.

The OMR Client Browser (4.19) consists in two parts, a back-end formed by LMF, and

a front-end written using web technologies such as javascript and HTML. It is based on the

Episteme15 platform.

The user can create a new search which will be automatically saved for posterity. The

user will be shown a form with auto complete fields (which will retrieve the auto-complete

data automatically (step 2 in Figure 4.18). The user selects the desired filters (step 3 in

Figure 4.18). A HTTP request to the LMF is made to retrieve the search results (step 4 in

Figure 4.18). If any of the fields was semantic, an extra HTTP request will be done to the

semantic module. The results are shown to the user (step 5 in Figure 4.18).

All the modules are described in the following points.

4.6.1 Back-end

For the back-end the system uses Linked Media Framework to build semantic search over

the approved data selected with the OMR Admin described in 4.5. The only thing needed

to configure the LMF is a semantic core that should follow the rules showed in 4.10. A

search core represents a specific index configuration with fields filled from the linked data

cloud. It consists of two mayor elements: a filter deciding which resources are added to the

search index, and one or more fields defining the index fields of the search core and how

the values of these fields are calculated. These filters are written following LD Path16, a

simple path-based query language, similar to SPARQL Property Paths, that is particularly

well-suited for querying and retrieving resources from the Linked Data Cloud by following

RDF links between resources and servers.

15Episteme is a creator of opportunities designed to link the various partners and create consortia to suit

a particular offer. With semantic search is able to find companies that are the best suited to an opportunity

based on their characteristics.
16http://code.google.com/p/ldpath/

67

CHAPTER 4. ARCHITECTURE

:Client :LMF :Sem Module

SPARQL Select auto complete
Return results
(RDF)

2

JSON HTTP Request

Alt

New search1

Select filters

3

JSON HTTP Request

Return results (JSON)

4

JSON Response

if semantic fields

Show results
5

Loops

Figure 4.18: Scrappy sequence diagram

Figure 4.19: OMR client interface

68

4.6. OMR CLIENT BROWSER

Listing 4.10: Semantic core configuration for LMF using LD Path

@prefix limon : <http :// www.ict -omelette.eu/schema.rdf#> ;

@prefix ctag : <http :// commontag.org/ns#>;

Rdftype = rdf:type :: xsd:string ;

categorizedBy = limon:categorizedBy :: xsd:string ;

api = limon:api :: xsd:string ;

sslSupport = limon:sslSupport :: xsd:string ;

label = rdfs:label :: xsd:string ;

protocol = limon:protocol :: xsd:string ;

tagged = ctag:tagged :: xsd:string ;

authentication = limon:authentication :: xsd:string ;

dataFormat = limon:dataFormat :: xsd:string ;

description = dc:description :: xsd:string ;

Provenance = "gsi" :: xsd:string ;

4.6.2 Front-end

The Episteme front-end has been developed using various JavaScript frameworks, such as

Knockout JS which simplifies the dynamic JavaScript UI with the Model-View-View Model

(MVVM) pattern, and KendoUI17 to build beautiful interactive interface. Creating a search

engine with Episteme has been done following few steps.

Search fields If we want to show new search fields as shown in figure 4.20 first of all we

have to construct the SPARQL query that will fill the auto-complete. For example, one

of them should look like described in 4.11. It is also necessary to add the data binding

sequence with knockout as shown in 4.12.

17http://www.kendoui.com

69

CHAPTER 4. ARCHITECTURE

Listing 4.11: SPARQL to retrieve all component types

SELECT DISTINCT ?o

WHERE { ?a rdf:type ?o . }

GROUP BY ?o ORDER BY DESC(?o)

}

Figure 4.20: Search fields in OMR client interface

Listing 4.12: Data binding with knockout

<!-- RDF TYPE -->

<input class="solrInput" data-bind="kendoComboBox: { data: root.Rdftype,

value: root.selectedRdftype}" />

<a class="greenButton" data-bind="click: root.addSolrFilter.bind(data,

data.values, root.selectedRdftype)">+

<a class="filterInfo blueButton" data-bind="click:

root.addSolrFilter.bind(data, data.values, root.selectedType),attr: {

’title’: root.lang().rdftypeHelp}">?

Multilingual support Episteme is prepared to enable multi-language, all the string values

are stored in the dictionary.js.

70

4.7. CONCLUSIONS

Personalization manual is available with full detail at the Episteme Wiki.18

4.7 Conclusions

We have shown a architecture fully modular in which each component can be developed,

maintained and deployed separately.

The automated discovery system could be upgraded to acquire new functionalities and

adapt to new web structure.

As we demonstrated the OMR module could be substituted by an other framework to

store the RDF data such as Sesame as we built the communication interface complying the

standards.

Using modules built using the Model-View-View Model patters makes them reusable

and extended for other purposes.

All modules are available as open source projects.

• Sesame: http://www.openrdf.org/download.jsp

• LMF: https://code.google.com/p/lmf/downloads

• Scrappy: https://github.com/gsi-upm/scrappy

• OMR admin: https://github.com/gsi-upm/omr-admin

• OMR client: https://github.com/gsi-upm/omr-client

18https://github.com/gsi-upm/Episteme/wiki/Create-a-custom-search-engine-with-Episteme

71

CHAPTER 4. ARCHITECTURE

72

CHAPTER5
Prototype and example usage

In this chapter we are going to describe a selected use case. It is going to be explained

the running of all the tools involved and its purpose. It is based on how to crawl the

web to find new mashups, then feed the repository, do the validation and rejections of

the mashups, and finally the developer will be able to use the discovered services.

73

CHAPTER 5. PROTOTYPE AND EXAMPLE USAGE

74

5.1. INTRODUCTION

5.1 Introduction

In this use case 2 actors are involved, the administrator and the developer user.

Actor identifier Role Description

ACT-1 Admin

Administrator of the OMR, in

charge of tasks such as inserting,

deleting mashups, as well as

including new available mashup

repositories..

ACT-2 Developer
Technical developer which uses the

OMR.

Table 5.1: Actors list

The goal of the administrator is to provide the user the content that he needs.

In this context, the developer is building a web application that consists of a social

network in which users need to take photos and share them with other users. After sharing

them, the photos need to be represented in a map. The developer wants to find an on-line

service that already provides this functionality.

The developer user will query the repository using the OMR Web developer interface.

The repository must have been fed up previously by an administrator, who doesn’t know

exactly the services that developers will need but he can think of which might be suitable

for them.

To achieve the goals defined before we are going to follow the following steps. First of

all launch scrappy to obtain all the web resources we need to feed the repository, once this

has been done, the administrator user has to use de OMR admin interface in order to select

the mash-ups that the developer user could possibly need for his application. The developer

user will be able to find the mash-ups needed using the OMR Web developer interface.

In this scenario each module will run separately to demonstrate that they all can be

standalone applications.

There is going to be a remote repository (OMR) located in Chemnitz University of

Technology (Germany). The automated discovery process is done using one of the computers

in the laboratory of Grupo de Sistemas Inteligentes. Both Administrative interface and

75

CHAPTER 5. PROTOTYPE AND EXAMPLE USAGE

developer interface will run in a web server located also in Grupo de Sistemas Inteligentes.

The LMF will run in a separated server in the laboratory. This is resumed in table 5.2.

Table 5.2: Execution enviroment

Component where it runs

Omelette Mashup Registry (OMR) Chemnitz University of Technology, (Germany)

Automated discovery service Laboratory, GSI (shannon.gsi.dit.upm.es)

Ranking module Laboratory, GSI, (shannon.gsi.dit.upm.es)

OMR Administrative interface Laboratory, GSI, (minsky.gsi.dit.upm.es)

OMR Web developer interface Laboratory, GSI, (minsky.gsi.dit.upm.es)

Linked Media Framework (LMF) Laboratory, GSI, (krusti.gsi.dit.upm.es)

76

5.2. AUTOMATIC SERVICE DISCOVERY

5.2 Automatic service discovery

As explained in section 4.2, the discovery of new services and mashups is done using Scrappy.

Installation and configuration of Scrappy can be found in appendix A.

The administrator user has to run Scrappy and insert the results into the OMR. It is

important to have configured the OMR endpoint in the config file as explained in appendix

A.

For this example we are going to scrap the sites of Programable Web, Opera Widgets

and Yahoo Pipes.

Listing 5.1: Scrappy launching

scrappy -g programmableweb.com

scrappy -g pipes.yahoo.com

scrappy -g widgets.opera.com

By executing Scrappy it will directly feed the repository with services in RDF format

like listing 5.2.

Table 5.3: Scrappy execution statistics

Elapsed time 1 day 3 hours and 31 minutes

Table 5.4: OMR components summary

Number of services 10194

Number of widgets 1804

Number of applications 7032

Total number of components 11998

After the time shown in table 5.3 the number of mash-ups shown in table 5.4 will be

inserted in the repository. In this case we have directly use the OMR, which might have

slightly slowed down the process as it needs to do HTTP connections to an external server

77

CHAPTER 5. PROTOTYPE AND EXAMPLE USAGE

(and far miles away).

In the figure 5.1 we cam see an example of page that is going to be converted into RDF

by Scrappy. In listing 5.2 we can see the output that produces Scrappy for that webpage.

Listing 5.2: Full RDF of scrapped widget

<?xml version="1.0" encoding="utf-8"?>

<rdf:RDF

xmlns:ctag="http://commontag.org/ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:limon="http://www.ict-omelette.eu/schema.rdf#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:skos="http://www.w3.org/2004/02/skos/core#">

<skos:Concept rdf:about="http://www.ict-omelette.eu/omr/categories/mapping">

<rdfs:label>Mapping</rdfs:label>

</skos:Concept>

<ctag:Tag rdf:about="http://www.ict-omelette.eu/omr/tags/display">

<rdfs:label>display</rdfs:label>

</ctag:Tag>

<ctag:Tag rdf:about="http://www.ict-omelette.eu/omr/tags/mapping">

<rdfs:label>mapping</rdfs:label>

</ctag:Tag>

<ctag:Tag rdf:about="http://www.ict-omelette.eu/omr/tags/places">

<rdfs:label>places</rdfs:label>

</ctag:Tag>

<ctag:Tag rdf:about="http://www.ict-omelette.eu/omr/tags/viewer">

<rdfs:label>viewer</rdfs:label>

</ctag:Tag>

<limon:Service rdf:about="http://www.programmableweb.com/api/google-maps">

<ctag:tagged rdf:resource="http://www.ict-omelette.eu/omr/tags/display"/>

<ctag:tagged rdf:resource="http://www.ict-omelette.eu/omr/tags/mapping"/>

<ctag:tagged rdf:resource="http://www.ict-omelette.eu/omr/tags/places"/>

<ctag:tagged rdf:resource="http://www.ict-omelette.eu/omr/tags/viewer"/>

<dc:description>The Google Maps API allow for the embedding of Google Maps

onto web pages of outside developers, using a simple JavaScript interface or

a Flash interface. It is designed to work on both mobile devices as well as

traditional desktop browser applications. The API includes language

localization for over 50 languages, region localization and geocoding, and

has mechanisms for enterprise developers who want to utilize the Google Maps

API within an intranet. The API HTTP services can be accessed over a secure

78

5.2. AUTOMATIC SERVICE DISCOVERY

The Google Maps API allow for the embedding of Google Maps onto

web pages of outside developers, using a simple JavaScript interface

or a Flash interface. It is designed to work on both mobile devices as

well as traditional desktop browser applications. The API includes

language localization for over 50 languages, region localization and

geocoding, and has mechanisms for enterprise developers who want

to utilize the Google Maps API within an intranet. The API HTTP services

can be accessed over a secure (HTTPS) connection by Google Maps

Google Maps: Highlights

Summary Mapping services

Category Mapping

Tags mapping places viewer display

Protocols JavaScript

Data Formats XML , VML , JSON , KML

API home https://developers.google.com/maps/

Client Install Required No

Functionality

Developer Key Required Yes

Account Required No

Commercial Licensing Contact provider

Provider google.com

Usage Fees None specified

Usage Limits 50,000 geocode requests per day

Terms of Service code.google.com/apis/maps/terms.html

Signup and Licensing

Authentication Model API Key

SSL Support No

Read-only Without Login Yes

Security

Google Maps: Specifications

Summary Mashups (2526) How-To (38) Developers (1011) Comments (17)

Google Maps API

Home API News API Directory Mashups Community How-to

programmableweb

dc:description

ctag:tagged

limon:api

limon:dataFormat

limon:developerKeyRequired

limon:provider

limon:AccountRequired

limon:usageLimits

limon:authentication

limon:sslSupport

limon:protocol

limon:categorizedBy

limon:usageFees

limon:readOnlyWithoutLogin

limon:installRequired

limon:termsAndConditions

Figure 5.1: Original site and corresponding LiMOn mapping

79

CHAPTER 5. PROTOTYPE AND EXAMPLE USAGE

(HTTPS) connection by Google Maps API Premier customers.</dc:description>

<dc:source rdf:resource="http://www.programmableweb.com/api/google-maps"/>

<limon:api rdf:resource="http://code.google.com/apis/maps/index.html"/>

<limon:apiBlog rdf:resource="http://googlegeodevelopers.blogspot.com/"/>

<limon:apiForum

rdf:resource="http://groups.google.com/Google-Maps-API?pli=1"/>

<limon:authentication>API Key</omelette:authentication>

<limon:categorizedBy

rdf:resource="http://www.ict-omelette.eu/omr/categories/mapping"/>

<limon:installRequired>false</omelette:installRequired>

<limon:dataFormat>JSON</omelette:dataFormat>

<limon:dataFormat>KML</omelette:dataFormat>

<limon:dataFormat>VML</omelette:dataFormat>

<limon:dataFormat>XML</omelette:dataFormat>

<limon:AccountRequired>false</omelette:AccountRequired>

<limon:developerKeyRequired>true</omelette:developerKeyRequired>

<limon:protocol>JavaScript</omelette:protocol>

<limon:provider rdf:resource="http://google.com"/>

<limon:rating>0.8201093479130551</omelette:rating>

<limon:readOnlyWithoutLogin>true</omelette:readOnlyWithoutLogin>

<limon:sslSupport>false</omelette:sslSupport>

<limon:termsAndConditions

rdf:resource="http://code.google.com/apis/maps/terms.html"/>

<limon:usageFees>None specified</omelette:usageFees>

<limon:usageLimits>50,000 geocode requests per day</omelette:usageLimits>

<limon:vendorApiKit>JavaScript library</omelette:vendorApiKit>

<rdfs:label>Google Maps API</rdfs:label>

</omelette:Service>

</rdf:RDF>

80

5.3. RANKING ALGORITHM

5.3 Ranking algorithm

The ranking algorithm needs to be executed by the administrator before accessing the OMR

admin interface if we want to visualize the metrics corresponding to ranking. It could have

done parallel to the scrapping process, but as explained in section 4.4 in order to calculate

in an accurate way the ranking indexes all the mash-ups need to be present at the same time

because there is correlated information. In the same way, if a new service is discovered by

Scrappy because we repeated the process in section 5.2 we will need to execute the ranking

algorithm again.

Before executing the algorithm, it needs to have an instance of Scrappy running as a

web server. This is explained in appendix A.2.

The administrator user has to configure the configuration file configuration.properties

(listing 5.3) and the run the algorithm .

bash startRanking.sh

Listing 5.3: Ranking algorithm configuration file

#OMR endpoint

omr=https ://vsr -web.informatik.tu -chemnitz.de/omr -write/components/sparql

#Username

user=omr -client -upm

#Password

password=omr.client.upm .2012

Table 5.5: Ranking algorithm execution statistics

Elapsed time 7 hours and 4 minutes

This process could take long time as showed in table 5.5.

Listing 5.4: Ranking algorithm output

<limon:DegCent>0.82</omelette:rating>

<limon:ClosCent>4.21</omelette:rating>

<limon:RatSoc>131</omelette:rating>

81

CHAPTER 5. PROTOTYPE AND EXAMPLE USAGE

5.4 OMR administrative interface

After having the repository filled with all the services our purpose is to select those which

we consider as interesting and also reject those which we don’t want. The administrator

must enter the administrative interface (see appendix C for installation and configuration).

In this scenario this is done by opening in the webbrowser the followind URL:

http ://lab.gsi.dit.upm.es/~ pmoncada/omr -admin -pfc

The administrator will see the main view showed in figure 5.2.

Figure 5.2: Main view OMR Administrator

In the main view of the OMR Administrator, a menu is shown at the top:

Figure 5.3: OMR admin top menu

Show approved shows those mash-ups which have been selected by the administrator as

approved.

Show pending shows everything that that has been returned has the output of the scrap-

ping process.

Show rejected shows the lists of mash-ups that have been previously rejected by the

administrator.

82

5.4. OMR ADMINISTRATIVE INTERFACE

5.4.1 Available general actions

The following options will help the administrator to find those components he thinks of

they are interesting or those who might be rejected.

5.4.1.1 Filtering

To filter using the filtering boxes click on a property from a filtering category. Many filters

can be selected at the same time. First select one of them, the view will refresh with the

new results. Then select next filter, the former filter will be sill selected, and results will be

filtered by many filters as chosen.

Example

We want add mash-ups compatible with JSON and XML data formats and supporting

REST, JavaScript and HTTP protocols. To filter the mash-ups with this criteria, we select

it in the facet boxes.

(a) limon:protocol (b) limon:dataFormat

Figure 5.4: Filtering by LiMOn properties

5.4.1.2 Searching

The administrator user can use the search box to find a mash-up by name or description.

Example

We write ”maps” in the search box (Figure 5.5), and the results are shown in the result

area.

Figure 5.5: OMR admin search box

83

CHAPTER 5. PROTOTYPE AND EXAMPLE USAGE

5.4.1.3 Obtaining help

If the administrator does not the meaning of anything appearing in the interface can consult

the interactive help by mousing over the help icon.

Figure 5.6: OMR admin help

5.4.1.4 Statistics

The administrator might know how many mash-ups of a kind are added to the repository.

When large amount of services are present is kind of difficult to handle this information.

The administrator user can check this information in graphics presentation (Figure ref-

fig:omradminseestatistics).

Figure 5.7: OMR see statistics

5.4.2 Reject a resource

There are several reasons why we would like to reject various discovered mash-ups, such

as the functionality of its is not related to our working lines or it was wrong scrapped in

the automated discovery process (bad character encoding like in figure 5.8, mismatch of

the information, etc). We could think just in deleting them from the system, but there is

the possibility that we change our mind about this action in the future and we regret it.

Also this avoids repeating the scrapping process from re-inserting the mashup again in the

repository. This is way the admin interface will allow us to mark the mash-up as rejected

as explained in section 4.5.2.9.

Before validating a resource we may want to know more information about it, and this

can be done by visualizing the full content of the service. This must be done before validat-

84

5.4. OMR ADMINISTRATIVE INTERFACE

Figure 5.8: Bad charset encoding in widget description

ing, even if we are mostly sure about the component is the desired one, but sometimes as

explained in the former paragraph there could be some problems in the scrapped informa-

tion. The duty of the admin is to make sure the services that are validated are the correct

ones.

The administrator can use the tools explained section 5.4.1 to get further information

and help to complete the process. As an example the administrator could need extra infor-

mation about the different fields and this can be achieved using the mouse-over functionality.

In our use case we want to have uniform types of mash-ups in the repository so the

statistics diagrams provided by the admin interface would result very useful. We can find

how to use them in section 5.4.1.4.

5.4.3 Validating resource example

As we saw in listing 5.2 a service from Google Maps was scrapped, so let’s try to find it in

the admin interface. The easiest way would be to type ”Google Maps API” in the search

box and the result would be the desired one. But considering we don’t know anything about

the scrapped mashup this is not useful. Nevertheless we know some characteristics about a

mash-up we need, which are:

• It is a widget for maps.

• It must be compatible with XML and JSON data format.

• It must support javascript.

Doing a fast search just writing ”maps” in the search box and after this selecting

”JSON”, ”XML” and ”Javascript” in the facet boxes the desired result (figure 5.9 will

be showed on the right.

Figure 5.9: Google maps api service in admin interface

85

CHAPTER 5. PROTOTYPE AND EXAMPLE USAGE

To validate this service, the administrator has to click on the check box and then click

on the validate button to submit the data.

In order to understand the process of validating resources see section 4.5.2.9.

When we have selected and validated all the services we wanted, our task as adminis-

tration user will be finished. This task can be resumed at any time if more needed services

come out.

5.5 Web developer interface

This application is used by the developer user, who wants to find suitable services to build

an application. It is done using the OMR client interface through the web browser.

http :// krusti.gsi.dit.upm.es :8080/ omr/

The interface of this application is much clearer as easier to use than the administrative

one, as it is built for end users. Also the functionalities are not exactly the same, in this

second search engine there are intelligent technologies as semantic search.

Figure 5.10: OMR Developer interface main

Example

Following the example exposed formerly, a developer wants to embed a map into an

application to show the users interesting places. He doesn’t know which one will better suit

into his requirements. It must be a widget and does not want to create a developer account.

The developer user accesses the interface and clicks on the ”Search service” button

(figure 5.11).

In the next step we can create a new search or select a search (figure 5.14) we did before

and we want to reuse it or refine it. The only difference will be that the form in next step

86

5.5. WEB DEVELOPER INTERFACE

Figure 5.11: Search service button

will be filled or will be blank.

Figure 5.12: Select saved search or create a new one

Creating a new search will show us a fillable form which we will fill in according to our

search criteria.

Figure 5.13: Select filters for the search

87

CHAPTER 5. PROTOTYPE AND EXAMPLE USAGE

Figure 5.14: Show results

And after pressing the ”Search results” the semantic search will be done in background

by the semantic module and they will be presented as shown in figure 5.15. The first three

services are marked with gold, silver, or bronze medals which indicate that those are the best

3 services found by the semantic module. At the bottom the developer can see recommended

services. These are services ordered by the ranking module having into account the social

index.

Figure 5.15: Found services by the semantic module

We can extend the information (figure 5.16) and check if it satisfies us to finally select

it as a candidate to use it in our application.

88

5.6. CONCLUSIONS

Figure 5.16: Extended service info

5.6 Conclusions

It is a very powerful search engine that enables real semantic search functionality to the

final user, enabling search using natural language and offering similar results that suits into

the user preferences that at a first instance he wouldn’t have even thinked about.

The setting up of the scenario (filling in the repository and filtering) is quite slow but

comparing it to the results given after is more than acceptable. The human intervention of

an user administrator to filter the mash-ups gives the final user a great search experience

which cannot be done by full automatic search engine of this characteristics.

89

CHAPTER 5. PROTOTYPE AND EXAMPLE USAGE

90

CHAPTER6
Conclusions and future lines

In this chapter we will describe the conclusions extracted from this master thesis, the

achievements and thinkings about future work.

91

CHAPTER 6. CONCLUSIONS AND FUTURE LINES

92

6.1. CONCLUSIONS

6.1 Conclusions

By fetching existing services and widgets on the Internet, we have created a powerful search

engine without having any own content, enabling final user find those services that he needs,

that is part of the mash-up generation philosophy.

This project has been developed in the scope of an European FP7 project contributing

to the automated discovery section. This helped us to solve problems that without being

part of a big problem we would not have noticed, like taking into account that final endpoint

servers are not going to be as powerful as developing ones or making the system scalable.

Also helped to extend functionalities of other projects, such as Episteme.

We have used existing technologies whenever it was possible, and this helped improv-

ing them when more complex requisites where necessary. As an example, this happened

with Scrappy, which was modified, created a branch and then merged again with extra

functionalities.

Dividing the project into different modules forced us to rely on existing web and software

standards which helped us to integrate and interconnect all of them.

We experienced big changes as early technology adopters, such as new versions of the

SPARQL language fixing bugs and creating new functionalities. We have dared to use

extremely new technologies still in alpha developments, with its pros and cons.

6.2 Achieved goals

Fetch content automatically This goal has been achieved successfully. We have been

able to discover existing content from websites and then fetch it. This helped us to

have a big repository of services and content that the user will need. This is deeply

described in chapter 4.2.

Structure content It was essential to structure the content fetched from the Internet.

This has been possible thanks to semantic and linked data technologies. This is

detailed in chapter 2.3.2

Store content An other crucial feature that was successfully implemented was how to

store all the information without losing the structured format described before. This

has been achieved by using semantic repositories. More information can be consulted

in chapter 4.3.

93

CHAPTER 6. CONCLUSIONS AND FUTURE LINES

Rank content The content without knowing if it is useful or not is useless. One of the

main goals was to make possible to distinguish good and bad discovered content. This

has been achieved by defining and implementing algorithms that will automatically

rank the stored content. The algorithm and it’s implementation is explained in chapter

refsec:rankingmodule.

Manage content It was completely necessary to manage and administer the discovered

content by the administrator user. This has been achieved by creating an interface

that allows searching and filtering into the automated discovered content and after

selecting the useful content. This is described in chapter 4.5.

Search content The main goal of the project was enabling the user search the services

he needed. This has been done by creating an easy-to-use interface that queries the

repository and lets the user find suitable services. To see detailed information see

chapter 4.6.

Suggest similar content Many times the user does not know what he wants, an other

important role of the project was suggesting the user possible results that matches

his needs. This has been achieved by using semantic search empowered technologies.

Nevertheless, this has been implemented in a simpler scenario using different content

and different ontology. This feature is available in the Job Matching demo1.

6.3 Future work

There are several lines than can be followed to continue and extend features of this work.

In the following points some fields of study or improvement are presented to continue

the development.

• In automated discovery enable only search for new services. Without scrapping the

entire web again we would gain a lot if processing time and this could make possible

more frequent discoveries and more up to date content.

• Also fetching services and widgets from new Internet repositories.

• Not only fetch content from existing repositories, explore the web to discover new

ones. This makes possible to have different content and always new and undiscovered

services.

1http://demos.gsi.dit.upm.es/job-matching/

94

6.3. FUTURE WORK

• Make the discovering service to be launched from web interface. Now it is launched

from console. Integrated into the administrative interface would be optimal.

• Make discovery date visible. This would make possible to know if the information

about a service is reliable. Also making possible to update information of only selected

services.

• New ways of ranking content, based on social networks and popularity on the Internet.

• Categorize widgets and services for existing platforms. For example Wordpress2 plu-

gins.

• Discover mobile services. Content discovered right now is desktop oriented.

• Let the user try and show a demonstration of the services and widgets in the search

interface.

• Semantic search and suggestions to find similar content that could fit in the user’s

preferences. This has been already done in a smaller scenario as a proof of concept.

2http://wordpress.org/

95

CHAPTER 6. CONCLUSIONS AND FUTURE LINES

96

APPENDIXA
Installing and configuring Scrappy

This tutorial goes through the process of installing and configuring Scrappy to be able crawl

services for the OMELETTE project. Scrappy’s code is available at https://github.com/gsi-

upm/scrappy However, in order to use it with OMR, we have introduced some modifications.

The new code can be found in the branch ”omr”.

A.1 Installation

A.1.1 Requirements

• Graphviz

• Raptor library: raptor-utils

• Ruby 1.8

• Ruby Gems

• Sesame 2.01 If the rdf is stored in sesame server.

1http://www.openrdf.org/doc/sesame2/users/ch06.html

97

APPENDIX A. INSTALLING AND CONFIGURING SCRAPPY

• The gems listed below should be installed. In linux, this can be done, for example

’sudo gem install nokogiri’.

– nokogiri 1.5.4

– lightrdf 0.4.1

– i18n 0.6.0

– iconv 0.1

– multi json 1.3.6

– ntlm-http 0.1.1

– webrobots 0.0.13

– sinatra 1.3.2

– sinatra-flash 0.3.0

– eventmachine 0.12.10

– mechanize 2.5.1

– tilt 1.3.3

– haml

– rack 1.4.2

– rack-protection 1.2.0

– rack-flash 0.1.2

A.1.2 Installation steps

• Install ruby and rubygems

• Scrappy can be installed as a standard Ruby gem. However, some of the above gems

may have extra dependencies. In particular, nokogiri requires several system libraries

to be installed, and sinatra-flash may not be automatically installed, so you need to

install then manually before installing scrappy:

sudo apt -get install ruby -dev libxslt -dev libxml2 -dev

sudo gem install sinatra -flash

sudo gem install scrappy

• If you want to run scrappy with the OMR, you need to get the modified version from

github, of both scrappy and lightrdf.

98

A.2. USER MANUAL

git clone https :// github.com/gsi -upm/scrappy.git

git clone https :// github.com/gsi -upm/lightrdf.git

cd scrappy

git checkout omr

cd ../ lightrdf

git checkout omr

This will create a folder named “scrappy”, (along with the new lightrdf folder). Inside it,

in the “bin” subdirectory you can find the runnable for scrappy. Be careful to maintain the

scrappy and lightrdf folder in the same directories, so scrappy can find the correct lightrdf

to load.

A.2 User manual

Scrappy provides a set of interfaces to extract RDF from a web page. In order to see the

available options, the user can execute ’scrappy –help’ as follows.

scrappy --help

Scrappy v0.4.10

Synopsis

Scrappy is a tool to scrape semantic data out of the unstructured web

Examples

This command retrieves a web page

scrappy -g http ://www.example.com

Usage

scrappy [options]

For help use: scrappy -h

Options

-h, --help

Displays help message

-v, --version

Displays the version , then exits

-f, --format

Picks output format (json , ejson , rdf , ntriples , png)

-g, --get URL

Gets requested URL

-p, --post URL

Posts requested URL

-c, --concurrence VALUE Sets number of concurrent connections for crawling (default

is

10)

-l, --levels VALUE

Sets recursion levels for resource crawling (default is infinite

crawling)

-d, --delay VALUE

99

APPENDIX A. INSTALLING AND CONFIGURING SCRAPPY

Sets delay (in ms) between requests (default is 0)

-D, --dump

Dumps RDF data to disk

-u, --debug [KEYWORD] Shows debugging traces. Use optional keyword to filter

selectors ’ output

-o, --observe URLs

Observes the specified URLs storing their data into the repository

-s, --server [ROOT]

Runs web server (optionally specify server ’s root url)

-a, --admin [ROOT]

Runs admin web server (optionally specify server ’s root url)

-P, --port PORT

Selects port number (default is 3434)

-t, --time TIME

Returns repository data from the last given minutes

Scrappy provides several interfaces: command line interface, web admin interface, web

service interface and Ruby interface.

A.2.1 Command line interface

The command line interface can be used in a command shell window as shown in Figure 2.

For example, the web example.com can be scraped with the following command.

scrappy -g example.com

For example, the output from google.com would look like the following window. Be advised:

most of the times the RDF data will not fit in a single window, so its recommended to pipe

it to another command or a text file.

A.2.2 Web admin interface

The web admin interface can be used in a regular web browser, to either scrape a site or

browse the different resources, such as the extractors. To launch it, you need to open a

command line, and execute the following command:

scrappy -a

Launching Scrappy Web Admin (browse http :// localhost :3434) ...

== Sinatra /1.1.3 has taken the stage on 3434 for production with backup from Thin

Once scrappy has been launched, user can access the admin interface (Figure A.2). In

order to scrape a web site, it is only required to introduce the URI and select the desired

output (RDF, JSON, YARF or PNG).

100

A.2. USER MANUAL

Figure A.1: Scrappy command line interface

This interface also allows managing the extractors from each page (extractor tab, Figure

A.3), define visual patterns for improving the extraction (patterns) and train the extractors

(samples tab). These last two tabs are still experimental facilities, so and end user would

not need to use them.

A.2.3 Web service interface

The web service interface provides a web service interface that mimics the admin web

interface but for read-only operations.

scrappy -s

Launching Scrappy Web Server ...

== Sinatra /1.1.3 has taken the stage on 3434 for production with backup from Thin

This service does not provide a front page, so you need to make a GET petition to a

specific url, following this syntax: http://[scrappyhost:port]/[format]/[url]. For example, to

get rdf data out of example.com, launching scrappy in localhost with the default port, it

would be: http://localhost:3434/rdf/example.com.

101

APPENDIX A. INSTALLING AND CONFIGURING SCRAPPY

Figure A.2: Web admin interface of Scrappy

Figure A.3: Extractors Admin Interface

A.2.4 Ruby interface

Scrappy can be used in a Ruby program by requiring the gem.

require ’rubygems ’

require ’scrappy ’

Parse a knowledge base

kb = RDF:: Parser.parse :yarf ,

open(" https :// raw.github.com/gsi -upm/scrappy/omr/extractors/programmableweb.yarf").

re

ad

Set kb as default knowledge base

Scrappy :: Agent:: Options.kb = kb

Create an agent

agent = Scrappy ::Agent.new

Get RDF output

output = agent.request :method=>:get , :uri=>’http ://www.programmableweb.com ’

Output all titles from the web page

102

A.2. USER MANUAL

titles = output.find([], Node(’dc:title ’), nil)

titles.each { |title| puts title }

For example, to extract the data from http://www.programmableweb.com, you will

need:

require ’rubygems ’

require ’scrappy ’

Parse a knowledge base

kb = RDF:: Parser.parse :yarf ,

open(" HOME_DIR /. scrappy/extractors/programmableweb.yarf").read

Set kb as default knowledge base

Scrappy :: Agent:: Options.kb = kb

Create an agent

agent = Scrappy ::Agent.new

Get RDF output

output = agent.request :method=>:get , :uri=>’http ://www.programmableweb.com ’

This will return a graph object. To get the ntriples

ntriples

ntriples = output.serialize :ntriples

rdf

rdf = output.serialize :rdf

A.2.5 Integration with Sesame

While using OMR, several modifications have been introduced into scrappy, in order to user

both Sesame and OMR. The new configuration file includes the options to connect to both

platforms:

103

APPENDIX A. INSTALLING AND CONFIGURING SCRAPPY

The host were omr is. Do not add the trailing ’/’

omr_host: https ://vsr -web.informatik.tu-chemnitz.de/

omr_complete: omr -write/components

omr_user: omr -user

omr_pass: omr -pass

omr_port: 443

The time to consider the data in the repository valid , in minutes

time: 5

The format to communicate with the repository

format: ntriples

You can use any of the following formats:

rdf , ntriples , turtle , n3, trix , trig

In general, it has the same values as a normal scrappy config file has, but, also, several

“omr” values:

• complete: how to complete the url for the sesame server.

• omr host: The host where omr is installed

• omr complete: how to complete the url for omr.

• omr user: the user to connect with omr

• omr pass: The password for the given user

• omr port: The port for the connection. Since omr uses https, the default port is 443

A.2.6 Extractors

Extractors are based on the Scraping ontology and define mappings between HTML content

and RDF data. An example of extractor is shown in Listing A.1.

Listing A.1: Extractor example for Yahoo! Pipes

dc: http :// purl.org/dc/elements /1.1/

owl: http ://www.w3.org /2002/07/ owl#

rdf: http ://www.w3.org /1999/02/22 -rdf -syntax -ns#

rdfs: http :// www.w3.org /2000/01/rdf -schema#

sioc: http :// rdfs.org/sioc/ns#

sc: http :// lab.gsi.dit.upm.es/scraping.rdf#

vu: http :// vulneranet.org/vulneranet.owl#

104

A.2. USER MANUAL

omelette: http ://www.ict -omelette.eu/schema.rdf#

ctag: http :// commontag.org/ns#

rosm: http :// www.wsmo.org/ns/rosm /0.1#

hrests: http :// www.wsmo.org/ns/hrests#

Home page

*:

rdf:type: sc:Fragment

sc:selector:

*:

rdf:type: sc:UriSelector

rdf:value: "http :// pipes.yahoo.com/pipes/"

sc:subfragment:

*:

rdf:type: sc:Fragment

sc:type: sc:Index

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: "a.navlink"

sc:keyword: "browse"

sc:identifier:

*:

rdf:type: sc:RootSelector

sc:attribute: "href"

Popular pipes page

*:

rdf:type: sc:Fragment

sc:selector:

*:

rdf:type: sc:UriSelector

rdf:value: "http :// pipes.yahoo.com/pipes/pipes.popular

"

sc:subfragment:

*:

rdf:type: sc:Fragment

105

APPENDIX A. INSTALLING AND CONFIGURING SCRAPPY

sc:type: sc:Page

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: "# mTagstoptags a"

sc:identifier:

*:

rdf:type: sc:NewUriSelector

sc:prefix: "http :// pipes.yahoo.com/pipes/search?r=

tag:"

sc:follow: "true"

sc:downcase: "true"

Any index page

*:

rdf:type: sc:Fragment

sc:selector:

*:

rdf:type: sc:UriSelector

rdf:value:

"http :// pipes.yahoo.com/pipes/pipes.popular"

"http :// pipes.yahoo.com/pipes/search"

sc:subfragment:

*:

rdf:type: sc:Fragment

sc:type: omelette:Service

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: "li.pipelistli"

sc:identifier:

*:

rdf:type: sc:CssSelector

rdf:value: "h3 a"

sc:attribute: "href"

sc:subfragment:

*:

106

A.2. USER MANUAL

rdf:type: sc:Fragment

sc:relation: omelette:dataFormat

sc:type: rdf:Literal

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: "li.first"

sc:keyword: "formats :"

sc:selector:

*:

rdf:type: sc:XPathSelector

rdf:value: "./../ li[@class=’tag ’]/a"

*:

rdf:type: sc:Fragment

sc:type: sc:Page

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: ". paginate a"

sc:keyword: "next >"

sc:identifier:

*:

rdf:type: sc:RootSelector

sc:attribute: "href"

Yahoo Pipe

*:

rdf:type: sc:Fragment

sc:type: omelette:Service

sc:selector:

*:

rdf:type: sc:UriPatternSelector

rdf:value: "http :// pipes.yahoo.com/pipes/pipe.info?_id

=*"

sc:identifier:

*:

rdf:type: sc:BaseUriSelector

107

APPENDIX A. INSTALLING AND CONFIGURING SCRAPPY

sc:subfragment:

*:

rdf:type: sc:Fragment

sc:relation: rdfs:label

sc:type: rdf:Literal

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: "h1.title"

*:

rdf:type: sc:Fragment

sc:relation: dc:description

sc:type: rdf:Literal

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: ".bd .desc"

*:

rdf:type: sc:Fragment

sc:relation: ctag:tagged

sc:type: ctag:Tag

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: "# mTagstoptags a"

sc:identifier:

*:

rdf:type: sc:NewUriSelector

sc:prefix: "http :// www.ict -omelette.eu/omr/tags/"

sc:downcase: "true"

sc:subfragment:

*:

rdf:type: sc:Fragment

sc:type: rdf:Literal

sc:relation: rdfs:label

sc:selector:

108

A.2. USER MANUAL

*:

rdf:type: sc:RootSelector

*:

rdf:type: sc:Fragment

sc:relation: omelette:uses

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: "# mSourcestoptags a"

sc:identifier:

*:

rdf:type: sc:NewUriSelector

sc:prefix: "http ://"

sc:downcase: "true"

*:

rdf:type: sc:Fragment

sc:relation: omelette:uses

sc:type: omelette:Service

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: "# mModulestoptags a"

sc:identifier:

*:

rdf:type: sc:NewUriSelector

sc:prefix: "http :// www.ict -omelette.eu/omr/

operator /"

sc:downcase: "true"

sc:subfragment:

*:

rdf:type: sc:Fragment

sc:type: rdf:Literal

sc:relation: rdfs:label

sc:selector:

*:

109

APPENDIX A. INSTALLING AND CONFIGURING SCRAPPY

rdf:type: sc:RootSelector

*:

rdf:type: sc:Fragment

sc:relation:

omelette:endpoint

dc:source

sc:selector:

*:

rdf:type: sc:RootSelector

sc:identifier:

*:

rdf:type: sc:BaseUriSelector

*:

rdf:type: sc:Fragment

sc:relation: omelette:describedBy

sc:type: rosm:Service

sc:selector:

*:

rdf:type: sc:RootSelector

sc:subfragment:

*:

rdf:type: sc:Fragment

sc:relation: rosm:supportsOperation

sc:type: rosm:Operation

sc:selector:

*:

rdf:type: sc:RootSelector

sc:subfragment:

*:

rdf:type: sc:Fragment

sc:relation: hrests:hasAddress

sc:selector:

*:

rdf:type: sc:BaseUriSelector

sc:identifier:

*:

110

A.2. USER MANUAL

rdf:type: sc:NewUriSelector

sc:suffix: "& _render=rss"

*:

rdf:type: sc:Fragment

sc:relation: rosm:requestURIParameter

sc:selector:

*:

rdf:type: sc:CssSelector

rdf:value: "# runform table input[@type!=’

submit ’]"

sc:subfragment:

*:

rdf:type: sc:Fragment

sc:relation: rdfs:label

sc:type: rdf:Literal

sc:selector:

*:

rdf:type: sc:RootSelector

sc:attribute: "name"

*:

rdf:type: sc:Fragment

sc:relation: ctag:tagged

sc:selector:

*:

rdf:type: sc:RootSelector

sc:attribute: "type"

sc:subfragment:

*:

rdf:type: sc:Fragment

sc:type: rdf:Literal

sc:relation: rdfs:label

sc:selector:

*:

rdf:type: sc:RootSelector

sc:attribute: "type"

elector

111

APPENDIX A. INSTALLING AND CONFIGURING SCRAPPY

rdf:value: "a"

112

APPENDIXB
OMELETTE Mashup Registry (OMR)

B.1 Installation of Sesame with uSeekM (+PostgreSQL +Post-

GIS)

Requirements:

• A Java Servlet Container that supports Java Servlet API 2.4 and Java Server Pages

(JSP) 2.0, or newer. We recommend using a recent, stable version of Apache Tomcat.

(http://tomcat.apache.org/)

• A recent, stable version of PostgreSQL Server (32Bit).

(http://www.postgresql.org/download/windows/)

• PostGIS extension for PostgreSQL. (Can be installed with the Stack Builder that

comes with PostgreSQL.)

• Extended Sesame HTTP Server with Indexing - USeekM

(https://dev.opensahara.com/projects/useekm/wiki/HttpServer) Installation steps:

• First install the PostgreSQL Server for Windows 32Bit (32Bit because the PostGIS

113

APPENDIX B. OMELETTE MASHUP REGISTRY (OMR)

extension is not yet 100% compatible with the 64Bit server and thus is not available

in the Stack Builder Installer).

• After installing the PostgreSQL Server start the Stack Builder and select PostGIS 1.x

under ”Spatial Extensions” and install it to the running PostgreSQL instance.

• Start the pgAdmin tool to create a database user and database for your index.

• Create a new Login-Role (useekm is used as name and password in the example) with

superuser rights.

• Create a new database (useekm is used as name in the example). Select the created

user as owner. Choose ”template postgis” as template (IMPORTANT!).

• Your database should be good to go.

• Install Apache Tomcat and get it running. There should be no configuration needed.

• Download the latest useekm-http-server and useekm-http-workbench *.war files from

https://dev.opensahara.com/nexus/content/repositories/releases/com/opensahara/

• You may rename them to openrdf-sesame.war and openrdf-workbench.war if you want

to replace your current sesame installation.

• Put them in the Tomcat webapps folder. They should automatically get deployed.

• Your extended sesame server should be good to go.

• Create a configuration file for your indexed repository like this.

• The example indexes the http://purl.org/dc/elements/1.1/description predicate.

• You may need to edit the database connection settings, like username, password and

the URL with the database name.

<beans xmlns ="http :// www.springframework.org/schema/beans"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation ="http :// www.springframework.org/schema/beans

http ://www.springframework.org/schema/beans/spring -beans -3.0. xsd">

<!-- The id "repository" is mandatory! -->

<bean id=" repository" class="org.openrdf.repository.sail.SailRepository">

<constructor -arg >

<bean class ="com.useekm.indexing.IndexingSail">

<constructor -arg ref="sail" />

<constructor -arg ref=" indexerSettings" />

</bean >

</constructor -arg >

114

B.1. INSTALLATION OF SESAME WITH USEEKM (+POSTGRESQL +POSTGIS)

</bean >

<!-- This example uses the NativeStore as the underlying sail , you could also use

the

MemoryStore -->

<bean id="sail" class="org.openrdf.sail.nativerdf.NativeStore" />

<!-- Please customize the indexer settings: -->

<bean id=" indexerSettings" lazy -init="true"

class="com.useekm.indexing.postgis.PostgisIndexerSettings">

<property name=" defaultSearchConfig" value =" simple" />

<property name=" dataSource" ref=" pgDatasource" />

<property name=" matchers">

<list >

<bean class ="com.useekm.indexing.postgis.PostgisIndexMatcher">

<property name=" predicate"

value="http :// purl.org/dc/elements /1.1/ description" />

<property name=" searchConfig" value=" simple" />

</bean >

</list >

</property >

<property name=" partitions">

<list >

<bean class ="com.useekm.indexing.postgis.PartitionDef">

<property name="name" value=" description" />

<property name=" predicates">

<list >

<value >http :// purl.org/dc/elements /1.1/ descr

iption </value >

</list >

</property >

</bean >

</list >

</property >

<!-- You can add additional configuration , such as index partitions to optimize

performance. See the documentation. -->

</bean >

<bean id=" pgDatasource" lazy -init="true"

class="org.apache.commons.dbcp.BasicDataSource" destroy -method ="close">

<property name=" driverClassName" value ="org.postgresql.Driver"/>

<property name="url" value="jdbc:postgresql :// localhost :5432/ useekm"/> <!--

CUSTOMIZE! -->

<property name=" username" value=" useekm"/>

<!--

CUSTOMIZE! -->

<property name=" password" value=" useekm"/>

<!--

CUSTOMIZE! -->

</bean >

</beans >

• Save this as configuration.xml to a folder in which the webapps have access to.

115

APPENDIX B. OMELETTE MASHUP REGISTRY (OMR)

• Open the URL to the workbench http://localhost:8080/useekm-http-workbench).

• Enter the URL to your Sesame server. (ex.: http://localhost:8080/useekm-http-

server).

• Create a new repository.

• Choose USeekM Store as Type.

• Choose a name and ID.

• Press Next and enter the full path to the configuration file mentioned above. (use

slashes instead of backslashes!).

• Press create and the repository and the tables in the database should get created and

initialised.

Now you have the prerequisites to install the DataGridService for hosting your own

OMELETTE Mashup Registry.

B.2 Installation of the DataGridService

We created an installable package for Windows to run a stand-alone DataGridService with

all current features of the OMR and a RESTClient with a GUI (https://vsr.informatik.tu-

chemnitz.de/demo/omr/omrsetup.zip). Just install the package and two folders will be

created in the selected folder - one with the RESTClient and one with the DGS. Before

starting the DataGridService you may need to configure it to connect to the correct Sesame

triple store and repository. In the file “Server

DgsTestServer.exe.config” please set the following values corresponding to these you set up

earlier during the installation of Sesame and the uSeekM repository:

<appSettings >

...

<!-- Service Registry -->

<add key=" sesameStoreUrl" value ="[Store URL ,

i.e.: http :// localhost :8080/ useekm -http -server /]"/>

<add key=" sesameRepository" value ="[repository]"/>

<add key=" sesameUsername" value ="[username]" />

<add key=" sesamePassword" value ="[password]" />

</appSettings >

After you have done this just run the DgsTestServer.exe with administrative privileges.

Now your OMELETTE Mashup Registry is ready for usage.

116

B.3. USER MANUAL

B.3 User manual

The OMR provides a REST interface which is illustrated in this section. The following usage

scenarios will help you get started. Create a new resource for storing semantic component

descriptions:

POST /omr HTTP /1.1

Host: datagridservice.example.org

Content -Type: text/xml

Content -Length: xxx

<collection xmlns="http :// www.w3.org /2007/ app"

xmlns:atom="http ://www.w3.org /2005/ Atom"

xmlns:dgs="http ://www.webcomposition.net /2008/02/ dgs/">

<atom:title >components </atom:title >

<dgs:dataspaceengines >

<dgs:dataspaceengine

dgs:type="http :// www.webcomposition.net /2008/02/ dgs/DataSpaceEngines/

ServiceRegistr

yDataSpaceEngine" />

</dgs:dataspaceengines >

</collection >

Add new data to the OMR:

POST /omr/components HTTP /1.1

Host: datagridservice.example.org

Content -Type: text/xml

Content -Length: xxx

<rdf:RDF

xml:base="https :// datagridservice.example.org/omr/components/graphs /1705 f351 -db6e -4

037 -899c -08156 ab31e13" xmlns:rdfs="http ://www.w3.org /2000/01/rdf -schema #"

xmlns:xsd="http ://www.w3.org /2001/ XMLSchema #"

xmlns:ns0="http ://www.ict -omelette.eu/schema.rdf#"

xmlns:rdf="http ://www.w3.org /1999/02/22 -rdf -syntax -ns#">

<ns0:Widget rdf:about ="http :// eco.netvibes.com/themes /368491/ wasabi">

<ns1:description xmlns:ns1="http :// purl.org/dc/elements /1.1/" > Official theme

for

Netvibes Wasabi </ns1:description >

<ns2:source xmlns:ns2="http :// purl.org/dc/elements /1.1/"

rdf:resource ="http :// eco.netvibes.com/themes /368491/ wasabi" />

<ns3:isPartOf xmlns:ns3="http :// purl.org/dc/terms /"

rdf:resource ="https :// datagridservice.example.org/omr/components/graphs /1705

f351 -db6

e-4037 -899c -08156 ab31e13" />

<ns0:categorizedBy >Textures; Official </ns0:categorizedBy >

<ns0:endpoint

rdf:resource ="http :// widgets.opera.com/widget/download/force /10322/1.0/" />

<ns0:hasRegistryEntry

rdf:resource ="http :// datagridservice.example.org/omr/components/feedItem?

name=https :// datagridservice.example.org/omr/components/graphs /1705f351 -db6e

-4037-

117

APPENDIX B. OMELETTE MASHUP REGISTRY (OMR)

899c -08156 ab31e13" />

<ns4:installs xmlns:ns4="http ://www.netvibes.com /#" >29678 </ ns4:installs >

<ns5:regions xmlns:ns5="http :// www.netvibes.com/#"></ns5:regions >

<rdfs:label >Wasabi </rdfs:label >

</ns0:Widget >

</rdf:RDF >

Get all available components registered in OMR:

GET /omr/components HTTP /1.1

Host: datagridservice.example.org

Accept: text/xml

<feed xmlns ="http ://www.w3.org /2005/ Atom">

<title type="text">Available Components </title >

<subtitle type="text">Component descriptions </subtitle >

<id>http :// datagridservice.example.org/omr/components </id>

<updated >2012 -05 -30 T15 :42:26+02:00 </ updated >

<link rel="meta" type=" application/rdf+xml" title="Feed metadata"

href="http :// datagridservice.example.org/omr/components/meta" />

<link rel="views" type=" application/atom+xml" title ="Views on RDF dataset"

href="http :// datagridservice.example.org/omr/components/views" />

<link rel=" sparql" type=" application/sparql -results+xml" title=" Sparql endpoint"

href="http :// datagridservice.example.org/omr/components/sparql" />

<link rel="sparql -update" type=" application/sparql -results+xml" title ="Sparql -

Update

endpoint" href="http :// datagridservice.example.org/omr/components/sparql -update"

/>

<link rel="data" type=" application/rdf+xml" title="RDF dataset"

href="http :// datagridservice.example.org/omr/components/graphs/all" />

<link rel=" search" type=" application/opensearchdescription+xml" title =" OpenSearch

endpoint"

href="http :// datagridservice.example.org/omr/components/opensearch/document" />

<entry >

<id>https ://vsr -web.informatik.tu-chemnitz.de/omr/components/graphs/bf5cdceb -38c7

-4a

0c-b5ed -49 f1eae6bfa2 </id>

<title type="text">Wasabi </title >

<summary type="text">Official theme for Netvibes Wasabi </summary >

<published >2012 -05 -30 T15 :42:27+02:00 </ published >

<updated >2012 -05 -30 T15 :42:27+02:00 </ updated >

<link rel="edit -media" type=" application/rdf+xml"

href="http :// datagridservice.example.org/omr/components/graphs /?

name=https ://vsr -web.informatik.tu-chemnitz.de/omr/components/graphs/bf5cdceb -38

c7 -4

a0c -b5ed -49 f1eae6bfa2" />

<link rel="edit" type=" application/atom+xml;type=entry;"

href="http :// datagridservice.example.org/omr/components/feedItem?

name=https ://vsr -web.informatik.tu-chemnitz.de/omr/components/graphs/bf5cdceb -38

c7 -4

a0c -b5ed -49 f1eae6bfa2" />

<content type=" application/rdf+xml"

118

B.3. USER MANUAL

src="http :// datagridservice.example.org/omr/components/graphs /?

name=https ://vsr -web.informatik.tu-chemnitz.de/omr/components/graphs/bf5cdceb -38

c7 -4

a0c -b5ed -49 f1eae6bfa2" />

</entry >

...

</feed >

Creation of example view for searching components by their description (SPARQL tem-

plate):

POST /omr/components/views HTTP /1.1

Host: datagridservice.example.org

Content -Type: text/xml

Content -Length: xxx

<?xml version ="1.0" encoding ="utf -8"?>

<entry xmlns ="http :// www.w3.org /2005/ Atom">

<title type="text">services </title >

<content type=" application/xml+vnd.omr">

<omr:view xmlns:omr="http ://www.ict -omelette.eu/schema.rdf#omr">

<omr:url >? query={query =}</omr:url >

<omr:sparql >

<![CDATA[

PREFIX pdc:<http :// purl.org/dc/elements /1.1/>

PREFIX search:<http :// rdf.opensahara.com/search#>

SELECT DISTINCT ?result

WHERE

{

?result pdc:description ?description.

FILTER search:text(? description , "{ query }")

}

]]>

</omr:sparql >

</omr:view >

</content >

</entry >

Execute view to get all components matching a given query string:

GET /omr/components/views/services/data?query=geo HTTP /1.1

Host: datagridservice.example.org

Accept: application/sparql -results+xml

<?xml version ="1.0" encoding ="utf -8"?>

<sparql xmlns="http :// www.w3.org /2005/ sparql -results#">

<head >

<variable name=" result" />

</head >

<results >

<result >

<binding name=" result">

<uri >http :// geoservice.example.org </uri >

</binding >

119

APPENDIX B. OMELETTE MASHUP REGISTRY (OMR)

</result >

</results >

</sparql >

120

APPENDIXC
OMR Administrative interface

C.1 Installation and configuration

Requirements

• OMR or Sesame 2.0 for testing.

• Apache 2 web server with PHP 5.2

Extract all the content wherever it is preferred. Before executing it, some configuration

must be done.

The administrative interface can be configured to use a semantic data source by means

of an OMR REST interface or a general SPARLQ endpoint. Within the project Omelette,

it has been configured to use both the OMR interface or a Sesame Open-rdf Workbench,

which has been used for testing purposes.

The semantic data source is configured in the omr.php class file. There are two kinds

of URL to be configured.

1. To configure the URL of the SPARQL endpoint, the server variable must be config-

121

APPENDIX C. OMR ADMINISTRATIVE INTERFACE

ured.

• OMR:

https://vsr-web.informatik.tu-chemnitz.de/omr-write/components/sparql

• Sesame:

http://shannon.gsi.dit.upm.es:18080/openrdf-workbench/repositories/repository

/query

2. It is also necessary another URL where the data to be added to the repository is

posted. This is defined by post url

• OMR:

https://vsr-web.informatik.tu-chemnitz.de/omr-write/components/

• Sesame:

http://shannon.gsi.dit.upm.es:18080/openrdf-workbench/repositories/repository

/add

/* OMR configuration */

var $user = "omr -client -upm";

var $password = "omr.client.upm .2012";

var $omr_post_url = "https ://vsr -web .[...].tu-chemnitz.de/omr -write/components /";

var $omr_server = "https ://vsr -web .[...]. de/omr -write/components/sparql ";

/* Sesame configuration */

var $repository = "repository_name ";

var $sesame_post_url = "http ://[...]/ repositories /".$this ->repository ."/add";

var $sesame_server = "[...]/ repositories /".$this ->repository ."/ query ";

Both can be configured at the same time. In order to switch between the endpoint to use,

it is just needed to change the value of the variable $endpoint, and select “omr”,”sesame”

endpoint = "sesame "; // functions.omelette.php

122

APPENDIXD
OMELETTE Ranking System

Its code is available at https://github.com/gsi-upm/omr-admin/tree/master/ranking

Requirements:

• Sesame 2.6

• Apache Tomcat. (http://tomcat.apache.org/

Installation steps:

• First download the ranking system’s code available at project’s repository.

• Once downloaded it, uncompress.

• Configure the ranking system. To this, the file “configuration.properties” available in

root folder should be edited. In particular, fill the following properties.

Once the system has been configured, the Omelette ranking system is ready to be

used.

• Finally, execute the script startRanking.sh:

$./ startRanking.sh

123

APPENDIX D. OMELETTE RANKING SYSTEM

After running the program, it will have been introduced the fields for the different

ranking algorithms in the sesame’s database: limon:DegCent, limon:ClosCent and

limon:RatSoc correspondingly. These fields represents the distinct mechanisms that

we have it to evaluate like service is important compared another.

• This information should be updated periodically by a timer.

124

Bibliography

[1] O. Chudnovskyy, T. Nestler, M. Gaedke, F. Daniel, J. I. Fernández-Villamor, V. Chepegin, J. A.

Fornas, S. Wilson, C. Kögler, and H. Chang, “End-user-oriented telco mashups: the omelette

approach,” in Proceedings of the 21st international conference companion on World Wide Web,

pp. 235–238, ACM, 2012.

[2] C. A. Iglesias, J. I. Fernández-Villamor, D. Del Pozo, L. Garulli, and B. Garćıa, “Combining

domain-driven design and mashups for service development,” in Service Engineering, pp. 171–

200, Springer, 2011.

[3] F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan, “Hosted universal composition: Mod-

els, languages and infrastructure in mashart,” in Conceptual Modeling-ER 2009, pp. 428–443,

Springer, 2009.

[4] F. Villamor, C. A. Iglesias Fernandez, and M. Garijo Ayestaran, “Linked mashups ontology

(limon) specification.” http://www.gsi.dit.upm.es/ontologies/limon/. Accessed April 4,

2012.

[5] M. Zuccalà, “Soa4all in action: Enabling a web of billions of services,” in Towards a Service-

Based Internet (E. Nitto and R. Yahyapour, eds.), vol. 6481 of Lecture Notes in Computer

Science, pp. 227–228, Springer Berlin Heidelberg, 2010.

[6] J. I. Fernández Villamor, J. Blasco Garcia, C. A. Iglesias Fernandez, and M. Garijo Ayestaran,

“A semantic scraping model for web resources-applying linked data to web page screen scraping,”

2011.

[7] “Scraping ontology http://lab.gsi.dit.upm.es/scraping.rdf.”

[8] “Scrappy screen scraper http://github.com/josei/scrappy.”

[9] T. Zemke, J. I. Fernández-Villamor, and C. A. Iglesias, “Ranking Web Services using Centralities

and Social Indicators,” in Proceedings of the 7th International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE 2012), (Wroc law, PL), SciTePress, 2012.

125

http://www.gsi.dit.upm.es/ontologies/limon/

BIBLIOGRAPHY

126

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Master thesis description
	Master thesis goals
	Structure of this Master Thesis

	Enabling Technologies
	Overview
	OMELETTE mash-up Registry
	RDF model

	Automated Discovery
	Introduction
	Discovery techniques

	Conclusions

	Requirement Analysis
	Overview
	Use cases
	Actors dictionary
	OMR composition and search use case
	Keyword search
	Mash-up browse by category
	mash-up search by query
	mash-up compose
	Ask suggestion

	OMR discovery and administration use case
	Automatic mash-up feeding
	HTML Form discovery and description
	mash-up registry integration
	API based integration
	Scraping based integration
	Manual mash-up management
	Browse pending mash-ups and services
	Validate a mash-up / service
	Reject a mash-up / service

	Web interface use case
	Request available mash-ups
	Search mash-ups by query

	Conclusions

	Architecture
	Introduction
	Automated discovery
	Semantic repository
	Ranking module
	OMR Admin Interface
	Main component
	Functions library
	Facet boxes
	Result lists
	Widget or service
	Generate charts
	Admin authentication
	Cache and performance
	Repository wrapper
	Sparql Library
	Validating resource
	Rejecting resource
	Wadl generation
	LMF integration

	OMR Client Browser
	Back-end
	Front-end

	Conclusions

	Prototype and example usage
	Introduction
	Automatic service discovery
	Ranking algorithm
	OMR administrative interface
	Available general actions
	Filtering
	Searching
	Obtaining help
	Statistics

	Reject a resource
	Validating resource example

	Web developer interface
	Conclusions

	Conclusions and future lines
	Conclusions
	Achieved goals
	Future work

	Installing and configuring Scrappy
	Installation
	Requirements
	Installation steps

	User manual
	Command line interface
	Web admin interface
	Web service interface
	Ruby interface
	Integration with Sesame
	Extractors

	OMELETTE Mashup Registry (OMR)
	Installation of Sesame with uSeekM (+PostgreSQL +PostGIS)
	Installation of the DataGridService
	User manual

	OMR Administrative interface
	Installation and configuration

	OMELETTE Ranking System
	Bibliography

