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Resumen

Esta memoria presenta el resultado del proyecto Trainmining, realizado por el Grupo de

Sistemas Inteligentes junto con Thales España. El proyecto consiste en el desarrollo e imple-

mentación de un sistema de predicción de fallos para una red de mantenimiento ferroviario,

mediante la aplicación de técnicas de mineŕıa de datos.

En concreto, el objetivo del proyecto es ser capaz de predecir eventos futuros en la

red ferroviaria (correspondientes a alertas y fallos de diversos sistemas) basándonos en los

eventos que hayan ocurrido hasta el momento. La motivación de esta tarea es ser capaces de

predecir los fallos con antelación, de forma que se puedan prevenir o planificar su reparación

de una forma más eficiente.

En el documento se presenta una visión general de los procesos de mineŕıa de datos, aśı

como de algunos algoritmos considerados para la implementación del sistema. Mediante la

utilización de estos algoritmos, podemos obtener conocimiento predictivo de bases de datos

de eventos pasados, descubriendo de forma automática relaciones, patrones o secuencias

que nos permitirán en el futuro predecir algunos eventos con una confianza determinada.

Se describe asimismo los procedimientos pertinentes de validación, para evitar el fenómeno

conocido como sobreentrenamiento y mejorar la funcionalidad global del sistema. Tras este

proceso de validación se procede a presentar un análisis y evaluación de los resultados.

Con el fin de demostrar el funcionamiento del sistema desarrollado y la utilidad del

conocimiento adquirido, se ha desarrollado un prototipo que genera predicciones a partir

de eventos de entrada.

Finalmente, se presentan algunas alternativas al trabajo realizado, aśı como conclusiones

y posibles ĺıneas de trabajo futuro.

Palabras clave: Mineŕıa de datos, predicción, mantenimiento predictivo, eventos, se-

cuencias, alarmas, aprendizaje.
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Abstract

The Trainmining project, developed by the Intelligent Systems Group along with Thales

Spain, consists on the development and implementation of a failure prediction system for a

railway maintenance network, as the result of a Data Mining process.

Specifically, the project aims to provide the ability to predict future events in the railway

network (corresponding to alarms and failures of diverse systems) taking as a base the events

which have happened in the close past. The purpose of this task is being able to predict

failure events before they happen, in order to prevent them or plan ahead for their solution

in the most efficient way.

We present a general overview of Data Mining processes, as well as of some algorithms

we have considered for the implementation of the system. Through these algorihtms, we

can obtain predictive knowlege from databases of past events, automatically discovering

relations, patterns or sequences which could allow us to predict other events with a certain

confidence. Evaluation and validation processes are as well defined and described, in order

to avoid overfitting and improve the overall performance of the system. After this validation

process, an analysis of results is presented.

In order to demonstrate the utility of the developed system and the usefulness of the

acquired knowledge, a predictive module prototype has been implemented, which generates

predictions based on given input data.

Finally, alternative methods for the performed work are presented, as well as conclusions

and possible future development lines.

Keywords: Data mining, prediction, predictive maintenance, events, alarms, sequences,

machine learning.

VII





Agradecimientos

Quiero aprovechar esta oportunidad para dar las gracias a toda la gente que me ha apoyado

y ha estado conmigo durante los años que he estado estudiando en esta escuela.

A mi familia, quienes han hecho que todo esto sea posible y me han apoyado para llegar
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CHAPTER1
Introduction

This chapter provides an introduction to the problem which will be aproached in this

project. It provides an overview of the benefits of predictive operations in systems

maintenance and how data mining techniques can be used for this purpose. Further-

more, a deeper description of the project and its environment is also given.

1
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1.1. DATA MINING AND FAILURE PREDICTION

1.1 Data Mining and Failure Prediction

Data mining is the process that results in the discovery of patterns -often unknown or

unexpected- in large data sets. It gathers aspects of several fields of research, such as

artificial intelligence, machine learning, statistics, and database systems. The overall goal

of the data mining is to extract knowledge from an existing data set and being able to

extrapolate general relations which can be lately used for prediction of patterns or future

acquisitions of data. Data mining is specially interesting when it allows us to predict future

events based on easy measurements that can be done over the time.

In almost every field of activity, the ability to predict events in any aspect of the environ-

ment can give a significant advantage against possible competitors, or even against possible

casualties which can affect or threat the quality of the activity. It is of special interest

the ability to predict failures in the production systems, as they usually entail reduction of

the efficiency of the activity. Thus, preventive maintenance has become a very important

activity in every large business.

Data mining can offer a simple and efficient way to perform automatised preventive

maintenance. The failures can only be measured and registered once they happen, not

serving for the purposes of their own prevention but probably for the prediction of future

related events. Additionally, there is usually a vast amount of other data which can be easily

measured and monitorised from the maintained systems, such as temperature, CPU load

or network activity, for example. Data mining techniques can find relations between these

easily-measurable indicators and failure happening chances, allowing the implementation

of alarms or even automated procedures once they reach certain levels which indicate the

imminent occurrence of a failure.

In this project, we will apply data mining techniques to a specific scenario: a main-

tenance system of a railway network. We will focus on preventive maintenance aids, as

mentioned before, using data provided by Thales, the managing company of said mainte-

nance system. For our project, we count on a vast amount of data for the last three years,

comprising both failure logs and indicator values in several maintenance stations spread

throughout Spain. This provides a perfect scenario for real data mining applications, as

well as a useful output for successful prediction techniques.

3



CHAPTER 1. INTRODUCTION

1.2 Project description

The main goal of this project is to provide a functional prediction system for failures in the

given environment: a maintenance system of a railway network.

Failure prediction is the main objective for proactive maintenance in any existing system.

Developing new ways of predict when errors and failures are most likely to happen can help

to prepare in advance maintenance tasks, as well as to eliminate or minimize the outage

time or any other inconveniences caused by these errors.

The work described in this document corresponds to the Trainmining project developed

with Thales Spain, a company which is responsible of maintenance systems for the main

railway lines in Spain. Thales has gathered large amounts of event logs throughout the last

years, which will be used in this project as a source to extract information which we can

later use to make predictions.

Since there is a NDA between UPM and Thales, the data presented in this book has

been modified so that no confidential information is revealed. These modifications are of

no importance at all for the development of the project, as all the performed procedures

are completely unaffected by the nature or structure of the data.

1.3 Structure of this Master Thesis

In this section we will provide a brief overview of all the chapters of this Master Thesis. It

has been structured as follows:

Chapter 1 provides an introduction to the problem which will be aproached in this

project. It provides an overview of the benefits of predictive operations in systems mainte-

nance and how data mining techniques can be used for this purpose. Furthermore, a deeper

description of the project and its environment is also given.

Chapter 2 contains an overview of the existing technologies on which the development

of the project will rely. Starting from a general description of the Knowledge Discovery

in Databases process, a deeper insight on the actual procedures is presented. Some Data

Mining algorithms are presented, among which is our choice for this project. To finish, the

environment and other technologies which will be used for the development of this project

are presented, such as the R language and RStudio.

Chapter 3 contains further information on the project itself. We will start defining

4



1.3. STRUCTURE OF THIS MASTER THESIS

the context, scope and objectives for the project, which will as well define our learning

objectives. Further details on the available databases will be also given. Starting from their

structure and size and finishing with a detailed analysis from a statistical point of view.

Furthermore, we will analyse the needed steps -if any- in order to use this data with the

chosen algorithms.

Chapter 4 focuses on the most important step of our project: the Data Mining process.

This is where we will actually obtain the knowledge which will allow us to implement a

predictive system. In previous chapters we already introduced some details about Data

Mining, as well as presented some of the algorithms and methods that can be used for this

purpose. We will now provide a much more detailed description on the usage of the chosen

method and all the steps needed for their execution. Evaluation and validation criteria and

methods will be defined as well at this point. We will also describe the parameters we can

adjust in this process and which will define its efficiency and the quality of the results, as

well as the problems faced when choosing them and alternative methods to obtain better

results.

In Chapter 5 we will make a deep insight on the data obtained from the Data Mining

process described in chapter 4. We will analyse the resultsets from different points of

view. Using the evaluation parameters already defined, we will provide further details

on the actual use these resultsets can have for maintenance operators according to their

performance. Differences between different maintenance stations and time periods will as

well be analysed. To finish, we will present an example scenario in which we will be able to

understand the actual effect our results would have on daily maintenance operations.

In Chapter 6 we will describe the design and implementation of a prototype predic-

tive module. This module is a software library which allows end users to actually obtain

predictions using the knowledge we have acquired in previous stages of the project. The

prototype relies mainly on a Rule Engine, which evaluates the input conditions (past events)

and provides with predictions for the future. Further details on rule engines and the chosen

implementation will be given as well.

In Chapter 7 we will gather the conclusions obtained as a result of the project, as well

as possible future work that can be done for further development of this project and any

other predictive tasks in general.

5
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CHAPTER2
Enabling Technologies

This chapter contains an overview of the existing technologies on which the develop-

ment of the project will rely. Starting from a general description of the Knowledge

Discovery in Databases process, a deeper insight on the actual procedures is pre-

sented. Some Data Mining algorithms are presented, among which is our choice for

this project.

To finish, the environment and other technologies which will be used for the devel-

opment of this project are presented, such as the R language and RStudio.

7
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2.1. KNOWLEDGE DISCOVERY IN DATABASES

2.1 Knowledge Discovery in Databases

The whole process we are approaching in this project is usually known as Data Mining, or

more generally, Knowledge Discovery in Databases. A lot of research has been already done

on this field which will serve as background for our project, as well as tools and algorithms

which have been designed to treat similar problems and which we can adapt or use as base

to develop our own [1, 2].

Knowledge Discovery in Databases - or KDD - is a term used to describe the procedure

of acquiring high-level knowledge from low-level data. As a formal definition, Knowledge

Discovery is the non-trivial extraction of implicit, previously unknown, and potentially

useful information from data [3]. This knowledge is usually found in the form of patterns

and relations between variables which were unlikely to be related.

The KDD process involves several steps [4] which can be summarized as follows:

1. Understanding the problem: The first step involves understanding the environ-

ment we are studying and gaining relevant prior knowledge. In this step we must

identify which goals we want to set for the knowledge discovery process. This is, we

must identify the kind of knowledge we want to obtain and the data we can count on

for this process.

2. Creating a target dataset: We will usually need to select a subset of variables

from the available datasets. While the system we are studying may need a lot of

variables to log events or make data relations, we will not likely need all of them to

characterize our problem. Reducing the dimensionality of the problem will provide

better results and ease the following steps.

3. Data cleaning and preprocessing: In this step we have to discern which data is

actually relevant and significant for our study, and which is merely noise or outliers

which should be disregarded. Operations such as noise modelling or mapping of

missing and unknown values are also taken in this step.

4. Data mining: For this step we must first have decided the purpose of the model

derived by the data mining algorithm. For example, summarization, regression, clus-

tering and others. According to our decision, some data mining algorithms will be

more appropriate than others.

5. Interpretation of results: Consists on interpreting the discovered patterns, remov-

ing those redundant or irrelevant and translating the useful ones into understandable
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terms.

6. Consolidation of discovered knowledge: The discovered knowledge is finally

consolidated in an appropriate form. Depending on the context of our project, it

might be simply documented or integrated in predictive modules for the analysed

systems.

Data Mining comprises a large amount of different algorithms which can be used for the

Knowledge Discovery process. Depending on the nature of the data on which we will apply

these algorithms, and on the kind of knowledge we expect or want to acquire, we will need

algorithms of different types.

Different algorithms can usually be classified in the following categories:

1. Classification: Learning a function that maps an item into predefined classes.

2. Regression: Learning a function that maps an item to a predicted variable.

3. Segmentation: Identifying a set of clusters to categorise the data.

4. Summarization: Finding a compact description for the data.

5. Association: Finding significant dependencies between different variables. [5].

6. Sequence analysis: Finding frequent sequences or episodes in data [6, 7].

2.2 Choosing an Algorithm

From the previous classification, Segmentation and summarization algorithms seem to be

obviously out of the question, as their functionality differs completely from the objectives

we want to achieve in our project. Regression algorithms are inadequate as well due to the

nature of our data. We do not count on variables whose future value we want to predict.

Classification algorithms might not seem like a good choice at first, as we do not have

the need to classificate the events into any existing categories. However, if we define an

appropriate set of categories and an appropriate model of items to classify, classification

algorithms can be actually useful for our tasks. If we model the current events as the item to

classify, and the possible categories as the possible events which can happen in the future,

we can actually classify the current situation (defined by the events which have already

happened) into possible categories each defining what would happen next.
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However, sequence analysis seems to be the most appropriate category at at first glance:

we count on historic data from the past and we want to find event patterns from which

we can foresee future events. Patterns which are frequent offer useful information in this

direction. If we know a set of several events which often happen in the same sequence, we

can expect the later events in the sequence to happen once we have already seen the first

ones.

These sequences offer a good starting point, but it is important to realize that frequency

in a pattern refers to the total of events happening during the observated period, and does

not indicate in any way the probability of the last events in a sequence to happen once the

first ones have been acknowledged. In other words, we want to obtain predictions with a

high probability rather than a high frequency.

In this direction, we will use the approach of the association algorithms. Using frequent

sequences as an starting point, we will build association rules which will relate events in

the form of boolean variables.

Therefore, we find this to be the most appropriate approach, as it addresses our problem

directly without the need of transforming it into a different kind of situation.

2.2.1 General Purpose Algorithms

Even though we are specifically aiming to perform sequence mining in our project, there are

several general purpose algorithms which could be used in our project with the necessary

changes. Algorithms such as Apriori [8] could for example be used after a pertinent data

transformation. However, these aditional steps would require significant additional work,

and therefore we will look for alternative algorithms which can handle these issues on their

own.

2.2.1.1 Neural networks

An alternative approach for our problem is to treat it as a classification issue instead of an

association one. This can be simply achieved by defining the current situation as the item

to classify, and the categories being all the possible future situations. The set of today’s

events will therefore fall into one category which indicates which events are likely to happen

tomorrow.

Neural Networks [9] are amongst the most popular tools for this kind of problem. Neural

Networks are a computational tool modeled on the interconnection of the neuron in the
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nervous systems of the human brain and that of other organisms. Neural Networks are

a type of non-linear processing system that is ideally suited for a wide range of tasks,

especially tasks where there is no existing algorithm for task completion. They can be

trained to solve certain problems using a teaching method and sample data. In this way,

identically constructed networks can be used to perform different tasks depending on the

training received. With proper training, neural networks are capable of generalization, the

ability to recognize similarities among different input patterns, especially patterns that have

been corrupted by noise.

2.2.2 Sequence Mining Algorithms

In this section we will analyse some of the existing algorithms designed for the specific

purpose of mining sequences. These algorithms will likely require much less adaptation an

previous work in order to be applicable to our project, as their purpose is the same or very

similar to our goals.

2.2.2.1 The SPADE Algorithm

An algorithm to Frequent Sequence Mining is the SPADE [10] (Sequential PAttern Discovery

using Equivalence classes) algorithm. It uses a vertical id-list database format, where we

associate to each sequence a list of objects in which it occurs. Then, frequent sequences can

be found efficiently using intersections on id-lists. The method also reduces the number of

databases scans, and therefore also reduces the execution time.

The first step of SPADE is to compute the frequencies of 1-sequences, which are se-

quences with only one item. This is done in a single database scan. The second step

consists of counting 2-sequences. This is done by transforming the vertical representation

into an horizontal representation in memory, and counting the number of sequences for each

pair of items using a bidimensional matrix. Therefore, this step can also be executed in

only one scan.

Subsequent n-sequences can than be formed by joining (n-1)-sequences using their id-

lists. The size of the id-lists is the number of sequences in which an item appears. If this

number is greater than minsup, the sequence is a frequent one. The algorithm stops when

no frequent sequences can be found anymore. The algorithm can use a breadth-first or a

depth-first search method for finding new sequences.

One implementation of the SPADE algorithm is the cSPADE algorithm. This imple-
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mentation allows for timing constraints and is available in the form of a R library [11].

2.2.2.2 Timeweaver

A particularly type of algorithm which can be very useful for our purposes are genetic

algorithms [12]. Specifically, a similar problem to ours has already been aproached in

the past in some other research project, through the implementation of the Timeweaver

algorithm [13]. This implementation is not publicly available, but there are several tools

for the implementation of custom genetic algorithms which can be used.

Although this is a very good option for approaching our project, it requires further

implementation than other algorithms such as cSPADE (see section 2.2.2.1).

2.2.2.3 The Eclat Algorithm

The Eclat algorithm [14] is used to perform itemset mining. Itemset mining let us find

frequent patterns in data like if a consumer buys milk, he also buys bread. This type of

pattern is called association rules and is used in many application domains.

The basic idea for the Eclat algorithm is use tidset intersections to compute the support

of a candidate itemset avoiding the generation of subsets that does not exist in the prefix

tree.

This algorithm could be used in our context by treating events as items. If the event

A happens, it’s frequent that also B happens. However, as with the shopping basket

example, we will only find relations for items being in the same basket, and therefore would

find events which are likely to happen together but not predict them over a time window.

Althought this would still be achievable through different encoding of for example, today’s

and tomorrow’s event (A1 means A today while A2 means A tomorrow) this means a

significant added complexity, and as there are solutions which already contemplate these

issues (see section 2.2.2.1) this algorithm is not very appropriate for our purposes.

2.2.2.4 The FP-Growth Algorithm

The FP-Growth Algorithm, proposed by Han in [15], is an efficient and scalable method for

mining the complete set of frequent patterns by pattern fragment growth, using an extended

prefix-tree structure for storing compressed and crucial information about frequent patterns

named frequent-pattern tree (FP-tree). In his study, Han proved that his method outper-
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forms other popular methods for mining frequent patterns, e.g. the Apriori Algorithm [16]

and the TreeProjection [17]. In some later works [8] it was proved that FP-Growth has

better performance than other methods, including Eclat [14] and others.

Although the FP-Growth Algorithm is very efficient and one of the most popular asso-

ciation mining methods, it doesn’t provide tools to effectively apply temporal constraints

in a simple and efficient way as cSPADE does (see section 2.2.2.1)

2.3 The R language

For the implementation and execution of the already mentioned methods and algorithms,

it is necessary to choose a development environment. There are several options available

for Data Mining purposes, and furthermore, algorithms usually are already implemented in

several languages as libraries. However, we have found a language of special interest for our

purposes: the R language [18].

R is a free software programming language and a software environment for statistical

computing and graphics. The R language is widely used among statisticians and data

miners for developing statistical software and data analysis [19, 20].

As a development environment, the RStudio [21] IDE provides a very comfortable en-

vironment for R development. Furthermore, it has a server version which allows for easy

computation on remote data mining servers.

Other alternatives are Weka [22] and Python [23]. Weka is a Data Mining suite which

offers a comprehensive set of solutions to approach different problems. However, the R

language allows for very flexible scripting options to perform alternative tasks in a very

simple and efficient way. Its nature allows handling very large amounts of data efficiently,

which can be very useful for transformation and preprocessing. On the other hand, Python

is a common and powerful programming language, which also counts on several libraries for

data mining purposes. However, data mining is far from being the main purpose Python

is usually used for, and therefore options are much more limited than for R. However, it

also offers a very powerful way to handle big amounts of data and perform other kinds of

processing, and can also be helpful for some additional tasks.
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2.4 The Rule Engine

It is important to distinguish between the development environment, for which we chose

the R language and RStudio (see section 2.3) and the final system itself, which does not

need to be implemented or rely on the same technologies used for knowledge discovery.

For the implementation of the final prototype, it is convenient to use an already-existing

rule engine [24], as these engines are significantly complex and therefore a custom imple-

mentation is less advisable than relying on an already existing and developed one.

Due to the environment in which the prototype is to be deployed, we are entitled to use

Java for its implementation. One of the most popular rule engines for Java environments

is the Drools Expert [25, 26] framework, which we will use for the implementation of the

prototype.

A common alternative to Drools is Jess [27]. Jess offers a similar functionality as Drools,

and their internal procedures are very similar as well. However, due mainly to licensing

issues, the usage of Drools is much more convenient for us.
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CHAPTER3
Context and Goals definitions

This chapter contains further information on the project itself. We will start defining

the context, scope and objectives for the project, which will as well define our learning

objectives.

Further details on the available databases will be also given. Starting from their

structure and size and finishing with a detailed analysis from a statistical point of

view. Furthermore, we will analyse the needed steps -if any- in order to use this data

with the chosen algorithms.
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3.1. CONTEXT DEFINITION

3.1 Context Definition

Maintenance is one of the most important tasks to assure the quality and correct operation

of any kind of system. Even the highest quality systems, built by the best engineers to

operate for long periods with the least possible human assistance, will eventually be exposed

to damage or malfunction. In order to avoid the negative effects that system malfunction

can produce, a significant amount of resources and effort is usually needed to be put on

maintenance tasks. However, putting resources and effort on maintenance procedures might

still not be enough if the procedures and strategies are not adequate and efficient.

Traditionally, we have discerned between two types of maintenance procedures:

• Corrective maintenance is the most common approach, although it has very important

limitations. With this approach, elements of our system are repaired or replaced once

they have failed or worn out, to bring them back to operation. This usually means

a high downtime in operation, as no actions are taken until our system is already

malfunctioning.

• Preventive maintenance focuses on preventing these failures. Elements can be period-

ically examined and analysed in order to control their operation and perform simpler

procedures to adjust them before reaching malfunction and downtime. This approach

means much higher costs, as a significantly bigger amount of time is needed to monitor

the elements on our system and correct them. However, as downtime means business

losses in almost all cases, these higher costs usually pay back in terms of loss reduction.

A balance can be easily achieved by spending on preventive maintenance not more than

the losses we would suffer from downtime if we were using a corrective approach.

However, the costs of preventive maintenance can be drastically reduced by optimising

procedures and using the adequate techniques. For example, we can reduce the amount of

variables and magnitudes we are monitoring (and which cost us money to monitor) if we

know which ones give the better insight on the status on our systems. The same can be

done with corrective maintenance. If we can somehow foresee which systems are going to

fail, we can be prepared and reduce impact on our business even if we cannot do anything

to prevent its failure.

In both cases, prediction can be a key element for maintenance optimisation. Either we

know which are the indicators of a system deterioration which we can repair, or we know

which systems are going to fail and when to be prepared and optimise corrective procedures.
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We can even speak of a new type of maintenance - predictive maintenance - which embraces

several techniques to try and obtain this knowledge of future events.

3.2 Project context

The project Trainmining aims to design predictive maintenance techniques on already-

existing maintenance stations of a railway network. These maintenance stations monitor

different elements and subsystems over a railway line and raises alarms whenever a line

element fails or requires human intervention. Additionally, maintenance workers perform

different preventive maintenance procedures, gathering information about several param-

eters on each element and performing the appropriate actions when needed. Acquisition

of values and determination of necessary actions is however not automatised within the

maintenance stations, and workers have to manually perform these tasks.

In order to design predictive procedures for the railway network, we have a big amount of

event logs gathered by the maintenance stations, as well as registries filled by maintenance

workers when performing preventive tasks. We will therefore try to extract, from that large

amount of data, knowledge on how to predict future events from current observations

In this direction, Data Mining techniques can be extremely useful in order to find

relations between patterns in environment variables and the occurrence of events, or even

relations between events themselves. These relations, which may at first not be apparent

for the human mind, can be obtained through different automated learning processes, and

thus infer markers which will act as indicators of when and how failures can happen. In

order to extract this data we will need to count on a significantly high amount of event logs,

gathered during previous years, on which we will apply said techniques.

First of all, we need to define the learning objectives of our project: what kind of

information we aim to extract from all the available data. In latest terms, what we want

is to be able to predict future events based on events from the past. A prediction will

be based on one or more past events (the antecedent) and indicate one or more events

than are likely to happen in the future (the consequent). Furthermore, we can impose

restrictions in terms of time. For instance, we should limit the temporal distance between

events in the antecedent, and estimate how far in the future the consequent will happen.

Finally, as giving a certain prediction that will be true everytime, our prediction will have

an associated confidence, which can be described as the probability for our prediction to be

true. A graphic representation of a generic prediction can be seen in figure 3.1.
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Table 3.9 contains a summary of learning objectives, along with the working methods

which will be followed for each of them as is explained in section 3.5.

Figure 3.1: A general prediction

The events forming the consequent of our prediction will be alarms raised by the main-

tenance stations - we want to prevent or be prepared for the alarms happening in the future

- and the antecedent can be formed by different kind of elements. In our case, both terms

will be formed by system events. This means that we will predict future events taking as

evidence other events which have already happened.

This working line consists of acquiring knowledge on how events are related to each other

in terms of occurrence. In other terms, the events in the antecedent of our predictions will

be formed by alarms (as well as the consequent, as we said before). Among all the alarms

raised on the maintenance stations, some of them may be directly triggered by previous

ones, having a direct occurrence relation; or might be caused by the same environmental

conditions, being most likely for them to happen along the same time periods. As a result,

even in cases where they might seem completely unrelated, the occurrence of one of them

can give us information on the chances of others happening within a defined time span.

Our objective is to find and analyse these relations and use them to build useful pre-

dictions. Depending on the parameters we use for our knowledge discovery procedures, we

might obtain different types of rules. For instance, varying the temporal resolution of our

analysis, we might obtain rules to predict events in terms of months, days or hours. Depend-

ing on the timespan we work with, our prediction rules may be useful to prevent failures,

to be prepared to fix them, or be completely useless if there is not enough anticipation.

It is important to note that in the railway network we are working with, there are

different maintenance stations in different railway lines. Neither the maintenance stations

or the lines are equal throughout the whole network, and therefore we may have to follow

different procedures and expect different results for each of them. Initially, we will treat

every station (along with the set of elements under its management) independently, even

though we already know their classification and the similarities between them. Unless
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generalisation is evident and clearly convenient, we will always maintain this separation

and obtain a different set of rules for each of them.

Due to the characteristics and large size of the available data, we are likely to find a vast

amount of frequent sequences and association rules from which not all of them will be useful

for maintenance purposes. Different metrics can be applied to evaluate the importance of a

rule, such as its confidence (its probability to be true on a given situation), the severity of

the predicted events, or its support (absolute frequency of the sequence happening).

A comprehensive analysis is necessary to extract the most useful association rules from

the set and discard the others, in order to obtain the most efficient set possible. Additionally,

the different metrics can even allow predictions to be filtered in real time, according to the

available resources or the desired results.

In figure 3.2 we can view an example use case. A maintenance operator could view the

alarms which are being raised by the maintenance station (in a similar way as the current

systems) and a list of predicted alarms - along with the confidence of the prediction and an

estimated time span - based on those past and current alarms.

Figure 3.2: An example use case

3.3 Data Description

For this project, Thales Group, a leader company in the development of railway systems

in Spain is cooperating with the research group Grupo de Sistemas Inteligentes from the

Universidad Politécnica de Madrid, with large expertise in the application of intelligent sys-
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Name Line type Supervised systems

Station A High Speed SAM-E-L

Station B High Speed SAM-E-L

Station C High Speed ERTMS (levels 1 and 2)

Station D Commuter Diagnosis and Energy

ERMTS: European Rail Traffic Management System

SAM-E-L: Sistema de Ayuda al Mantenimiento para ENCE (Local)

Table 3.1: List of studied maintenance Stations

tems to real problems. Thales Spain has developed an advanced system called maintenance

station, which diagnoses, gathers and visualises different kind of events happening along

the railway network. These maintenance stations comprise different advanced diagnosis

systems, which can identify and report several kind of events happening along the lines

which might require human intervention. These stations gather logs with all the events

which have happened in the past, which will allow us to study and analyse the operation

of these stations during the past.

At the moment of writing this document, we count on data of four maintenance stations

(A, B, C and D), which are located in Spain. Each of these stations controls a different

railway line, and have different diagnosis systems and characteristics, as shown in table 3.1.

In this table we see that the three lines we are working with are of different types and have

different diagnosis systems. Specifically, Stations A, B and C control high speed lines, while

Station D controls a commuter line. Different types of lines will have different elements and

systems, and results are therefore expected to be different in both groups. Furthermore,

supervised systems are different in all the three stations, which means that alarms received

from each of them will not necessarily be the same. Details on number of events and time

span of the available data is given on table 3.2.

3.3.1 Database description

In order to properly process the data provided in form of database backups, it is of essen-

tial importance that we completely understand how data is represented in databases. We

will analyse the structure and how data is represented in the provided databases (one for
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Station Events Dates Period

Station A 545774 02/12/2010 - 03/10/2012 2 years

Station B 239470
18/01/2010 - 31/05/2010

10/02/2012 - 20/07/2012

10 months

Station C 304408 30-11-2007 to 03-06-2009 1.5 years

Station D 118026 17-05-2011 to 09-04-2012 1 year

Table 3.2: Summary of available data

each station). Each of these databases corresponds to a single maintenance station, which

comprises a whole railway line with several elements along it. The elements with diagnosis

systems which can raise alarms are called installations, and have different sets of sensors and

other systems to control field elements. An schematic representation of this architecture is

represented in figure 3.3. The detailed description of available systems and subsystems is of

few interest to us. Initially we will only need to differentiate between maintenance stations

and installations.

Each maintenance station has its own unique database, which is of great convenience

in order to treat different stations independently. We will start analysing the structure of

the main tables of said databases. Due to the high complexity of the maintenance stations,

there are a vast amount of tables with configuration parameters and other operational

values which are not of interest for our purposes. With assistance from Thales engineers,

we have reduced the tables only to those which characterise registered alarms. A total of

three different tables are used in order to register this information, which are the following:

ALARMS table This table contains an entry for every alarm received by the maintenance

station. Its fields are detailed on table 3.3.

INSTALLATIONS table This table contains information on all the installations man-

aged by the maintenance station. Its fields are detailed on table 3.4

ALARM DETAILS table This table contains detailed information about the alarms.

Its fields are detailed on table 3.5

Concluding, for each alarm we will have a timestamp and an alarm identifier in table

ALARMS. Alarm identifier is a foreign key which points to table ALARM DETAILS in
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Maintenance Station

Installation 2

Installation 3

Installation 4

...

Maintenance System

Diagnosis 
System

Diagnosis
System

Field Elements

Sensor Sensor ...

Installation 1

Figure 3.3: Simplified diagram of the maintenance systems architecture

which further details of the alarm are saved. Among these details, we can find an installation

identifier which specifies which installation has produced the alarm. That identifier is

also a foreign key pointing to table INSTALLATIONS, in which further details about the

installation are stored. Further details on all the database fields are given in tables 3.3, 3.4

and 3.5.

Field name Description

ERRORNUMBER Alarm identifier

ERRORTIME Time-stamp for the alarm

INSTALLATIONCODE Code of the installation in which the alarm was raised

Table 3.3: Detail of fields on table ALARMS
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Field name Description

INSTALLATIONCODE Installation identifier

SHORTNAME Short name of the installation

LOCATION Location for the installation

Table 3.4: Detail of relevant fields on table INSTALLATIONS

Field name Description

ERRORNUMBER Alarm identifier

EVENT TYPE Defines the type of alarm which has been generated.

ALARM CODE Alarm code

ALARM PARAMS Additional parameters to be shown in error message

SEVERITY Alarm severity. Values from 1 to 5 indicating importance of the

alarm, or -1 if the alarm indicates recovery from a previous failure.

Table 3.5: Detail of fields on table ALARM DETAILS
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3.3.1.1 Reduced representation of alarms

In section 3.3.1 we have seen a deep definition of all the tables characterising registered

alarms. Each of these tables contain several fields, which in total makes an inconvenient

large number of variables. While all of them are necessary for correct system function and

maintenance purposes, not all of them will be necessary for us to work with alarms.

In order to characterise an event, the main things we need to know can be reduced to

three variables:

• What has happened

• When has it happened

• Where has it happened

In section 3.3.1 we have seen other variables which can provide additional information

which - although not essential - can be useful. Specifically, we think the following data can

be of possible interest:

• How severe the event is (severity)

• Which type of event has happened (event type)

These variables can help us to classify alarms or give more importance to those which

are more severe. As this information is already provided on given databases, we will keep it

and use it for better alarm classification and filtering. However, none of them are essential

in order to characterise alarms, as both of them give information which is already implicit

in our previous “what has happened” variable. Specifically, this information will be of great

help in order to make a preliminary statistical insight on the events of the databases, for

which a generalisation in terms of severity and category can help us have a better overview

of the situation.

We have to identify which fields on our database corresponds to each of the variables

we want to obtain. A direct relation is not possible, as details on what has happened is

registered in several fields of the database. This is necessary for maintenance purposes and

better alarm handling in the maintenance station, but for our purposes we should identify

what has happened with a single variable.

In our database, we have unique alarm identifiers for each of the alarms. For better

handling and understanding of what is happening, we will use the textual identifier of
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the events to identify them. This identifier is gathered on the ALARM CODE field, and

can be translated to a full comprehensive human-readable message by the maintenance

station. Furthermore, there is additional data to fill in details about the message. For

example, we can have an alarm such as “Communication channel with X down”, being

X an additional parameter saved in the ALARM PARAMS field. Here we can follow two

different approaches: disregard the information about X, and just treat it as a “Channel

down” error; or easily build a compact representation including both variables, such as

“channel.down/x”.

3.3.2 Data preprocessing

As we already mentioned, most data mining processes are usually focused on predicting the

value of some variables given the value of the rest variables in a given observation. They

work with discrete observations for which each of the variables is analysed or predicted. In

our databases we have continuous observations, which need to be transformed into discrete

observations [10].

Depending on the specific application we are using, we can need to transform this data

into two possible formats. The first one is the called basket format. The most typical

example usually used to explain it is a registry of clients of a shop which keeps lists of what

the clients buy (hence the name). Therefore, for each observation (often called transactions

again as an analogy to clients buying in a shop) we will have a list of items happening

during that observation (or bought in that transaction). It is important to note that we

will keep the same number of variables as in our original data, only that we will stack

several items in single entries to obtain discrete observations. It is also important to be

careful with which variables we are stacking. While we need to combine all the alarms

happening during the same period, it is important not to lose or combine the Installation

value. As a result, time identifiers won’t be unique in the whole transformed database, but

the pair time identifier-installation identifier will.

An example can be seen in tables 3.6 and 3.7. Table 3.6 is an example of the original

data, and table 3.7 is the equivalent data transformed into basket format.

The second possible transformation is to represent the occurrence of each alarm with

an additional variable. This means that we will need as many variables as the total number

of possible different alarms in our system. Same as before, we must be careful to preserve

data on installations, and create independent observations for each time slot and each

installation. Each additional variable can represent the alarms in different ways. Either
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in a boolean sense (whether the alarms happens at least once or not at all) or the specific

number of times the alarm has happened. In order not to lose information at this stage of

processing, we will keep the specific amount of times each alarm has happened, which can

be easily reduced to a boolean variable if appropriate for the application.

This second case is indeed a more strict representation of the basket format. While in

basket format we just needed a single variable where we could add all the alarms in the

form of a list, here we need to specify exactly the number of times all the variables have

happened. Both of them are equivalent and we can easily convert data from one format

to another, but as different algorithms will work specifically with one of each forms of

representation, it’s convenient to perform both transformations from original data and use

each one accordingly.

An example of this transformation can be seen in tables 3.6 and 3.8. Table 3.6 is an

example of the original data, and table 3.8 is the equivalent data discretised with additional

variables.

These transformations have been automatised with R scripts, in a way so we can easily

repeat these processes for different time spans. This will allow us to work at any moment

with different time resolutions without any significant additional work for further transfor-

mations.
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Timestamp Installation Alarm

01-01-2011 00:00 0 Alarm A

01-01-2011 00:30 0 Alarm B

01-01-2011 00:45 1 Alarm B

01-01-2011 01:10 0 Alarm C

01-01-2011 01:20 0 Alarm A

01-01-2011 01:22 0 Alarm A

01-01-2011 01:25 1 Alarm C

01-01-2011 01:30 1 Alarm A

01-01-2011 02:20 0 Alarm A

01-01-2011 02:30 1 Alarm A

01-01-2011 02:45 0 Alarm B

... ... ...

Table 3.6: Continuous observation. Example of alarms in log format.

Time Installation Alarms

0 0 A, B

0 1 B

1 0 C, A, A

1 1 C, A

2 0 A, B

2 1 A

... ... ...

Table 3.7: An example of discretised data in basket format.
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Time Installation Alarm A Alarm B Alarm C

0 0 1 1 0

0 1 0 1 0

1 0 2 0 1

1 1 1 0 1

2 0 1 1 0

2 1 1 0 0

... ... ... ... ...

Table 3.8: Example of discretised data
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3.4 Data Analysis

In order to obtain a first general insight of what has happened during the time comprised

by our backup data, we will perform a high-level preliminary statistic analysis. In order

to achieve a qualitative idea of the type of events, we will use the additional variables we

mentioned in section 3.3.1.1: severity and event type. These variables provide an already

given alarm classification of interest for maintenance operators.

For this purpose, the R language provides a large amount of useful tools which can

handle large amounts of data in a very efficient way [20].

3.4.1 Event type distribution

The first analysis we will perform consists on checking which event types appear in each

maintenance station, and which percentage of the total amount of alarms corresponds to

each of them. This will help us understand the nature of the events which are usually

happening on our railway line.

First of all we will obtain a list of all the types found in each of the stations. For

confidentiality reasons, we will not disclose the actual event categories used by Thales’

systems and will use numeric types instead. This is of little importance, as we will not

consider at all the nature of the alarms itself.

After analysing these types, we observe that alarm types in Stations A, B and D are the

same, which we will name from 1 to 8 (of which types 5 and 6 are sometimes not present

together). From this we can infer that diagnosis systems in these stations are the same or

very similar, as confirmed by Thales’ engineers. Station C however presents a completely

different set of alarm categories which we will name from 11 to 16. This is an indicator

of diagnosis systems being very different in Station C than in the other two stations, as

confirmed by Thales’ engineers.

For better overview of distribution of these alarm types, we will create charts of their

respective percentages for each of the stations. These charts can be seen in figures 3.4

(Station A), 3.5 (Station B), 3.6 (Station C) and 3.7 (Station D).
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Figure 3.4: Alarm information for Station A

Figure 3.5: Alarm information for Station B

33



CHAPTER 3. CONTEXT AND GOALS DEFINITIONS

Figure 3.6: Alarm information for Station C

Figure 3.7: Alarm information for Station D
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We can see that in all of the stations, a single alarm type predominates among all

of them. However, the predominant type is not the same in all the stations. This is not

surprising due to the considerable differences between all of them, but can become a problem

as the other categories may be too small compared to these main ones when performing

Data Mining techniques, obtaining less information - or none at all - from them.

In this direction, it is possible that further actions are required in order to compensate

these differences, and avoid that more frequent alarms overshadow the less frequent ones.

3.4.2 Daily correlation

In order to find further differences or similarities between the different stations, we will

observe how alarm types are correlated to each others [28]. That is, how frequent is to find

alarms of two specific types happening together during the same short period. For a first

insight, we will analyse correlation during daily observations. This correlation information

will not be of immediate help in order to predict alarms, as predicting the most frequent

alarm type given some conditions is of very little - if any - help. However, it will give us a

first idea on how strongly alarms are related to each others.

The result of this correlation is represented in figures 3.8 (Station A), 3.9 (Station B),

3.10 (Station C) and 3.11 (Station D).

Figure 3.8: Daily correlation for Station A
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Figure 3.9: Daily correlation for Station B

Figure 3.10: Daily correlation for Station C
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Figure 3.11: Daily correlation for Station D
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At first sight, we can affirm that these relations are different even in stations A, B

and D, which we found to have similar diagnosis systems. This indicates that, even with

similar diagnosis systems, the systems conforming each line are different. This is indeed

confirmed by Thales’ engineers, as Stations A and B control high speed lines, while Station

D corresponds to a commuter line.

Furthermore, we can see strong correlations in Station D and Station C. As we don’t

have deep information of the nature of these categories, we can’t affirm that this high

correlation is due to any causal relation. However, we observe that both these cases show

high correlation for the type of alarm which is more frequent in each station, so uneven

distribution of alarms might be the cause of this apparent relation between alarms.

From this analysis we can conclude the significant differences in alarm relations be-

tween stations, confirming our first thoughts of impossibility of reducing the problem by

generalising and merging data from different stations. Further analysis using specific alarm

identifiers instead of categories will be needed to obtain relevant results.
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3.5 Working methods

For the development of this project, we have found a vast amount of useful tools and

software which will provide an invaluable help in the different processes of our work. The

main tool used will be the R language [18], a very powerful tool commonly used for handling

large amounts of data in an efficient way, and for which a vast amount of tools are available

for our needs. R, and the IDE we are using, RStudio [21] are open source software and

available at no cost.

Due to licensing and compatibility issues, we are not able to use Microsoft SQL Server

databases to handle data. This is highly inconvenient as the data provided by Thales is in

form of MS SQL backup files, which we needed to migrate to a compatible system of our

choice: MySQL. Given the tabular nature of the data, another solution based on plain text

files would not be recommendable - although possible to handle with R - at least at the

earliest stages until we analyse all the information and reduce the number of variables to

export. In order to perform these migration tasks, a Windows platform with Microsoft SQL

Server Express was required. Migration was successfully possible after slight modification

of indexes and field definitions to fix compatibility issues. Once in MySQL format, we can

query our data from RStudio without being limited to any kind of platform type or operative

system, and will indeed perform further stages of the project under Unix platforms.

Among all the available algorithms which can be useful for our project, we have chosen

the cSPADE algorithm [10] as our starting point. It provides the most straight-away so-

lution for the kind of problem we are approaching, as it considers temporal characteristics

and allows us to set time constraints very easily. Other algorithms will be studied and

applied at convenience, in order to complement cSPADE and find weak points which we

could improve.

3.6 Final comments

The most important thing before starting any other step, is to completely understand the

context and scenario of our project. We do not need to fully know and understand the

details on the procedures of railway maintenance, as the nature of the machinery performed

reparations is not of significant relevance for the achievement of the defined objectives. In

any case where we would need better understanding of system functioning - such as for

identifying causal relations between failure events - we would need assistance from expert

employees directly related with maintenance.
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Goal Priority Method

Perform a preliminary statistical

analysis to set the project grounds

Compulsory Statistical analysis with R

Identify differences between mainte-

nance stations

Compulsory Statistical analysis with R

Obtain rules to predict alarms using

data of other alarms occurrence

Compulsory Data Mining algorithms with R

Validate and evaluate rule sets. De-

termine confidence of predictions

Compulsory Cross-validation and confidence

analysis with R

Identify rule sets which can be ap-

plied to different station types

Desirable Evaluation and validation with R

Obtain rules to predict events us-

ing data of system and environment

variables

Optional Data Mining algorithms with R

Identify which system or environ-

ment variables are more decisive for

alarm prediction

Optional Data Mining algorithms with R

Table 3.9: Summary of project goals and methods
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At this point, we have already treated all received data in order to be able to freely

handle it without restrictions from any desired system. Required conversions have been

performed and all data is already prepared to be loaded and used in R scripts.

We have also defined the learning objectives for the project, and set a ground to achieve

them from an Knowledge Discovery in Databases approach. Furthermore, we have made a

first insight into Data Mining techniques and performed a first analysis on their adequacy

for our project.

In the next stage of Trainmining, we will need to make a deeper insight into the provided

databases. The procedures which we have already defined (time discretion and definition

of observation times) will have to be performed, selecting the exact variables among all of

them which are registered for each alarm.
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CHAPTER4
The Data Mining Process

This chapter focuses on the most important step of our project: the Data Mining

process. This is where we will actually obtain the knowledge which will allow us to

implement a predictive system.

In previous chapters we already introduced some details about Data Mining, as well

as presented some of the algorithms and methods that can be used for this purpose. We

will now provide a much more detailed description on the usage of the chosen method

and all the steps needed for their execution. Evaluation and validation criteria and

methods will be defined as well at this point. We will also describe the parameters we

can adjust in this process and which will define its efficiency and the quality of the

results, as well as the problems faced when choosing them and alternative methods to

obtain better results.
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4.1 Data Mining and Knowledge Discovery

In previous stages of our project we have performed preliminary analysis on our data (mostly

statistical) as well as the necessary preprocessing to apply different learning techniques in

the following stages. Once we have completed these tasks, it is now time to perform the

techniques from which the actual knowledge will be obtained.

This step, usually refered to as Data Mining is the most important in the whole knowl-

edge discovery procedure. Although data analysis and preprocessing do have a big impact

on the quality of the results we will be able to achieve in the end, the choice of an appropriate

data mining algorithm is essential for the whole procedure to work.

In order to find the most adequate techniques for knowledge discovery in our project, we

presented in chapter 2 a survey on some of the available techniques. Due to the vast amount

of already existing implementations available for each of the different data mining categories,

we won’t have to make an implementation from scratch but adapt one of the already existing

implementations to the characteristics of our problem by setting the necessary constraints.

4.2 Acquisition of association rules

As we mentioned previously, the most appropriate way to address our problem is the con-

struction of a model based on association rules. This approach consists on building associ-

ation predictive rules using frequent secuences in our available data as a base.

First of all we must therefore obtain all potential sequential information (patterns) from

our database, as mentioned. These sequences will be of the form {A,B} −→ {C,D} −→
{E,F} and will serve as a basis to build candidate association rules. This step is explained

with further details on section 4.2.1.

Using the frequent sequences obtained from the first step, we can build candidate asso-

ciation rules. Candidate association rules are of the form {A,B} T−→ {C}. It is important

to notice that in these rules we are putting additional temporal information (a distance

of T between terms). This temporal information is not implicit in our previous temporal

sequences, but can be inferred from the conditions used on the process to obtain them. This

will be explained in detail in section 4.2.2.

Finally, we must check which of these candidate association rules are actually good

predictive rules, and obtain a precise measure of how good they are. Specifically, we will

measure the certainty (precision) of the predictions made by using these rules and the
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amount of events (recall) they are able to predict. This step will be explained in detail in

section 4.2.3.

The whole procedure can be summarized in the following steps:

1. Mining frequent sequences

2. Building candidate association rules

3. Validate the obtained rules

These steps will be further described in the following sections.

4.2.1 Obtaining frequent sequences

The first step for our chosen approach is to find frequent sequences in our datasets. Frequent

sequences will be good candidates from which we can be able to obtain association rules

– if there is an unknown causal relation between two events, they will appear together

considerably often. Several algorithms have been developed in the past in order to approach

this task of finding frequent sequences. Some examples are the GSB [10] algorithm and the

SPADE [10] algorithm, being the later an alternative to the first with better performance

and results.

The procedure of finding frequent sequences in a dataset mainly consists on an iterative

analysis of all the possible combinations of elements of the database in sequences. For

example, the GSB algorithm can be roughly described as follows:

1. All the possible items (events) of the database are counted. These elements can be

seen as sequences of length 1, which will be subsequences of any other larger sequence.

2. All the possible length 2 candidates are generated, as combination of length 1 se-

quences

3. The database is scanned to calculate the support of generated length 2 candidates

4. Length 3 candidates are generated as addition of length 1 sequences to length 2

sequences whose support is higher than a given minimum

5. The process is repeated till no candidates have high enough support

In other words, the candidates are created in a tree fashion, by adding length 1 sequences

(possible terms) to elements in a level. If a branch reaches the minimum required support
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value, it stops growing, as adding more terms to the sequence will make it more specific

and necessarily less frequent.

The support of a sequence is calculated as the number of times it happens in our dataset.

The support is usually expressed as a percentage of the whole amount of sequences in the

database, but it is important to note that this parameter is not related in any way with

the confidence or precision of any prediction we might do with the given pattern. A deeper

approach on this issue will be described later in this document.

More information on GSB and SPADE algorithms can be found in [10, 6, 29]. Although

It is not our priority now to study these algorithms in depth, previous work shows a better

performance for SPADE than for GSB, and therefore it will be our algorithm of choice

for our work. Furthermore, SPADE implementations are conveniently available in R [18]

libraries, which will allow us to easily execute the algorithm on our datasets.

4.2.1.1 Defining constraints

One of the main problems we find when we look for frequent sequences in our database, is

that not any sequence – although frequent – is useful for our purposes. In the end our goal

is to make predictions, for which obtaining these frequent patterns is useful. However, our

project context – and sometimes common sense – may put additional conditions on which

kind of predictions are useful; and therefore, which kind of patterns we must look for.

For instance, due to the characteristics of our systems, it might not be possible to

perform maintenance tasks in short periods of time. Sequences showing us that A always

breaks within one hour after B breaking might not be useful even if we can obtain a very

high certainty of that prediction. If we need to buy new pieces to fix B, and those pieces

are usually delivered in terms of weeks, knowing that B will break one hour before it

breaks would not give us any advantage over waiting for it to break and notice without any

prediction.

In other words: we need to define temporal constraints in order to obtain sensible

predictions [11]. These constraints are the following:

Observation time. We must define for how long we want to take events into account.

For example, our predictions for tomorrow will be most likely be made taking into

account today’s events, as those from last week are less likely to be related with those

happening in the short future.

Minimum gap. This is the minimum amount of time in which we want to predict events.
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For instance, a gap of 0 would result in predictions for events simultaneous to the

observed ones, while a gap of 1 would result in predictions only for the following

observation periods.

Maximum gap. The maximum amount of observations between events in our sequences.

By fixing it to the same amount as minimum gap we can obtain sequences with a

fixed gap between events.

Maximum window. This is the maximum temporal length for our sequences. It is im-

portant to stress that this is the length of the whole sequence, while the gap is the

separation of events within a sequence.

Given these constraints, we have sequences with the following structure:

{A,B} T1−→ {C,D} T2−→ {E,F}

Where mingap ≤ {T1, T2} ≤ maxgap, and T1+T2 ≤ maxwin. It is important to remark

that these temporal conditions are not inherent to the sequences obtained by the SPADE

algorithm. As we mentioned in section 4.2.1, sequences are built from all the possible

combination of events, and then their support is calculated by checking how many times

that sequence appears in the database. It is in support calculation where these constraints

apply, but the candidate sequences do not contain any temporal information at all. We will

only know that their values will be comprised within the ranges we have defined.

In this sequence we have three terms with two events each. In order to build association

rules, it is very convenient to limit the number of terms to two – a single antecedent and a

single consequent. Furthermore, it is very convenient to limit the number of events to one,

in order to make individual predictions for each of the events (which may have, for example,

different certainties).

Therefore, the previous example sequence can be divided in three subsequences of two

terms:

{A,B} −→ {C,D}

{C,D} −→ {E,F}

{A,B} −→ {E,F}

And, furthermore, each of them can be divided into two subsequences with only one

item in the last term:
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{A,B} −→ {C}

{A,B} −→ {D}

{C,D} −→ {E}

{C,D} −→ {F}

{A,B} −→ {E}

{A,B} −→ {F}

These sequences are in fact subsequences of the original one, and therefore their indi-

vidual support values will always be higher than the support original one. This means that

these subsequences will already have been obtained as frequent sequences by the SPADE

algorithm, without the need of performing division on the longer sequences. As a result, we

can simply drop the sequences whose length or complexity is inconvenient for our purposes,

as their shorter subsequences will be already found by SPADE.

This results in additional length constraints:

Maximum terms. The maximum number of terms in the sequence. In our previous ex-

ample, we should have set it to 2.

Maximum items per term. This condition defines the maximum amount of items in

each of the terms of the sequence. This is not exactly what we wanted to achieve with

our second division of sequences, as we only want to apply this condition to the last

term and not to all of them. In our previous example, we would have to set this limit

to 1 but only for the last term of the sequence.

Both these groups of constraints must be applied within the process of the algorithms

which will obtain the frequent sequences from our database. The length constraints will limit

the construction of candidate sequences and the temporal constraints will put conditions to

the calculation of sequence support. Its implementation must therefore be made into the

sequence mining algorithms.

An extended version of the SPADE algorithm has been developed to include some of

these constraints which were not contemplated by the original SPADE implementation.

The cSPADE algorithm [11, 30] provides an implementation taking into account all these

mentioned conditions. It is available as an R implementation under the library arulesse-

quences [31]. The only constraint which we are not directly able to define as a cSPADE
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condition is the maximum number of items in the last term of the sequence, as the condition

imposable as a cSPADE parameter is a maximum number of items for all the terms. This

will have to be addressed at the time of building the association rules, as we will see in

section 4.2.2.

4.2.2 Building candidate association rules

The next step in our knowledge discovery process is the construction of potential rules

which could be applied to the prediction of events in our system. As we have mentioned

several times, a rule is a sentence of the form A
T−→ B[p], where A is the antecedent (maybe

containing several events), B is the consequent (also maybe containing several events), T is

the time period between A and B, and p is the probability of this rule being true.

In order to transform our already available set of frequent sequences into rules of said

form, first we must build all the candidate rules which can result from the obtained se-

quences. As we mentioned in section 4.2.1, cSPADE allows us to define certain constraints

in order to obtain suitable sequences to build rules afterwards. Said constraints are:

• Maximum of two terms per sequence. We will set this to 2, as mentioned in section

4.2.1.

• Gap between terms (T ) comprised between mingap and maxgap. As we are working

only with two terms, this defines also the maximum length for the sequence.

• Maximum number of events in a term. We cannot however define independent limits

for each of the terms, as we would like

It is important to remember that our data is, at this point, divided into observations.

Observations are discrete periods of time in which we group events. When we speak of gaps

and temporal lengths we are always speaking in terms of observations, and therefore the

real temporal conditions will depend on the length we defined for our observations.

In order to achieve an exact value for T, instead of having to work with ranges, we will

set the maximum gap and the minimum gap to the same value. If we want, however, to

find rules for a larger range of T values, we can iteratively repeat this process increasing its

value. This will provide us with independent rules for each value of T, which will allow us

to evaluate and validate them independently, resulting in better results.

We will therefore have sequences of the following form:
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{A,B} −→ {C,D}

As we mentioned before, we will divide these into subsequences with a single item on

the last term of the sequence. More exactly, we will disregard sequences that do not comply

this condition, as their valid subsequences will also have been detected by cSPADE. The

result will be the following:

{A,B} −→ {C}

{A,B} −→ {D}

In order to convert these sequences into rules, we simply need to assign them a T value

and an associate probability p. The definition of T is quite immediate, as we have defined

exactly the gap we want to have in sequences by setting maxgap and mingap to the same

value. The probability p will be calculated in the next stage, and will be the factor deciding

whether candidate rules become actual prediction rules or not (as well as a very important

performance factor and predictive information).

At this step, we must therefore only gather those sequences which fall into our conditions

and give them a temporal value T. Simple as that, the process mainly consists on subsetting

tasks performed with simple R scripts, which will give us the following:

{A,B} T−→ {C}

{A,B} T−→ {D}

At this point we have transformed the initial frequent sequences into candidate asso-

ciation rules. The next step is to check which of these candidate rules are actually useful

for predictive purposes. This leads to the last steps in the construction of this model:

evaluation and validation.

4.2.3 Evaluation and validation

Once we have obtained a set of candidate rules, we must evaluate them to discern which

of them are good enough to make it into the final predictive rule set. For this, we must

perform two final tasks: defining evaluation criteria and applying a validation method.
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4.2.3.1 Evaluation criteria

In order to evaluate and validate our rules, we must first define the evaluation criteria. This

is, what will make a rule better or worse than others.

The main goal in our project is the implementation of tools which will give us a prediction

using current events as its input. As a first thought, we can immediately think of evaluating

our predictions by how true they actually are. We can measure the accuracy of a prediction

rule system easily by checking how often it becomes true and how often it does not. This is

an important factor to take into account, but is however not the only significant indicator

of the quality of the system. In a limit case in which we only attained a trivial but highly

accurate rule which gives valid but trivial predictions all the times, we would have an

accuracy of 100%, while the overall quality of the system would be none. We must actually

check not only the accuracy of our predictions, but also their relevance against the whole

situation.

Therefore, we will need two different evaluation parameters: one related to the accuracy

of our predictions, and other related to the fraction of events we are able to predict [32]. In

first place, we will define precision as the fraction of our predictions which are accurate. In

the case of evaluating a rule against a test set, Paccurate would be the number of times when

both the antecedent and consequent of the given rule have happened within the stipulated

time window; while Ptotal would be the number of times when the antecedent of the given

rule has happened, whether the consequent has or has not happened. Prediction can be as

well calculated for a whole rule set, or for any kind of system which gives a predicted event

based on other input events.

Preci =
Pi,accurate

Pi,total
(4.1)

On the other hand, we will define recall as the relation between events which have

successfully been predicted by our system (Epredicted) and the total number of events (Etotal).

Reci =
Ei,predicted

Ei,total
(4.2)

Notice that the number of events which have been predicted (Epredicted) is, in fact, the

number of accurate predictions as calculated in the definition of precision, (Paccurate)

In other words, precision is the ratio between accurate predictions and the total number

of predictions; while recall is the ratio between accurate predictions and the total number
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of events.

It is important to notice that in our context, an event can’t be wrongly predicted. Our

prediction can be either true or false, but if we make a prediction of the type {A,B} −→ {C}
and instead we observe that {A,B} −→ {D}; it does not mean in any way that we predicted

C instead of D, but that our prediction of C was false and we did not predict D. As a

result, some other tools generally used to complement values of precision and recall (such

as confusion matrices) cannot be applied in our case.

Taking a further step, we can merge both indicators in a single one, obtaining a single

indicator for a much easier evaluation. Precision and recall are often merged in the called

F-measure, defined as:

F =
(β2 + 1) · Prec ·Rec
β2 · Prec+Rec

(4.3)

where β ∈ [0, 1] balances the importance between recall and precision.

In order to obtain high precision values, we must usually compromise recall and vice

versa. Very precise rules will usually require strict conditions, which will reflect situations so

specific that there is few probabilities of failure. On the other hand, these strict conditions

will only happen a quite limited amount of times, resulting in a low recall value. If we want

however to obtain high recall values (predicting a high percentage of the total events) we

will be using very general rules, into which most of the situations can fall. More general

rules will however result in less precise predictions, as the possibilities that they reflect are

much higher, both for situations in which the prediction would be true and those in which

the prediction would be false.

In our project, we must look for rules with high precision values, whichever their recall

is. In most scenarios, it will be better to count on precise predictions – having the certainty

of our predictions being good – than to predict more events but at the compromise of their

credibility.

Therefore, we will use precision value as the main evaluation parameter.

4.2.3.2 Validation method

Once we have defined the evaluation parameters we must calculate the performance of our

candidate rules in order to assign precision values to each of them. Precision information

is also part of the information we want to give in our predictions, so a proper calculation is

of essential importance.

However, if we do this on the same data we have used to obtain this knowledge (our
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learning set) we will obviously obtain extremely good results, as we have already learnt all

the patterns happening on that exact data. If we had an ideal, infinite data set with all the

possible situations that can ever happen in our scenario, we could have learnt absolutely

every possible prediction to be made on the system and no future event could be unexpected

to our new prediction abilities. However, in real systems this is not the case, and it is very

likely that patterns and characteristics of the systems vary along time.

Additionally, training our system over a single large set of data can lead to overfitting.

This happens when our predictive knowledge becomes extremely accurate for the set we

have been training on, but performs poorly on any other set of events not contained on our

learning set. It is important to avoid overfitting by performing learning procedures in a way

that not our whole amount of data available is used at the same time. In this direction, the

usage of very large data sets for learning procedures can be very inconvenient. In one hand

we might be learning patterns which are exclusive to the specific period we are studying

(for instance, we may be trying to obtain knowledge from logs from a specific year which we

intend to use for forthcoming years), and when we validate this information, we will obtain

unrealistic good performance measures.

In order to make a proper validation of the obtained knowledge, we must separate our

data in different sets. One of them will be the learning set – over which we will work to

obtain our predictive knowledge – and the other will be used as a testing set – on which

we will test our predictive abilities. This way we will obtain a better validation of our

predictive knowledge, as the characteristics of the testing set were not taken into account

on the learning process, as would happen for any future set of events.

In order to address this problem, one of the most used methods is the k -fold cross-

validation (k -fold CV) method. This method consists on dividing the whole data set in k

subsets of equal sizes, using k-1 of them as the learning set and the kth one as the testing

set. Performance results are stored for those specific learning and testing sets and the

whole process is repeated a total of k times, until all the possible learning sets/testing sets

combinations are obtained.

With this process, we obtain a total of k performance testing results for our model. The

important point is that all of them have been tested on sets which were not used for their

construction. The overall performance measure is obtained as the arithmetic mean of all

the individual performance results.

In some cases, we can even randomize the division of the data into subsets, obtaining

different subsets for each process of k -fold CV we perform. In our case, however, we are

limited in this direction by the nature of our data, as it is very important to preserve
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sequential information of our data. Our subsets must therefore be conformed of contiguous

observations, and cannot be randomized between different temporal subsamples.

A commonly used value for k is 10. As in our case we will generally work with data sets

comprising about a year of historic data, this division will provide learning sets of about 9

months and testing sets of about 1 month, which reasonable when validating predictions in

terms of days.

4.3 Adjusting search parameters

The results of the whole mentioned process will be determined by its execution parameters.

In sections 4.2.1 and 4.2.2 we already explained all the possible adjustments we can make

in both steps and how they would affect to obtained results.

For this kind of data mining algorithms, what most influences the quality of results is

search depth. In other words, they will be determined by how deep in our data we are

willing (or able) to search in order to find our desired information. The deeper we search,

the better results we can expect, at the cost of higher need of resources.

In our problem, depth comes defined by two parameters: number of terms and minimum

sequence support.

The maximum number of terms is simply how long we want our sequence candidates

to be. The more items we add to a sequence, the more specific that situation will be,

from which we can expect to obtain more precise information. However, the more specific

a situation is, the less likely it will be to be extrapolated to usual situations. In terms of

computation, the length of the candidates exponentially rises the complexity of the problem

and the number of resources needed, and therefore a reasonable limit is to be put on this

parameter.

The minimum support defines the number of times a sequence needs to have happened

to be considered frequent. This parameter has already been mentioned in the explanation

of the chosen algorithm in section 4.2.1. A lower minimum support value will offer a higher

number of candidates, and therefore a higher number of association rules. However, this

parameter drastically affects the computational costs needed to execute the algorithm.

As we mentioned in section 4.2.1, candidates are built in a tree fashion, with branches

growing larger and larger till the minimum support is reached. Both parameters define

when branches of the trees stop growing: once the maximum number of terms has been

reached, or once the support is not enough for the sequences to be considered frequent. A
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compromise must therefore be found between both parameters, in order to be able to search

as deep as possible.

Minimum support does not have any effect on the obtained rules. Reducing it will

generate a higher number of candidates and rules, but their quality or characteristics won’t

have any relation with this parameter. The maximum number of terms, however, does

affect them. Longer rules will usually be much less adequate than shorter ones. If we could

predict everything just by knowing one of the events which have happened today, it would

be much better than having to wait till ten of them happen in order to be able to predict

anything. However, it is very likely that we can make good predictions counting on very

little information, so longer rules could be expected to have higher performance values.

The decision criteria is then clear for the minimum support: we want to set this to the

minimum value which can be handled by our computation capabilities. In terms of number

of terms, however, increasing depth will provide more results, some of which will however

be too long as to be actually useful.

4.3.1 Determining optimal values for search parameters

In order to fix the maximum number of terms in sequences, we have executed the whole

process in a smaller sample of data with a considerably high maximum value of terms.

Setting this value to 10, we could analyse results for sequences of different lengths. It is

important to note that although we could expect longer sequences always to be more precise,

they will also be much less frequent, so we will much faster reach the minimum support

limit obtaining less candidates and probably worse rules. For this analysis, the selected

minimum support was of 0.1.

The results are shown in table 4.1.

In this test run, no candidates were found with lengths of over 7 terms and support higher

than 0.1. We also see that for values of 6, precision starts to decay as fewer candidates are

found, with which not very good rules could be generated. We will therefore generally

choose a value of 5 as the maximum size of candidates, and up to 7 in cases in which the

minimum support can be significantly reduced (smaller or divided data sets).

The choice for minimum support is obvious. We will choose the minimum value our

computation capabilities can handle. As this is difficult to determine beforehand, we will

follow a trial and error method. Starting from values of 0.01, we will iteratively increase it

when computation fails to finish in a period of 24 hours.
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Antecedent length Maximum precision

1 0.43

2 0.51

3 0.76

4 0.83

5 0.83

6 0.32

7 —

Table 4.1: Possible maximum length parameters. Test execution

Item Details

Processor Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz

Number of cores 8

Memory 12 GB

OS Ubuntu 11.10 Server

Table 4.2: Server details

The details of the server used for these operations can be seen in table 4.2.
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4.4 Data clustering for complexity reduction

As seen in section 4.3, computation capabilities can significantly limit our search depth,

forcing us to use lower depth values and therefore compromising the quality of the results.

In order to be able to use higher depth values, we can either increase our computation

capabilities or look for a way to decrease the complexity of the problem.

Increasing capabilities is not a feasible option. Our server is actually running a top end

configuration on which there is few possible room for improvement. Although memory or

CPU speed could be increased, these improvements would be so small that our limitations

would be reduced ever so slightly. The only option is therefore trying to divide our problem

into different smaller problems.

For this purpose, we will divide our data into several clusters, depending on the type

of alarms. Thales’ database already counts on alarm categorisation, dividing them into

different types depending on which station we are working with. Alternatively, we can try

to create clusters based on different criteria. It is important to note that in order to be able

to use the obtained information in the whole system afterwards, cluster intersection must

be zero for whichever criteria we follow. In other words, a specific type of event can only

happen in one of the clusters, so that a relation found being true in one of them cannot be

false in other situation.

We will try two different approaches for this purpose: division by already defined alarm

types, and clustering by type of physical elements.

4.4.1 Using already defined alarm types

The most immediate possible division is to divide our datasets into many containing only

one type of alarm. This complies with the empty intersection condition, as every different

possible event can only fall into one of the categories. The most important limitation is

that using this method, we won’t be able to find rules relating alarms of different types.

It is also important to note that for each of the stations, the event-type distribution is not

uniform, and therefore different improvement in possible search depth will be achieved for

each of the generated clusters.

First of all, we will make an insight on the size of the resulting clusters for each of the

stations. These sizes can be seen in figures 4.1 to 4.4. At first glance we observe not only

a very unequal distribution of alarms into these clusters, but also that some of them are

unadequately small. For clusters whose size is less than tens of thousands alarms we can
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expect significantly worse results. Although such a small size allows us to use very high

values for search depth, the amount of data available can be too small for any information

to be extracted.

The rule of thumb used to determine possible search depths for each of the clusters

depending on their size is shown in table 4.3. This rule is the result of a trial and error

procedure, and does not guarrantee the ability for computation as the real performance

depends on the individual characteristics of the datasets.

As a result, this clustering method allows us to perform much deeper searches at least in

some of the groups. Taking the whole databases at once forced us to set a significantly low

search depth value, which resulted either on very low quality results (few rules with low pre-

cision) or on the complete unability to perform the process with the available computation

capabilities.

Figure 4.1: Clusters and their size for Station A

4.4.2 Grouping similar physical elements

As a second method, we will try and group alarms by the element which raises them.

For our empty intersection rule to be followed, we will need to make groups which gather

all the elements which can raise the same type of alarms. Unfortunately, information
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Figure 4.2: Clusters and their size for Station B

Figure 4.3: Clusters and their size for Station C
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Figure 4.4: Clusters and their size for Station D

Cluster size Maximum number of antecedents Minimum support

< 10.000 7 0.01

10.000 - 50.000 5 0.1

50.000 - 100.000 5 0.2

>100.000 5 0.3

Table 4.3: Search depth parameters for different cluster sizes
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on the physical elements which raise the alarms is not directly tabulated and available

in the provided databases. The corresponding element is instead included as part of the

message shown to the operator, sometimes along with other parameters, and therefore this

classification cannot be directly made.

In order to achieve this, we will check, for all the different possible events, their associated

ALARM PARAMS field, which depends on (but not corresponds to) the raising elements.

By looking for similar naming patterns on said field, we might be able to find a way to

perform this desired way of clustering. Most of the groups did not follow evident patterns

at first sight, but after analysing all their relations with different alarms, we were able to

come with several clusters. The created groups for Station B can be seen in table 4.4. For

example, ALARM PARAMS fields of the form E1, E2, E3... always were found in lights-

related alarms, same as for the form R1, R2, R3... and therefore all the events falling into

these conditions will be clustered into the lights cluster.

These groups do not follow any official categorisation made by Thales’ engineers. Al-

though an index of physical elements existed and was available, its relation with the alarms

in the database was not direct. Furthermore, what we want to achieve is groups of elements

which are likely to raise similar elements (and to follow similar patterns in their occurence)

and therefore we do not need these groups to be actually made by exact classification of

the types of elements.

Comparison of results with and without this kind of clustering can be seen in figure 4.5.

The number of high-precision rules significantly increases by using this kind of clustering.

Further comments on the results can be found in chapter 5.

This process, however, must be made manually looking for different patterns and ele-

ments which seem to raise the same type of events. Therefore, it is a very time consuming

process and its not suitable for being applied systematically to all datasets. The provided

data corresponds to the Station B, for which we have performed the procedure in order

to evaluate its possible benefits. In order for this to be suitable for general application,

additional info should be provided in datasets which could allow faster automatic grouping.
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ALARM PARAMS pattern Cluster

A00, A01, A02... Switches

10, 11, 12... 140 Lights

E1, E2, E3, E4 ... Lights

S1/1, S1/2 ... Lights

R1, R2, R3 ... Lights

M1, M2, M3 ... Lights

A—XX—XX Communications

B—XX—XX Communications

IM—XX—XX Communications

EC—XX—XX Communications

EN-A, EN-B, EN-M Electric network and power supply

ALI XXX Electric network and power supply

Alimentacion XXX Electric network and power supply

V1, V2 ... Rail tracks

Table 4.4: Clusters found for different patterns in ALARM PARAMS field
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Figure 4.5: Number of rules by precision before and after grouping by similar elements
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CHAPTER5
Results Description

In this chapter we will make a deep insight on the data obtained from the Data Mining

process described in chapter 4.

We will analyse the resultsets from different points of view. Using the evaluation

parameters already defined, we will provide further details on the actual use these

resultsets can have for maintenance operators according to their performance. Differ-

ences between different maintenance stations and time periods will as well be analysed.

To finish, we will present an example scenario in which we will be able to under-

stand the actual effect our results would have on daily maintenance operations.
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5.1 Description of obtained rulesets

The result of the previous work described in section 4.2.2 comes in the form of a set of

association rules. These rule sets contain a list of all the association rules found, along with

their performance value calculed by the K-fold-CV procedure as defined in section 4.2.3.

The obtained rulesets and the number of rules they contain can be seen in table 5.1. Our

goal was to generate different rulesets for each of our maintenance stations, each of them

covering different time windows. Specifically, we have studied three different time windows:

one day, two days and one week. This defines the observation period for our predictive

work, which means not only the time span we will use as antecedents for our rules but also

the time window within which our prediction can occur.

These sets contain all the information obtained from the procedure defined in sec-

tion 4.2.2. It is important to note that not all of them will be useful in order to implement

a predictive system, as their precision is sometimes as low as 5%. The threshold for a rule

to be useful needs to be defined by maintenance workers who know the associated costs of

maintenance tasks required to handle raised predictions before knowing if they will actually

happen. If some event needs a significantly high amount of money to be avoided we will

probably want to be very confident about our precisions regarding that kind of event before

investing resources on preventing it.

However, in general terms we can consider a prediction is good when it has more chances

of being a right guess than a wrong one. We will therefore set p=0.5 as the point where

rules start to be useful. Rules with lower precisions are still provided and can be useful for

other analysis tasks or further research, but from now on we will disregard them and focus

on the 0.5 set which can be used right away for predictive purposes. These new sets and

their size can be seen in table 5.2. Obviously, the size of the sets reduces drastically when

imposing this kind of conditions.

At this point, it is important to remember the decisions taken in terms of search depth

and data subsetting as mentioned in sections 4.3 and 4.4. In these terms, rule sets for some

of the stations and time windows could not be generated with our available computation

capabilities. A better server or algorithm optimisation would be required in order to obtain

result sets for these cases.
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Station Time Window Rules

Station A 1 day 27522

Station A 7 days 50281

Station B 1 day 39214

Station C 1 day 113

Station C 2 days 72

Station C 7 days 133

Station D 1 day 8091

Table 5.1: Size of obtained rule sets for each station and time window

Station Time Window Rules

Station A 7 days 9

Station B 1 day 7104

Station C 1 day 31

Station C 2 days 30

Station C 7 days 48

Station D 1 day 242

Table 5.2: Number of rules for each set setting a threshold of 50% precision

68



5.1. DESCRIPTION OF OBTAINED RULESETS

Threshold Number of rules

0.05 44620

0.10 38007

0.20 4060

0.30 30

0.40 27

0.50 9

0.60 8

Table 5.3: Number of rules for different thresholds in Station A (7 days)

5.1.1 Number of rules against precision

As we have seen in section 5.1, the amount of rules decreases significantly if we impose

strict conditions for their validity. In this section we will perform a deeper analysis on how

amount of rules vary when setting different thresholds. For this purpose, we will set different

thresholds and check the number of rules complying with this condition. The results are

shown in tables 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8. As expected, the number of rules increases

exponentially when decreasing the threshold. For better visualization, these amounts for

the > 50% subsets are represented in figures 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6.
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Threshold Number of rules

0.05 31846

0.10 28338

0.20 21566

0.30 15829

0.40 10876

0.50 7137

0.60 4928

0.70 891

0.80 47

Table 5.4: Number of rules for different thresholds in Station B (1 day)

Threshold Number of rules

0.05 106

0.10 95

0.20 72

0.30 44

0.40 33

0.50 31

0.60 30

0.70 24

0.80 12

Table 5.5: Number of rules for different thresholds in Station C (1 day)
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Threshold Number of rules

0.05 69

0.10 66

0.20 56

0.30 40

0.40 31

0.50 30

0.60 14

Table 5.6: Number of rules for different thresholds in Station C (2 days)

Threshold Number of rules

0.05 128

0.10 125

0.20 92

0.30 75

0.40 64

0.50 48

0.60 35

0.70 30

0.80 25

0.90 4

Table 5.7: Number of rules for different thresholds in Station C (7 days)
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Threshold Number of rules

0.05 6730

0.10 2832

0.20 2357

0.30 1799

0.40 642

0.50 246

0.60 78

0.70 2

Table 5.8: Number of rules for different thresholds in Station D (1 day)

Figure 5.1: Number of rules for different thresholds in Station A (7 days)

72



5.1. DESCRIPTION OF OBTAINED RULESETS

Figure 5.2: Number of rules for different thresholds in Station B (1 day)
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Figure 5.3: Number of rules for different thresholds in Station C (1 day)
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Figure 5.4: Number of rules for different thresholds in Station C (2 days)
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Figure 5.5: Number of rules for different thresholds in Station C (7 days)
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Figure 5.6: Number of rules for different thresholds in Station D (1 day)
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5.1.2 Precision distribution

In section 5.1.1 we analysed the number of rules we would obtain if we set different pre-

cision levels as thresholds to generate different subsets. According to our expectations,

we observed a decay in these numbers as we set higher thresholds. However, this decay,

although apparently exponential, shows flat zones and other irregularities which would be

unexpected at first.

In order to better visualize these anomalities we will graphically represent the precision

distribution in form of histograms for the previous sets. These distributions can be seen in

figures 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12.

In these histograms we can see that the distribution does not grow exponentially as

we lower the precision, as we would expect and as we apparently saw in the analysis from

section 5.1.1. Instead, there are some accumulation points around which precision tends to

take values.

For example, looking at the distribution for Station B (figure 5.8) we see that there are

more rules with precisions between 0.65 and 0.70 than between 0.50 and 0.55.

As we do not have large sets of rules for all the stations, performing a deeper analysis

of the distributions is not possible. As these kind of irregularities appear for all the studied

cases, it is very unlikely that they are caused just by chance. However, the causes and

possible implications of these distributions cannot be infered at this point and would require

further research.

5.1.3 Predictable events by category

As we mentioned in section 4.4.1, one of the methods followed in order to being able to

perform deep searches on our data was clustering by event types. This unavoidably leads

to differences on the achievable performance for each of the different event types. This is

caused not only by the different search depths which we were able to use in each of the

different groups, but also by the individual nature of each of the event types: events in

some of the clusters may be more likely to be related to others in the same cluster while for

other types these relations may be more likely to be found to events in other clusters.

In order to analyse the effect of this clustering in the obtained results, we will analyse

the category of the events the rules predict. This is, we will analyse the event type of the

consequent of our rules. This distribution can be seen in figures 5.13, 5.14, 5.15, 5.16, 5.17

and 5.18.
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Figure 5.7: Rule distribution by precision in Station A (7 days)
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Figure 5.8: Rule distribution by precision in Station B (1 day)
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Figure 5.9: Rule distribution by precision in Station C (1 day)
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Figure 5.10: Rule distribution by precision in Station C (2 days)
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Figure 5.11: Rule distribution by precision in Station C (7 days)
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Figure 5.12: Rule distribution by precision in Station D (1 day)
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We can see a completely uneven distribution in terms of rule generation for each event

type. This is likely to be caused by two facts: nature of the events themselves (how

unpredictable or related to other events they are) and frequency adequation (events which

happen too often instead of only in specific situations might be harder to predict). Also, the

different limit on search depth we were able to impose for the different groups also vastly

affects results in this direction.

It is specially interesting the situation in Station B, where we performed an alternative

clustering method as mentioned in 4.4.2. In this station, we observe that all the rules fall

into the category of Type 3 and Type 7. Both groups of rules are quite similar in size,

although the occurence of those alarm types in the whole database is significantly different.

This indicates that this kind of clustering might significantly help in order to obtain more

uniform results for all the event types.

Figure 5.13: Rule distribution by consequent type in Station A (7 days)

5.2 Example scenario

In this section we will analyse the output of our predictive model during a short period of

time. We will illustrate the kind of information an operator could obtain from an average

period of time. Specifically, we will take a random period of 50 consecutive days for the
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Figure 5.14: Rule distribution by consequent type in Station B (1 day)

Figure 5.15: Rule distribution by consequent type in Station C (1 day)
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Figure 5.16: Rule distribution by consequent type in Station C (2 days)
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Figure 5.17: Rule distribution by consequent type in Station C (7 days)
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Figure 5.18: Rule distribution by consequent type in Station D (1 day)
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Station B, over which we will perform predictions for the next days.

It is important to note that this example scenario has been obtained using the rule

set with precisions higher than 0.50. In a real scenario, an operator could select a higher

threshold for predictions or disregard those raised predictions with a low confidence.

5.2.1 Predictions raised by event type

First of all we will observe the number of predictions raised each day of our sample. This

will give us an idea of the number of predictions our system would give for an average day.

This can be seen in figure 5.19.

As we can see, for this station and rule set the number of predictions obtained in an

average day is around 20. This does not include repeated predictions (more than one rule

which can be fired simultaneously to predict the same event with different confidences).

Figure 5.19: Timeline of predictions during a sample period

5.2.2 Percentage of events predicted

The next thing we can analyse is the number of events which happen during an average day

which are actually predicted by our system. The result is illustrated in figure 5.20. This

value corresponds with what we defined as recall in section 4.2.3.
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Figure 5.20: Timeline of predictions during a sample period

5.2.3 Percentage of right predictions

To end with, we will analyse how many of the raised predictions are actually true. In

order to illustrate better this aspect and take into account also the confidence parameter of

the predictions, we will perform three different analysis: one disregarding predictions with

c < 0.5, a second one with c < 0.7 and a third with c < 0.8. The results can be seen in

figures 5.21, 5.22 and 5.23 respectively.

As expected, when increasing the precision threshold we have less and less predictions,

but these tend to be more accurate.
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Figure 5.21: Timeline of predictions during a sample period

Figure 5.22: Timeline of predictions during a sample period
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Figure 5.23: Timeline of predictions during a sample period
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5.3 Conclusions

The results obtained after the development of the presented procedures are found to be

satisfactory, as shown in section 5.1. Large rule sets with high precision values have been

found for several stations and different time windows.

For this rulesets to be useful for Thales’ operators, a implementation of a rule engine is

necessary. This aspect with be covered in next stages of the project, and it is completely

independent from the procedures described in this document which were used to obtain the

predictive knowledge.

Also, results have been found to vary significantly in terms of quantity and precision in

different stations and time periods, as seen in section 5.1. In order to obtain higher quality

results, it is necessary to explore alternative methods which can get over the limitations

found with the performed method. First of all, the used algorithms can be vastly optimised

to perform much better in our specific scenario. When searching for frequent sequences, we

cannot limit the number of terms in the consequent, as the maximum number of terms in

each member of the sequence is fixed by a single parameter. In our case, we do not want to

use sequences with more than one element in the consequent (as explained in section 4.2) but

our algorithm is still generating them as sequence candidates. This increases the complexity

of the algorithm significantly, as we are growing our candidates in both the antecedent and

the consequent of the rule while we only need the antecedent to grow.

Furthermore, as mentioned in section 4.2, the candidates for rules are selected amongst

sequences which are frequent. Although this provides a good starting point in order to find

predictive rules, we must perform two kinds of filtering in order to obtain the final rule sets:

first by frequency, and later by precision. A new algorithm could be implemented in the

same fashion as cSPADE, but performing only a filtering in terms of precision. This would

not only save time and allow deeper searches, but also avoid disregarding those sequences

which are not frequent but might lead to precise predictions.

Additionally, as seen in chapter 4, there are many other types of data mining algorithms

which could be used or adapted to our problem. Specifically, a parallell approach has been

made using Bayesian Networks. These networks provide a very useful mathematical model

which can be used to predict information in a similar fashion than the rules. However, it

usually requires a deep previous knowledge on the events of the system and their possible

relations in order to obtain their full potential. After building some of these models and

obtaining said information from Thales’ engineers, the model based on association rules

was still found to perform much better in all terms. Additional research would be necessary
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in order to obtain better results with these alternative tools.

Finally, we have found that one of the best and most immediate ways to increase the

quality of the results is to divide the large datasets into smaller clusters. In section 4.4

we have presented two possible clustering methods which have indeed improved the results

significantly. Further improvement could be achieved by performing a deeper research on

alternative clustering methods. Specifically, the method described in section 4.4.2 was

found to increase peformance in very high rates. Developing a way to make this clustering

method automatisable and directly feasible for all the stations would likely highly increase

performance.

Summarising, in order to obtain higher quality results, a way must be found to face

limits in terms of computation capabilities. The server available for our project is powerful

enough as to think of improving hardware. Therefore, software and data optimisation is

the only way to obtain significant improvement in the results.
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CHAPTER6
Prototype Implementation

In this chapter we will describe the design and implementation of a prototype predictive

module. This module is a software library which allows end users to actually obtain

predictions using the knowledge we have acquired in previous stages of the project.

The prototype relies mainly on a Rule Engine, which evaluates the input conditions

(past events) and provides with predictions for the future. Further details on rule

engines and the chosen implementation will be given as well.

Although the purpose of our prototype does not include user interfaces or any

visualisation, we will provide examples on how an actual predictive interface can be

presented to maintenance operators.
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6.1 Module description

In this section we will provide a general description of the implemented prototype. This

prototype allows the usage of already existing association rules, which have been already

obtained as the result of a Data Mining [32, 33] procedure. These rules do not offer any

functionality by themselves, as a system is needed to check whether their conditions are

fulfilled and therefore a prediction can be made.

Rules are simply textual information in the form of ”When A and B happen together,

C has 80% chances of happening”. This information would be useful for an operator who

might be manually checking events and would be able to expect C after seeing A and B.

However, real systems usually have a much larger set of possible events, and many more

events happening during each observation, and therefore an automated system is needed to

perform these operations.

We call such a system a Rule engine [24]. A rule engine is simply a system which

evaluates input conditions and fires the rules which comply with these conditions, outputting

the result of said rules. In our case, the system will take as input a set of current events,

and output a list of predictions along with their probabilities.

The implementation of a rule engine is not a trivial matter, and requires a significant

amount of work to achieve optimal results in terms of computation requirements and com-

plexity. Therefore, we will count on one of the already existing solutions which suits our

needs perfectly and in a very optimised way: the JBoss Drools Expert library [25]. This

library is freely available as a java module and counts on several interoperability options,

which makes it perfect for the usage in our project. The only requirement this imposes

is the need of translating our rules to a Drools-compatible format, a matter which will be

addressed later on this document.

6.1.1 Parameters and interfaces

Depending on our needs for each situation, our system can obtain predictions for several

periods of time, different types of systems and different input lengths. Specifically, we

count on rules for four different stations of different characteristics (Stations A, B, C and

D) and for three different time windows (one day, two days and seven days). Each of these

prediction modes needs a different type of input and needs to use a different set of rules.

This distinction has therefore been made at the time of generating the rules, and now those

rules need to be loaded accordingly to the kind of prediction we want to obtain.
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In other words, said parameters (station type and time window) fixes the set of rules

to be used and the length of the input to be provided. This association also works in the

other direction: by using an specific rule set and an specific input, we are already defining

the execution parameters. Therefore, both the station type and prediction time window

are irrelevant for the correct function of our predictive module. It is responsibility of the

operator or executing system to select the appropriate rule set and provide an appropriate

input. This allows new execution options to be added or updated at any time, without the

need of modifying the module in any way. If we generate a new set of rules expecting a

whole month of input and which will generate a month of predictions, we just need to load

it and know what it is generating. Also, if we generate rules for a new type of maintenance

station we just need to load them on the module and provide an input according to that

new type of station.

The architecture of the module is very simple. It counts on an Engine class which

streamlines the whole procedure, relying on three model classes to provide Alarm and

prediction representations. A class diagram can be seen in figure 6.1

6.1.2 Input selection and execution

As described in section 6.1.1, our module takes a list of Alarm objects and outputs a

Prediction object containing a list of PossibleEvent objects. We have also seen that it is

important to provide an input which adequates to the conditions imposed by the selected

rule set (or viceversa), which simply means that we must provide a list containing an

observation time whose length adequates to that expected by the rule set.

Furthermore, as seen in figure 6.1, Alarms are described not only by their alarm code,

but also by the installation in which they have been raised. It is important to have into

account that alarms are only related to others happening in the same installation, and

therefore we only need inputs to contain sets which are complete in terms of installation id.

In other words, we could call the inference engine with separated inputs containing each the

alarms which have been raised by each of the installations. However, as the rule sets are

the same for all of the installations under the same maintenance station, it is more efficient

to make this distinction during execution instead of having to call the engine and load the

rules several times.
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Figure 6.1: Class diagram for the implemented module
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6.1.3 The rule engine

In section 6.1 we introduced the concept of the rule engine, the core of our module in

which most of the heavy processing happens. Amongst all the available solutions, we

selected the Drools Expert [25] platform, as it is the most advanced solution available for

Java environments, and therefore an easy integration can be made with the rest of the

maintenance station software.

Drools Expert relies on Drools rule files, which are plain text files containing our rules

coded with an special syntax. Furthermore, it provides several ways of managing and even

changing these rules, as interfaces for business users or other tools to easily generate these

files based on workflow diagrams or other sources. However, as the knowledge on which

our rules are based is obtained from a different source (a fully independent Data Mining

process) we won’t make use of these posibilities and will just have to consider the output

format for our rules, to make it directly compatible with Drools’ syntax. In section 6.2 we

will provide further description of these rule sets, as well as their generation and conversion

processes.

Our module encapsulates and streamlines the execution of Drools Expert and their

preparation process. The details of this configuration are of little relevance, and can be

summarized as choosing a rule set and provide a valid input. Our module will then simply

evaluate all the rules and then provide an output with a prediction for the next period, as

we described in section 6.1.1. The cornerstone of all this process is therefore the rule set.

As we will describe in section 6.2, it is of essential importance to carefully build these in

order to obtain a proper function of the rule engine. In the end, the rules are actually part

of the code of our module, on which reiles most of its functionality.

A sequence diagram of the module’s function can be seen in figure 6.2

6.2 Description of rule sets

In this section we are going to describe the most important part of our prediction module:

the rule sets. A rule set is simply a plain text file containing the necessary information for a

rule to be evaluated and fired in the adequate circumstances. A rule can be simply seen as

a piece of information stating that ”When A and B happen, C will happen with a certainty

of 80%”, but there is actually a few more compexity added for the proper functioning of

our system.
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Figure 6.2: Sequence diagram for the implemented module
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First of all, as we mentioned in section 6.1.1, we have to take into account that events

have to happen in the same installation for alarms to be raised. In other words, the rule

above would be actually needed to be stated as follows:

”When A happens, and B happens in the same installation as A, C will happen in the

same installation with a certainty of 80%”

Also, although it is not necessary for the basic function of our module, we will also

return the type of alarm we are predicting in the output. The type of alarm can be directly

inferred from the alarm code itself, but as we are working with hardcoded rulesets which

only need to be generated once, it is much more efficient to associate the alarm type with

each rule than having to perform a search every time an event is predicted. This does not

affect how or module works at all, but our rule will actually look more like:

”When A happens, and B happens in the same installation as A, C (Which is an event

of type 1) will happen in the same installation with a certainty of 80%”

This information can be useful to provide an overview of the kind of systems which are

more prone to fail in a short future, and probably assign resources to groups instead of

actual specific events for organisational convenience.

It is important to note that we are not mentioning at all time periods either for the

observation (events A and B) or the expectation (event C). As we mentioned in section 6.1.1,

those parameters are implicit to the whole set of rules. For example, we know we are talking

of an observation of one day and a prediction for one day in the future because we are loading

the ruleset whose rules work with that time windows. This is much more convenient as

reduces the complexity of the rules avoiding having to handle additional parameters, but

needs that the calling process takes into account these parameters by itself.

The same applies for the type of station we are working with. Even though the stations

we are working with are quite different from each other, we do not specify in the rules where

do we expect those events to hapen. Or we don’t specify that explicitly, because again, each

rule set works exclusively for one specific station.

There is also a third parameter which we can directly affect simply by selecting an

specific rule set: confidence. Instead of having to filter rules by their confidence when

setting a threshold, it is much more efficient and convenient to load only those rules which

provide predicitons with a confidence higher than a given threshold. As we mentioned,

rulesets are plain text files which contain all the rules to be loaded, so by simply removing

those with low confidence, we can perform this filtering in a very efficient way.
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It is up to the maintenance operator to decide upon these thresholds. In order to be on

the safe side, we usually set a threshold of 50% (which is, predictions which are more likely

to be right than wrong), but for an operator it might be more convenient to disregard maybe

even predictions whose confidence are lower than 70% or 80%. By directly removing those

rules from the rule sets, the additional computation needed to evaluate them is eliminated,

and therefore the execution would be much more efficient.

The specific list of sets which have been generated and provided can be seen in table 6.1.

6.2.1 Generation of rule sets

We have mentioned in section 6.1 that our rules are obtained through a Data Mining process,

and later translated into the Drools syntax. In this section we are going to give an overview

of the whole process.

Everything starts with a database backup provided by Thales’ engineers which contains

a large amount of event logs in all the stations we are going to study. That database is

transformed into a working set, a process which involves several processes such as variable

reduction, data normalisation and format conversion. This data is loaded into an R [18, 32]

environment in which the core data mining procedure is performed: the rule discovery

process. This step forms the core of the whole procedure, and requires a considerable

amount of resources and time.

This generates a raw list of association rules, in the format of R data frames. At this

point we can already perform some filtering to separate the useful rules from those with

very low confidence values. However, as those rules can also be useful for future research

or to be manually analysed by maintenance operators, so far we have decided to save the

whole amount of generated rules whichever their precision was.

A last process is performed in which we convert the raw R data frames [18] containing

the rules into the Drools syntax. At this point we also generate several subsets with differ-

ent confidence thresholds, as mentioned in section 6.2. This step is fully automated with

Python [23] scripts. An example of both formats will be shown in section 6.2.2.

A diagram of the whole process can be seen in figure 6.3.

6.2.2 Structure of rules and sets

In this section we will now analyse the actual structure of our rules and their conversion to

the Drools syntax. We will take the following rule as an illustrating example:
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Rule set Station Observation Prediction Min. Confidence

stationA1d 70.drl Station A 1 day next day 70%

stationA7d 70.drl Station A 7 days next 7 days 70%

stationB1d 70.drl Station B 1 day next day 70%

stationC1d 70.drl Station C 1 day next day 70%

stationC2d 70.drl Station C 2 days next 2 days 70%

stationC7d 70.drl Station C 7 days next 7 days 70%

stationD1d 70.drl Station D 1 day next day 70%

stationA1d 50.drl Station A 1 day next day 50%

stationA7d 50.drl Station A 7 days next 7 days 50%

stationB1d 50.drl Station B 1 day next day 50%

stationC1d 50.drl Station C 1 day next day 50%

stationC2d 50.drl Station C 2 days next 2 days 50%

stationC7d 50.drl Station C 7 days next 7 days 50%

stationD1d 50.drl Station D 1 day next day 50%

stationA1d all.drl Station A 1 day next day –

stationA7d all.drl Station A 7 days next 7 days –

stationB1d all.drl Station B 1 day next day –

stationC1d all.drl Station C 1 day next day –

stationC2d all.drl Station C 2 days next 2 days –

stationC7d all.drl Station C 7 days next 7 days –

stationD1d all.drl Station D 1 day next day –

Table 6.1: Generated rule sets
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Figure 6.3: The whole rule generation process

"<{

saml.status.energy_net1_not_present

saml.status.energy_net2_not_present

saml.status.energy_48V_battery_nok

saml.status.energy_SAI_PT_nok

},{

saml.status.energy_SAI_ST_nok

}>",

0.83833333 ,

0.089034423

That is the appearance of a prediction rule in the format of R data frame. Lines 2, 3

and 4 are the antecedents, line 6 is the predicted event and rule 8 is the precision of the

rule. The last number on line 9 is the recall of the rule, an evaluation value which is of no

use at this moment.

The same rule in Drools syntax would looks as follows:

rule "rule0"

when

Alarm(iid : installationID , alarmCode

== "saml.status.energy_net1_not_present ");

Alarm(installationID == iid , alarmCode

== "saml.status.energy_net2_not_present ");

Alarm(installationID == iid , alarmCode
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== "saml.status.energy_48V_battery_nok ");

Alarm(installationID == iid , alarmCode

== "saml.status.energy_SAI_PT_nok ");

then

PossibleEvent p = new

PossibleEvent ("saml.status.energy_SAI_ST_nok",

"fieldElementFailure",iid ,0.83833333);

resultList.add(p);

end

We can see here the additions mentioned in section 6.2, regarding installation code

and event type (which is hardcoded here to ”filedElementFailure”). The resultList object

conforms the output which will be returned by Drools to our module, containing all the

generated possible events.

6.3 Output visualisation

When describing our predictive module, we haven’t so far spoken on how this data is

visualised or shown to maintenance operators. This is because our module does not provide

a visual interface in any way to make this data user-readable. The predictive module is

meant to be integrated in a much larger system which is Thales’ railway maintenance station

software. This will provide operators a visualization of the predictions, and can even provide

means for automatic prediction handling.

However, in order to illustrate the possibilities offered by the implemented prototype,

we have developed a demonstration interface. This illustrative example can be seen in

figure 6.4.
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Figure 6.4: Example demo interface
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6.4 Conclusions

At this stage of the project, we have already developed a fully functional predictive module

to be integrated within Thales’ maintenance station. Furthermore, a demo interface has

been provided in order to illustrate one of the multiples applications this module can offer

to maintenance operators.

However, the module allows Thales’ engineers to perform much more advanced tasks

with these predictive information. From statistical reports including information on the

predictions, to automatic processes started as response to specific predicted events, the

range of possibilities is quite large.

Integration is also possible within any other kind of system, due to the implementation

of the module as a Java library. Furthermore, it is even possible to build a standalone

predictive system, performing predictions sobre already generated static event sets.

In general terms, the implementation of the module has been successful and completely

fulfils our goals.
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In this chapter we will gather the conclusions obtained as a result of the project, as

well as possible future work that can be done for further development of this project

and any other predictive tasks in general.
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7.1. PROJECT OUTCOMES

7.1 Project outcomes

The main outcome of this project is the obtention of large amounts of knowledge which

can be used for predictive purpose by Thales’ maintenance operators. As presented in

chapter 5, we have obtained several large rulesets which can be used to predict events with

high confidence values, up to 80% in some cases.

These rulesets have been obtained for the four stations we have studied (named A, B, C

and D; and located in different points across the Spanish territory). Furthermore, for each

of the stations, different processes have been performed in order to obtain rules for different

time periods: one day, two days and seven days. This allows maintenance operators to

obtain predictions for different time periods according to what is more convenient for them.

While it may be useful to predict events on a daily basis to foresee shortage times and

optimise maintenance, it sometimes might be necessary to know with more days in advance

in order to acquire the needed equipment or resources to solve the problems. Additionally,

these rulesets also contain relations which have been found to be of low confidence, but

which can still be useful for further research.

In order to obtain higher quality results, several methods have been used as described

in chapter 4. This includes identifying changes in the data which could lead to significantly

better results. Although sometimes manually and impossible to automatise for a large-scale

application, this has been very useful to identify the need to better classificate alarms in

terms of the systems which are raising them, which can be automatised in the future by

modifying the way maintenance stations register these events.

Also, a prototype has been designed and implemented in the form of a Java library.

This allows our obtained rulesets to be implemented right away within Thales’ systems,

which is very useful to start in-place evaluation and already allows predictive maintenance

to be performed. The engine has been implemented in a modular way, so that rulesets are

independent of the software itself and can therefore be added or updated anytime in a very

easy way.

Furthermore, the project has allowed us to perform a deep insight into data mining

techniques, and specially into the way of applying these techniques to event-based problems.

The developed processes are not only useful for this specific purpose, but can also be used

in any similar environment in which event-prediction can offer benefits.
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7.2 Achieved goals

In chapter 3 we mentioned a list of goals for the project. The achieved goals can be

summarised as follows:

Perform a preliminary statistical analysis to set the project grounds

This goal has been achieved successfully. Its results are presented in chapter 3

Identify differences between maintenance stations

This goal has been achieved successfully. Through the data analysis described in chapter 3

we identified the differences between all the stations. These differences were later confirmed

by Thales’ engineers, who provided further information on the differences between systems

in each station.

Obtain rules to predict alarms using data of other alarms occurrence

This goal has been achieved successfully. As the main goal of the project, the results

described in chapter 5 refer mainly to this goal, as well as most of this document.

Validate and evaluate rule sets. Determine confidence of predictions

This goal has been achieved successfully. The validation and evaluation processes have been

a very important part of the project, and all the resultsets contain confidence information

as a result of a thorough validation process, as described in chapter 4.

Identify rule sets which can be applied to different station types

This goal has been achieved successfully. Due to the high differences between the studied

stations, each of them has a very strictly defined set of rules which can be applied. In the

case of new stations being built with similar characteristics to the existing ones, this point

would need to be reevaluated.
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Identify which system or environment variables are more decisive for alarm prediction

This goal has been achieved successfully. As mentioned in chapter 3, all database fields

have been analysed in order to reduce alarm representation to the minimum. Furthermore,

additional fields which could be of use to improve performance have been identified.

7.3 Conclusions

After the development of this project, we have learnt about the importance and benefits

of predictive operations. We can assure than machine learning and data mining algorithms

can therefore offer a very important advantage in terms of predicting behaviours and events

in any kind of system.

In this specific project, one of the obtained conclusions is that it is essential to count on

an appropriate data model in order to perform effective data mining. In our case, additional

information about the elements which raised the alarms could have helped significantly to

perform much better searches and obtain higher quality rules. Furthermore, it would also

have been useful to know which alarms are more likely to be useful to identify other future

events, or potential relations between them which could be known from experience by

maintenance operators.

Existing algorithms for sequence mining do not usually take into account the separation

between antecedents and consequents. The chosen algorithm, cSPADE, is one of the few

solutions which already took this into account, which is highly recommended and benefitial

in order to avoid heavy data transformation. This algorithm, however, allows for little

fine-tuning, and performs searches in a way which could be simplified for specific cases like

ours.

Generally, we have observed how information can be obtained from almost everywhere

with the adequate techniques. Data mining is therefore something from which many differ-

ent systems can benefit, from failure prediction like in ours, to process optimisation or any

other kind of knowledge.

7.4 Future work

The project outcome can also serve as a solid base for future work and development. First

of all, as mentioned in chapter 4, clustering is an efficient way of reducing the complex-
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ity of our problem and allows us to obtain much better results. Further improvement of

these clustering methods, or their automation, could offer significant improvements over

the methods developed for this project. In this direction, the obtained information can

help maintenance operators to identify which information can actually be useful in terms

of event classification, and allows further improvement of maintenance systems.

Also, as mentioned in chapter 2, there are other algorithms which can be used for

this kind of problems. Although they require further adaptation or data transformation

to be applicable, they could also provide good performance after the needed operations.

A combination of both approaches could provide much richer datasets and better overall

performance.

In this project we have performed analysis for three diferent time windows: one day,

two days and seven days. A further way of improving the system usefulness would be to

identify other potential good time windows and perform different analysis. Although we

did not count on enough data to make monthly or yearly analysis, this is something that

could be studied and developed in the future.

Finally, additional work could be done for this specific context based on different data.

Instead of trying to predict events taking other events as input data, it would be possible to

take other kinds of data such as system temperatures or voltage variations. At the moment

of developing this project, such data cannot be automatically acquired, and therefore such

analysis is not possible. However, useful information could be extracted from such data and

could be useful to develop this option in the future.
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