
PROYECTO FIN DE CARRERA

T́ıtulo: Diseño y desarrollo de un servicio de análisis de sentimientos

basado en una infraestructura de Big Data

T́ıtulo (inglés): Design and development of a sentiment analysis service

based on a Big Data infrastructure

Autor: David Moreno Briz

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Mercedes Garijo Ayestarán

Vocal: Tomás Robles Valladares

Secretario: Carlos Ángel Iglesias Fernández

Suplente: Marifeli Sedano Rúız

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

PROYECTO FIN DE CARRERA

DESIGN AND DEVELOPMENT

OF A SENTIMENT ANALYSIS SERVICE
BASED ON A BIG DATA INFRASTRUCTURE

David Moreno Briz

Septiembre de 2014

Resumen

Esta memoria pretende llevar a cabo la descripción de un proyecto que ha consistido en la

combinación de una gran variedad de tecnoloǵıas con el objetivo de ofrecer un servicio de

analisis de sentimientos y emociones.

El servicio de análisis de sentimientos y emociones desarrollado en el proyecto, denom-

inado Sentiment and Emotion Analysis Services (SEAS), ha seguido la especificación NLP

Interchange Format (NIF) y es compatible con los vocabularios semánticos Marl y Onyx,

que se intercambian en formato JSON for Linking Data (JSON-LD).

Para hacer uso de SEAS, se ha desarrollado un cliente denominado Sentiment and

Emotion Analysis integrated in GATE (SAGA), un plugin de GATE (una herramienta

de análisis de texto basada en anotaciones), desarrollado para realizar analisis de texto

basandonos en los resultados ofrecidos por SEAS aśı como por otros servicios web de análisis

de sentimientos y emociones que respeten el mismo formato, como son los ofrecidos por

Eurosentiment. SAGA será usada junto con otros recursos de procesamiento ofrecidos por

GATE.

Por otro lado, se ha explorado el uso de SEAS desde infrastructuras Big Data. Por ello se

ha llevado a cabo el uso de herramientas Big Data, de computación distribuida y procesado

de datos como son Flume, Hadoop y Pig, para desarrollar un sistema de extracción y

procesado de información proveniente de Twitter, aprovechando las ventajas que nos ofrece

el uso de servicios de análisis en la nube como SEAS.

Con esto, se han presentado las conclusiones extráıdas del trabajo, las posibles ĺıneas de

continuación del proyecto, aśı como los siguientes pasos en cuanto a desarrollo y aprovechamiento

de la plataforma.

Palabras clave: Tecnoloǵıas semánticas, Big Data, NIF, Marl, Onyx, Sentimientos,

Emociones, Java, GATE, Servicios Web, Flume, Hadoop, Pig, Eurosentiment, MongoDB

V

Abstract

This thesis aims to undertake the description of a project that involved the combination of

a variety of technologies to provide a sentiment and emotion analysis service.

We provide a web service called SEAS, which aims to present different sentiment and

emotion analysis services that follow NIF’s API and returns its results according to Marl

(Sentiment) and Onyx (Emotions) ontologies in JSON-LD format, among others.

To use SEAS, a client called SAGA has been developed. SAGA is a GATE (an analysis

tool based on text annotations) plugin developed to provide text analysis based on the

results offered by SEAS as well as other web based sentiment and emotion analysis services

with the same result format as SEAS, like the ones Eurosentiment offers. SAGA will be

used along with other processing resources offered by GATE.

Finally, the use of SEAS from Big Data infrastructures has been explored. We have com-

bined Big Data, distributed computing and data processing tools, such as Flume, Hadoop

and Pig, to develop a system for extraction and processing of information from Twitter,

using the advantages offered by the use of analysis services in the cloud as SEAS.

With this, we have presented the conclusions drawn from the work, the possible lines of

continuation of the project and the next steps in terms of development and progress of the

platform.

Keywords: Semantic technologies, Big Data, NIF, Marl, Onyx, Sentiment, Emotions,

Java, GATE, Web Services, Flume, Hadoop, Pig, Eurosentiment, MongoDB

VII

Agradecimientos

A mi familia y amigos.

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XVII

List of Tables XXI

List of Acronyms XXIII

1 Introduction 1

1.1 Context . 3

1.2 Master thesis description . 4

1.3 Master thesis goals . 6

1.4 Structure of this Master Thesis . 6

2 Enabling Technologies 9

2.1 Overview . 11

2.2 Opinion mining . 11

2.3 Marl: An Ontology for Opinion Mining . 12

2.4 Onyx: Describing Emotions on the Web of Data 13

XI

2.5 Eurosentiment . 15

2.6 NIF 2.0 . 16

2.7 GATE . 17

2.7.1 GATE Developer . 17

2.7.2 GATE Embedded . 18

2.8 Hadoop . 19

2.8.1 HDFS: Hadoop Distributed File System 20

2.8.1.1 HDFS daemons . 20

2.8.1.2 HDFS blocks . 20

2.8.2 Hadoop MapReduce . 20

2.9 Flume . 22

2.10 Pig . 23

2.10.1 UDFs . 24

2.10.2 Elephant Bird . 24

2.11 Conclusions . 24

3 Requirement Analysis 25

3.1 Overview . 27

3.2 Use cases . 27

3.2.1 SEAS . 27

3.2.1.1 Actors dictionary . 27

3.2.1.2 Use cases . 29

3.2.1.3 Sentiment analysis . 30

3.2.1.4 Emotion analysis . 31

3.2.1.5 New services . 32

3.2.1.6 Test and demo . 33

3.2.2 SAGA . 34

3.2.2.1 Actors dictionary . 34

3.2.2.2 Use cases . 34

3.2.2.3 Sentiment and emotion annotations calling SEAS 36

3.2.2.4 Opinion annotations . 37

3.2.2.5 Sentiment and emotion annotations calling other NIF services 38

3.2.2.6 Update SAGA . 39

3.2.2.7 New PR . 40

3.2.3 SEAS-Hadoop . 41

3.2.3.1 Actors dictionary . 41

3.2.3.2 Use cases . 41

3.2.3.3 Get data . 42

3.2.3.4 Sentiment and emotion analysis over data 44

3.2.3.5 New script . 44

3.2.4 Conclusions . 45

4 Architecture 47

4.1 Introduction . 49

4.2 SEAS: Sentiment and emotion analysis services 50

4.2.1 Input format . 51

4.2.2 Sentiment analysis . 52

4.2.2.1 Output format . 53

4.2.3 Emotion analysis . 55

4.2.3.1 Output format . 56

4.3 SAGA: Sentiment and Emotion Analysis integrated in GATE 59

4.3.1 PR: Processing resources . 60

4.3.1.1 Predefined Sentiment Annotation PR 60

4.3.1.2 Sentiment And Emotion Analysis Calling SEAS PR 61

4.4 SEAS-Hadoop: Sentiment and emotion analysis over a Big Data infrastructure 65

4.4.1 Flume . 65

4.4.2 Pig . 66

4.4.2.1 UDFs . 67

4.5 Conclusions . 68

5 Case study 71

5.1 Introduction . 73

5.2 SEAS . 74

5.2.1 Call SEAS using a command line shell 74

5.2.2 Call SEAS using Eurosentiment playground 76

5.2.3 Call SEAS using the demo available at GSI 77

5.2.4 Call SEAS to analyze videos in real-time 79

5.3 SAGA . 81

5.3.1 Corpus . 82

5.3.2 Finance sentiment analysis calling SEAS 82

5.3.2.1 Validation of the sentiment analysis 87

5.3.3 Other sentiment analysis services calling SEAS 90

5.3.4 Emotion analysis calling Onyxemote 91

5.3.5 Sentiment analysis calling Eurosentiment services 93

5.4 Hadoop for financial analysis . 95

5.4.1 Using Flume to obtain data from Twitter 95

5.4.2 Data processing and sentiment analysis using Pig 97

5.4.2.1 Hadoop vs GATE . 100

5.5 Conclusions . 101

6 Conclusions and future lines 103

6.1 Conclusions . 105

6.2 Achieved goals . 105

6.3 Future work . 106

A Installing and configuring SEAS 109

A.1 Installation . 109

A.1.1 Requirements . 109

A.1.2 Installation steps . 110

A.2 User manual . 111

A.2.1 Command line interface . 112

A.2.2 Using Java . 113

A.2.3 Web service interface . 114

B Installing and configuring SAGA 117

B.1 Installation . 117

B.1.1 Requirements . 117

B.1.2 Installation steps . 117

B.2 User manual . 118

B.2.1 Sentiment and emotion analysis calling SEAS and Eurosentiment . . 118

B.2.1.1 Example of use - Sentiment analysis over a finance domain 120

B.2.1.2 Example of use - Emotion analysis using Onyxemote 121

B.2.1.3 Example of use - Eurosentiment services 122

B.2.2 Predefined Sentiment Annotation . 123

C Installing and configuring SEAS-Hadoop 127

C.1 Installation . 127

C.1.1 Requirements . 127

C.1.2 Installation steps . 128

C.2 User manual . 129

C.2.1 Using Flume to obtain data from Twiiter 130

C.2.2 Sentiment and emotion analysis using Pig 130

Bibliography 133

List of Figures

1.1 System general picture . 5

2.1 Class and Properties Diagram for the Marl Ontology [1] 13

2.2 Marl, example of use [1] . 13

2.3 Class and Properties Diagram for the Onyx Ontology [2] 14

2.4 Onyx, example of use [2] . 15

2.5 NIF Core Ontology [3] . 17

2.6 Example of configuration of a PR . 18

2.7 GATE Embedded APIs [4] . 19

2.8 HDFS architecture [5] . 21

2.9 Hadoop master/slave architecture [6] . 22

2.10 Flume architecture [7] . 23

3.1 SEAS use case . 29

3.2 SAGA use case . 35

3.3 SEAS-Hadoop use case . 42

4.1 General Architecture . 50

4.2 Sequence diagram for sentiment analysis . 53

4.3 Sequence diagram for emotion analysis . 56

4.4 Runtime parameters configuration for negative annotations 61

4.5 Sequence diagram for Predefined Sentiment Annotation PR 62

4.6 Runtime parameters configuration for sentiment annotations 64

XVII

4.7 Runtime parameters configuration for sentiment annotations 64

4.8 Sequence diagram for Sentimen And Emotiont Analysis Calling SEAS PR . 64

4.9 Sequence diagram for Flume . 66

4.10 Sequence diagram for Pig . 67

5.1 The Eurosentiment playground . 76

5.2 The Eurosentiment playground with a POST request 77

5.3 SEAS demo . 78

5.4 Real-time video sentiment analyzer options 80

5.5 Real-time video sentiment analyzer performance 81

5.6 Sample of documents inside a GATE corpus 83

5.7 Sample of a document loaded in GATE . 84

5.8 Sample of Sentiment and emotion analysis calling SEAS PR configuration . 84

5.9 Sample of Sentiment and emotion analysis calling SEAS PR configuration . 85

5.10 Example of an analyzed negative document 87

5.11 Sample of Annotation Set Transfer PR configuration 88

5.12 Sample of Predefined Sentiment Annotation PR configuration 89

5.13 Example of an analyzed negative document and its real polarity 89

5.14 Negative corpus Quality Assurance . 90

5.15 List of sentiment analysis services . 91

5.16 Sample of Sentiment and emotion analysis calling SEAS PR configuration . 92

5.17 Sample of Sentiment and emotion analysis calling SEAS PR configuration . 92

5.18 Sample of an analyzed emotion document 93

5.19 Eurosentiment services . 93

5.20 Runtime Eurosentiment parameters 1 . 94

5.21 Runtime Eurosentiment parameters 2 . 94

A.1 Web service interface . 114

A.2 Web service interface in action . 115

B.1 New processing resource . 119

B.2 Finance example 1 . 120

B.3 Finance example 2 . 120

B.4 Finance example result . 121

B.5 Emotion example . 121

B.6 Emotion example results . 122

B.7 Eurosentiment services . 123

B.8 Runtime Eurosentiment parameters 1 . 123

B.9 Runtime Eurosentiment parameters 2 . 124

B.10 Eurosentiment results . 124

B.11 New processing resource . 124

B.12 Runtime parameters configuration for negative annotations 125

List of Tables

3.1 SEAS - Actors list . 28

3.2 SAGA - Actors list . 34

3.3 SEAS-Hadoop - Actors list . 41

5.1 Execution enviroment . 73

5.2 Execution times in GATE and Hadoop . 101

XXI

List of Acronyms

API Application Programming Interface

GATE General Architecture for Text Engineering

GSI Group on Intelligent Systems

HDFS Hadoop distributed file system

HTTP Hypertext Transfer Protocol

J2EE Java 2 Platform, Enterprise Edition

JSON-LD JSON for Linking Data

NIF NLP Interchange Format

NLP Natural Language Processing

OWL Web Ontology Language

PR Processing Resource

SAGA Sentiment and Emotion Analysis integrated in GATE

SEAS Sentiment and Emotion Analysis Services

RDF Resource Description Framework

REST Representational state transfer

UDF User Defined Function

URI Uniform resource identifier

UML Unified Modeling Language

UPM Technical University of Madrid

XML Extensible Markup Language

XXIII

CHAPTER1
Introduction

This chapter provides an introduction to the problem which will be approached in this

project. It provides an overview of the benefits of sentiment and emotion analysis of

information, as well as the use of Big Data infrastructures for these matters. Fur-

thermore, a deeper description of the project and its context is also given.

1

CHAPTER 1. INTRODUCTION

2

1.1. CONTEXT

1.1 Context

Sentiment and emotion analysis techniques have become very popular in the last few years [8]

and they are starting to be used in more and more applications every day. These techniques

allow us to develop more complex analysis tools in which the most important goal is not to

discover what the information is about, but about the feelings expressed in it.

This growth of popularity has been possible because of the exponential growth of the

available information to be analyzed, which is bigger every day. This phenomenon is called

Big Data, which is the direct consequence of the desire of processing large amounts of data

due to the evolution of information technologies and communications. It is a solution to

data processing when these data are composed by very large sets, as traditional methods of

analysis represent high costs, both in time and resources. Therefore, the problems we will

try to solve are the capture, storage, search, analysis, sharing and viewing of these sources

of information.

These large amounts of information, which will be used in this project, comes from the

web and social networks. This, as well as the tendency of human beings to communicate

with each other and the world, has resulted in a new source of rich information resources.

Besides, this new way of treating the data opens the door to a new world of services,

such as the implementation of new business models, fight against organized crime, the study

of the spread of diseases and so much more, thanks, for example, to the messages that are

written every day on social networks like Twitter.

This master thesis is developed as a part of Eurosentiment1 project, which is an Euro-

pean project that aims to develop a large shared data pool for language resources meant

to be used by sentiment analysis systems, in order to bundle together scattered resources.

The project specifies a schema for sentiment analysis and normalize the metrics used for

sentiment strength.

In addiction, this master thesis is also developed as a part of Financial Twitter Tracker2

project, which aims to enrich content with information extracted from financial social media

Twitter and detect financial demand for new content on certain topics.

1http://www.gsi.dit.upm.es/index.php/en/component/jresearch/?view=project& task=show& id=78
2http://www.gsi.dit.upm.es/index.php/en/component/jresearch/?view=project& task=show& id=80

3

CHAPTER 1. INTRODUCTION

1.2 Master thesis description

This project will provide a sentiment and emotion analysis service which aims to process a

big volume of data that is obtained from different web sources.

To do so, a web service based on J2EE [9] server technologies will be developed. This web

service will provide different sentiment and emotion analyses using a REST API, so POST

requests will be send to this service in order to perform the different semantic analyses that

it will contain.

Also, we will focus in two different end users. In one hand, we will develop a client

oriented to linguistic engineers that want to combine the sentiment and emotion analyses

provided by the service with other analysis tools such as the plugins and processing resources

provided by GATE. On the other hand, we will use these analysis services using a Big Data

platform as Hadoop in order to have the data obtaining, processing and analysis in the

same platform.

So, the main purpose of this master thesis is to develop a standardized sentiment and

emotion analysis service that is available via a REST API and can be used by different

kinds of end users or clients. In order to achieve that, the project is divided in different

modules as depicted in figure 1.1.

Inside this project we distinguish the following modules:

SEAS is a set of Sentiment and Emotion Analysis Services according to NIF. The

NLP Interchange Format is an RDF/OWL-based format that aims to achieve inter-

operability between Natural Language Processing tools, language resources and an-

notations. NIF consists of specifications, ontologies and software, which are combined

under the version identifier ”2.0”, but are versioned individually. The results of the

service provided by SEAS will have the JSON-LD format and will follow Marl and

Onyx ontologies, which are used to describe sentiment and emotion resources. This

service is used via POST requests, which should contain the text to be analyzed and

the analysis algorithm as parameters, additionally the corresponding NIF parameters.

SAGA (Sentiment and Emotion Analysis integrated in GATE) is a set of process-

ing and linguistic resources, written in Java, developed to run sentiment and emotion

analysis over text using GATE platform. Because of the nature of GATE, the text

format should be plain or XML. This plugin will use the results provided by SEAS to

make sentiment and emotion classification of the analyzed text via annotations. Also,

4

1.2. MASTER THESIS DESCRIPTION

Figure 1.1: System general picture

the plugin allow us to configure different endpoints to another sentiment and emotion

analysis services according to NIF, such as the provided by Eurosentiment.

SEAS-Hadoop will allow to integrate SEAS with the distributed processing platform

called Hadoop. Over Hadoop we will execute Flume, a tool which retrieves tweets from

Twitter about the topics we configure and stores them in HDFS (Hadoop distributed

file system), and then a Pig script will we executed to process these data using a UDF

(User defined function) that calls SEAS.

5

CHAPTER 1. INTRODUCTION

1.3 Master thesis goals

The main purpose of this project is to develop a web service that provides several sen-

timent and emotion analysis alternatives to process text. This service should be inter-

operable and easy to use from other platforms. To achieve that we will use NIF as a

standard.

Then we should develop different tools to prove this interoperability and the advantages

of use web distributed services. On one hand, we will create a plugin for a platform that

process texts in a pipeline one by one. On the other hand, we will create a software that

works over Hadoop, to create a distributed system that process data using the sentiment

and emotion analyses provided by SEAS.

1.4 Structure of this Master Thesis

In this section we will provide a brief overview of all the chapters of this Master Thesis. It

has been structured as follows:

Chapter 1 provides an introduction to the problem which will be approached in this

project. It provides an overview of the benefits of mash-ups of semantic technologies.

Furthermore, a deeper description of the project and its environment is also given.

Chapter 2 contains an overview of the existing technologies on which the development

of the project will rely.

Chapter 3 describes one of the most important stages in software development: the

requirement analysis using different scenarios. For this, a detailed analysis of the possible

use cases is made using the Unified Modeling Language (UML). This language allows us to

specify, build and document a system using graphic language. The result of this evaluation

will be a complete specification of the requirements, which will be matched by each module

in the design stage. This helps us also to focus on key aspects and take apart other less

important functionalities that could be implemented in future works.

Chapter 4 describes the architecture of the system, dividing it into 3 groups and differ-

entiating front-end and back-end modules.

Chapter 5 describes a selected use case. It is going to be explained the running of all the

tools involved and its purpose. It is based on how to retrieve tweets from Twitter, stores

them, analyzes the using SAGA o SEAS-Hadoop and present the results.

6

1.4. STRUCTURE OF THIS MASTER THESIS

Chapter 6 sums up the findings and conclusions found throughout the document and

gives a hint about future development to continue the work done for this master thesis.

Finally, the appendix provide useful related information, especially covering the instal-

lation and configuration of the tools used in this thesis.

7

CHAPTER 1. INTRODUCTION

8

CHAPTER2
Enabling Technologies

This chapter introduces which technologies have made possible this project. Because

of its purpose, this project uses a lot of data processing oriented technologies. These

technologies will cover five steps on the traditional path of data treatment, which are:

capture, process, share, representation and storage of information and the resources

associated with them, such as dictionaries, algorithms or configuration files.

9

CHAPTER 2. ENABLING TECHNOLOGIES

10

2.1. OVERVIEW

2.1 Overview

As we approach the Web 3.0 [10], the availability of semantic technologies and related web

services is growing every day. There are a lot of tools to discover the meaning of information,

especially those which perform sentiment and emotion analysis. Also, there are a lot of web

services to perform these kinds of tasks and a lot of processing technologies to treat big

amounts of data.

However, developers face some difficulties when they want to make interoperable tools

that can use different sentiment and emotion web analyzers over the same platform because

there is no standard in the communication interface between them.

First, it is a difficult task to develop a generic call function that could be use to make

a request to any web analysis service, because every service accepts its own parameters.

Second, every web service returns its result with different file formats and semantic

structures, making even more difficult to develop a standardized processing tool.

Third, most of this analysis services are not ready to be used with a large amount of

data or over distributed processing systems.

This master thesis describes the development of standardized sentiment and emotion

analysis web service in terms of request and response handling, which is prepared to perform

these analyses over any platform that can perform HTTP request.

The main goal of this project is to show the interoperability of this web service with any

other processing tool. To do so, first we will develop a plugin for a non distributed corpus

pipeline based processing tool like GATE [11] and then, a processing script that will work

over a distributed processing system like Hadoop.

2.2 Opinion mining

Opinion mining [12] is a type of natural language processing which is oriented to discover

the perception about the entities inside the information. In other words, what is thinking

the person that have written this information about the entities he or she is talking about.

This is a useful way to discover what people think about certain products, companies or

events and it is pretty related with what we know as Big Data processing.

We can differentiate two kinds of opinion mining:

11

CHAPTER 2. ENABLING TECHNOLOGIES

Sentiment analysis is a specific type of analysis inside opinion mining. It usually classifies

data in three categories or polarities: positive, negative or neutral. These polarities

are also specified with a numeric value that represents the intensity of the opinion

and usually goes from -1 to 1.

Emotion analysis is a specific type of analysis inside opinion mining. It usually classifies

data into one or more categories of emotions such as happiness, sadness, anger, fear...

These categories are also specified with a numeric value that represents the intensity

of the emotion and usually goes from -1 to 1.

2.3 Marl: An Ontology for Opinion Mining

Marl [1] is a standardised data schema (also referred as ”ontology” or ”vocabulary”) de-

signed to annotate and describe subjective opinions expressed on the web or in particular

Information Systems. Marl is not a complete model to address the problem of describing

and linking opinions online and inside information systems. It mainly defines concepts that

are not described yet by the means of other ontologies and provides the data attributes

that enable to connect opinions with contextual information already defined in metadata

created with other ontologies.

The goals of the Marl ontology to achieve as a data schema are: first, enable to publish

raw data about opinions and the sentiments expressed in them. Second, deliver schema that

will allow to compare opinions coming from different systems (polarity, topics, features).

Third, interconnect opinions by linking them to contextual information expressed with

concepts from other popular ontologies or specialised domain ontologies

The Marl class diagram presented in Figure 2.1 shows connections between classes and

properties used for describing opinions.

A very basic example of use depicted in Figure 2.2 shows a single opinion annotated

with Marl metadata.

12

2.4. ONYX: DESCRIBING EMOTIONS ON THE WEB OF DATA

Figure 2.1: Class and Properties Diagram for the Marl Ontology [1]

Figure 2.2: Marl, example of use [1]

2.4 Onyx: Describing Emotions on the Web of Data

Onyx [2] is a standardised data schema (also referred as ”ontology” or ”vocabulary”) de-

signed to annotate and describe the emotions expressed by user-generated content on the

web or in particular Information Systems. Onyx aims to complement the Marl Ontology by

providing a simple means to describe emotion analysis processes and results using semantic

technologies.

The goals of the Onyx ontology to achieve as a data schema are: first, enable to publish

raw data about emotions in user-generated content. Second, deliver schema that will allow

to compare emotions coming from different systems (polarity, topics, features). Third,

13

CHAPTER 2. ENABLING TECHNOLOGIES

interconnect emotions by linking them to contextual information expressed with concepts

from other popular ontologies or specialised domain ontologies.

The Onyx class diagram presented in Figure 2.3 shows connections between classes and

properties used for describing opinions.

Figure 2.3: Class and Properties Diagram for the Onyx Ontology [2]

A very basic example of use depiced in Figure 2.3 shows a single opinion annotated with

Onyx metadata.

14

2.5. EUROSENTIMENT

Figure 2.4: Onyx, example of use [2]

2.5 Eurosentiment

Eurosentiment (http://eurosentiment.eu/section/project/) is an European project

that aims to develop a large shared data pool for language resources meant to be used by

sentiment analysis systems, in order to bundle together scattered resources. The project

specifies a schema for sentiment analysis and normalize the metrics used for sentiment

strength. The sharing of resources is supported by a self-sustainable and profitable frame-

work based on a community governance model, offering contributors the possibility of ex-

ploiting commercially the resources they provide. The project is structured around following

steps:

1.- Definition of a common schema to ensure interoperability.

2.- Acquisition and clean up of language resources.

3.- Deployment of the resources.

4.- Validation through opinion mining demonstrators in the hotel and electronic domains.

The ontologies described in sections 2.3 and 2.4 have been developed under this project.

15

http://eurosentiment.eu/section/project/

CHAPTER 2. ENABLING TECHNOLOGIES

2.6 NIF 2.0

The NLP Interchange Format (NIF) [13] is an RDF/OWL-based format that aims to achieve

interoperability between Natural Language Processing (NLP) tools, language resources and

annotations. The development of this technology is motivated by the growing of the avail-

able processing tools and services that perform NLP tasks such as language detection,

Named Entity Recognition, text classification, relationship extraction, sentiment and emo-

tion analysis and so on.

NIF aims to turn the combination of NLP tools into a simple task by improving the

compatibility of the results provided by these tools so they could be integrated in any

service. With this, it is easier to build new applications as a result of the mash-up of

different processing tools and services and the reuse of these applications.

NIF solves the interoperability problem by structuring itself into three layers:

Structural layer: NIF Core Ontology

The NIF Core Ontology provides classes and properties to describe the relations be-

tween substrings, text, documents and their URI schemes as we can see in Figure

2.5.

Conceptual layer

Processing tools and services should use the same vocabularies for the same kind of

annotations, so the results are interoperable between services.

Access layer

Processing tools and services should have a standardized way to access them via the

definition of parameters related to the processing tasks they perform. Some of them

are the original file to be processed as an input, the format of the input file or the

output format of the results.

16

2.7. GATE

Figure 2.5: NIF Core Ontology [3]

2.7 GATE

GATE [11], general architecture for text engineering, is a platform developed by The Uni-

versity of Sheffield that brings a lot of capabilities to perform processing tasks over text.

Although the family of GATE products available to perform this kind of tasks is quite big,

we are only going to use and talk about two of them, the ones referenced in sections 2.7.1

and 2.7.2. These capabilities and the software used by them are developed in Java and

some of them are available under the GNU Lesser General Public Licence 3.0.

2.7.1 GATE Developer

GATE Developer is a development environment that provides a graphical user interface,

resources and capabilities that makes easier the development, configuration and running of

text processing applications, as it is shown in Figure 2.6.

To understand the process of creation of an application inside GATE Developer, we

should first clarify some important terms related to that matter:

17

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.6: Example of configuration of a PR

A corpus is a set of documents which are related to each other. In other words, corpora

contain documents about the same topics, for example: finances, electronics, food...

Processing resources (PR) are software components that perform specific processing

tasks that manipulate and create annotations on documents.

Plugins are sets of processing resources. Some of them are directly provided by GATE

and other ones are developed by third parties.

Pipelines or applications are comprising sequences of processing resources, that can be

applied to a document or corpus.

2.7.2 GATE Embedded

GATE Embedded is an object-oriented framework implemented in Java. It is used in all

GATE-based systems, and forms the core (non-visual) elements of GATE Developer and it

allow us to develop new plugins for this tool. Embedded is split into a rich set of interlinked

APIs and based on a standard Java component model. Some of the APIs available in

Embedded are summarised in Figure 2.7.

18

2.8. HADOOP

Figure 2.7: GATE Embedded APIs [4]

2.8 Hadoop

Hadoop[14] is a project developed by Apache which aims to provide a reliable platform

for scalable distributed computing using simple programming models. It is a framework

that allows the processing and storage of large data sets over a cluster of computers, also

call nodes. Its main purpose is not to exploit the computing capabilities of the nodes in

the cluster, but to exploit the interoperation between them, distribute the storage and

processing task and handle failures to provide highly-available services.

These clusters can be configured as stand-alone, also known as single node cluster be-

cause there is only one computer in it, usually the ones from beginners user or test devel-

opers; or as a cluster with multiple nodes for big applications.

As we can see, Hadoop allows us to perform two different but highly related tasks: to

store large data sets in a cluster or to process them. For this, there are two different modules

inside Hadoop: HDFS and MapReduce.

19

CHAPTER 2. ENABLING TECHNOLOGIES

2.8.1 HDFS: Hadoop Distributed File System

HDFS is a distributed file system used by Hadoop applications. Its main goal is to provide

a highly reliable fault tolerant system that is transparent to the user or application, which

perceives it as an only physical disk. This is achieved by Hadoop’s architecture which is

composed by different process or daemons that are being executed over the system and by

the way storage units are configured.

2.8.1.1 HDFS daemons

HDFS has a master/slave architecture. An HDFS cluster consists of a single NameNode,

the master, and a number of DataNodes, usually one per node in the cluster.

NameNode is a process executed only over one node of the cluster and its main purpose is

to manage the file system metadata and namespace. It executes file system namespace

operations like opening, closing, and renaming files and directories. It also determines

the mapping of blocks to DataNodes.

DataNodes manage storage and backup attached to the nodes that they run on. They

are responsible for serving read and write requests from the file system’s clients and

also perform block creation, deletion, and replication upon instruction from the Na-

meNode.

Secondary NameNode performs maintenance tasks that the namenode does not.

2.8.1.2 HDFS blocks

Files are stored in HDFS by dividing them into blocks. A block is the minimum storage

unit in HDFS and usually it has a 64MB size. These blocks are managed by the NameNode

and stored in the DataNodes. With this, HDFS achieves two things: to reduce the seek

time and to make easier the data replication.

Finally, HDFS architecture looks as depicted in Figure 2.8.

2.8.2 Hadoop MapReduce

MapReduce is a paradigm for the development of big data processing services and tools over

distributed systems. MapReduce technology is mainly divided into two parts, depending

20

2.8. HADOOP

Figure 2.8: HDFS architecture [5]

on the tasks or jobs performed. First, there are map jobs and then, reduce jobs, which are

executed in that precise order.

Map jobs take data sets and transforms them into another data sets, in order to obtain

key-value tuples. In particular, they are responsible for distributing the workload between

nodes to facilitate the processing tasks.

Reduce jobs take the outputs of the map jobs as inputs and combine them with each

other to obtain the desired result for the processing task.

As we can see, the benefits of MapReduce are allowing developers to create parallel

processing threads thanks to its high scalability, without having to worry about other things

such as communication between nodes, monitoring tasks or fault tolerance. These tasks are

automated at each node, which must periodically report its status and information regarding

the work completed.

In Hadoop, the tasks described before are performed by the following processes:

JobTracker is going to distribute the map and reduce jobs between the different Task-

Trackers, trying to bring these jobs the closest as possible to the DataNodes that

contains the data to be processed. It also maintains updated information about the

21

CHAPTER 2. ENABLING TECHNOLOGIES

status of the TaskTrackers.

TaskTrackers perform the map or reduce jobs assigned by the JobTracker.

Finally, Hadoop architecture for a MapReduce application looks as shown in Figure 2.9.

Figure 2.9: Hadoop master/slave architecture [6]

2.9 Flume

Flume [15] is a project (http://flume.apache.org) developed by Apache which aims

to provide a distributed and reliable service to obtain large amounts of data from the web.

Its architecture is based on streaming data flows.

Flume can receive events, which are little pieces of data, from different web sources and

stores them in a channel until they are consumed by a sink. When this happens, these data

are put in an external repository like HDFS. This is depicted in Figure 2.10.

In this case, we will configure Flume to fetch data from Twitter as its source and store

them in HDFS as it is shown in the following example:

Listing 2.1: Example Flume-Twitter configuration

TwitterAgent.sources = Twitter

TwitterAgent.channels = MemChannel

TwitterAgent.sinks = HDFS

TwitterAgent.sources.Twitter.type = com.cloudera.flume.source.TwitterSource

22

http://flume.apache.org

2.10. PIG

Figure 2.10: Flume architecture [7]

TwitterAgent.sources.Twitter.channels = MemChannel

TwitterAgent.sources.Twitter.consumerKey = consumerKey

TwitterAgent.sources.Twitter.consumerSecret = consumerSecret

TwitterAgent.sources.Twitter.accessToken = accessToken

TwitterAgent.sources.Twitter.accessTokenSecret = accessTokenSecret

TwitterAgent.sources.Twitter.keywords = #ARGvsGER, ARGvsGER, #ArgentinavsGermany,

ArgentinavsGermany, #ArgentinavsAlemania, ArgentinavsAlemania

TwitterAgent.sources.Twitter.keywords.created_at = Sun Jul 13

TwitterAgent.sinks.HDFS.channel = MemChannel

TwitterAgent.sinks.HDFS.type = hdfs

TwitterAgent.sinks.HDFS.hdfs.path = hdfs://localhost:54310/user/david/data/input/

football/ArgentinaGermany

TwitterAgent.sinks.HDFS.hdfs.fileType = DataStream

TwitterAgent.sinks.HDFS.hdfs.writeFormat = Text

TwitterAgent.sinks.HDFS.hdfs.batchSize = 1000

TwitterAgent.sinks.HDFS.hdfs.rollSize = 0

TwitterAgent.sinks.HDFS.hdfs.rollCount = 10000

TwitterAgent.channels.MemChannel.type = memory

TwitterAgent.channels.MemChannel.capacity = 10000

TwitterAgent.channels.MemChannel.transactionCapacity = 100

2.10 Pig

Pig [16] is an engine that allows the execution of data processing scripts over Hadoop.

These scripts, also called data flows, are written in a data processing oriented language

called Pig Latin. Pig aims to use Hadoop capabilities such as HDFS and MapReduce to

achieve reliable, fast and distributed parallel data processing.

One of the big advantages of Pig is that its configuration in terms of distributed data pro-

23

CHAPTER 2. ENABLING TECHNOLOGIES

cessing relies in the configuration of Hadoop clusters, so once you have configured Hadoop,

you don’t have to think about setting up Pig.

Pig Latin focuses in data flow instead of control flow as other traditional programming

languages would do. In other words, Pig Latin focuses on loading, processing and storing

the data. Even though Pig Latin offers the user a lot of relational operations and functions,

users are allowed to develop their own functions, called UDFs.

2.10.1 UDFs

User Defined Functions can be developed in Java or Python. They allow the user to create

its own data processing functions and export their results into the data flow as a new

parameter of the relations.

2.10.2 Elephant Bird

Elephant Bird (https://github.com/kevinweil/elephant-bird/) is Twitter’s open

source library of LZO, Thrift, and/or Protocol Buffer-related Hadoop InputFormats, Out-

putFormats, Writables, Pig LoadFuncs, Hive SerDe, HBase miscellanea, etc. The majority

of these are in production at Twitter running over data every day.

In this project, we will be using Pig UDFs to load tweets in JSON format which were

obtained using Flume.

2.11 Conclusions

In this chapter we have introduce some of the technologies which are part of this project

and conform the base for this master thesis.

As we can see, each one of them covers a step on the traditional data processing flow:

capture, storage, search, sharing, analysis and visualization.

Because of the purpose of this project, this chapter has introduced a lot of data pro-

cessing oriented technologies, that are going to be combined to build the goal of this master

thesis: a sentiment and emotion analysis service over a Big Data infrastructure.

24

https://github.com/kevinweil/elephant-bird/

CHAPTER3
Requirement Analysis

This chapter describes one of the most important stages in software development:

the requirement analysis using different scenarios. For this, a detailed analysis of the

possible use cases is made using the Unified Modeling Language (UML). This language

allows us to specify, build and document a system using graphic language.

25

CHAPTER 3. REQUIREMENT ANALYSIS

26

3.1. OVERVIEW

3.1 Overview

The result of this chapter will be a complete specification of the requirements, which will be

matched by each module in the design stage. This helps us also to focus on key aspects and

take apart other less important functionalities that could be implemented in future works.

3.2 Use cases

These sections identify the use cases of each module. This helps us to obtain a complete

specification of the uses of the system, and therefore define the complete list of requisites

to match. We will present a list of the actors and a UML diagram representing all the

actors participating in the different use cases for each module. This representation allows

to specify the actors that interact in the system and the relationships between them.

These use cases will be described the next sections, including each one a table with their

complete specification. Using these tables, we will be able to define the requirements to be

established.

3.2.1 SEAS

3.2.1.1 Actors dictionary

The list of primary and secondary actors is presented in table 3.1. These actors participate

in the different use cases, which are presented later.

27

CHAPTER 3. REQUIREMENT ANALYSIS

Actor identifier Role Description

ACT-1 User

End user that uses SEAS to

perform sentiment or emotion

analysis over a text

ACT-2 Developer
Technical developer that wants to

add new NIF services to SEAS

ACT-3 GATE user

GATE user that calls SEAS to

perform sentiment or emotion

annotations over a corpus of

documents

ACT-4 Eurosentiment Marl and Onyx generator

External services that performs

conversions from SEAS’s generic

results into Marl and Onyx

ontologies

ACT-5 Onyxemote

External services for emotion

analysis expressed in onyx

ontologies.

Table 3.1: SEAS - Actors list

28

3.2. USE CASES

3.2.1.2 Use cases

This use case package collects the analysis functionalities of SEAS, as shown in 3.1.

The use cases presented in this section are as shown in the Figure 3.1:

• sentiment analysis detailed in sub-section 3.2.1.3.

• emotion analysis detailed in sub-section 3.2.1.4.

• new services detailed in sub-section 3.2.1.5.

• test and demo detailed in sub-section 3.2.1.6.

Figure 3.1: SEAS use case

29

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.1.3 Sentiment analysis

Use Case Name sentiment analysis

Use Case ID UC1.1

Primary Actor User

Secondary Actor Eurosentiment Marl Generator

Pre-Condition
Tomcat server has been initialized, database access and

Eurosentiment Marl Generator are available

Post-Condition Tomcat server keeps running and database access is available

Flow of Events Actor Input System Response

1a

The user sends a POST

request to perform the

analysis with the wrong NIF

parameters.

SEAS sends a HTTP

response indicating the

wrong NIF parameter that

needs to be corrected.

1b

The user sends a POST

request to perform the

analysis with correct, but not

supported by the service,

NIF parameters.

SEAS sends a HTTP

response indicating the

correct, but not supported,

NIF parameter that needs to

be a valid one.

1c

The user sends a POST

request to perform the

analysis with the correct and

supported NIF parameters,

including the text to be

analyzed

SEAS checks what sentiment

analysis algorithm has been

chosen and performed the

analysis. Then, it sends the

results to the external service

called Eurosentiment Marl

Generator, which puts them

into JSON-LD format

according to Marl ontology.

Then, this JSON is returned

to the user.

30

3.2. USE CASES

3.2.1.4 Emotion analysis

Use Case Name Emotion analysis

Use Case ID UC1.2

Primary Actor User

Secondary Actor EuroSentiment Onyx Generator, Onyxemote

Pre-Condition
Tomcat server has been initialized, database access,

EuroSentiment Onyx Generator and Onyxemote are available

Post-Condition Tomcat server keeps running and database access is available

Flow of Events Actor Input System Response

1a

The user sends a POST

request to perform the

analysis with the wrong NIF

parameters.

SEAS sends a HTTP

response indicating the

wrong NIF parameter that

needs to be corrected.

1c

The user sends a POST

request to perform the

analysis with the correct and

supported NIF parameters,

including the text to be

analyzed, indicating the use

of Onyxemote service to the

analysis.

SEAS sends the text to be

analyzed to the external

service called Onyxemote,

which performs emotion

analysis over that text and

puts the result into

JSON-LD format according

to Onyx ontology. Then, this

JSON is returned to the user.

1d

The user sends a POST

request to perform the

analysis with the correct and

supported NIF parameters

SEAS checks the chosen

emotion analysis algorithm,

performs it and sends the

results to the external service

call Eurosentiment Onyx

Generator.

31

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.1.5 New services

Use Case Name new services

Use Case ID UC1.3

Primary Actor Developer

Secondary Actor Eurosentiment Marl or Onyx generator

Pre-Condition
The developer has installed Tomcat into its system and has a

suitable JEE platform like Eclipse

Post-Condition -

Flow of Events Actor Input System Response

1a

The developer implements a

proper NIF wrapper of a

current sentiment or emotion

analysis service so it can be

used inside SEAS

-

1b

The developer implements a

new sentiment or emotion

analysis algorithm inside

SEAS so it is according to

NIF

-

32

3.2. USE CASES

3.2.1.6 Test and demo

Use Case Name text and demo

Use Case ID UC1.4

Primary Actor User, Developer

Secondary Actor Eurosentient Marl or Onyx generator, Onyxemote

Pre-Condition The user/ developer has an internet connection

Post-Condition -

Flow of Events Actor Input System Response

1

The User / Developer test

the service by going to

http://demos.gsi.dit.

upm.es/tomcat/SEAS/

Controller

SEAS responds to the

petitions in the same web so

the user/developer can see

the kind of responses the

system gives.

33

http://demos.gsi.dit.upm.es /tomcat/SEAS/Controller
http://demos.gsi.dit.upm.es /tomcat/SEAS/Controller
http://demos.gsi.dit.upm.es /tomcat/SEAS/Controller

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.2 SAGA

3.2.2.1 Actors dictionary

The list of primary and secondary actors is presented in table 3.2. These actors participate

in the different use cases, which are presented later.

Actor identifier Role Description

ACT-1 User

End user that uses SAGA to

perform sentiment or emotion

annotations over a corpus of

documents

ACT-2 Developer

Technical developer that wants to

add new Processing Resources to

SAGA or to update the existing

ones.

ACT-3 SEAS
External service for sentiment and

emotion analysis called by SAGA

ACT-4 Eurosentiment
External services for sentiment and

emotion analysis called by SAGA

Table 3.2: SAGA - Actors list

3.2.2.2 Use cases

This use case package collects the SAGA use cases, as shown in 3.2

• sentiment and emotion annotations calling SEAS detailed in subsection 3.2.2.3

• opinion annotation detailed in subsection 3.2.2.4

• eurosentiment and other endpoints detailed in subsection 3.2.2.5

34

3.2. USE CASES

• update SAGA detailed in subsection 3.2.2.6

• new processing resource detailed in subsection 3.2.2.7

Figure 3.2: SAGA use case

35

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.2.3 Sentiment and emotion annotations calling SEAS

Use Case Name sentiment and emotion annotations calling SEAS

Use Case ID UC2.1

Primary Actor User

Secondary Actor SEAS

Pre-Condition GATE Developer. Availability of SEAS, local or as a web service

Post-Condition Annotations are added to the document

Flow of Events Actor Input System Response

1

The user creates the corpus

of documents to be an

analyzed and populates it

The system creates the

corpus

2

The user adds the analysis

PR to the pipeline inside

GATE and configures it to

call SEAS services as a

sentiment or emotion analysis

endpoint. Then, the user sets

the pipeline to run over the

created corpus and runs it.

When executed inside the

pipeline, SAGA’s PR will call

SEAS to perform the analysis

and will receive the result in

JSON format.

3a

If the JSON is correct, the

PR will use it to generate the

corresponding sentiment

annotations over the

document.

3b

If the JSON is incorrect, no

annotations will be created

on the document.

36

3.2. USE CASES

3.2.2.4 Opinion annotations

Use Case Name opinion annotations

Use Case ID UC2.2

Primary Actor User

Pre-Condition GATE Developer

Post-Condition Annotations are created

Flow of Events Actor Input System Response

1

The user creates a corpus and

populates it with documents

with the same sentiment

polarity or emotion category.

The system creates the

corpus.

2

The user configures the

annotation PR to make the

same annotation over all the

documents in the corpus

according to its sentiment

polarity or emotion category.

The PR annotates the entire

corpus.

37

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.2.5 Sentiment and emotion annotations calling other NIF services

Use Case Name sentiment and emotion annotations calling other NIF services

Use Case ID UC2.3

Primary Actor User

Secondary Actor Eurosentiment, other NIF services.

Pre-Condition
Availability of external services. Results according to Marl and

Onyx

Post-Condition -

Flow of Events Actor Input System Response

1

The user creates the corpus

of documents to be a

analyzed and populates it

The system creates the

corpus

2

The user adds the analysis

PR to the pipeline inside

GATE, sets the API Key and

configures it to call

Eurosentimen services as a

sentiment or emotion analysis

endpoint. Then, the user sets

the pipeline to run over the

created corpus and runs it.

When executed inside the

pipeline, SAGA’s PR will call

Eurosentiment services to

perform the analysis and will

receive the result in JSON

format.

3a

If the JSON is correct, the

PR will use it to generate the

corresponding sentiment

annotations over the

document.

3b

If the JSON is incorrect, no

annotations will be created

on the document.

38

3.2. USE CASES

3.2.2.6 Update SAGA

Use Case Name update SAGA

Use Case ID UC2.4

Primary Actor Developer

Pre-Condition GATE Developer and Embedded

Post-Condition -

Flow of Events Actor Input System Response

1

The developer add new

sentiment or emotion analysis

algorithms to the list of

available services to configure

in the PR.

The new algorithms are

listed in the Runtime

Parameters of the PR.

39

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.2.7 New PR

Use Case Name new PR

Use Case ID UC2.5

Primary Actor Developer

Pre-Condition GATE Developer and Embedded

Post-Condition The new PR is registered in GATE

Flow of Events Actor Input System Response

1

The developer creates a new

PR related to sentiment or

emotion analysis that returns

its results as annotations.

2

The developer registers the

new PR in the creole.xml file

and loads SAGA again.

3a
The new PR is added to the

available PRs.

3b

The registration process fails

and and the new PR is not

added.

40

3.2. USE CASES

3.2.3 SEAS-Hadoop

3.2.3.1 Actors dictionary

The list of primary and secondary actors is presented in table 3.3. These actors participate

in the different use cases, which are presented later.

Actor identifier Role Description

ACT-1 User End user that uses SEAS-Hadoop

ACT-2 Developer

Technical developer that wants to

add new scripts to SEAS-Hadoop

or to update the existing ones

ACT-3 SEAS

External service for sentiment and

emotion analysis called by scripts

inside SEAS-Hadoop

ACT-3 Web External service for getting data

Table 3.3: SEAS-Hadoop - Actors list

3.2.3.2 Use cases

This use case package collects the SEAS-Hadoop use cases, as shown in 3.3.

• get data detailed in 3.2.3.3

• sentiment and emotion analysis over data detailed in 3.2.3.4

• new script detailed in 3.2.3.5

41

CHAPTER 3. REQUIREMENT ANALYSIS

Figure 3.3: SEAS-Hadoop use case

3.2.3.3 Get data

42

3.2. USE CASES

Use Case Name get data

Use Case ID UC3.1

Primary Actor User

Secondary Actor Web

Pre-Condition Hadoop daemons are running.

Post-Condition Data are stored in HDFS.

Flow of Events Actor Input System Response

1

The user configures Flume to

fetch data from the Web by

setting the corresponding

API keys, tokens and

keywords to look for.

2 The user runs Flume.
Data starts being stored in

HDFS with JSON format.

2 The user stops Flume.

43

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.3.4 Sentiment and emotion analysis over data

Use Case Name sentiment and emotion analysis over data

Use Case ID UC3.2

Primary Actor User

Secondary Actor SEAS

Pre-Condition
Hadoop daemons are running. There are data available in

HDFS. SEAS is available.

Post-Condition Results are stored in HDFS.

Flow of Events Actor Input System Response

1

The user opens the Pig Latin

script, sets the path to the

data stored in HDFS and

chooses between sentiment or

emotion analysis. Then, run

it.

The system calls SEAS to

perform the analysis over the

content of each data and

return its sentiment polarity

or emotion category.

2

Data are classified by their

sentiment polarity or emotion

category and stored in HDFS.

3.2.3.5 New script

44

3.2. USE CASES

Use Case Name new script

Use Case ID UC3.2

Primary Actor Developer

Pre-Condition Pig Latin knowledge.

Flow of Events Actor Input System Response

1

The user can create a lot of

new scripts due to the

information that each piece

of data contains: geolocation,

language, hashtags, mentions,

number of followers...

3.2.4 Conclusions

With the use cases described we have introduced the basic functionalities that have been

implemented in this project. They help us to understand the different actors that can

interact. They can serve as a base for further development and different use cases that can

come to mind.

45

CHAPTER 3. REQUIREMENT ANALYSIS

46

CHAPTER4
Architecture

This chapter describes in depth how the system is structured in different modules and

how the users interact with them and also how the modules interact with other modules

by themselves.

47

CHAPTER 4. ARCHITECTURE

48

4.1. INTRODUCTION

4.1 Introduction

The main purpose of this master thesis is to have a sentiment and emotion analysis

service that is available via a REST API, can be used by different kinds of end users

and it is standardized by using NIF (see section 2.6). First we need to set up a server that

allows our service to operate, so it can accept requests from clients to perform the sentiment

and emotion analysis algorithms that will be available.

The service will provide a standardized way to request for sentiment and emotion analy-

sis. And it will let the user choose between different sentiment or emotion analysis services

in different languages, such as English and Spanish. Once the chosen analysis is performed,

the result of the analysis will be always return in JSON-LD format as a way to provide

an standardized response for all the sentiment and emotion analysis services that are

wrapped inside SEAS.

Then, different kinds of users can make use of this service just by using its REST API.

For example, the direct use of this service can be performed by using the demo1 that is

available online at GSI’s web.

Another way to use the service is to use a text processing software such as GATE (see

section 2.7) so others text processing tools can be used with SEAS. GATE provides different

plugins that allows the users to perform different kinds of text analysis such as tokenization,

NER, POS tagging, language identification... A plugin called SAGA has been developed to

perform sentiment and emotion analysis inside GATE by using the capabilities that SEAS

offers us.

Finally, we will see that SEAS can be used over a Big Data infrastructure as Hadoop

(See section 2.8). By using a Pig Latin (see section 2.10) script we will process data stored

in HDFS and using a mapreduce context.

A diagram of the architecture is shown in Figure 4.1. Each module is detailed in the

following sections.

1http://demos.gsi.dit.upm.es/tomcat/SEAS/Controller

49

CHAPTER 4. ARCHITECTURE

Figure 4.1: General Architecture

4.2 SEAS: Sentiment and emotion analysis services

The purpose of this service is to provide a set of sentiment and emotion analysis services

for text processing. These services are offered according to NIF, so their access, input and

output formats are standardized so SEAS can be used with others text or data processing

tools in an interoperable way.

SEAS has a three tiered client/server architecture:

The client would be the different users of the platform. They could be a user of the demo

50

4.2. SEAS: SENTIMENT AND EMOTION ANALYSIS SERVICES

available at GSI, a GATE user that has added a SAGA’s processing resource to its

pipeline or a Hadoop user that is calling SEAS by an UDF. The client will make the

HTTP requests to the service.

The server or the application logic will perform the different sentiment and emotion anal-

ysis services that are available inside SEAS.

The database will contain dictionaries that are needed for some of the analysis services.

SEAS’s application logic is deployed in an Apache Tomcat 7 [17] server, so, as we know,

it is a service developed in Java, and SEAS’s database is deployed in a MongoDB [?].

SEAS is composed by different sentiment and emotion analysis services, some of them

have been developed by me, and others, like Onyxemote, have been added to SEAS as a

NIF wrapper.

4.2.1 Input format

As we have said, ”these services are offered according to NIF”, which means that the way of

accessing the resources provided by SEAS are standardized as it is defined by NIF’s access

layer, as defined in section 2.6. With this standardization we achieve one of the main goals

of this master thesis, which is to provide a interoperable service so it can be easily combined

with others text processing services and tools.

To access the API you have to send a POST request to http://localhost:8080/

SAGAtoNIF/Service or to http://localhost:8080/RestrictedToNIF/RestrictedService

(if SEAS is deployed in a local server) or to http://demos.gsi.dit.upm.es/tomcat/

SAGAtoNIF/Service or to http://demos.gsi.dit.upm.es/tomcat/RestrictedToNIF/

RestrictedService (if you want to use our current deployment at GSI) with these pa-

rameters:

input is the text that is going to be analyzed and it should be a plain text.

informat is the format of the input, which value should be text.

intype value should be direct, which means that the text is provided as plain text inside

the request.

outformat value indicates the output format, which should be JSON-LD.

51

http://localhost:8080/SAGAtoNIF/Service
http://localhost:8080/SAGAtoNIF/Service
http://localhost:8080/RestrictedToNIF/RestrictedService
http://demos.gsi.dit.upm.es/tomcat/SAGAtoNIF/Service
http://demos.gsi.dit.upm.es/tomcat/SAGAtoNIF/Service
http://demos.gsi.dit.upm.es/tomcat/RestrictedToNIF/RestrictedService
http://demos.gsi.dit.upm.es/tomcat/RestrictedToNIF/RestrictedService

CHAPTER 4. ARCHITECTURE

algo value is used to indicate the sentiment or emotion analysis algorithm to be used. The

value can be: spFinancial, emoticon, spFinancialEmoticon, enFinancial, enFinan-

cialEmoticon, ANEW2010All, ANEW2010Men, ANEW2010Women, onyx.

The parameters named input, informat, intype and outformat are used to make the

HTTP request according to NIF format.

4.2.2 Sentiment analysis

All sentiment analysis services are executed inside SEAS’s application logic. The senti-

ment analysis will be performed in the same way for each sentiment algorithm and the

intermediate results will have the same format.

The available sentiment analysis services are:

Spanish finances dictionaries provided by Paradigma.

English finances dictionaries provided by Loughran and McDonald, which are not avail-

able for commercial use without authorization.

Emoticon dictionaries, public available.

A combination between the previous dictionaries.

For a given text, any service will return the following intermediate result:

The text that has been analyzed by the sentiment analysis service.

The polarity of the analyzed text, that can be positive, negative or neutral

The value of the polarity, that can go from -1 (negative) to 1 (positive).

Each relevant word inside the text whit its polarity (positive or negative) and its value

(-1 or 1)

These intermediate results are sent to Eurosentiment Marl Generator (http://demos.

gsi.dit.upm.es/eurosentiment/generator/api), which is another service accord-

ing to NIF developed by GSI that will receive these data, will process it using a template

and will generate the final result or output in JSON format according to Marl ontology (see

section 2.3).

All the process is depicted in Figure 4.2.

52

http://demos.gsi.dit.upm.es/eurosentiment/generator/api
http://demos.gsi.dit.upm.es/eurosentiment/generator/api

4.2. SEAS: SENTIMENT AND EMOTION ANALYSIS SERVICES

Figure 4.2: Sequence diagram for sentiment analysis

4.2.2.1 Output format

As it happens with the input format, the outputs of the service are also standardized. The

final output that comes as a result of a sentiment analysis will be provided in JSON-LD

format. This JSON will contain all the information related with the text analyzed, its

polarity and its value expressed using Marl Ontology.

For an example input as the following:

Listing 4.1: ”Example of sentiment analysis request/input”

curl --data "input=I feel good :)&intype=direct&

53

CHAPTER 4. ARCHITECTURE

informat=text&outformat=json-ld&algo=

enFinancialEmoticon" http://localhost:8080/

RestrictedToNIF/RestrictedService

The following output will be returned:

Listing 4.2: ”Example of sentiment analysis output”

{

"@context": "http://demos.gsi.dit.upm.es/eurosentiment/static

/context.jsonld",

"analysis": [

{

"@id": "http://www.gsi.dit.upm.es/ontologies/analysis#

SAGA",

"@type": [

"marl:SentimentAnalysis"

],

"marl:maxPolarityValue": 1.0,

"marl:minPolarityValue": -1.0

}

],

"entries": [

{

"nif:isString": "I feel good :)",

"opinions": [

{

"@id": "_:Opinion1",

"marl:hasPolarity": "marl:Positive",

"marl:polarityValue": 1.0,

"marl:describesObjectFeature": "Overall"

}],

"strings": [

{

"nif:anchorOf": "good",

"nif:beginIndex": 7,

"nif:endIndex": 10,

54

4.2. SEAS: SENTIMENT AND EMOTION ANALYSIS SERVICES

"opinions": {

"@id": "_:Opinion",

"marl:hasPolarity": "marl:Positive",

"marl:polarityValue": 1.0

}

} ,

{

"nif:anchorOf": ":)",

"nif:beginIndex": 12,

"nif:endIndex": 13,

"opinions": {

"@id": "_:Opinion",

"marl:hasPolarity": "marl:Positive",

"marl:polarityValue": 1.0

}

}

]

}

]

}

4.2.3 Emotion analysis

All emotion analysis services, except Onyxemote, are executed inside SEAS. The emotion

analysis will be performed in the same way for each emotion algorithm and the intermediate

results will have the same format.

The available emotion analysis services are:

Affective Norms for English Words dictionaries provided by University of Florida2,

which are not available for commercial use without authorization.

Onyxemote 3, a service developed by GSI to perform emotion analysis and express the

results in Onyx ontology.

For a given text, any service will return the following intermediate result:

2http://csea.phhp.ufl.edu/media/anewmessage.html
3http://demos.gsi.dit.upm.es/onyxemote/

55

CHAPTER 4. ARCHITECTURE

The text that has been analyzed by the emotion analysis service.

The category or categories of the analyzed text, that can be happiness, sadness, anger...

The value of each category, that can go from -1 to 1.

Each relevant word inside the text whit its category and its value (-1 or 1)

These intermediate results are sent to Eurosentiment Onyx Generator, which is another

service according to NIF that will receive these data, will process it using a template and

will generate the final result or output in JSON format according to Onyx ontology (see

section 2.4).

All the process is depicted in Figure 4.3.

Figure 4.3: Sequence diagram for emotion analysis

4.2.3.1 Output format

As it happens with the input format, the outputs of the service are also standardized. The

final output that comes as a result of a emotion analysis will be provided in JSON-LD

format. This JSON will contain all the information related with the text analyzed, its

categories and its values expressed using Onyx Ontology.

For an example input as the following:

56

4.2. SEAS: SENTIMENT AND EMOTION ANALYSIS SERVICES

Listing 4.3: ”Example of sentiment analysis request/input”

curl --data "input=I feel good :)&intype=direct&

informat=text&outformat=json-ld&algo=ANEW2010All"

http://localhost:8080/RestrictedToNIF/

RestrictedService

The following output will be returned:

Listing 4.4: ”Creating information view”

{

"@context":{

"dc":"http://purl.org/dc/terms/",

"dc:subject":{

"@type":"@id"

},

"xsd":"http://www.w3.org/2001/XMLSchema#",

"marl":"http://www.gsi.dit.upm.es/ontologies/marl/ns#",

"nif":"http://persistence.uni-leipzig.org/nlp2rdf/

ontologies/nif-core#",

"onyx":"http://www.gsi.dit.upm.es/ontologies/onyx/ns#",

"emotions":{

"@id":"onyx:hasEmotionSet",

"@type":"onyx:EmotionSet"

},

"opinions":{

"@container":"@list",

"@id":"marl:hasOpinion",

"@type":"marl:Opinion"

},

"prov":"http://www.w3.org/ns/prov#",

"rdfs":"http://www.w3.org/2000/01/rdf-schema#",

"analysis":{

"@id":"prov:wasInformedBy"

},

57

CHAPTER 4. ARCHITECTURE

"entries":{

"@id":"prov:generated"

},

"strings":{

"@reverse":"nif:hasContext",

"@type":"nif:String"

},

"date":{

"@id":"dc:date",

"@type":"xsd:dateTime"

},

"wnaffect":"http://www.gsi.dit.upm.es/ontologies/wnaffect#"

},

"@id":"http://demos.gsi.dit.upm.es/onyxemote/#Analysis",

"@type":"prov:Activity",

"entries":{

"@id":"http://demos.gsi.dit.upm.es/onyxemote/emote.php?i=I+

feel+good+:)&o=jsonld#char=0,14",

"@type":"nif:Context",

"nif:isString":"I feel good :)",

"onyx:hasEmotionSet":{

"@id":"_:b0",

"@type":"onyx:EmotionSet",

"onyx:hasEmotion":[

{

"@id":"_:b1",

"@type":"onyx:Emotion",

"onyx:hasEmotionCategory":{

"@id":"http://www.gsi.dit.upm.es/ontologies/

wnaffect/ns#happiness"

},

"onyx:hasEmotionIntensity":{

"@type":"xsd:decimal",

"@value":"0.75"

}

},

{

58

4.3. SAGA: SENTIMENT AND EMOTION ANALYSIS INTEGRATED IN GATE

"@id":"_:b2",

"@type":"onyx:Emotion",

"onyx:hasEmotionCategory":{

"@id":"http://www.gsi.dit.upm.es/ontologies/

wnaffect/ns#anger"

},

"onyx:hasEmotionIntensity":{

"@type":"xsd:decimal",

"@value":"0.039705882352941"

}

}

]

}

},

"analysis":{

"@id":"http://demos.gsi.dit.upm.es/onyxemote/#activity",

"@type":"onyx:EmotionAnalysis",

"onyx:algorithm":"Synesketch",

"onyx:usesEmotionModel":{

"@id":"http://www.gsi.dit.upm.es/ontologies/wnaffect/ns#

OnyxModel"

},

"prov:wasAssociatedWith":{

"@id":"http://www.gsi.dit.upm.es",

"@type":"prov:Agent"

}

}

}

4.3 SAGA: Sentiment and Emotion Analysis integrated in GATE

SAGA is a set of processing and linguistic resources, written in Java, developed to run

sentiment and emotion analysis over text using GATE platform. SAGA is distributed as a

GATE plugin.

As we have said in section 2.7, GATE is a platform developed by The University of

59

CHAPTER 4. ARCHITECTURE

Sheffield that brings a lot of capabilities to perform processing tasks over text. It offers

a lot of different plugins and processing resources, some of them developed by them and

others developed by third-parties, to perform text analysis over big sets of documents.

These text analyses can be language identification, POS tagging, sentence splitter, tok-

enization... SAGA is a plugin that contains a set of processing resources that are developed

to perform sentiment and emotion analysis over text or xml documents.

The main purpose of SAGA is to provide a SEAS’s client that can be used from GATE,

so it can perform sentiment and emotion analysis by calling SEAS or other similar NIF’s

services such as the available at Eurosentiment Portal4. With this, SAGA gives interop-

erability to GATE pipelines, because SAGA also respects NIF’s API and make sentiment

and emotion annotations according to Marl and Onyx ontologies.

4.3.1 PR: Processing resources

As a reminder of what it was said in section 2.7, a processing resource is a software com-

ponent that perform specific processing tasks that manipulate and create annotations on

documents. In this case, SAGA’s processing resources will create sentiment and/or emotion

annotations over the analyzed documents. These annotations will be according Marl and

Onyx ontoligies so they have semantic value.

4.3.1.1 Predefined Sentiment Annotation PR

This is a processing resource that will create predefined sentiment annotations over a corpus

of documents. In other words, this processing resource won’t call any analysis services, it

will create the sentiment annotations defined by the user in its Runtime Parameters.

Because of its nature, this processing resource will be useful to annotate already classified

corpus to GATE format, or what is the same, it will annotate all the documents in a corpus

with the same corresponding sentiment polarity. So, if a corpus is composed by positive

documents, it will annotate all the documents as positive; and if a corpus is composed by

negative documents, it will annotate all the documents as negative.

To do so, the processing resource will have the following runtime parameters:

Annotation Type is the name of the annotation in which the sentiment polarity will be

added.

4http://portal.eurosentiment.eu

60

4.3. SAGA: SENTIMENT AND EMOTION ANALYSIS INTEGRATED IN GATE

Input Annotation Set Name is the name of the annotation set containing the Annota-

tion Type.

Sentiment Polarity Name is the name of the annotation key.

Sentiment Polarity is the value of the annotation value.

For example, to annotate a corpus of negative documents with negative annotations,

the parameter will be configured as depicted in Figure 4.4.

Figure 4.4: Runtime parameters configuration for negative annotations

As result, all the document inside this negative corpus will get a negative annotation

inside paragraph with the value marl:hasPolarity=marl:Negative

All the process is depicted in Figure 4.5.

4.3.1.2 Sentiment And Emotion Analysis Calling SEAS PR

This is a processing resource that will create sentiment and/or emotion annotations over a

corpus of documents by calling sentiement or emotion analysis services suchs as the ones

provided by SEAS.

Even Though this PR was first thought to be used only with SEAS’s services, because its

use of NIF and its standardization, it is compatible with other NIF’s sentiment and emotion

analysis services such as the provided in the Eurosentiment Portal. This compatibility is

possible because of the highly configurable Runtime Parameters of this processing resource,

that allows the user to configure which web services want to use to perform the analysis.

To do so, the processing resource will have the following runtime parameters:

inputASName is the Annotation Set that contains the annotation type to be analyzed.

61

CHAPTER 4. ARCHITECTURE

Figure 4.5: Sequence diagram for Predefined Sentiment Annotation PR

annotationType is the annotation type to be analyzed.

sentimentAnalysis is a runtime parameter that sets if the PR is going to perform senti-

ment analysis with the chosen url or algorithm.

emotionAnalysis is a runtime parameter that sets if the PR is going to perform emotion

analysis with the chosen url or algorithm.

SentimentServiceURL is the endpoint of the sentiment analysis service. If you deploy

SEAS as a local service in your computer (Recommended): http://localhost:

8080/SAGAtoNIF/Service and http://localhost:8080/RestrictedToNIF/

RestrictedService. You can use the demo available at GSI’s website: http://

demos.gsi.dit.upm.es/tomcat/SAGAtoNIF/Service and http://demos.

gsi.dit.upm.es/tomcat/RestrictedToNIF/RestrictedService. For more

endpoints visit the Eurosentiment portal - https://portal.eurosentiment.eu

EmotionServiceURL is the endpoint of the emotion analysis service.

APIKey is the Eurosentiment token to use their services or other similar services that

require an API KEY.

ApiKeyName is Eurosentiment (or other similar services) token name to use their ser-

vices.

62

http://localhost:8080/SAGAtoNIF/Service
http://localhost:8080/SAGAtoNIF/Service
http://localhost:8080/RestrictedToNIF/RestrictedService
http://localhost:8080/RestrictedToNIF/RestrictedService
http://demos.gsi.dit.upm.es/tomcat/SAGAtoNIF/Service
http://demos.gsi.dit.upm.es/tomcat/SAGAtoNIF/Service
http://demos.gsi.dit.upm.es/tomcat/RestrictedToNIF/RestrictedService
http://demos.gsi.dit.upm.es/tomcat/RestrictedToNIF/RestrictedService
https://portal.eurosentiment.eu

4.3. SAGA: SENTIMENT AND EMOTION ANALYSIS INTEGRATED IN GATE

sentimentAlgorithm is the runtime parameter that sets the sentiment algorithm that

the service is going to use. At the moment, you can use dictionary based algorithms.

sentimentDictionary is the runtime parameter that sets the sentiment dictionary that the

service is going to use (in case that sentimentAlgorithm has been chosen). You can use

the values AUTO (Detects language), Spanish finances Paradigma, English finances

Loughran McDonald, Emoticon, Spanish finances and Emoticon, English finances and

Emoticon.

emotionAlgorithm is a runtime parameter that sets the emotion algorithm that the ser-

vice is going to use. You can use AUTO (Detects language), onyx, ANEW2010All,

ANEW2010Men, ANEW2010Women.

SentimentPolarityName is the name of the sentiment polarity feature.

SentimentValueName is the name of the sentiment value feature.

EmotionCategoryName is the name of the emotion category feature.

EmotionValueName is the name of the emotion value feature.

Once the parameters have been configured, this processing resource will make a POST

request for each document to the sentiment or emotion analysis service that has been set.

If the set service is SEAS, it will add to the request the value of the selected service.

SEAS will receive the request from this PR and will do what has been described in

section 4.2. SEAS will return a JSON with the result of the analyzed document.

Finally, the processing resource will parse this JSON and will extract the relevant in-

formation related with the sentiment or emotion analysis:

If it is a sentiment analysis , the PR will create an annotation for the sentiment po-

larity, which can be marl:hasPolarity=marl:Negative, marl:hasPolarity=marl:Neutral

or marl:hasPolarity=marl:Positive; and then it will create other annotation for the

polarity value with the format marl:polarityValue=number.

If it is an emotion analysis , the PR will create an annotation for the emotion cate-

gory with the format onyx:hasCategory=URIemotion and then it will create other

annotation for the polarity value with the format onyx:categoryValue=number.

For example, to perform a financial sentiment analysis over an English corpus, the

parameters will be configured as depicted in Figure 4.6 and 4.7.

63

CHAPTER 4. ARCHITECTURE

Figure 4.6: Runtime parameters configuration for sentiment annotations

Figure 4.7: Runtime parameters configuration for sentiment annotations

As result, the document inside the corpus will get sentiment annotation inside paragraph

with the value marl:hasPolarity=polarity

All the process is depicted in Figure 4.8.

Figure 4.8: Sequence diagram for Sentimen And Emotiont Analysis Calling SEAS PR

64

4.4. SEAS-HADOOP: SENTIMENT AND EMOTION ANALYSIS OVER A BIG DATA
INFRASTRUCTURE

4.4 SEAS-Hadoop: Sentiment and emotion analysis over a Big

Data infrastructure

The main goal of this module is to provide a Big Data infrastructure that achieves two

things: the first one, to automatically obtain data from web sources and store them into our

system, and the second one, to process these data using, among other tools, the sentiment

and emotion analysis services provided by SEAS.

To do so, Hadoop will be used as the Big Data infrastructure that will serve as a platform

for our purposes. As it was indicated in section 2.8, Hadoop is a project developed by Apache

which aims to provide a reliable platform for scalable distributed computing using simple

programming models. With Hadoop we get two important things: a distributed file system

to store our data called HDFS (see section 2.8.1) and a distributed processing system called

MapReduce (see section 2.8.2).

The distribution of data storage and processing is achieved by Hadoop’s architecture

itself, which consists in a cluster of computers, so the storage and processing tasks are

distributed between the different nodes.

In our case, our architecture for this module consists only in one node or computer,

also known as stand-alone or single node configuration. With this, we get all the Hadoop’s

capabilities in only one computer, so this node will be at the same time the NameNode,

DataNode, Secondary NameNode, JobTracker and TaskTracker, as it was explained in sec-

tion 2.8.1.1 and 2.8.2.

With this we get all the necessary to have a reliable Big Data infrastructure oriented to

data processing, but how do we achieve our two goals: get data from the web and process

it?

4.4.1 Flume

Flume is, as it was explained in 2.9, a project developed by Apache that allows the users

to obtain data from different web sources. It works over Hadoop, so the users don’t have

to care about the distributed storing or processing of data.

First of all, Flume needs to be configured to know from which web service should obtain

data and in which way. Flume allows to configure different parameters, such as the endpoint

service, keywords to look for in the data or the maximum and minimum size of the obtained

files.

65

CHAPTER 4. ARCHITECTURE

When it is executed, the different Flume processes are distributed through the different

nodes of the user’s Hadoop configuration and start fetching data from the configured web

service. Once the data are obtained, Flume stores them in HDFS in a raw format.

This process is depicted in Figure 4.9.

Figure 4.9: Sequence diagram for Flume

When it is used with Twitter as a data source, Flume should be configured with the

following parameters:

Consumer key and consumer secret , which are provided by Twitter when a user reg-

isters an application on its developers services.

Keywords to look for inside the tweets.

Date , when the tweets were created.

HDFS path to store fetched data.

4.4.2 Pig

As it was explained in section 2.10, Pig is an engine that allows the execution of data

processing scripts over Hadoop. These scripts, also called data flows, are written in a data

processing oriented language called Pig Latin. As it happens with Flume, Pig users don’t

have to care about the distribution of storage nor the distributed processing, because these

things are handled by Hadoop.

Pig Latin scripts will be used to process the data that were retrieved and stored in HDFS

by Flume. Pig Latin offers, as a data processing language, a lot of relational operations and

functions to perform fast and reliable data processing.

66

4.4. SEAS-HADOOP: SENTIMENT AND EMOTION ANALYSIS OVER A BIG DATA
INFRASTRUCTURE

First, data will be loaded from HDFS into the scripts and without any external or third-

party functions, the scripts will filter or group data by different kinds of parameters, such

as language, location, date, number of views or responses...

Then, sentiment and/or emotion analysis will be performed over the data that are being

processed. This will be achieved thanks to UDFs that have been developed to exploit SEAS

capabilities over a Big Data infrastructure. The UDFs that will perform sentiment and/or

emotion analysis will be explained in section 4.4.2.1.

Finally, data results will be stored again in HDFS. This process is depicted in Figure

4.10.

Figure 4.10: Sequence diagram for Pig

4.4.2.1 UDFs

As it was explained in section 2.10.1, UDF stands for User Defined Functions. They can

be developed in Java or Python, and they allow the user to create its own data processing

functions and export their results into the data flow as a new parameter of the relations.

In this case, two Java UDFs have been developed to perform sentiment and emotion

analysis calling SEAS services, so these UDFs are SEAS’s clients:

SentimentAnalyzer will be called for each text that is going to be analyzed by the Pig

Latin Script. This UDF will set the corresponding NIF parameters, make a POST

67

CHAPTER 4. ARCHITECTURE

request to SEAS sentiment analysis service, receive the response in a JSON and parse

it. The analyzed text will be returned with its sentiment polarity, that can be positive,

negative or neutral, in a tuple in the format (text, polarity).

EmotionAnalyzer will be called for each text that is going to be analyzed by the Pig

Latin script. This UDF will set the corresponding NIF parameters, make a POST

request to SEAS emotion analysis service, receive the response in a JSON and parse

it. The analyzed text will be returned with its most representative emotion category,

that can be happiness, sadness, anger..., in a tuple in the format (text, category).

4.5 Conclusions

We have shown a three tiered client/server architecture, in which there are clearly different

modules: SEAS is the server, MongoDB is the database and SAGA (GATE) and SEAS-

Hadoop are the clients.

Because of the standardization that NIF offers, each module can be developed and

maintained individually, as long as developers respect NIF interfaces to communicate to

each other module.

Also, this brings interoperability to each module, so SEAS can be called and used from

other clients or SAGA and SEAS-Hadoop can call other sentiment and emotion analysis

services that follow NIF API.

All modules are available as open source projects.

• SEAS:

– https://github.com/gsi-upm/SEAS

• Eurosentiment Marl and Onyx generator:

– https://github.com/gsi-upm/eurosentiment-generator

• Onyxemote:

– http://demos.gsi.dit.upm.es/onyxemote/

• SAGA:

– https://github.com/gsi-upm/SAGA

• SEAS-Hadoop:

68

https://github.com/gsi-upm/SEAS
https://github.com/gsi-upm/eurosentiment-generator
http://demos.gsi.dit.upm.es/onyxemote/
https://github.com/gsi-upm/SAGA

4.5. CONCLUSIONS

– https://github.com/gsi-upm/SEAS/Hadoop

69

https://github.com/gsi-upm/SEAS/Hadoop

CHAPTER 4. ARCHITECTURE

70

CHAPTER5
Case study

In this chapter we are going to describe a selected use case. The running of all the

modules involved and its purpose is going to be explained. We are going to cover

all the important aspects of the system: how SEAS can be used by different clients,

the advantages of using SAGA and the possibilities provided by the use of SEAS in

Hadoop.

71

CHAPTER 5. CASE STUDY

72

5.1. INTRODUCTION

5.1 Introduction

We are going to see how to use SEAS, SAGA and Hadoop to perform different sentiment

and emotion analyses. More details will be given in the following sections.

In this scenario each module will run separately to demonstrate that they all can be

standalone applications.

SEAS could be located in any Tomcat server, but for the purpose of this case study

is going to be deployed in one of the computers in the laboratory of Grupo de Sistemas

Inteligentes. SAGA and GATE will run in my own personal computer. Hadoop and all its

associated tools will run in a computer located also in Grupo de Sistemas Inteligentes. This

is resumed in table 5.1.

Table 5.1: Execution enviroment

Component where it runs

SEAS Laboratory, GSI (demos.gsi.dit.upm.es)

GATE and SAGA Own personal computer

Hadoop Laboratory, GSI, (fano.gsi.dit.upm.es)

73

CHAPTER 5. CASE STUDY

5.2 SEAS

In this case study, we are going to see how to use SEAS in four different ways: directly

making HTTP requests, using Eurosentiment Playground, using the demo available at GSI

and performing real-time video analysis. Also, using the last one, we are going to see the

performance of all the services available inside SEAS with different texts to be analyzed.

As it was indicated in section 4.2, the purpose of this web service is to provide a set of

sentiment and emotion analysis services for text processing. These services are offered with

a REST API according to NIF, so their access, input and output formats are standardized

so SEAS can be used with others text or data processing tools in an interoperable way.

To use the services, the user has to make a POST request with the parameters described

in section 4.2.1 to indicate the text to be analyzed, the input and output format, and the

service to be used.

The result of the analysis will be returned in a JSON, which is structured using Marl

ontology for sentiment analysis or Onyx ontology for emotion analysis.

5.2.1 Call SEAS using a command line shell

POST requests can be made using curl command. For example, if we want to analyze the

sentence A lot of companies have closed in the last year, we should send a POST request to

SEAS indicating that we want to perform sentiment analysis over this text with the English

financial analyzer. This is achieved with the following command:

Listing 5.1: ”Calling SEAS from command line”

curl --data "input=A lot of companies have closed in the last year&intype=direct&

informat=text&outformat=json-ld&algo=enFinancialEmoticon" http://localhost:8080/

RestrictedToNIF/RestrictedService

As a response, we will obtain a JSON containing the result of the analysis. This JSON

contains valuable information related to the sentiment contained in the analyzed sentence.

The sentence A lot of companies have closed in the last year will be classified with a

negative polarity and a sentiment value of -1. This information can be extracted from the

JSON, in which these polarity and value are expressed using Marl ontology. The polarity

is contained in a parameter called marl:hasPolarity and the value in another one called

marl:polarityValue. Both parameters are contained in a opinion inside the JSON. See

74

5.2. SEAS

section 2.3 for more information.

The response described before is the following one:

Listing 5.2: ”Sentiment analysis result”

{

"@context": "http://demos.gsi.dit.upm.es/eurosentiment/static/context.jsonld",

"analysis": [

{

"@id": "http://www.gsi.dit.upm.es/ontologies/analysis#SAGA",

"@type": [

"marl:SentimentAnalysis"

],

"marl:maxPolarityValue": 1.0,

"marl:minPolarityValue": -1.0

}

],

"entries": [

{

"nif:isString": "A lot of companies have closed in the last year",

"opinions": [

{

"@id": "_:Opinion1",

"marl:hasPolarity": "marl:Negative",

"marl:polarityValue": -1.0,

"marl:describesObjectFeature": "Overall"

}],

"strings": [

{

"nif:anchorOf": "closed",

"nif:beginIndex": 24,

"nif:endIndex": 29,

"opinions": {

"@id": "_:Opinion",

"marl:hasPolarity": "marl:Negative",

"marl:polarityValue": -1.0

}

}

]

}

]

}

75

CHAPTER 5. CASE STUDY

5.2.2 Call SEAS using Eurosentiment playground

POST requests can be made using the Eurosentiment playground1, http://demos.gsi.

dit.upm.es/eurosentiment-playground/#services, which is a web service de-

veloped by J. Fernando Sánchez-Rada for the Eurosentiment hackathon that took place at

ETSIT, UPM. It allows the user to easily create HTTP requests to call NIF based services,

so SEAS services can be used using this web service.

The Eurosentiment playground allows the user to perform HTTP requests indicating

the following:

HTTP request to be performed. Its value can be GET, POST, PUT and DELETE.

Endpoint of the service that is going to be used.

Headers , like an API key.

Parameters that are going to be added to the HTTP request.

Send parameters as a JSON , needed in some services.

The service looks like depicted in Figure 5.1.

Figure 5.1: The Eurosentiment playground

We can make the exact same request performed in the example of section 5.2.1 using

the playground. In this case, the playground would look like depicted in Figure 5.2.

1This demonstrator has been made possible by the Eurosentiment project

76

http://demos.gsi.dit.upm.es/eurosentiment-playground/#services
http://demos.gsi.dit.upm.es/eurosentiment-playground/#services

5.2. SEAS

Figure 5.2: The Eurosentiment playground with a POST request

Then, the request can be submitted and a response like the one shown before will be

returned inside the playground.

5.2.3 Call SEAS using the demo available at GSI

SEAS services can be used directly from a demo that has been has been developed by me

and it is located at http://demos.gsi.dit.upm.es/SEAS/Controller. Its user

interface looks like depicted in Figure 5.3.

This web interface has the following elements:

A list of available services in which you can choose the sentiment or emotion analysis

service that is going to be used.

A text box to introduce the text that is going to be analyzed.

An analyze button to send the POST request to SEAS and perform the analysis.

A result box in which the analysis response is going to be shown. The color of the box

depends on the polarity of the analyzed text: red for negative, green for positive, blue

for neutral and yellow for emotion results.

77

http://demos.gsi.dit.upm.es/SEAS/Controller

CHAPTER 5. CASE STUDY

Figure 5.3: SEAS demo

Now that we know how this demo works, we are going to analyze different text with the

different services provided by SEAS that have been explained in sections 4.2.2 and 4.2.3.

To do so, we are going to select each service, introduce an appropriate input and observe

the results:

• Sentiment analysis:

– English finances dictionaries provided by Loughran and McDonald:

∗ Input: A lot of companies have closed in the last year.

∗ Result: negative polarity with a value of -1.

∗

– Spanish finances dictionaries provided by Paradigma:

∗ Input: El valor de muchas empresas sube en bolsa.

∗ Result: positive polarity with a value of 1.

∗

– Emoticon dictionaries:

∗ Input: I do not feel anything :—

∗ Result: neutral polarity with a value of 0.

∗

78

5.2. SEAS

– English finances and emoticon dictionaries:

∗ Input: My company is in recession, but I stay positive. :)

∗ Result: positive polarity with a value of 0.33.

∗

– Spanish finances and emoticon dictionaries:

∗ Input: El valor de mi empresa unas veces sube y otras cae. :(

∗ Result: negative polarity with a value of -0.33.

∗

• Emotion analysis:

– Onyxemote service:

∗ Input: I feel afraid of what is going to happen to us.

∗ Result:

1. Fear:

·

2. Anger:

·

3. Happiness:

·

5.2.4 Call SEAS to analyze videos in real-time

This is a service developed by Ronald Gil, who is a student in Massachusetts Institute of

Technology at this moment, during his stay at Group on Intelligent Systems (GSI).

This project, https://github.com/gsi-upm/video-sentiment-analysis, con-

sist on a real-time video analyzer that uses SEAS API to perform sentiment analysis over

a video in real-time.

First, the service allow us to do the following things, as we can see in Figure 5.4:

1. Select the video that we want to analyze from YouTube.

2. Select the sentiment analysis service that we want to use.

79

https://github.com/gsi-upm/video-sentiment-analysis

CHAPTER 5. CASE STUDY

Figure 5.4: Real-time video sentiment analyzer options

3. Submit our request.

Then, the video will be analyzed in real time as depicted in Figure 5.5.

This is possible because the service parses the audio of the video, sends each sentence to

SEAS in order to analyze it and shows the evolution of the sentiment polarity in a graphic

below the video.

80

5.3. SAGA

Figure 5.5: Real-time video sentiment analyzer performance

5.3 SAGA

In this case study, we are going to present a corpus, we are going to show how to perform

sentiment and emotion analysis over it using SAGA’s processing resources, then we are

going to validate this analysis and finally we are going to repeat the process with each

service available at SEAS.

As it was indicated in section 4.3, SAGA is a set of processing and linguistic resources,

written in Java, developed to run sentiment and emotion analysis over text using GATE

platform and it is distributed as a plugin. The main purpose of SAGA is to provide a SEAS’s

client that can be used from GATE, so it can perform sentiment and emotion analysis by

calling SEAS or other similar NIF’s services such as the available at Eurosentiment Portal,

http://portal.eurosentiment.eu

As we have said in section 2.7, GATE is a platform developed by The University of

81

http://portal.eurosentiment.eu

CHAPTER 5. CASE STUDY

Sheffield that brings a lot of capabilities to perform processing tasks over text. It offers

a lot of different plugins and processing resources, some of them developed by them and

others developed by third-parties, to perform text analysis over big sets of documents.

5.3.1 Corpus

The selected corpus is composed by a total of 165 financial texts that have been studied in

an article titled ”Extracting Investor Sentiment from Weblog Texts: A Knowledge-based

Approach”[18]. The corpus is divided in two folders:

pos contains 63 positive text documents.

neg contains 102 negative text documents.

We load each folder inside GATE, creating one corpus for the positive documents and

other corpus for the negative ones. To do so, take a look at Appendix B. Once the corpuses

have been loaded, they look like depicted in Figure 5.6.

If we look at each document that has been loaded inside each corpus, we can see that

each one of them has an annotation type named paragraph (Figure 5.7). Also, we can see

that there is only one paragraph annotation and it has empty features. There is where the

sentiment or emotion annotation is going to be.

5.3.2 Finance sentiment analysis calling SEAS

To perform sentiment analysis over the loaded corpuses, we are going to create a new GATE

application or pipeline with the following processing resource:

Sentiment and emotion analysis calling SEAS is a processing resources provided by

SAGA. It allows us to perform the sentiment and emotion analyses provided by SEAS.

It is the processing resource that we are going to use to analyze each document inside

the corpus. In this case, we are going to perform an English finance analysis. The

result analysis annotation will be created inside the original paragraph annotation. In

order to do that, this processing resource is configured with the runtime parameters

depicted in Figure 5.8 and 5.9.

As we can see, emotion analysis is set as false and sentiment analysis is set as true. Now,

the user runs the application over the corpus.

82

5.3. SAGA

Figure 5.6: Sample of documents inside a GATE corpus

When the app is run, this processing resource will make a POST request to the selected

SEAS service for each document. The service will take each POST request, will perform

the analysis, will send the intermediate results to Eurosentiment Marl Generator and it will

return a JSON in Marl format with the analyzed document. For the negative document

used as a sample in this case study, the generated JSON will look like this:

Listing 5.3: ”Example of negative document in json and Marl”

{

"@context": "http://demos.gsi.dit.upm.es/eurosentiment/static/context.jsonld",

"analysis": [

{

"@id": "http://www.gsi.dit.upm.es/ontologies/analysis#SAGA",

"@type": [

"marl:SentimentAnalysis"

],

83

CHAPTER 5. CASE STUDY

Figure 5.7: Sample of a document loaded in GATE

Figure 5.8: Sample of Sentiment and emotion analysis calling SEAS PR configuration

"marl:maxPolarityValue": 1.0,

"marl:minPolarityValue": -1.0

}

],

"entries": [

{

"nif:isString": " Article Number: 0976

Period: 3

84

5.3. SAGA

Figure 5.9: Sample of Sentiment and emotion analysis calling SEAS PR configuration

URL: http://www.wallstreetgreek.blogspot.com/2009/12/phi-turn-analysis-exposes-turn-date

.html

DATE: 2009-12-02

Author: unknown.

Title.: phi-turn analysis exposes turn date

Phi-Turn Analysis Exposes Turn Date

To Every Season Turn, Turn...

Visit the front page of Wall Street Greek to see our current coverage of Wall Street,

economic reports and global financial markets.

(Tickers: NYSE: PIZ, PIE, PDP, DIA, SPY, NYX, DOG, SDS, QLD, IWM, TWM, IWD, SDK, ICE,

Nasdaq: QQQQ, HTOAX, HTOTX, HTOBX, JTCIX, JTCNX, JTCAX, DIA, SPY, QQQQ, NYX, DOG,

SDS, QLD)

To Every Season, Turn, Turn Turn! The Byrds, and before them Solomon, warned that all

seasons come to an end. While the short-term forecast continues to allow for a rise

into market highs through the close today, it is likely that the bear market rally

will yield to a change in season. December 2nd marks a potentially significant

turning point as defined by a so-called \"Phi-Turn Date.\"

Phi-Turn Analysis Exposes Turn Date

Phi-Turn Analysis is just one method of identifying market inflection points. These

methods range from examination of lunar cycles, to other astrological events and

onto more believable analysis of cyclic content in the market indices. Phi Turn

Analysis was conceived by Dr. Robert McHugh, and relies on Fibonacci ratios to

establish market turning points. The basis for the calculation begins with the

significant top established in 2000.

Throughout 2008, the calculated Phi Turn dates have fallen quite remarkably on

significant tops and bottoms in the market. While not every date marks the onset of

a multi-month reversal, almost no reversal has happened on a day that has not

matched the Phi Turn calculation result.

NOTE: This article is an amendment to the most recent \" S&P 500 Index Winter Forecast

.\" Through the description of Phi Turn Analysis, this completes the series on the

search for bear market rally top. We realized Turn Analysis had not been addressed

in the article series.

Article may interest investors in NYSE: PIZ, NYSE: PIE, NYSE: PDP, NYSE: DIA, NYSE: SPY,

NYSE: NYX, NYSE: DOG, NYSE: SDS, NYSE: QLD, NYSE: IWM, NYSE: TWM, NYSE: IWD, NYSE:

85

CHAPTER 5. CASE STUDY

SDK, NYSE: ICE, Nasdaq: QQQQ, Nasdaq: HTOAX, Nasdaq: HTOTX, Nasdaq: HTOBX, Nasdaq:

JTCIX, Nasdaq: JTCNX, Nasdaq: JTCAX. Please see our disclosures at the Wall Street

Greek website and author bio pages found there. This article and website in no way

offers or represents financial or investment advice. Information is provided for

entertainment purposes only.

posted by Greek | 10:42 AM

",

"opinions": [

{

"@id": "_:Opinion1",

"marl:hasPolarity": "marl:Negative",

"marl:polarityValue": -1.0,

"marl:describesObjectFeature": "Overall"

}],

"strings": [

{

"nif:anchorOf": "exposes",

"nif:beginIndex": 220,

"nif:endIndex": 226,

"opinions": {

"@id": "_:Opinion",

"marl:hasPolarity": "marl:Negative",

"marl:polarityValue": -1.0

}

} ,

{

"nif:anchorOf": "Exposes",

"nif:beginIndex": 264,

"nif:endIndex": 270,

"opinions": {

"@id": "_:Opinion",

"marl:hasPolarity": "marl:Negative",

"marl:polarityValue": -1.0

}

} ,

{

"nif:anchorOf": "warned",

"nif:beginIndex": 709,

"nif:endIndex": 714,

"opinions": {

"@id": "_:Opinion",

"marl:hasPolarity": "marl:Negative",

"marl:polarityValue": -1.0

}

} ,

{

"nif:anchorOf": "Exposes",

"nif:beginIndex": 1049,

"nif:endIndex": 1055,

"opinions": {

"@id": "_:Opinion",

86

5.3. SAGA

"marl:hasPolarity": "marl:Negative",

"marl:polarityValue": -1.0

}

}

]

}

]

}

With this result, the processing resource parses the JSON in order to extract the relevant

sentiment information and adds the sentiment annotation to the document. As depicted in

Figure 5.10, it takes the polarity of the document that is inside the JSON attribute called

marl:hasPolarity and the value of this polarity called marl:polarityValue.

Figure 5.10: Example of an analyzed negative document

5.3.2.1 Validation of the sentiment analysis

Now that we have analyzed the corpus, we can measure how good the English financial

sentiment analysis provided by SEAS is. To do so, we are going to use the classified corpus

to compare the correct classification with the one that SEAS has performed.

But having the documents classified by its actual polarity in different corpus is not

enough. We will classify the documents using the same type of annotations that SAGA

processing resources have created.

We are going to copy the annotations to have two of them: one paragraph annotation

is going to be the actual sentiment polarity of the text and the other paragraph annotation

87

CHAPTER 5. CASE STUDY

is going to be the sentiment polarity returned by the analysis service.

To do so, we create a new GATE application or pipeline with two processing resources

that are going to be executed over the corpus in the following order:

Annotation set transfer is a processing resources provided by Tools plugin. It allows us

to make copies of Annotation Types. It is the processing resource that we are going

to use to copy the paragraph annotation to have two of them. In order to do that,

this processing resource is configured with the runtime parameters depicted in Figure

5.11.

Figure 5.11: Sample of Annotation Set Transfer PR configuration

Predefined Sentiment Annotation is a processing resources provided by SAGA. It

allows us to create the same predefined annotation over an entire corpus. It is the

processing resource that we are going to use to annotate every document inside the

negative corpus as negative, and every document inside the positive corpus as positive.

The annotation will be created inside the copied paragraph annotation. In order to

do that, this processing resource is configured with the runtime parameters depicted

in Figure 5.12.

When both processing resources are configured, the application is executed over each

corpus (positive and negative) and each document is annotated as be can see in Figure

??. As a result, each document will have two paragraph annotations, one with its actual

sentiment polarity in Marl format, an the other one with the one provided by SEAS.

88

5.3. SAGA

Figure 5.12: Sample of Predefined Sentiment Annotation PR configuration

Figure 5.13: Example of an analyzed negative document and its real polarity

Now that all the documents have been analyzed, we can make use of a GATE tool

called Corpus QA, which allows us to see how accurate the service was according to the real

polarity of the documents. In the case of the negative ones, as we can see in Figure 5.14,

78 out of 102 documents are classified as negative, 2 as neutral and 8 as positive. That

validates the service with an accuracy of 76.47% and a F-score of 0.901, which is pretty

good for a dictionary based sentiment analyzer.

89

CHAPTER 5. CASE STUDY

Figure 5.14: Negative corpus Quality Assurance

5.3.3 Other sentiment analysis services calling SEAS

As it was explained in section 4.2.2, there are different sentiment analysis services that can

be called using SEAS. All of them can we called using the SAGA’s processing resource used

in section 5.3.2.

To do so, only a few runtime parameters should be configured:

sentimentAlgorithm set to Dictionary.

sentimentAnalysis set to true.

sentimentDictionary set to one of the services listed in Figure 5.15.

sentimentServiceURL set to one of the SEAS’s endpoints described in section 4.2.1.

The results provided by the use of these different algorithms will be analogue to the one

achieved in section 5.3.2.

90

5.3. SAGA

Figure 5.15: List of sentiment analysis services

5.3.4 Emotion analysis calling Onyxemote

Now, we are going to perform emotion analysis over an example document that contains

the following three sentences:

1. I am so happy for you!

2. My best friend is scared of spiders.

3. Thanks for this enormous surprise party!

To do so, we are going to reconfigure the following processing resource:

Sentiment and emotion analysis calling SEAS is a processing resources provided by

SAGA. It allows us to perform the sentiment and emotion analyses provided by

SEAS. It is the processing resource that we are going to use to anayze each document

inside the corpus. In this case, we are going to perform an emotion analysis. The

result analysis annotation will be created inside the original paragraph annotation. In

order to do that, this processing resource is configured with the runtime parameters

depicted in Figure 5.16 and 5.17.

As we can see, emotion analysis is set as true and sentiment analysis is set as false.

When the app is run, this processing resource will make a GET request to Onyxemote

service for each sentence. The service will take each GET request, will perform the analysis

and it will return a JSON in Onyx format with the analyzed document.

The results returned from Onyxemote will be the following:

1. I am so happy for you!

• Emotion category: happiness.

• Value: 0.75.

91

CHAPTER 5. CASE STUDY

Figure 5.16: Sample of Sentiment and emotion analysis calling SEAS PR configuration

Figure 5.17: Sample of Sentiment and emotion analysis calling SEAS PR configuration

2. My best friend is scared of spiders.

• Emotion category: fear.

• Value: 0.5.

3. Thanks for this enormous surprise party!

• Emotion category: surprise.

• Value: 0.75.

These results can be seen as depicted in Figure 5.18. To produce them, the processing

resource takes the emotion category of the document that is inside the JSON attribute called

onyx:hasEmotionCategory and the value of this category called onyx:hasEmotionIntensity.

92

5.3. SAGA

Figure 5.18: Sample of an analyzed emotion document

5.3.5 Sentiment analysis calling Eurosentiment services

As we have explained in section 4.3.1.2, the processing resource called Sentiment and Emo-

tion analysis calling SEAS can be used to call other NIF based services that perform senti-

ment and emotion analysis and return their results using Marl and Onyx ontologies.

The Eurosentiment portal, https://portal.eurosentiment.eu/service/list#,

offers different services to perform sentiment and emotion analysis as we can see in Figure

5.19.

Figure 5.19: Eurosentiment services

Right now, the available services to perform this kind of analysis are:

• Sentiment and Emotion analysis service developed by Expert System.

• Wordnet Affect based emotion analysis developed by Paradigma Tecnologico.

• Sentiment and emotion (Wordnet Affect based) analysis developed by Paradigma

Tecnologico.

93

https://portal.eurosentiment.eu/service/list#

CHAPTER 5. CASE STUDY

So, if we want to perform sentiment analysis over an example document that contains

the following sentence using the service provided by Expert System:

1. The iPad is a fantastic device.

We are going to configure the processing resource called Sentiment and emotion analysis

calling SEAS as depicted in Figures 5.20 and 5.21.

Figure 5.20: Runtime Eurosentiment parameters 1

Figure 5.21: Runtime Eurosentiment parameters 2

As we can see, emotion analysis is set as false and sentiment analysis is set as true.

When the app is run, this processing resource will make a POST request to Sentiment

and Emotion analysis service developed by Expert System, it will perform the analysis and

it will return a JSON in Marl format with the analyzed document.

94

5.4. HADOOP FOR FINANCIAL ANALYSIS

The result returned from this service will be the following:

1. The iPad is a fantastic device.

• Sentiment polarity: neutral.

• Value: 50.

5.4 Hadoop for financial analysis

Now we are going to see how Hadoop can be used to perform sentiment and emotion analysis

over tweets extracted from the social network called Twitter. To do so: we are going to

show how to use Flume to obtain these tweets and then we are going to use Pig Latin and

UDFs to process them.

5.4.1 Using Flume to obtain data from Twitter

We are going to configure Flume to retrieve financial data using Twitter as the source of

these data.

First, the user needs a developer Twitter account and to register a new application in

Twitter’s website. When the app registration is done, Twitter will provide the user with

four tokens that should be put inside Flume configuration.

Then, the user should set Twitter as a data source, the date when the data that wants

to retrieve were written and the keywords that the data should contain. In this case, we

want to obtain financial information, so these keywords would be finance related, like for

example, names of banks.

Finally, the user should set the path to the HDFS location where these retrieved data

are going to be stored.

This process described before, it is done by the configuration of flume.conf file inside

the Flume installation:

Listing 5.4: ”Example of Flume configuration”

TwitterAgent.sources = Twitter

TwitterAgent.channels = MemChannel

TwitterAgent.sinks = HDFS

95

CHAPTER 5. CASE STUDY

TwitterAgent.sources.Twitter.type = com.cloudera.flume.source.

TwitterSource

TwitterAgent.sources.Twitter.channels = MemChannel

TwitterAgent.sources.Twitter.consumerKey = consumerKey

TwitterAgent.sources.Twitter.consumerSecret = consumerSecret

TwitterAgent.sources.Twitter.accessToken = accessToken

TwitterAgent.sources.Twitter.accessTokenSecret =

accessTokenSecret

TwitterAgent.sources.Twitter.keywords = Finance related

keywords go here

TwitterAgent.sources.Twitter.keywords.created_at = Creation

date goes here

TwitterAgent.sinks.HDFS.channel = MemChannel

TwitterAgent.sinks.HDFS.type = hdfs

TwitterAgent.sinks.HDFS.hdfs.path = hdfs://localhost:54310/path

/to/your/hdfs/folder

TwitterAgent.sinks.HDFS.hdfs.fileType = DataStream

TwitterAgent.sinks.HDFS.hdfs.writeFormat = Text

TwitterAgent.sinks.HDFS.hdfs.batchSize = 1000

TwitterAgent.sinks.HDFS.hdfs.rollSize = 0

TwitterAgent.sinks.HDFS.hdfs.rollCount = 10000

TwitterAgent.channels.MemChannel.type = memory

TwitterAgent.channels.MemChannel.capacity = 10000

TwitterAgent.channels.MemChannel.transactionCapacity = 100

Once Flume has been configured, we run it with the following command using the bash

console:

Listing 5.5: ”Running Flume”

bin/flume-ng agent --conf ./conf/ -f conf/flume.conf -Dflume.root.logger=DEBUG,console -

n TwitterAgent

With this, Flume starts retrieving data from Twitter using the configuration set by the

96

5.4. HADOOP FOR FINANCIAL ANALYSIS

user. Flume stores these data in HDFS, while it keeps retrieving data at the same time.

These data are stored in a raw format, because Flume can retrieve data from many sources

with different data formats.

The user can execute Hadoop commands to see that data are correctly stored in the

configured HDFS path:

Listing 5.6: ”HDFS storing”

hadoop fs -ls /user/david/data/input/finances/banks

Found 13 items

-rw-r--r-- 1 david supergroup 40180 2014-07-31 15:56 /user/david/data/input/

finances/banks/FlumeData.1406814972678

-rw-r--r-- 1 david supergroup 18331 2014-07-31 15:56 /user/david/data/input/

finances/banks/FlumeData.1406814972679

-rw-r--r-- 1 david supergroup 26213 2014-07-31 15:57 /user/david/data/input/

finances/banks/FlumeData.1406814972680

-rw-r--r-- 1 david supergroup 35862 2014-07-31 15:57 /user/david/data/input/

finances/banks/FlumeData.1406814972681

-rw-r--r-- 1 david supergroup 41479 2014-07-31 15:58 /user/david/data/input/

finances/banks/FlumeData.1406814972682

-rw-r--r-- 1 david supergroup 40859 2014-07-31 15:59 /user/david/data/input/

finances/banks/FlumeData.1406814972683

-rw-r--r-- 1 david supergroup 41481 2014-07-31 15:59 /user/david/data/input/

finances/banks/FlumeData.1406814972684

-rw-r--r-- 1 david supergroup 28105 2014-07-31 16:00 /user/david/data/input/

finances/banks/FlumeData.1406814972685

-rw-r--r-- 1 david supergroup 37879 2014-07-31 16:00 /user/david/data/input/

finances/banks/FlumeData.1406814972686

-rw-r--r-- 1 david supergroup 50743 2014-07-31 16:01 /user/david/data/input/

finances/banks/FlumeData.1406814972687

-rw-r--r-- 1 david supergroup 15831 2014-07-31 16:01 /user/david/data/input/

finances/banks/FlumeData.1406814972688

-rw-r--r-- 1 david supergroup 13233 2014-07-31 16:02 /user/david/data/input/

finances/banks/FlumeData.1406814972689

When the user thinks that there are enough data to be analyzed, Flume is stopped.

5.4.2 Data processing and sentiment analysis using Pig

Now that we have enough data to analyze, we are going to see how to analyze them using

a Pig script.

First, data should be loaded. Twitter data have JSON format, so a special data Loader

is needed to do this task. As it was explained in section 2.10.2, we will use the JSON loader

97

CHAPTER 5. CASE STUDY

provided by Elephant Bird project. To do so, we will register Elephant Bird’s UDFs to be

used inside the script and we will use them to load the tweets from HDFS.

Then, for each tweet, we get the content of the tweet (the text), and the language in

which is written. With this information, we filter the tweets by their language, choosing

English.

Finally, the user analyzes each tweet using an UDF that calls SEAS and perform senti-

ment analysis over a finance domain.

All this can be done automatically by using the following script:

Listing 5.7: ”Example of Pig script for sentiment analysis”

-- Register the needed jars

REGISTER UDFs/seasudfs.jar;

REGISTER lib/json-simple-1.1.1.jar;

REGISTER lib/elephant-bird/pig/target/elephant-bird-pig-4.6-SNAPSHOT.jar;

REGISTER lib/elephant-bird/core/target/elephant-bird-core-4.6-SNAPSHOT.jar;

REGISTER lib/elephant-bird/hadoop-compat/target/elephant-bird-hadoop-compat-4.6-SNAPSHOT

.jar;

-- Load finance tweets from HDFS in json format

A = LOAD ’/user/david/data/input/finances/banks/FlumeData.1406814972681’ USING com.

twitter.elephantbird.pig.load.JsonLoader(’-nestedLoad’) as (json:map[]);

-- For each tweet we use the text and the language

B = FOREACH A GENERATE json#’text’ AS text, json#’lang’ AS lang;

-- We keep those which are in english and limit to 10 tweets for testing.

C = FILTER B BY lang == ’en’;

C = LIMIT C 10;

D = FOREACH C GENERATE text, es.upm.dit.gsi.udfs.EnglishSentimentAnalyzer(text) as

polarity;

DUMP D;

When this script is executed in MapReduce mode, the following output is obtained, in

which we can see that it only uses one minute to process all tweets and this is possible only

using one node:

Listing 5.8: ”Sentiment analysis output”

pig script.pig

.

.

.

98

5.4. HADOOP FOR FINANCIAL ANALYSIS

2014-07-31 16:10:52,755 [main] INFO org.apache.pig.backend.hadoop.executionengine.

mapReduceLayer.MapReduceLauncher - 0% complete

2014-07-31 16:10:56,265 [main] INFO org.apache.pig.backend.hadoop.executionengine.

mapReduceLayer.MapReduceLauncher - 25% complete

2014-07-31 16:11:03,785 [main] INFO org.apache.pig.backend.hadoop.executionengine.

mapReduceLayer.MapReduceLauncher - 33% complete

2014-07-31 16:11:04,788 [main] INFO org.apache.pig.backend.hadoop.executionengine.

mapReduceLayer.MapReduceLauncher - 50% complete

.

.

2014-07-31 16:11:15,695 [main] INFO org.apache.pig.backend.hadoop.executionengine.

mapReduceLayer.MapReduceLauncher - 75% complete

2014-07-31 16:11:23,213 [main] INFO org.apache.pig.backend.hadoop.executionengine.

mapReduceLayer.MapReduceLauncher - 83% complete

2014-07-31 16:11:32,744 [main] INFO org.apache.pig.backend.hadoop.executionengine.

mapReduceLayer.MapReduceLauncher - 100% complete

2014-07-31 16:11:32,791 [main] INFO org.apache.pig.tools.pigstats.SimplePigStats -

Script Statistics:

HadoopVersion PigVersion UserId StartedAt FinishedAt Features

1.2.1 0.12.0 david 2014-07-31 16:10:47 2014-07-31 16:11:32 FILTER,LIMIT

Success!

Job Stats (time in seconds):

JobId Maps Reduces MaxMapTime MinMapTIme AvgMapTime MedianMapTime MaxReduceTime

MinReduceTime AvgReduceTime MedianReducetime Alias Feature Outputs

job_201407301343_0007 1 1 1 1 1 1 8 8 8 8 A,B,C

job_201407301343_0008 1 1 1 1 1 1 12 12 12 12 D hdfs://localhost:54310/tmp/temp

-1595047072/tmp314896637,

Input(s):

Successfully read 9 records (40582 bytes) from: "/user/david/data/input/finances/banks/

FlumeData.1406814972678"

Output(s):

Successfully stored 5 records (625 bytes) in: "hdfs://localhost:54310/tmp/temp

-1595047072/tmp314896637"

Counters:

Total records written : 5

Total bytes written : 625

Spillable Memory Manager spill count : 0

Total bags proactively spilled: 0

Total records proactively spilled: 0

Job DAG:

job_201407301343_0007 -> job_201407301343_0008,

job_201407301343_0008

2014-07-31 16:11:32,803 [main] INFO org.apache.pig.backend.hadoop.executionengine.

99

CHAPTER 5. CASE STUDY

mapReduceLayer.MapReduceLauncher - Success!

2014-07-31 16:11:32,806 [main] INFO org.apache.pig.data.SchemaTupleBackend - Key [pig.

schematuple] was not set... will not generate code.

2014-07-31 16:11:32,808 [main] INFO org.apache.hadoop.mapreduce.lib.input.

FileInputFormat - Total input paths to process : 1

2014-07-31 16:11:32,808 [main] INFO org.apache.pig.backend.hadoop.executionengine.util.

MapRedUtil - Total input paths to process : 1

(tweet1,marl:Neutral)

(tweet2,marl:Negative)

(tweet3,marl:Positive)

(tweet4,marl:Negative)

(tweet5,marl:Negative)

With this, new tuples are generated containing the tweets and its sentiment polarity. In

this case, all the tweets have been correctly classified with their corresponding sentiment

polarity. This proves how useful is the validation process provided by the GATE user, which

brings an accurate sentiment service to the Hadoop user.

These tuples can be stored in HDFS as well.

5.4.2.1 Hadoop vs GATE

Let’s make a comparison between the time that takes to process 100 tweets using SAGA

and SEAS-Hadoop.

To do so, we are going to use the same corpus. In this case, the corpus will be composed

by the same tweet which is repeated 100 times. We use the same tweet because we want to

see the time that takes to analyze 100 tweets, not the quality of these analysis. The chosen

tweet will be the following:

1. I missed the World Cup.

With this, we obtain the following execution times:

As we can see, Hadoop brings us a faster platform to perform text analysis because of

its distributed processing nature.

100

5.5. CONCLUSIONS

Table 5.2: Execution times in GATE and Hadoop

Context Time

GATE and SAGA 165 seconds

Hadoop and SEAS-Hadoop 62 seconds

5.5 Conclusions

As we can see, SEAS brings us a reliable and accurate sentiment and emotion analysis

service that can be used in multiple tools and platforms, because it is standardized and

interoperable. Users can chose wherever they want to use SEAS with their text processing

tools.

SAGA is a plugin for GATE full of possibilities. It can be used normally to perform

sentiment or emotion analysis over corpus of documents using SEAS or other sentiment and

emotion analysis services which are based in NIF. Also, and because of all the capabilities

that GATE and its plugins offer us, it can be used to validate analysis services if the user

has a correctly classified corpus.

Hadoop is a fast, reliable and highly configurable Big Data platform and there are a lot

of projects that work over Hadoop. Flume can be used to obtain data from different web

sources and it is so easy to set it to use Twitter as a source. Pig Latin is an easy and fast

data processing language that allows user to perform any kind of data processing and to

use their own functions by using UDFs.

In data processing, time is a very valuable resource, so it is important to use good

analysis services. As we have seen in this case study, SEAS-Hadoop is faster than SAGA

in the same tasks.

101

CHAPTER 5. CASE STUDY

102

CHAPTER6
Conclusions and future lines

In this chapter we will describe the conclusions extracted from this master thesis, the

achievements and future work.

103

CHAPTER 6. CONCLUSIONS AND FUTURE LINES

104

6.1. CONCLUSIONS

6.1 Conclusions

We have achieved all the goals proposed in this master thesis, as we have listed in section

6.2.

By using NIF, we have standardized sentiment and emotion analysis services, so they

can be used in different analysis tools knowing how their input and output formats are

going to be.

Also, the use of semantic ontologies such as Marl and Onyx have helped us to standardize

sentiment and emotion resources, like the results provided by SEAS.

As a consequence, any SEAS client can be used with any other sentiment and emotion

analysis service that uses NIF, Marl and Onyx, such as the ones provided in the Eurosen-

timent Portal.

With the use of GATE, we have extended SEAS capabilities to a text analysis software

that has a lot of tools and plugins that complement the analysis provided by SEAS.

We have integrated SEAS with a Big Data platform as Hadoop. In this context, we

have created an environment in which we can directly obtain data from web sources and

analyze them.

Also, we have understood what distributed storing and processing in Big Data platforms

is about.

6.2 Achieved goals

Sentiment and emotion analysis services We have been able to offer a service, SEAS,

that provides several sentiment and emotion analysis services that the user will need.

It consist in a REST API that allows users to perform these analyses using HTTP

request.This is deeply described in section 4.2.

Standardization and interoperability provided by NIF. The way of accessing the re-

sources provided by SEAS are standardized as it is defined by NIF’s access layer, as

defined in section 2.6. With this standardization we achieve one of the main goals

of this master thesis, which is to provide a interoperable service so it can be easily

combined with others text processing services and tools. This is detailed in chapter

4.2.1

105

CHAPTER 6. CONCLUSIONS AND FUTURE LINES

Standardized analysis results by using semantic technologies. Sentiment results will

contain all the information related with the text analyzed, its polarity and its value

expressed using Marl Ontology. More information can be consulted in section 4.2.2.

Emotion results will contain all the information related with the text analyzed, its

categories and its values expressed using Onyx Ontology. More information can be

consulted in section 4.2.3.

Modular structures achieved by the standards used. Each module described in this

master thesis can be used in other systems that use NIF as a standard and Marl and

Onyx ontologies to express sentiment and emotion resources.

GATE integration With SAGA we have achieved to integrate SEAS with GATE. SAGA

provides a SEAS’s client that can be used from GATE, so it can perform sentiment

and emotion analysis by calling SEAS or other similar NIF’s services. With this,

SEAS services can be combined with other analysis tools. This is described in section

4.3.

Service validation Thanks to the capabilities provided by GATE, SAGA can be also used

to validate how good an analysis service is. This is achieved with the GATE built-in

function called Corpus Quality Assurance. To see detailed information see section

5.3.2.1.

Big Data We have achieved to create a Big Data infrastructure in which we cover all

the steps in data processing: obtain, store, load, process and visualize data. To see

detailed information see section 4.4

6.3 Future work

There are several lines than can be followed to continue and extend features of this work.

In the following points some fields of study or improvement are presented to continue

the development.

• Dictionary based algorithms have an accuracy over 75%, but more complex algorithms

could be used in order to improve accuracy.

• Machine learning algorithms could be added in order to have a different approach to

sentiment and emotion analysis.

106

6.3. FUTURE WORK

• More third-party services could be added by making NIF wrappers, so their inputs

and outputs are adapted to NIF, Marl and Onyx.

• When making requests to SEAS, let the user choose other NIF parameters values that

the ones that are currently allowed.

• Improve the processing resources inside SAGA. Offer a list of available NIF sentiment

and emotion analysis services that are compatible with this processing resource.

• Allow the GATE user to make a bigger configuration over the HTTP requests that

the processing resource does.

• Adding more nodes to Hadoop instead of having a single node configuration.

• Use Flume to obtain data for other sources and integrate all the data obtained in the

same format.

• Developing more Pig scripts depending on the nature of the data and their use.

• Improving the UDFs to make them configurable during the execution.

107

CHAPTER 6. CONCLUSIONS AND FUTURE LINES

108

APPENDIXA
Installing and configuring SEAS

This tutorial goes through the process of installing and configuring SEAS to deploy it as a

web service. SEAS’s code is available at https://github.com/gsi-upm/SEAS

A.1 Installation

A.1.1 Requirements

• Java 7

– Download - https://www.java.com/en/download/

• Eclipse JEE

– Download1

• Apache Tomcat 7

– Download - http://tomcat.apache.org/download-70.cgi

1https://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/

keplersr2

109

https://github.com/gsi-upm/SEAS
https://www.java.com/en/download/
http://tomcat.apache.org/download-70.cgi
https://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/keplersr2
https://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/keplersr2

APPENDIX A. INSTALLING AND CONFIGURING SEAS

– Setup - http://tomcat.apache.org/tomcat-7.0-doc/setup.html

• MongoBD

– Download - http://www.mongodb.org/downloads

– Setup - http://docs.mongodb.org/manual/

– JAR2

A.1.2 Installation steps

• Setup Tomcat in Eclipse:

– In Eclipse go to Preferences → Server → RunTime Enviroments → Add →
Apache → Apache Tomcat 7.0 → Select path to Tomcat installation → Finish.

• Set up CretateMongoBD project

– Import the project into Eclipse.

– Add the downloaded mongo.jar to the project’s library.

– Go to http://csea.phhp.ufl.edu/media/anewmessage.html and make

a request for Affective Norms for English Words so they provide you with the

dictionaries, which are only abaliable for accademic purposes.

– Configure the project with your MongoBD and with the path to the dictionaries.

– Execute the project As a Java Application to parse ANEW into your MongoBD.

• Set up RestrictedToNIF project

– Import the project into Eclipse.

– Add Tomcat Libraries into the project.

– Configure your MongoDB installation in the code.

– Go to http://www3.nd.edu/%7Emcdonald/Word_Lists.html to get these

financial dictionaries, which are not abaliable for commercial use without autho-

rization.

– Put these dictionaries in GATE format. (See the dictionary format (https://

github.com/gsi-upm/SEAS/tree/master/SAGAtoNIF/src/resources/

gazetteer/finances/spanish/paradigma) used in SAGAtoNIF as an ex-

ample of how to do it)

2http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-java-driver/

110

http://tomcat.apache.org/tomcat-7.0-doc/setup.html
http://www.mongodb.org/downloads
http://docs.mongodb.org/manual/
http://csea.phhp.ufl.edu/media/anewmessage.html
http://www3.nd.edu/%7Emcdonald/Word_Lists.html
https://github.com/gsi-upm/SEAS/tree/master/SAGAtoNIF/src/resources/gazetteer/finances/spanish/paradigma
https://github.com/gsi-upm/SEAS/tree/master/SAGAtoNIF/src/resources/gazetteer/finances/spanish/paradigma
https://github.com/gsi-upm/SEAS/tree/master/SAGAtoNIF/src/resources/gazetteer/finances/spanish/paradigma
http://docs.mongodb.org/ecosystem/tutorial/getting-started-with-java-driver/

A.2. USER MANUAL

– Run As Server.

• Set up SAGAToNIF project

– Import the project into Eclipse.

– Add Tomcat Libraries into the project.

– Run As Server.

• Set up SEAS project

– Import the project into Eclipse.

– Add Tomcat Libraries into the project.

– Run As Server.

This will deploy SEAS project in your local Tomcat Server, so you can use it as a web

service.

A.2 User manual

SEAS is a set of Sentiment and Emotion Analysis Services based on a REST API. To use

it, the user has to make POST requests to the service. These requests should contain the

following parameters:

input is the text that is going to be analyzed and it should be a plain text.

informat is the format of the input, which value should be text.

intype value should be direct, which means that the text is provided as plain text inside

the request.

outformat value indicates the output format, which should be JSON-LD.

algo value is used to indicate the sentiment or emotion analysis algorithm to be used. The

value can be: spFinancial, emoticon, spFinancialEmoticon, enFinancial, enFinan-

cialEmoticon, ANEW2010All, ANEW2010Men, ANEW2010Women, onyx.

The requests have to be made to the following URLs:

• http://localhost:8080/SAGAtoNIF/Service

111

http://localhost:8080/SAGAtoNIF/Service

APPENDIX A. INSTALLING AND CONFIGURING SEAS

– The user should call this URL to use the following algorithms: spFinancial,

emoticon, spFinancialEmoticon

• http://localhost:8080/RestrictedToNIF/RestrictedService

– The user should call this URL to use the following algorithms: enFinancial, enFi-

nancialEmoticon, ANEW2010All, ANEW2010Men, ANEW2010Women, onyx

A.2.1 Command line interface

The command line interface can be used in a command shell window. On GNU/Linux, you

can test the API using curl. A request would look like this:

curl --data "input=The text you want to analyze&intype=direct&informat=text&outformat=

json-ld&algo=spFinancialEmoticon" http://localhost:8080/SAGAtoNIF/Service

An example would look like this:

curl --data "input=I feel :)&intype=direct&informat=text&outformat=json-ld&algo=

emoticon" http://localhost:8080/SAGAtoNIF/Service

{

"@context": "http://demos.gsi.dit.upm.es/eurosentiment/static/context.jsonld",

"analysis": [

{

"@id": "http://www.gsi.dit.upm.es/ontologies/analysis#SAGA",

"@type": [

"marl:SentimentAnalysis"

],

"marl:maxPolarityValue": 1.0,

"marl:minPolarityValue": -1.0

}

],

"entries": [

{

"nif:isString": "I feel :)",

"opinions": [

{

"@id": "_:Opinion1",

"marl:hasPolarity": "marl:Positive",

"marl:polarityValue": 1.0,

"marl:describesObjectFeature": "Overall"

}],

"strings": [

{

"nif:anchorOf": ":)",

"nif:beginIndex": 7,

"nif:endIndex": 8,

"opinions": {

112

http://localhost:8080/RestrictedToNIF/RestrictedService

A.2. USER MANUAL

"@id": "_:Opinion",

"marl:hasPolarity": "marl:Positive",

"marl:polarityValue": 1.0

}

}

]

}

]

}

A.2.2 Using Java

On Java, you can test the API using HttpClient. A request would look like this:

HttpClient httpclient = HttpClients.createDefault();

HttpPost httppost = new HttpPost("http://demos.gsi.dit.upm.es/tomcat/SAGAtoNIF/Service")

;

ArrayList<BasicNameValuePair> params = new ArrayList<BasicNameValuePair>(4);

params.add(new BasicNameValuePair("input", "The text that you want to analyze"));

params.add(new BasicNameValuePair("intype", "direct"));

params.add(new BasicNameValuePair("informat", "text"));

params.add(new BasicNameValuePair("outformat", "json-ld"));

params.add(new BasicNameValuePair("algo", "spFinancialEmoticon"));

httppost.setEntity(new UrlEncodedFormEntity(params, "UTF-8"));

//Execute and get the response.

HttpResponse responseService = httpclient.execute(httppost);

HttpEntity entity = responseService.getEntity();

if (entity != null) {

InputStream instream = entity.getContent();

try {

BufferedReader in = new BufferedReader(new InputStreamReader(instream));

String inputLine;

StringBuffer marl = new StringBuffer();

while ((inputLine = in.readLine()) != null) {

marl.append(inputLine);

marl.append("\n");

}

in.close();

String responseInString = marl.toString();

// Use responseInString as you like

} finally {

instream.close();

}

}

113

APPENDIX A. INSTALLING AND CONFIGURING SEAS

A.2.3 Web service interface

The web service interface provides a web service interface to use and test the different

services provided by SEAS. To use it, the user should go to http://localhost:8080/

SEAS/Controller

The service looks as depicted in Figure A.1.

Figure A.1: Web service interface

The user only needs to select a service, write a text in the available textbox and click

Analyze. The results are depicted in Figure A.2.

114

http://localhost:8080/SEAS/Controller
http://localhost:8080/SEAS/Controller

A.2. USER MANUAL

Figure A.2: Web service interface in action

115

APPENDIX A. INSTALLING AND CONFIGURING SEAS

116

APPENDIXB
Installing and configuring SAGA

This tutorial goes through the process of installing and configuring SAGA to use it as a

GATE plugin. SAGA’s code is available at https://github.com/gsi-upm/SAGA

B.1 Installation

B.1.1 Requirements

• Java 7

– Download - https://www.java.com/en/download/

• GATE

– Download - https://gate.ac.uk/download/#latest

B.1.2 Installation steps

There are two ways to install SAGA:

117

https://github.com/gsi-upm/SAGA
https://www.java.com/en/download/
https://gate.ac.uk/download/# latest

APPENDIX B. INSTALLING AND CONFIGURING SAGA

• Installation from GitHub repository

– Download or clone the repository into your computer.

– Unzip the folder called saga into the folder called plugins that is inside your

GATE installation.

– Open GATE. The new plugin should be available.

• Installation from GATE

– open GATE → File → Manage CREOLE Plugins → Configuration tab → Click

on the + symbol → add the repository name: GSI UPM url, http://demos.

gsi.dit.upm.es/SAGA/gate-update-site.xml → Apply all → Avail-

able to install tab → Mark the SAGA plugin to install it → Apply all → Go to

the Installed Plugins tab. There it is.

It is recommended to deploy SEAS’s project as a local service in your computer to use

this plugin.

B.2 User manual

SAGA (Sentiment and Emotion Analysis integrated in GATE) is a set of processing and

linguistic resources, written in Java, developed to run sentiment and emotion analysis over

text using GATE platform.

If you are not familiar with GATE, check out these training modules1 to understand

what GATE can do.

Inside this plugin, the following processing resources are available.

B.2.1 Sentiment and emotion analysis calling SEAS and Eurosentiment

To load this processing resource right click on Processing Resources → New → Sentiment

and emotion analysis calling SEAS and Eurosentiment → Name it → OK. This process is

depicted in Figure B.1.

Then, add this new PR to your current application or create a new one. To do so: right

click on Applications → Create new application → Corpus Pipeline → Name it → OK.

The processing resource will have the following runtime parameters:

1https://gate.ac.uk/conferences/training-modules.html

118

http://demos.gsi.dit.upm.es/SAGA/gate-update-site.xml
http://demos.gsi.dit.upm.es/SAGA/gate-update-site.xml

B.2. USER MANUAL

Figure B.1: New processing resource

inputASName is the Annotation Set that contains the annotation type to be analyzed.

annotationType is the annotation type to be analyzed.

sentimentAnalysis is a runtime parameter that sets if the PR is going to perform senti-

ment analysis with the chosen url or algorithm.

emotionAnalysis is a runtime parameter that sets if the PR is going to perform emotion

analysis with the chosen url or algorithm.

SentimentServiceURL is the endpoint of the sentiment analysis service. If you deploy

SEAS as a local service in your computer (Recommended): http://localhost:

8080/SAGAtoNIF/Service and http://localhost:8080/RestrictedToNIF/

RestrictedService. You can use the demo available at GSI’s website: http://

demos.gsi.dit.upm.es/tomcat/SAGAtoNIF/Service and http://demos.

gsi.dit.upm.es/tomcat/RestrictedToNIF/RestrictedService. For more

endpoints visit the Eurosentiment portal - https://portal.eurosentiment.eu

EmotionServiceURL is the endpoint of the emotion analysis service.

APIKey is the Eurosentiment token to use their services or other similar services that

require an API KEY.

ApiKeyName is Eurosentiment (or other similar services) token name to use their ser-

vices.

sentimentAlgorithm is the runtime parameter that sets the sentiment algorithm that

the service is going to use. At the moment, you can use dictionary based algorithms.

sentimentDictionary is the runtime parameter that sets the sentiment dictionary that the

service is going to use (in case that sentimentAlgorithm has been chosen). You can use

the values AUTO (Detects language), Spanish finances Paradigma, English finances

Loughran McDonald, Emoticon, Spanish finances and Emoticon, English finances and

Emoticon.

emotionAlgorithm is a runtime parameter that sets the emotion algorithm that the ser-

vice is going to use. You can use AUTO (Detects language), onyx, ANEW2010All,

ANEW2010Men, ANEW2010Women.

119

http://localhost:8080/SAGAtoNIF/Service
http://localhost:8080/SAGAtoNIF/Service
http://localhost:8080/RestrictedToNIF/RestrictedService
http://localhost:8080/RestrictedToNIF/RestrictedService
http://demos.gsi.dit.upm.es/tomcat/SAGAtoNIF/Service
http://demos.gsi.dit.upm.es/tomcat/SAGAtoNIF/Service
http://demos.gsi.dit.upm.es/tomcat/RestrictedToNIF/RestrictedService
http://demos.gsi.dit.upm.es/tomcat/RestrictedToNIF/RestrictedService
https://portal.eurosentiment.eu

APPENDIX B. INSTALLING AND CONFIGURING SAGA

SentimentPolarityName is the name of the sentiment polarity feature.

SentimentValueName is the name of the sentiment value feature.

EmotionCategoryName is the name of the emotion category feature.

EmotionValueName is the name of the emotion value feature.

B.2.1.1 Example of use - Sentiment analysis over a finance domain

In this example we are going to see how to create a corpus inside General Architecture for

Text Engineering (GATE), how to populate it and then we are going to set the corresponding

runtime parameters of this processing resource to perform sentiment analysis over a finance

domain.

• Create a new corpus and populate it: to do so, right click on Language resources →
New→ Gate Corpus→ Name it→ OK. Right click on the corpus → Populate→ Go

to the saga plugin folder → resources → examples → Choose sentiment → OK

• Set emotionAnalysis parameter to false

• Configure the runtime parameters as depicted in Figures B.2 and B.3(Be careful, the

features inside the annotationType you choose to analyze will be substituted with the

results of the analysis.).

Figure B.2: Finance example 1

Figure B.3: Finance example 2

• Run this application.

• Check the results depicted in Figure B.4.

120

B.2. USER MANUAL

Figure B.4: Finance example result

B.2.1.2 Example of use - Emotion analysis using Onyxemote

In this example we are going to see how to create a corpus inside GATE, how to populate

it and then we are going to set the corresponding runtime parameters of this processing

resource to perform emotion analysis calling Onyxemote service.

• Create a new corpus and populate it: to do so, right click on Language resource →
New→ Gate Corpus→ Name it→ OK. Right click on the corpus → Populate→ Go

to the saga plugin folder → resources → examples → Choose emotion → OK

• Set sentimentAnalysis parameter to false

• Configure the runtime parameters as depicted in Figure B.5 (Be careful, the features

inside the annotationType you choose to analyze will be substituted with the results

of the analysis.).

Figure B.5: Emotion example

• Run this application.

• Check the results as depicted in Figure B.6.

121

APPENDIX B. INSTALLING AND CONFIGURING SAGA

Figure B.6: Emotion example results

B.2.1.3 Example of use - Eurosentiment services

In this example we are going to see how to create a corpus inside GATE, how to populate

it and then we are going to set the corresponding runtime parameters of this processing

resource to perform sentiment analysis calling one of the services available at Eurosentiment

Portal.

• Sign up in the Eurosentiment portal, https://portal.eurosentiment.eu/accounts/

signup/. Register yourself as a Service Developer.

• You will receive an access token in your mail. Put it in the runtime parameter called

APIKey.

• Set the runtime parameter called ApiKeyName as x-eurosentiment-token.

• Set the runtime parameters called SentimentServiceURL or EmotionServiceURL with

the ones offered in the Eurosentiment portal, https://portal.eurosentiment.

eu/service/list#, that perform sentiment or emotion analysis (Figure B.7).

The PR configuration should look as depicted in Figures B.8 and B.9.

• Load your corpus: to do so, right click on Language resource → New → Gate Corpus

→ Name it → OK. Right click on the corpus → Populate → Go to the saga plugin

folder → resources → example → Choose eurosentiment → OK

• Set sentimentAnalysis parameter to true

• Run the application.

• Check the results as depicted in Figure B.10.

122

https://portal.eurosentiment.eu/accounts/signup/
https://portal.eurosentiment.eu/accounts/signup/
https://portal.eurosentiment.eu/service/list#
https://portal.eurosentiment.eu/service/list#

B.2. USER MANUAL

Figure B.7: Eurosentiment services

Figure B.8: Runtime Eurosentiment parameters 1

B.2.2 Predefined Sentiment Annotation

To load this processing resource right click on Processing Resources → New → Predefined

Sentiment Annotation → Name it → OK. This process is depicted in Figure B.11.

123

APPENDIX B. INSTALLING AND CONFIGURING SAGA

Figure B.9: Runtime Eurosentiment parameters 2

Figure B.10: Eurosentiment results

Figure B.11: New processing resource

Then, add this new PR to your current application or create a new one. To do so: right

click on Applications → Create new application → Corpus Pipeline → Name it → OK.

The processing resource will have the following runtime parameters:

Annotation Type is the name of the annotation in which the sentiment polarity will be

added.

Input Annotation Set Name is the name of the annotation set containing the Annota-

tion Type.

Sentiment Polarity Name is the name of the annotation key.

Sentiment Polarity is the value of the annotation value.

For example, to annotate a corpus of negative documents with negative annotations,

the parameter will be configured as depicted in Figure B.12.

124

B.2. USER MANUAL

Figure B.12: Runtime parameters configuration for negative annotations

125

APPENDIX B. INSTALLING AND CONFIGURING SAGA

126

APPENDIXC
Installing and configuring SEAS-Hadoop

This tutorial goes through the process of installing and configuring SEAS-Hadoop to inte-

grate SEAS with the distributed processing platform called Hadoop. SEAS-Hadoop’s code

is available at https://github.com/gsi-upm/SEAS/Hadoop

C.1 Installation

C.1.1 Requirements

• Java 7

– Download - https://www.java.com/en/download/

• SEAS

– Download - https://github.com/gsi-upm/SEAS

• Hadoop

– Download - http://hadoop.apache.org/#Download+Hadoop

127

https://github.com/gsi-upm/SEAS/Hadoop
https://www.java.com/en/download/
https://github.com/gsi-upm/SEAS
http://hadoop.apache.org/#Download+Hadoop

APPENDIX C. INSTALLING AND CONFIGURING SEAS-HADOOP

– Single Node Setup1

• Flume

– Download - http://flume.apache.org/download.html

– Setup - http://flume.apache.org/FlumeUserGuide.html#setup

• Pig

– Download - http://pig.apache.org/docs/r0.13.0/start.html#download

– Setup - http://pig.apache.org/docs/r0.13.0/start.html#download

• Elephant Bird

– Download - https://github.com/kevinweil/elephant-bird/

– Setup - https://github.com/kevinweil/elephant-bird/

C.1.2 Installation steps

• Setup Flume to obtain data from Twitter:

– To do so, go to the root of your Flume installation → go to conf folder → edit

the file called flume.conf with the following:

Listing C.1: ”Example of Flume configuration”

TwitterAgent.sources = Twitter

TwitterAgent.channels = MemChannel

TwitterAgent.sinks = HDFS

TwitterAgent.sources.Twitter.type = com.cloudera.flume.

source.TwitterSource

TwitterAgent.sources.Twitter.channels = MemChannel

TwitterAgent.sources.Twitter.consumerKey = consumerKey

TwitterAgent.sources.Twitter.consumerSecret =

consumerSecret

TwitterAgent.sources.Twitter.accessToken = accessToken

1http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/

SingleCluster.html

128

http://flume.apache.org/download.html
http://flume.apache.org/FlumeUserGuide.html#setup
http://pig.apache.org/docs/r0.13.0/start.html#download
http://pig.apache.org/docs/r0.13.0/start.html#download
https://github.com/kevinweil/elephant-bird/
https://github.com/kevinweil/elephant-bird/
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html

C.2. USER MANUAL

TwitterAgent.sources.Twitter.accessTokenSecret =

accessTokenSecret

TwitterAgent.sources.Twitter.keywords = Finance related

keywords go here

TwitterAgent.sources.Twitter.keywords.created_at =

Creation date goes here

TwitterAgent.sinks.HDFS.channel = MemChannel

TwitterAgent.sinks.HDFS.type = hdfs

TwitterAgent.sinks.HDFS.hdfs.path = hdfs://localhost

:54310/path/to/your/hdfs/folder

TwitterAgent.sinks.HDFS.hdfs.fileType = DataStream

TwitterAgent.sinks.HDFS.hdfs.writeFormat = Text

TwitterAgent.sinks.HDFS.hdfs.batchSize = 1000

TwitterAgent.sinks.HDFS.hdfs.rollSize = 0

TwitterAgent.sinks.HDFS.hdfs.rollCount = 10000

TwitterAgent.channels.MemChannel.type = memory

TwitterAgent.channels.MemChannel.capacity = 10000

TwitterAgent.channels.MemChannel.transactionCapacity =

100

The following parameters are very important and must be set:

Consumer key and consumer secret , which are provided by Twitter when

a user registers an application on its developers services.

Keywords to look for inside the tweets.

Date , when the tweets were created.

HDFS path to store fetched data.

With this, Flume is ready to obtain data from Twitter.

C.2 User manual

SEAS-Hadoop allows us to obtain data from Twitter, store them in Hadoop distributed

file system (HDFS), process them using Pig Latin scripts and then analyze it using the

129

APPENDIX C. INSTALLING AND CONFIGURING SEAS-HADOOP

sentiment and emotion analysis services provided by SEAS.

We are going to see how this can be done.

C.2.1 Using Flume to obtain data from Twiiter

Once Flume has been configured, we run it with the following command using the bash

console:

Listing C.2: ”Running Flume”

bin/flume-ng agent --conf ./conf/ -f conf/flume.conf -Dflume.root.logger=DEBUG,console -

n TwitterAgent

With this, Flume starts retrieving data from Twitter using the configuration set by us

and stores these data in HDFS

If you want to see the obtained data, you can execute the following Hadoop command:

Listing C.3: ”Hadoop ls command”

hadoop fs -ls /user/youruser/path/to/your/hdfs/folder

.

And the obtained data will be listed:

Listing C.4: ”HDFS storing”

Found 3 items

-rw-r--r-- 1 youruser supergroup 40180 2014-07-31 15:56 /user/youruser/path/to/

your/hdfs/folder/FlumeData.1406814972678

-rw-r--r-- 1 youruser supergroup 18331 2014-07-31 15:56 /user/youruser/path/to/

your/hdfs/folder/FlumeData.1406814972679

-rw-r--r-- 1 youruser supergroup 26213 2014-07-31 15:57 /user/youruser/path/to/

your/hdfs/folder/FlumeData.1406814972680

.

C.2.2 Sentiment and emotion analysis using Pig

When you think that Flume has obtained enough data, stop it.

130

C.2. USER MANUAL

As it was explained in section 2.10, Pig is an engine that allows the execution of data

processing scripts over Hadoop. These scripts, also called data flows, are written in a data

processing oriented language called Pig Latin.

Pig Latin scripts will be used to process the data that were retrieved and stored in HDFS

by Flume. To do so, we will need to register Elephant Bird’s User Defined Function (UDF)s

to load JSON data and SEAS’s UDFs to perform the sentiment or emotion analysis.

For example, the following script can be used to perform sentiment analysis over the

obtained data from Twitter:

Listing C.5: ”Example of Pig script for sentiment analysis”

-- Register the needed jars

REGISTER UDFs/seasudfs.jar;

REGISTER lib/json-simple-1.1.1.jar;

REGISTER lib/elephant-bird/pig/target/elephant-bird-pig-4.6-SNAPSHOT.jar;

REGISTER lib/elephant-bird/core/target/elephant-bird-core-4.6-SNAPSHOT.jar;

REGISTER lib/elephant-bird/hadoop-compat/target/elephant-bird-hadoop-compat-4.6-SNAPSHOT

.jar;

-- Load finance tweets from HDFS in json format

A = LOAD ’/user/youruser/path/to/your/hdfs/folder/FlumeData.1406814972678’ USING com.

twitter.elephantbird.pig.load.JsonLoader(’-nestedLoad’) as (json:map[]);

-- For each tweet we use the text and the language

B = FOREACH A GENERATE json#’text’ AS text, json#’lang’ AS lang;

-- We keep those which are in english and limit to 10 tweets for testing.

C = FILTER B BY lang == ’en’;

C = LIMIT C 10;

D = FOREACH C GENERATE text, es.upm.dit.gsi.udfs.EnglishSentimentAnalyzer(text) as

polarity;

DUMP D;

To perform sentiment an emotion analysis, two UDFs are available:

es.upm.dit.gsi.udfs.SentimentAnalyzer will be called for each text that is going to

be analyzed by the Pig Latin Script. This UDF will set the corrorresponding NIF

parameters, make a POST request to SEAS sentiment analysis service, receive the

response in a JSON and parse it. The analyzed text will be returned with its sentiment

polarity, that can be positive, negative or neutral, in a tuple in the format (text,

polarity).

es.upm.dit.gsi.udfs.EmotionAnalyzer will be called for each text that is going to be

131

APPENDIX C. INSTALLING AND CONFIGURING SEAS-HADOOP

analyzed by the Pig Latin script. This UDF will set the corrorresponding NIF param-

eters, make a POST request to SEAS emotion analysis service, receive the response in

a JSON and parse it. The analyzed text will be returned with its most representative

emotion category, that can be happiness, sadness, anger..., in a tuple in the format

(text, category).

132

Bibliography

[1] A. Westerski, C. A. Iglesias, and F. Tapia, “Linked Opinions: Describing Sentiments on the

Structured Web of Data,” in Proceedings of the 4th International Workshop Social Data on the

Web, 2011.

[2] J. F. Sánchez-Rada and C. A. Iglesias, “Onyx: Describing Emotions on the Web of Data,”

in Proceedings of the First International Workshop on Emotion and Sentiment in Social and

Expressive Media: approaches and perspectives from AI (ESSEM 2013), vol. 1096, (Torino,

Italy), pp. 71–82, AI*IA, Italian Association for Artificial Intelligence, CEUR-WS, December

2013.

[3] S. Hellmann, “Nif 2.0 core ontology,” tech. rep., AKSW, University Leipzig, 2013.

[4] T. U. of Sheffield, “Gate embedded,” 2014.

[5] D. Borthakur, “Hdfs architecture guide,” 2008.

[6] M. T. Jones, “Distributed data processing with hadoop, part 2: Going further,” 2010.

[7] T. A. S. Foundation, “Flume 1.5.0.1 user guide,” 2012.

[8] E. Cambria, B. Schuller, Y. Xia, and C. Havasi, “New avenues in opinion mining and sentiment

analysis,” Intelligent Systems, IEEE, vol. 28, pp. 15–21, March 2013.

[9] W. Crawford and J. Kaplan, J2EE Design Patterns. O’Reilly Media, 1 ed., 10 2003.

[10] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web: A new form of web content that

is meaningful to computers will unleash a revolution of new possibilities,” Scientific American,

p. 4, 2011.

[11] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani, I. Roberts, G. Gorrell,

A. Funk, A. Roberts, D. Damljanovic, T. Heitz, M. A. Greenwood, H. Saggion, J. Petrak,

Y. Li, and W. Peters, Text Processing with GATE (Version 6). 2011.

[12] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Found. Trends Inf. Retr., vol. 2,

pp. 1–135, Jan. 2008.

[13] S. Hellmann, J. Lehmann, S. Auer, and M. Brümmer, “Integrating nlp using linked data,” in

12th International Semantic Web Conference, 21-25 October 2013, Sydney, Australia, 2013.

[14] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st ed., 2009.

[15] S. Hoffman, Apache Flume: Distributed Log Collection for Hadoop (What You Need to Know).

Packt Publishing, 7 2013.

133

BIBLIOGRAPHY

[16] A. Gates, Programming Pig. O’Reilly Media, Inc., 1st ed., 2011.

[17] T. Khare, Apache Tomcat 7 Essentials. Packt Publishing, 3 2012.

[18] A. Klein, O. Altuntas, T. Hausser, and W. Kessler, “Extracting investor sentiment from weblog

texts: A knowledge-based approach,” in Commerce and Enterprise Computing (CEC), 2011

IEEE 13th Conference on, pp. 1–9, Sept 2011.

134

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Context
	Master thesis description
	Master thesis goals
	Structure of this Master Thesis

	Enabling Technologies
	Overview
	Opinion mining
	Marl: An Ontology for Opinion Mining
	Onyx: Describing Emotions on the Web of Data
	Eurosentiment
	NIF 2.0
	GATE
	GATE Developer
	GATE Embedded

	Hadoop
	HDFS: Hadoop Distributed File System
	HDFS daemons
	HDFS blocks

	Hadoop MapReduce

	Flume
	Pig
	UDFs
	Elephant Bird

	Conclusions

	Requirement Analysis
	Overview
	Use cases
	SEAS
	Actors dictionary
	Use cases
	Sentiment analysis
	Emotion analysis
	New services
	Test and demo

	SAGA
	Actors dictionary
	Use cases
	Sentiment and emotion annotations calling SEAS
	Opinion annotations
	Sentiment and emotion annotations calling other NIF services
	Update SAGA
	New PR

	SEAS-Hadoop
	Actors dictionary
	Use cases
	Get data
	Sentiment and emotion analysis over data
	New script

	Conclusions

	Architecture
	Introduction
	SEAS: Sentiment and emotion analysis services
	Input format
	Sentiment analysis
	Output format

	Emotion analysis
	Output format

	SAGA: Sentiment and Emotion Analysis integrated in GATE
	PR: Processing resources
	Predefined Sentiment Annotation PR
	Sentiment And Emotion Analysis Calling SEAS PR

	SEAS-Hadoop: Sentiment and emotion analysis over a Big Data infrastructure
	Flume
	Pig
	UDFs

	Conclusions

	Case study
	Introduction
	SEAS
	Call SEAS using a command line shell
	Call SEAS using Eurosentiment playground
	Call SEAS using the demo available at GSI
	Call SEAS to analyze videos in real-time

	SAGA
	Corpus
	Finance sentiment analysis calling SEAS
	Validation of the sentiment analysis

	Other sentiment analysis services calling SEAS
	Emotion analysis calling Onyxemote
	Sentiment analysis calling Eurosentiment services

	Hadoop for financial analysis
	Using Flume to obtain data from Twitter
	Data processing and sentiment analysis using Pig
	Hadoop vs GATE

	Conclusions

	Conclusions and future lines
	Conclusions
	Achieved goals
	Future work

	Installing and configuring SEAS
	Installation
	Requirements
	Installation steps

	User manual
	Command line interface
	Using Java
	Web service interface

	Installing and configuring SAGA
	Installation
	Requirements
	Installation steps

	User manual
	Sentiment and emotion analysis calling SEAS and Eurosentiment
	Example of use - Sentiment analysis over a finance domain
	Example of use - Emotion analysis using Onyxemote
	Example of use - Eurosentiment services

	Predefined Sentiment Annotation

	Installing and configuring SEAS-Hadoop
	Installation
	Requirements
	Installation steps

	User manual
	Using Flume to obtain data from Twiiter
	Sentiment and emotion analysis using Pig

	Bibliography

