
PROYECTO FIN DE CARRERA

T́ıtulo: Design and implementation of an HTML5 Framework for

biodiversity and environmental information visualization

based on Geo Linked Data

Autor: Rubén Dı́az Vega

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Mercedes Garijo Ayestarán

Vocal: Tomás Robles Valladares

Secretario: Carlos Ángel Iglesias Fernández

Suplente: Marifeli Sedano Rúız

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

PROYECTO FIN DE CARRERA

DESIGN AND IMPLEMENTATION OF AN

HTML5 FRAMEWORK FOR BIODIVERSITY

AND ENVIRONMENTAL INFORMATION

VISUALIZATION BASED ON

GEO LINKED DATA

Rubén Dı́az Vega

Diciembre de 2014

Resumen

Este documento contiene los resultados de un proyecto cuyo principal objetivo es desarrollar

un Framework HTML5 que permita la consulta, el tratamiento y la representación gráfica

de conjuntos de datos de la Web Semántica desde un punto de vista geográfico.

En primer lugar, analizamos el estado actual de los Datos Enlazados Geográficos (Geo

Linked Data) y el gran crecimiento que ha experimentado en los últimos años. Tras esto,

presentamos la necesidad de desarrollar una aplicación web que nos permita consultar estos

conjuntos de datos disponibles en la web y tratar, indexar, filtrar y representar la infor-

mación consultada. Esta aplicación nos ayudaŕıa a sacar mayor provecho de todas las

ventajas que nos ofrece la información geográfica disponible en la Web Semántica.

Una vez definido nuestro objetivo, analizamos las diferentes herramientas que utilizare-

mos para desarrollar nuestra aplicación. Hemos elegido una aplicación web desarrollada

por el Grupo de Sistemas Inteligentes (GSI1) como punto de partida. Sobre esta aplicación

introduciremos las caracteŕısticas y herramientas necesarias para trabajar con Sistemas de

Información Geográfica (GIS).

En caṕıtulos posteriores, presentaremos la arquitectura del sistema. Hemos optado por

una arquitectura modular de forma que cada uno de los módulos que componen la apli-

cación tenga unas funciones bien definidas, de manera que el mantenimiento y el desarrollo

futuro sobre la aplicación sean más fáciles. Además, en otro caṕıtulo incluirémos la exper-

imentación con la aplicacion, detallando los diferentes tests llevados a cabo, sus resultados

y el impacto que han tenido en nuestras decisiones.

Finalmente, presentamos las conclusiones del trabajo realizado y el posible trabajo fu-

turo que podŕıa llevarse a cabo para mejorar el proyecto.

Palabras clave: Tecnoloǵıas Semánticas, Linked data, Sefarad, RDF, SPARQL, PHP,

JavaScript, Java, Knockout JS, Geográfico

1http://www.gsi.dit.upm.es/

V

Abstract

This work collects the results of a project whose main purpose is to develop an HTML5

framework to query Linked Data datasets and manage and display the retrieved data from

a geographical perspective.

First, we analyse the current state of Geo Linked Data and the great growth experienced

in recent years. After that, we present the need to develop a web application that allows

us to query any dataset available on the web and manage, index, filter and display the

retrieved data. This application could help us to take more advantage of the benefits of the

geographical information available on the Semantic Web.

After defining our goal, we analyse the different tools available which will help us to

develop our application. We chose to improve a web application develop by Group of

Intelligent Systems (GSI2) and introduce the needed features to work with GIS datasets.

Furthermore, we present the architecture of the system, which is based on different

modules in order to have a modular structure that facilitates the development and the

contribution of future developers. We have a specific chapter for the experimentation where

it is presented the different tests executed as well as the results of them and its impact in

our decisions.

Finally, we present the conclusions of the work and the possible future work that could

be done in order to improve the project.

Keywords: Semantic technologies, Linked data, Sefarad, RDF, SPARQL, PHP, JavaScript,

Java, Knockout JS, Geo

2http://www.gsi.dit.upm.es/

VII

Agradecimientos

En primer lugar, a mis padres. Gracias a las posibilidades y oportunidades brindadas he

podido estudiar la carrera que queŕıa y, en consecuencia, desarrollar este proyecto. Gracias

a mi madre por el apoyo dado y por preocuparse por mı́ por encima de todas las demás

cosas en los momentos dif́ıciles. Gracias mamá.

Gracias a mis abuelos por interesarse por mı́ d́ıa tras d́ıa. Especialmente a mi abuela,

por preguntar por mı́ y rezar porque todo vaya bien y sigamos avanzando noche tras noche.

Espero que quién sea que escuche tus oraciones aguante un poco más, que ahora viene lo

dif́ıcil: la vida laboral. Gracias abuela.

Gracias a mi vida, Mónica. Gracias por estar siempre a mi lado. Gracias por compartir

cada momento conmigo. Gracias por celebrar mis logros conmigo y apoyarme, animarme

e inspirarme en los momentos malos. Al igual que en todo lo que rodea mi d́ıa a d́ıa, has

sido una parte fundamental en mi éxito en esta aventura. Gracias cariño.

Gracias a otro de los pilares de mi vida: los buenos amigos. Gracias a los amigos de

siempre, los que me acompañan desde que era un enano y han seguido ah́ı año tras año, y

continúan hasta hoy. Gracias también a los nuevos amigos que he conocido en estos años de

universidad. Ha sido una experiencia única y, en gran medida, ha sido gracias a vosotros.

Dar las gracias también a los compañeros del departamento. Este año trabajando en el

grupo no hubiese sido lo mismo sin vosotros. Ha sido mi primera experiencia laboral y ha

sido inmejorable. Gracias a todos por crear un ambiente de trabajo tan magńıfico.

Por último, me gustaŕıa agradecer su apoyo y gúıa a mi tutor, Carlos, sin el que no

hubiese sido posible estre proyecto. Gracias por brindarme la oportunidad de trabajar en

el GSI y poder llevar a cabo este proyecto.

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XVII

List of Tables XIX

1 Introduction 1

1.1 Context . 3

1.2 Master thesis goals . 4

1.3 Structure of this Master Thesis . 4

2 Enabling Technologies 7

2.1 Overview . 9

2.2 Linked Data in a Nutshell . 10

2.3 Sefarad . 13

2.4 MongoDB: a NoSQL Database . 15

2.5 GeoServer . 16

2.6 Fuseki: RDF over HTTP server . 18

2.7 OpenLayers . 18

XI

2.8 Grunt: The JavaScript Task Runner . 19

3 Requirement Analysis 21

3.1 Overview . 23

3.2 Actors dictionary . 23

3.3 Use cases . 24

3.3.1 Portal users use cases . 25

3.3.1.1 Edit a SPARQL query . 26

3.3.1.2 Run a SPARQL query . 27

3.3.1.3 Visual display of the information 28

3.3.1.4 Keyword search . 29

3.3.1.5 Faceted search . 30

3.3.1.6 Log-in/Log-out . 31

3.3.1.7 Customize Sefarad . 32

3.3.1.8 Save own configuration . 33

3.3.1.9 Reset own configuration . 34

3.3.2 Admin use cases . 35

3.3.2.1 Security and users management 35

3.3.2.2 Local datasets management 36

3.3.3 Conclusions . 36

4 Architecture 37

4.1 Introduction . 39

4.2 Architecture . 39

4.3 SPARQL Engine . 41

4.3.1 SPARQL Editor . 41

4.3.2 SPARQL queries executor . 43

4.4 Geo Proxy . 43

4.5 Local Server . 46

4.5.1 Fuseki and Virtuoso . 46

4.5.2 Geo Server . 46

4.6 Search and filtering module . 47

4.6.1 Keyword search . 48

4.6.2 Faceted search . 49

4.6.3 Geo filtering . 49

4.7 Model View View-Model . 50

4.7.1 Data Model . 51

4.7.2 Widgets layout . 52

4.7.2.1 Linear layout . 53

4.7.2.2 Accordion layout . 53

4.8 User management module . 54

4.8.1 Security: authentication and authorization 54

4.8.1.1 MondoDB connection . 55

4.8.1.2 Session Manager . 56

4.8.1.3 User class . 59

4.8.2 MongoDB: settings and preferences 61

4.8.2.1 Loading configuration . 62

4.8.2.2 Saving configuration . 63

4.8.2.3 Deleting configuration . 64

4.9 Setup module . 64

4.9.1 Custom installer . 65

4.9.2 Automation: Grunt.JS Task Runner 66

5 Case Study 71

5.1 Introduction . 73

5.2 European universities . 74

5.2.1 Query and retrieve the data: SPARQL 74

5.2.2 Showing the data: results table . 76

5.2.3 Geographic representation: Openlayers map 77

5.2.4 Filtering technologies . 78

5.3 Restaurants and Districts in Madrid . 79

5.3.1 Download and process the information 79

5.3.2 SPARQL and Fuseki . 80

5.3.3 Faceted search . 83

5.3.4 Openlayers and GeoJSON . 84

5.4 Slovakian dataset . 85

5.4.1 Protected sites dataset . 85

5.4.2 SPARQL Query and results data . 90

5.4.3 OpenStreet Map: GeoJSON representation 92

5.5 SmartOpenData parcels dataset . 94

5.5.1 Parcels data scheme . 95

5.5.2 GeoServer and Openlayers . 96

5.5.3 Geo-filtering: ECQL . 97

6 Conclusions and future lines 99

6.1 Project outcomes . 101

6.2 Achieved goals . 102

6.3 Conclusions . 102

6.4 Future work . 103

A Installing and configuring Sefarad 105

A.1 Installation . 107

A.1.1 Requirements . 107

A.1.2 Installation steps . 107

B User Manual 109

B.1 Create new widget . 111

Bibliography 112

List of Figures

2.1 Linked Open Data cloud . 9

2.2 Main Layout . 13

2.3 Dashboard . 13

2.4 MongoDB data model . 15

2.5 MongoDB collection . 16

2.6 Geoserver administration UI . 17

2.7 OpenLayers map example with multiple layers 19

3.1 Use cases UML diagram . 24

4.1 General Architecture . 39

4.2 SPARQL Editor . 42

4.3 SPARQL query sequence diagram . 43

4.4 Fuseki/Virtuoso and GeoServer . 46

4.5 Keyword search example . 48

4.6 Faceted search example . 48

4.7 Model View ViewModel . 50

4.8 Linear Layout . 53

4.9 Accordion Layout . 54

4.10 Installation example (1) . 65

4.11 Installation example (2) . 65

4.12 Custom installer . 66

XVII

5.1 Results Widget with universities . 76

5.2 American University of Rome DBpedia webpage 77

5.3 Universities in Spain and Italy . 77

5.4 Keyword search example . 78

5.5 Universities Demo Layout . 78

5.6 Processing restaurants data . 79

5.7 Linear layout . 83

5.8 Accordion layout . 83

5.9 Protected sites tables and view . 86

5.10 Protected sites map . 93

5.11 Dataset scheme . 94

5.12 Feature Types Details . 95

5.13 Openlayers map . 96

5.14 SmartOpenData layout . 97

List of Tables

3.1 Actors list . 23

3.2 Edit a SPARQL query . 26

3.3 Run a SPARQL query . 27

3.4 Visual display of the information . 28

3.5 Keyword search . 29

3.6 Faceted search . 30

3.7 Log-in/Log-out . 31

3.8 Customize Sefarad . 32

3.9 Save own configuration . 33

3.10 Reset own configuration . 34

3.11 Security and users management . 35

3.12 Local datasets management . 36

5.1 Data INSPIRE designation . 89

XIX

CHAPTER1
Introduction

This chapters provides a main introduction to the problem approached in this project.

It describes an overview of the benefits of linked data technologies and its application

to geographical area. We analyse the state of the art and present the main purpose of

this project. Finally, a deeper description of the project and its context is also given.

1

CHAPTER 1. INTRODUCTION

2

1.1. CONTEXT

1.1 Context

In recent years, the amount of information available on the web has grown exponentially.

This has promoted an evolution of the web as we know so the data published on the net was

in such a way that it is machine-readable by adding semantic metadata to the traditional

data. This has led to the Semantic Web and Linked Data.

The principles of Linked Data were first outlined by Berners-Lee in 2006 [1]:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF,

SPARQL).

4. Include links to other URIs. so that they can discover more things.

The Semantic Web is a set of activities performed within World Wide Web Consor-

tium (W3C1) whose purpose is to create technologies to publish machine-readable data

applications. Thus, the concept of Semantic Web involves an expansion of the traditional

Web, where semantic metadata is added to the traditional data on the web. This metadata

describes the content, meaning and the relationships between the available data. The meta-

data is formally provided as standard, so computers can understand and process themselves

these new data automatically. In this way we extend the interoperability between different

software agents.

In the geospatial context, GeoLinked Data2 in an open initiative whose aim is to enrich

the Semantic Web with geospatial data into the context of INSPIRE3 (INfrastructure for

SPatial InfoRmation in Europe) Directive. This initiative focuses its efforts to collect,

process and publish geographic information from different organizations around the world

and providing the suitable tools for handing all the data.

Once the information has been published on the web, we need visualization tools that

allow us to query the different datasets available online and visualize the retrieved data.

With these tools we will take the maximum advantage of the semantic web and all its

benefits.

1http://www.w3c.es/
2http://linkedgeodata.org/
3http://inspire.ec.europa.eu/

3

CHAPTER 1. INTRODUCTION

1.2 Master thesis goals

The main goal of this Master Thesis is to develop a web application that allows us to query

any dataset and manage, filter and visualize the retrieved data. The different challenges to

achieve this goal are:

• Analyse the state of the Semantic Web technologies and study all related standards

(RDF, OWL, SPARQL...)

• Study the different web technologies that will help us to develop the application. In

particular, we will study the main application used for the project: Sefarad.

• Determine the architecture of the application.

• Develop each one of the modules that make up the system.

• Test the application on different case studies to determine possible bugs, possible

improvements or guarantee proper operation.

• Document the work done for future users and developers.

1.3 Structure of this Master Thesis

In this section we will provide a brief overview of all the chapters of this Master Thesis. It

has been structured as follows:

Chapter 1 provides an introduction to the problem which will be approached in this

project. It provides an overview of the benefits of linked data technologies. Furthermore, a

deeper description of the project and its environment is also given.

Chapter 2 contains an overview of the existing technologies on which the development

of the project will rely.

Chapter 3 describes one of the most important stages in software development: the

requirement analysis using different scenarios. For this, a detailed analysis of the possible

use cases is made using the Unified Modeling Language (UML). This language allows us to

specify, build and document a system using graphic language. The result of this evaluation

will be a complete specification of the requirements, which will be matched by each module

in the design stage. This helps us also to focus on key aspects and take apart other less

important functionalities that could be implemented in future works.

4

1.3. STRUCTURE OF THIS MASTER THESIS

Chapter 4 describes the architecture of the system, divided in several modules with its

own purpose and functions.

Chapter 5 describes a selected use cases. It is going to be explained the running of all

the tools involved and its purpose. It allows us to test the application and give us some

feedback to improve our system and repair bugs and errors.

Chapter 6 sums up the findings and conclusions found throughout the document and

gives a hint about future development to continue the work done for this master thesis.

Finally, the appendix provides useful related information, especially covering the instal-

lation and configuration of the tools used in this thesis.

5

CHAPTER 1. INTRODUCTION

6

CHAPTER2
Enabling Technologies

This chapter introduces which technologies have made possible this project. First of

all we must introduce Linked Data and, specifically, GeoLinked Data [2, 3] and all its

possibilities.Then we present Sefarad1, an HTML5 Framework developed by Grupo de

Sistemas Inteligentes (GSI2) which provides us a semantic front end to Linked Data

(LOD) [4]. Finally, we introduce the other technologies that have helped us to develop

this project.

1https://github.com/gsi-upm/Sefarad
2http://www.gsi.dit.upm.es/

7

CHAPTER 2. ENABLING TECHNOLOGIES

8

2.1. OVERVIEW

2.1 Overview

Linked Data is a technological innovation that transforms the way we think about infor-

mation and its role in society, in our case geographic information. Linked Data has been

recently suggested as one of the best alternatives for creating these shared information

spaces [5]. Linked Data describes a method of publishing structured and related data so

that it can be interlinked and become more useful, which results in the Semantic Web3 (or

Web of Data). It builds upon standard Web technologies such as HTTP, RDF and URIs,

but rather than using them to serve web pages for human readers, it extends them to share

information in a way that can be read automatically by computers. This enables data from

different sources to be connected and queried using SPARQL standard. This is specially

important for sophisticated types of information, in particular information with spatial and

temporal components.

Figure 2.1: Linked Open Data cloud diagram example4

With the adoption of Linked Data, the traditional complexities of conceptual database

schemata for spatial data can safely remain internal to organizations. Their externally

relevant contents get streamlined into the open and more manageable form of vocabulary

definitions. Users of Linked Data do not need to be aware of complex schema informa-

3http://www.w3.org/standards/semanticweb/
4http://lod-cloud.net/

9

CHAPTER 2. ENABLING TECHNOLOGIES

tion to use data adequately, but ”only” of the semantics of types and predicates (such as

isLocatedIn) occurring in the data. While many questions remain to be answered about

how to produce and maintain vocabulary specifications, the elaborate layering of syntactic,

schematic, and semantic interoperability issues has simplified to a single common syntax

(RDF5), the irrelevance of traditional schema information outside a database, and a focus

on specifying and sharing vocabularies.

This simplification is more dramatic for spatially and temporally referenced data (with

their complexities in the form of geometries and scale hierarchies). The resulting paradigm

shift, from distributed complex databases accessed through web services that expose schemata

to knowledge represented as graphs, whose links can be given well-defined meaning, radi-

cally changes some of the long-standing problems of GIScience and GIS practice. Everything

said is a way to facilitate analysis and integration of all geographic information available

worldwide.

This master thesis describes the creation of a web application for GeoLinked Data

management and visualization. The main goal of this project is to develop a web application

that facilitates the handling and visualization of GeoLinked Data available worldwide. Users

could manage geographical information from any SPARQL endpoint just running their own

queries or graph their own datasets storing them in a semantic web server such as Linked

Media Framework (LMF6) or in a NoSQL database such as MongoDB7.

2.2 Linked Data in a Nutshell

The rise of the Open Data Movement has led to the Web of Data grow significantly over

the last years. This Web of Data has started to span data sources form a wide range of

domains such as people, companies, music, scientific publications, etc. The principles of

Linked Data were first outlined by Berners-Lee in 2006 [1]:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF,

SPARQL).

4. Include links to other URIs. so that they can discover more things.

5http://www.w3.org/RDF/
6https://code.google.com/p/lmf/
7http://www.mongodb.org/

10

2.2. LINKED DATA IN A NUTSHELL

Linked Data is the name for a collection of design principles, practices and technologies

centered around a novel paradigm to expose, publish, retrieve, reuse, and integrate data

on the Web. In summary, that is simply about using the Web to create typed links be-

tween data from different sources. In contrast to the Document Web, the Semantic Web

aims at establishing named and directed links between typed data. For example, a normal

Web page about Portsmouth (such as http://en.wikipedia.org/wiki/Portsmouth) may link

to another page about Hampshire (such as http://en.wikipedia.org/wiki/Hampshire). For

a machine, the intended meaning of such links is difficult to interpret and the Web pages

can only be consumed as integral units of text or other media. On the Linked Data Web,

by contrast, the link between Portsmouth and Hampshire would be directed and labelled,

for example, forming the statement that Portsmouth is located in Hampshire. Additionally,

the two places would be typed, e.g., as city and county, jointly leading to the statement

that the city of Portsmouth is located in the county of Hampshire. Finally, the predicate

isLocatedIn could be defined as a transitive relation in an ontology. Thus, in conjunction

with a statement that Hampshire county is located in the UK, one could automatically

derive the new statement that Portsmouth is located in the UK.

<?xml ve r s i on="1.0" encoding="utf -8"?>

<rdf :RDF xmlns : contact="http :// www.w3.org /2000/10/ swap/pim/ contact #" xmlns : e r i c="http :// www.

w3.org/ People /EM/ contact #" xmlns : rdf="http :// www.w3.org /1999/02/22 - rdf -syntax -ns#">

<rdf : Description rdf : about="http :// www.w3.org/ People /EM/ contact #me">

<contact : fullName>Eric Mi l l e r </contact : fullName>

</rdf : Description>

<rdf : Description rdf : about="http :// www.w3.org/ People /EM/ contact #me">

<contact : mailbox rdf : r e s ou r c e=" mailto :e. miller123 (at) example "/>

</rdf : Description>

<rdf : Description rdf : about="http :// www.w3.org/ People /EM/ contact #me">

<contact : p e r sona lT i t l e>Dr.</ contact : p e r sona lT i t l e>

</rdf : Description>

</rdf :RDF>

Listing 2.1: RDF/XML document example

Technically, Linked Data refers to data published on the Web in such a way that it is

machine-readable, its meaning is explicitly defined, it is linked to other external data sets,

and can in turn be linked to from external data sets. That three given elements constitute

each piece of information in Linked Data, one refers to such statements as triples, consisting

of a subject (Portsmouth), a predicate (isLocatedIn), and an object (Hampshire). This

syntax, which happens to be the simplest form in which statements can be made in natural

language, has thus been carried over to the world of data. The data model for triples is

the so-called Resource Description Framework. Every entity in the physical world (even a

subject, a predicate or an object) should be identified by a global unique URI, and all the

information should be provided by using W3C standards such as mentioned RDF or OWL.

11

CHAPTER 2. ENABLING TECHNOLOGIES

Linked Data can be queried using SPARQL8 (an acronym for SPARQL Protocol and

RDF Query Language), a query language for RDF which became an official W3C Recom-

mendation9. The SPARQL query language consists of the syntax and semantics for asking

and answering queries against RDF graphs and contains capabilities for querying by triple

patterns, conjunctions, disjunctions, and optional patterns. It also supports constraining

queries by source RDF graph and extensible value testing. Results of SPARQL queries can

be ordered, limited and offset in number, and presented in several different forms, such as

JSON, RDF/XML, etc.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?email

WHERE {

?person a foaf:Person.

?person foaf:name ?name.

?person foaf:mbox ?email.

}

Listing 2.2: SPARQL query example

In our particular case of dealing with geographic information, GeoSPARQL10 enriches

SPARQL by quantitative reasoning. Linked Data is usually stored and accessed via SPARQL

endpoints (e.g., DBpedia11 or GeoNames12). The ontologies that allow human users and

machines to understand which concepts and predicates can be queried, and how they are for-

mally defined, are described using languages such as the Web Ontology Language (OWL13).

In the geospatial context, GeoLinked Data14 is an open initiative whose aim is to enrich

the Semantic Web with geospatial data into the context of INSPIRE15 (INfrastructure for

SPatial InfoRmation in Europe) Directive. This initiative focuses its efforts to collect,

process and publish geographic information from different organizations around the world

and providing the suitable tools for handing all the data.

8http://www.w3.org/TR/rdf-sparql-query
9http://www.w3.org/blog/SW/2008/01/15/

10http://www.opengeospatial.org/standards/geosparql
11http://dbpedia.org/
12http://www.geonames.org/
13http://www.w3.org/2001/sw/wiki/OWL
14http://linkedgeodata.org/
15http://inspire.ec.europa.eu/

12

2.3. SEFARAD

2.3 Sefarad

Sefarad is a web application developed to explore linked data by making SPARQL queries

to the chosen endpoint without writing more code, so it provides a semantic front-end to

Linked Open Data [4]. It allows the user to configure his own dashboard with many different

widgets to visualize, explore and analyse graphically the different characteristics, attributes

and relationships of the queried data. Sefarad is developed in HTML516 and follows a

Model View-View Model (MVVM) pattern performed with the Knockout17 framework. This

JavaScript library allows us to create responsive and dynamic interfaces which automatically

is updated when the data changes. The different parts of the UI are connected to the data

model by declarative bindings.

Sefarad consists of two different tabs: dashboard and control panel. The first tab allows

the user to perform faceted search on the data accessed, so the users can explore a collection

of information by applying multiple filters. In the control panel tab statistics about the

dataset are visualized.

Figure 2.2: Main Layout Figure 2.3: Dashboard

The great potential of Sefarad for our project lies in the capability to create our own

widgets really easily. We should not worry about obtaining the filtered data and updating

the widget when a new facet is selected thanks to Knockout framework. For this purpose,

the application specifies how to create a new Javascript file in which it should be placed a

Javascript object using D3.js18 framework. We will take advantage of this feature to develop

geographic widgets. The widget template is as follows:

16http://www.w3.org/TR/html5/
17http://knockoutjs.com/
18http://d3js.org/

13

CHAPTER 2. ENABLING TECHNOLOGIES

// New widget

var newWidget = {

// Widget name.

name: "Name",

// Widget description.

description: "description",

// Path to the image of the widget.

img: "path/to/image",

// Type of the widget.

type: "type",

// Help display on the widget

help: "help",

// Category of the widget (1: textFilter, 2: numericFilter, 3: graph,

5:results, 4: other, 6:map)

cat: X,

render: function() {

var id = ’A’ + Math.floor(Math.random() * 10001);

var field = newWidget.field || "";

vm.activeWidgetsRight.push({

"id": ko.observable(id),

"title": ko.observable(newWidget.name),

"type": ko.observable(newWidget.type),

"field": ko.observable(field),

"collapsed": ko.observable(false),

"showWidgetHelp": ko.observable(false),

"help": ko.observable(newWidget.help)

});

newWidget.paint(id);

},

paint: function(id) {

d3.select(’#’ + id).selectAll(’div’).remove();

var div = d3.select(’#’ + id);

div.attr("align", "center");

// Code to paint

}

};

Listing 2.3: ”Sefarad widget template”

14

2.4. MONGODB: A NOSQL DATABASE

2.4 MongoDB: a NoSQL Database

MongoDB19 is an open-source document-oriented NoSQL database distributed under the

GNU Affero General Public License20 and the Apache License21, written in the programming

language C. As a NoSQL database, instead of traditional table-based relational database

MongoDB is structured into collections. Those collections are a set of BSON (Binary JSON)

documents containing a set of fields or key-value pairs: keys are string and value cans be

of so many types (string, integer, float, timestamp, etc.). That provides high performance,

high availability, and automatic scaling. Figure [2.4] shows the possible similarities or

equivalences between MongoDB and traditional relational databases.

Figure 2.4: Comparison between relational and MongoDB data models22

In MongoDB, the basic piece of data is called a document[2.5]. A major advantage in

MongoDB is that documents do not have a predefined schema (flexible schema). We can

think of a document as a multidimensional array whose values could themselves be another

array. In practical matters, MongoDB documents have a JSON array structure.

Furthermore, MongoDB is optimized for CRUD operations. You can store as much

information as you need in a document without first defining its structure, and this data

will be able to be queried. In order to retrieve one o more documents, you may run your

own query specifying some criteria or conditions. A query may support search by field,

range or conditional statements such as the existence or not of a key. This make the system

highly scalable.

19https://www.mongodb.org/
20http://www.gnu.org/licenses/agpl-3.0.html
21http://www.apache.org/licenses/LICENSE-2.0.html

15

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.5: A collection of MongoDB documents23

MongoDB also offers the possibility of replication into two or more replica sets, providing

high availability. Every moment one of the replica sets works as the primary and replaces

and updates the data of the replicas. When the primary fails, the secondary replica becomes

principal. Additionally, MongoDB can run simultaneously over multiple servers, balancing

the load between them and keeping those security replica sets and the system running in

case of hardware failure.

MongoDB supports drivers for most common programming languages. Due to the fact

that the structure of a document is similar to a JSON object and most of programming

languages drivers support the management and conversion of JSON datatypes to language-

specific structures, it is too easy to communicate and manipulate the data. In the case of

this project, we use the PHP24 driver for MongoDB.

2.5 GeoServer

GeoServer25 [6] is an open source software server written in Java that allows users to view

and edit geospatial data. GeoServer functions as the reference implementation of the Open

Geospatial Consortium Web Feature Service26 standard, and also implements the Web Map

Service27, Web Coverage Service28 and Web Processing Service29 specifications.

Some of the main features of GeoServer are:

23http://docs.mongodb.org/manual/core/crud-introduction/
24http://php.net/manual/es/book.mongo.php
25http://geoserver.org/
26http://www.opengeospatial.org/standards/wfs
27http://www.opengeospatial.org/standards/wms
28http://www.opengeospatial.org/standards/wcs
29http://www.opengeospatial.org/standards/wps

16

2.5. GEOSERVER

• Full compatible with the OGC specifications.

• Easy installation and configuration (no large configuration files needed)

• Multiple formats supported, such as PostGIS or Shapefile.

• Multiple output formats supported, such as JPEG, GIF, PNG, SVG y GML.

• ECQL query language support.

GeoServer also includes an administration UI[2.6] from which users can manage the

stored data, observe and analyse the different attributes of the information as well as a pre-

view of the different layers for what GeoServer includes an integrated OpenLayers client.

In our project we save our geospatial dataset into a GeoServer installation and display the

information with maps integrated into Sefarad as a new widget developed with OpenLay-

ers.js.

Figure 2.6: Geoserver administration UI

17

CHAPTER 2. ENABLING TECHNOLOGIES

2.6 Fuseki: RDF over HTTP server

Fuseki30 is a SPARQL server. It provides REST-style SPARQL HTTP Update, SPARQL

Query, and SPARQL Update using the SPARQL protocol over HTTP. We will use a Fuseki

server installation for storing our own RDF files containing geoSPARQL data.

2.7 OpenLayers

OpenLayers31 [7][8] is the most complete and powerful open source JavaScript library to

create any kind of web mapping application. OpenLayers was originally developed and

released by MetaCarta under a BSD license.

In addition to offering a great set of components, such as maps, layers, or controls,

OpenLayers offers access to a great number of data sources using many different data

formats, implements many standards from Open Geospatial Consortium (OGC), and is

compatible with almost all browsers. Because of this, OpenLayers allows us to display the

geographical information stored in all major and common data servers into functional and

interactive maps. This means the users can connect your client application to web services

spread, add data from a bunch of raster and vector file formats such as GeoJSON and GML,

and organize them in layers to create original web mapping applications.

OpenLayers provides lots of controls such as pan, zoom, and query the map to build

interactive maps which give users the possibility to actually explore the maps and the

geospatial data display on them. OpenLayers allows you to include as many layers as you

want, each representing a piece of information. Each layer can be customized with different

colours, transparency, shadows, alive and clicking information, etc., and can be shown or

hidden every moment. There are two kinds of layers in OpenLayers: base and non-base.

Base layers are always visible and determines some of the essential properties of the map

(zoom, center, etc.). A map can have more than one base layer but only one of them can

be active at a time.

In the case of GeoLinked Data, OpenLayers provides us the necessary tools to represent

geographical information stored in GeoJSON32 in a map. GeoJSON is a format for encoding

a variety of geographic data structures and supports multiple geometry types, such as Point,

LineString, Polygon, MultiPoint, MultiLineString, and MultiPolygon.

30http://jena.apache.org/documentation/serving data/
31http://openlayers.org/
32http://geojson.org/

18

2.8. GRUNT: THE JAVASCRIPT TASK RUNNER

Figure 2.7: OpenLayers map example with multiple layers

2.8 Grunt: The JavaScript Task Runner

GruntJS33 [9] is a JavaScript task runner written with Node.js34 used to automate predefined

tasks to ease the development and integration of our project and to save time automating

repetitive tasks.

Grunt provides lots of plugins that are installed and manage via npm35, Node.js package

manager, which allows us to automate some manual repetitive tasks we run as part of our

development or deployment process. Those plugins are labelled contrib packages, which

means they are branded as officially maintained and stable. Moreover, users share their

own plugins and every one can easily create their own user-defined task plugin if there is

no one for the task they want to automate.

To automate your project with Grunt, you must implement your Gruntfile.js configura-

tion file and a package.json file. In the configuration file we indicate the tasks we want to

automate and load the corresponding plugins with a simple command and configure them

with JSON format. The package.json file is used to list grunt and the Grunt plugins your

project needs as npm devDependencies.

33http://gruntjs.com/
34http://nodejs.org/
35https://www.npmjs.org/

19

CHAPTER 2. ENABLING TECHNOLOGIES

Once the two mentioned files have been created, each time grunt is run it looks for a

locally installed Grunt. When it is found, the CLI (Grunt’s Command Line Interface) loads

the local installation of the Grunt library, applies the configuration from your Gruntfile,

and executes any tasks you’ve requested for it to run.

20

CHAPTER3
Requirement Analysis

This chapter describes one of the most important stages in software development:

the requirement analysis using different scenarios. For this, a detailed analysis of the

possible use cases is made using the Unified Modeling Language (UML). This language

allows us to specify, build and document a system using graphic language.

21

CHAPTER 3. REQUIREMENT ANALYSIS

22

3.1. OVERVIEW

3.1 Overview

The result of this chapter will be a complete specification of the requirements, which will be

matched by each module in the design stage. This helps us also to focus on key aspects and

take apart other less important functionalities that could be implemented in future works.

3.2 Actors dictionary

The list of primary and secondary actors is presented in table [3.1]. These actors participate

in the different use cases, which are presented later.

Actor identifier Role Description

ACT-1 Portal User

End user without technical knowledge on

Semantic Technologies that uses Sefarad

to query a SPARQL endpoint, display

the retrieved information and use the

faceted search. These users need an

intuitive and clear interface and an

appropriate help section.

ACT-2 Advanced User

End user with technical knowledge on

Semantic Technologies. Theses users can

edit their own SPARQL queries and use

more complex configurations because of

their knowledge.

ACT-3 Admin

Administrator of Sefarad, in charge of

tasks such as security management,

inserting and deleting datasets in local

database, etc.

Table 3.1: Actors list

23

CHAPTER 3. REQUIREMENT ANALYSIS

3.3 Use cases

This section identifies the use cases of the system. This helps us to obtain a complete

specification of the uses of the system, and therefore define the complete list of requisites to

match. First, we will present a list of the actors in the system and a UML diagram (Figure

3.1) representing all the actors participating in the different use cases. This representation

allows us to specify the actors that interact in the system and the relationships between

them.

These use cases will be described the next sections, including each one a table with their

complete specification. Using these tables, we will be able to define the requirements to be

established.

The next graphic represents all the use cases involved in this project in a UML diagram.

Figure 3.1: Use cases UML diagram

24

3.3. USE CASES

3.3.1 Portal users use cases

The use cases presented in this section are those related to all the portal users. These are:

• Edit SPARQL queries detailed in (Section 3.3.1.1).

• Run SPARQL queries detailed in (Ssection 3.3.1.2).

• Visual display of the information detailed in (Section 3.3.1.3).

• Keyword search detailed in (Section 3.3.1.4).

• Faceted search detailed in (Section 3.3.1.5).

• Log-in/Log-out detailed in sub-section 3.3.1.6).

• Customize Sefarad detailed in (Section 3.3.1.7).

• Save own configuration detailed in (Section 3.3.1.8).

• Reset own configuration detailed in (Section 3.3.1.9).

25

CHAPTER 3. REQUIREMENT ANALYSIS

3.3.1.1 Edit a SPARQL query

Use Case Name Edit SPARQL query

Use Case ID UC1.1

Primary Actor Advanced User

Flow of Events Actor Input System Response

1
The user selects the SPARQL

Editor to write his own query

A new text-box is opened for

the user to write the query

2 The user writes the query

The SPARQL Editor assists

the user by displaying

different valid options for the

query or highlighting errors

3 The user saves the query
The new query is saved for

later execution

Table 3.2: Edit a SPARQL query

26

3.3. USE CASES

3.3.1.2 Run a SPARQL query

Use Case Name Run SPARQL query

Use Case ID UC1.2

Primary Actor Portal User

Pre-Condition The user has selected or edit a SPARQL query

Flow of Events Actor Input System Response

1
The user selects a SPARQL

endpoint

The configuration of the

application is updated so the

following queries will be run

against the selected endpoint

2.1 The user executes the query

The SPARQL query is

executed against the selected

endpoint

2.2

The server responds with

results data. The data

available is updated with the

information retrieved and all

the widgets are automatically

updated

Table 3.3: Run a SPARQL query

27

CHAPTER 3. REQUIREMENT ANALYSIS

3.3.1.3 Visual display of the information

Use Case Name Visual display of the information

Use Case ID UC1.3

Primary Actor Portal User

Pre-Condition
The application has received response data from a SPARQL

query

Flow of Events Actor Input System Response

1

The user adds a new widget

selecting which facet or facets

to show

A widget is deployed

configured with the selected

facet or facets. This widget is

automatically updated when

the filtered data is updated

Table 3.4: Visual display of the information

28

3.3. USE CASES

3.3.1.4 Keyword search

Use Case Name Keyword Search

Use Case ID UC1.4

Primary Actor Portal User

Pre-Condition
The application has received response data from a SPARQL

query and it has been indexed

Flow of Events Actor Input System Response

1

The user expresses her goals

by typing textual keywords

into the search box

The keywords entered are

stored as a new filter

2

The filtered data available in

the application is updated by

using the new filters selected

by the user to filter on any of

the fields of the data

3
The widget layout is

automatically updated

Table 3.5: Keyword search

29

CHAPTER 3. REQUIREMENT ANALYSIS

3.3.1.5 Faceted search

Use Case Name Faceted Search

Use Case ID UC1.5

Primary Actor Portal End-User

Pre-Condition
The application has received response data from a SPARQL

query and it has been indexed

Flow of Events Actor Input System Response

1

The user adds a new faceted

search widget selecting which

facet to filter

A new faceted widget is

deployed configured with the

selected facet. This widget

shows all the possible values

for this facet

2
The user selects a new values

for this facet to filter by

The filtered data is

automatically updated with

the new criteria

3
The widget layout is

automatically updated

Table 3.6: Faceted search

30

3.3. USE CASES

3.3.1.6 Log-in/Log-out

Use Case Name Log-in/Log-out

Use Case ID UC1.6

Primary Actor Portal User & Admin

Pre-Condition The application has been initialized without any user logged in

Post-Condition The user can log out any moment

Flow of Events Actor Input System Response

1

The user introduces his

credentials (username and

password)

On the server-side the

application finds matches for

the username/password

introduced in MongoDB

users database

2.a
The user introduces valid

credentials

The user is authenticated.

The interface of the

application is updated to the

admin interface, showing

hidden buttons such as ’add

new widget’, ’delete widget’,

’save configuration’, etc.

2.b

The user introduces no valid

credentials

An alert message reports that

authentication has failed.

3
The user clicks ’logout’

button

The session is closed and the

application turns back to

no-admin interface

Table 3.7: Log-in/Log-out

31

CHAPTER 3. REQUIREMENT ANALYSIS

3.3.1.7 Customize Sefarad

Use Case Name Customize Sefarad

Use Case ID UC1.7

Primary Actor Portal User

Pre-Condition The application has been initialized and the user has logged in

Flow of Events Actor Input System Response

1.1 The user adds a new widget
The new widget is stored and

displayed in the layout

1.2 The user removes a widget
The widget is deleted and

removed from the layout

1.3 The user configures a widget

The new configuration is

stored and the widget is

redrawn

1.4
The user reorders the widget

layout

The new configuration is

stored

1.5
The user changes the global

configuration

The new configuration is

stored

Table 3.8: Customize Sefarad

32

3.3. USE CASES

3.3.1.8 Save own configuration

Use Case Name Save configuration

Use Case ID UC1.8

Primary Actor Portal User

Pre-Condition The application has been initialized and the user has logged in

Flow of Events Actor Input System Response

1
The user clicks ’save

configuration’ button

The old saved configuration

for the user is removed from

the database

2
The actual configuration is

inserted into the database

Table 3.9: Save own configuration

33

CHAPTER 3. REQUIREMENT ANALYSIS

3.3.1.9 Reset own configuration

Use Case Name Reset configuration

Use Case ID UC1.9

Primary Actor Portal User

Pre-Condition
The application has been initialized and the user has logged in

and the user has a configuration saved

Flow of Events Actor Input System Response

1
The user clicks ’reset

configuration’ button

The old saved configuration

for the user is removed from

the database

2
The default configuration is

retrieved from the database

3

The actual configuration is

replaced with the default

configuration retrieved

Table 3.10: Reset own configuration

34

3.3. USE CASES

3.3.2 Admin use cases

This use case package collects the use cases related to admin users. The use cases presented

in this section are:

• Security/Users Management detailed in (Section 3.3.2.1).

• Local Datasets Management detailed in (Section 3.3.2.2).

3.3.2.1 Security and users management

Use Case Name Security/Users Management

Use Case ID UC2.1

Primary Actor Admin

Pre-Condition
The administrator of the system has logged-in as admin into the

MongoDB database

Flow of Events Actor Input System Response

1.1
The admin inserts a new user

into the database

The new user document is

stored in the users collection

1.2
The admin removes a user

from the database

The user document is deleted

from the users collection

1.3
The admin edits user

permissions or information

The user information is

updated

Table 3.11: Security and users management

35

CHAPTER 3. REQUIREMENT ANALYSIS

3.3.2.2 Local datasets management

Use Case Name Local datasets management

Use Case ID UC2.2

Primary Actor Admin

Pre-Condition
The administrator of the system has logged-in as admin into the

local database

Flow of Events Actor Input System Response

1.1
The admin inserts data into

the local dataset
The new data is stored

1.2
The admin removes data

from the dataset
The data is removed

1.3
The admin updates the local

dataset

The dataset is updated and

saved

Table 3.12: Local datasets management

3.3.3 Conclusions

With the use cases described we have introduced the basic functionalities that have been

implemented in this project. They help us to understand the different actors that can

interact. They can serve as a base for further development and different use cases that can

come to mind.

36

CHAPTER4
Architecture

This chapter describes in depth how the system is structured in different modules

and how the users interact with them. We will describe each one of these modules

describing its main purpose, structure and function. After reading this chapter, the

user will know how the application and each of its modules work.

37

CHAPTER 4. ARCHITECTURE

38

4.1. INTRODUCTION

4.1 Introduction

In this chapter we show a detailed diagram [4.1] about the complete architecture of Sefarad.

In the first section we introduce that scheme and the behaviour and the main function of

each of the modules and components. After this, in the following subsections we describe

each module in depth showing specific diagrams, screenshots and detailing their particular

operation.

4.2 Architecture

A diagram of the architecture is shown in Figure 4.1. Each module is detailed in the

following sections.

Figure 4.1: General Architecture

39

CHAPTER 4. ARCHITECTURE

Since the main purpose of this master thesis is to develop a HTML5 Framework to

query, manage and represent Geo Linked Data, we need a SPARQL Engine to edit and

execute the queries to the endpoint we want and retrieve the data. Non-technical users can

edit their queries by using a SPARQL editor which will help them with recommendations

and corrections while editing the query and advanced users can edit their own queries. The

application allows the users to query any semantic repository with a corresponding SPARQL

endpoint or any local dataset within a local database such as Fuseki and Virtuoso or Geo

Server. In order to get the data in a proper format for Sefarad, the Geo Proxy module

handles the conversion of the data when it is needed.

Once the data is retrieved, the Search and filtering module provides us the necessary

tools to manage the queried data enabling Faceted search, Keyword search and Geo filtering.

The application automatically indexes, sorts and classifies the information, obtaining the

different facets and values of the data. All the filtering services are provided to the user in

an intuitive graphical interface by providing multiple widgets, a search box and a sortable

table of results.

To handle the changes in the filtered data due to the different filters selected by the

user, the Model View View-Model module uses the features offered by Knockout framework.

Every time a new search or filter criteria is included, the data model will be automatically

updated with the results that meet the new conditions and all the widgets displayed in the

layout will be redrawn using updated final results.

For the security and administration tasks, we need a User management module. This

module includes a Security: authentication and authorization sub-module based on PHP

and MongoDB. The user’s username and password (encoded in MD5 hash) are stored in a

MongoDB collection named users. When a user wants to log in, the application checks his

user credentials with a PHP5 script. In case of success, depending on the user’s permissions

(admin, basic user, etc.), the different tools and options are shown or hidden (i.e. add,

configure and delete widgets). Furthermore, the users preferences and settings are stored

in another MongoDB collection, so that when a user logs in the application is configured

using the last configuration saved by the user. This is managed by MongoDB: settings and

preferences sub-module.

Finally, the Setup module provides a graphical installer for an easy deployment of the

application in any computer running an Linux operating system, installing anything needed

to run Sefarad. This module includes two sub-modules: a Custom installer, which allows

the user to select which modules to include in its installation; and an automation module,

to automate certain repetitive tasks with a single command.

40

4.3. SPARQL ENGINE

4.3 SPARQL Engine

The SPARQL engine is the main module for managing the SPARQL queries. It provides

the necessary tools for editing and running our own queries to the selected dataset, what is

the first step in the indexing and processing of the information requested.

Sefarad allows the user to query different kinds of datasets. The user can query a local

dataset stored into a geographic server such as GeoServer or a local RDF database such as

Fuseki or Virtuoso. The user can also select a SPARQL endpoint provided by any website

to query their public datasets. All these options can be configured in the SPARQL tab in

the configuration window. After selecting the endpoint, the user can write his own query

and execute it. Data retrieved in response to the query will be stored in the application as

a JSON object. This data will be managed by both the Search and filtering module and

the Model View View-Model in order to allow all the filtering features, the display and the

update of the final results and widgets.

The SPARQL Engine module consists of two submodules: SPARQL Editor, which sup-

ports the user to write his own query by showing errors in the query language or proposing

valid options; and the SPARQL queries executor, which allows the user to run the query

and retrieve the data.

4.3.1 SPARQL Editor

This sub-module, developed by Alejandro Saura Villanueva1 allows the user to write an edit

his own query. Those basic users with no full technical knowledge about SPARQL query

language can make use of the SPARQL Editor based on Yasqe2 provided by Sefarad. They

can access it in one of the principal tabs of the application. This service provides a simple

syntax highlighted text area, bundled with features such as autocompletion, and the option

to query SPARQL endpoints. So, a non-advanced user can edit his own query with the

assistance of the application. The complete list of features is presented below:

• Query syntax highlighting and checking

• Accessing -all- endpoints (including CORS-disabled ones, or endpoints on your local-

host)

1http://www.gsi.dit.upm.es/index.php?option=com jresearch&view=member&task=show&id=140&Itemid=193
2http://yasqe.yasgui.org/

41

CHAPTER 4. ARCHITECTURE

• Prefix autocompletion (using prefix.cc3)

• Endpoint search and autocompletion (Using CKAN4 and the Mondeca Endpoint Sta-

tus Catalogue5)

• Query permalinks

• Persistent application states between user sessions

• Query bookmarking

• SNORQL-type navigation

• Works offline as well

• Configurable requests (e.g. for adding soft-limit=-1 in queries to a 4-store endpoint)

The following screenshot shows the SPARQL Editor in Sefarad.

Figure 4.2: SPARQL Editor

On the other hand, those advanced users with technical knowledge about SPARQL

syntax can write their queries without the help of the editor directly in the SPARQL section

of the configuration window.

3http://prefix.cc/
4http://datahub.io/
5http://labs.mondeca.com/sparqlEndpointsStatus/

42

4.4. GEO PROXY

4.3.2 SPARQL queries executor

This module is responsible for executing the query and store the information retrieved. The

users can select the information source (local dataset: Fuseki or Geoserver; or any SPARQL

endpoint) and run the query. After receiving the response from the server, this module will

index the retrieved data and will work with it using the rest modules.

Figure 4.3: SPARQL query sequence diagram

4.4 Geo Proxy

The Geo Proxy Module is responsible for processing the data and converting it to a proper

format suitable for its management with Sefarad. In the case of geographic information, it

is particularly important the conversion from SPARQL response data to GeoJSON data,

the proper format for representing geographic information in an Openlayers map. For this

purpose, we have developed the next converter module shown in listing 4.1. The function

takes a SPARQLJSON object and process it to return a GeoJSON object, which can be

easily read and represented with an Openlayers map.

43

CHAPTER 4. ARCHITECTURE

Listing 4.1: SPARQL to GeoJSON conversion

function sparqlToGeoJSON (sparqlJSON) {
’use strict’ ;

var bindingindex , varindex , geometryType , wkt , coord inate s ,

property ;

var geo j son = {
"type" : "FeatureCollection" ,

"features" : []

} ;

f o r (b ind ing index = 0 ; b ind ing index < sparqlJSON . l ength ; ++

binding index) {

f o r (var key in sparqlJSON [b ind ing index]) {

i f ((sparqlJSON [b ind ing index] [key] . datatype != undef ined) &&

(sparqlJSON [b ind ing index] [key] . datatype () === "http://www.

opengis.net/ont/geosparql#wktLiteral" | |
sparqlJSON [b ind ing index] [key] . datatype () === "http://www.

openlinksw.com/schemas/virtrdf#Geometry")) {
//assumes the well-known text is valid!

wkt = sparqlJSON [b ind ing indehttp ://tex.stackexchange.com/

questions/180222/how-to-change-font-size-for-specific-

lstlistingx][key].value();

//find substring left of first "(" occurrence for geometry

type

switch (true) {
case /POINT∗/ . t e s t (wkt . subs t r (0 , wkt . indexOf ("("))) :

geometryType = "Point" ;

c oo rd ina t e s = coo rd ina t e s . subs t r (1 , c oo rd ina t e s . l ength

− 2) ; //remove redundant [and] at beginning and

end

break ;

case /MULTIPOINT∗/ . t e s t (wkt . subs t r (0 , wkt . indexOf ("("))) :

geometryType = "MultiPoint" ;

break ;

case /LINESTRING∗/ . t e s t (wkt . subs t r (0 , wkt . indexOf ("("))) :

geometryType = "Linestring" ;

break ;

44

4.4. GEO PROXY

case /MULTILINE∗/ . t e s t (wkt . subs t r (0 , wkt . indexOf ("("))) :

geometryType = "MultiLine" ;

break ;

case /POLYGON∗/ . t e s t (wkt . subs t r (0 , wkt . indexOf ("("))) :

geometryType = "Polygon" ;

break ;

case /MULTIPOLYGON∗/ . t e s t (wkt . subs t r (0 , wkt . indexOf ("("))

) :

geometryType = "MultiPolygon" ;

break ;

case /GEOMETRYCOLLECTION∗/ . t e s t (wkt . subs t r (0 , wkt . indexOf

("("))) :

geometryType = "GeometryCollection" ;

break ;

d e f a u l t :

//invalid wkt!

cont inue ;

}

var f e a t u r e = {
"type" : "Feature" ,

"geometry" : {
"type" : geometryType ,

"coordinates" : eva l (’(’ + coord ina t e s + ’)’)

} ,

"properties" : sparqlJSON [b ind ing index]

} ;

g eo j son . f e a t u r e s . push (f e a t u r e) ;

}
}

}
return geo j son ;

}

Listing 4.1: SPARQL to GeoJSON conversion

45

CHAPTER 4. ARCHITECTURE

4.5 Local Server

The main feature of this module is to provide a local database to store our datasets. The user

can upload his data to a local database to query and manage it with Sefarad, configuring

it in the SPARQL tab in the configuration section, instead of using an external endpoint.

It can be RDF data, for whose storage we use Fuseki and Virtuoso, or shapefiles data, for

which we use GeoServer. Figure 4.4 shows the different ways to access these databases and

represent the results with Openlayers.

Figure 4.4: Fuseki/Virtuoso and GeoServer

4.5.1 Fuseki and Virtuoso

In either of these two databases we can store our datasets in RDF format. They both

provide us an API REST to perform the queries and retrieve the data. Before storing the

information in Sefarad, it should be treated in the Geo Proxy.

4.5.2 Geo Server

GeoServer6 [6] is an open source software server written in Java that allows users to view

and edit geospatial data.

Some of the main features of GeoServer are:

6http://geoserver.org/

46

4.6. SEARCH AND FILTERING MODULE

• Full compatible with the OGC specifications.

• Easy installation and configuration (no large configuration files needed)

• Multiple formats supported, such as PostGIS or Shapefile.

• Multiple output formats supported, such as JPEG, GIF, PNG, SVG y GML.

• ECQL query language support.

GeoServer also includes an administration UI from which users can manage the stored

data, observe and analyse the different attributes of the information as well as a preview of

the different layers for what GeoServer includes an integrated OpenLayers client.

The user can save his geospatial dataset into a GeoServer installation and display the

information with maps integrated into Sefarad as a new widget developed with OpenLay-

ers.js. Into this server the user can upload geographic dataset in specific GIS formats such

as DBF or Shapefile.

4.6 Search and filtering module

Once the information is retrieved and stored in a proper format, the ’Search and Filtering’

module provides the necessary tools to categorize, filter and sort that information. For this

purpose, this module provides different features:

• Back-end technology to manage and index the data, its different facets and the filtering

features, updating the filtered results when the user selects new filtering criteria.

• A results table which shows the final filtered results and all the filters selected by

the user, allowing him to manage both the filters and the results.

• Keyword search box, in which the user can introduce the words he wants to search

by. This feature is fully detailed in subsection 4.6.1.

• ’Tag cloud’ and ’vertical layout’ filtering widgets, which show the different values

for a particular facet, allowing the faceted search detailed in subsection 4.6.2. The

user can configure all these widgets.

• Different many widgets to filter by numeric or geographic facets.

47

CHAPTER 4. ARCHITECTURE

To manage and update the filtered data and the widgets in the layout when the user

selects new filters, this module makes use of the advantages of Knockout.js. When a new

filter is selected (either in a widget or in the search box), it is added to a collection that

contains all the filters selected. When this collection changes, due to the knockout bindings,

the filtered data is updated with the data that satisfy the new criteria. After that, all the

active widgets are redrawn with the new filtered data available. Figure 4.5 and Figure 4.6

show examples of filtering.

4.6.1 Keyword search

This sub-module allows the user to filter the information by a keyword criteria. The user

can introduce his search in a text-box shown in the top right corner of the application. This

criterion will be used by the application to find results that contain the entered text in any

of its fields.

Figure 4.5: Keyword search example

Figure 4.6: Faceted search example

48

4.6. SEARCH AND FILTERING MODULE

4.6.2 Faceted search

This feature (also known as faceted browsing) allows the user to access the information

according to a faceted classification system, applying multiple filters. A faceted classification

system classifies each information element along multiple explicit dimensions, called facets,

enabling the classifications to be accessed and ordered in multiple ways. Facets correspond

to properties of the information elements. They are derived by analysis of the different keys

of the retrieved data (in JSON format).

4.6.3 Geo filtering

Due to the geographical purpose of this master thesis, a geo filtering module is needed.

This module works in a similar way of the two modules above, but focusing on geographical

terms. Thus, this sub-module allows the management and filtering of the information on

aspects such as latitude, longitude, area, etc.

With respect to the Openlayers maps, this module includes features such as layers clas-

sification, so that the different information can be categorized into different layers that can

be shown or hidden on these maps (restaurants, hospitals, urban areas, etcetera.

Regarding to the data stored in GeoServer, this module includes a tool that allows

the user to filter the information available on the server by using CQL or ECQL7 query

language. CQL (Common Query Language) is a query language created by the OGC for the

Catalogue Web Services8 specification. Unlike the XML-based Filter Encoding language,

CQL is written using a familiar text-based syntax. It is thus more readable and better-

suited for manual authoring. GeoServer provides an extended version of CQL called ECQL,

which removes the limitations of CQL, providing a more flexible language with stronger

similarities with SQL. The user can include in his query any of the attributes included in

the layer, both text and numeric fields. Also, the user may employ any of the comparison

operators (=, <>, >, <, >=, <=), filter by range (BETWEEN X AND Y). Comparisons

can be established between an attribute and a value (numberic or textual), or between two

attributes of the layer (e.g., ATTRIBUTE1 ¿ ATTRIBUTE2). Furthermore, this query

language includes geometric filters capabilities, such as intersections or crosses. The full list

of geometric predicates is: EQUALS, DISJOINT, INTERSECTS, TOUCHES, CROSSES,

WITHIN, CONTAINS, OVERLAPS, RELATE, DWITHIN, BEYOND.

7http://docs.geoserver.org/2.5.x/en/user/filter/index.html
8http://www.opengeospatial.org/standards/cat

49

CHAPTER 4. ARCHITECTURE

4.7 Model View View-Model

As we detailed before, we use the Knockout.js framework, which is a JavaScript library

that helps us to create rich, responsive display and editor user interfaces with a clean

underlying data model. Any time we have sections of UI that update dynamically, KO

helps us implement it more simply and maintainably.

The Model View ViewModel (MVVM9) is an architectural pattern used in software

engineering. Largely based on the model–view–controller pattern (MVC), MVVM is a

specific implementation targeted at UI development platforms which support event-driven

programming. The main features of this module are: dependency tracking, automati-

cally updates the right parts of our UI (widgets layout) whenever our data model changes;

declarative bindings, a simple way to connect parts of our UI to our data model.

Figure 4.7: Model View ViewModel diagram10

MVVM facilitates a clear separation of the development of the graphical user interface

(as markup language or GUI code) from the development of the back end logic known as

the model (also known as the data model to distinguish it from the view model). The

view model of MVVM is a value converter, meaning that the view model is responsible

for exposing the data objects from the model in such a way that those objects are easily

managed and consumed. In this respect, the view model is more model than view, and

handles most if not all of the view’s display logic (though the demarcation between what

functions are handled by which layer is a subject of ongoing discussion and exploration).

The view model may also implement a mediator pattern organising access to the backend

logic around the set of use cases supported by the view.

MVVM was designed to make use of data binding functions in to better facilitate the

separation of view layer development from the rest of the pattern by removing virtually all

9http://en.wikipedia.org/wiki/Model View ViewModel
10http://msdn.microsoft.com/

50

4.7. MODEL VIEW VIEW-MODEL

GUI code (“code-behind”) from the view layer. Instead of requiring user experience (UX)

developers to write GUI code, they can use the framework markup language and create

bindings to the view model, which is written and maintained by application developers.

This separation of roles allows interactive designers to focus on UX needs rather than

programming of business logic, allowing for the layers of an application to be developed in

multiple work streams for higher productivity.

By using knockout bindings in our HTML document, this module automatically updates

the DOM elements whenever the vm.filteredData() array changes. An example of a

knockout binding in Sefarad is show in listing[4.2].

<div id =’column1tab0 ’ c l a s s =’column ’ >

< !−− Widgets a t r i g h t column −−>
<div c l a s s =’ conta ine r r i ght ’ data−bind=’ template : { name : ’

widgets−template ’ , f o r each : act iveWidgetsRight , beforeRemove :

func t i on (elem) { $ (elem) . s l ideUp (1500 , ’ easeOutBounce ’ ,

f unc t i on () {$ (elem) . remove () ; }) ; } , templateOptions : {
paren tL i s t : act iveWidgetsRight } } , s o r t a b l e L i s t :

act iveWidgetsRight ’></ div>

</ div>

Listing 4.2: Active widgets binding

The code above shows the data-binding for all the widgets at right column. As you can

see at the foreach: activeWidgetsRight bindgin, the widgets-template is filled

with every active widget. When the user adds a new widget, a new object is pushed. Due

to de data-binding, the DOM object is automatically updated and a new HTML DIV for

the new widget is added. That is how the model view view-model works.

4.7.1 Data Model

The view model is defined in the file js/mvvm.js. It is a “model of the view”, meaning it

is an abstraction of the view that also serves in mediating between the view and the model

which is the target of the view data bindings. It could be seen as a specialized aspect of what

would be a controller (in the MVC pattern) that acts as a converter that changes model

information into view information and passes commands from the view into the model. The

view model exposes public properties, commands, and abstractions.

So the view model contains of the public properties (functions and ko.observables) that

will be accessed from the other parts of the project, directly or through data bindings.

51

CHAPTER 4. ARCHITECTURE

4.7.2 Widgets layout

One of the main purposes of this project is to show the queried semantic data. To this end

Sefarad includes a large library of widgets to display many kinds of information: filtering

widgets, slider widget, graphic widgets (bars, wheels, donuts, etc.). To visualize geographic

information, the most important widgets are: results table, filtering widgets (tagcloud and

selector), Openlayers map for GeoJSON and Openlayers map for GeoServer shapefiles. We

describe their main features below.

Results table. This widget shows the total filtered results.

The user can show or hide the different columns of the data,

sort the elements by any of the attributes and search any

result. If any result contains a link to the URI of its web

resource, it can be directly accessed by clicking on it, so it

will open a new tab.

Tagcloud widget. This widget shows the total different

values for the selected facet. It allows the user to select one

o more values and filter the results, what we presented as

faceted filtering or faceted browsing.

Map for GeoJSON data. This is an Openlayers

map which can represent any geospatial and geometric

information in GeoJSON format. It includes POINT,

MULTIPOINT, POLYGON, MULTIPOLYGON, LINE,

etc.. For this purpose, this widget uses the geoj

son format.read() function provided by Openlayers.js.

This map also includes the possibility of group the different

types of data into different layers, so the user can show or

hide the different kinds of results.

Map for GeoServer data. This map allows the user to

display the different layers (file formats .dbf and .shp) stored

on GeoServer. A important feature is that this widget in-

cludes a configuration section to manage ECQL queries in

which the user can edit and run his own queries and display

the results into the map.

52

4.7. MODEL VIEW VIEW-MODEL

Furthermore, Sefarad offers two different layout templates that the user can select ac-

cording to his needs: a linear layout and an accordion layout.

4.7.2.1 Linear layout

The linear layout is the basic style layout for Sefarad. In this template the application is

divided in two columns, with the right column width bigger than the left one. Each widget

consists on its own division and item in the screen. If the sortable widgets option is enabled,

any of the widgets can be placed either in both columns. As the right column is bigger,

it is the best option to place the more visual widgets such as the different maps or the

results table. In the other hand, the left column is better option for simpler widgets such

as filtering widgets, which not require a large field of view.

Figure 4.8: Linear Layout

4.7.2.2 Accordion layout

The accordion layout is a special style layout for Sefarad. It is also divided into two columns,

each one with the same dimensions as in the previous case. The difference is that all the

widgets in the left column are packed into an accordion widget. This option is specially

designed to simplify the layout when the user wants to display a large amount of filtering

widgets, so that the user can compress all these widgets into an accordion on the left of the

screen, while the right column shows the results and map widgets.

53

CHAPTER 4. ARCHITECTURE

Figure 4.9: Accordion Layout

4.8 User management module

This module provides all the necessary features for users control and security. It includes an

installation of a MongoDB database in which the application stores users authentication and

authorization information (username, password, role and permissions) and users preferences

and settings. This module also includes all the server-side technology necessary to manage

user login/logout, load saved settings and saving new preferences. For this purpose, the

system uses the PHP driver11 for MongoDB databases management.

4.8.1 Security: authentication and authorization

As we introduced above, this module contains PHP sub-modules and a MongoDB collection

in the Sefarad MongoDB database. For security reasons, the password of users are stored

in the database md5 hashed.

For session handling, we have developed a Session Manager as explained in [10]. The

security module provides a session manager in PHP, a module that will handle the HTTP

session of a user in Sefarad, using MongoDB for storing the session data. It provides us

important functionalities such as signing in a user (authentication), authorizing his/her ac-

tions, and logging him/her out. We use object-oriented programming principles for building

11http://php.net/manual/es/book.mongo.php

54

4.8. USER MANAGEMENT MODULE

the module, so that it is easy to maintain. We also build a separate module for user au-

thentication, which is used by the session manager for logging a user in.

We need to implement three php classes:

• dbconnection.php, detailed in section[4.8.1.1].

• session.php, detailed in section[4.8.1.2].

• user.php, detailed in section[4.8.1.3].

4.8.1.1 MondoDB connection

The class DBConnection handles the connection with the MongoDB database. You can see

the code in the listing[4.3] below.

Listing 4.3: dbconnection.php

<?php

class DBConnection {
const HOST = ’localhost’ ;

const PORT = 27017 ;

const DBNAME = ’sefarad’ ;

p r i v a t e s t a t i c $ in s tance ;

pub l i c $connect ion ;

pub l i c $database ;

p r i v a t e function c o n s t r u c t () {
$connec t i onSt r ing = s p r i n t f (’mongodb://%s:%d’ , DBConnection : :

HOST, DBConnection : :PORT) ;

t ry {
$th i s−>connect ion = new Mongo($connec t i onSt r ing) ;

$ th i s−>database = $th i s−>connect ion−>selectDB (DBConnection : :

DBNAME) ;

}
catch (MongoConnectionException $e) {

throw $e ;

}
}

s t a t i c pub l i c function i n s t a n t i a t e () {

55

CHAPTER 4. ARCHITECTURE

i f (! i s s e t (s e l f : : $ i n s tance)) {
$ c l a s s = CLASS ;

s e l f : : $ in s tance = new $ c l a s s ;

}
return s e l f : : $ i n s tance ;

}

pub l i c function g e t C o l l e c t i o n ($name) {
return $th i s−>database−>s e l e c t C o l l e c t i o n ($name) ;

}
}
</div>

Listing 4.3: dbconnection.php

Calling the initialize() static method on this class returns an instance of it, and we

can then select a collection by invoking the getCollection() method on this instance. The

DBConnection class implements the Singleton12 design pattern. This design pattern ensures

that there is only a single connection open to MongoDB, within the context of a single HTTP

request.

4.8.1.2 Session Manager

This module uses a collection in a MongoDB database for storing/retrieving/handling ses-

sions.It extends the session handling with session set save handler(), a function

which allows us to define our own functions for storing and retrieving session data. The

function takes six arguments, each one being the name of a callback function for handling

sessions (open, close, read, write, destroy and gc). Let’s see each callback in detail:

• open(): This method is called whenever a session is initiated with session start().

It takes two arguments, the path to where the session will be stored and the name of

the session cookie. It returns TRUE to indicate successful initiation of a session.

• close(): This is called at the successful end of a PHP script using session handling.

This also needs to return TRUE.

• read(): This method is called whenever we are trying to retrieve a variable from the

$ SESSION super global array. It takes the session ID as an argument and returns a

string value of the $ SESSION variable.

12http://en.wikipedia.org/wiki/Singleton pattern

56

4.8. USER MANAGEMENT MODULE

• write(): This function is executed whenever we are trying to add or change something

in $ SESSION. This takes the session ID and the serialized representation of the data

to be stored in $ SESSION as its two arguments.

• destroy(): This is called whenever we are trying to terminate a session by calling the

built-in session destroy() method. It takes the session ID as its only parameter

and returns TRUE upon success.

• gc(): This function is executed by the PHP session garbage collector. It takes the

maximum lifetime of session cookies as its argument, and removes any session older

than the specified lifetime. It also returns TRUE on success. The session.gc probability

setting in php.ini specifies the probability of the session garbage collector running.

The final code for the session.php class is shown in listing[4.4].

<?php

r e q u i r e o n c e (’dbconnection.php’) ;

class SessionManager{

cons t s d e c l a r a t i o n ;

p r i v a t e $ mongo , $ c o l l e c t i o n , $ c u r r e n t S e s s i o n ;

pub l i c function c o n s t r u c t () {
$th i s−> mongo = DBConnection : : i n s t a n t i a t e () ;

$ th i s−> c o l l e c t i o n = $th i s−> mongo−>g e t C o l l e c t i o n (

SessionManager : : COLLECTION) ;

s e s s i o n s e t s a v e h a n d l e r (array(&$th i s ,’open’) , array(&$th i s ,’

close’) , array(&$th i s ,’read’) , array(&$th i s ,’write’) ,

array(&$th i s ,’destroy’) , array(&$th i s ,’gc’)) ;

i n i s e t (’session.gc_maxlifetime’ , SessionManager : :

SESSION LIFESPAN) ;

s e s s i o n s e t c o o k i e p a r a m s (SessionManager : : SESSION LIFESPAN ,

SessionManager : : SESSION COOKIE PATH, SessionManager : :

SESSION COOKIE DOMAIN) ;

sess ion name (SessionManager : : SESSION NAME) ;

s e s s i o n c a c h e l i m i t e r (’nocache’) ;

s e s s i o n s t a r t () ;

}

pub l i c function open ($path , $name) { return true ; }

57

CHAPTER 4. ARCHITECTURE

pub l i c function c l o s e () { return true ; }

pub l i c function read ($ s e s s i o n I d) {
$query = array (

’session_id’ => $ s e s s i on Id ,

’timedout_at’ => array (’$gte’ => time ()) ,

’expired_at’ => array (’$gte’ => SessionManager : :

SESSION LIFESPAN)) ;

$ r e s u l t = $th i s−> c o l l e c t i o n −>f indOne ($query) ;

$ th i s−> c u r r e n t S e s s i o n = $ r e s u l t ;

i f (! i s s e t ($ r e s u l t [’data’])) {return ’’ ; }
return $ r e s u l t [’data’] ;

}

pub l i c function wr i t e ($ s e s s i on Id , $data) {
$exp i r ed a t = time () + s e l f : : SESSION TIMEOUT;

$new obj = array (

’data’ => $data ,

’timedout_at’ => time () + s e l f : : SESSION TIMEOUT,

’expired_at’ => (empty ($th i s−> c u r r e n t S e s s i o n)) ? time () +

SessionManager : : SESSION LIFESPAN : $th i s−> c u r r e n t S e s s i o n [

’expired_at’]) ;

$query = array (’session_id’ => $ s e s s i o n I d) ;

$ th i s−> c o l l e c t i o n −>update ($query , array (

’$set’ => $new obj

) , array (

’upsert’ => True

)) ;

return True ;

}

pub l i c function dest roy ($ s e s s i o n I d) {
$th i s−> c o l l e c t i o n −>remove (array (’session_id’ => $ s e s s i o n I d)) ;

return True ;

}

pub l i c function gc () {
$query = array (’expired_at’ => array (’$lt’ => time ())) ;

$ th i s−> c o l l e c t i o n −>remove ($query) ;

return True ;

58

4.8. USER MANAGEMENT MODULE

}

pub l i c function d e s t r u c t () {
s e s s i o n w r i t e c l o s e () ;

}
}
$ s e s s i o n = new SessionManager () ;

Listing 4.4: session.php

4.8.1.3 User class

Finally, this class represents a user in the web application. This class can be used to log a

user in (authentication), enable him to view pages that he is allowed to see (authorization),

and log him out when he wishes. The php class is detailed in Listing [4.5].

<?php

r e q u i r e o n c e (’dbconnection.php’) ;

r e q u i r e o n c e (’session.php’) ;

class User {
const COLLECTION = ’users’ ;

p r i v a t e $ mongo ;

p r i v a t e $ c o l l e c t i o n ;

p r i v a t e $ u s e r ;

pub l i c function c o n s t r u c t () {
$th i s−> mongo = DBConnection : : i n s t a n t i a t e () ;

$ th i s−> c o l l e c t i o n = $th i s−> mongo−>g e t C o l l e c t i o n (User : :

COLLECTION) ;

i f ($ th i s−>i sLoggedIn ()) $th i s−> loadData () ;

}

pub l i c function i sLoggedIn () {
return i s s e t ($ SESSION [’user_id’]) ;

}

pub l i c function authent i ca t e ($username , $password) {
$query = array (’username’ => $username ,’password’ => md5(

$password)) ;

59

CHAPTER 4. ARCHITECTURE

$th i s−> u s e r = $th i s−> c o l l e c t i o n −>f indOne ($query) ;

i f (empty ($th i s−> u s e r)) return False ;

$ SESSION [’user_id’] = (s t r i n g) $th i s−> u s e r [’_id’] ;

return True ;

}

pub l i c function l ogout () {
unset ($ SESSION [’user_id’]) ;

unset ($ SESSION [’user_name’]) ;

}

pub l i c function g e t ($a t t r) {
i f (empty ($th i s−> u s e r)) return Null ;

switch ($a t t r) {
case ’username’ :

$username = $th i s−> u s e r [’username’] ;

return s p r i n t f (’Username: %s’ , $username) ;

d e f a u l t :

return (i s s e t ($ th i s−> u s e r [$a t t r])) ? $th i s−> u s e r [$a t t r] :

NULL;

}
}

p r i v a t e function loadData () {
$ id = new MongoId ($ SESSION [’user_id’]) ;

$ th i s−> u s e r = $th i s−> c o l l e c t i o n −>f indOne (array (’_id’ => $ id))

;

}
}

Listing 4.5: user.php

In the constructor of this class, we obtain a database connection and select the appro-

priate collection. These objects are stored in private member variables of the class. The

authenticate() method of the class is used to authenticate a valid user. The method

receives the username and password as its arguments. It queries the database with the

username and MD5 hash of the password. If a matching document is found, the ObjectId

of the document is casted to string and stored in $ SESSION as user id. The method re-

turns TRUE to indicate that the user is successfully authenticated. Otherwise the method

returns FALSE.

60

4.8. USER MANAGEMENT MODULE

The isLoggedIn() method checks whether the user is already logged in by simply

checking the existence of user id in $ SESSION. The logout() method terminates the

authenticated session by unsetting the user id field. If the user is logged in, the load

Data() private method is called within the constructor to query the database with the ID

and populate the values of user attributes. Finally, the get() method is used to read the

attributes of a User object.

4.8.2 MongoDB: settings and preferences

This sub-module, as the one above, is composed of two parts: a MongoDB database for

storing users’ settings and preferences; and the PHP server-side technology to access the

data. The MongoDB collection for this purpose (named configurations) can store as many

settings documents as users registered in the system, but only on document per user.

That module contains three main php classes:

• mongo load.php, detailed in section[4.8.2.1].

• mongo save.php, detailed in section[4.8.2.2].

• mongo delete.php, detailed in section[4.8.2.3].

61

CHAPTER 4. ARCHITECTURE

4.8.2.1 Loading configuration

<?php

// connect

$m = new MongoClient () ;

// select Sefarad Database

$db = $m−>s e f a r ad ;

// select Configuration collection

$ c o l l e c t i o n = $db−>c o n f i g u r a t i o n ;

// search saved configuration

$query = array (’name’ => ’saved_configuration’ ,

’user_id’ => $ SESSION [’user_id’]) ;

$ cur so r = $ c o l l e c t i o n−>f i n d ($query) ;

// load configuration (saved or default)

i f (($cursor−>count ()) > 0) {
f o r each ($cur so r as $doc) {

echo (j son encode (($doc))) ;

}
} else {

$query = array (’name’ => ’default_configuration’) ;

$cur so r = $ c o l l e c t i o n−>f i n d ($query) ;

i f (($cursor−>count ()) > 0) {
f o r each ($cur so r as $doc) {

echo (j son encode (($doc))) ;

}
} else {

t r i g g e r e r r o r ("No configuration found" , E USER ERROR) ;

}
}

?>

Listing 4.6: mongo load.php

First, the script establishes connection to ’sefarad’ database and then, it selects the

’configuration’ collection. After the connection, we query the collection is queried searching

a saved configuration for the current logged in user. That query includes the user id. If any

saved configuration is found, it is returned in JSON format. Otherwise, the script returns

the default configuration to initialize Sefarad.

62

4.8. USER MANAGEMENT MODULE

4.8.2.2 Saving configuration

<?php

r e q u i r e (’../auth/session.php’) ;

i f (i s s e t ($ SESSION [’user_id’])) {

$ac = $ REQUEST[’actual_configuration’] ;

// connect to Mongo

$m = new MongoClient () ;

// select Sefarad DataBase

$db = $m−>s e f a r ad ;

// select Configuration collection

$ c o l l e c t i o n = $db−>c o n f i g u r a t i o n ;

// delete old saved configuration

$ c o l l e c t i o n−>remove (array (

’name’ => ’saved_configuration’ ,

’user_id’ => $ SESSION [’user_id’])

) ;

// save new configuration

$document = json decode ($ac , true) ;

unset ($document [’_id’]) ;

$document [’user_id’] = $ SESSION [’user_id’] ;

$ c o l l e c t i o n−>i n s e r t ($document) ;

}

?>

Listing 4.7: mongo save.php

In the case of saving configuration, after connecting to the database in the same way

as in the case above, the script deletes the old saved configuration for the current user (if

any). After that, the script inserts the new configuration into a new document into the

configuration collection.

63

CHAPTER 4. ARCHITECTURE

4.8.2.3 Deleting configuration

<?php

r e q u i r e (’../auth/session.php’) ;

i f (i s s e t ($ SESSION [’user_id’])) {

// connect to Mongo

$m = new MongoClient () ;

// select Sefarad DataBase

$db = $m−>s e f a r ad ;

// select Configuration collection

$ c o l l e c t i o n = $db−>c o n f i g u r a t i o n ;

// delete old saved configuration

$ c o l l e c t i o n−>remove (array (

’name’ => ’saved_configuration’ ,

’user_id’ => $ SESSION [’user_id’])

) ;

}

?>

Listing 4.8: mongo delete.php

Finally, we develop the mongo delete.php class. This script will be called when

the user wants to reset his configuration. The main purpose of this script is deleting the

saved configuration for the current user, so it simply connects to MongoDB and deletes this

document by querying it with the user id.

4.9 Setup module

Since the web application consists of several modules, some of which are external, we have

facilitated the installation providing an Setup.jar installer. It allows you to customize

your installation by selecting which modules you want to install, to select where to copy all

the needed files and it guide you during the installation.

64

4.9. SETUP MODULE

4.9.1 Custom installer

To facilitates the installation in any computer with a Linux OS installed, Sefarad includes

an installer. By executing Setut.jar file, you will install a complete version of the application

in your computer. Next images show some of the steps during the installation.

Figure 4.10: Installation example (1)

Figure 4.11: Installation example (2)

65

CHAPTER 4. ARCHITECTURE

We provide also a custom installer that allows the user to select what widgets he wants

to install, in order to avoid installing elements that will not be used by the user.

Figure 4.12: Custom installer

For this module, we have developed a PHP script that iterates through every widget

contained in widgets/ folder and showing them for selection. After the user have selected

the widgets the deserved to include in his own installation, the script includes them and all

the base files into a .zip file and download it into the user’s computer.

4.9.2 Automation: Grunt.JS Task Runner

Since the web application consists of several modules, we need to maintain a logical di-

rectory, files and code structure in order to ensure our project base is manageable and

maintainable. The final project consists of all these modules, directories and files, which

also are related to each others. To build this final built project, we need to perform repet-

itive task. With Grunt.js task runner we can automate all this tasks invoking a simple

command.To automate with Grunt, first we need to declare the needed dependencies in a

package.json[4.9] file.

66

4.9. SETUP MODULE

{
"name" : "Sefarad" ,

"version" : "0.0.1" ,

"description" : "Linked Data Visualization Framework" ,

"main" : "Gruntfile.js" ,

"scripts" : {
"test" : "echo \"Error: no test specified\" && exit 1"

} ,

"devDependencies" : {
"grunt" : "˜0.4.2" ,

"grunt-contrib-concat" : "˜0.3.0" ,

"grunt-processhtml" : "˜0.3.0" ,

"grunt-contrib-copy" : "˜0.5.0" ,

"grunt-contrib-clean" : "˜0.5.0"

} ,

"repository" : {
"type" : "git" ,

"url" : "https://github.com/gsi-upm/demo-smartopendata.git"

} ,

"keywords" : [

"Sefarad" ,

"LinkedData" ,

"Visualization" ,

"Framework"

] ,

"author" : "GSI-UPM" ,

"bugs" : {
"url" : "https://github.com/gsi-upm/Sefarad/issues"

}
}

Listing 4.9: package.json

As you can see in the code above, we have included all the needed dependencies in the

key devDependencies, including Grunt.js. This file also contains several information

about the application.

The file containing all the automated tasks is Gruntfile.js[4.10] shown below.

67

CHAPTER 4. ARCHITECTURE

Listing 4.10: Gruntfile.js

// Do grunt-related things in here

module . export s = function (grunt) {

// Project configuration.

grunt . i n i t C o n f i g ({
pkg : grunt . f i l e . readJSON (’package.json’) ,

processhtml : {
templates : {

f i l e s : {
’build/index.php’ : [’src/sefarad.php’]

}
} ,

php widgets : {
f i l e s : {
’build/sefarad.php’ : [’src/sefarad.php’]

}
} ,

un iver s i t i e sDemo : {
f i l e s : {
’build/js/mvvm.js’ : [’src/js/mvvm.js’]

}
} ,

} ,

copy : {
main : {

expand : true ,

cwd : ’src/’ ,

s r c : [’ajax-solr/**’ ,’css/**’ ,’img/**’ ,’js/**’ ,’

json_examples/**’ , ’php/**’ ,’auth/**’ ,’sefarad.php’ ,’!js

/widgets/widget_template.js’] ,

de s t : ’build/’ ,

} ,

un iver s i t i e sDemo : {
expand : true ,

cwd : ’src/demos/universitiesDemo/’ ,

s r c : ’demo.html’ ,

de s t : ’build/’ ,

} ,

} ,

c l ean : {

68

4.9. SETUP MODULE

bu i ld : {
s r c : [’build/*’ ,’!.gitignore’] ,

}
} ,

}) ;

// Load plugins and tasks.

grunt . loadTasks (’grunt_tasks’) ;

grunt . loadNpmTasks (’grunt-contrib-concat’) ;

grunt . loadNpmTasks (’grunt-processhtml’) ;

grunt . loadNpmTasks (’grunt-contrib-copy’) ;

grunt . loadNpmTasks (’grunt-contrib-clean’) ;

// Tasks.

grunt . r e g i s t e r T a s k (’default’ , [’clean:build’ ,’processhtml:

templates’ ,’include-all-widgets’ ,’copy:main’]) ;

} ;

Listing 4.10: Gruntfile.js

Most Grunt tasks rely on configuration data defined in an object passed to the grunt.initConfig()

method. In this file, grunt.file.readJSON(’package.json’) imports the JSON

metadata stored in package.json into the grunt config. Each task expects its configura-

tion to be specified in a property of the same name. Here, we have specified and configured

three tasks: processhtml, copy and clean. Each one of these tasks requires its own configu-

ration parameters in json format.

After that, we have to load the different plugins and tasks. Grunt available plugins are

specified in package.json[4.9] as dependencies, so they have been installed via npm in

stall and may be enabled with a simple command, such as grunt.loadNpmTasks(’grunt-

processhtml’). For enabling our custom defined tasks (i.e. include widgets.js),

we run grunt.loadTasks(’grunt tasks’), which will enable all the task files in

grut tasks/ directory.

Finally, we define our custom task commands, specifying the tasks which will run when

the user execute the command and the order of execution.

69

CHAPTER 4. ARCHITECTURE

70

CHAPTER5
Case Study

In this chapter we are going to describe a selected use cases by explaining the running

of all the tools involved and its purpose and responses. Thank to these use cases,

we will show the overall performance of the application and all the main functions

available to the user.

71

CHAPTER 5. CASE STUDY

72

5.1. INTRODUCTION

5.1 Introduction

To show the different features and tools Sefarad provides, we have experienced three different

case studies, each of which helps us to show different aspects of the application. These three

case studies are:

• European Universities. In this study, we run a SPARQL query to the DBpedia

endpoint querying about all universities in European countries. In this case study we:

– Select a SPARQL endpoint.

– Edit and run our own SPARQL query.

– Display the retrieved data in a graphical table.

– Point the geographical position of the results into an Open Street Map1 by using

Openalayers.js framework.

– Add some filtering widgets to test faceted search and keyword search

– Edit and run some SPARQL queries in the dashboard tab for managing some

static values.

• Restaurants and Districts in Madrid. In this study, we run a SPARQL query

to our local dataset deployed in a Fuseki installation. We query about restaurants

in Madrid with some piece of information such as price, ranking, food type, etcetera.

The result data will contain a RDF triple containing GeoJSON information about the

city district in which it is located, allowing us to represent polygons in Openlayers.

In this case study we:

– Query a Fuseki dataset.

– Display the accordion layout to include many facets for filtering.

– Display GeoJSON polygons in an OpenLayers map.

• Slovakian parcels. In this case study we will work with the dataset provided by

the Slovak Environmental Agency (SEA2) about harmonised protected sites dataset

according to INSPIRE3 Data Specification on Protected Sites – Guidelines through

WFS service interface. In this case we will also work with GeoJSON data as in the

case before, so we will test about the same features, but the purpose of this case is

to test the performance of the application with a more professional and standardized

dataset. In other words, to show a professional GIS application of Sefarad.

1http://www.openstreetmap.org/
2http://www.sazp.sk/
3http://inspire.ec.europa.eu/

73

CHAPTER 5. CASE STUDY

5.2 European universities

In this case study we will query, index, classify, filter and display Linked Data relating to

European Universities available in DBpedia. This is a very simple case of study that will

help us to try the main features of Sefarad, including all those relative to query a SPARQL

endpoint, manage the data with different filtering methods and display the final results in

some graphical and geographical widgets. The following sub-sections will guide you through

each of the steps with the help of listings, graphics and screenshots.

5.2.1 Query and retrieve the data: SPARQL

At this point, we select an external endpoint: DBpedia4. We run the following SPARQL

query to retrieve all the universities in Europe with its name and location (country, city

and geographic coordinates).

PREFIX rdf : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>

PREFIX rdfs : <http ://www. w3 . org /2000/01/ rdf−schema#>

PREFIX dc : <http :// pur l . org /dc/ terms/>

PREFIX dbpedia : <http :// dbpedia . org/>

PREFIX dbpedia2 : <http :// dbpedia . org / onto logy/>

PREFIX geo : <http ://www. w3 . org /2003/01/ geo / wgs84 pos#>

SELECT ? u n i v e r s i t y ? country ? c i t y ? l a t i t u d e ? l ong i tude

WHERE {
? un ive r s i t yResource rdf : type dbpedia2 : Un ive r s i ty ;

dbpedia2 : country ? countryResource ;

dbpedia2 : c i t y ? c i tyResource ;

rdfs : l a b e l ? u n i v e r s i t y ;

geo : l a t ? l a t i t u d e ; geo : long ? l ong i tude .

? countryResource rdfs : l a b e l ? country ;

dc : s u b j e c t dbpedia : Countr i e s in Europe .

? c i tyResource rdfs : l a b e l ? c i t y

FILTER (lang (? u n i v e r s i t y) = ’en’)

}

Listing 5.1: European universities SPARQL

4http://dbpedia.org/

74

5.2. EUROPEAN UNIVERSITIES

An example piece of the information retrieved is shown below.

{
"university" : {

"type" : "literal" ,

"xml:lang" : "en" ,

"value" : "University of Barcelona"

} ,

"city" : {
"type" : "literal" ,

"xml:lang" : "en" ,

"value" : "Barcelona"

} ,

"country" : {
"type" : "literal" ,

"xml:lang" : "en" ,

"value" : "Spain"

} ,

"latitude" : {
"type" : "typed-literal" ,

"datatype" : "http://www.w3.org/2001/XMLSchema#float" ,

"value" : "41.3867"

} ,

"longitude" : {
"type" : "typed-literal" ,

"datatype" : "http://www.w3.org/2001/XMLSchema#float" ,

"value" : "2.16389"

}
}

Listing 5.2: Universities results JSON example

We retrieve the response data in JSON format. As you could suppose, each one of the

results contains five keys: university, country, city, latitude, longitude; as we indicate in the

SELECT sentence of the query. Once the information is retrieved, the application stores

and indexes it, obtaining the different facets for future faceted search work.

75

CHAPTER 5. CASE STUDY

5.2.2 Showing the data: results table

The main widget available in Sefarad for exploring and ordering the final results is the

Results Table widget. You can add it from the ’Add new widget’ section. Once you have

done it, the widget automatically recognises the different facets of the results and draws

them into a table like the one above (Figure[5.2]).

Figure 5.1: Results Widget with universities

As we work with large amounts of data, we realized the need to do this widget as much

configurable as possible, so that the user can select how many items to display per section,

which columns to show or hide, etcetera. Furthermore, we included in the results table

a search box that the user can use to search within the filtered results, which is an extra

functionality apart from filtering technologies. All those configuration options can be shown

in the figure above.

Moreover, if you have included the URI of the different resources in the SPARQL query,

you can browse the results by clicking on them in the results table. For example, by clicking

on American University of Rome, the following web page is opened.

76

5.2. EUROPEAN UNIVERSITIES

Figure 5.2: American University of Rome DBpedia webpage

5.2.3 Geographic representation: Openlayers map

The main widget available in Sefarad for representing geospatial information is the Open-

layers map widget. In this case, since we only have coordinates information (latitude and

longitude) we can only represent the universities’ position points in the map. In the image

below, we have filtered the results by country (Spain and Italy) for a better appreciation.

Figure 5.3: Universities in Spain and Italy

77

CHAPTER 5. CASE STUDY

5.2.4 Filtering technologies

The last feature we will experience in this case study is both filtering technologies: faceted

and keyword. To use keyword filtering, we must enter our keywords into the search box

included at the right top of the application. As we write, the application will give us options

that match what we have introduced, as shown in the image below.

Figure 5.4: Keyword search example

To use faceted search, we must add some widgets that show the different possible values

for the selected facet. After adding this widget for the country facet, the final layout display

for this Universities Demo is shown in Figure [5.6].

Figure 5.5: Universities Demo Layout

78

5.3. RESTAURANTS AND DISTRICTS IN MADRID

5.3 Restaurants and Districts in Madrid

In this study, we run a SPARQL query to our local dataset deployed in a Fuseki installation.

We query about restaurants in Madrid56 with some piece of information such as price,

ranking, food type, etcetera. Result data contains a RDF triple containing GeoJSON

information about the district in which it is located, allowing us to represent polygons in

Openlayers.

5.3.1 Download and process the information

In this case, we download the data78 and process it in order to upload it to our Fuseki

database. The following graph shows this process in a clear way.

Figure 5.6: Processing restaurants data

5http://www.madrid.org/nomecalles/
6http://www.yelp.com/madrid
7http://www.madrid.org/nomecalles/
8http://www.yelp.com/madrid

79

CHAPTER 5. CASE STUDY

5.3.2 SPARQL and Fuseki

In this case, we will not query a SPARQL endpoint of an online dataset. We will store the

information in RDF format on a local server (Fuseki) and we will query it from Sefarad.

We have created two new databases in Fuseki: districts and restaurants.

Listing 5.3: Restaurants results JSON example

"s" : {
"type" : "uri" ,

"value" : "http://smartopendata.gsi.dit.upm.es/rdf/gu/Features

/773372"

} ,

"fGeom" : {
"type" : "uri" ,

"value" : "http://smartopendata.gsi.dit.upm.es/rdf/gu/Geometries

/90478c001031d2ab9e9c199257ecbbb2724edb77"

} ,

"fWKT" : {
"datatype" : "http://www.opengis.net/ont/sf#wktLiteral" ,

"type" : "typed-literal" ,

"value" : "MULTIPOLYGON (((444197.329 4477208.2759, ... ,

444197.329 4477208.2759)))"

} ,

"geocodigo" : {
"type" : "literal" ,

"value" : "7904"

} ,

"desbdt" : {
"type" : "literal" ,

"value" : "Salamanca"

} ,

"dbpediaLink" : {
"type" : "uri" ,

"value" : "http://dbpedia.org/resource/Salamanca_(Madrid)"

} ,

"d" : {
"type" : "uri" ,

"value" : "http://sefarad.gsi.dit.upm.es/rdf/gp/restaurants/casa-

julian-madrid-2"

} ,

"p" : {

80

5.3. RESTAURANTS AND DISTRICTS IN MADRID

"type" : "uri" ,

"value" : "http://sefarad.gsi.dit.upm.es/rdf/gp/district"

} ,

"o" : {
"type" : "literal" ,

"value" : " Salamanca "

} ,

"price" : {
"type" : "literal" ,

"value" : ""

} ,

"foodtype" : {
"type" : "literal" ,

"value" : " Spanish "

} ,

"stars" : {
"type" : "literal" ,

"value" : "4.5"

} ,

"reservations" : {
"type" : "literal" ,

"value" : " Takes Reservations No "

} ,

"takeout" : {
"type" : "literal" ,

"value" : "No"

} ,

"lat" : {
"type" : "literal" ,

"value" : "40.429118500000001"

} ,

"long" : {
"type" : "literal" ,

"value" : "-3.6858382999999999"

}

Listing 5.3: Restaurants results JSON example

As you can see in the image above, which shows the piece of information related to one

restaurant within the retrieved data, each restaurant contains geographical information as

a MULTIPOLYGON value, so we can draw it in a map.

81

CHAPTER 5. CASE STUDY

The SPARQL query for this case study is shown below.

PREFIX rdfs : <http ://www. w3 . org /2000/01/ rdf−schema#>

PREFIX geo : <http ://www. openg i s . net / ont / geosparq l#>

PREFIX geo f : <http ://www. openg i s . net / de f / func t i on / geosparq l/>

PREFIX gn i s : <http :// smartopendata . g s i . d i t .upm. es /rdf/ gn i s/>

PREFIX gu : <http :// smartopendata . g s i . d i t .upm. es /rdf/gu/>

PREFIX dr f : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>

PREFIX dcterms : <http :// pur l . org /dc/ terms/>

PREFIX owl : <http ://www. w3 . org /2002/07/ owl#>

PREFIX dbpedia−owl : <http :// dbpedia . org / property/>

p r e f i x t ex t : <http :// jena . apache . org / text#>

PREFIX gp : <http :// s e f a r a d . g s i . d i t .upm. es /rdf/gp/>

SELECT ∗ WHERE {

SERVICE <http :// l o c a l h o s t :3030/ d i s t r i c t s /query> {
? s geo : hasGeometry ?fGeom .

?fGeom geo :asWKT ?fWKT .

? s gu :GEOCODIGO ? geocodigo .

? s gu :DESBDT ? desbdt .

? s owl : sameAs ? dbpediaLink .

}

SERVICE <http :// l o c a l h o s t :3030/ r e s t a u r a n t s /query> {
?d ?p ?o

FILTER(REGEX(? o , ? desbdt))

}

SERVICE <http :// l o c a l h o s t :3030/ r e s t a u r a n t s /query> {
?d gp : p r i c e ? p r i c e .

?d gp : foodtype ? foodtype .

?d gp : s t a r s ? s t a r s .

}
}

Listing 5.4: European universities SPARQL

We have run a query that allows us to retrieve information from various data types

(districts and restaurants). In addition, we have combined the information available in our

dataset with information available in DBpedia, so what gives us access to more facets of

the data.

82

5.3. RESTAURANTS AND DISTRICTS IN MADRID

5.3.3 Faceted search

As in the case of European universities, we will experience faceted search. However, in this

case we have a greater number of facets, allowing us to observe the results when combining

it. After adding a Tag Cloud widget for each of the facets we want to filter by, we have the

next application layout.

Figure 5.7: Linear layout

As you can see in the image above, when the number of facets becomes higher and

higher, it becomes an impractical interface, because we can not show all the widgets in the

window at the same time, and if we filter by a facet whose widget is lower, we must ’remove’

the display map, so we can not see how the results are updated. To solve this problem,

we developed another type of layout: the accordion layout [4.7.2.2]. Applying respective

layout, the previous screen becomes as follows.

Figure 5.8: Accordion layout

83

CHAPTER 5. CASE STUDY

5.3.4 Openlayers and GeoJSON

In this case study, we will not only represent points on a map, but also polygons. The

geographical data about districts stored in Fuseki is in GeoSPARQL format, as you can see

in[5.5].

We can easily represent it into an Openlayers map by using OpenLayers.Format.GeoJSON9

class. But since that Openlayers requires a specific format GeoJSON for proper representa-

tion, and our districts’ information is in GeoSPARQL format, we were required to develop

the Geo Proxy [4.4]. to convert GeoSPARQL to GeoJSON. Once the data is converted, we

have a FeatureCollection containing all districts polygons in the respective features. The

next figure shows an example of feature in GeoJSON.

{
"type" : "Feature" ,

"geometry" : {
"type" : "MultiPolygon" ,

"coordinates" : [[4 40414 . 61 , 4473164 .38] , . . . , [4 40414 . 61 ,

4 4 7 3 1 6 4 . 3 8]]

} ,

"properties" : {
"s" : {} ,

"fGeom" : {} ,

"fWKT" : {} ,

"geocodigo" : {} ,

"desbdt" : {} ,

"dbpediaLink" : {} ,

"price" : {} ,

"foodtype" : {} ,

"stars" : {} ,

"reservations" : {} ,

"takeout" : {} ,

"lat" : {} ,

"long" : {}
}

}

Listing 5.5: Restaurants results JSON example

9http://dev.openlayers.org/docs/files/OpenLayers/Format/GeoJSON-js.html

84

5.4. SLOVAKIAN DATASET

5.4 Slovakian dataset

In this case study we will use the application from a more professional standpoint. For

this purpose, we will work with the dataset provided by the Slovak Environmental Agency

(SEA10) about harmonised protected sites dataset according to INSPIRE11 Data Specifica-

tion on Protected Sites – Guidelines through WFS service interface.

In this case we will also work with GeoJSON data as in the case before, so we will test

about the same features, but the purpose of this case is to test the performance of the

application with a more professional and standardized dataset. In other words, to show a

professional GIS application of Sefarad.

5.4.1 Protected sites dataset

SEA provided source files for Geoserver workspaces related to slovak protected sites feature

type. Source files can be downloaded from SEA website12.

Protected sites data are stored in GIS database as simple features in several database

tables. Tables slightly differ in structure, they contain some common and some different

fields. The structure of database tables is application dependant and was designed in the

past during applications development, different applications are used for different kind of

protected sites. Upon discussion with domain expert mapping between individual protected

sites tables and protected sites designation schemas was established.

Subsequently unifying view could be constructed, unioning several protected sites tables

into one logical database view with common set of data fields. Set of common data fields was

chosen according to INSPIRE Protected Site simple profile application scheme. Fields for

designation scheme and designation scheme value (both mandatory in application schema)

were added to view for easing later mapping. Figure 5.9 shows the data scheme.

10http://www.sazp.sk/
11http://inspire.ec.europa.eu/
12http://inspire.geop.sazp.sk/geoserver/www/eenvplus/ps harmonisation.tgz

85

CHAPTER 5. CASE STUDY

Figure 5.9: Protected sites tables and view

The final data have the following fields and information values, which will be used to

test faceted browsing and geo filtering with ECQL13.

INSPIRE Designation SK Designation SK Legislation

natura2000/siteOfCommunity OImpor-

tance

Uzemia europskeho vyz-

namu/ Sites of Commu-

nity importance

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

natura2000/specialProtectionArea Chranene vtacie

uzemia/ Special protec-

tion areas

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

13http://docs.geoserver.org/latest/en/user/filter/ecql reference.html

86

5.4. SLOVAKIAN DATASET

ramsar/ramsar Ramsar/Ramsar sites Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

UNESCOWorldHeritage/natural Unesco/Unesco natural

heritage sites

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

UNESCOManAndBiosphereProgramme/

biosphereReserve

Biosfericke rezerva-

cie/Biosphere reserves

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

IUCN/nationalPark
Velkoplošné chránené

územia/Large scale

protected ares Národný

park/National park

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Velkoplošné chránené

územia/Large scale pro-

tected ares Chránené

krajinné oblasti /Pro-

tected landscape area

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

IUCN/strictNatureReserve

Maloplošné chránené

územia (Small

scale protected ar-

eas): Pŕırodná rez-

ervácia/Nature reserve

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia (Small scale

protected areas):

Národná pŕırodná

rezervácia/National

nature reserve

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

87

CHAPTER 5. CASE STUDY

Maloplošné chránené

územia(Small scale pro-

tected areas): Ochranné

pásmo pŕırodnej rez-

ervácie/Buffer zone of

natural reserve

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia(Small scale

protected areas):

Ochranné pásmo

národnej pŕırodnej rez-

ervácie/Buffer zone of

national nature reserve

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

IUCN/ naturalMonument

Maloplošné chránené

územia(Small scale

protected areas):

Chránený krajinný

prvok/Protected land-

scape element

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia(Small scale pro-

tected areas): Pŕırodná

pamiatka/Natural

monument

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia(Small scale

protected areas):

Národná pŕırodná

pamiatka/National

natural monument

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

88

5.4. SLOVAKIAN DATASET

Maloplošné chránené

územia(Small scale

protected ar-

eas): Chránený

areál/Protected site

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia(Small scale

protected areas):

Ochranné pásmo

pŕırodnejpamiatky/Buffer

zone of natural monu-

ment

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Maloplošné chránené

územia(Small scale

protected areas):

Ochranné pásmo

národnej pŕırodnej

pamiatky/Buffer zone

of national natural

monument

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

IUCN/ wildernessArea

Maloplošné chránené

územia(Small scale pro-

tected areas): Ochranné

pásmo chráneného

areálu/Buffer zone of

protected site

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Chránené krajinné

územie (Protected

landscape area)

Act of NC SR

No. 543/2002 on

Nature and Land-

scape Protection

Table 5.1: Data INSPIRE designation

89

CHAPTER 5. CASE STUDY

5.4.2 SPARQL Query and results data

In this case, we also store the information into a local Fuseki database and we query it from

Sefarad. Query for retrieving the corresponding information is shown below.

PREFIX dr f : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>

PREFIX j . 0 : <http :// i n s p i r e . j r c . ec . europa . eu/schemas/gn/3.0/>

PREFIX j . 1 : <http :// i n s p i r e . j r c . ec . europa . eu/schemas/ps /3.0/>

PREFIX j . 2 : <http :// i n s p i r e . j r c . ec . europa . eu/schemas/ base /3.2/>

PREFIX j . 3 : <http ://www. openg i s . net / ont / geosparq l#>

SELECT ∗
WHERE {
SERVICE <http :// l o c a l h o s t :3030/ s l o v a k i a /query> {

? r e s j . 3 : hasGeometry ?fGeom .

?fGeom j . 3 :asWKT ?fWKT .

? r e s j . 1 : s i t e P r o t e c t i o n C l a s s i f i c a t i o n ? spc .

? r e s j . 1 : LegalFoundationDate ? l f d .

? r e s j . 1 : LegalFoundationDocument ? l f d o c .

? r e s j . 1 : i n s p i r e I d ? i n s p i r e .

? i n s p i r e j . 2 : namespace ?namespace .

? i n s p i r e j . 2 : namespace ? l o c a l I d .

? r e s j . 1 : s i t e D e s i g n a t i o n ? s i t e D e s i g n a t i o n .

? s i t e D e s i g n a t i o n j . 1 : percentageUnderDes ignat ion ?

percentageUnderDes ignat ion .

? s i t e D e s i g n a t i o n j . 1 : d e s i gna t i on ? de s i gna t i on .

? s i t e D e s i g n a t i o n j . 1 : des ignat ionScheme ? des ignat ionScheme .

}
}

LIMIT 10 ;

Listing 5.6: Slovakian Demo SPARQL

90

5.4. SLOVAKIAN DATASET

At this point, a piece of the information returned from the server is as follows.

{
"res" : {

"type" : "uri" ,

"value" : "http://geop.sazp.sk/id/ProtectedSite/ProtectedSitesSK

/SKNATS942"

} ,

"fGeom" : {
"type" : "uri" ,

"value" : "http://geop.sazp.sk/id/ProtectedSite/ProtectedSitesSK

/geometry/SKNATS942"

} ,

"fWKT" : {
"datatype" : "http://www.opengis.net/ont/sf#wktLiteral" ,

"type" : "typed-literal" ,

"value" : "MULTIPOLYGON(((17.65642811769707

48.1686865811456,..., 17.65642811769707 48.1686865811456)))"

} ,

"spc" : {
"type" : "literal" ,

"value" : "natureConservation ecological environment"

} ,

"lfd" : {
"type" : "literal" ,

"value" : ""

} ,

"lfdoc" : {
"type" : "literal" ,

"value" : ""

} ,

"inspire" : {
"type" : "uri" ,

"value" : "http://geop.sazp.sk/id/ProtectedSite/ProtectedSitesSK

/inspireId/SKNATS942"

} ,

"namespace" : {
"type" : "literal" ,

"value" : "SK:GOV:MOE:SEA:PS"

} ,

91

CHAPTER 5. CASE STUDY

"localId" : {
"type" : "literal" ,

"value" : "SK:GOV:MOE:SEA:PS"

} ,

"siteDesignation" : {
"type" : "uri" ,

"value" : "http://geop.sazp.sk/id/ProtectedSite/ProtectedSitesSK

/siteDesignation/SKNATS942"

} ,

"percentageUnderDesignation" : {
"type" : "literal" ,

"value" : ""

} ,

"designation" : {
"type" : "literal" ,

"value" : "wildernessArea"

} ,

"designationScheme" : {
"type" : "literal" ,

"value" : "IUCN"

}
}

Listing 5.7: Slovakia results JSON example

As you can see, JSON results contain many geographical properties, following the data

scheme explained in [5.1].

Up to this point, the process is the same as that followed in the previous case study.

5.4.3 OpenStreet Map: GeoJSON representation

In this case study, we will use the features for polygons representation that Openlayers

offers. First of all, we need to convert the retrieved geoSPARQL data to GeoJSON data

by using the GeoProxy. After doing that, we will have a FeatureCollection containing

one feature for each parcel in the dataset. An example of one of this features is shown in

the next listing.

92

5.4. SLOVAKIAN DATASET

{
"type" : "Feature" ,

"geometry" : {
"type" : "MultiPolygon" ,

"coordinates" : [

[

[

[17 .65642811769707 , 48 .1686865811456] ,

[. . .]

[17 .65642811769707 , 48 .1686865811456]

]

]

]

} ,

"properties" : {
}

}

Listing 5.8: Slovakian feature example

Drawing it with Openlayers and OpenStreet Map, we get the following map result.

Figure 5.10: Protected sites map

93

CHAPTER 5. CASE STUDY

5.5 SmartOpenData parcels dataset

Finally, in this case study we will use a shapefiles dataset provided by Tragsa14 for the

SmartOpenData project. The main purpose of this case study is to test Sefarad performance

with GeoServer. Tragsa has provided us a new dataset about different kinds of parcels in

Spain in DBF and shapefile format. The data scheme is shown in Figure 5.11.

Figure 5.11: Dataset scheme

14http://www.tragsa.es/

94

5.5. SMARTOPENDATA PARCELS DATASET

5.5.1 Parcels data scheme

We have stored all the shapefiles in our local GeoServer installation. From there, we are

able to see all the different parcels, see its feature types, preview them with Openlayers

directly from GeoServer, test ECQL filtering, etcetera.

For this case study, we have chosen the td 0307 sigpac parcels, whose feature types

are detailed in Figure 5.12.

Figure 5.12: Feature Types Details

95

CHAPTER 5. CASE STUDY

5.5.2 GeoServer and Openlayers

In this case, we do not need the GeoProxy to convert the retrieved data. We can query

to GeoServer directly from Sefarad and represent the geographical data in an Openlayers

map. For this case, the SPARQL query is shown in Listing 5.9.

PREFIX ns3 : <http :// smartod . g s i . d i t .upm. es / parce l s 0307 /schema#>

SELECT ? shape area ? p a r c e l ? s l ope ? use WHERE {
? s a ns3 : Parce l s .

? s a ? itemtype ;

ns3 : Shape Area ? shape area ;

ns3 :PENDIENTE ? s l ope ;

ns3 :USO SIGPAC ? use ;

ns3 :PARCELA ? p a r c e l

}

Listing 5.9: SMOData Dataset SPARQL query

We must also indicate the graph of the requested data, which is:

http://dataset1.smartopen.gsi.edu.

After receiving the results, we can directly represent them without any conversion in an

Openlayers map, as shown in Figure 5.13.

Figure 5.13: Openlayers map

96

5.5. SMARTOPENDATA PARCELS DATASET

5.5.3 Geo-filtering: ECQL

As you can see in Figure 5.13, this widget includes a filtering box which allows us to test

geofiltering with the retrieved data. We can include any ECQL query in this field and the

geofiltering module will automatically update and rerun the query to receive the information

that meets the new criteria. Figure 5.14 shows the complete layout of this case study.

Figure 5.14: SmartOpenData layout

97

CHAPTER 5. CASE STUDY

98

CHAPTER6
Conclusions and future lines

This chapter summarizes the conclusions extracted from this master thesis and the

objectives achieved are evaluated. After that, we describe thinkings about future work.

99

CHAPTER 6. CONCLUSIONS AND FUTURE LINES

100

6.1. PROJECT OUTCOMES

6.1 Project outcomes

The main outcome of this project is the developed system. By extending the existing Sefarad

framework with the suitable modules and widgets, we have created a powerful querying and

visualization framework for Geo Linked Data, enabling final user to query any dataset he

wants and manage, index, sort and filter the retrieved data.

Due to integration with different types of databases as data sources, as explained in

Section 4.5, the user is able to store data in many formats and query, filter and represent it

from Sefarad. Furthermore, the user can query any semantic endpoint due to the compati-

bility with Semantic Web and Linked Data specifications. Moreover, the GeoProxy (Section

4.4) solves format compatibility issues for representation with Openlayers.

Otherwise, the development of the User Management Module, detailed in Section 4.8,

provides multiple important features. On the one hand, this module allows the users to save

and load their own preferences and settings each time they use Sefarad, which makes the

application more configurable and customizable. In the other hand, the application admin-

istrator can use this module to manage the information (credentials, permissions, etcetera)

about the different users. Moreover, the integration with MongoDB can be exploited to

store large amounts of data in JSON format thereby improving application performance.

The introduction of geo filtering capabilities, besides to faceted browsing and keyword

search (Section 4.6), enables new powerful filtering options for geographic data. By using

CQL language, the user can write filtering queries with a familiar text-based syntax, which

is thus more readable and better-suited for manual authoring.

To make the application more responsive and appropriate to filter data with many fields

of information, we have developed the accordion layout described in Section 4.7.2.2. This

provides the user a cleaner and more usable interface, making it easier to display filtering

and representation widgets on the same screen.

Finally, the inclusion of the Grunt.js task runner (Section 4.9.2) and the reorganization

of the project source files facilitate the work of developers. Now, any developer can create

a new widget just by using the widgets template and running the corresponding Grunt

command, as explained in Appendix B.

All these features has been tested in the different case studies (Section 5). These exper-

iments have allowed us to verify the correct operation of the system and all its components

and realize some improvements needed for a better user experience.

101

CHAPTER 6. CONCLUSIONS AND FUTURE LINES

6.2 Achieved goals

In Chapter 1 we mentioned a list of goals for the project. The achieved goals can be

summarised as follows:

Analyse the state of the Semantic Web technologies and study all related

standards. This goal has been achieved successfully. Its results are presented in Chapter

2, where we analyse and describe the state of the art and evaluate the need for taking

advantage of the benefits that the Semantic Web provides to the geographical area.

Study the different web technologies that will help us to develop the applica-

tion. This goal has been achieved successfully. Its results are also presented in Chapter 2,

where we study and analyze the usefulness in the different facets of the project and present

the different technologies that have helped us to develop this framework.

Determine the architecture of the application. This goal has been achieved

successfully. The complete architecture of the system and a detailed explanation of all its

modules and submodules is included in Chapter 4. We have defined a modular structure

for the project to be more maintainable and extensible.

Develop each one of the modules that make up the system. This goal has been

achieved successfully. We have explained the operation of all modules in Chapter 4.

Test the application on different case studies. This goal has been achieved suc-

cessfully. We have test the application on four different case studies, detailed in Chapter 5.

We have tested the application in different areas, trying to test all functions developed to

determine possible bugs, possible improvements or guarantee proper operation.

Document the work done for future users and developers. This goal has been

achieved successfully. For this purpose, we have included two appendices at the end of this

master thesis. The users can also visit the wiki1 of the project for extra information.

6.3 Conclusions

This project has allowed us to perform a deep insight into the Semantic Web and Linked

Data and all its benefits, and specially into the way of applying these techniques to the

geographic scope.

This project has been developed in the scope of the SmartOpenData project contributing

1https://github.com/gsi-upm/sefarad/wiki

102

6.4. FUTURE WORK

to this European project, so we have worked with companies such as Tragsa2. To work in

a working group has helped us to organize tasks and responsibilities and has forced us to

organize with our partners. It is always a good source of learning.

We have used existing advanced technologies whenever it was possible, and put it to-

gether to build a solid and functional system. As an example, we have use MongoDB,

Gruntjs, Openlayers, etcetera.

Dividing the project into different modules forced us to rely on existing web and software

standards which helped us to integrate and interconnect all of them. Modular architecture

also facilitates project development and maintenance.

We experienced big changes as early technology adopters, such as new versions of the

GeoSPARQL language and GeoJSON fixing bugs and creating new functionalities. We have

found the need to test the tool in order to find failures and possible improvements. Some

of our modules and developments are the result of experimentation and detection of new

needs.

6.4 Future work

The project outcome can also serve as a solid base for future work and development. In

the following points some fields of study or improvement are presented to continue the

development.

• Enable Sefarad to handle heterogeneous data collections, so that different queries can

be performed, storing multiple data types and handle them separately or combined.

• Improve the performance of the application when large amounts of data are queried,

so the service get not blocked or later an excessively long time to respond.

• Integrate SirenDB as a local database, in order to improve the performance of the

application with large amounts of data and take advantage of SOLR indexing.

• Improve geographical search operators, such as intersections between polygons or

polygons contained within other polygons.

• Integrate Quepy3 Framework, to allow non-technical users to execute querires in nat-

ural language.

2http://www.tragsa.es/
3http://quepy.readthedocs.org/en/latest/index.html

103

CHAPTER 6. CONCLUSIONS AND FUTURE LINES

• Improve the installer. It has been developed a first version of the installer,but it should

be improved so that it installs everything needed for the execution of the application,

such as MongoDB, Grunt.js, etcetera.

104

APPENDIXA
Installing and configuring Sefarad

This tutorial goes through the process of installing and configuring Sefarad in any com-

puter with a Linux OS. Project’s code is available at https://github.com/gsi-upm/demo-

smartopendata. After the installation, the user will be able to run some predefined demos

or run the application itself and to modify the source files in order to introduce his own

changes.

105

APPENDIX A. INSTALLING AND CONFIGURING SEFARAD

106

A.1. INSTALLATION

A.1 Installation

A.1.1 Requirements

• Node.js versions [>= 0.8.0]1

• Grunt.js2

• MongoDB3

• MondoDB PHP Driver4

• The next npm devDependencies listed below should be installed. In linux, this can

be done with a simple command in the project folder sudo npm install

– grunt-contrib-concat

– grunt-processhtml

– grunt-contrib-copy

– grunt-contrib-clean

A.1.2 Installation steps

• Install Node.js versions [>= 0.8.0] following its installation guide.

• Install MongoDB following the manual and start it with:

sudo service mongod start

• Install Mongo driver for PHP:

sudo pecl install mongo

• After that, add the next line to the php.ini file:

extension=mongo.so

• Now, you can directly download the .zip folder from GitHub5 or clone the repository:

1http://nodejs.org/
2http://gruntjs.com/getting-started
3http://docs.mongodb.org/manual/
4http://php.net/manual/es/book.mongo.php
5https://github.com/gsi-upm/demo-smartopendata

107

APPENDIX A. INSTALLING AND CONFIGURING SEFARAD

cd desired/folder

git clone https://github.com/gsi-upm/demo-smartopendata.git

ONLY FOR DEVELOPERS

• Install Grunt’s command line interface (CLI), in order to be able to execute grunt

commands from the terminal:

sudo npm install -g grunt-cli

• Finally, you must install needed dependencies

cd to/project/folder

sudo npm install

After that, the user will have everything needed installed on his computer to run the

application. Inside the folder build/, the user will have a fully built version of the project

ready for execution. Meanwhile, developers will have all source files in the src/ folder, and

using Grunt task runner, will be able to build a new project with updated changes.

108

APPENDIXB
User Manual

This user manual goes through the most important features for both users and developers.

Project’s code is available at https://github.com/gsi-upm/demo-smartopendata.

109

APPENDIX B. USER MANUAL

110

B.1. CREATE NEW WIDGET

B.1 Create new widget

The great potential of Sefarad for our project lies in the capability to create our own

widgets really easily. We should not worry about obtaining the filtered data and updating

the widget when a new facet is selected thanks to Knockout framework. For this purpose,

the application specifies how to create a new Javascript file in which it should be placed a

Javascript object using D3.js1 framework. The widget template is as follows:

var newWidget = {

name: "Name",

description: "description",

img: "path/to/image",

type: "type",

help: "help",

// Category of the widget (1: textFilter, 2: numericFilter, 3: graph,

5:results, 4: other, 6:map)

cat: X,

render: function() {

var id = ’A’ + Math.floor(Math.random() * 10001);

var field = newWidget.field || "";

vm.activeWidgetsRight.push({

"id": ko.observable(id),

"title": ko.observable(newWidget.name),

"type": ko.observable(newWidget.type),

"field": ko.observable(field),

"collapsed": ko.observable(false),

"showWidgetHelp": ko.observable(false),

"help": ko.observable(newWidget.help)

});

newWidget.paint(id);

},

paint: function(id) {

d3.select(’#’ + id).selectAll(’div’).remove();

var div = d3.select(’#’ + id);

div.attr("align", "center");

}

};

Listing B.1: ”Sefarad widget template”

1http://d3js.org/

111

APPENDIX B. USER MANUAL

112

Bibliography

[1] T. Berners-Lee, “Linked data - design issues. w3c.,” 2006.

[2] T. K. Werner Kuhn and K. Janowicz, “Linked data - a paradigm shift for geographic information

science.,” 2010.

[3] F. J. López-Pellicer, M. J. Silva, M. S. Chaves, F. J. Zarazaga-Soria, and P. R. Muro-Medrano,

“Geo linked data.,” in DEXA (1), pp. 495–502, 2010.

[4] R. Bermejo, “Desarrollo de un Framework HTML5 de Visualización y Consulta Semántica

de Repositorios RDF,” Master’s thesis, Universidad Politécnica de Madrid, ETSI Telecomuni-

cación, June 2014.

[5] C. Bizer, T. Heath, and T. Berners-Lees, “Linked data - the story so far.,” in Special Issue

on Linked Data, International Journal on Semantic Web and Information Systems, pp. 1–22,

2009.

[6] B. Youngblood and S. Iacovella, GeoServer Beginner’s Guide. Packt Publishing, 2 2013.

[7] P. A. Santiago, OpenLayers Cookbook. Packt Publishing, 8 2012.

[8] A. D. Lorenzo and G. Allegri, Instant OpenLayers Starter. Packt Publishing, 4 2013.

[9] B. P. Hogan, Automate with Grunt: The Build Tool for JavaScript. Pragmatic Bookshelf, 1 ed.,

5 2014.

[10] R. Islam, PHP and MongoDB Web Development Beginner’s Guide. Packt Publishing, 11 2011.

113

BIBLIOGRAPHY

114

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Master thesis goals
	Structure of this Master Thesis

	Enabling Technologies
	Overview
	Linked Data in a Nutshell
	Sefarad
	MongoDB: a NoSQL Database
	GeoServer
	Fuseki: RDF over HTTP server
	OpenLayers
	Grunt: The JavaScript Task Runner

	Requirement Analysis
	Overview
	Actors dictionary
	Use cases
	Portal users use cases
	Edit a SPARQL query
	Run a SPARQL query
	Visual display of the information
	Keyword search
	Faceted search
	Log-in/Log-out
	Customize Sefarad
	Save own configuration
	Reset own configuration

	Admin use cases
	Security and users management
	Local datasets management

	Conclusions

	Architecture
	Introduction
	Architecture
	SPARQL Engine
	SPARQL Editor
	SPARQL queries executor

	Geo Proxy
	Local Server
	Fuseki and Virtuoso
	Geo Server

	Search and filtering module
	Keyword search
	Faceted search
	Geo filtering

	Model View View-Model
	Data Model
	Widgets layout
	Linear layout
	Accordion layout

	User management module
	Security: authentication and authorization
	MondoDB connection
	Session Manager
	User class

	MongoDB: settings and preferences
	Loading configuration
	Saving configuration
	Deleting configuration

	Setup module
	Custom installer
	Automation: Grunt.JS Task Runner

	Case Study
	Introduction
	European universities
	Query and retrieve the data: SPARQL
	Showing the data: results table
	Geographic representation: Openlayers map
	Filtering technologies

	Restaurants and Districts in Madrid
	Download and process the information
	SPARQL and Fuseki
	Faceted search
	Openlayers and GeoJSON

	Slovakian dataset
	Protected sites dataset
	SPARQL Query and results data
	OpenStreet Map: GeoJSON representation

	SmartOpenData parcels dataset
	Parcels data scheme
	GeoServer and Openlayers
	Geo-filtering: ECQL

	Conclusions and future lines
	Project outcomes
	Achieved goals
	Conclusions
	Future work

	Installing and configuring Sefarad
	Installation
	Requirements
	Installation steps

	User Manual
	Create new widget

	Bibliography

