
PROYECTO FIN DE CARRERA

T́ıtulo: Desarrollo de un Videojuego Móvil Multiplataforma de Ed-

ucación Infantil Musical utilizando el Entorno de desarrollo

Unity3d

T́ıtulo (inglés): Development of a Multi-Platform Mobile Musical Training

Software for Children using the framework Unity3D Engine

Autor: Unai Arŕıen Oroz

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente:

Vocal:

Secretario:

Suplente:

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

PROYECTO FIN DE CARRERA

DEVELOPMENT OF A MULTI-PLATFORM

MOBILE MUSICAL TRAINING SOFTWARE

FOR CHILDREN USING THE FRAMEWORK

UNITY3D ENGINE

Unai Arŕıen Oroz

Marzo de 2017

Resumen

Esta memoria es el resultado de un proyecto cuyo objetivo es el de desarrollar un videojuego

móvil multiplataforma de educación infantil musical utilizando el entorno de desarrollo

Unity3D.

Este desarrollo comprende los siguientes procesos: análisis de los requisitos, diseño de

la arquitectura, implementación del videojuego, testeo del mismo y despliegue para las

plataformas iOs y Android.

Aśı mismo, se utilizan varios plugins obtenidos a través de la Asset Store de Unity3D,

que nos han permitido mejorar el rendimiento del videojuego y facilitar su desarrollo.

Además de los plugins mencionados, se integra Flurry Analytics como sistema de ob-

tención de métricas y errores de uso de la aplicación para facilitar su posterior manten-

imiento.

Por último, se presentan las conclusiones extráıdas del trabajo, aśı como los objetivos

que se han alcanzado tras completar el desarollo.

Palabras clave: Desarrollo multiplataforma, Desarrollo móvil, Unity3D, Asset Store,

Android, iOs, Flurry, 2D Toolkit, HOTtween, Videojuego, Desarrollo software, UML

V

Abstract

This thesis is the result of a project whose objective is to develop a multi-platform mobile

musical training software for children using the framework Unity3D engine.

This multi-platform development covers several processes: requirement analysis, archi-

tecture design, videogame implementation, testing this implementation and iOs and An-

droid deployments.

Moreover, we use plugins obtained through Unity3D Asset Store, which allow us to

improve the videogame performance and make its development easier.

Furthermore, we have integrated Flurry Analytics as a metrics an error tool management

in order to facilitate future application maintenance.

Finally, we gather the extracted conclusions and check if we achieve the goals defined

in the analysis requirement stage.

Keywords: Multi-platform development, Mobile development, Unity3D, Asset Store,

Android, iOs, Flurry, 2D Toolkit, HOTtween, Videogame, Software development, UML

VII

Agradecimientos

Después de estar casi tres años para escribir este proyecto la lista de agradecimientos podŕıa

ser grand́ısima, pero voy a agradecérselo tan sólo a la gente que quiero y que ha sido

importante para mı́.

Muchas gracias Sara por haberme aguantado durante estos años tan bonitos a tu lado.

A mis padres y a mi abuela por darlo todo por mi hermano y por mı́. A Aitor por haber

tenido la oportunidad de ver mi bonito carácter todos estos años y por pasárnoslo de lujo

con él cuando está majete.

Muchas gracias a Mariano por ser un master de Unity y tener las ganas y la paciencia

de enseñar todo lo que sabe en cualquier momento.

Muchas gracias a Luis Fernando D’Haro por adentrarnos en el desarrollo de aplicaciones

y, en especial, a Carlos Ángel por convertirme en un programador pragmático y hacer que

me encante mi trabajo.

Muchas gracias a las grandes personas que conoćı en la Escuela y que hicieron que esos

años fueran geniales.

Por último muchas gracias a todos mis amigos de Stratio por decirme todos los d́ıas que

escribiera este proyecto y también por hacer que me encante trabajar con ellos.

IX

Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XV

List of Tables XXI

List of Algorithms XXIII

1 Introduction 1

1.1 Context . 3

1.2 Master thesis description . 4

1.3 Master thesis goals . 6

1.4 Structure of this Master Thesis . 6

2 Enabling Technologies 9

2.1 Unity3D game engine . 11

2.1.1 Unity3D features . 12

2.1.2 Unity3D concepts . 13

2.1.3 Unity3D interface . 15

XI

2.2 Unity Asset Store . 16

2.2.1 2D Toolkit . 16

2.2.2 HOTween . 17

2.2.3 iOs native plugin . 18

2.2.4 Android plugin . 18

2.3 Flurry analytics . 19

2.4 Summary . 20

3 Requirement Analysis 21

3.1 Overview . 23

3.2 Use cases . 23

3.2.1 Actors dictionary . 23

3.2.2 Game modes use case . 25

3.2.2.1 Play instrument . 26

3.2.2.2 Conduct orchestra . 27

3.2.2.3 Discover instrument . 28

3.2.2.4 Watch demo . 29

3.2.2.5 Select melody . 30

3.2.2.6 Select instrument . 31

3.2.3 Game management use case . 32

3.2.3.1 Metrics management . 33

3.2.3.2 Errors management . 34

3.2.4 Summary of requirements . 34

3.2.4.1 Functional requirements . 34

3.2.4.2 Non-functional requirements 35

3.3 Summary . 35

4 Architecture 37

4.1 Architecture Overview . 39

4.1.1 Physical instruments miniatures . 39

4.1.2 Application . 40

4.2 Physical instruments miniatures . 40

4.2.1 Physical instrument pieces . 41

4.2.2 Recognition algorithm . 45

4.3 Application . 47

4.3.1 Assets . 48

4.3.2 Scenes . 48

4.3.3 Scripts . 49

4.3.4 Flurry . 49

4.4 Application use workflow . 50

4.4.1 Playing instrument game mode . 51

4.4.2 Conducting orchestra game mode . 52

4.4.3 Discovering instrument game mode 53

4.5 Summary . 54

5 Case study 55

5.1 Introduction . 57

5.2 Playing instrument game mode . 58

5.3 Conducting orchestra game mode . 66

5.4 Summary . 70

6 Evaluation 71

6.1 Overview . 73

6.2 Acquisition . 73

6.2.1 Number of users . 74

6.2.2 Users location . 75

6.3 Engagement . 77

6.3.1 Retention . 78

6.3.2 DAU, WAU and MAU . 78

6.3.3 Quality . 79

6.3.4 Summary . 80

7 Conclusions 83

7.1 Conclusions . 85

7.2 Achieved goals . 86

7.3 Future work . 87

A Game Play images 89

A.1 Playing game mode . 91

A.2 Conducting game mode . 96

A.3 Discovering game mode . 99

B Application game screens 101

B.1 Home . 103

B.2 Playing game mode . 104

B.3 Conducting game mode . 107

B.4 Discovering game mode . 109

Bibliography 124

List of Figures

2.1 Unity3D logo . 11

2.2 Unity3D interface . 15

2.3 2D Toolkit logo . 16

2.4 HOTween logo . 17

2.5 HOTWeen flow diagram . 18

2.6 iOS native plugin logo . 18

2.7 Android native plugin logo . 19

2.8 Flurry analytics plugin logo . 19

3.1 Game modes use case . 25

3.2 Game management use case . 32

4.1 General Architecture . 39

4.2 Drum piece (frontal and base) . 41

4.3 Piano piece (frontal and base) . 41

4.4 Violin piece (frontal and base) . 42

4.5 Flute piece (frontal and base) . 42

4.6 Trumpet piece (frontal and base) . 42

4.7 Detail of the drum base . 43

4.8 Detail of the piano base . 43

4.9 Detail of the violin base . 43

4.10 Detail of the flute base . 44

XV

4.11 Detail of the trumpet base . 44

4.12 Detection algorithm diagram . 45

4.13 Application architecture diagram . 47

4.14 Playing instrument game mode . 51

4.15 Conducting orchestra game mode . 52

4.16 Discovering instrument game mode . 53

5.1 Application Home Screen . 58

5.2 Help Home Screen . 59

5.3 Xylophone playing instrument game mode 60

5.4 Help information playing instrument game mode 61

5.5 Melodies selection instrument game mode 62

5.6 Playing instrument game mode . 63

5.7 Playing piano screen . 64

5.8 Playing harp screen . 64

5.9 Playing panpipes screen . 65

5.10 Playing trombone screen . 65

5.11 Conducting game mode access screen . 66

5.12 Help information conducting orchestra game mode 67

5.13 Melodies selection in the conducting orchestra game mode 68

5.14 Conducting orchestra screen with all instruments activated 69

5.15 Conducting orchestra screen with some instruments activated 70

6.1 Physical instrument pieces box . 73

6.2 New users in the first year from release . 74

6.3 New users since application first release . 75

6.4 New users location in the first year from release 76

6.5 New users location in the first year from release top countries 76

6.6 New users location since application first release 77

6.7 New users location since application first release top countries 77

6.8 Application retention . 78

6.9 Application retention . 79

6.10 Application levels average . 80

6.11 Application fps average . 80

A.1 Entering playing game mode from home screen 91

A.2 Playing piano free mode . 91

A.3 Opening melodies menu in playing game mode 92

A.4 Changing melody to be played in playing game mode 92

A.5 Starting guided playing mode . 93

A.6 Playing piano guided . 93

A.7 Placing strings piece in playing game mode 94

A.8 Placing woodwind piece in playing game mode 94

A.9 Placing brass piece in playing game mode 95

A.10 Placing percussion piece in playing game mode 95

A.11 Entering conducting game mode from home screen 96

A.12 Opening melodies menu in playing game mode 96

A.13 Changing melody to be played in playing game mode 97

A.14 Activating keyboards family . 97

A.15 Disabling instrument . 98

A.16 Enabling instrument . 98

A.17 Entering discovering game mode from home screen 99

A.18 Playing instrument sound . 99

A.19 Changing family in discovering game mode 100

A.20 Changing instrument in discovering game mode 100

B.1 Application Home Screen . 103

B.2 Help Home Screen . 103

B.3 Xylophone playing instrument game mode 104

B.4 Help information playing instrument game mode 104

B.5 Playing panpipes screen . 105

B.6 Playing trombone screen . 105

B.7 Playing piano screen . 106

B.8 Playing harp screen . 106

B.9 Conducting game mode access screen . 107

B.10 Help information conducting orchestra game mode 107

B.11 Melodies selection in the conducting orchestra game mode 108

B.12 Conducting orchestra screen with all instruments activated 108

B.13 Help Discovering Screen . 109

B.14 Discovering drum instrument . 109

B.15 Discovering kettle instrument . 110

B.16 Discovering cymbals instrument . 110

B.17 Discovering xylophone instrument . 111

B.18 Discovering marimba instrument . 111

B.19 Discovering vibraphone instrument . 112

B.20 Discovering trumpet instrument . 112

B.21 Discovering French horn instrument . 113

B.22 Discovering trombone instrument . 113

B.23 Discovering tuba instrument . 114

B.24 Discovering flugelhorn instrument . 114

B.25 Discovering piano instrument . 115

B.26 Discovering celesta instrument . 115

B.27 Discovering organ instrument . 116

B.28 Discovering clavichord instrument . 116

B.29 Discovering violin instrument . 117

B.30 Discovering double bass instrument . 117

B.31 Discovering viola instrument . 118

B.32 Discovering chello instrument . 118

B.33 Discovering lute instrument . 119

B.34 Discovering guitar instrument . 119

B.35 Discovering harp instrument . 120

B.36 Discovering flute instrument . 120

B.37 Discovering clarinet instrument . 121

B.38 Discovering oboe instrument . 121

B.39 Discovering bassoon instrument . 122

B.40 Discovering piccolo instrument . 122

B.41 Discovering panpipes instrument . 123

List of Tables

3.1 Actors list . 24

5.1 Actors list . 57

6.1 Countries were the physical instrument pack is sold 75

XXI

List of Algorithms

4.1 Instrument recognition algorithm . 46

XXIII

CHAPTER1
Introduction

This chapters provides an introduction to the problem which will be approached in

this project. It provides an overview of the multi-platform application development

technologies. Furthermore, a deeper description of the project and its environment is

also given.

1

CHAPTER 1. INTRODUCTION

2

1.1. CONTEXT

1.1 Context

In the last years, mobile devices ecosystem have experimented a huge transformation. These

devices have evolved improving their characteristics and changing the way we use them.

Although some of these new features, like an improved performance, have made mobile

application development easier, the device market suffers a huge fragmentation which causes

lots of problems when we have to deal with multi-platform mobile application developments.

This phenomenon, fragmentation, occurs when some mobile users are running different op-

erating systems or different versions of the same operating system (software fragmentation)

or when some mobile users are using older devices with less powerful characteristics (hard-

ware fragmentation).

On one hand, the coexistence of different mobile OS such as Android, iOs or Win-

dows Phone and on the other hand the wide range of screen sizes and resolutions make

multi-platform mobile application development very complicated. This problem is presented

greatly within consulting companies, whose clients requires multi-platform and multi-devices

application developments.

When developing native applications, developers implement an application for one spe-

cific target platform using its software development kit (SDK) and frameworks. The app

is tied to that specific environment. For example, applications for Android are typically

programmed in Java, access the platform functionality through Android’s frameworks, and

render its user interface by employing platform-provided elements. In contrast, applications

for iOS use the program- ming language Objective-C and Apple’s frameworks.

In case multiple platforms are to be supported by native applications, they have to be

developed separately for each platform. This approach is the opposite of the cross-platform

idea. [1]

In order to find a solution, reducing development effort and costs, we need to use multi-

platform development tools that allow developers to eliminate the immense effort required

to build one mobile applications for each mobile SO we need.

Cross-platform development approaches emerged to address this challenge by allowing

developers to implement their apps in one step for a range of platforms, avoiding repetition

and increasing productivity. [1]

Usually, targeting more than one platform normally requires developing a correspond-

ing application for each mobile operating system. However, this approach means that the

3

CHAPTER 1. INTRODUCTION

development time and hence the cost of the product will increase. A cross-platform ap-

proach, on the other hand, helps to solve this problem by developing a single code base that

supports multiple platforms. Another benefit of cross-platform development, is that they

allow changes to be made faster to portable mobile applications, as only one single code

base needs to be modified. [2]

Within the game application development context for multi-platform devices, there are

some tools such as Unity3D, Unreal Engine, Marmalade, Autodesk or Corona SDK.

Between all these development tools, Unity3D stands out due its soft learning curve,

the possibility of development for multiple platforms in the same project and its huge

community.

Moreover, the functions that Unity3D supports autonomously are very abundant. In

fact, all game developments are possible such as shader, physics engine, network, terrain

manipulation, audio, video, and animation, and it considered so that the revision is possible

to the taste of user according to the need.

Unity3D that produces based on Java script and C# can apply and manage after pro-

ducing the desired functions with script, not producing all of the programing at once. GUI

composed on screen helps the first-time developer to approach easily, and the script and

program that programer made with simple mouse drag. [3]

Furthermore, Unity3D Asset Store, which is driven by Unity3D community, includes

community plugins which give us an added value.

The proposal of this project is to exemplify the development of a multi-platform mobile

musical training software for children using the framework Unity3D Engine.

1.2 Master thesis description

The aim of this master thesis is the development of a multi-platform mobile musical training

software for children using the framework Unity3D Engine.

This development has the purpose of training children musical skills. Through physical

instrument miniatures which represent the five instrument families (percussion, keyboards,

strings, woodwind, brass) the gamer will be able to interact with the application software

in three different forms.

Firstly, the gamer will have the possibility to play one instrument of the selected instru-

ment family. Secondly, the gamer will be able to interact with a whole orchestra in order to

4

1.2. MASTER THESIS DESCRIPTION

enable or disable the instruments which will be playing a classical piece. Finally, the gamer

will have the possibility to read the history and characteristics of each instrument family.

The multi-platform game development includes all the following development stages:

• Requirement analysis, determining the needs or conditions to meet for the game ap-

plication.

• Architecture design, defining a structured solution that meets all of the application

requirements.

• Physical instrument pieces design, creating the physical pieces that will be used to

interact with the application.

• Software implementation, building the multi-platform game using Unity3D engine.

• Software test, testing the application to check if it accomplish the acceptance criteria.

• Application deployment, deploying the application to the needed application markets.

Within application architecture we can distinguish the following modules:

Unity3D engine is a cross-platform game engine developed by Unity Technologies and

used to develop video games for PC, consoles, mobile devices and websites. Unity

is notable for its ability to target games to multiple platforms. Within a project,

developers have control over delivery to mobile devices, web browsers, desktops, and

consoles. Supported platforms include Android, Apple TV, BlackBerry 10, iOS, Linux,

Nintendo 3DS line, macOS, PlayStation 4, PlayStation Vita, Unity Web Player (in-

cluding Facebook), Wii, Wii U, Windows Phone 8, Windows, Xbox 360, and Xbox

One. [4]

Unity Asset Store is where a growing library of free and commercial assets are placed.

These assets are created both by Unity Technologies and also members of the commu-

nity. A wide variety of assets is available, covering everything from textures, models

and animations to whole project examples, tutorials and Editor extensions. These

assets are accessed from a simple interface built into the Unity Editor and are down-

loaded and imported directly into your project.

Flurry Analytics enable users to analyze consumer behavior through data observations.

The platform provides features for user segmentation, consumer funnels, and appli-

cations portfolio analysis. The platform’s funnels measure customized consumer con-

versions and trending metrics, while the portfolio analytics feature allows companies

5

CHAPTER 1. INTRODUCTION

to manage entire portfolios of mobile applications with the ability to monitor data

about overlap among applications as well as up-sell and cross-sell conversions. [5]

1.3 Master thesis goals

The main purpose of this master thesis is to build a multi-platform mobile musical training

software for children using the framework Unity3D Engine.

This multi-platform software includes the software application and the physical minia-

tures that represent the musical instrument family. The gamer will be able to interact with

the software application through these physical instrument pieces.

Regarding the software application, it will have three different game modes which will

allow the gamer to play different musical melodies with different musical instruments. Also,

the gamer will be able to conduct a whole orchestra and to discover information about all

instrument families represented by the physical miniatures instruments.

The multi-platform software development process includes the requirement analysis

and the architecture design. Due to the need of physical pieces to interact with the

application the build process also include both physical instrument pieces design and

instrument recognition algorithm design. After building the game application it has

to go through previously designed software tests to check it fits the requirements obtained

in the previous stages.

Finally, the application should be deployed to Android and iOs application markets to

let users to download and use it, as long as the development team and the client would

retrieve metrics and other information about the application use.

1.4 Structure of this Master Thesis

In this section we will provide a brief overview of all the chapters of this Master Thesis. It

has been structured as follows:

Chapter 1 provides an introduction to the problem which will be approached in this

project. It provides an overview of the benefits of Unity3D engine. Furthermore, a deeper

description of the project and its environment is also given.

Chapter 2 contains an overview of the existing technologies on which the development

of the project will rely.

6

1.4. STRUCTURE OF THIS MASTER THESIS

Chapter 3 describes one of the most important stages in software development: the

requirement analysis using different scenarios. For this, a detailed analysis of the possible

use cases is made using the Unified Modeling Language (UML). This language allows us to

specify, build and document a system using graphic language. The result of this evaluation

will be a complete specification of the requirements, which will be matched by each module

in the design stage. This helps us also to focus on key aspects and take apart other less

important functionalities that could be implemented in future works.

Chapter 4 describes the architecture of the system, dividing it into two groups and

differencing application software development and physical instrument pieces design.

Chapter 5 describes selected use cases. It is going to be explained the interaction with

the whole game going through two of its game modes.

Chapter 6 sums up the findings and conclusions found throughout the document and

gives a hint about the work done for this master thesis.

Finally, the appendix provide useful related information, especially covering the appli-

cation screens.

7

CHAPTER 1. INTRODUCTION

8

CHAPTER2
Enabling Technologies

This chapter introduces which technologies have made possible this project. First of

all there must be an engine to build the game application, this is Unity game engine,

explained in section 2.1. Secondly, Unity integrates third part software as plugins to

facilitate development through its Asset Store, this components are detailed in section

2.2. Finally, there should be a tool to manage application metrics and information

after its deployment, this is done by Flurry Analytics, explained in section 2.3.

9

CHAPTER 2. ENABLING TECHNOLOGIES

10

2.1. UNITY3D GAME ENGINE

2.1 Unity3D game engine

Today’s game creators rely on game engines to develop the main pieces of software for

their games. A game engine simplifies the task of the programmers by offering convenient

abstractions for the hardware and operating systems on top of which the game runs. [6]

Gamers play on so many different types of devices which have lots of differences regarding

their hardware and software resources. One of the main purposes of a game engine is to

make this development easier avoiding building one application for each device we want to

be compatible with.

Unity3D game engine is an integrated development tool for producing other interactive

contents such as video game, architectural visualization, real-time 3D animation. Its editor

runs on Window, Mac OS X, so it could make games as the platforms of Window, Mac,

Wii, iPad, and iPhone. It could also produce web browser game that uses unity web player

plug-in. This is a similar form of flash, and it is designed so that flash user could easily

adapt even with cross domain security policy and scripting.

The functions that Unity3D supports autonomously are very abundant. In fact, all game

developments are possible such as shader, physics engine, network, terrain manipulation,

audio, video, and animation, and it considered so that the revision is possible to the taste

of user according to the need. Unity3D that produces based on Java script and C# can

apply and manage after producing the desired functions with script, not producing all of

the programing at once. GUI composed on screen helps the first-time developer to approach

easily, and the script and program that programmer made with simple mouse drag. [3]

Figure 2.1: Unity3D logo

Unity3D is a flexible and high-performance development platform used to make creative

and intelligent interactive 3D and 2D experiences. The “author once, deploy everywhere”

capability ensures developers can publish to all of the most popular platforms. Unity

Technologies boasts a thriving community of over 2 million developers including large pub-

lishers, indie studios, students and hobbyists. To remain at the forefront of innovation,

Unity Technologies tirelessly re-invests in its award-winning 3D development tools and its

11

CHAPTER 2. ENABLING TECHNOLOGIES

democratization initiatives, such as the Asset Store digital content marketplace and Unity

Games publishing and distribution division. [7]

We will detail Unity3D concepts and how those concepts will be integrated in the ap-

plication development in the following subsections. Firstly we will detail Unity3D principal

features in 2.1.1, secondly in 2.1.2 we are going to detail all the Unity3D principal concepts

and finally in 2.1.3 we are going to explain Unity3D interface from where we create our

game.

2.1.1 Unity3D features

The latest update, Unity 4.6, was released in August, 2012. It currently supports develop-

ment for iOS, Android, Windows, OS X, Linux, web browsers, Flash, PlayStation 3, Xbox

360, and Wii U. [4] The game engine can be downloaded from their website in two different

versions: Unity and Unity Pro. Between its features we can point highlight the following:

• Rendering, The graphics engine uses Direct3D (Windows), OpenGL (Mac, Win-

dows, Linux), OpenGL ES (Android, iOS), and proprietary APIs (Wii). There is

support for bump mapping, reflection mapping, parallax mapping, screen space am-

bient occlusion (SSAO), dynamic shadows using shadow maps, render-to-texture and

full-screen post-processing effects. Unity supports art assets and file formats from 3ds

Max, Maya, Softimage, Blender, Modo, ZBrush, Cinema 4D, Cheetah3D, Adobe Pho-

toshop, Adobe Fireworks and Allegorithmic Substance. These assets can be added

to the game project, and managed through Unity’s graphical user interface. [8] The

ShaderLab language is used for shaders, supporting both declarative “programming”

of the fixed-function pipeline and shader programs written in GLSL or Cg. A shader

can include multiple variants and a declarative fallback specification, allowing Unity

to detect the best variant for the current video card, and if none are compatible, fall

back to an alternative shader that may sacrifice features for performance. [9]

• Scripting, The game engine’s scripting is built on Mono, the open-source implemen-

tation of the .NET Framework. Programmers can use UnityScript (a custom lan-

guage with ECMAScript-inspired syntax), C# or Boo (which has a Python-inspired

syntax). [10] Starting with the 3.0 release, Unity ships with a customized version of

MonoDevelop for debugging scripts. [11]

• Asset Tracking, Unity also includes the Unity Asset Server, a version control solution

for the developer’s game assets and scripts. It uses PostgreSQL as a backend, an audio

system built on the FMOD library (with ability to playback Ogg Vorbis compressed

12

2.1. UNITY3D GAME ENGINE

audio), video playback using the Theora codec, a terrain and vegetation engine (which

supports tree billboarding, Occlusion Culling with Umbra), built-in lightmapping and

global illumination with Beast, multiplayer networking using RakNet, and built-in

pathfinding navigation meshes. [12]

• Platforms, Unity supports deployment to multiple platforms. Within a project, de-

velopers have control over delivery to mobile devices, web browsers, desktops, and

consoles. [4] Unity also allows specification of texture compression and resolution set-

tings for each platform the game supports. [4] Currently supported platforms include

Windows, Linux, Mac, Android, iOS, Unity Web Player, Adobe Flash, PlayStation

3, Xbox 360, and Wii. Although not officially confirmed, Unity also supports the

PlayStation Vita as can be seen on the game Escape Plan. Upcoming platforms

include BlackBerry 10, Wii U, Windows 8, and Windows Phone 8.

• Asset Store, Launched in November 2010, the Unity Asset Store is a resource avail-

able within the Unity editor. The store consists of a collection of over 4,400 asset

packages, including 3D models, textures and materials, particle systems, music and

sound effects, tutorials and projects, scripting packages, editor extensions and online

services. We will detail this feature in section 2.2. The store also contains many ex-

tensions, tools and asset packages such as the package 2D Toolkit, which provides an

efficient & flexible 2D sprite, collider set-up, text, tilemap and UI system integrating

seamlessly into the Unity environment.

• Versions, The first version of Unity was launched at Apple’s Worldwide Developers

Conference in 2005. It was built to function and build projects on Mac computers and

garnered enough success to continue development of the engine and tools for other

platforms.[2] Unity 3 was released in September 2010 and focused on introducing more

of the tools that high-end studios have at their disposal. This allowed the company

to capture the interest of bigger developers while providing independent and smaller

teams with a game engine in one affordable package. The latest version of Unity,

Unity 4.6, was released in August 2014, and includes features such as New UI System:

Design UIs for your game or application using Unity’s powerful new component based

UI framework and visual tools and an extensible event messaging system.

2.1.2 Unity3D concepts

In these subsections, we are going to explain the Unity3D basic concepts, which are the

following:

13

CHAPTER 2. ENABLING TECHNOLOGIES

• Assets, Assets are the actual contents we use to shape our own Unity world. Usually,

most of the Assets are created using external software and then imported into the

project. On their own they are no more than media content files: 3D models, textures,

audio files, scripts and so on. In order to exist in our product the Assets need to be

included inside a Unity Scene.

• Scenes, A Scene is a self-contained 3D space where all the action happens. Every

Unity Project needs to have at least one Scene. Without it, the project will be just a

pile of stored Assets because they have no place to actually exist. Most project will

have multiple Scenes. The most common use of Scenes in game development is to

create different levels inside a game, however this will largely depend on the project

specifications and design. Although it may have as many as necessary, it is important

to state that only one Scene is active and running at a given time. So, Scenes are

the 3D space where Assets can exist. But, to include the Assets on a Scene we need

GameObjects.

• Game Objects, A GameObject is the base entity of our Scene. If we want anything

to exist on our Scene it needs has to be a GameObject. But by itself is no more than

that. It just represents something that exists inside our 3D world and that’s it. If a

GameObject wants to be something more it needs to have Components.

• Components, A Component is responsible for assigning roles, properties and/or

behaviors to GameObjects. It is the smallest building block on our world and by

far the most important one. For example, If we want a GameObject to represent

a Light in our Scene we just attach it a Light Component. If it is a static rock in

our environment we attach the necessary Components for it to be a rock (we need

to display the rock shape and texture and maybe a collision box). If we need a

more complex GameObject such as our Player Avatar, we would need to attach a

component for its’ shape, textures and all his behaviors. So as you can see, according

to the Component type (and believe me they are many) we can attach assets to our

GameObjects, define properties, assign behaviors scripts and so on.

• Prefab, A Prefab is a template for a GameObject. It allows us to store a GameObject

with Components and Properties already set. We can even store a full hierarchy of

GameObjects, all with their own Components and default values.

14

2.1. UNITY3D GAME ENGINE

2.1.3 Unity3D interface

When we create a project, the first thing we see is Unity3D interface. This interface can be

easily customized so that it would fits developer needs. In figure 2.2 we can see the interface

that we have to used during the game development process.

Figure 2.2: Unity3D interface

In figure 2.2 we can differentiate five principal areas:

• Area 1 (Scene), this area contains the scene we are editing. This is the zone where

we we will create and place the graphic components of the scene.

• Area 2 (Game), in this window we will obtain the pre-visualization of the scene in

execution. When we want to execute the scene, we have just to click that play button

that is located in the top. We are also able to pause and a stop that execution with

Pause and Stop buttons.

• Area 3 (Project), it defines our project resources structure. It is divided into two

parts. The left one shows all the folders that contains our project resources. In our

case everything is structured around a folder called Assets. The right one shows the

selected folder’s content. We can also move archives to our project dragging them to

this area.

15

CHAPTER 2. ENABLING TECHNOLOGIES

• Area 4 (Hierarchy), this area shows our scene hierarchy. Here every object included

in the scene will appear.

• Area 5 (Inspector), using this window we will be able to see and edit the selected

object’s properties.

2.2 Unity Asset Store

The Unity Asset Store is home to a growing library of free and commercial assets created

both by Unity Technologies and also members of the community. A wide variety of assets

is available, covering everything from textures, models and animations to whole project

examples, tutorials and Editor extensions. The assets are accessed from a simple interface

built into the Unity Editor and are downloaded and imported directly into your project. [13]

In the following subsections, we are going to detail the four plugins we are using in our

development and why we have chosen them:

2.2.1 2D Toolkit

We decided to use this asset due to the game was designed to be built in a two dimensional

space. Although Unity3D 4.3 version introduced A new native 2D toolset, 2D Toolkit

provide developers additional features and benefits.

Figure 2.3: 2D Toolkit logo

2D Toolkit works in harmony with Unity’s 2D features, complements and expands upon

it in many ways. The package is actively developed and is designed to put more power in

the hands of the 2D game developer, and blend seamlessly into Unity. [14]. These additional

features are the following:

16

2.2. UNITY ASSET STORE

• Painless handling of multiple device resolutions, 2D Toolkit provides several tools,

such as a special camera component (called tk2dCamera), and multi platform textures

(e.g. for high density Retina devices) to almost completely eliminate the hassle around

creating games for many devices. These tools help us to create pixel perfect scenes

with automatic texture swapping for 1x, 2x and 4x resolutions. These changes are

transparent to us, so your code stays clean as we don’t have to reposition anything.

• Advanced atlasing features, 2D Toolkit’s advanced atlasing (fully supported in both

Unity Free and Pro) allows for some game changing optimizations. For example, large

sprites and background images can be automatically diced up into smaller pieces.

Duplicate dices and empty space is removed, potentially saving large amounts of atlas

space.

• Decreased build sizes with png textures, 2D Toolkit allows us to significantly decrease

the space needed to store your textures, by providing an easy one click configuration

that tells Unity to store the images as PNG files.

• Easy and flexible animation editor, We may choose to create your animations using

Unity’s new 2D animation editor, or the animation editor provided by 2D Toolkit.

We may even choose to mix and match, as each of these approaches provides certain

advantages for various workflows and use cases.

• Increase performance with sprite batching, When creating backgrounds with many

elements, 2D Toolkit lets we group these elements together so that they are drawn

together, using less resources. This can significantly improve performance, especially

on mobile devices.

2.2.2 HOTween

We decided to include HOTween asset because we need to build hundreds of animations

within our application. And thanks to HOTween these animation management become

easier.

Figure 2.4: HOTween logo

HOTween is a fast, type-safe object-oriented tween engine for Unity, compatible with

all of Unity’s scripting languages. [15]

17

CHAPTER 2. ENABLING TECHNOLOGIES

Figure 2.5: HOTWeen flow diagram

Also, HOTween works on Windows, Windows Phone 8, Windows 8 Store, Mac, iOS,

Android.

2.2.3 iOs native plugin

iOs Native plugin, allow us to combine all native iOs features we need in one plugin, making

it usage as easy as possible. Some of their principal features are the following: [16]

Figure 2.6: iOS native plugin logo

• In-App purchases support

• iCloud API management

• Game Center integration

• Video management

• iOS native events

2.2.4 Android plugin

Android Native plugin, provides the easy and flexible functionality of Android native func-

tions, including in-app purchases, play service, advertising and native device API. Some of

their principal features are the following: [17]

18

2.3. FLURRY ANALYTICS

Figure 2.7: Android native plugin logo

• Play Service support

• Social networks integration

• Push Notifications

• Immersive Mode

• Android native events

2.3 Flurry analytics

Flurry analytics allow us to easily add analytics to our mobile game. Some of their principal

features are the following: [5]

Figure 2.8: Flurry analytics plugin logo

• Events, Track in-app actions your users take and gain insight from how they are using

your app. Understand and visualize usage trends, how users progress through the app

and what events they are conducting with User Path analysis. Segment user actions

by app version, usage, install date, age, gender, language, geography and acquisition

channel.

• Funnels, 2Discover how your users progress through specific paths in your app. See

where they are having issues and discover where those users who did not complete

the process drop off. Leverage this insight to maximize the number of people who

complete these paths.

19

CHAPTER 2. ENABLING TECHNOLOGIES

• Retention, Measure user churn within your app. Understand the percentage of users

that come back to your app to assess the vitality of your business. Layer on Segments

to dive deep on specific user groups or acquisition channels.

• Segments, Analyze how different groups of app users vary in their usage and behavior.

Build and layer segments across Usage, Retention, Funnels, and User Acquisition

reporting to understand which set of users are most valuable to your business and

what they are doing in your app.

• Demographics, Report out on users declared age and gender if you collect it from

them. If not, utilize Flurry’s machine learning and panel of 40 million devices to

predict with accuracy you user’s age and gender.

• User Acquisition Analytics, Monitor your user acquisition efforts and measure the im-

pact of specific campaigns or channels on your user base, and therefore your business.

2.4 Summary

In this section, we have discussed the technologies related to the game we are developing.

Firstly, we took a look at Unity3D engine principal characteristics. We saw that Unity3D

is a flexible and high-performance development platform used to make creative and intelli-

gent interactive 3D and 2D experiences, which ensures developers to be able to publish to

all of the most popular platforms with a single development process.

Later, we detailed Unity3D most remarkable features before explaining with more detail

some important Unity3D concepts. Through these concepts we understand how Unity3D

components work together. Moreover, we analyze Unity3D interface to know how the engine

will be used to build the application.

Then, we explained how Unity3D Asset Store works and detailed the assets that we will

be using during the game development.

Finally we took a look at Flurry Analytics, which covers the need of analyzing the

application errors and metrics after its deployment.

20

CHAPTER3
Requirement Analysis

This chapter describes one of the most important stages in software development:

the requirement analysis using different scenarios. For this, a detailed analysis of the

possible use cases is made using the Unified Modeling Language (UML). This language

allows us to specify, build and document a system using graphic language.

21

CHAPTER 3. REQUIREMENT ANALYSIS

22

3.1. OVERVIEW

3.1 Overview

The result of this chapter will be a complete specification of the requirements, which will be

matched by each module in the design stage. This helps us also to focus on key aspects and

take apart other less important functionalities that could be implemented in future works.

3.2 Use cases

These sections identify the use cases of the system. This helps us to obtain a complete

specification of the uses of the system, and therefore define the complete list of requisites to

match. First, we will present a list of the actors that are in the system and a UML diagram

representing all the actors participating in the different use cases. This representation al-

lows, apart from specifying the actors that interact in the system, the relationships between

them.

These use cases will be described the next sections, including each one a table with their

complete specification. Using these tables, we will be able to define the requirements to be

established.

3.2.1 Actors dictionary

The list of primary and secondary actors is presented in table 3.1. These actors participate

in the different use cases, which are presented later.

23

CHAPTER 3. REQUIREMENT ANALYSIS

Actor identifier Role Description

ACT-1 Gamer

End user that plays the game using

the physical instruments and the

application

ACT-2 Instrument recognition algorithm

Algorithm that detects what

physical figure has been placed on

the application recognition zones

ACT-3 Client
Company that has outsourced the

game development

ACT-4 Flurry
Technology that manages

application metrics and errors

Table 3.1: Actors list

24

3.2. USE CASES

3.2.2 Game modes use case

This use case package collects the game play modes and their functionalities, as shown in

3.1.

The use cases presented in this section are as shown in the Figure 3.1:

• play instrument detailed in sub-section 3.2.2.1.

• conduct orchestra detailed in sub-section 3.2.2.2.

• discover instrument detailed in sub-section 3.2.2.3.

• watch demo detailed in sub-section 3.2.2.4.

• select melody detailed in sub-section 3.2.2.5.

• select instrument detailed in sub-section 3.2.2.6.

Figure 3.1: Game modes use case

25

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.2.1 Play instrument

Use Case Name play instrument

Use Case ID UC1.1

Primary Actor Gamer

Pre-Condition
The application is showing the home screen and the gamer has

the instruments physical miniatures

Post-Condition
Optionally, the gamer can watch a demo, change the instrument

or change the melody

Flow of Events Actor Input System Response

1

The gamer puts an

instrument miniature on

home screen. The instrument

is placed in the detection

zone circle that represents

the play instrument game

mode

The application loads the

play instrument mode game

with the instrument that has

been placed on the screen

and the default melody.

26

3.2. USE CASES

3.2.2.2 Conduct orchestra

Use Case Name conduct orchestra

Use Case ID UC1.2

Primary Actor Gamer

Pre-Condition
The application is showing the home screen and the gamer has

the instruments physical miniatures

Post-Condition

Optionally, the gamer can play, stop or change the melody,

enable or disable an instrument and change the instrument

family

Flow of Events Actor Input System Response

1

The gamer puts an

instrument miniature on

home screen. The instrument

is placed in the detection

zone circle that represents

the conduct orchestra game

mode

The application loads the

conduct orchestra game mode

with all instruments enabled,

the family instrument

selector of the family

instrument that has been

placed on the screen enabled,

and the default melody.

27

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.2.3 Discover instrument

Use Case Name discover instrument

Use Case ID UC1.3

Primary Actor Gamer

Pre-Condition
The application is showing the home screen and the gamer has

the instruments physical miniatures

Post-Condition
Optionally, the gamer can play the an instrument sound and

change the instrument family

Flow of Events Actor Input System Response

1

The gamer puts an

instrument miniature on

home screen. The instrument

is placed in the detection

zone circle that represents

the discover instrument game

mode

The application loads the

discover instrument game

mode with the instruments of

the family instrument that

has been placed on the

screen. The game mode

shows instrument

information and sounds

28

3.2. USE CASES

3.2.2.4 Watch demo

Use Case Name watch demo

Use Case ID UC1.4

Primary Actor Gamer

Pre-Condition Play instrument game mode has been selected

Post-Condition -

Flow of Events Actor Input System Response

1

The gamer touches Demo

button with a selected

melody and instrument

The melody is played with

the instrument selected and

musical notes are highlighted

29

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.2.5 Select melody

Use Case Name select melody

Use Case ID UC1.5

Primary Actor Gamer

Pre-Condition
Play instrument game mode or conduct orchestra have been

selected

Post-Condition -

Flow of Events Actor Input System Response

1
The gamer touch Melodies

button

A list of the melodies are

shown

2
The gamer choses one of the

available melodies

Selected melody is loaded

into game mode

30

3.2. USE CASES

3.2.2.6 Select instrument

Use Case Name select instrument

Use Case ID UC1.6

Primary Actor Gamer

Secondary Actor Instrument recognition algorithm

Pre-Condition
Any game mode is selected and the gamer has the instruments

physical miniatures

Post-Condition O-

Flow of Events Actor Input System Response

1

The Gamer place the

instrument in the circle

recognition zone

The Instrument recognition

algorithm processes the

instrument pad touches and

determines which instrument

have been placed

2

The Instrument recognition

algorithm detects a different

instrument

Selected instrument is loaded

into game mode

31

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.3 Game management use case

This use case package collects the main management use cases of the game, as shown in 3.2

• metrics management detailed in subsection 3.2.3.1

• errors management detailed in subsection 3.2.3.2

Figure 3.2: Game management use case

32

3.2. USE CASES

3.2.3.1 Metrics management

Use Case Name Metrics management

Use Case ID UC2.1

Primary Actor Client

Secondary Actor Flurry

Pre-Condition Flurry client account has been created. Application is running

Post-Condition Metrics are added to Flurry servers

Flow of Events Actor Input System Response

1
The client access to their

Flurry account

Flurry shows all metrics

included with their SDK in

the application

33

CHAPTER 3. REQUIREMENT ANALYSIS

3.2.3.2 Errors management

Use Case Name Metrics management

Use Case ID UC2.2

Primary Actor Client/Developer

Secondary Actor Flurry

Pre-Condition
Flurry client and developer accounts has been created.

Application is running and an error has been thrown

Post-Condition Errors are sent to Flurry servers

Flow of Events Actor Input System Response

1

The client and the developers

accesses to their Flurry

account

Flurry shows all errors

included with their SDK in

the application

3.2.4 Summary of requirements

After analyzing the previous use cases, some clear requirements seem to stand out. Many

of the user cases requires similar features or certain characteristics in the architecture,

pointing out the necessities or requirement of the system. In this section we will present

those requirements, separated in two groups: functional and non-functional requirements.

3.2.4.1 Functional requirements

• FR1: The Gamer must be able to play three different game modes: Play instrument,

Conduct orchestra and Discover instrument. We can observe this requirement in use

case 3.2.2

• FR2: The Gamer must be able to watch a demo within Play instrument game mode.

We can observe this requirement in use case 3.2.2

• FR3: The Gamer must be able to select melody within Play instrument and Conduct

orchestra game modes. We can observe this requirement in use case 3.2.2

34

3.3. SUMMARY

• FR4: The Gamer must be able to select instrument within Play instrument, Conduct

orchestra and Discover instrument game modes. We can observe this requirement in

use case 3.2.2

• FR5: The instrument recognition algorithm must detect the physical instrument

miniature that has been placed on the game recognition zone. We can observe this

requirement in use case 3.2.2

• FR6: The client must be able to access game metrics and errors. We can observe

this requirement in use case 3.2.3

• FR7: The developer must be able to access game errors. We can observe this require-

ment in use case 3.2.3

• FR8: Flurry must be manage game metrics and errors. We can observe this require-

ment in use case 3.2.3

3.2.4.2 Non-functional requirements

• NFR1: Game application screens must be user-friendly. We can observe this require-

ment in use case 3.2.2

• NFR2: Melody and instrument selector modules must be reusable. We can observe

this requirement in use case 3.2.2

• NFR3: Instrument recognition algorithm must be robust and must have a low re-

sponse time. We can observe this requirement in use case 3.2.2

• NFR4: Game metrics and error management should be private and accessible for

developers and the client. We can observe this requirement in use case 3.2.3

3.3 Summary

In this chapter, we detailed analysis of the possible use cases is made using the Unified

Modeling Language (UML) for our application.

Firstly, we represented the actors dictionary, with both primary and secondary actors

who will be participating in the different use cases.

Later, we described both Game modes and Game management use cases. With the use

cases described we have introduced the basic functionalities that have been implemented

35

CHAPTER 3. REQUIREMENT ANALYSIS

in this project. They will help us to understand how the different actors that can interact

with our application. They can serve as a base for further development and different use

cases that can come to mind.

Finally, we extracted both functional and non-functional requirements that were stood

out after analyzing the use cases.

36

CHAPTER4
Architecture

This chapter describes in depth how the system is structured in different modules and

how the users interact with them and also how the modules interact with other modules

by themselves.

37

CHAPTER 4. ARCHITECTURE

38

4.1. ARCHITECTURE OVERVIEW

4.1 Architecture Overview

In this section we will describe the videogame architecture, starting with its two main

modules, the physical instruments miniatures and the software application. In

Figure 4.1 we show the global game architecture identifying both main modules and their

relation.

Figure 4.1: General Architecture

The modules are detailed below.

4.1.1 Physical instruments miniatures

There are five physical miniatures which represent each one of the musical instrument

families used at the game: percussion, keyboards, strings, woodwind and brass. The gamer

will use these pieces to interact with the app in order to change or activate the family

represented by the piece. Also, pieces will be used to access to different game modes.

The interaction between the pieces and the app is haptic, that is, the gamer will pick a

miniature and they will place it in the “instrument detection zone” represented by a shiny

39

CHAPTER 4. ARCHITECTURE

circle in the app screen. The app “detection algorithm” will determine which piece has

been placed and will make an event depending on the game mode and the app state. These

events are, for example, changing instrument, activate instrument, etc.

Each piece base has three little pads which conform a triangle used to determine the

instrument unequivocally.

Instrument miniatures design will be explain in more detail in section 4.2.

4.1.2 Application

The application has been developed using Unity, so we can identify the Unity components

included on our app. These components are Unity Scenes, Unity Textures, Unity Assets,

Unity Scripts and Unity Sounds. Integrating all of these components into our Unity projects

we are able to build the game logic and its graphic interface.

Unity is notable for its ability to target games to multiple platforms. Within a project,

we have control over delivery to different mobile devices, web browsers, desktops, and

consoles. In our case, we need to develop both Android and iOs applications and Unity

allow us to share the same code for them. Also, using Unity Android and iOs Plugins we are

able to access to native Android and iOs SDKs, in case we need to access to some Android

or iOs native components.

The application architecture will be explain in more detail in section 4.3.

4.2 Physical instruments miniatures

Besides the application software development, our videogame included five physical instru-

ments miniatures. These pieces are used by the gamer to interact with the application.

The interaction is simple, the gamer place one of the physical pieces on one of the several

recognition zones displayed within the game screens. Placing these pieces, the gamer is

able to select or enable an instrument belonging to the family represented by the physical

miniature. These pieces will be detailed in section 4.2.1.

The application has to determine what piece has the gamer placed on the screen. The

responsible for that is the detection algorithm which will be explained in section 4.2.2.

40

4.2. PHYSICAL INSTRUMENTS MINIATURES

4.2.1 Physical instrument pieces

We have five pieces, listed below:

• Drum, which represents the percussion instrument family, shown in Figure 4.2.

• Piano, which represents the keyboards instrument family, shown in Figure 4.3.

• Violin, which represents the strings instrument family, shown in Figure 4.4.

• Flute, which represents the woodwind instrument family, shown in Figure 4.5.

• Trumpet, which represents the brass instrument family, shown in Figure 4.6.

Figure 4.2: Drum piece (frontal and base)

Figure 4.3: Piano piece (frontal and base)

41

CHAPTER 4. ARCHITECTURE

Figure 4.4: Violin piece (frontal and base)

Figure 4.5: Flute piece (frontal and base)

Figure 4.6: Trumpet piece (frontal and base)

As we see in the figures above, each figure base has three little pads. These pads are

used in order to determine which piece has the gamer placed on the screen. Each piece has

42

4.2. PHYSICAL INSTRUMENTS MINIATURES

their pads placed in a certain position. A more detailed version of the piece bases are shown

below:

Figure 4.7: Detail of the drum base

Figure 4.8: Detail of the piano base

Figure 4.9: Detail of the violin base

43

CHAPTER 4. ARCHITECTURE

Figure 4.10: Detail of the flute base

Figure 4.11: Detail of the trumpet base

As we can see in the above figures, the three pads located in the pieces bases create a

triangle. Each piece creates a different triangle with the following angles:

• Drum base, whose triangle has three 60◦ angles, shown in Figure 4.7.

• Piano base, whose triangle has two 30◦ angles and one 120◦ angle and two 30◦ angles,

shown in Figure 4.8.

• Violin base, whose triangle has two 45◦ angles and one 90◦ angle, shown in Figure 4.9.

• Flute base, whose triangle has one 30◦ angle and two 75◦ angles, shown in Figure 4.10.

• Trumpet base, whose triangle has one 40◦ angle, one 60◦ angle and one 80◦ angle,

shown in Figure 4.11.

Using these angles information the recognition algorithm will be able to determine the

placed piece.

44

4.2. PHYSICAL INSTRUMENTS MINIATURES

4.2.2 Recognition algorithm

As we have detailed in the previous section, each piece is defined by the triangles on their

base. As we know, each triangle is defined by their three angles.

In order to determine the placed piece, we have to retrieve the three instrument pads

positions after the gamer places the piece on the recognition zone. This information will

be the input of the algorithm that we have developed to determine the placed musical

instrument.

We can see the recognition algorithm in Figure 4.12.

Figure 4.12: Detection algorithm diagram

If we look at 4.12, we can see how the piece if recognized by the application. This

recognition could be divided within three steps:

1. The gamer has to place the piece on the recognition zone. When the three pads

located in the piece base touch the screen, these pads coordinates
(x1 y1

x2 y2
x3 y3

)
are sent to

the detection algorithm.

2. The detection algorithm calculate the angles of a triangle build using the three coor-

dinates given by the piece base.

3. The detection algorithm compare the calculated triangle with the figure’s defined

triangles. After it, we retrieve the piece whose base triangle match the calculated one.

45

CHAPTER 4. ARCHITECTURE

We can see the algorithm design below:

Data:

dictionaryAnglesInstruments is a {key,value} dictionary where the keys are the

instruments and the values are their triangle base angles → Dict{piece, (αp, βp, γp)}
where αp, βp, γp ∈ [0, π] and p is key index

instrumentCoordinates is a 3-tuple y-sorted coordinates made by the instrument

base on the screen → [A(x1, y1), B(x2, y2), C(x3, y3)] where (xi, yi) ∈ R2

Result:

Instrument recognized ∈ {Drum,Piano,Violin,Flute,Trumpet}

while piece is placed on the recognition zone do

// Obtain the triangle sides module

a←
√

(x3 − x2)2 + (x3 − x2)2;
b←

√
(x3 − x1)2 + (x3 − x1)2;

c←
√

(x2 − x1)2 + (x2 − x1)2;
// Given the triangle sides we obtain the angles

α← arcos(b
2+c2−a2

2bc);

β ← arcos(c
2+a2−b2

2ca);

γ ← arcos(a
2+b2−c2

2ab);

// Given the triangle angles we subtract them from the

dictionaryAnglesInstruments values

foreach element (αp, βp, γp) in dictionaryAnglesInstruments do

diferencep ← |αp − α|+ |βp − β|+ |γp − γ|;
// We return the instrument whose angle difference is the

lowest

instrument index← index min(diference);

return instrumentCoordinates[index] key ;

end

Algorithm 4.1: Instrument recognition algorithm

46

4.3. APPLICATION

4.3 Application

The application is the biggest module of the game. It includes the whole software develop-

ment as it is shown in Figure 4.13.

Figure 4.13: Application architecture diagram

If we look at the application architecture diagram we can see the Application mod-

ule where Unity game engine will run. Unity has three main components, Unity Assets,

Unity Scripts and Unity Scenes. These components and Unity interaction with Flurry are

described below:

47

CHAPTER 4. ARCHITECTURE

4.3.1 Assets

An asset is a representation of any item that can be used in your game or project. An asset

may come from a file created outside of Unity, such as a 3D model, an audio file, an image,

or any of the other types of file that Unity supports. There are also some asset types that

can be created within Unity, such as an Animator Controller, an Audio Mixer or a Texture

Managers. In other words, assets are any resource your game uses.

Thankfully, Unity’s asset importing is robust and intelligent, it will accept all popular

3D file formats and also supports all common image file formats, including PNG, JPEG,

TIFF and even layered PSD files directly from Photoshop. When it comes to audio, Unity

supports WAV and AIF, ideal for sound effects, and MP3 and OGG for music.

In Figure 4.13 we can see that sounds and textures are included as assets to use them,

but they are not the only assets we will use. We said that there are some assets types that

have been created within Unity to make development easier. In our case we will use an

Animation Controller called HOTween, a 2D Texture Manager called 2dToolkit and both

Android and iOs plugins. All these assets are included in our Unity project downloading

them from Unity Asset Store.

The Unity Asset Store is where a growing library of free and commercial assets are

placed. These assets are created both by Unity Technologies and also members of the

community. A wide variety of assets is available, covering everything from textures, models

and animations to whole project examples, tutorials and Editor extensions. These assets

are accessed from a simple interface built into the Unity Editor and are downloaded and

imported directly into your project.

Assets will be used from the Scenes and/or the Scripts, which are detailed in section

4.3.3.

4.3.2 Scenes

Scenes contain the objects of your game. They can be used to create a main menu, individual

levels, and anything else. Each unique Scene file as a unique level, where you will place your

environments, obstacles, and decorations, essentially designing and building your game in

pieces.

We can easily make an analogy between Scenes and screens in our app. Each screen is

built from a Scene where all the Assets logic are managed by the Scripts.

48

4.3. APPLICATION

Creating Scenes with Unity are possible thanks to their intuitive interface, where project

assets can be drag to the interface Scene and Scripts can be attached to the assets to control

them.

4.3.3 Scripts

Scripts, known in Unity as behaviors, let you take assets in your scene and make them

interactive. Multiple scripts can be attached to a single object, allowing for easy code

reuse. Unity supports three different programming languages; UnityScript, C#, and Boo.

In our project we will use C#.

As we can see in Figure 4.13, Scripts will manage Unity Assets and will use external

Assets from the Unity Asset Store as libraries to make the development easier. In our

case, HOTween asset allow us to automate the animation of any numeric (and some non-

numeric) property or field (numbers, vectors, transforms, and so on) in many different ways.

2dToolkit provide an efficient 2D sprite, collider set-up and text system which integrates

seamlessly into the Unity environment. Android and iOs plugins allow us to access to native

Android and iOs libraries.

As we said, scripts will be attached to the scene assets we need to provide them the

functionality we need to.

4.3.4 Flurry

Flurry analytics allow us to easily add analytics to our mobile game applications. Integrating

this technology within our application will allow us to retrieve game application metrics such

as volume of users, time of use or crash reports.

As we can see in Figure 4.13, in order to integrate it into our development we have to

add Flurry SDK into our Unity project. Before that we just have to create a project using

Flurry web application. After all this process we will be able to use flurry library to manage

all the components we want to. In our case we will retrieve the following metrics:

• Active users, the total number of unique users who accessed the application per day.

• New users, the total number of unique users who used the application for the first

time per day.

• Average session length, average length of a user session per day.

49

CHAPTER 4. ARCHITECTURE

• Crash analytics, information about the application crashes, exceptions and errors.

4.4 Application use workflow

The application has three game modes, for each one we will see the application use workflow

to get a more precise idea of how the Gamer will interact with the application.

The three game modes were designed as a result of the Game modes use case defined in

section 3.2.2:

• Playing instrument game mode detailed in sub-section 4.4.1.

• Conducting orchestra game mode detailed in sub-section 4.4.2.

• Discovering instrument game mode detailed in sub-section 4.4.3.

50

4.4. APPLICATION USE WORKFLOW

4.4.1 Playing instrument game mode

Playing instrument game mode workflow is represented in Figure 4.14

Figure 4.14: Playing instrument game mode

As we can see in Figure 4.14, to access Playing instrument game mode, the gamer has to

place the physical instrument miniature in the Playing mode recognition zone after opening

the application. If the instrument has been placed properly, the Free mode instrument play

screen is opened.

Within this Free mode instrument play screen, the gamer can play freely with the instru-

ment that has been placed to access to this game mode. Also, the gamer is able to change

the instrument by placing another instrument miniature on the instrument recognition zone.

The gamer has the possibility to watch a demo. After touching the demo button, the

selected melody is played with the selected instrument. Also, the gamer can change the

melody using the melody selector menu, that is shown after touching the melody button.

Also, the gamer can play the selected melody with the selected instrument on a guide

mode instrument playing. This guide mode is started after touching the start button.

Within this guide playing, the notes are highlighted and the gamer has to play the high-

lighted note to compose the whole melody.

Finally, the gamer can go back to the home screen touching the home button.

51

CHAPTER 4. ARCHITECTURE

4.4.2 Conducting orchestra game mode

Conducting orchestra game mode workflow is represented in Figure 4.15

Figure 4.15: Conducting orchestra game mode

As we can see in Figure 4.15, to access Discovering instrument, the gamer has to place

the physical instrument miniature in the Discovering mode recognition zone after opening

the application. If the instrument has been placed properly, the Discovering instrument

screen is opened.

Within this Discovering instrument screen, the gamer can read information and learn

about some instruments of the family instrument that has been placed to access the game

mode. Also, the instrument sound can be reproduce touching the instrument sound button.

Also, the gamer is able to change the instrument by placing another instrument minia-

ture on the instrument recognition zone.

Finally, the gamer can go back to the home screen touching the home button.

52

4.4. APPLICATION USE WORKFLOW

4.4.3 Discovering instrument game mode

Discovering instrument game mode workflow is represented in Figure 4.16

Figure 4.16: Discovering instrument game mode

As we can see in Figure 4.15, to access Conducting the orchestra, the gamer has to place

the physical instrument miniature in the Conducting mode recognition zone after opening

the application. If the instrument has been placed properly, the Conducting orchestra screen

is opened.

Within this Conducting orchestra screen, the gamer can conduct an orchestra which is

playing the selected melody. This melody can be changed by the gamer using the melody

selector menu, that is shown after touching the melody button.

When this game mode is opened, the melody start to be played with all the instrument

enabled. The gamer is able to enable or disable an instrument sound. Also, the gamer

can enable or disable an entire family instrument placing one of the physical instrument

miniatures in the instrument recognition zone.

53

CHAPTER 4. ARCHITECTURE

4.5 Summary

In this chapter, we presented the proposed architecture for our application.

We started by taking a look at the architecture overview, where we differentiated two

principal components, the physical instruments miniatures and the software application.

After introducing both principal components, we saw how these physical instruments

miniatures were designed and how they are recognized by the software application using a

recognition algorithm.

Later, we detailed the software application architecture, focusing on how Unity3D engine

and its assets as long as other components work together.

Finally, we described the three application game modes workflow.

54

CHAPTER5
Case study

In this chapter we are going to describe two selected use cases that represents how the

gamer will interact with the application. Firstly, we will describe the gamer interaction

with the playing instrument game mode. Secondly, we will study the conduct orchestra

game mode

55

CHAPTER 5. CASE STUDY

56

5.1. INTRODUCTION

5.1 Introduction

In the following sections we will explain two of the principal application game modes:

• Playing instrument game mode detailed in section 5.2.

• Conducting orchestra game mode detailed in section 5.3.

In both use cases, two actors are involved, the gamer and the instrument recognition

algorithm.

Actor identifier Role Description

ACT-1 Gamer

End user that plays the game using

the physical instruments and the

application

ACT-2 Instrument recognition algorithm

Algorithm that detects which

physical figure has been placed on

the application recognition zones

Table 5.1: Actors list

The Gamer is able to access to both game modes from the application home screen,

using one of the physical instrument miniature. Within each game mode, the gamer is

able to interact with every component in order to select other musical instrument, change

melodies, play an instrument, watch a play instrument demo, choose what instruments must

be playing, etc.

The Instrument recognition algorithm allows the application engine to detect which

physical instrument miniature has been placed on the screen recognition zones. As a result,

the gamer is able to interact with the game mode using the physical instrument miniatures.

57

CHAPTER 5. CASE STUDY

5.2 Playing instrument game mode

In this section we are going to detail the whole application flow within the Playing in-

strument game mode. This game mode has been detailed in the application workflow,

represented in section 4.4.1.

Firstly, the Gamer has to open the application that has been previously installed on

their device from either Android Play Store or iOs App Store. Also, the gamer must has

purchased the physical instrument miniatures. These miniatures are necessary to interact

with the application so that we can access to different game modes and change instruments

inside them.

After opening the application the home screen is loaded. We can see game home screen

in Figure 5.1.

Figure 5.1: Application Home Screen

58

5.2. PLAYING INSTRUMENT GAME MODE

By interacting with this home screen we have the possibility to access to each of the

three game modes availables. In case it is our first contact with the game and we do not

know how to interact with it, we can get some help touching the help button, which is

represented with a question mark at the top left corner of the home screen. This help

screen is shown in Figure 5.2.

Figure 5.2: Help Home Screen

As we can see in Figure 5.2, in order to access to one of the three game modes, we

should place one of the physical instrument miniature (from now on piece) on one of the

instrument recognition zones (from now on white bases). After placing it, we just have

to hold and press lightly down the piece so that the application can recognize it. This

recognition is processed within the Instrument recognition algorithm. After it, we can lift

the piece from the white base and place another one if we want to access to another game

mode after getting back to the home screen.

In this use case, we want to access to the Playing instrument game mode, so we choose

one of the pieces and place it on the left white base so that we can access to the Playing

instrument game mode. In our case, we have chosen the percussion piece. After situating

the percussion piece on the left white base, a new screen, shown in Figure 5.3, is opened.

59

CHAPTER 5. CASE STUDY

Figure 5.3: Xylophone playing instrument game mode

In the Playing instrument game mode screen shown in Figure 5.3 we can see two buttons,

the Home button and the Help button, at the top right of the screen. These buttons allow

us to get to the home application screen or to show the help information for this game mode

respectively.

In Figure 5.4 we can take a look at the help screen information.

60

5.2. PLAYING INSTRUMENT GAME MODE

Figure 5.4: Help information playing instrument game mode

As we can read in the help information display, we can put another instrument on the

white base, located in the left of the screen, in order to select another instrument to play

with. The instruments available in this game mode are the following:

• Xylophone, which is selected after placing the percussion family piece.

• Piano, which is selected after placing the keyboards family piece.

• Harp, which is selected after placing the strings family piece.

• Panpipes, which is selected after placing the woodwind family piece.

• Trombone, which is selected after placing the brass family piece.

Besides choosing an instrument we can choose the melody we are going to play. We

can choose it after touching the Melodies button placed in the center of the screen. All the

melodies available in this game mode are shown in Figure 5.5.

61

CHAPTER 5. CASE STUDY

Figure 5.5: Melodies selection instrument game mode

When we have decided which instrument we will play which melody with, we can touch

the Demo button, which is positioned in the top right of the screen. By touching the Demo

button the melody will be played automatically and the musical notes will be appearing at

the sheet music placed in the center of the screen.

After watching the Demo we are ready to play the melody with the selected instrument.

We can start playing the melody by touching the Play button located at the top right of

the screen. After touching the Play button, we have to touch the instrument keys when

prompted so that we can play the whole melody. In Figure 5.6 we can see that the key

which have to be touch is the E key, the one that is prompted. Also, we can stop the Play

mode touching the Stop button.

62

5.2. PLAYING INSTRUMENT GAME MODE

Figure 5.6: Playing instrument game mode

Before concluding this game mode use case, we can see the rest of instrument screens

in the following figures:

• Xylophone, shown in Figure 5.3.

• Piano, shown in Figure 5.7.

• Harp, shown in Figure 5.8.

• Panpipes, shown in Figure 5.9.

• Trombone, shown in Figure 5.10.

63

CHAPTER 5. CASE STUDY

Figure 5.7: Playing piano screen

Figure 5.8: Playing harp screen
64

5.2. PLAYING INSTRUMENT GAME MODE

Figure 5.9: Playing panpipes screen

Figure 5.10: Playing trombone screen
65

CHAPTER 5. CASE STUDY

5.3 Conducting orchestra game mode

In this section we are going to detail the whole application flow within the Conducting

orchestra game mode. This game mode has been detailed in the application workflow

represented in section 4.4.2.

In order to access to this game mode, we have to proceed just as we have detailed in

the previous game mode in section 5.2.

In this use case, we want to access to the Conducting orchestra game mode, so we

choose one of the pieces and place it on the center white base so that we can access to the

Conducting orchestra game mode. After situating one of the pieces on the left white base,

a new screen, shown in Figure 5.11, is opened.

Figure 5.11: Conducting game mode access screen

In the Conducting orchestra game mode screen shown in Figure 5.11 we can see two

buttons, the Home button and the Help button, at the top right of the screen. These

buttons allow us to get to the home application screen or to show the help information for

this game mode respectively.

66

5.3. CONDUCTING ORCHESTRA GAME MODE

In Figure 5.12 we can take a look at the help information.

Figure 5.12: Help information conducting orchestra game mode

As we can read in the help information display, we should place the instrument minia-

tures on the white base, located in the center of the screen, in order to activate or deactivate

an instrument family section. After activating one section, we will be able to activate or

deactivate the instrument belonging to the related instrument section. After choosing the

what instrument we want to be activated we can touch the Play button to start the selected

melody.

When an instrument is activated, their sound will be played. So, by activating and

deactivating we can conduct the musical instruments that are playing the selected melody.

Besides conducting the orchestra, we can choose the melody played by the orchestra

touching the Melodies button placed in the bottom left of the screen. The melodies available

in this game mode are shown in Figure 5.13.

67

CHAPTER 5. CASE STUDY

Figure 5.13: Melodies selection in the conducting orchestra game mode

In Figure 5.14 we can see the Conducting orchestra game mode screen where The Blue

Danube melody has been selected and all the instrument have been activated.

As we can see, there is one section for each instrument miniature that we have. The

relation between the pieces and the sections is described below:

• Percussion section, which is activated after placing the percussion family piece.

• Brass section, which is activated after placing the brass family piece.

• Keyboards section, which is activated after placing the keyboards family piece.

• Strings section, which is activated after placing the strings family piece.

• Woodwings section, which is activated after placing the woodwind family piece.

68

5.3. CONDUCTING ORCHESTRA GAME MODE

Figure 5.14: Conducting orchestra screen with all instruments activated

Moreover, the instruments that we can activate or deactivate within the above sections,

are list below:

• Percussion section: Drum and Xylophone.

• Brass section: Horn and Trumpet.

• Keyboards section: Celesta and Clavicord.

• Strings section: Harp, Brass and Viola.

• Woodwings section: Clarinet and FLute.

To end this use case, in Figure 5.15 we can see the Conducting orchestra game mode

screen where The Blue Danube melody is being played by the Xylophone, the Celesta, the

Clavichord, the Viola and the Harp, which are the instruments that have been activated.

69

CHAPTER 5. CASE STUDY

Figure 5.15: Conducting orchestra screen with some instruments activated

5.4 Summary

In this chapter, we detailed both Playing instrument and Playing instrument game modes.

Firstly, we defined the actors involved within both cases of study.

After that, we shown the game mode screen flow and hoe the gamer should interact

with this game mode.

70

CHAPTER6
Evaluation

In this chapter we will evaluate the game application through the information retrieved

after its deployment

71

CHAPTER 6. EVALUATION

72

6.1. OVERVIEW

6.1 Overview

In the following sections we will observe the impact that our application has taken after its

deployment. We will analyze both Android and iOs application that we have deployed to

Google Play and Apple Store respectively.

The metrics used in this chapter have been recovered using Game Analytics. Although

ideally we should have used Flurry to retrieved the desired metrics to write this chapter,

the client restricted Flurry panel access two years after the application deployment.

Game Analytics is a free and powerful analytics tool for game developers, that helps us

to understand player behavior and build better games. [18] It is natively included within

Unity so we are able to access to lots of metrics out of the box.

6.2 Acquisition

In this section we are going to revise the user acquisition. The most important metrics for

user acquisition are number and location of installations. These two metrics are by far the

easiest way to tell if our application is something that people find valuable.

We have to notice that although our application is free to download, the pack with the

physical instrument pieces should be bought in the client physical stores. This physical

pack is shown in Figure 6.1

Figure 6.1: Physical instrument pieces box

This will impact in the application user acquisition due to the fact that our target users

73

CHAPTER 6. EVALUATION

will be the ones who have bought the physical game.

We will study the acquisition metrics in two time periods. Firstly, we will look at the

information obtained during the first year since the application was first released, this covers

the period between August 2014 and August 2015. Then we will observe the information

during the three years that the application has been available on the market which covers

the period between August 2014 and February 2017.

6.2.1 Number of users

As we said, one of the most important metrics for user acquisition is the number of instal-

lations or the number of users which have download our application in their device.

In Figure 6.2 we can see the new users engaged in the first year:

Figure 6.2: New users in the first year from release

As wee can see, we got 2541 users in the first year. Every month the users increased an

average of 200 new people. Also, we can observe that there is an evident increase of new

users in the months of December and January, which is consequence of the increase of the

physical packs sells within Christmas days.

In Figure 6.3 we can see the new users obtained in the whole time our application have

been on the market:

74

6.2. ACQUISITION

Figure 6.3: New users since application first release

As wee can see, we got 4641 users since our application first release. Also, we can

observe that after first year new installations have been decreasing with the exception of

the Christmas months described earlier. Even so, during 2016 our game has been constantly

downloaded by an average of 100 new users.

6.2.2 Users location

Due to the physical instrument pack is sold in the countries list in the Table 6.1, is very

useful to observe new user distribution across the world.

Argentina Bulgaria Colombia Greece Hungary

Israel Latvia Mexico Poland Qatar

Romania Saudi Arabia Switzerland United Arab Emirates Uruguay

Azerbaijan China France Holland

Italy Lithuania Peru Portugal

Russia Spain Turkey United States

Table 6.1: Countries were the physical instrument pack is sold

In Figure 6.4 we can see the world distribution map of users engaged in the first year:

Also, in Figure 6.5 we can observe the top four countries where the game have been

downloaded within this period:

75

CHAPTER 6. EVALUATION

Figure 6.4: New users location in the first year from release

Figure 6.5: New users location in the first year from release top countries

As we can see, the application have been installed from most of the countries located in

Europe and America, as long as many countries located in Asia. Also, Spain, Russia, USA

and Italy are the countries where most of the users came from.

In Figure 6.6 we can see the world distribution map of users obtained in the whole time

our application have been on the market:

Also, in Figure 6.7 we can observe the top four countries where the game have been

downloaded within this period:

76

6.3. ENGAGEMENT

Figure 6.6: New users location since application first release

Figure 6.7: New users location since application first release top countries

As we can see, the application have been installed from a few more countries from the

ones in the first year. Also, Spain, Russia, USA and Italy are the countries where most of

the users came from.

6.3 Engagement

Mobile engagement is the act of engaging a user through available messaging channels inside

and outside of an app. Because of that, engagement is such an important metric to analyze

if the gamer has considered our application useful as their keep using it.

We will observe user engagement since our game is in the market and through two

principal blocks of metrics, user retention and DAU, WAU and MAU metrics.

77

CHAPTER 6. EVALUATION

6.3.1 Retention

Retention is arguably the most important metric in a free-to-play game. Successful free-

to-play games create long-term relationships with users. Users that enjoy the experience

enough are willing to pay to for a competitive advantage. A game needs to have strong

retention to have time to build this relationship.

To calculate retention, separate your users into cohorts based on the day they download

your app. The day that the download occurs is Day 0. If a user opens your app the next day

(Day 1), they are marked as retained. If they do not open the app, they are not retained.

This calculation is performed for user cohort on each day after they download the app.

Common days used for retention are 1, 3, 7 and 30. [19]

In Figure 6.8 we can see our game 90 day retention since its release:

Figure 6.8: Application retention

As we can see, our game retention is 18.18%. Usually, game applications tend to have

lower retention values, and according to Flurry studies, 8% retention rate at 30 days is aver-

age across the kids game iOs sub-category applications. [20] In our case, we have duplicate

generally retention rates for our type of application.

6.3.2 DAU, WAU and MAU

Daily Active Users (DAUs) is the number of unique users that start at least one session in

your app on any given day. By themselves, DAU and other high level metrics don’t provide

much insight into an app’s performance. However, knowing these simple metrics is a useful

starting point for an educated analytics discussion.

78

6.3. ENGAGEMENT

Weekly Active Users (WAUs) is the number of unique users that start at least one

session in your app on any given week. Having both DAU and WAU, we can obtain the

ratio of Daily Active Users to Weekly Active Users.

Monthly Active Users (MAUs) is the number of unique users that start at least one

session in your app on any given month. Having both DAU and MAU, we can obtain the

ratio of Daily Active Users to Monthly Active Users shows how well an app retains users

and is often referred to as the stickiness of a game. This metric shows you how frequently

users log in to your app.

Popular social networking apps like Facebook have reported DAU/MAU ratios as high

as 50 percent. But most successful gaming apps have ratios closer to 20 percent. [19]

In Figure 6.9 we can see our DAU, WAU and MAU data:

Figure 6.9: Application retention

As we can see, if we calculate the DAU/WAU and DAU/MAU ratios, we obtain 20%

and 6%. This means that the average user logged in on roughly 6 percent of the days that

month.

6.3.3 Quality

We will study our game quality in terms of the average numbers of screens the levels plays

and in the average of frames per second their devices give.

In Figure 6.10 we can see the mean of levels that our gamers plays in every month since

the application release.

79

CHAPTER 6. EVALUATION

Figure 6.10: Application levels average

As we can see, gamers plays an average of 20 levels per month. In our case, each screen

is a level, so the gamer plays thorough at least 20 different screens each month.

Finally, in Figure 6.11 we can observe the average frames per second shown by gamers

devices.

Figure 6.11: Application fps average

As we can see, gamers devices shown an average of 29 frames per second, which is the

estimated value for a game which manages lots of audio and animation resources.

6.3.4 Summary

In this chapter we evaluated our application using the metrics available from Unity Game

Analytics.

Firstly, we observe user acquisition in order to study the numbers of new users we

obtained during the first year of the application in the market and since its release. Also,

we took a look at the users location distribution.

Secondly, we detailed user engagement so that we can know if the users tend to use our

game after its installation. We took a look at retention information since application release

80

6.3. ENGAGEMENT

as long as DAU, WAU and MAU metrics.

Finally, we observed the game quality detailed the numbers of levels the gamer played

and the numbers of frames per second their devices shown since the application release.

81

CHAPTER 6. EVALUATION

82

CHAPTER7
Conclusions

In this chapter we will describe the conclusions extracted from this master thesis and

detail the achieved goals. Also, the thinkings about future work will be detailed.

83

CHAPTER 7. CONCLUSIONS

84

7.1. CONCLUSIONS

7.1 Conclusions

By using Unity3D as the base to build the application we have been able to create a cross-

platform mobile game without the effort requires to manage separate developments for each

platform.

We have built an application from scratch following a typical mobile application de-

velopment lifecycle defined the in the following four different phases: discovery, design,

development, testing and deployment. [21]

Firstly, we covered the requirement analysis phase, determining the needs for our ap-

plication, taking account of the possibly conflicting requirements of our client, analyzing,

documenting, validating and managing software or system requirements. [22]

Secondly, we obtained the use cases, which covers all the functional requirements ob-

tained in the first stage of our development.

Then, we design the game architecture, where we decided to use Unity3D as our game

base engine. Moreover, four asset plugins placed in Unity3D (2D Toolkit, HOTween, iOs

native and Android native) where included in the architecture in order to improve perfor-

mance and make the development easier. Also we need to design physical pieces to let the

gamer interact with the software application. This pieces have a unique base pads distri-

bution to let our algorithm identify each piece. In order to detect what physical figure

has been placed on the application recognition zones we build the instrument recognition

algorithm.

Finally, we design three game modes to cover the use cases presented. In this document

we have presented two of them.

Following this path we have been able to build a multi-platform mobile musical training

software for children using the framework Unity3D engine.

This multi-platform game application have reached being a commercial product. Phys-

ical instrument pieces are sold in a renowned toy shop which have stores in more than 20

countries. Also, both iOs and Android applications have been are available in App Store

and Google Play respectively.

85

CHAPTER 7. CONCLUSIONS

7.2 Achieved goals

In this section we will detail our application’s achieved goals checking if we have covered all

the use cases presented in section 3.2.2

Play an instrument This goal has been achieved successfully. This use case is described

in 3.2.2.1. The gamer is able to play five different instruments, one of each musical

instrument family. In order to select the instrument to play with, the gamer is able to

place the physical miniature, which represents the instrument family, on a recognition

zone in the screen. Also, the gamer can watch a demo or change the melody to be

played. We can see this achievement in figures 5.3, 5.7, 5.8, 5.9 and 5.10

Conduct the orchestra This goal has been achieved successfully. This use case is de-

scribed in 3.2.2.2. The gamer is able to conduct the orchestra that is playing the

selected melody. The gamer can conduct the melody by enabling or disabling the

instruments that are playing this melody. In order to select the instrument family

whose instruments will be able to be enabled or disabled, the gamer is able to place

the physical miniature, which represents the instrument family, on a recognition zone

in the screen. Also, the gamer can watch stop or change the melody to be conducted.

We can see this achievement in figures 5.14 and 5.15.

Discover an instrument This goal has been achieved successfully. This use case is de-

scribed in 3.2.2.3. The gamer is able to read information of instruments of the five

different musical families. In order to select the instruments to discover, the gamer

is able to place the physical miniature, which represents the instrument family, on a

recognition zone in the screen. Also the gamer can reproduce the instrument selected

sound. We can see this achievement in figures shown in section B.4

Watch a melody play demo This goal has been achieved successfully. This use case is

described in 3.2.2.4. Gamer is able to watch a demo of all available melodies in the

Play instrument game mode with each of the five instruments the gamer is able to

play with.

Select a melody This goal has been achieved successfully. This use case is described in

3.2.2.5. Gamer is able to select a melody within both Play instrument and Conduct

orchestra game modes. We can see this achievement in figures 5.5 and 5.13.

Select an instrument This goal has been achieved successfully. This use case is described

in 3.2.2.6. As we have said in the previous achievements, the gamer is able to choose

86

7.3. FUTURE WORK

an instrument within all game modes. In order to select the instrument, the gamer

is able to place the physical miniature, which represents the instrument family, on a

recognition zone in the screen.

Build the instrument recognition algorithm This goal has been achieved successfully.

This actor is described in 3.1. The instrument recognition algorithm detects what

physical figure has been placed on the application recognition zones. This algorithm

is used within the three game modes included in our application when the user place

the physical miniature, which represents the instrument family, on a recognition zone

in the screen.

7.3 Future work

There are several lines than can be followed to continue and extend features of this work.

In the following points we present some improvements that we can add to our application

to continue the development.

• Add new instruments to the Play instrument game mode. This new feature imply the

development of new screens for each new instruments and the manage of new musical

sounds.

• Add new instrument families to the game. This feature imply the design of new pieces

as long as modifying the recognition algorithm to support them. Also, the three game

modes should be adapted to represent the new instrument families.

• Update game project to Unity 5. This involves some work related with all Unity

components. While many areas are upgraded automatically, there are certain parts

of the project where we will need to manually adjust or refactor.

• Reduce artifacts size. While Android and iOs markets allow us to upload huge sized

applications, this suppose that user should only install the application when they are

connected through WiFi. This would suppose a barrier to attract new gamers, so

artifact size should be reduced from 300 MB, its actual size.

• Add notifications management system in order to allow the client to interact with

the gamer. This would let the client to promote their other applications and the new

game features

87

CHAPTER 7. CONCLUSIONS

• Reduce resources requirements. This would permit lower resources devices to run the

application and decrease the battery use.

• Automate the deployment phase. This feature would allow us to decrease times when

applying bug fixes to our application.

88

APPENDIXA
Game Play images

This appendix shows game play captures. It goes through the three different game modes

and shows how the gamer interacts with them using the physical instrument pieces.

89

APPENDIX A. GAME PLAY IMAGES

90

A.1. PLAYING GAME MODE

A.1 Playing game mode

Figure A.1: Entering playing game mode from home screen

Figure A.2: Playing piano free mode

91

APPENDIX A. GAME PLAY IMAGES

Figure A.3: Opening melodies menu in playing game mode

Figure A.4: Changing melody to be played in playing game mode

92

A.1. PLAYING GAME MODE

Figure A.5: Starting guided playing mode

Figure A.6: Playing piano guided

93

APPENDIX A. GAME PLAY IMAGES

Figure A.7: Placing strings piece in playing game mode

Figure A.8: Placing woodwind piece in playing game mode

94

A.1. PLAYING GAME MODE

Figure A.9: Placing brass piece in playing game mode

Figure A.10: Placing percussion piece in playing game mode

95

APPENDIX A. GAME PLAY IMAGES

A.2 Conducting game mode

Figure A.11: Entering conducting game mode from home screen

Figure A.12: Opening melodies menu in playing game mode

96

A.2. CONDUCTING GAME MODE

Figure A.13: Changing melody to be played in playing game mode

Figure A.14: Activating keyboards family

97

APPENDIX A. GAME PLAY IMAGES

Figure A.15: Disabling instrument

Figure A.16: Enabling instrument

98

A.3. DISCOVERING GAME MODE

A.3 Discovering game mode

Figure A.17: Entering discovering game mode from home screen

Figure A.18: Playing instrument sound

99

APPENDIX A. GAME PLAY IMAGES

Figure A.19: Changing family in discovering game mode

Figure A.20: Changing instrument in discovering game mode

100

APPENDIXB
Application game screens

This appendix shows all the screens which conform the application. It goes through the

three different game modes and shows all the screens contained within them.

101

APPENDIX B. APPLICATION GAME SCREENS

102

B.1. HOME

B.1 Home

Figure B.1: Application Home Screen

Figure B.2: Help Home Screen

103

APPENDIX B. APPLICATION GAME SCREENS

B.2 Playing game mode

Figure B.3: Xylophone playing instrument game mode

Figure B.4: Help information playing instrument game mode

104

B.2. PLAYING GAME MODE

Figure B.5: Playing panpipes screen

Figure B.6: Playing trombone screen

105

APPENDIX B. APPLICATION GAME SCREENS

Figure B.7: Playing piano screen

Figure B.8: Playing harp screen

106

B.3. CONDUCTING GAME MODE

B.3 Conducting game mode

Figure B.9: Conducting game mode access screen

Figure B.10: Help information conducting orchestra game mode

107

APPENDIX B. APPLICATION GAME SCREENS

Figure B.11: Melodies selection in the conducting orchestra game mode

Figure B.12: Conducting orchestra screen with all instruments activated

108

B.4. DISCOVERING GAME MODE

B.4 Discovering game mode

Figure B.13: Help Discovering Screen

Figure B.14: Discovering drum instrument

109

APPENDIX B. APPLICATION GAME SCREENS

Figure B.15: Discovering kettle instrument

Figure B.16: Discovering cymbals instrument

110

B.4. DISCOVERING GAME MODE

Figure B.17: Discovering xylophone instrument

Figure B.18: Discovering marimba instrument

111

APPENDIX B. APPLICATION GAME SCREENS

Figure B.19: Discovering vibraphone instrument

Figure B.20: Discovering trumpet instrument

112

B.4. DISCOVERING GAME MODE

Figure B.21: Discovering French horn instrument

Figure B.22: Discovering trombone instrument

113

APPENDIX B. APPLICATION GAME SCREENS

Figure B.23: Discovering tuba instrument

Figure B.24: Discovering flugelhorn instrument

114

B.4. DISCOVERING GAME MODE

Figure B.25: Discovering piano instrument

Figure B.26: Discovering celesta instrument

115

APPENDIX B. APPLICATION GAME SCREENS

Figure B.27: Discovering organ instrument

Figure B.28: Discovering clavichord instrument

116

B.4. DISCOVERING GAME MODE

Figure B.29: Discovering violin instrument

Figure B.30: Discovering double bass instrument

117

APPENDIX B. APPLICATION GAME SCREENS

Figure B.31: Discovering viola instrument

Figure B.32: Discovering chello instrument

118

B.4. DISCOVERING GAME MODE

Figure B.33: Discovering lute instrument

Figure B.34: Discovering guitar instrument

119

APPENDIX B. APPLICATION GAME SCREENS

Figure B.35: Discovering harp instrument

Figure B.36: Discovering flute instrument

120

B.4. DISCOVERING GAME MODE

Figure B.37: Discovering clarinet instrument

Figure B.38: Discovering oboe instrument

121

APPENDIX B. APPLICATION GAME SCREENS

Figure B.39: Discovering bassoon instrument

Figure B.40: Discovering piccolo instrument

122

B.4. DISCOVERING GAME MODE

Figure B.41: Discovering panpipes instrument

123

APPENDIX B. APPLICATION GAME SCREENS

124

Bibliography

[1] T. A. M. Henning Heitkötter, Sebastian Hanschke, “Evaluating cross-platform development

approaches for mobile applications,” Web Information Systems and Technologies, pp. 120–138,

April 2012.

[2] M. Yakubovich, Evaluating the Potential of Developing Cross-Platform Mobile Applications.

PhD thesis, Chalmers university of Technology, 2013.

[3] A. Kim and J. Bae, “Development of mobile game using multiplatform (unity3d) game engine,”

Social Networks, vol. 5, pp. 29–36, March 2014.

[4] U. Technologies, “Unity - multiplatform.” https://unity3d.com/es/unity/

multiplatform/. Accessed October 14, 2016.

[5] Yahoo, “Flurry analytics / product features.” https://developer.yahoo.com/

analytics/features.html. Accessed October 14, 2016.

[6] F. Messaoudi, G. Simon, and A. Ksentini, “Dissecting games engines: The case of unity3d,”

in 2015 International Workshop on Network and Systems Support for Games (NetGames),

pp. 1–6, Dec 2015.

[7] U. Technologies, “Unite 2015: 2015 unity awards winners re-

vealed.” https://unity3d.com/es/company/public-relations/news/

unite-2015-2015-unity-awards-winners-revealed. Accessed October 14, 2016.

[8] U. Technologies, “How do i import objects from my 3d app?.” https://docs.unity3d.

com/Manual/HOWTO-importObject.html. Accessed October 14, 2016.

[9] U. Technologies, “Shaders.” https://docs.unity3d.com/Manual/Shaders.html. Ac-

cessed October 14, 2016.

[10] U. Technologies, “Script reference.” https://docs.unity3d.com/ScriptReference/.

Accessed October 14, 2016.

[11] U. Technologies, “Monodevelop.” https://docs.unity3d.com/es/current/Manual/

MonoDevelop.html. Accessed October 14, 2016.

[12] U. Technologies, “Asset server (pro only).” https://docs.unity3d.com/Manual/

AssetServer.html. Accessed October 14, 2016.

[13] U. Technologies, “Importing from the asset store.” https://docs.unity3d.com/Manual/

AssetStore.html. Accessed October 14, 2016.

125

https://unity3d.com/es/unity/multiplatform/
https://unity3d.com/es/unity/multiplatform/
https://developer.yahoo.com/analytics/features.html
https://developer.yahoo.com/analytics/features.html
https://unity3d.com/es/company/public-relations/news/unite-2015-2015-unity-awards-winners-revealed
https://unity3d.com/es/company/public-relations/news/unite-2015-2015-unity-awards-winners-revealed
https://docs.unity3d.com/Manual/HOWTO-importObject.html
https://docs.unity3d.com/Manual/HOWTO-importObject.html
https://docs.unity3d.com/Manual/Shaders.html
https://docs.unity3d.com/ScriptReference/
https://docs.unity3d.com/es/current/Manual/MonoDevelop.html
https://docs.unity3d.com/es/current/Manual/MonoDevelop.html
https://docs.unity3d.com/Manual/AssetServer.html
https://docs.unity3d.com/Manual/AssetServer.html
https://docs.unity3d.com/Manual/AssetStore.html
https://docs.unity3d.com/Manual/AssetStore.html

BIBLIOGRAPHY

[14] U. Software, “2d toolkit in unity 4.3.” http://www.2dtoolkit.com/unity2d.html. Ac-

cessed October 14, 2016.

[15] D. Giardini, “Hotween a unity tween engine.” http://hotween.demigiant.com/. Ac-

cessed October 14, 2016.

[16] U. Assets, “ios native documentation.” https://unionassets.com/iosnative. Accessed

October 14, 2016.

[17] U. Assets, “Android native documentation.” https://unionassets.com/

android-native-plugin. Accessed October 14, 2016.

[18] G. Analytics, “Analytics that empower you.” http://www.gameanalytics.com/. Ac-

cessed February 14, 2017.

[19] G. Analytics, “15 metrics all game developers should know by heart.” http://www.

gameanalytics.com/blog/metrics-all-game-developers-should-know.html.

Accessed February 14, 2017.

[20] Yahoo, “Enter the matrix: App retention and engagement.” http://flurrymobile.

tumblr.com/post/144245637325/appmatrix. Accessed February 14, 2017.

[21] I. Tejas Vithani, Member and A. Kumar, “Modeling the mobile application development lifecy-

cle,” in Proceedings of the International MultiConference of Engineers and Computer Scientists

2014 Vol I, pp. 596–600, IMECS, 2014.

[22] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and Techniques. Wiley,

1998.

126

http://www.2dtoolkit.com/unity2d.html
http://hotween.demigiant.com/
https://unionassets.com/iosnative
https://unionassets.com/android-native-plugin
https://unionassets.com/android-native-plugin
http://www.gameanalytics.com/
http://www.gameanalytics.com/blog/metrics-all-game-developers-should-know.html
http://www.gameanalytics.com/blog/metrics-all-game-developers-should-know.html
http://flurrymobile.tumblr.com/post/144245637325/appmatrix
http://flurrymobile.tumblr.com/post/144245637325/appmatrix

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Context
	Master thesis description
	Master thesis goals
	Structure of this Master Thesis

	Enabling Technologies
	Unity3D game engine
	Unity3D features
	Unity3D concepts
	Unity3D interface

	Unity Asset Store
	2D Toolkit
	HOTween
	iOs native plugin
	Android plugin

	Flurry analytics
	Summary

	Requirement Analysis
	Overview
	Use cases
	Actors dictionary
	Game modes use case
	Play instrument
	Conduct orchestra
	Discover instrument
	Watch demo
	Select melody
	Select instrument

	Game management use case
	Metrics management
	Errors management

	Summary of requirements
	Functional requirements
	Non-functional requirements

	Summary

	Architecture
	Architecture Overview
	Physical instruments miniatures
	Application

	Physical instruments miniatures
	Physical instrument pieces
	Recognition algorithm

	Application
	Assets
	Scenes
	Scripts
	Flurry

	Application use workflow
	Playing instrument game mode
	Conducting orchestra game mode
	Discovering instrument game mode

	Summary

	Case study
	Introduction
	Playing instrument game mode
	Conducting orchestra game mode
	Summary

	Evaluation
	Overview
	Acquisition
	Number of users
	Users location

	Engagement
	Retention
	DAU, WAU and MAU
	Quality
	Summary

	Conclusions
	Conclusions
	Achieved goals
	Future work

	Game Play images
	Playing game mode
	Conducting game mode
	Discovering game mode

	Application game screens
	Home
	Playing game mode
	Conducting game mode
	Discovering game mode

	Bibliography

