AAAI Technical Report SS-12-04
Intelligent Web Services Meet Social Computing

A Semantic Metadirectory of Services
Based on Web Mining Techniques

José Ignacio Fernandez-Villamor
Universidad Politécnica de Madrid
Avenida Complutense, 30
28040 Madrid, Spain

Tilo Zemke
Technische Universitit Chemnitz
Stra3e der Nationen, 62
09111 Chemnitz, Germany

Carlos A. Iglesias and Mercedes Garijo
Universidad Politécnica de Madrid
Avenida Complutense, 30
28040 Madrid, Spain

Abstract

In the current web, developers are able to create new
applications by composing already existing services
from third-party vendors. However, the vast amount
of choices, technologies and repositories can make it
a tedious task. This paper describes a semantic metadi-
rectory of services that helps in the process of discov-
ering services. We propose a semantic service discov-
ery process and description of existing service repos-
itories, such as Programmable Web and Yahoo Pipes,
which are two service repositories which provide plenty
of services that can be reused by developers to build
new web applications. The challenges behind integrat-
ing these repositories involved the problems of defining
a common model, identifying relevant data and integrat-
ing and ranking the extracted data.

In today’s Web, developers enjoy the availability of plenty
of services that can be reused to build new web applica-
tions. Examples of reusable web services include feeds
that provide data from different domains or even telco ser-
vices. There is also a growing set of tools for the creation
of mashups that ease developers the combination of services
for application construction, and various service registries,
such as Programmable Web or Yahoo Pipes, that help to find
mashup components. They can be queried by users in order
to search useful applications and services that they can reuse
for mashup composition.

Nevertheless, because of this mushrooming of services
and mashup platforms, developers face some difficulties
when working in this development process of mashup con-
struction. First, it is not easy for a developer to find the
most appropriate service for a mashup being built, as there

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

27

are many of them available and the information might be
scattered in various repositories in the web. Second, the ser-
vices employ different standards and semantics, thus requir-
ing some study of the documentation by the developer. And
third, the services often need to be adapted for their use by
the mashup platform in question.

Thus, developers need to search for the appropriate com-
ponent according to some high-level needs they have. Ac-
cording to the type of component (API, service, widget...)
the developers would have to check one registry or another
(e.g. either a widget repository or some service registry).
Also, depending on the features seeked in the component,
some registries would be more appropriate than others (e.g.
some registries might show information about semantics of
the service and others not). And again, according to the fea-
tures seeked, it would be necessary to query external sources
to fill up the component information (e.g. it might be neces-
sary to look up a components’ vendor at Wikipedia in order
to get an idea of the component’s trust).

The Web 2.0 phenomenon caused a vast amount of users
collaborate and add contents to the current Web. The Euro-
pean project Open Mashup Enterprise Service Platform for
Linked Data in the Telco Domain (OMELETTE)' attempts
to foster this Web 2.0 phenomenon in web development, em-
powering users with few or no technical knowledge to create
mashup applications. OMELETTE focuses its research on
telco mashups, service-level and presentation-level compo-
sition, client-server mashups, and automation of component
discovery and composition.

This paper describes the semantic service discovery pro-
cess and description of existing service repositories, such as
Programmable Web and Yahoo Pipes, which has been used

"http://www.ict-omelette.eu

in the OMELETTE project. As said, Programmable Web
and Yahoo Pipes are two service repositories which provide
plenty of services that can be reused by developers to build
new web applications. However, they provide information
about services in a non-semantic fashion. The challenges
behind integrating these repositories involved the problems
of defining a common model, identifying relevant data and
integrating and ranking extracted data.

Our research methodology consisted of four steps. First,
we have harvested these repositories combining API access
and semantic scraping techniques. Second, clustering algo-
rithms have been applied to identify mappings between the
different taxonomies present on each repository. Third, ser-
vices have been automatically described based on Linked
Mashups Ontology (LiMOn), a high-level service ontology.
Finally, a service ranking algorithm has been defined. As a
result, a metadirectory that has been populated with mashup
components has been obtained. Because of the cluster-
ing process, this metadirectory can handle complex queries
by using any of the taxonomies of the original directories.
Additionally, it supports queries which combine external
sources such as DBpedia thanks to the semantic nature of
the resulting data.

The paper is structured as follows. First, we will de-
scribe LiMOn, the model used to describe and annotate the
metadirectory’s components. Afterwards, a metadirectory
that makes use of LiMOn is described, as well as the ap-
proach that has been followed to populate the metadirectory
with actual web components. The next section describes
rOMking, the approach employed to rank the different com-
ponents in the metadirectory. The metadirectory and the data
obtained are then evaluated. Finally, related works are sum-
marized and some conclusions of the research done and fu-
ture works are detailed in the last section.

Linked Mashups Ontology (LiMOn)

In this section, we describe a model that integrates the prop-
erties and fields that are provided by current component
repositories in the web. It is called the Linked Mashups On-
tology (LiMOn), for its approach of bringing Linked Data to
mashup-driven development.

With these considerations in mind, we have defined the
model presented in Figure 1. Regarding the technical as-
pect of services, a set of properties allow to cover inter-
face aspects, such as linking to a lower-level component de-
scriptions (e.g. Web Service Modeling Ontology (WSMO),
World Wide Web Consortium (W3C) widgets or Web Ser-
vice Definition Language (WSDL), depending on the nature
of the component). The property uses is employed to link to
reused components. For example, it can be used to indicate
which services or data feeds a mashup reuses.

The trust aspect comprises popularity and company trust
issues, and includes properties that allow representing users’
rating, which reflect users’ degree of satisfaction with the
component. Other properties fall into the company trust by
providing means to reference support facilities (i.e. forums
and blogs) that the vendor provides to component users.
Also, the property provider allows to identify the vendor of
the component, for any company trust issues involved.

28

Business aspect Trust aspect

Terms & Conditions Rating
Developer key required? Provider
Usage fees Homepage
Commercial license API page

A

Category Tag

Type Example

SSL support Client install required?
Protocol Semantic description
Data format Endpoint
Authentication scheme API URL

Technical aspect

Figure 1: Linked Mashups Ontology (LiMOn)

The business aspect comprises costs, and legal and vendor
issues, and is covered by the model through properties such
as a cost-aspect property that links to any cost required to
use the component. Other properties allow linking to a terms
and conditions document, or to a commercial licenses for the
usage of the component, etc.

In total, the component repositories of Yahoo Pipes?, Pro-
grammable Web?, Opera Widgets*, iGoogle Gadgets>, App-
Store®, Android Market’, and Ohloh® were analysed to iden-
tify relevant properties for the model.

Metadirectory of mashups

A metadirectory that makes use of LiMOn has been built.
This metadirectory integrates heterogeneous components
that can be potentially used in various web applications.
More specifically, mashup applications, services, and wid-
gets from the Web are the considered components that will
be included into the metadirectory because of the reposito-
ries that have been targeted, again Programmable Web and
Yahoo Pipes.

In order to make the components addressable by devel-
opers, the metadirectory stores relevant metadata that can
be used by the developers for selecting components. Ad-
ditionally, these metadata should be available in the web in
order to make it possible to automate the population of the
metadirectory with real components. Usually, web compo-
nent repositories contain metadata such as a component’s
name, textual description, tags or categorization. Other spe-
cific properties that depend on the nature of the component
can also be found, such as inputs, endpoints, web service de-
pendencies, or underlying formal descriptions like WSMO

Zhttp://pipes.yahoo.com
*http://www.programmableweb.com
*http://widgets.opera.com
Shttp://www.google.com/ig/directory
®http://itunes.apple.com/de/genre/ios/id36
"https://market.android.com
8http://www.ohloh.net

or WSDL.

Data harvesting and integration

In this section, we will cover how the metadirectory has been
populated with components from the targeted repositories
and how the data has been integrated.

We have defined a semantic proxy layer on top of the
repositories. For each repository, we have defined the map-
pings between their HyperText Markup Language (HTML)
contents of their web resources and the Resource De-
scription Framework (RDF) data they provide according to
LiMOn. To define these mappings we have used the Scrap-
ing Ontology® (Fernandez-Villamor et al. 2011). This ap-
proach lets the system to have an RDF view of the unstruc-
tured data in the source repositories. With that, an automated
agent crawls the source repositories and extracts the RDF
data, which are then stored into the metadirectory.

Once the metadirectory is populated with components
from the web, a unified categorization scheme is seeked
in order to provide a homogeneous interface for querying
the metadirectory. This is necessary because of the di-
versity that is present in the categorization of the targeted
repositories. For instance, components retrieved from Pro-
grammable Web are already tagged and use their own cate-
gorization scheme. The ones from Yahoo Pipes only have
the tags that have been set by the users. Therefore, the
components do not share a common categorization scheme,
which limits the querying capabilities.

To integrate all the categorization schemes, we will define
mappings between the concepts of each taxonomy. This en-
ables querying the metadirectory by using any of the avail-
able categorization schemes without restricting the query to
a particular repository. To achieve this, we will define a new
categorization scheme by clustering the components avail-
able in the metadirectory. This automatically built scheme
will be mapped to the categorization schemes provided by
Programmable Web and Opera Widgets.

Automatic categorization In this section, we will de-
scribe how to automatically build a categorization system
that allows users to query the metadirectory. In many cases,
components already belong to a category that was defined
in their source repository. As said, Programmable Web pro-
vides some categorization schemes, with categories such as
“Tools”, “Mapping”, or “Sports”. In the case of Yahoo Pipes
repository, only tags are used to categorize each pipe.

Whenever only tags are used to categorize components,
we propose the following method to build a categorization
scheme based on the most common tag combinations in the
component space. We will use clustering techniques to iden-
tify the most common categories in the space, and thus to
define a new categorization scheme. The resulting catego-
rization scheme will be mapped to the other schemes in the
next section to provide a uniform interface for querying the
metadirectory.

To perform the clustering, components are modeled as a

*http://lab.gsi.dit.upm.es/scraping.rdf

29

vector representing the tags they have:
a = (a1, a2,,an),a; € {0,1} (D

A weighted euclidean distance between a pair of compo-
nents a and b is used by the clustering algorithm:

d(a,b) = | Y wi - (a; — b;)? 2)
i=1

The weights for each dimension are adjusted according to
the popularity of the tag. This way, less relevant tags will
have less weight in the measuring.

According to (1), an example of a simple set of compo-
nents like the following:

foursquare = (mapping, social, games)
googlemaps = (mapping)
facebook = (social)
bluevia = (mapping,telephony, geolocation)
3)
would be represented by the next vectors:
foursquare = (1,1,1,0,0)
googlemaps = (1,0,0,0,0) @)
facebook = (0,1,0,0,0)
bluevia = (1,0,0,1,1)
According to the popularity of each tag, the set of weights

would be the following:

W = (0.375,0.250,0.125, 0.125, 0.125) (5)
And thus some sample distances would be as follows:
d(bluevia, googlemaps) =~ 0.1768
d(foursquare, facebook) = 0.3953 (6)
d(facebook, bluevia) =~ 0.4841

With this we can compute the similarity between two
components in the metadirectory. By using this similarity
measure, we can perform some clustering to identify which
are the most characteristic sets of components in the metadi-
rectory.

A Sammon mapping has been used to represent the com-
ponents and clusters (Sammon 1969). The Sammon’s map-
ping function allows to perform a dimensionality reduction
on the component space and map the n-dimensional space
to a bidimensional one while attempting to preserve the dis-
tances between the represented vectors. This allowed us to
visually estimate the number of clusters that were present in
the system.

Mapping identification Mappings between categoriza-
tion schemes are identified automatically using an algorithm
that checks set intersections. Given two categories .A and B
with the component sets A and B, respectively, the follow-
ing mappings are identified according to the overlap between

sets:
o If % > 0.95, then A and B are considered

equivalent categories.

skos:exactMatch skos:closeMatch

skos:broadMatch skos:narrowMatch

Figure 2: Mapping detection among categories

|ANB]|
o It e qanBn
categories.

A-B|
o M mqanian
of B.

B-A|
o M orqanian
of A.

> 0.85, then A and B are considered close

< 0.05, then A is considered a subcategory
< 0.05, then B is considered a subcategory

These conditions are illustrated in Figure 2. As shown,
Simple Knowledge Organization System (SKOS) (Miles
and Bechhofer 2008) ontology concepts are employed to de-
fine the mappings between categories. SKOS proposes a
schema for the definition of taxonomies and mappings be-
tween them. The relation skos:exactMatch is employed for
categories that are considered equivalent; skos:closeMatch
indicates that two categories are very similar and could be
used interchangeably in certain contexts; skos:narrowMatch
indicates that the subject category is a subcategory of the
object; skos:broadMatch states that the subject category is a
supercategory of the object.

Service ranking

In order to support the developer in choosing the appropriate
web services for his mashup we investigated several ranking
mechanisms. Any set of web services matched to a specific
search term should be provided to the developer in an or-
dered list, descending in relevance. For that reason, a query
interface called rOMking has been build in which different
ranking approaches have been implemented and compared
to each other in an empirical manner. Since we mainly fo-
cused on centralities the following definitions, inspired by
FolkRank (Hotho et al. 2006), on how to represent our
dataset as a graph have been made.

Let S be the set of web services whereas M is the set
of mashups in our dataset. We reduced the intuitive hy-
pergraph to an undirected and bipartite graph G = (V, E)
letting the set of vertices V. = S U M be the union
of S and M. The set of edges was defined as F =
{(s,m) | Mashup m uses the API of service s.}. Figure
3 illustrates the structure of this graph.

In particular, the following ranking functions have been
investigated:

o Cp: Degree centrality, i.e. in our scenario the number of

30

web service 1

web service 2

LiMOn:uses

limon:uses

mashup B
LiMOn:uses

Figure 3: Illustration of the dataset’s representation as a
graph.

mashups that use a certain service, which directly reflects
the popularity.

e C'p: Betweenness centrality is a more complex approach
that considers the number of shortest paths between two
vertices v # u a web service s lies on. This metric is an
important measure in social network analysis.

o Cc: Closeness centrality, implemented with an extension
as (Opsahl, Agneessens, and Skvoretz 2010) propose. A
vertex v is ranked higher the shorter the geodesic dis-
tances between itself and other vertices are, i.e. the closer
it is to other vertices. Closeness centrality is also an im-
portant technique in social network analysis.

e Cg: Eigenvector centrality is a very established and suc-
cessful approach to rank documents in other domains, e.g.
PageRank for web resources. The idea behind it is that an
API gets ranked higher the more important the mashups
that use it are and vice versa.

e PUR: The score, ranging from O to 5, represents the rat-
ing that each API has on Programmable Web. It which
measures the degree of satisfaction the users had when
working with a specific API and thus represents a mea-
sure of quality to rank components.

e (GSO: The amount of hits the Google Search Engine!° re-
turned querying it for the web service’s name and limiting
the results to the domain of StackOverflow'!, a question-
and-answer website specialized on programming topics,
is an indicator of how widespread an API is among devel-
opers.

Results and evaluation

The metadirectory contains around 10,000 services and
7,000 mashups, as of a crawling performed in July 2011
on the mentioned repositories of Yahoo Pipes and Pro-
grammable Web.

The previously described automatic categorization tech-
nique allowed identifying a set of mappings among the dif-
ferent taxonomies. Figure 4 shows some of the mappings.
As it can be seen, some categories are defined as sub- or
supercategories of others, whilst others are defined as close
or exact matches. In the case of Yahoo Pipes repository,
the previously described method for automatically building

Ohttp://www.google.com
"http://www.stackoverflow.com

Yahoo Pipes Programmable Web
Social Social
skos:closeMatch
News skos:broadMatch Dating
Search Search
skos:closeMatch
RSS Games

skos:closeMatch
Flickr Feeds
Other > Other
skos:broadMatch

Figure 4: Examples of mappings identified among the dif-
ferent categorization schemes

a taxonomy was used. We executed a clustering algorithm
to obtain nine different categories. Then, the resulting cat-
egories were applied to Programmable Web’s data. The re-
sulting sets were matched to the ones that Programmable
Web already provides to identify possible mappings, which
resulted in the identified relations among the categories of
the different taxonomies.

Evaluation has been performed with a group of three rel-
evance judges, i.e. experienced mashup developers, adapt-
ing the methodology of (Kiister and Konig-Ries 2009). The
relevance judges independently rated web services in three
different dimensions, i.e. functional offer, technological as-
pects and trust. Afterwards, conflicting judgements have
been discussed and the relevance judges agreed on a uniform
rating for each web service. Then, the three-dimensional
rating was reduced to a one-dimensional one which served
as the gain quantifications needed for the Normalized Dis-
counted Cumulated Gain (nDCG) (Jarvelin and Kekéldinen
2002) measure. The nDCG measure gives a very intuitive
sight on how close a ranking is to a specific, supposedly ideal
one, in our case the one the relevance judges produced, since
nDCG(n) € {0, 1} denotes a score of similarity for an eval-
vated ranking function until the n-th position in the rank-
ing. In order to limit the amount of relevance judgements
we used subsets of S filtering all web services in the metadi-
rectory by means of their names, descriptions and tags, e.g.
the subset Simage contains all web services that have the
term “image” in their name, description or tags.

Table 1 shows the results of our evaluation done in the
subset Simage. We chose sharp gain quantifications, i.e.
powers of 2, as well as a discounting factor of 2. Since the
results get less valuable to the developer the higher their po-

31

Cp | Cs Co Cg PUR | GSO
nDCG(5) 870 | .841 | .870 | .870 | .438 .803
nDCG(10) | .888 | .881 | .887 | .823 | .561 814
nDCG(15) | .878 | .918 | .930 | 918 | .634 851

Table 1: Results of the evaluation in Sj;age

sition in the ranking is, we also decided to compare the top
5, 10 and 15 ranked results. As can be seen, the ranking
functions produce results of considerably similar quality ex-
cept the Programmable Web user rating PU R. An explana-
tion for PU R’s lack of quality may be the lack of votes and
therefore missing reliability. Moreover, the reason for the
similarity between the centrality measures is their strongly-
related nature and the structure of our dataset’s graphical
representation. For example, the more mashups use a cer-
tain web service (Cp) the higher is the probability of being
part of a shortest path in G (Cp) and the higher the number
of mashups or APIs close to it (C).

Although runtime performance has not yet been taken
into consideration, our experiments showed that degree cen-
trality as well as eigenvector centrality deliver the best
cost-benefit ratios among the analysed ranking approaches.
While betweenness and closeness centrality suffer from their
algorithmic complexity, the traffic caused by G SO does not
imply a practical use.

In a next step, we will consider linearly combining the
ranking functions in order to maximize the effectiveness of
the rankings.

Related work

In this paper, a high-level model for describing the mashup
components has been defined. Several approaches deal with
web components of different kinds, from services to wid-
gets. There are many initiatives to describe services’ inter-
face to allow automation of certain tasks, in the Web Ser-
vice field (Christensen et al. 2001) (Roman et al. 2005),
or in the Representational Stateless Transfer (REST) service
area with heavy-weight approaches such as Web Applica-
tion Description Language (WADL) (Hadley 2006), or more
light-weight approaches such as Microservices (Fernandez-
Villamor, Iglesias, and Garijo 2010), WSMO-Lite (Vit-
var, Kopecky, and Fensel 2007), Semantically-Annotated
REST (SA-REST) (Sheth, Gomadam, and Lathem 2007)
or hRESTS (Wright State University 2008). W3C widgets
(Alario-Hoyos and Wilson 2010) define a standard for de-
scribing widgets. While these approaches allow describing
the inners of these components, they operate at an abstrac-
tion level that is lower than our model, thus existing different
standards for each kind of component. Therefore, we make
use of them at our model by allowing linking a LiMOn de-
scription to a WSDL/WSMO/W3C widget description.
Also, a ranking function is employed to measure compo-
nents’ relevance when querying the metadirectory. (Wang,
Chen, and Zhang 2009) use degree, betweenness and close-
ness centrality in order to analyse the network of Pro-
grammable Web and define the importance of a web service
with the help of a user-api-network and the degree central-

ity of the service’s neighbourhood. (Ranabahu et al. 2008)
present a composite ranking functionality for web services
that makes use of user popularity scores. Moreover, they
use Alexa traffic rankings in order to determine the popular-
ity of a web service. (Elmeleegy et al. 2008) use estimations
of conditional probabilities that a certain concept is added
to a given mashup input as basis for their ranking compo-
nent. Also, exploiting the structure of folksonomies (Hotho
et al. 2006) adapted the idea behind PageRank demonstrat-
ing their results in the social bookmarking domain.

Furthermore, a metadirectory that integrates several
repositories has been built. Some research works that per-
form similar tasks are available in the current literature.
(Wang et al. 2011) mine Programmable Web and build
a domain ontology out of the keywords available in the
textual descriptions of the services. It helps to validate
Programmable Web’s categorization scheme. (Blake and
Nowlan 2011) perform an automatic categorization of ser-
vices using the internals of WSDL descriptions, and not just
the keywords available in the textual descriptions. How-
ever, both works do not explore mappings with other cat-
egorizations or service repositories. (Elmeleegy et al. 2008)
describe a mashup advisor, which also builds a catalogue
of mashup components to exploit in recommendations for
mashup development. Unlike our work, they do not con-
sider the integration with different heterogeneous compo-
nent repositories.

Conclusions and future work

Through this paper, the different challenges that developers
face when selecting components for building a mashup have
been addressed by an integrated metadirectory of mashup
components. Linked Mashups Ontology (LiMOn), a uni-
fied model for components, has been defined, and several
component repositories have been mined and loaded onto
the metadirectory. A clustering method has been proposed
and used to integrate the different taxonomies of the repos-
itories in order to unify the categorization of the metadirec-
tory. Also, the components are ranked using rOMking, an
index of relevance for querying the metadirectory.

It has been shown how the metadirectory exploits social
aspects such as tags, ratings and even activity in forums to
improve the experience of accessing the stored data. The
metadirectory offers a unified query interface that allows re-
trieving relevant components through complex queries, in-
volving components of different nature, and allowing inte-
gration with the Linked Data cloud.

Future work involves refining discovery techniques to ex-
tend the available low-level information in services in order
to produce readily-executable descriptions in the services
available in the metadirectory. Namely, these techniques can
consist of crawling API documentation for concrete patterns
that indicate service endpoints or usage examples, that might
enable semi-automatic tools to build WADL descriptions.

Acknowledgements

This research project was funded by the European Commis-
sion under the R&D project OMELETTE (FP7-ICT-2009-

32

5).

References

Alario-Hoyos, C., and Wilson, S. 2010. Comparison of
the main alternatives to the integration of external tools in
different platforms. In Proc. International Conference of
Education, Research and Innovation, ICERI, 3466-3476.

Blake, M., and Nowlan, M. 2011. Knowledge discovery
in services (kds): Aggregating software services to discover
enterprise mashups. IEEE Transactions on Knowledge and
Data Engineering 23(6):889-901.

Christensen, E.; Curbera, F.; Meredith, G.; Weerawarana,
S.; et al. 2001. Web services description language (wsdl)
1.1.

Elmeleegy, H.; Ivan, A.; Akkiraju, R.; and Goodwin, R.
2008. Mashup advisor: A recommendation tool for mashup
development. In Web Services, 2008. ICWS’08. IEEE Inter-
national Conference on, 337-344. 1IEEE.

Fernandez-Villamor, J. I.; Blasco-Garcia, J.; Iglesias, C. A.;
and Garijo, M. 2011. A Semantic Scraping Model for
Web Resources — Applying Linked Data to Web Page Screen
Scraping. In Third International Conference on Agents and
Artificial Intelligence.

Fernandez-Villamor, J. 1.; Iglesias, C. A.; and Garijo, M.
2010. A vocabulary for the modelling of image search mi-
croservices. In Proceedings of the Fifth International Con-
ference on Evaluation of Novel Approaches to Software En-
gineering.

Hadley, M. J. 2006. Web application description language.
https://wadl.dev.java.net/wadl20061109.pdf.

Hotho, A.; Jaschke, R.; Schmitz, C.; and Stumme, G. 2006.
Folkrank: A ranking algorithm for folksonomies. Proceed-
ings of FGIR 2006 2006:2-5.

Jarvelin, K., and Kekéldinen, J. 2002. Cumulated gain-based
evaluation of ir techniques. ACM Transactions on Informa-
tion Systems 20(4):422-446.

Kiister, U., and Konig-Ries, B. 2009. Relevance judgments
for web services retrieval - a methodology and test collection
for sws discovery evaluation. In Proceedings of the 7th IEEE
European Conference on Web Services (ECOWS09).

Miles, A., and Bechhofer, S. 2008. Skos simple knowledge
organization system reference. W3C Recommendation.

Opsahl, T.; Agneessens, F.; and Skvoretz, J. 2010. Node
centrality in weighted networks: Generalizing degree and
shortest paths. Social Networks 32 (3) 245-251.

Ranabahu, A.; Nagarajan, M.; Sheth, A. P.; and Verma, K.
2008. A Faceted Classification Based Approach to Search
and Rank Web APIs. 2008 IEEE International Conference
on Web Services 177-184.

Roman, D.; Keller, U.; Lausen, H.; de Bruijn, J.; Lara,
R.; Stollberg, M.; Polleres, A.; Feier, C.; Bussler, C.; and
Fensel, D. 2005. Web service modeling ontology. Applied
Ontology 1(1):77-106.

Sammon, J. W. 1969. A nonlinear mapping for data structure
analysis. IEEE Transactions on Computers, C-18(5):401-
409, May 1969.

Sheth, A. P.; Gomadam, K.; and Lathem, J. 2007. SA-REST:
Semantically Interoperable and Easier-to-Use Services and
Mashups. In IEEE Computer Society.

Vitvar, T.; Kopecky, J.; and Fensel, D. 2007. Wsmo-lite:
Lightweight semantic descriptions for services on the web.
In Proceedings of the Fifth European Conference on Web
Services, 77-86. Citeseer.

Wang, J.; Zhang, J.; Hung, P; Li, Z.; Liu, J.; and He, K.
2011. Leveraging fragmental semantic data to enhance ser-
vices discovery. In High Performance Computing and Com-
munications (HPCC), 2011 IEEE 13th International Con-
ference on, 687-694. 1EEE.

Wang, J.; Chen, H.; and Zhang, Y. 2009. Mining user behav-
ior pattern in mashup community. 2009 IEEE International
Conference on Information Reuse Integration 126—131.

Wright State University. 2008. HTML Microformat for De-
scribing RESTful Web Services and APIs. http://knoesis.
wright.edu/research/srl/projects/hRESTs/#hRESTs.

33

