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Tutor: Carlos Ángel Iglesias Fernández

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos
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Resumen

Cada una de las personas del mundo escribe con un estilo distinto a cualquier otra persona.

Este estilo, además de estar intŕınisicamente relacionado con la misma persona que lo es-

cribe, también tiene que ver con el ámbito o el propósito para el que se escribe. El campo

que estudia este estilo es la Estilometŕıa.

La Estilometŕıa se basa en el estudio del estilo a través de diferentes métricas. Entre

otras, destacan el Índice de Legibilidad, la Riqueza de Vocabulario, la Formalidad y la

Coherencia. A su vez, estas métricas se pueden medir e interpretar de distintas formas.

En este proyecto, se ha diseñado y desarrollado en Python una biblioteca de Estilometŕıa

capaz de medir el estilo de un texto utilizando diferentes algoritmos basándose en las

métricas mencionadas anteriormente. Esta biblioteca permite analizar el estilo tanto de

textos escritos en español como en inglés, siendo algunas de las métricas diferentes para

cada uno de los idiomas debido a las caracteŕısticas de cada uno de ellos (longitud de las

palabras, longitud de las frases...).

Posteriormente, para la visualización de los datos se ha desarrollado un Dashboard

basado en web components donde poder seleccionar un texto y poder ver de una forma

clara y cómoda cómo es el estilo de dicho texto.

Esta herramienta podŕıa usarse con diferentes objetivos: comprobar que un texto tiene

un estilo que se ajusta a las caracteŕısticas del público que va a leerlo, comparar el estilo

de dos individuos (poĺıticos, escritores, personalidades influyentes...), conocer el origen de

un texto aśı como identificar su autoŕıa y muchos más.

En concreto, en este proyecto se ha enfocado el uso de la biblioteca en la comparación de

noticias que hablan de terrorismo con manifiestos y comunicados de grupos terroristas como

ETA o el ISIS. Aśı, si fuera posible, podŕıan identificarse con anterioridad a su publicación

o consumo por parte de usuarios de Internet y redes sociales.

En definitiva, esta biblioteca de Estilometŕıa puede ser utilizada con diferentes propósitos

basados en el análisis del estilo de los textos.

Palabras clave: Estilo, Estilometŕıa, Texto, Índice de Legibilidad, Riqueza de Vocab-

ulario, Formalidad, Coherencia, Dashboard, Python, Terrorismo, PLN, Métrica
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Abstract

Each person writes in a different style to any other person. This style, in addition to being

intrinsically related to the same person who writes it, is also related to the scope or purpose

for which it is written. The field that studies this style is called Stylometry.

Stylometry is based on the study of the style through different metrics. Among others,

highlight the Readability Index, Vocabulary Richness, Formality and Coherence. At the

same time, these metrics can be measured and interpreted in different ways.

In this project, a Python Stylometry library able to measure the style of a text has been

designed and developed using different algorithms based on the previous metrics. This

library allows us to analyze the style of texts written in Spanish and English, depending

some of those metrics on the language due to the characteristics of each one of them (length

of words, length of sentences ...).

Later, for the visualization of the data, a Dashboard based on web components where

you can select a text and be able to see in a clear and comfortable way how is the style of

that text has been developed.

This library could be used to achieve different objectives: to check that a text has a

style adapted to the characteristics of the audience that is going to read it, to compare the

style of two different people (politicians, writers, influential people...), to know the source

of a text as well as to identify its authorship and more.

In particular, this project has been focused on the use of the library for the comparison

between news that talk about terrorism and statements made by terrorist groups like ETA

or ISIS. Thus, if this would be possible, these radical texts could be identified and removed

before its publication or consumption by Internet users and social networks users.

Definitely, this Stylometry library can be used for different purposes based on the anal-

ysis of the style of the texts.

Keywords: Style, Stylometry, Text, Readability Index, Vocabulary Richness, Formal-

ity, Coherence, Dashboard, Python, Terrorism, NLP, Metric
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CHAPTER1
Introduction

1.1 Context

Throughout the history of humanity, and, particularly, in the wake of the birth of Writing

around 3000 B.C., different writing styles of each author have been studied. Already in the

Old Testament, one of the first references in history to the ability of distinguish one style

from another is made [1].

At the same time, and always due to the style each author intrinsically has and uses in

his works, has been achieved on numerous occasions to attribute to different authors works

that initially were anonymous (or works with a questionable authenticity) based mainly on

that author’s style study. The first historic reference that we actually have about the use

of this kind of studies dates back to 1439, when Lorenzo Valla analyzed the Donation of

Constatine [12] and he deducted that it was a forgery. Another moment where this analysis

has gained special relevance was the verification that 12 of the so-called Federalist Papers

were written by John Madison, when initially these papers were published anonymously.

The science that studies and determines results about the style is called Stylometry.

According to the Oxford dictionary, Stylometry is “the statistical analysis of variations

in literary style between one writer or genre and another” [2]. This definition could be ex-

tended to other fields beyond writing, such as painting, music or even speech. Stylometry

can also be used to avoid plagiarism or even to analyze different personality traits of the
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CHAPTER 1. INTRODUCTION

works of the authors. In any case, this text will be focused on analyzing writing styles.

Stylometry is based on statistical analysis of texts and on the analysis of different

kinds of metrics present in texts, like verbal forms, disused words, vocabulary, ways of

using punctuation signs, richness of language, the frequency of use of different words... The

foundations of modern Stylometry were defined by the philosopher Wicenty Lutoslasky in

his book Principes de stylométrie [22]. In fact, the word ”Stylometry” owes its existence

to this author.

Whereas long ago stylometric analysis was performed manually, thanks to the huge ad-

vance of the new technologies that analysis has been made much more efficient. The rise

of technologies based on Machine Learning and Artificial Intelligence since the late twen-

tieth century, has managed to automate the study obtaining very high levels of accuracy.

Furthermore, the existence of large databases favors the viability of stylometric studies,

expanding the range of possibilities.

The widespread use of social networks such as Twitter makes the Stylometry the

perfect science for the study of the different variables attributable to the users of these

applications. In fact, there are several research articles that, using different psychological

indicators, such as MBTI, manage to extract personality traits from tweets [44]. Following

with the use of the Stylometry in areas related to the Internet, it can be used for compare

the readability of different blogs, web pages, know about the subject of articles posted on

the network, know the cultural richness of these, obtain information about the author, both

MBTI personality traits as possible hobbies, country of belonging, political preferences ...

Of course, Stylometry techniques can be used for e-mail services, with applications

such as knowing what is spam and what is not. Also, it can be used to fight against

cybercrime, for example, to know who is committing a crime for their style when writing.

In fact, we can say that among the possible modern uses of the Stylometry, we can find

the aforementioned email study and cybercrime study, but also it can be used in the analysis

of music lyrics, music melody, paintings, literary works, forensic linguistic, plagiarism, social

networking and instant messaging, among others [35].

1.2 Project goals

The main objective of this project is to design and to develop a Python Stylometry

Library, based on many metrics that can analyze the style of a text.

One of the particularities of this library will be that it is going to be able to measure

the style both in English and Spanish texts. For this reason, when we were developing it,

we must be careful with this topic because not all metrics works equally well with English

texts as with Spanish texts.

2



1.3. STRUCTURE OF THIS DOCUMENT

Once the library is ready, the next task is to have the possibility of observing this metrics

in a beautiful and comfortable scenario that we will call Dashboard. In this Dashboard,

we will be able to select a text that we want to analyze, we will see the style metrics of that

text and we will be able to compare the style of that text with another text.

In particular, in this final work we are interested in the analysis of radical texts, published

by terrorists groups like ISIS, Al Qaeda, IRA, etc.

The results of the comparison between styles could be useful to know a priori if a text

is a terrorist text or is a text talking about terrorism (a new, a book, etc.).

1.3 Structure of this document

In this section we provide a brief overview of the chapters included in this document. The

structure is as follows:

Chapter 1: Introduction: This chapter introduces the project and makes a brief

introduction about what is the meaning of the word Stylometry.

Chapter 2: Enabling Technologies: This chapter presents the most important tech-

nologies used in the project.

Chapter 3: Development of the Library : This is the chapter where is told how

works the library, how it has been developed and which are the metrics included in the

library.

Chapter 4: Architecture: This chapter explains how the visualization system was

made and explains the architecture of the project.

Chapter 5: Case of Use: A case of use of the library is presented in this chapter:

the comparison between a text that talks about terrorism with a terrorist statement.

Chapter 6: Conclusions: In this chapter the conclusions of the project are presented,

the achieved goals, the problems found and the future work over this project.

3



CHAPTER 1. INTRODUCTION
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CHAPTER2
Enabling Technologies

2.1 Introduction

This chapter introduces all the technologies used on this project. Firstly, it is important to

introduce the concept of Natural Language Processing (NLP). NLP is a field of computer

science where the connection between the computer and human language is studied. This

science is based on the analysis of the human natural language by computer techniques.

The history of NLP begins around 1950, when Alan Turing published his book Comput-

ing machinery and intelligence [41], where what we know as the Turing Test is described,

which is a test where the intelligence of a machine is measured based on its ability to

maintain conversations in natural language with a human being. Beginning in the 80s,

a revolution in the field of NLP began with the arrival of algorithms based on machine

learning and Artificial Intelligence.

The processing of written texts by a machine is not always a simple process. First of

all, the text that will be analyzed is preprocessed for its correct analysis. This process

is called tokenization, and it includes the separation of the text in words (tokens) and

the processing of them, avoiding possible undesirable characters like punctuation signs,

contractions, exclamation and interrogation marks, etc. This is the most important step

in NLP, since, depending on how those words are obtained, it will be easier or harder the

analysis of the texts and the way to work with them. Furthermore, it is important to note

5



CHAPTER 2. ENABLING TECHNOLOGIES

that in many occasions there are errors of transcription in the texts and it is necessary to

know how to work with it.

Afterwards, a variety of functions can be applied to obtain information about the text, as

Part of Speech tagging, the obtaining of the different words that conform the text, knowing

the common and uncommon words within it, etc.

For the processing of texts using NLP techniques, the project has been developed mainly

in Python, using extensively the NLTK library, as well as some others, such as Matplotlib,

Scipy and others that will be told next.

2.2 Natural Language Processing

Some Python libraries have been used in this project for processing texts and extract a lot

of features of the same.

2.2.1 NLTK

NLTK (Natural Language Toolkit) [21] is an interface and a set of libraries for working

in Python with NLP techniques. Among others, it has more than 50 corpus to work with

them, a lot of lexical resources and it is one of the best tools for working in the NLP field.

It provides a big variety of preprocessing and processing functions, of which the most

important are classification, tokenization, stemming, tagging, parsing, and semantic rea-

soning.

Now, we are going to present the use that we have made in this project of NLTK:

• NLTK Corpora: NLTK has a large collection of corpus. They are all very different

from each other and can be useful for processing texts, since they serve us as dictio-

naries of different languages, classifiers by genre, synonyms dictionaries, etc. Some

examples of these corpus are the Brown Corpus [20], which contains 1.15M of words

classified by genre or the Reuters Corpus [32], with 1.3M of words.

• Tokenization: is the process of transform a text into separated words or sentences

called tokens. This is one of the most important steps for working with texts. Firstly,

the text is filtered for avoiding undesirable characters, expanding contractions, etc.

Then, the tokenizer function splits the whole text by marking blank spaces or phrase

endings as the reference point for this division. Finally, all the words are processed

again for deleting possible mistakes in the transcription of the words.

• Pos-Tagging: is the process of assigning different tags related to Part of Speech

to each word in the text. Thus, we can know which of the words are adjectives,

6



2.2. NATURAL LANGUAGE PROCESSING

verbs, proper nouns, common nouns, conjunctions, adverbs, etc. The process of Pos-

Tagging was carried out using the NLTK recommended Pos-Tagger and the Stanford

Pos-Tagger [23], which returns better results for both English and Spanish texts. The

Stanford Pos-Tagger is a Java implementation of a log-linear Part of Speech tagger,

available for several languages, among which include Spanish and English languages.

• Stemming and Lemmatization: these are the processes that are responsible for

reducing the inflectional form of a word into a common base or root. However, these

processes work in a different way, as we show in the next pictures [31]:

Figure 2.1: Lemmatization Process Figure 2.2: Stemming Process

• Removing Stop Words: Stop Words are those words that do not add meaning to

the text. It could be necessary to remove them when we are analyzing a text. NLTK

provides a corpus of Stop Words both in Spanish and English language for knowing

which are these words and facilitate its removing.

• FreqDist: the component FreqDist of NLTK provides us some functions for search-

ing which are the most common words within a text, among others.

2.2.2 Gensim

Gensim [30] is an open-source Python library created by Radim Řeh̊uřek for unsuper-

vised topic modelling and Natural Language Processing, using modern statistical machine-

learning. It includes some implementations of Word2Vec algorithms, Latent Semantic Anal-

ysis (LSA, LSI), Latent Dirichlet Allocation (LDA), TF-IDF and more. The most important

point of this library in this project is that it allows us to work with Word Embeddings models

and has a lot of functions that makes the work with them very easy.

2.2.3 GSITK

GSITK (GSI Toolkit) [4] is a library on top of scikit-learn that eases the development process

on NLP machine learning driven projects. It uses numpy, pandas and related libraries to

easy the development. The main features of the GSITK library are the Word2Vec Features,

that implements a generic word vector model, previously loaded a Word Embeddings model
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that has to be compatible with Gensim. It allows, among others, to transform a text into

a numeric vector to work with it.

2.2.4 Word2Vec

Word2Vec (Word to Vector) is a set of models that are used to produce Word Embeddings.

The input of Word2Vec models would be a large corpus of text, and the output will be a

vector space typically of several hundred dimensions, with each unique word in the corpus

being assigned a corresponding vector in that vector space.

In this project, they have been used some models of Word Embeddings for measur-

ing some metrics. In particular, for the Spanish language it has been used a pre-trained

model [39] with 1,000,653 word embeddings of dimension 300 trained on the Spanish Billion

Words Corpus.

For the English language, they have been used two pre-trained Word Embeddings mod-

els. The first of them is the ”Google News Vectors Negative 300 Word Embeddings”

model [38]. It includes word vectors of dimension 300 for a vocabulary of 3 million words

and phrases that they trained on roughly 100 billion words from a Google News dataset.

The second model [27] used for the English language is the ”Wikipedia News Model”

with more than 1 million word vectors of dimension 300 trained on the 2017 Wikipedia

entries. It seems that this model is better than the Google News model. Even so, in the

development of this project the two models have been used the same.

2.2.5 LangDetect

LangDetect [8] is a Python module to detect in which language a text is written. It is

based on the Google’s Java library ”language-detection”. It supports 55 different languages,

including Spanish and English. Although it allows many languages, it is possible to add

others.

2.3 Dashboard

The Dashboard is the graphical interface in which the results of this project will be shown.

Data is captured using GSI Crawler, analyzed with Senpy, stored in ElasticSearch and

finally shown in the Dashboard. All this process is made with the Luigi orchestrator.

2.3.1 Senpy

Senpy [33] is a framework developed by the GSI group for sentiment and emotion analysis

services. One of the main reasons why the use of Senpy is easy and comfortable is because
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the services offered share a common semantic API and vocabularies based on ontologies.

Senpy is based on the analysis of a piece of text, analyzing it with a plugin or several

plugins and finally returning the results of this analysis. The following figure shows how

Senpy works:

Figure 2.3: Senpy architecture [33]

2.3.2 ElasticSearch

ElasticSearch [13] is a search engine based on the Lucene library and tries to make all

its features available through the JSON and Java API. It is developed in Java and official

ElasticSearch clients are available in many different languages, such as Java, Ruby or

Python. It is published as open source under the conditions of the Apache license.

ElasticSearch uses Query DSL for making queries to the indexed documents. This

tool makes the queries in ElasticSearch can be done in a very flexible way, adding the

fact that this is used through a JSON interface, the queries are simple and the process of

debugging too.

One of the main characteristic of ElasticSearch is that it only supports the JSON

format as a response, so formats like CSV or XML are not supported. Even so, the JSON

format is widely supported by numerous programming languages, so it makes Elastic-

Search the perfect tool to use, for example, in Big Data analysis.

ElasticSearch JSON data is sorted by indexes, where each of these indexes will be

where the result of a kind of analysis or another is stored. Each analysis will be stored in

documents inside its corresponding index.

2.3.3 Luigi

Luigi is a Python module created by Spotify engineers that helps to build complex pipelines

of batch jobs. It handles dependency resolution, workflow management, visualization, etc.

It is based on tasks, being each task an unit of work. These tasks and the dependence

between them is defined in a pipeline, where it is said to the orchestrator the execution
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order of these tasks and the input needed in each task, being these inputs the output of

another task.

Luigi is a very good solution for running a lot of long or heavy processes who depend

on each other. Also is a good tool to have a global vision on error control of each of the

parts that make up the execution of the pipeline.

2.3.4 GSI Crawler

GSI Crawler is a framework developed by the GSI group which aims to extract infor-

mation from web pages enriching following semantic approaches.

In this project, GSI Crawler tool has been used for scraping the web in search of news

related with terrorism. In particular, news have been scraped from the New York Times,

the CNN and Al Jazeera.

As GSI Crawler is the basis of the visualization of this project, in Chapter 4: Archi-

tecture will be explained how this tool has been used.

2.3.5 Graphic Interface

The graphic interface of the project, where results will be showed, it is based on a web

interface using web components made with the Polymer JavaScript library. This library

provides functions to make stylish components for showing data.

Data showed in these web components comes from our ElasticSearch index after being

analyzed. Some examples of these web components are Google Chart or Number Charts,

all of them modified to accept entries from ElasticSearch. Also the data can travel from

component to component through a Polymer functionality called bending. This makes the

Dashboard a versatile, comfortable and fully functional graphic interface.

2.4 Another Libraries

Another libraries have been used for developing the Stylometry library. Specifically, they

have been used Scipy (a Python open-source library that provides different tools and math-

ematics algorithms focused on mathematics, science or engineering fields), WordFreq [37] (a

library for looking up the frequencies of words in many languages) or Matplotlib (a powerful

Python library for plotting graphs).
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CHAPTER3
Development of the Library

3.1 Introduction

The main goal of this project is the design and development of a stylometry library. For

measuring the style, it is important to determine which measures are going to be useful to

reach that goal. The main measures of the library are Readability Index, Vocabulary

Richness, Formality Measure and Coherence Measure. At the same time, these

indexes can be measured in different ways.

The first step for measuring the style of a text is to extract features of it. With this,

we can extract information from the text which we will then use to measure the style, as

well as to have a global vision of how the text is designed or what it is composed of.

The library has been designed as a set of modules to carry out these measures and they

will be explained one by one.

3.2 Text Statistics

The library provides many functions for having a global vision of the text and to know its

main features for measuring the style. The first step to have these features is to tokenize

the text.

As explained above, tokenization is the process of transform a text into separated
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words (tokens). Firstly, it is important to say that all the functions of this library has a

header with two arguments: a text and the language of the text. The language of the text is

very important because some functions work in different ways depending on the language.

The first step for tokenize a text is to clean it. To do this, all the special characters

that do not add any value to the text (dashes, bars, etc.) are removed. Then, characters

like quotes or apostrophes that can be written in different ways, are replaced by a single

sign so that there is no mistake when analyzing the text (e.g. signs like ‘ or ´ are replaced

by ’ ).

If the text is written in English, the function uses a library called contractions [43],

which has a method called fix that expands all the contractions in a text (e.g. “It’s John”

becomes “It is John”). By the other hand, if the text is written in Spanish, the function

removes Spanish punctuation signs like ¿ or ¡.

Once the text is fairly clean, the text is tokenized . This step is carried out with the

NLTK library function word tokenize, which is a function that splits a text into words,

assuming that the separation between words is a space or a punctuation mark. Once we have

the words of the text, punctuation marks like exclamations, commas or dots are removed.

The last step is a final cleaning of each word in the text.

Thus, we have each of the words that form the text clean and separate to make a study

of it and, first, obtain a series of text statistics that allow us to measure the style.

English tokenization example:

“He’s dead. -said Peter- Where were you when he was murder?” –> ‘he’, ‘is’, ‘dead’,

‘said’, ‘Peter’, ‘Where’, ‘were’, ‘you’, ‘when’, ‘he’, ‘was’, ‘murder’.

Spanish tokenization example:

“Está muerto. -dijo Peter- ¿Dónde estabas tú cuando fue asesinado?” –> ‘Está’,

‘muerto’, ‘dijo’, ‘Peter’, ‘Dónde’, ‘estabas’, ‘tú’, ‘cuando’, ‘fue’, ‘asesinado’.

We can also tokenize the text into sentences and count how many sentences has a text

using NLTK library and specifically the Punkt tokenizer [45], that “divides a text into a list

of sentences by using an unsupervised algorithm to build a model for abbreviation words,

collocations, and words that start sentences.”. In this library, a pre-trained Punkt Tokenizer

for English language and another for Spanish language are used. The function dedicated to

this process, after using the Punkt tokenizer, checks also the existence of paragraphs, which

are to be counted as new sentences.

The rest of the functions present in the Text Statistics module will be counted below:

• Characters per Sentence and Characters per Word: These are two simple

functions, that calculates an average of the number of characters per sentence and the

number of characters per word. Even though they are the simplest functions in the
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library, these are one of the most important functions because they are going to be

very useful when we will want to measure the Readability Index of a text.

• Words per Sentence: This function, similar to the previous two, calculates an

average of the words per sentence in the text. It is going to be useful to measure the

Readability Index too.

• Different Words: This function identifies all the different words within the text

(when we talk about Vocabulary Richness we will call them ”types”). The algo-

rithm sorts the words alphabetically and then compares a word with the next word in

the list. If they are different, it means that they are different words. If not, it keeps

checking.

• Word Classes: This function makes a Part of Speech (POS) analysis of the text,

classifying the words in conjunctions, adjectives, verbs, nouns, adverbs, prepositions,

determiners, pronouns and interjections. Depending on the language of the text, it

uses a classifier or another. For texts written in English, the function uses the NLTK

recommended POS-Tagger. By the other hand, for texts written in Spanish it uses

the Stanford POS-Tagger [23].

• Short Words: This function counts the number of short words within the text. It

is a simple function that calculates how many words have less or equal than three

characters. In English, with less than three characters we can find words like “a”,

“the”, “sad” or “put”. In Spanish we can find words like “él”, “soy”, “por” or “dos”.

• Frequency of Words: This is an auxiliary function that is responsible for calculating

how many times each word appears in the text. It is done using the FreqDist module

of the NLTK library that allows to calculate the most common words in a text and

the repetition frequency of each word within it.

• Removing StopWords: Another auxiliary function. Using the StopWords Corpus,

if a word appears in the corpus, it means that it is a StopWord and we should remove

it from the tokens list. If the word does not appear in the corpus, it is not a StopWord

and we can suppose that this word adds meaning to the text.

• Common and Uncommon Words: This function checks if a word is a common

word or an uncommon word in its language. To do this, the implementation of this

function has been changing throughout the development of the project.

The first implementation of this function was based on the comparison of each word

with a dictionary with a lot of words of the language of that word. First of all, the
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function obtained the different words of the text as explained before. Then, each word

goes through a process of lemmatization and, if the lemmatized word appears in the

dictionary, it means that this word is a common one. If it does not appear, it means

that it is an uncommon word.

The second implementation uses the Gensim library. The first step for using this

library is to load a Word Embeddings model, one for English and another for Spanish

(the models used in this project are defined and explained in Chapter 2: Enabling

Technologies).

The vocabulary of each model is in the field vocab of the model. The algorithm of

this implementation works with the next norm: if a word appears in the vocabulary

of the model, the function considers that this is a common word. If not, it will be an

uncommon word.

The third implementation is based on an external library called WordFreq [37]. This

library has a function called zipf frequency , that returns the frequency of occurrence

of a word in its language. It is based on the Zipf Law [28], that is an empiric law that

determines the frequency of appearance of a word in its language. This frequency of

appearance follows a distribution that can be approximate by:

Pn ∼
1

na
(3.1)

Pn represents the frequency of the umpteenth most frequent word and the exponent

a is a positive real number near to 1.

Therefore, the zipf frequency function returns a number between 0 and 10 (it is a

logarithm scale). The larger the result, the more common the word is in its language.

If the result of the zipf frequency function is bigger than 2, the algorithm considers

that the word is a common word. If not, the word will be labeled as an uncommon

word.

The third implementation is the better algorithm for implementing this function. For

this reason, when common and uncommon words will be needed for something in this

text, it will be used the third implementation of this function.

Once explained the operation of the Text Statistics module, we can see an example of

how they are exactly the features of a text, applied in this case to a text written in Spanish

from the Spanish newspaper El Páıs [40]:
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(a) POS Analysis (b) Text Statistics Table

(c) Text Statistics Graph

Figure 3.1: Text Statistics Analysis

In the first figure (a), it can be seen that in this newspaper article the nouns (32.82%)

predominate over the rest of the words, followed by the prepositions (21.09%), the deter-

miners (17.86%) and the verbs (10.03%). It should be noted that the adverbs (1.19%) do

not have a great weight within the text and there are no interjections.

On the other hand, the text has 297 different words (50.51%) from the 588 that make

up the text. Within those 50.51% of different words, 288 (48.98%) are common words and 9

(1.53%) are uncommon words. This latest information has been carried out using the third

implementation of the Common and Uncommon Words algorithm. The uncommon words of
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this text would be: “Brexit”, “DUP”, “Féin”, “Irlandas”, “Londonderry”, “norirlandesa”,

“norirlandés”, “parapetándose” and “unionismo”.

It also highlights that 257 (43.71%) words are short words (less or equal than 3 char-

acters). The high number of determiners and prepositions (together are the 38.95% of the

words of the text) could explain this result.

By last, in the figure below (c) it can be seen a summary in the form of a graph with

the weight of all these measures within the text.

3.3 Style Metrics

Once we have the main features of the text that we want to analyze, it is possible to measure

its style. The style will be defined by four metrics, having them at the same time several

submetrics. These metrics and their submetrics are going to be defined bellow.

3.3.1 Readability Index

Readability Index [19] is a style metric that measures how easy or difficult is to read

a text. ”Readability” should not be confused with ”Comprehension” or another similar

word, because this metric only measures how much difficult is to read a text, but it does

not measure how much difficult is to comprehend it.

For texts written in Spanish, there are two very good indexes: INFLESZ Readability

Index and µ Readability Index.

For texts written in English, in this text we are going to talk about three indexes: ARI

(Automated Readability Index), Fog Count and Flesch Readability Index. Regarding

these indexes, there is an article [19] published in 1975 talking about a recalculation of these

indexes for using them in the Navy army. In this project, these improvements have been

implemented in the library and defined and analyzed in this text.

All of these indexes are based on the length of the sentences or the words of a text or

even the number of syllables that a text has. The reason that the Readability Index

depends on the language in which a text is written is because, in the case that we only want

to analyze texts written in Spanish or English, Spanish sentences and words are usually

largest than English sentences and words. Also, Spanish words usually has more syllables

than English words.

For this reason, English indexes are different to Spanish indexes. Now all these indexes

are going to be explained one by one.
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3.3.1.1 Spanish Readability Index Metrics

The Spanish Readability Index Metrics implemented in this library are the INFLESZ

Readability Index and the µ Readability Index.

• INFLESZ Readability Index [5]: In 1993, an algorithm for measuring the Read-

ability Index in texts written in Spanish was proposed. This formula was a modifi-

cation of the Flesch Index (explained later) and another Spanish Readability In-

dex made in 1959 by Fernández-Huerta. This algorithm is known as Flesch-Szigriszt

Readability Index.

Some years later, Inés Ma Barrio in her doctoral thesis proposed a new scale for the

Flesch-Szigriszt Readability Index known as INFLESZ. The formula of this algorithm

and an explanatory table are shown bellow:

INFLESZ = 206.835− (62.3 ∗
syllables

word
)−

words

sentence
(3.2)

INFLESZ Reading Difficulty

Score Reading Difficulty

>80 Very Easy

65-80 Quite Easy

55-65 Normal

40-55 A Bit Difficult

0-40 Very Difficult

Table 3.1: INFLESZ Reading Difficulty

• µ Readability Index [29]: In 2006, Miguel Muñoz Baquedano and José Muñoz Urra

proposed a new index for measuring Readability Index for texts written in Spanish.

The particularity of this method is that it uses data that are not usually used in the

different existing Readability Index algorithms, like the variance of the characters

per word. The algorithm is as follows:

µ =
n

(n− 1)
∗
x̄

σ2
(3.3)

where n is the number of words within the text, x̄ is the average of the number of

characters per word and σ2 is its variance. The variance is calculated with the next

formula:
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σ2 =

∑n
i=1(xi − x̄)2

n
(3.4)

where n is the number of words within the text, xi represents the length of each token

(each word) and x̄ is the average of the number of characters per word.

To end, the score of the µ Readability Index represents the difficulty of reading a

text, as the next table shows:

µ Reading Difficulty

Score Reading Difficulty

>91 Very Easy

81-91 Easy

71-81 A Bit Easy

61-71 Suitable

51-61 A Bit Difficult

31-51 Difficult

0-31 Very Difficult

Table 3.2: µ Reading Difficulty

As an example, it can be seen in the next table the reading difficulty and the values of

the previous algorithms applied to three different texts written in Spanish: the newspaper

article of the previous section Text Statistics, Chapter 1 to 7 of the book ”The Little Prince”

and a Spanish scientific article about the Global Warming [6]:

Spanish Readability Index Table

Test Text Readability Index RI Value Reading Difficulty

Newspaper

Article

INFLESZ 39.382 Very Difficult

µ 52.487 A Bit Difficult

The Little

Prince Tale

INFLESZ 71.889 Quite Easy

µ 61.110 Suitable

Scientific

Publication

INFLESZ 40.657 A Bit Difficult

µ 51.239 A Bit Difficult

Table 3.3: Spanish Readability Indexes Test

As it can be seen, results of both algorithms are very similar and, in the case of the

example of the scientific publication, both algorithms determine that it is a bit difficult to
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read it. In the case of the tale, we can say that its reading difficulty is normal or even easy,

and the newspaper article is difficult to read.

3.3.1.2 English Readablity Index Metrics

The English Readability Index Metrics implemented in this library are the ARI (Automated

Readability Index), Fog Count and the Flesch Readability Index. Also, there were

implemented some improvements [19] of these indexes.

• ARI [34]: Automated Readability Index (ARI) is a Readability Index for English

texts. It is one of the first readability indexes to be developed. It was developed by

the University of Cincinnati in 1967, emerged for the need of the Air Force of the

United States to know how much time it took to read manuals and other documents

and the difficulty of reading them.

ARI depends on the characters per word and on the words per sentence. Specifically,

the mathematical formula of the ARI is the following:

ARI = 4.71 ∗ characters
word

+ 0.5 ∗ words

sentence
− 21.43 (3.5)

where characters
word is the average of the characters per word and words

sentence is the average

of the words per sentence.

This formula corresponds to the original ARI. On the other hand, this formula was

redesigned as follows:

ARI(Redesigned) = 5.84 ∗ characters
word

+ 0.37 ∗ words

sentence
− 26.01 (3.6)

where characters
word is the average of the characters per word and words

sentence is the average

of the words per sentence.

The result of the previous formulas returns the US Grade Level needed to have the

capacity to read fluently a text. The correspondent ages to the US Grade Level and

the relation with the Automated Readability Index are given in the next table:

US Grade Level

Ages Grade Level

5-11 Primary School

11-14 Middle School

14-18 High School

>18 College/University

ARI

Score Grade Level

0-5 Primary School

5-8 Middle School

8-12 High School

>12 College/University

Table 3.4: US Grade Level and ARI
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• Fog Count [19]: The Fog Count Readability Index is another Readability

Index to consider and also implemented in this stylometry library. The peculiarity

of this index is that uses the concept of hard words and simple words. For the

algorithm, hard words are those words that have more than 2 syllables, and simple

words are those that have 2 or less syllables. Defining the Average Fog Count as

Average Fog Count =
(easy words) + 3(hard words)

sentences
(3.7)

where sentences is the number of sentences in the text, the algorithm of this index is

as follows:

Fog Count =



(easy words) + 3(hard words)

2(sentences)
if Average Fog Count ≥ 20

(easy words) + 3(hard words)

sentences
− 2

2
if Average Fog Count < 20

(3.8)

Same as the previous two, this index was redesigned as follows:

Fog Count(Redesigned) =

(easy words) + 3(hard words)

sentences
− 3

2
(3.9)

As can be seen, the redesigned Fog Count is very similar to the traditional Fog Count

(if Average Fog Count < 20). These indexes give us the US Grade Level needed to

have a fluent reading of the text. The relation of the Fog Count with the US Grade

Level is given bellow:

Fog Count

Score Grade Level

0-5 Primary School

5-8 Middle School

8-12 High School

>12 College/University

Table 3.5: Fog Count Result

• Flesch Readability Index [19]: This is the last English Readability Index im-

plemented in the library. The Flesch Readability Index is given by two different

formulas. One of them is the Flesch Reading Ease Index, that returns a value
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that, with a conversion table, gives the Grade Level needed to read fluently the text.

The second one is the Flesch-Kincaid Grade Level Index, which returns directly

the Grade Level needed. It is important to say that the last one is a redesign of the

first one.

Both are based on the average of the words per sentence and on the average of the

syllables per word. The formulas are described below:

Flesch Reading Ease Index = 206.835− 1.015 ∗ words

sentence
− 84.6 ∗ syllables

word
(3.10)

Flesch−Kincaid Grade Level = 0.39 ∗ words

sentence
+ 11.8 ∗ syllables

word
− 15.59 (3.11)

The interpretation of both formulas is given in the tables bellow:

Flesch Reading Ease

Score Grade Level

>90 Primary School

65-90 Middle School

50-65 High School

0-50 College/University

Flesch-Kincaid Grade Level

Score Grade Level

0-5 Primary School

5-8 Middle School

8-12 High School

>12 College/University

Table 3.6: Flesch Reading Ease and Flesch-Kincaid Grade Level

As it can be appreciated, all the metrics defined in this section have the same result table,

with the same assignment of Grade Level for each interval: (0 - 5) to Primary School, (5 -

8) to Middle School, (8 - 12) to High School and (> 12) to College/University. Really, these

algorithms return a number that can be approximate by the age of the reader. Nevertheless,

another approximation is made in this project, assigning the same Grade Level to a specific

results interval. In fact, for knowing the needed age it would have to add 5 to the result of

each algorithm (e.g. an ARI result of 7.23 would mean that that text is prepared to read

with at least 12.23 years old).

As was done before with the indexes in Spanish, the next table is an example table of

how these English indexes work. For this example, it is going to be analyzed a kid story

(”The Snowman”), and the Chapter 1 of The Theory of the Moral Sentiments by Adam

Smith:
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English Readability Index Table

Test Text Readability Index RI Value Grade Level

Snowman Tale

ARI 2 Primary School

ARI (Redesigned) 1 Primary School

Flesch Reading Ease 94.10 Primary School

Flesch-Kincaid GL 1.71 Primary School

Fog Count 2.33 Primary School

Fog Count (Redesigned) 1.83 Primary School

Chapter 1 of The

Theory of the

Moral Sentiments

by Adam Smith

ARI 15 College/University

ARI (Redesigned) 12 High School

Flesch Reading Ease 46.65 College/University

Flesch-Kincaid GL 13.84 College/University

Fog Count 18.66 College/University

Fog Count (Redesigned) 17.16 College/University

Table 3.7: English Readability Indexes Test

As it can be seen, almost all measures match for each text. In the case of the Snowman

tale, all the indexes mark the Grade Level as ”Primary School” and all the values are very

low. It seems it is a text really easy to read. In the case of the book written by Adam

Smith, only the ARI (Redesigned) algorithm disagrees with the rest of the algorithms.

All of them mark that it is a book appropriate for university students. ARI (Redesigned)

is the only that marks that it is a book for High School students. Whatever, this index

value is 12 and it is on the limit of High School and College/University.

3.3.2 Vocabulary Richness

Another interesting metric for measuring style is Vocabulary Richness [36]. There are

several metrics for measuring Vocabulary Richness, some of them with interesting char-

acteristics that are going to be shown below.

3.3.2.1 TTR

The Type Token Ratio (TTR) [36] is one of the main and easiest metrics for measuring

Vocabulary Richness. In fact, all the rest metrics defined here depend on this metric. In

other words, TTR is the basis of all the rest Vocabulary Richness metrics.

From now on in this text, the set of words of a text are going to be called tokens and

the set formed by all the different words of that text are going to be called types.
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TTR is the relation between the tokens and the types of a text. Mathematically,

TTR can be represented as:

TTR =
types

tokens
(3.12)

As it can be seen, TTR is the most intuitive way for measuring the lexical diversity

(Vocabulary Richness) of a text. There is another easy metric that is strongly related

with TTR called Mean Word Frequency (MWF) and its value can be interpreted as every

how many tokens a type appears:

MWF =
1

TTR
=
tokens

types
(3.13)

In first view, it could be said that lexical diversity can be easily measure knowing how

many different words are used in a text, this is, measuring Vocabulary Richness using

the Type Token Ratio. But it is not always a good idea.

The longer a text is, the more tokens make up that text. It means that as a text

becomes larger, the TTR measure will become smaller (or MWF bigger) because there

is not a proportional relationship between the increment of tokens and types. For this

reason, in larger texts we will have a low TTR value and probably this value will not

correspond with the Vocabulary Richness of that texts.

Because of this, they have been emerging arrangements of this measure and another

kind of algorithms based on the TTR measure like MSTTR, MATTR, MTLD or HD-

D which are explained below.

3.3.2.2 Improved TTR Metrics

There are some modifications of the TTR trying to have a better vision of the Vocabulary

Richness of a text. The mainly transformations of TTR are Guiraud Index, Herdan

Index, Maas Index and Uber Index.

• Guiraud Index

Pierre Guiraud, in his book Les Caractères Statistiques du Vocabulaire [15], proposed

a transformation for the TTR based on the square root of the tokens. With this,

the variation of the index with the text length is the inverse that in the case of the

TTR. The Guiraud Index (called R) formula is shown bellow:

Guiraud Index R =
types
√
tokens

(3.14)

• Herdan Index
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Herdan Index C [42] is another Vocabulary Richness metric. Herdan (1960)

proposed a logarithmic formula with the aim that this ratio had a slow variation with

the length of the text:

Herdan Index C =
log(types)

log(tokens)
(3.15)

• Maas Index

In 1972, Maas [24] proposed another logarithmic measure of the lexical diversity of a

text for avoiding the relation of this metric with the text length:

Maas Index a2 =
log(tokens)− log(types)

log 2(tokens)
(3.16)

• Uber Index

To end, another algorithm was proposed by Dugast in 1980, called Uber Index

U [42]. It is the inverse measure of the Maas Index:

Uber Index U =
1

Maas Index
=

log 2(tokens)

log(tokens)− log(types)
(3.17)

These TTR improvements are all based on the relation between the number of all

tokens in the text and the number of all types. Now, we are going to present other

metrics for measure Vocabulary Richness that use different algorithms but they are also

based on TTR.

3.3.2.3 MTLD

MTLD (Measure of Textual Lexical Diversity) [25] is a sequential algorithm for measuring

the Vocabulary Richness of a text. The algorithm is as follows:

Firstly, the text (as in almost all algorithms developed in this library) is tokenized.

Then, an empty segment is created. Words are added in order to appearance in the text

to the segment and the TTR of that segment is calculated. If the TTR of the segment is

greater or equal than a limit (between 0 and 1), words are still adding. If not, the words in

the segment are deleted and a new one is started. That limit is usually 0.72.

If the text ends and, for this reason, there are no more words to add, a partial segment

value is calculated as

Partial segment =
1− TTR
1− limit

(3.18)
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because this value is the proportional input that this last segment makes to the calculation

of MTLD. By last, MTLD value will be:

MTLD =
tokens

Segments+ Partial segment
(3.19)

MTLD value is not the same if the algorithm makes the analysis of the text read to the

right than read to the other way around. For this reason, MTLD final value will be the

main between MTLD to the right and MTLD to the left:

Final MTLD =
MTLD(Right) +MTLD(Left)

2
(3.20)

3.3.2.4 MSTTR

MSTTR (Mean Segmental Type Token Ratio) [25] is another sequentially algorithm for

measuring Vocabulary Richness.

The algorithm is simple: firstly, the text is divided in segments with the same length

(usually segments of 100 tokens). Then, the TTR is calculated for each segment. The

MSTTR value is the main between the TTR of the different segments:

MSTTR =

∑n
i=1 TTR(segmentn)

n
(3.21)

where n is the number of segments and segmentn is the segment number n .

It should be noted that the last segment, which usually is not going to have 100 tokens

(it usually will have less) will be discarded.

The main problem of this metric is that it does not take into account the whole text,

because it works with separated segments.

An example of this metric applied to the same text that in the chapter Text Statistics

is shown in the next graphic:
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Figure 3.2: MSTTR applied to text [40]

As it can be seen, the text is divided in 5 segments of 100 tokens (the whole text

has 588 words) and 1 segment of 88 words. The TTR is calculated in all these segments

(excepting the last one), with values of 0.65, 0.68, 0.74, 0.68, 0.78 (the blue line). The red

line represents the average of these numbers and it is the final MSTTR value.

MSTTR =

∑n
i=1 TTR(segmentn)

n
=

0.65 + 0.68 + 0.74 + 0.68 + 0.78

5
= 70.6%

3.3.2.5 MATTR

MATTR (Moving Average Type Token Ratio) [7] is a Vocabulary Richness metric based

on a window moving around the text. Usually, the window size is 500 or 100, and in this

text the size window is going to be 100. The algorithm calculates the TTR of the first 100

tokens, then calculates the TTR of a segment that covers from token 1 to 101, then from

token 2 to 102, and so on. Then, all the values are added and the sum is divided by the

number of segments. The formula with the algorithm is shown bellow:

∑length(tokens)−99
i=1 TTR[token[i], token[i+ 99]

length(tokens)− 99
(3.22)

where TTR[token[i], token[i + 99] is the TTR applied to the segment composed by

tokens[i] to tokens[i+99] and length(tokens) is the number of tokens in the text.
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As before, we are going to apply the MATTR algorithm to the text used in the Text

Statistics chapter. It can be seen how the TTR varies slowly while the window of 100

tokens is moving around the text:

Figure 3.3: MATTR applied to text [40]

As it can be seen, the blue line is the TTR calculated over each segment and the red

line is an average of all these TTR values. The MATTR value is a metric that can be

used for measuring the variation of Vocabulary Richness along the text.

The graphic shows that the window moves 488 times. This is because this text has 588

tokens and the window moves from the segment 0-100 to the segment 488-588. It can be

seen that from the token 0 to the 200, lexical diversity grows slowly. Then, from the token

200 to the 300 it decreases and, finally, it stills growing to the end. The average of all the

values is the red line (72.19%).

For all this, the MATTR metric is a perfect tool for measuring the lexical diversity of

a text and the variation of it along the text.

3.3.2.6 HD-D

Before starting with the HD-D [25] index, it is necessary to talk about another index that

had a big repercussion in the lexical diversity world: the vocd-D index.

For measuring the Vocabulary Richness of a text, the vocd-D index calculates first

the D coefficient. To calculate D, the algorithm analyzes 100 random samples of the text

with a length of 35 tokens and calculates its TTR. Then it repeats it with samples from
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36 to 50 tokens. Finally, a curve is created with this information and the D coefficient is

calculated and used in a formula that measures the Vocabulary Richness in that text.

The vocd-D index depends on the D coefficient. Years later it was shown that this D

coefficient was a complex approximation to the hypergeometric curve and the HD-D

index arose from that idea.

The hypergeometric curve [16] is a probability distribution that measures the prob-

ability of, assuming you have a population of N elements of which d elements are of type A

and N-d are of type B. The hypergeometric distribution calculates the probability of obtain

x (0 ≤ x ≤ d) elements of the type A in a sample without replacement of n elements of the

original population.

The probabilistic formula that define this probability distribution is the next:

P (X = x) =

(
d
x

)(
N−d
n−x

)(
N
n

) (3.23)

where N is the population size, n is the sample size, d is the number of the elements

belonging to the request type and x is the number of elements in the sample that belongs

to the request category.

HD-D index is based on this hypergeometric distribution. Specifically, the HD-D

metric analyzes the probability that any type will appear in a sample of 42 random tokens.

As for the calculation of coefficient D in the vocd-D index we used samples from 35 to 50

tokens, the HD-D index uses samples of 42 tokens because is a number in the middle of 35

and 50.

Once the probabilities of each type are calculated using the hypergeometric distribution

and as the weight of each type on the total TTR will be 1/42, the sum of the probability

of each type multiplied by 1/42 will be the value of the HD-D index:

HDD =
n∑

i=0

1

42
∗ P (X = typei) (3.24)

where P (X = typei) is the probability given by the hypergeometric distribution for any

type in the text.

As an example of this probability distribution, if our text length is 674 tokens and a

type appears in the text in 63 times, P (X = type) =

(
63
1

)(
674−63
42−1

)(
674
42

) = 0.065604 = 6.5604%,

and the contribution to the TTR of this will be
6.5604%

42
.

The next graph shows how the HD-D is calculated for the example text used before

[40]:
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Figure 3.4: HD-D applied to text [40]

This curve represents the adding of the contributions to the TTR of every type in the

text. First, it is important to say that the algorithm order the types depending on the

frequency of that type (the most frequents first). It can be seen that the curve has a bigger

slope at the beginning that in the end. This happens because the most frequent types makes

a bigger contribution to the total TTR. It can be seen too that the text has 297 types and

the HD-D index, that is the sum of the contributions of all the types after the application

of the hypergeometric distribution, values a 70.7%. With all this, it can be said that this

text has a good lexical diversity.

3.3.3 Formality Measure

The Formality Measure [17] is a stylometry metric for measuring the degree of formality

of a text. There are two formality metrics implemented in the library : Adjective Score

and F Score. Both are based on the POS tagging of the text because depending on the

kind of words used in the text and the frequency of them we can say how much is a text

formal or informal. Another application of this metric is to classify a text in function of

the formality grade as it can be seen in the next explanation. It should be noted that these

metrics are valid for both Spanish and English languages.
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3.3.3.1 Adjective Score

The Adjective Score [10] is a measure that analyzes the adjective density of a text. This

score is given by the following formula:

Adj Score =
No Adjectives

tokens
∗ 100 (3.25)

The Adjective Score value is usually under the 10%. Lower values mean that the

text is informal (a conversation between two persons) and higher values will mean that the

text is formal (newspaper articles, scientific publications,...). The table bellow shows the

expected Adjective Score that every kind of text should have:

Figure 3.5: Adjective Score expected [10]

In the text used in the Text Statistics Chapter, it can be seen that it has 588 tokens, and

54 of them are adjectives. Thus, Adjective Score = NoAdjectives
tokens ∗ 100 = 54

588 ∗ 100 = 9.18%.

In this case, the Adjective Score classify the text as a Non-academic prose text or an

Academic prose text. But nevertheless, this text is a newspaper article. This happens

because, if we see the Readability Index of this text, it can be seen that read it could be

difficult. Therefore, it can be said that the text, even though is a newspaper article, is very

formal and read it can be difficult.

3.3.3.2 F Score

The F Score [17] is another Formality Metric. It is most important than the Adjective

Score because, among other things, it takes into account all the POS tagging process and

not only the adjectives tokens. The proposed algorithm for this measure is as follows:

F Score =

Nouns+Adjectives+Prepositions+Determiners−Pronouns−V erbs−Adverbs−Interjections
Tokens ∗ 100 + 100

2
(3.26)
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The higher the F Score, the higher the degree of formality. With this formula, we can

see that texts with a higher number of nouns but, for example, a lower number of verbs or

pronouns, will be more formal that other texts.

In the example of the text before, the F Score will be:

F Score =

193+54+124+105−19−59−7−0
588 ∗ 100 + 100

2
= 83.248%

As it can be seen, the text is a very formal text (newspapers article F Score usually

are between the 60% and the 70%).

How it can be seen in the article published by Francis Heylighen and Jean-Marc Dewaele

[17], where they study the F Score for texts written in Dutch, English, Italian and French,

high results of the F Score mean very formal texts like newspapers or scientific magazines.

Even so, the text before is extraordinarily formal even if it is a newspaper article. This

variation can be produced by the topic that the author is talking about.

In summary, the both metrics explained here are a good manner to see how much a text

is formal or informal and can get to classify the texts according to themes or type of text.

3.3.4 Coherence Measure

The Coherence Measure [11] is the last metric implemented in the library. This index

returns how much coherent is a text and therefore how much cohesive is that text.

The index is based on the comparison of each sentence with the next sentence of the

text. The sum of all the comparisons of a sentence with the following is the Coherence

Measure Index:

Coherence Measure =

∑n−1
i=0 Coherence(sentencei, sentencei+1)

sentences
∗ 100 (3.27)

where sentences is the number of sentences within the text, sentencei is the sentence number

i within the text and Coherence(sentencei, sentencei+1) is the comparison of a sentence

with the following in the text.

To know how much coherent is a sentence with the following, it is necessary to analyze

the semantic relation between them. This can be done working with WordEmbeddings

models. To do this analysis, it has been used the gsitk library, that provides functions for

working with Word2Vec features.

First of all, for extracting Word2Vec features a WordEmbeddings model needs to

be loaded. The model used will depend on the language of the text. The available models

depending on the language of the text are described in the Chapter Enabling Technologies.
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Once it is loaded, the text is tokenized. But this process of tokenization is different

from the others tokenization processes in the rest of the functions of the library: first, the

text is tokenized in sentences and finally each sentence is tokenized in words. It is going

to be shown by an example where the test text is going to be:

“It was nearly Christmas. Katie woke up and found that the world was white and

magical. - Snow,she shouted, snow for Christmas.”.

The tokenization for analyze the coherence in the text will be:

[[‘It’, ‘was’, ‘nearly’, ‘Christmas’], [‘Katie’, ‘woke’, ‘up’, ‘and’, ‘found’, ‘that’, ‘the’,

‘world’, ‘was’, ‘white’, ‘and’, ‘magical’], [‘Snow’, ‘she’, ‘shouted’, ‘snow’, ‘for’, ‘Christ-

mas’]].

As it can be seen, the function tokenizes the text in sentences and then each sentence

is tokenized in words.

Then, with the text tokenized and an extractor created with a WordEmbeddings

model loaded, using the function transform the text is transformed and stored as an array

containing the extracted features. The transformation of the above test text can be seen

here:

Finally, each vectorized sentence is compared with its following using the cosine simi-

larity comparison:

similarity = cos(θ) =
A ∗B

||A|| ∗ ||B||
=

∑n
i=1Ai ∗Bi√∑n

i=1Ai
2 ∗
√∑n

i=1Bi
2

(3.28)

where A is a vectorized sentence and B is its following vectorized sentence. The cosine

similarity returns a number between 0 and 1 and its number (multiplied by 100) will be the

semantic resemblance between the two sentences.

To finish, all the similarities between the sentences of the text are added, divided by the

number of sentences and this sum is multiplied by 100 to give a percentage that will be the

Coherence Measure of the text.

As an example, the next graphic shows how the coherence is measured sentence by

sentence:
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Figure 3.6: Coherence Measure applied to text [40]

As it can be seen, the coherence in the text stays almost constant over the Coherence

Measure Index that is 91.114%. The only values that vary with this average are the

comparison of the sentence7 with the sentence8 and the comparison of the sentence8 with

the sentence9, that are around the 78%.

With all this, a Coherence Measure of 91.114% is a high value and it can be said

that this text is very coherent and cohesive.

A complete analysis of the text [40] is made in the appendix.
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CHAPTER4
Architecture

4.1 Introduction

In this chapter will be shown and explained all the process of compilation of data,treatment

of this data and visualization. As explained at Chapter 2: Enabling Technologies, different

tools have been used for the display of the data, like GSI Crawler, ElasticSearch, Luigi,

Senpy and some web tools and web languages (HTML, CSS, JavaScript...).

4.2 Architecture

This section will show all the components used in the development of the Dashboard in

which is going to be shown the results of the use of the stylometry library.

As it can be seen in the following figure, this part of the project has been developed using

a pipeline (monitored by Luigi) composed of a part of compilation of the data, analysis of

the data, storage of the data and visualization.

It is important to say that the Dashboard is based on the Trivalent [14] project (Ter-

rorism pReventIon Via rAdicaLisation countEr-NarraTive), of which the use of the GSI

Crawler tool has been maintained and the visualization part has been extensively modified.
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Figure 4.1: Architecture of the visualization part

4.2.1 Docker and Docker-Compose

For the deployment of the environment, has been widely used docker and docker-compose.

Firstly, a Senpy image with the developed style plugin is mounted using docker:

sudo docker build . −−tag senpyimage

Once the Senpy image is mounted, we can build the whole system using docker-

compose. In particular, GSI Crawler, ElasticSearch, Senpy and Luigi are mounted

in containers and then, with docker-compose, this multi-container application is runned.

sudo docker − compose up −−build

Then, the Stylomepy Dashboard is executed with another docker-compose. When

the whole system is running, ElasticSearch will be available at localhost:19200, Senpy at

localhost:5000 and the Stylomepy Dashboard at localhost:8080.

4.2.2 Data Compilation

For this task, the GSI Crawler tool has been used for scrapping some online newspapers

for finding news related to terrorism: The New York Times, CNN and Al Jazeera.

The scrapper works finding in the news the word terrorism. At the time this text is

being written, 115 news items have been scraped from the different sources, as shown in

the following figures:
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Figure 4.2: News Number Chart Figure 4.3: News Google Pie Chart

4.2.3 Data Analysis

The task dedicated to the analysis of the data compiled by GSI Crawler is Senpy. As

stated above, Senpy is based on the use of plugins to make the analysis of a piece of text.

In this project, a new plugin has been developed for make the analysis of the style of the

texts. The input of the plugin will be a text to analyze and the output will be a JSON

document with the analysis of the style among other things.

This plugin admits three extra-parameters: a parameter to tell Senpy if coherence

has to be measured, a parameter to determine how much the window has to measure in

the calculation of the MATTR (usually is 100) and another parameter to determine how

much the MTLD value has to measure (usually is 0.72). Senpy provides a Playground

environment for testing. The Senpy Playground with the Style Plugin loaded is shown in

the next figure:

Figure 4.4: Senpy Playground
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The plugin analyzes the style of a text measuring it with all the metrics explained in the

previous chapter and returning a JSON with all these metrics. To facilitate the use of the

tool and the readability of the response, the data is given sorted and represented according

to the following vocabulary designed to show the data in the simplest way possible:

Figure 4.5: Senpy style plugin JSON vocabulary

In the pipeline, the Senpy process takes in its input the output of the GSI Crawler

analysis (a new of a newspaper) and its function is to analyze the style of these news.

Finally, it returns a JSON file for each new based on the previous vocabulary.

4.2.4 Data Storage

After the Senpy analysis, the different JSON documents including the style analysis should

be stored. For this task, in this project it has been used ElasticSearch.

For each news analyzed, the JSON file with the style analysis of this new is appended to

the appropriate index in ElasticSearch. For this reason, each entry in the ElasticSearch

style analysis index will be a different news. In addition, apart from storing the style, it is

also stored the news title, the news text and the news published date.

With all this data, it will be simple to extract data from ElasticSearch to show it in
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the Dashboard.

4.2.5 Data Visualization

Data visualization is the main task of this process. In the developed Dashboard it can

be selected a piece of news to see the and to analyze the style of it. The name of the

Dashboard will be Stylomepy .

The Dashboard has been developed using typical web technologies, like HTML, CSS

or JavaScript. Specifically, it has been used Polymer, a JavaScript library that allows us to

create web components or to use predefined widgets.

The Dashboard is widely based on the Trivalent Dashboard developed by the GSI

group. In particular, the top of the Stylomepy Dashboard inherits three components

from the Trivalent Dashboard, as it can be seen in the next figure:

Figure 4.6: Dashboard news source and select menu

As it can be seen, the source of the compiled news is showed in the Dashboard. On

the right, a select menu, where we can choose the news we want, is displayed. If a news is

selected, a modal window like the next one is shown:
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Figure 4.7: Dashboard news modal window

In the previous figure it can be seen the modal window displayed when a news is selected.

In the middle of the modal window we can see the text of the news and, at the top, it can

be seen the title of the news, the newspaper source and the publication date. At the bottom

there are three buttons. The first one is for visiting the web in which the news was published.

The second one is for analyzing the style of the news. The last one is for closing the menu.

Both this menu and the previous charts have been made using Polymer components, in

particular News Charts (for the select menu and the modal window), Number Charts and

a Google Chart (the pie graphic).

The Stylomepy Dashboard has been made to analyze the style of texts. In particular,

the uploaded texts in the ElasticSearch index are news related with terrorism or terrorist

texts. With the Analyze Style button we could select which news we will want to analyze.

Thus, when this button is selected, the page will show the style of the selected news in

different web components that are going to be explained next.

• Number Chart: As was explained before, Number Charts are used in the Dash-

board to show how many news from a certain source there are in our ElasticSearch

index. In the Figure 4.6 it can be seen an example.

• News Chart: As was explained before too, the news chart shows the news and it

gives us the possibility to see them. It consists of two parts:

– The first one is shown in the Figure 4.6. News are ordered in a list and we can

see the title of them. We can select them too.

– The second one is the modal window of the Figure 4.7. In this window, we can

see the title of the news, the publication date, the source, the language of the

text and three buttons. One of them is the Analyze Style button.
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• Google Chart: The Google Chart is the most important component in the Sty-

lomepy Dashboard. The most important properties of this component will be

reported next:

– Field: The field to which the data to be displayed belongs to.

– Data: The JSON document with all the data stored in the ElasticSearch index.

– Type: Is the type of the chart. This property can be column, pie, gauge, etc. In

the Stylomepy Dashboard the have been used the type column and the type

pie.

– Options and Optionsbi: These properties allows us to personalize the chart.

It can be set the height, the width, the name of the axes,the color, if a chart is

going to be shown in 3D...

– Cols: It is an array with the labels of the axes.

The next figure shows how a Pie Google Chart and a Column Google Chart are

displayed in the Stylomepy Dashboard:

Figure 4.8: POS Pie Google Chart Figure 4.9: Readability Index Column Google Chart

• d3-progress-meter: This Polymer web component shows a progress circle in func-

tion of a percentage. The main properties needed by the component are the title,

the radius of the circle and the percentage. The next figure is an example of this

component:

Figure 4.10: F Score Web Component Figure 4.11: Coherence Web Component
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• Gauge with needle: this a modified JavaScript component based on the Plotly

library. It marks with the needle a value based on the data. An example of it is in

the image below:

Figure 4.12: Optimized Fog Count Needle Gauge Chart

The complete Dashboard can be seen in the annexes.
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Case of Use

5.1 Introduction

There is a lot of interesting applications where using this stylometry library can be useful.

The study of the style of a text and compare it with another texts can be useful to know the

differences between some writers, to classify texts based on their style, prevent plagiarism,

etc.

This comparison could be useful, to give concrete examples, to compare the style between

two politicians and have a general idea about how each one convince people in one way or

another or to know in advance if a text focused on a specific audience is effectively focused

on that audience.

This chapter will focus on another possible use case: the analysis of the style of terrorist

texts and another texts that talk about terrorism and the comparison between them. To

analyze it, a terrorist text and a text that talk about terrorism are going to be compared

(both in English and Spanish languages).

5.2 English Comparison

In this section, it is going to be compared a text (a new) talking about ISIS terrorists [18]

and an ISIS statement [26], specifically, the Brussels attack ISIS statement. The next figures
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show the style of these texts:

(a) Text Statistics Comparison (b) VR, Formality and Coherence Compar-

ison

(c) Readability Index Comparison
(d) Readability Index (Flesch RE) Com-

parison

Figure 5.1: Style Metrics Comparison between a news talking about ISIS terrorism [18] and

an ISIS statement [26]

Firstly, we can see (Figure (b)) that the news text is less coherent than the ISIS state-

ment. In fact, the statement has a Coherence Score of 70.01 % and the news has a

61.15 %. For this reason, it can be said that the statement is a very coherent text and the

newspaper article is coherent too but not as much as the other.

Then, both Formality Indexes (Adjective Score and F Score) are higher in the state-

ment text that in the newspaper article. This indexes can be interpreted as follows: although

the two texts are formal texts, the statement is more formal than the article.

With regard to Vocabulary Richness metrics, all of the implemented metrics (except

the TTR, but it is not important for measuring the style) have lower values in the statement

than in the news text. Even so, the two texts have a high Vocabulary Richness. As it can

be seen, the most important difference between the two texts in the Vocabulary Richness

metric is that the MTLD metric is around 100 % (very high) in the article text and in the

statement texts is around 50 % (normal).

To end, if we look at the third graph, we can see that all the Readability Indexes

show that the statement text is more difficult to read than the article text. Also in the last

figure, the Flesch RE graph shows that the statement is more difficult to read, because
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this metric, the smaller it is, the more difficult it will be to read.

As a summary, we can say that the statement is more coherent, more formal, more

difficult to read and with less lexical diversity. Also we can say that there are metrics that

differ, as the MTLD.

5.3 Spanish Comparison

Now, we are going to see an example like the previous one but with texts written in Spanish.

Specifically, it is going to be compared a newspaper article [9] talking about ETA and a

statement written by this Basque terrorist band published on 10/20/2011 [3].

(a) Text Statistics Comparison (b) Readability Index, VR, Formality and

Coherence Comparison

Figure 5.2: Style Metrics Comparison between a news talking about ETA terrorism [9] and

an ETA statement [3]

In this case, it can be seen that the news text is more coherent than the statement.

Even so, both texts are very coherent, having each one a Coherence Score higher than

80 %.

Both Formality Index are higher values. It would point out that the Adjective Score

of the statement is a little higher than the Adjective Score of the newspaper article. On

the other hand, the F Score of the statement is a little lower than the F Score of the news

article, being both very formal texts.

The Vocabulary Richness metrics all follow the same pattern: all this metrics, except

the TTR (it is not important), are higher in the news text than in the statement. Further-

more, the MTLD value in the newspaper article is almost 100 %, when in the statement

is around the 75 %. Thus, we can say that both texts have a good Vocabulary Richness

values.

To end, the Spanish Readability Index metrics have medium values, establishing

that these two texts are difficult or a bit difficult to read. Anyway, according to the µ

Readability Index, the news text is a little more difficult to read. On the other hand,
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the INFLESZ values establish that the statement is a little more difficult to read.

5.4 Evaluating the Results

In the previous sections, it has been studied a case of use of the library based on the

comparison between a news text talking about a terrorist group and a statement written

by this terrorist group. In the next schema is described metric by metric the results of this

analysis:

• Coherence Measure: The results depends on the texts. In the English case, the

statement was more coherent than the article, but in the Spanish case is the opposite.

Anyway, both the articles and the statements are very coherent texts.

• Formality Measure: In both languages, the Adjective Score of the statement was

higher than the Adjective Score of the news text. On the other hand, the F Score

of the Spanish case was higher in the newspaper article than in the statement and

in the English case was the opposite. Anyway, both Formality Indexes metrics are

very high, so it can be said that all texts analyzed were very formal texts.

• Vocabulary Richness: In this case, both in the texts written in Spanish and in

English all the Vocabulary Richness metrics are lower in the statements than in

the news texts (excepting the TTR metric, but it is not an important metric to

measure the style of a text).

Furthermore, there is a very interesting value. The MTLD metric in the news text

is always around the 100 %, but in the statements is much lower. For this reason,

the MTLD value is one of the most relevant metrics to differentiate a terrorist texts

than others like news.

Finally, it can be said that all texts have a good Vocabulary Richness, with metrics

with values around the 70 %.

• Readability Index: All of the Readability Index values show that these texts are

difficult or a bit difficult to read. Also, is true that all the indexes of the statement

texts, excepting the µ Readability Index (but for very little), are lower than the

news texts.

Finally, it can be seen that, analyzing the style of texts, although they probably talk

about the same, they can be differentiated one from another using these metrics, making a

good comparison and with a good analysis of the data.
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Conclusions and future work

In this chapter we will describe the conclusions extracted from this project, and the thoughts

about future work.

6.1 Conclusions

In this project, a stylometry library has been developed. This library allows the user to

measure the style of a text and to see the most characteristic features of that text.

The first conclusion is that each person writes in a different way. For this reason, each

text is totally different from other. Nevertheless, it is possible to classify the texts by the

difficult to read them, the target audience, etc.

Each text published in a different field (a newspaper, a novel, a scientific publication,

etc.) needs to be suitable to this field. For example, if someone is writing a story for

children, that text must be easy to read, not very formal and with few different words. If

another person wants to publish a news in a newspaper, the text must be prepared for the

readers of that newspaper.

Definitely, it is possible to use the developed stylometry library for measuring the style

of a text and to guarantee that the text meets specific characteristics.

As it has been seen, measuring the style of texts can be useful for comparing texts. As

the previous examples, it has been seen that some metrics exist that allows us to classify

texts. In this project we saw the differences (that it seems that they tend to meet) between
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a terrorist text and a text talking about terrorism, like the MTLD metric. Using the style

to prevent or to analyze what texts are on the network could be interesting.

Furthermore, a visualization module can allow the user to have an easy vision and an

easy interpretation about the style of a text (in our case news related with terrorism). For

this, the user is provided with a Dashboard to analyze the style of the texts, to see how

is the style of this text in an easy way and to interpret the results.

On the other hand, the library is developed in Python, and it is accessible for everyone

in an easy way. Simply importing the library and applying its functions to a text we can

see the metrics that measure the style of that text.

6.2 Achieved goals

The achieved goals for the project are described in this section.

• Develop of a Python stylometry library: A Python library for measuring the

style of texts has been developed. It has a lot of functions that calculate different

metrics for measuring the style.

• Implement the library in Spanish and English: There are some metrics that do

not work well in both languages. For this reason, each function in the library checks

the language first and then continues.

• Developing a Senpy plugin: Senpy is necessary for make a correct analysis of any

text and then be able to use it in another environment.

• Deployment of a Visualization System: Based on some tools like GSI Crawler,

Luigi or Senpy, the text is collected from the web, analyzed and uploaded to an

ElasticSearch index to be able to visualize it in the Dashboard. The Dashboard

is made with the Polymer JavaScript library and is a very good way for seeing the

results of the analysis of a text.

• Checks and comparisons between the style of two texts: It has been made

the comparison of the style of two different texts (in this work, in the Chapter 5:

Use Case, was only made the comparison between a terrorist text and a news talking

about terrorism.

6.3 Problems found

The biggest problems founded during the development of this project are explained here:
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• Learning new technologies: Before the starting with a new technology learning it

is needed. Some technologies used (like Gensim) were difficult to use.

• Good tokenization of a text: It was difficult at the beginning to tokenize a text.

Problems like undesirables signs in the words was common in the first months but,

finally, it was perfected.

• Deployment of the visualization system: Due to deployment failures the visual-

ization system could not be implemented. One off The problem was that the outputs

of the modules that form the pipeline were not good inputs for the next modules in

this pipeline. Other problems were related with the environment system, like prob-

lems with Docker dependencies, npm dependencies or failures in the configurations of

the different docker-compose.yml files.

6.4 Future work

In this section are going to be presented possible future implementations and improvements

for the library and the visualization system:

• Add more metrics: To improve the library and to make it bigger, others metrics

could be implement to add viewpoints on style analysis.

• Enhance metrics already implemented: Metrics implemented in the library can

always be enhanced. For example, the Formality Measure can be implement an-

other function based on the kind of words used, jargon, swearwords and more.

• Add functionalities to the Dashboard: The Dashboard must be in a constant

change. It can be added a tab where the user can compare two texts.

• To train a model for the classification of the texts: A machine learning model

can be trained to classify texts depending on the style of them. Thus, texts can be

classified by age, audience, difficulty, topic (terrorist texts, text about terrorism, etc.).
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APPENDIXA
Impact of this project

A.1 Introduction

The comparison of the style of the texts is a different form of distinction between texts. It

is a good way for analyzing texts and authors, mainly because each person has an intrinsic

style and changing it is a very difficult task.

Just as each person speaks and expresses himself in a different way to any other person,

also each person writes in a different way. For this reason, analyze the style could give us

a lot of information about the writer, as well as his environment.

In this appendix, we are going to analyze the impact of this style analysis.

A.2 Social Impact

Currently, most of the information we receive comes from the Internet from sites like social

networks, online newspapers, instant messaging applications, etc. Regarding the latter,

terrorist groups like ISIS thoroughly uses Telegram for sending radical messages [46].

Internet access is easy for everyone and each of the people who access the Internet

can read some radical text and this can be dangerous. For this reason, detect in time a

radical text published on the Internet or sent through an application could be crucial to

stop terrorists and to protect to the population.
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To control this, analyze the style of the texts published could be a good solution to

remove messages with a radical style and thus protect people.

A.3 Economic Impact

Analyzing the style of the texts can be a very good action to prevent radicalization. As it

can be seen in this project, the style analysis of a text is a very simple and efficient task.

For this reason, countries could save money that they spend now on other prevention

measures using the style analysis of the texts and thus prevent or reduce the probability of

radicalization of people.

A.4 Environmental Impact

To make possible the analysis of the texts published in the network, it is necessary to have

the necessary equipment. This equipment includes computers, servers, and other computer

material that needs a lot of energy to run.

Nowadays, this energy is mostly obtained from non-renewable energy sources. It is

necessary (to take advantage of technologies such as Big Data or machine learning) to make

an energy transition to encourage the use of renewable energies and use green computing

models to simplify the environmental impact of this project.

A.5 Ethical Implications

The most important ethical impact of this project is related with the privacy. The fact

of reading and analyzing the style of many of existing texts in the network can be against

people privacy rights. To solve this problem, it would be necessary to make laws that

prohibit this type of practices or that guarantee that they are carried out in a controlled

manner.

Another ethical implication that this project could have would be a bad use of style

analysis. For example, instead of using it to discover radical messages it can be used for

making actions related with cybercrime (knowing the style of writing of a person could give

ideas to the criminal about some personality traits of the writer).

As a final conclusion, it will be necessary to pass laws for trying to prevent of bad uses

of this project and others related to it.
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APPENDIXB
Cost of the System

B.1 Introduction

In this appendix, we will give a budget including the cost The cost of the start-up of the

project.

B.2 Physical Resources

The project has been developed in a personal computer with the following characteristics:

• CPU: Intel(R) Core(TM) i7-4500U CPU @ 1.80GHz, 64 bits

• RAM: 4 GB

• Disk:500 GB

Even so, it would be good to have a more powerful equipment, since at the time of

developing the project with the equipment described, more capacity has been missed.

B.3 Human Resources

:
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For the development and the maintenance of this project will be necessary at least two

workers: the developer and the maintenance worker.

To develop a project like this, at least they have been necessary 360 hours of development

(each ECTS is 3 hours and this project has a value of 12 ECTS). Considering that the work

has been carried out by a student and considering that he/she works at the UPM as a

scholar, the cost of his/her salary will be around the 2,000 e.

On the other hand, the maintenance worker will be paid with a salary that can be

around the 24,000 e and the 64,000 e.

B.4 Licenses

: As all the programs and tools used in the development of the project are open-source, it

will bee not necessary to pay to buy licenses of any kind.

B.5 Taxes

:

This section will be interesting only if the project is going to be sold to another company.

If this happens, the Statute 4/2008 of Spanish law establish that this sale is subject to a

tax of the 15 % of the final price of the product.
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APPENDIXC
Analysis of a text

As a final example of style metrics and the stylometry library, we can see the next table

where all the metrics are applied to the text [40]:

Style Metric Index Value (%)

Readability Index
INFLESZ 39.382

mu 52.487

Vocabulary

Richness

TTR 50.510

Guiraud R 12.248

Herdan C 89.289

Mass a2 3.867

Uber U 25.856

MTLD 79.661

MSTTR 71.333

MATTR 72.192

HD-D 70.700

Formality Measure
Adjective Score 9.184

F Score 83.248

Coherence Measure Coherence Measure 91.114

Table C.1: Style Metrics of the text [40]
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According with the information given in the table, the Readability Index shows that

the text is difficult or very difficult to read.

The lexical diversity of the text (Vocabulary Richness) has a lot of functions. The

most important are MTLD, MSTTR, MATTR and HD-D (the rest are the TTR and

variations of it that are not very reliable), and these metrics returns high values (between

the 71% and the 80%), so it can be said that the text has a very good lexical diversity.

Regarding the Formality Measure, both the Adjective Score and the F Score

returns very high values, so it can be said too that it is a very formal text.

Finally, the Coherence Measure shows that the text is very coherent because this

index returns a value around 91%.

As a resume, it can be said that this text is difficult to read, has a lot of lexical

diversity, it is a formal text and it is a very coherent text.

The next graphics show the MSTTR, MATTR, HD-D and Coherence Measure

graphs of the texts [40]:

Figure C.1: MSTTR applied to text [40]
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Figure C.2: MATTR applied to text [40]

Figure C.3: HD-D applied to text [40]
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Figure C.4: Coherence Measure applied to text [40]
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APPENDIXD
Dashboard

The next pictures show how is the Stylomepy Dashboard and its different tabs. It can

be seen each widget that composes the Dashboard, and obtain an exhaustive analysis of the

style of a certain text in a glance.
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Figure D.1: News Section Stylomepy Dashboard
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Figure D.2: Text Statistics Section Stylomepy Dashboard
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Figure D.3: Readability Index, Vocabulary Richness, Coherence and Formality Section

Stylomepy Dashboard
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Figure D.4: Readability Index Section Stylomepy Dashboard
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Figure D.5: Vocabulary Richness Section Stylomepy Dashboard
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Figure D.6: Formality and Coherence Measures Section Stylomepy Dashboard
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[10] Alex Chengyu Fang and Jing Cao. Adjective density as a text formality characteristic for

automatic text classification: A study based on the british national corpus. In Proceedings

of the 23rd Pacific Asia Conference on Language, Information and Computation, Volume 1,

volume 1, 2009.

[11] Peter W Foltz, Walter Kintsch, and Thomas K Landauer. The measurement of textual coherence

with latent semantic analysis. Discourse processes, 25(2-3):285–307, 1998.

[12] Robert Goodman, Matthew Hahn, Madhuri Marella, Christina Ojar, and Sandy Westcott. The

use of stylometry for email author identification: a feasibility study. Proc. Student/Faculty

Research Day, CSIS, Pace University, White Plains, NY, pages 1–7, 2007.

[13] Clinton Gormley and Zachary Tong. Elasticsearch: The definitive guide: A distributed real-time

search and analytics engine. ” O’Reilly Media, Inc.”, 2015.

[14] GSI Group. Trivalent: Terrorism pReventIon Via rAdicaLisation countEr-NarraTive. http:

//www.gsi.dit.upm.es/es/trivalent.

XVII

https://github.com/Mimino666/langdetect
https://github.com/Mimino666/langdetect
http://www.gsi.dit.upm.es/es/trivalent
http://www.gsi.dit.upm.es/es/trivalent


BIBLIOGRAPHY

[15] Pierre Guiraud. Les caractères statistiques du vocabulaire. Presses universitaires de France,

1954.

[16] William L Harkness. Properties of the extended hypergeometric distribution. The Annals of

Mathematical Statistics, 36(3):938–945, 1965.

[17] Francis Heylighen and Jean-Marc Dewaele. Formality of language: definition, measurement and

behavioral determinants. Interner Bericht, Center “Leo Apostel”, Vrije Universiteit Brüssel,

1999.

[18] Ben Hubbard. Isis’ mysterious leader is not dead, new video shows. The New York Times,

2019.

[19] J Peter Kincaid, Robert P Fishburne Jr, Richard L Rogers, and Brad S Chissom. Derivation

of new readability formulas (automated readability index, fog count and flesch reading ease

formula) for navy enlisted personnel. 1975.
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[41] Alan M Turing. Computing machinery and intelligence. In Parsing the Turing Test, pages

23–65. Springer, 2009.

[42] Roeland Van Hout and Anne Vermeer. Comparing measures of lexical richness. Modelling and

assessing vocabulary knowledge, pages 93–115, 2007.

[43] Pascal van Kooten. contractions 0.0.18. https://github.com/kootenpv/

contractions.

[44] Ben Verhoeven, Walter Daelemans, and Barbara Plank. Twisty: a multilingual twitter stylom-

etry corpus for gender and personality profiling. In Proceedings of the 10th Annual Conference

on Language Resources and Evaluation (LREC 2016)/Calzolari, Nicoletta [edit.]; et al., pages

1–6, 2016.

[45] Willy, Steven Bird, Edward Loper, Joel Nothman, and Arthur Darcet. Punkt Tokenizer.

https://www.nltk.org/_modules/nltk/tokenize/punkt.html.

XIX

https://blog.bitext.com/what-is-the-difference-between-stemming-and-lemmatization/
https://blog.bitext.com/what-is-the-difference-between-stemming-and-lemmatization/
https://www.kaggle.com/rtatman/pretrained-word-vectors-for-spanish
https://www.kaggle.com/rtatman/pretrained-word-vectors-for-spanish
https://github.com/kootenpv/contractions
https://github.com/kootenpv/contractions
https://www.nltk.org/_modules/nltk/tokenize/punkt.html


BIBLIOGRAPHY

[46] Ahmet S Yayla and Anne Speckhard. Telegram: The mighty application that isis loves. Inter-

national Center for the Study of Violent Extremism, 2017.

XX


	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technologies
	Introduction
	Natural Language Processing
	NLTK
	Gensim
	GSITK
	Word2Vec
	LangDetect

	Dashboard
	Senpy
	ElasticSearch
	Luigi
	GSI Crawler
	Graphic Interface

	Another Libraries

	Development of the Library
	Introduction
	Text Statistics
	Style Metrics
	Readability Index
	Spanish Readability Index Metrics
	English Readablity Index Metrics

	Vocabulary Richness
	TTR
	Improved TTR Metrics
	MTLD
	MSTTR
	MATTR
	HD-D

	Formality Measure
	Adjective Score
	F Score

	Coherence Measure


	Architecture
	Introduction
	Architecture
	Docker and Docker-Compose
	Data Compilation
	Data Analysis
	Data Storage
	Data Visualization


	Case of Use
	Introduction
	English Comparison
	Spanish Comparison
	Evaluating the Results

	Conclusions and future work
	Conclusions
	Achieved goals
	Problems found
	Future work

	Impact of this project
	Introduction
	Social Impact
	Economic Impact
	Environmental Impact
	Ethical Implications

	Cost of the System
	Introduction
	Physical Resources
	Human Resources
	Licenses
	Taxes

	Analysis of a text
	Dashboard
	Bibliography

