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Resumen

Internet crece a diario en términos de usuarios y aplicaciones. Hoy, más de la mitad de

la población mundial utiliza Internet. Debido al gran número de usuarios y dispositivos

conectados a la red, el volumen de información almacenada crece de forma exponencial.

Estos datos son más valiosos cada d́ıa y su protección se convierte en una prioridad. Pero no

solo aumenta la cantidad de datos sino también el número de amenazas. A diario aparecen

nuevas vulnerabilidades en redes y sistemas. Protegerse de estos peligros es un gran reto

debido a su rápido surgimiento y evolución. Esto supone crear medidas de protección para

ataques que incluso hoy no son conocidos. Es por ello que, tanto la comunidad cient́ıfica

como empresas privadas trabajan mano a mano para desarrollar herramientas de defensa y

protección.

Tanto los Intrusion Detection Systems (IDS) como los Intrusion Prevention Systems

(IPS) son herramientas diseñadas para detectar y prevenir ciberataques. Esto lo consiguen

analizando el tráfico entrante y saliente de la red protegida. Estas herramientas basan su

comportamiento en modelos o conjuntos de reglas que determinan si una comunicación es

o no peligrosa. Este proyecto tiene como objetivo desarrollar modelos basados en Machine

Learning destinados a IDSs e IPSs. Estos modelos deben ser capaces de detectar ciber-

ataques. Para conseguirlo, los modelos son entrenados con grandes colecciones de datos

denominadas datasets que registran el tráfico de red etiquetando cada flujo como benigno

o malicioso.

Los ciberataques analizados en este proyecto para los cuales hemos propuesto un con-

junto de soluciones son: DDoS, Port Scan, Infiltración, Botnets, Web Attacks y Fuerza

Bruta. Estos son los ataques más comunes dirigidos a redes privadas que se llevan a cabo

a d́ıa de hoy.

En cuanto al procedimiento seguido para generar modelos se divide en tres partes:

preprocesado de la información, en el que se adecúa y corrige la información contenida en

los datasets de tal forma que sea apropiada para los algoritmos. A continuación, comienza

el entrenamiento, este es un proceso iterativo en el que generamos un gran abanico de

modelos. Esto se consigue variando el algoritmo utilizado (k-Nearest Neighbors, Logistic

Regression, Gaussian Naive Bayes y Multilayer Perceptron) aśı como su configuración y
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número de variables utilizadas. En este proyecto, hemos desarrollado en total unos 1350

modelos. Por último, se evalúa cada modelo con diferentes medidas estad́ısticas para su

posterior comparación.

Finalmente, comparamos los resultados obtenidos tras evaluar todos los modelos gener-

ados. A partir de estos datos podemos concluir cuáles son los mejores algoritmos para cada

tipo de ataque aśı como la información que requieren. Los modelos obtenidos alcanzan una

exactitud a la hora de clasificar flujos de entorno al 98%. Estos valores son realmente buenos

ya que el porcentaje de falsas alarmas y flujos malignos no detectados es de tan solo un 2%.

Por ello podemos concluir en que aplicar técnicas de Machine Learning a herramientas de

ciberseguridad es una interesante propuesta con un gran rendimiento.

Palabras clave: Machine Learning, Cybersecurity, IDS, IPS, Dataset, Intrusion.



Abstract

The Internet grows daily in terms of users and applications. Today, more than half of

the global population is using the Internet. Due to the huge number of users and devices

connected to the network, the volume of information stored grows exponentially. This data

are more valuable each day and its protection becomes a top priority. Not only the amount

of data increase but also the number of threats. Every day, new exploits and vulnerabilities

in systems come up. That is why protection measures need to be created even for unknown

attacks. To be protected from these threats is hard labour due to the rapid emergence and

evolution of the threats. Both the scientific community and companies work together in

order to create new defensive tools.

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) are tools

designed to detect and prevent cyber-attacks. This goal is achieved analyzing the inbound

and outbound traffic of the protected network. These tools are based on models or a set

of rules that classify flows as benign or malicious. The goal of this project is to develop

Machine Learning based models designed for IDSs and IPSs. These models must be able to

detect cyber-attacks. To achieve that, models are trained with large data collections named

datasets. Datasets log the network traffic labelling every flow as benign or malicious.

In this project, we propose a set of solutions to the next cyber-attacks analyzed: DDoS,

Port Scan, Infiltración, Botnets, Web Attacks and Brute Force. Nowadays, these are the

most common attacks directed to private networks.

The methodology followed to elaborate models is divided into three parts. The first

part is named preprocessing, it consists of making sure that information stored in datasets

is correct and appropriate for training. Datasets usually have incorrect or missed pieces

of information that have to be fixed. Next, the training begins, this is an iterative pro-

cess repeated for each developed model. We generate a wide range of models varying the

algorithm applied (k-Nearest Neighbors, Logistic Regression, Gaussian Naive Bayes and

Multilayer Perceptron), its configuration and the number of used features. We have trained

a total of about 1350 models. The last part consists of evaluating each model with different

statistical scores based on the test performance and compared with other solutions.
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Finally, we compare the results obtained after all models are evaluated. With this

information, we can conclude which algorithm is the best for each attack type and the

information required. The models developed reach an accuracy of about 98% classifying

flows. These scores are successful because the false alarms ratio and undetected malicious

flows are only 2%. That is why we can conclude that applying Machine Learning techniques

to Cybersecurity is an interesting proposal with a great performance.

Keywords: Machine Learning, Cybersecurity, IDS, IPS, Dataset, Intrusion.
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CHAPTER1
Introduction

This chapter gives a brief introduction to the project. To get a better vision and understand-

ing, we explain the context in which is situated this work. With this purpose, we explain the

two main terms implied in this work: Intrusion Detection System and Machine Learning.

Furthermore, we review the main reasons that motivate this project and the project goals.

Finally, we give a short explanation of the document structure.
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CHAPTER 1. INTRODUCTION

1.1 Context

The Internet grows daily in terms of users and applications. Today, more than half of the

global population is using the Internet [14]. Due to the huge number of users and devices

connected to the network, the volume of information stored grows exponentially. This data

are more valuable each day and its protection becomes a top priority. Not only the amount

of data increase but also the number of threats. Every day, new exploits and vulnerabilities

in systems come up. That is why protection measures need to be created even for unknown

attacks. To be protected from these threats is hard labour due to the rapid emergence and

evolution of the threats. Both the scientific community and companies work together in

order to create new defensive tools.

Cybersecurity as Cisco describes is “The practice of protecting systems, networks, and

programs from digital attacks. These cyber attacks are usually aimed at accessing, changing,

or destroying sensitive information; extorting money from users; or interrupting normal

business processes” [13]. Today, there are as many protection tools as types of cyber-

attacks. However, the fast progress turns effective protection applications into deprecated

software as cyber attackers become more innovative. In this context IDS or Intrusion

Detection Systems becomes a useful and powerful tool.

IDS or Intrusion Detection System is a software application that monitors network

traffic looking for malicious activity. There are two main types of IDS: Signature-Based and

Anomaly Based. The Signature Based ones are a good option to detect known cyber-attacks

because they detect specific patterns or signatures in the malicious packets. However,

this IDS type has a bad performance with zero-day vulnerabilities. The Anomaly-Based

Intrusion Detection Systems base their behaviour in a set of rules that define the normal

activity of the network. Any event that differs from the normal activity is classified as a

potential attack. Once an attack is detected, IDS can act as a warning or actively modifying

the network configuration. The Anomaly Based IDS can detect zero-day attacks however,

the number of false positives is its biggest drawback. In this project, we focus on Anomaly

Based IDS since they can be based on Machine Learning models.

Machine Learning is a branch of Artificial Intelligence that computer systems use to

effectively perform a specific task without using explicit instructions, relying on patterns

and inference instead. The fact of not being based on explicit instructions makes Machine

Learning a versatile and powerful tool. It is especially helpful to solve unknown and complex

problems. That is why Machine Learning is applied to IDSs. Some IDSs base their behaviour

in a Machine Learning model. Models are made from large data collections, an algorithm
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and a training process. Once the model is trained, it can make predictions from new input

data.

The information needed to train IDS models comes from the packet captured from the

network. The network traffic is logged on the different machines it passes through. This

traffic generates large amounts of data that need to be processed. In order to train new

models, we need to distinguish benign from malicious flows in the logged data. Once the

model is trained, the IDS can predict benign and malicious packets simply monitoring the

network.

1.2 Motivation

There are several reasons that motivate the realization of this project. First of all, the

continuous growth of the Internet. Each day the number of users, data and applications

increase. Apart from that, the dangers of the network raise. The protection of data is a

continuous and highly valued labour that implies companies and scientific communities all

over the world. Every day, companies take cybersecurity more seriously and spend bigger

amounts of money on protection tools. According to the 2019 Official Anual Cybercrime

Report sponsored by Herjavec Group, cybercrime will cost the world 6 trillion $ annually

by 2021 [8]. In fact, the previous predictions made by this group have proven this trend.

In the same line as the previous point, the fast evolution of cyber-threats requires a fast

adaptation and creation of new defensive tools, even to unknown attacks. The cyber-threats

of tomorrow are unpredictable but we have to face them. Intrusion Detection Systems are

a good solution to this kind of problems.

Finally, there are not too many studies about Intrusion Detection Datasets in part

because the existing were practically obsolete. However, today we can collect immense

amounts of data what make possible to apply Data Mining and Machine Learning tech-

nologies. Furthermore, thanks to the big progress of computing capacities, the cost of these

technologies is much lower.

1.3 Project goals

This project is aimed to develop new and functional Machine Learning models able to

classify benign and malicious traffic. We can list the next main project goals:

• Train a wide range of models using different information and algorithms (Nearest

3



CHAPTER 1. INTRODUCTION

Neighbors Logistic Regression or Artificial Neural Network). We train an elevated

number of models with the objective of finding those with the best performance.

• Evaluate the set of solutions developed with different statistical scores and determine

the best models and algorithms for each attack type.

• Draw a set of conclusions about the utility of applying Machine Learning to Intrusion

Detection and the best solution for each cyberattack.

1.4 Structure of this document

This document is divided into six chapters:

Chapter 1. The first chapter gives a brief introduction, explaining the context in which

is situated the project subject. Furthermore, we explain the reasons that motivate this work

and project goals. Finally, we describe the document structure.

Chapter 2. In this chapter, we review the main technologies implied in the development

of this project with a special focus on the current picture of the machine learning applications

to Cybersecurity. We also give a short description of the Dataset used, the Anaconda

distribution and the Machine Learning algorithms.

Chapter 3. In this chapter, we carry out a deep description and analysis of the Dataset

used.

Chapter 4. In this chapter we describe the methodology which we have worked. We

explain the process of creating Machine Learning models, from the import of the Dataset

to the validation of the model.

Chapter 5. This chapter summarizes all the results obtained from training the Machine

Learning models.

Chapter 6. The last chapter explains the conclusions obtained from this project. We

also review the main lines to keep working on this subject.
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CHAPTER2
Enabling Technologies

This chapter reviews the main technologies implied in the development of this project.

Firstly, we explain the current picture of the machine learning applications to Cybersecu-

rity. Then, we analyze the Intrusion Detection Evaluation Dataset (CICIDS2017) provided

by the Canadian Institute for Cybersecurity (CIC) as well as the Python distribution used

to write the code, Anaconda. Finally, we describe the different algorithms used to train the

Machine Learning models.
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2.1 Introduction

The need to protect information due to its high value has led both scientific community and

companies to invest large amounts of money to improve protection measures of computers

networks. New technologies have arisen to solve these complex problems, such as Big Data

and Artificial Intelligence. These technologies have existed for a long time already. But

now, thanks to the significant progress of computing, Big Data and Artificial Intelligence

have meant a technological revolution.

In this chapter, we review the current scene of Cybersecurity. Furthermore, we explain

the main technologies and tools used in this project. In section 2.2, we review the current

situation of Cybersecurity and IDS analyzing the most popular IDSs and IPSs. In section

2.3, we review the Python distribution used to write the code, Anaconda, and its compo-

nents. Finally, in section 2.4, we explain the Machine Learning algorithms which we have

developed this work.

2.2 Cybersecurity and IDS

The Cybersecurity market is a business with a short existence but an expanding sector.

According to Gartner1, the Cybersecurity industry represented a global turnover of 62,540

million euros in 2015, a net profit up about 15% compared to the previous year [5].

Cybersecurity solutions are offered by many technology companies and each day this

number increase. The set of software tools and devices tended by the business is wide and

varied: Firewalls, Network Analysis, Vulnerability Scanners, Intrusion Detection Systems,

Access Control. . . The trend to join these devices in order to simplify networks architecture

result in Intrusion Prevention Systems. An IPS is a cybersecurity system designed to prevent

intrusions that acts as a firewall blocking malicious packets. The IPS bases his behaviour on

an Intrusion Detection System criteria. These devices can also act as a traditional firewall

based on static rules. The IPS is placed in the edge of the company network acting as

a gateway. All the inbound and outbound traffic passes through the IPS. Thus, the IPS

checks the packet flow protecting the local network from the rest of the world.

The commercial IPS are physical devices designed and optimized to protect corporate

networks. These tools are able to analyze large packet flows from some Gbps to hundred

Gbps. The most popular and biggest companies offer IPS as one of their key products.

These products are sold under the commercial name Next-Generation Intrusion Prevention

1Gartner: https://www.gartner.com/en
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System (NGIPS). Some of the most popular IPS are the next:

– Fortinet FortiGate IPS

– Forcepoint NGFW

– IBM QRadar

– Trend Micro TippingPoint

– Palo Alto Networks NGFW

– Cisco Firepower

These products have a wide range of characteristics depending on necessities. Their

two main features are the analyzed traffic volume and the available ports. The analyzed

bandwidth goes from hundred Mbps for most simple IPSs, up to 200 Gbps for the most

equipped ones. The number and type of ports are varied, normally IPSs include GE and

RJ45 connectors.

The price of IPSs is very varied depending on their characteristic, furthermore, most

cybersecurity and consultant companies rent the device for a period of time. The physical

device cost from some thousands of dollars for the basic ones (i.e. Cisco Firepower 21102)

to several hundred thousand dollars for the best equipped. The rent of these devices plus

protection services are in the same prices range crossing the million dollars for the most

expensive options (i.e. Fortinet FortiGate 7060E3). Here we can observe a comparative

analysis of some of these products by NSS Labs [10]

Thanks to the evolution and good performance of Machine Learning Algorithms and

Data Mining, these technologies have become a really useful tool used in Intrusion Preven-

tion Systems. ML and DM are really useful for anomaly detection. Plenty of studies about

applying these techniques have been made in the last years. For example, [6] shows how

to implement a Java-based IDS.

The software architecture under IDS is based on three main parts:

• Packet capturer: Able to capture all the flow packets of the network. For a simple

IDS, the packet captured can come from a mirroring port. However, for IPS all the

traffic must cross the device and no other path.

• Database: Usually a MySQL Database where packet flow information is stored. This

database can be also used to save alarms and logs.

2Cisco Firepower 2110: https://www.connection.com/product/

cisco-firepower-2110-ngfw-appliance-1ru/fpr2110-ngfw-k9/33873297
3Fortinet FortiGate 7060E: https://www.zones.com/site/product/index.html?id=

105244238
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• Intrusion Detector: The main actor of the IDS that implements the logic. The

detector is based on a set of rules that can be defined by a Machine Learning model.

Figure 2.1: Intrusion Detection System in a Corporate Network

There are some comparative studies about the existing software Intrusion Detection

Systems. In the next article [9], we can observe a comparison of most common IDSs such

as Bro, Snort, Network Flight Recorder (NFR), Suricata or The Dragon IDS. As we can

observe, most IDSs are signature based, only Bro (Zeek) is anomaly based. Signature based

IDSs are effective against known attacks, however, zero-day exploits are invisible to them.

To detect zero-day attacks we need an IDS based on anomalous behaviours.

2.3 Anaconda Distribution

Anaconda4 is a free open source Python/R distribution oriented to Machine Learning and

Data Science. This distribution allows to train and develop Machine Learning models. In

order to manage packets and libraries, Anaconda uses Conda. Conda allows to easily install

different packets and libraries from repositories. In the development of this project, we use

the next software packages for Anaconda:

4Anaconda Distribution: https://www.anaconda.com/distribution/
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2.3.1 Jupyter Notebooks

Jupyter5 is a web application that allows to write code and plain text and see visualizations

in a web browser. The code is written and executed in short blocks and the output is

directly shown inline. Jupyter supports more than 40 programming languages including

Python and R. It is also oriented to Machine Learning and Data Mining with the ability to

manage large amounts of data.

2.3.2 Pandas

Pandas6 is an open source Python Data Analysis Library. This library is designed to

analyze and model data with good performance and productivity. The DataFrame object

is the main element where Datasets are loaded. The DataFrame can be created by reading

from other data structures such as CSV, Microsoft Excell and text files or SQL databases.

Once imported, it can be modified, sliced, merged and joined with other datasets, grouped

by columns and rows allowing to easily and quickly reshape the data. Pandas also includes

statistical tools in order to acquire information from the DataFrame.

2.3.3 Scikit-learn

Scikit-learn7 is an open source Python library oriented to Machine Learning. This library

includes several classification and regression algorithms such as Nearest Neighbors, Naive

Bayes, Gaussian Process Regression and Decision Trees. Furthermore, this library gives

some useful tools for preprocessing data, dimensionally reduction, and model selection,

like Feature Selection, Cross Validation or Stratified Selection. Scikit-learn is designed to

interoperate with SciPy.

2.3.4 SciPy and NumPy

SciPy8 is a python eco-system oriented to scientific computing. One of its core packages

used for this project is NumPy. NumPy9 is a mathematical library designed and optimized

to work with high dimensional arrays. That is why this library is really useful for Machine

Learning applications.

5Jupyter Notebooks: https://jupyter.org/
6Pandas: https://pandas.pydata.org/
7Scikit-learn: https://scikit-learn.org/stable/
8SciPy: https://www.scipy.org/
9NumPy: http://www.numpy.org/
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2.4 Machine Learning Algorithms

The algorithms used in this project to train models are the most common applied up-

to-day. In this section, we give a short explanation of the different Machine Learning

Algorithms. Normally, these algorithms are classified into three different groups: supervised,

unsupervised and semi-supervised. For this project, we use the supervised methods due to

the Dataset structure. Supervised algorithms are trained with two data groups, the input

X and the output Y. The target of the training is to find the best approach to the function

f that meets Y = f (X).

2.4.1 k-Nearest Neighbors Algorithm

The k-Nearest Neighbors is a supervised classification learning method. This algorithm is

based on obtaining the k nearest points to the new input that has to be classified. The input

is classified with the same label of the k majority nearest points. Each row of the Dataset

represents a point, and each cell or feature a coordinate of the position vector. In order to

get the distance between points, we can use different algorithms, Euclidean Distance is the

most common. Besides its apparent simplicity, the k-NN performance is quite good even

when the points distribution is very irregular. However, when the volume of the Dataset

growth, the computational cost increases considerably, that is the main drawback of this

algorithm.

2.4.2 Logistic Regression Algorithm

The Logistic Regression Algorithm is another supervised classification learning method

designed for binary classification. Regression is a statistical process that estimates the

relationship between the independent variables and the dependent variable. The logistic

function or sigmoid assigns the odds of belonging to a class to the input data. Sigmoid is

the reverse function of the logit function. The logit function is the logarithm of the odds of

belonging to a class:

logit(pi) = ln

(
pi

1 − pi

)
= β0 + β1 · x1i + ...+ βk · xki

Where pi is the probability of belonging to a group. As we can observe the logit function

can be approximated to a linear function. That is why Logistic Regression is a linear model.

The objective of the algorithm is to find the values of β0, ..., βk. This algorithm draws the

k dimensional plane that better separates the elements of the binary class, where k is the

number of independent variables.
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2.4.3 Naive Bayes Algorithm

The Naive Bayes is a supervised classification learning algorithm based on the Bayes theo-

rem. The Bayes Theorem relates the probability of an event with the occurrence of another

related event. This theorem is expressed mathematically as follows:

p(C/F1, ..., Fn) = p(C)·p(F1,...,Fn/C)
p(F1,...,Fn)

Where the conditional probability P(C/F1, ...., Fn) is the probability of occurring C

(the class) given that F1, ..., Fn has occurred and F1, ..., Fn are the features of the input

data. If the volume of data increase, the computational cost growths exponentially, that is

why this theorem is simplified under above the naive or independence assumption:

p(C/F1, ..., Fn) = 1
Z · p(C)

n∏
i=1

p(Fi/C)

Where Z is a constant value which depends on F1, ..., Fn.

2.4.4 Multilayer Perceptron Algorithm

The Multilayer Perceptron or MLP is a class of Artificial Neural Network. Artificial Neural

Networks are a computational model inspired by its biological analogous. A Neural Network

is based in a set of neurons interconnected through links. Neurons are grouped in layers.

The input data are introduced into the first layer and processed by neurons. Then, the

modified data goes to the next layer. The information goes through the Neural Network

generating at the output layer an outcome as a result. The layers between the input and

the output layers are named hidden.

Figure 2.2: Neural Network Architecture [2]
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Each neuron has a number of entries. The information that gets in the neuron comes

from the input data or from the previous layer. The value of each input is multiplied by a

weight, then, the weighted inputs are added. Finally, a function is applied to the weighted

sum. This function, also named activation function, modifies and limits the value giving as

result an output. The outcome is sent to the next group of neurons.

Figure 2.3: Operation of a Neuron [2]

Neurons have the ability to change the input weights. This way the Neural Network

can learn if we train it with a set of input data and the expected output. This process is

named backpropagation. Herein lies the power of Neural Networks and implies that it does

not need to be preprogrammed to operate correctly.

The Multilayer Perceptron consists of at least three neural layers (input, hidden and

output layer). It is designed to supervised learning with backpropagation training. With a

labelled dataset we can train Neural Networks to predict the label of new inputs. In this

project, we use four different activation function: Identity function, Logistic function or

Sigmoid, Hyperbolic tangent and Rectified Linear unit function.
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CHAPTER3
Dataset Analysis

In this chapter, we analyze in depth the Dataset used in this project. This is the most

important element when it comes to training Machine Learning Models. This Dataset is

the Intrusion Detection Evaluation Dataset [3] (CICIDS2017) provided by the Canadian

Institute for Cybersecurity1 (CIC). Additionally, we review the different attacks performed

and how they are structured. Finally, we carry out a exploratory data analysis.

1Canadian Institute for Cybersecurity: https://www.unb.ca/cic/about/index.html
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3.1 Introduction

The data used to train models in Machine Learning processes is the most important element

because algorithms learn from the available information. Cybersecurity Datasets designed

to detect anomalous behaviours are elaborated with the packets captured from the network

traffic flow.

There are two types or levels of traffic information abstraction: Packet level and flow

level. The packet level or first level collects every packet interchanged between machines.

The flow level or second level, defined by Cisco as Netflow is a network protocol that provides

the ability to collect IP network traffic as it enters or exits an interface [15]. Netflow defines

a flow as a sequence of packets that have the same seven attributes: ingress interface, source

IP address, destination IP address, IP protocol, source port, destination port, and IP type

of service.

There are only a few Datasets for Cybersecurity purpose and most of them are outdated

or its data volume is too small, so they are practically useless. However, the Canadian

Institute for Cybersecurity developed in 2017 a Dataset designed to train Intrusion Detection

Systems Models.

The Canadian Institute for Cybersecurity2 (CIC) is a multidisciplinary institution ded-

icated to research, development and divulgation in social sciences, business, computer sci-

ence, engineering, law and science. The institute is part of the University of New Brunswick.

In this project, we use the Intrusion Detection Evaluation Dataset (CICIDS2017) [3] pro-

vided by the CIC.

In this chapter, we review the Dataset used in this project. In section 3.2, we describe

how the Dataset is generated and the information collected. In section 3.3, we explain the

Dataset structure. Finally, in section 3.4, we perform an exploratory data analysis with the

purpose of understanding the data and finding the most relevant information. Due to the

limited space, we only show the analysis of one attack type. In Appendix C we show the

list of features collected from the traffic flow.

3.2 Dataset Description

As we mentioned before, the Dataset used for this project is the Intrusion Detection Eval-

uation Dataset [3] (CICIDS2017). This flow level Dataset consists of benign traffic and the

most common actual cyber attacks.

2Canadian Institute for Cybersecurity: https://www.unb.ca/cic/about/index.html

14

https://www.unb.ca/cic/about/index.html


3.3. DATASET STRUCTURE

The traffic is captured and labelled with CICFlowMeter, a network traffic biflow gen-

erator and analyzer developed by the Canadian Insitute for Cybersecurity. This analyzer

logs all the information of every packet flow.

The human traffic, in order to generate realistic behaviours, is simulated according to

Gharib et al. 2016 [7]. The Dataset collects the traffic generated by the abstract behaviour

of 25 humans.

In order to create a real network with real attacks, the CIC Dataset elaboration is based

on the next criteria:

• Complete networking configuration: with Firewalls, Routers, Switches and Modems

and three different Operating Systems, Ubuntu, Windows and OS X.

• Complete traffic, interactions, and protocols: 12 machines in the victim network

in two different LANs with Internet access. The use of the most common protocols

such as HTTP, HTTPS, FTP, SSH, and email protocols.

• Complete capture: All flow packets are captured by using mirroring ports.

• Labelled Dataset: Every flow is labelled with Bening or Attack type.

• Attack Diversity: With the most common actual cyber attacks, Web-based, Brute

force, DoS, DDoS, Infiltration, Bot and Port Scan.

3.3 Dataset Structure

The collected information covers a period of time of a working week (from Monday to

Friday). The capture gathers the normal activity of 25 workers plus the different attacks.

The structure of the attacks performed is the next:

• Monday:

– Normal Activity

• Tuesday:

– Brute Force attacks:

∗ FTP-Patator (9:20–10:20 a.m.)

∗ SSH-Patator (14:00–15:00 p.m.)

– Normal Activity.
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• Wednesday:

– DoS / DDoS attacks:

∗ DoS slowloris (9:47 – 10:10 a.m.)

∗ DoS Slowhttptest (10:14 – 10:35 a.m.)

∗ DoS Hulk (10:43 – 11 a.m.)

∗ DoS GoldenEye (11:10 – 11:23 a.m.)

– Normal Activity.

• Thursday:

– Web attacks:

∗ Web Attack – Brute Force (9:20 – 10 a.m.)

∗ Web Attack – XSS (10:15 – 10:35 a.m.)

∗ Web Attack – Sql Injection (10:40 – 10:42 a.m.)

– Infiltration and Dropbox download:

∗ Meta exploit Win Vista (14:19 and 14:20-14:21 p.m.) and (14:33 -14:35)

∗ Infiltration – Cool disk – MAC (14:53 p.m. – 15:00 p.m.)

∗ Win Vista (15:04 – 15:45 p.m.)

– Normal Activity.

• Friday:

– Botnet attacks:

∗ Botnet ARES (10:02 a.m. – 11:02 a.m.)

– PortScan (Nmap):

∗ Firewall Rules on (13:55–13:57, 13:58–14:00, 14:01–14:04, 14:05–14:07, 14:08-

14:10, 14:11–14:13, 14:14–14:16, 14:17–14:19, 14:20–14:21, 14:22–14:24, 14:33–14:33,

14:35-14:35)

∗ Firewall rules off (14:51-14:53, 14:54-14:56, 14:57-14:59, 15:00-15:02, 15:03-

15:05, 15:06-15:07, 15:08-15:10, 15:11-15:12, 15:13-15:15, 15:16-15:18, 15:19-

15:21, 15:22-15:24, 15:25-15:25, 15:26-15:27, 15:28-15:29)

– DoS / DDoS attacks:

∗ DDoS LOIT (15:56 – 16:16)

– Normal Activity.

The information generated is saved in eight different files, one per attack. Each file is a

set of rows and columns filled with values. A row represents a flow. A flow as we already
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defined is a sequence of packets that have the same seven attributes: ingress interface,

source IP address, destination IP address, IP protocol, source port, destination port, and

IP type of service. It means every interaction between two computers in order to carry

out a service. Each column represents an attribute of a flow. The complete features list is

displayed in Appendix C.

The files are CSV format which implies they are ready to be imported by the Pandas

Library. The dataset is made up of eight files:

– Monday-WorkingHours-Benign

– Tuesday-WorkingHours-BruteForce

– Wednesday-WorkingHours-DDos

– Thursday-WorkingHours-Afternoon-Infiltration

– Thursday-WorkingHours-Morning-WebAttacks

– Friday-WorkingHours-Morning-Botnet

– Friday-WorkingHours-Afternoon-DDos

– Friday-WorkingHours-Afternoon-PortScan

3.4 Exploratory Data Analysis

Collecting information from a Dataset before the training process is especially helpful be-

cause it helps us to understand the Dataset. This task also allows us to find the most

relevant features, redundant information and patterns. With this analysis, we can balance

the Dataset properly. Furthermore, with this information, we can fix and correct missed

and wrong values.

To achieve this, we select the most correlated features to the label. Then we group rows

by variables and label. Furthermore, we plot histograms for those features with a wide

range of values or continuous values This way, we can see the information distribution.

In this document, we only show the exploratory data analysis for only one Dataset due to

the limited space. We analyze the Thursday-WorkingHours-Morning-WebAttacks Dataset

with the purpose of obtaining information before preprocessing it.

First of all, we obtain the number of rows, this Dataset has originally the next number

of entries or flows:
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Label Number of rows

Benign 168.186

Web Attack 2.180

Now, we group the rows by Destination Port Number and Label. We only display the

Destination Ports of Benign flows that appear more than 200 times due to the limmited

space:

Label Destination Port Number of rows

Benign 22 1035

53 76.545

80 18.682

88 514

123 3.746

137 689

443 35.833

Web Attack 80 2.180

As we can observe, all Web Attacks are directed to port 80. Therefore we can select only

those flows directed to port 80. This way we simplify the Dataset without losing relevant

information. Now, the dataset has the next number of flows:

Label Destination Port Number of rows

Benign 80 18.682

Web Attack 80 2.180

Next, we analyze the most correlated features to the Label. We display the distribution

of benign and malicious flows depending on each variable. The distribution of variables

with discrete values is shown in a table (PSH Flag Count, Down/Up Ratio, Min Seg Size

Forward). Those variables with continuous or a wide range of possible values are displayed

in histograms (Init Win Bytes Backward, Init Win Bytes Forward):

• Init Win Bytes Backward: The number of bytes sent in the initial window in the
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backward direction. It is the most relevant feature, next we can see the distribution

of benign and malicious flows depending on Init Win Bytes Backward value:

Figure 3.1: Init Win Bytes Backward Histogram

• PSH Flag Count: The number of packets with PUSH flag. In the next table we

can see the PSH Flag Count distribution related to the Label:

Label PSH Flag Count Number of rows

Benign 0 6.051

1 12.631

Web Attack 0 175

1 2.005

• Init Win Bytes Forward: The number of bytes sent in the initial window in the

forward direction. Next we display its histogram:

Figure 3.2: Init Win Bytes Forward Histogram
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• Down/Up Ratio: Download and upload ratio. This ratio is rounded to the unit.

Next, we show in a table the distribution of benign and malicious flows related to

Down/Up Ratio:

Label Down/Up Ratio Number of rows

Benign 0 11.241

1 7.348

2 89

Web Attack 0 1.942

1 238

• Min Seg Size Forward: Minimum segment size observed in the forward direction.

In the next table, we display the number of flows grouped by Min Seg Size Forward

value:

Label PSH Flag Count Number of rows

Benign 20 12.916

28 13

32 5.747

40 6

Web Attack 32 2.180

As we can observe with these features we gather some interesting information. Grouping

rows by variables and the label bring useful patterns and distributions. With the purpose of

balancing the Dataset, we can delete irrelevant information based on the Destination Port.

As we expected, all malicious flows are directed to port number 80 (HTTP Port), therefore,

we can delete the flow directed to other ports. This way we also simplify the bandwidth

analyzed directing to the classifier only the HTTP traffic.

We have analyzed most correlated features to the label. These variables are the most

useful in the classification task. In fact, with only Init Win Bytes Backward we can improve

significantly the accuracy of the classifier due to the separated distribution of benign and

malicious flows. The rest of the features also show a high polarization depending on the

label.
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CHAPTER4
Methodology

In this chapter, we explain the work methodology followed to develop this project. We

explain the main phases in which is divided a normal Machine Learning research. First

of all, we outline the data import and preprocessing. Once the data is ready, we carry out

the training process with different algorithms and configurations. Finally, we explain the

different metrics used to evaluate models.
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4.1 Introduction

The methodology followed in a Machine Learning research is divided into three main parts:

Preprocessing, Training and Evaluation. The first part is the preparation of data for the

training process. It implies that data must be correct and appropriate for the training

algorithms. Next, the training process consists of the development of Machine Learning

models with different algorithms and configurations in order to generate a big range of

prototypes. It means that the training process is iterative. Once we get enough models, we

must evaluate them with the goal of obtaining the best configuration for each one and the

model that best solves the problem.

In section 4.2, we describe how to prepare the original information for training. In

section 4.3, we explain how we reduce the volume of data by selecting only the most relevant

variables. In section 4.4, we expose the methodology followed to train models. Then, in

section 4.5 we explain the scores used to rate the model performance.

4.2 Preprocessing

Preprocessing as we said before is the first part of any Machine Learning project. We

must prepare the data for training. Datasets usually have missed or incorrect values. We

need to check that all data are appropriate for the training algorithms. With the Intrusion

Detection Evaluation Dataset (CICIDS2017) we faced four preprocessing tasks:

• Filling empty or null cells: Although this is an uncommon incident, some cells

of the Dataset are empty. If a cell is empty, we cannot use that row in the training

process. In these cases, we fill the empty feature with the median obtained from the

rest of the elements. By doing so, we do not need to delete an entire flow, but the

row is valid to train with the empty cell as blank information.

• Fixing object types: Variation of objects types is another issue found in the original

data. More than an error in the original information, this is due to the combination of

numbers and words in the same column or feature. This problem is solved by setting

a single object type for the column. Thus we need to change the elements or cells

with a different object type to the chosen type, usually numeric (float type).

• Balancing: Some Datasets are unbalanced. It means that there is a big difference

between the number of elements of each class. Next, we describe the actions carried

out in the Datasets with the objective of balancing benign and malicious flows:
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4.2. PREPROCESSING

– Friday-WorkingHours-Afternoon-DDos Dataset: This Dataset is overall

balanced, the number of flows of each class is the next:

∗ Benign 97.718

∗ DDoS 128.027

– Friday-WorkingHours-Afternoon-PortScan Dataset: The PortScan Dataset

is also balanced. Next, we show the number of malicious and benign flows:

∗ Benign 127.537

∗ PortScan 158.930

– Thursday-WorkingHours-Afternoon-Infiltration Dataset: The Infiltra-

tion record has only 36 Attack flows and 288.566 Benign. However, there is a

simple solution to solve this difference. Due to all Infiltration attacks are directed

to 444 port, we delete all flows which their Destination Port is different from port

444. This way, the Dataset reads as follows:

∗ Benign: 98

∗ Infiltration: 36

– Friday-WorkingHours-Morning-Botnet Dataset: This Dataset has origi-

nally: 189.067 Benign flows and 1.966 Bot flows. However, in this case, there is

no feature repeated in the Bot flows. Therefore, in order to balance the Dataset,

we randomly select two thousand Bening rows. This way, the final Dataset has

the next number of rows:

∗ Benign: 2.000

∗ Bot: 1.966

– Thursday-WorkingHours-Morning-WebAttacks Dataset: This Dataset

has originally 168.186 Benign flows and 2.180 Web Attack flows. In order to

balance it, we have followed both strategies described in the previous cases.

First, we choose only the flows which their Destination Port is 80 due to all Web

Attacks are directed to that port. Next, as the Dataset still has more benign

than malicious communications, we randomly select a number of Benign rows

that matches with the number of Web Attacks. By doing this, the Dataset reads

as follows:

∗ Benign: 2.200

∗ Web Attack: 2.180

– Tuesday-WorkingHours-BruteForce Dataset: This Dataset has 189.890

Benign flows and 10.109 malicious flows (FTP-Patator and SSH-Patator). The

procedure followed is the same as the previous Dataset. We choose only the
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flows directed to 21 and 22 Ports. There are 12.122 flows directed to those ports.

Next, to balance the final Dataset, we select only 2.000 malicious flows.

∗ Benign: 2.014

∗ BruteForce: 2.000

• Checking: Finally, once we have filled empty cells, corrected object types and bal-

anced the dataset, we check that the data is appropriate to train if so, we go to the

next phase.

4.3 Dimensionality Reduction

Before we start the training process, we have to choose which features from the original

data we will use. In many Machine Learning projects, the amount of data and variables

is immense. This could cause two issues. Firstly, the computational cost is too high and

secondly, some variables could introduce noise or confusion in the classifier. In order to avoid

these problems, the number of features selected is reduced. We choose the most relevant

features and discard those that do not have information. In one hand, the chosen variables

are highly correlated with the Label and in the other hand, the discarded variables are

almost constant or highly correlated with other feature (it means that two variables have

the same information).

Scikit-learn library has a feature selection or dimensionality reduction utility. We use

the SelectKBest tool from this module. The SelectKBest utility chooses the k most relevant

variables from a Dataset based on univariate statistical tests.

4.4 Training

The training process is the longest in terms of time. It consists of creating a set of models

with different algorithms in order to find the best configuration for each attack type. The

number of models trained in this project is about 25 for each algorithm configuration. It

means a total of 1350 models. A model is a classifier based on a mathematical representation

of the problem. This set of mathematical relations is generated processing the original data

with a machine learning algorithm.
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4.4.1 K-fold cross-validation

Before we start training, we have to split the Dataset into training and test parts. This

division is done with the objective of training and test data are different. If test and training

information are equal, the model would know the Label of test input a priori. The training

segment is usually between 60 and 90 per cent of the Dataset and the test section is between

40 and 10 per cent of the data respectively. In our project, the training set is 90 per cent

and the test set is 10 per cent of the original Dataset.

If we train and validate with only one division we can obtain an incorrect result due

to the distribution of data in the training and test sections. To avoid this problem we use

cross-validation. Cross-validation process consists of the next 5 steps:

• The Dataset is split into n parts also known as folds.

• Every iteration a model is generated with n - 1 sections of the original data

• The model is evaluated with the test part or remaining section.

• The training and test steps are repeated n times with the next fold.

• Once all iterations have finished, the average performance scores of every iteration are

calculated.

Figure 4.1: Diagram of K-Fold cross-validation [4]

In spite of the number of iterations or folds is not a standardized parameter, the 10 fold

cross validation is the most commonly used [11]. In our project, we use the StratifiedKFold

utility from Scikit-learn as cross-validator with 10 folds.
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4.4.2 Algorithm configuration

In order to generate a wide range of models, we use four different algorithms with different

configurations. The algorithms used to train the models are the next:

• k-Nearest Neighbors: This algorithm as we described in section 2.4.1, obtains the

k-nearest points to the new element to be classified. These elements are labelled with

the same label of the k majority nearest points. The number of neighbours used is

3, 5 and 10. We use the sklearn.neighbors.KNeighborsClassifier to train models with

the k-NN algorithm.

• Logistic Regression: This algorithm described in section 2.4.2, assigns the odds

of belonging a class based on a logistic function or sigmoid after a linear equation is

applied to the input data. The target of the training is to find the best parameters of

the linear equation. We use the sklearn.linear model.LogisticRegression to apply this

algorithm.

• Naive Bayes: As we explained in section 2.4.3, this algorithm is based on the Bayes

theorem. To train models with this algorithm we use the sklearn.naive bayes.GaussianNB

module.

• Multilayer Perceptron: This algorithm was described in section 2.4.4. The Multi-

layer Perceptron is a Neural Network that has the ability to learn. It is possible thanks

to the Neural Network changes its configuration. This adaptation is produced by the

processing of input data and its expected result. The activation function defines the

output of a neuron given an input. In our project we use four different activation

functions. Next, we describe the different activation functions where x is the value at

the neuron input:

– Identity function: Is the function that returns as result the same value as the

input. The equation is:

f(x) = x
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Figure 4.2: Identity function [1]

– Logistic function or sigmoid: The general equation of the logistic function

is:

f(x) = σ(x) =
1

1 + e−x

Figure 4.3: Logistic function or sigmoid [1]

– Hyperbolic tangent: The mathematical expression of hyperbolic tangent is:

f(x) = tanh(x) =
ex − e−x

ex + e−x

Figure 4.4: Hyperbolic tangent function [1]

27



CHAPTER 4. METHODOLOGY

– Rectified Linear unit: This function returns the positive part of the input:

f(x) =


0 for x < 0

x for x ≥ 0



Figure 4.5: Rectified Linear function [1]

4.4.3 Feature selection

With the objective of finding the best models, we generate them with a wide range of

variables using the SelectKBest described previously. In order to find the most proper

number of features, we divide the training process into two phases.

• In the first part, we generate a model for each set of variables, from 5 to 75, five-by-

five. This allows us to find the features range where the algorithm reaches its best

result.

• Once located, we train again around the maximum discovered before with one variable

jumps. This way we find the number of features with the best performance for each

algorithm.

4.5 Evaluation

The evaluation of the model performance is done with the test part. This set is passed to

the model as input data without the Label. The model classifies every input or row into

Benign or Attack. This classification is based on the logic learnt in the training process.

Once the model has labelled the test part the result is checked with the original Labelled

information. The model performance is evaluated with four different metrics based on the

next statistical results:
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• True Positive (TP): The element is correctly identified.

• True Negative (TN): The element is correctly rejected

• False Positive (FP): The element is incorrectly identified

• False Negative (FN): The element is incorrectly rejected.

Note that in a binary classification these statistical measures are cross-connected:

Figure 4.6: Statistical results

The metrics used to evaluate the model performance are based on the statistical results

previously described. In our project we employ the next metrics:

• Accuracy: Accuracy is defined as the sum of true positives plus true negative divided

by the total population. Intuitively is the number of well-predicted elements divided

by the number of elements:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn

• Precision or True Positive Rate: Precision is calculated as the number of true

positives divided by true positives plus false positives. In other words, the number of

well-predicted elements divided by the total predicted elements:

Precision =
tp

tp+ fp
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• Recall: Recall is described as the number of true positives divided by the sum of true

positives plus false negative. It means the number of well-identified elements divided

by the total positive elements:

Recall =
tp

tp+ fn

• F1 Score: It is a statistical measure that combines both precision and recall. The

f1 score is defined as the harmonic average of precision and recall. It is calculated as

follows:

f1 = 2 · Precision ·Recall
Precision+Recall

In our model evaluation, we use the f1 score as the most significant rating. We try to

optimize the model in order to get the best f1 score, where 1 is the best value and 0 the

worst.

Once training has finished, we obtain a visual representation of all scores. This graphic

representation shows in a spider chart the model scores (precision, recall and f1-score) of

each algorithm configuration and the number of features used. Then, we compare the best

models of each algorithm based on the number of variables and the f1-score achieved. Then

we show in a table all scores obtained by the best models and finally we select the best

algorithm. A deep analysis of the models can be found in Appendix C.

The training process requires a long computing time. It takes from several minutes for

simple Datasets to hours for long Datasets to train one model. The algorithm used also has

a big impact on computing time. While the fastest algorithms are Logistic Regression and

Naive Bayes, the k-Nearest Neighbors and Multilayer Perceptron are heavier. That is why

we save the models, scores, configuration and graphic representation in order to optimize

and save time.
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CHAPTER5
Results

In this chapter, we show the results obtained in this project. For each attack type (Dataset)

we have trained a wide collection of models. Once the training process is finished, we eval-

uate the models following the methodology described before. In this section, we show the

configuration with which the algorithm performance reaches its best values. Furthermore,

we display the most relevant variables for each attack type.
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5.1 Introduction

In this chapter, we show the results obtained in this project. These results are the con-

sequence of training and evaluating a broad set of models. We have developed classifiers

able to detect benign and malicious flows. The malicious flows are generated by the attacks

performed and collected in the Datasets: DDoS, Port Scan, Infiltration, Botnet, Web At-

tacks and Brute Force. As we described in chapter 4, we generate a wide range of models

in the training process with the purpose of finding the best algorithm configuration. Each

configuration breeds a different model. Next, we describe the set of algorithm configurations

used depending on two parameters:

• Number of features: The number of variables used for training is determined in

two phases:

– Firstly, we generate a model for each set of variables, from 5 to 75, five-by-five.

This way, we locate the range of features where the algorithm reaches its best

performance.

– Next, we train again around the maximum discovered before with one variable

jumps. This allows us to find the number of features where the algorithm obtains

the best scores.

The features are selected with the SelectKBest. This function is based on the corre-

lation between the variables and the Label. It means that the number of features is

selected in the same order for each attack type regardless of the algorithm used.

• Algorithm parameters: In this project, we use four algorithms (k-Nearest Neigh-

bors, Logistic Regression, Gaussian Naive Bayes and Multilayer Perceptron). K-

Nearest Neighbors and Multilayer Perceptron have one parameter to be adjusted. We

have to determine the number of neighbours in the k-NN algorithm. In our project, we

train with 3,5 and 10 neighbours. In MLP we have to choose the activation function.

We use four different activation functions: Identity function, Sigmoid, Hyperbolic

tangent and Rectified Linear unit. These two attributes are applied to every set of

variables. This way, the number of combinations is multiplied.

We have trained an overall of 1350 models, covering this way the entire spectrum of

information. In this chapter, we only show the sets with the best performance based on the

f1-score and the number of features used. In Appendix D we provide a deeper performance

analysis of the models developed. Next, we stipulate which model is the best and the list

of most important features. Finally, we draw a short conclusion.
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5.2 DDoS

DoS or Denial of Service is a cyber-attack directed to a computer or computer network

in which the attacker tries to deny a service or a resource in the targeted network. This

way, other users can not access the service. This attack is typically executed performing

an elevated number of requests to the committed server. This causes the attacked network

failure because of the high bandwidth consumed or the committed computer overload. Thus,

the resource or service is denied.

DDoS or Distributed Denial of Service is a DoS attack type characterized by the number

of malicious computers implied. In Distributed DoS, the requests directed to the assaulted

network came from different computers. These machines also called bots are usually infected

by the original attacker. A DDoS is harder to defend because of the elevated number of

malicious computers implied.

5.2.1 Results

The models developed in this project have obtained the performance described below de-

tecting DDoS attacks.

• k-Nearest Neighbors: K-NN algorithm algorithm reaches its best performance with

3 neighbours and 12 features.

• Logistic Regression: The best configuration for Logistic Regression algorithm is

using 6 variables.

• Gaussian Naive Bayes: Gaussian Naive Bayes algorithm obtains its best scores

with 6 features.

• Multilayer Perceptron: The best configuration for Multilayer Perceptron algorithm

is using 6 variables with Logistic activation function.

The next graphic representation compares the different algorithms performance using

its best configuration. We display the f1-score obtained and the number of features needed

to reach that score:
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Figure 5.1: DDoS Algorithm Performance Comparative

Down below, we show a comparative table with the best rating obtained for each algo-

rithm. The displayed scores are Accuracy, Precision, Recall and f1-score. In addition, the

number of features to reach those scores is also shown.

Algorithm Features Accuracy Precision Recall f1-score

k-NN 12 0.998 (+/- 0.002) 0.998 (+/- 0.002) 0.998 (+/- 0.002) 0.998 (+/- 0.002)

LR 6 0.96 (+/- 0.04) 0.96 (+/- 0.04) 0.96 (+/- 0.04) 0.96 (+/- 0.04)

GNB 6 0.93 (+/- 0.09) 0.94 (+/- 0.07) 0.93 (+/- 0.09) 0.93 (+/- 0.09)

MLP 6 0.97 (+/- 0.15) 0.97 (+/- 0.10) 0.97 (+/- 0.15) 0.96 (+/- 0.17)

Finally, we show the list of 10 most relevant Features in DDos detection:

– Destination Port

– Total Length of Fwd Packets

– Fwd Packet Length Max

– Bwd Packet Length Max

– Bwd Packet Length Min

– Bwd IAT Total

– Bwd IAT Std

– Bwd IAT Max

– Min Packet Length

– Max Packet Length
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5.2.2 Conclusions

The best algorithm detecting DDoS attacks is the k-Nearest Neighbors using only 12 features

with 0.998 points in f1-score and an accuracy of 99.8%. This is a great performance with a

ratio of only 0.2% of false alarms plus undetected malicious flows.

It is important to highlight that destination port and packet size (Total Length of Fwd

Packets, Fwd Packet Length Max, Bwd Packet Length Max. . . ) are as expected the most

important information detecting DDoS attacks.

5.3 Port Scan

A Port Scan is a cyber-attack whose purpose is to find vulnerable ports in the committed

computer. With the purpose of discovering exploitable services running on opened ports,

the attacker scans the largest possible number of ports. The scanning strategies are varied

because of the elevated number of ports, 65536. Most common services are between port 0

and 1023.

Once the scan is completed, the attacker obtains a list of analyzed ports and their state

(opened or closed). An opened port has a service running on it that can be vulnerable. Port

Scan attacks are usually directed to a computer network with the purpose of analyzing an

elevated number of computers.

5.3.1 Results

The models developed in this project have obtained the performance described below de-

tecting Port Scan attacks.

• k-Nearest Neighbors: K-NN algorithm algorithm reaches its best performance with

3 neighbours and 4 features.

• Logistic Regression: The best configuration for Logistic Regression algorithm is

using 15 variables.

• Gaussian Naive Bayes: Gaussian Naive Bayes algorithm obtains its best scores

with 12 features.

• Multilayer Perceptron: The best configuration for Multilayer Perceptron algorithm

is using 42 variables with Rectified Linear unit activation function.
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The next graphic representation compares the different algorithms performance using

its best configuration. We display the f1-score obtained and the number of features needed

to reach that score.

Figure 5.2: PortScan Algorithm Performance Comparative

Next, we show a comparative table with the best rating obtained for each algorithm.

The displayed scores are Accuracy, Precision, Recall and f1-score. In addition, the number

of features to reach those scores is also shown.

Algorithm Features Accuracy Precision Recall f1-score

k-NN 4 0.995 (+/- 0.003) 0.995 (+/- 0.003) 0.995 (+/- 0.003) 0.995 (+/- 0.003)

LR 15 0.987 (+/- 0.016) 0.987 (+/- 0.015) 0.987 (+/- 0.016) 0.987 (+/- 0.016)

GNB 12 0.993 (+/- 0.007) 0.993 (+/- 0.007) 0.993 (+/- 0.006) 0.993 (+/- 0.007)

MLP 42 0.997 (+/- 0.003) 0.997 (+/- 0.003) 0.997 (+/- 0.003) 0.997 (+/- 0.003)

Finally, we show the list of 10 most relevant Features in Port Scan flows detection:
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– Fwd Packet Length Min

– Bwd Packet Length Min

– Bwd Packet Length Mean

– Min Packet Length

– Packet Length Mean

– PSH Flag Count

– ACK Flag Count

– Average Packet Size

– Avg Bwd Segment Size

– Min Seg Size Forward

5.3.2 Conclusions

The best algorithm detecting Port Scan flows is Multilayer Perceptron with Rectified Linear

unit activation function, however, the number of features required to reach those scores is

too elevated, 42. However, k-Nearest Neighbors obtains a similar rating (f1-score of 0.995

and 99,5% of Accuracy) with a much lower number of features, only 4. Therefore, k-NN

using 3 neighbors is the best algorithm detecting Port Scan attacks.

In this case, the size of interchanged packet (Fwd and Bwd Packet Length Min, Bwd

Packet Length Mean, Min Packet Length...) is the most useful information.

5.4 Infiltration

Infiltration attacks consist of sending malicious files via email to the target computer. This

file contains an application that exploits a vulnerability of the system. If the victim executes

the file, a backdoor is opened and the attacker obtains access to the committed computer

and its network.

5.4.1 Results

In our Infiltration Dataset, we have almost 300.000 flows, however, only 36 are malicious

flows. The limited number of infiltration flows makes difficult to detect them. The models

developed have obtained the performance described below detecting Infiltration attacks.

• k-Nearest Neighbors: K-NN algorithm algorithm reaches its best performance with

3 neighbours and 5 features.

• Logistic Regression: The best configuration for Logistic Regression algorithm is

using 36 variables.

• Gaussian Naive Bayes: Gaussian Naive Bayes algorithm obtains its best scores

with 38 features.
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• Multilayer Perceptron: The best configuration for Multilayer Perceptron algorithm

is using 51 variables with Logistic activation function.

The next graphic representation compares the different algorithms performance using

its best configuration. We display the f1-score obtained and the number of features needed

to reach that score:

Figure 5.3: Infiltration Algorithm Performance Comparative

Down below, we show a comparative table with the best rating obtained for each algo-

rithm. The displayed scores are Accuracy, Precision, Recall and f1-score. In addition, the

number of features to reach those scores is also shown.

Algorithm Features Accuracy Precision Recall f1-score

k-NN 5 0.93 (+/- 0.11) 0.94 (+/- 0.10) 0.93 (+/- 0.11) 0.93 (+/- 0.11)

LR 36 0.91 (+/- 0.13) 0.92 (+/- 0.12) 0.91 (+/- 0.13) 0.90 (+/- 0.15)

GNB 38 0.94 (+/- 0.09) 0.95 (+/- 0.06) 0.94 (+/- 0.09) 0.94 (+/- 0.09)

MLP 51 0.92 (+/- 0.10) 0.94 (+/- 0.07) 0.92 (+/- 0.10) 0.92 (+/- 0.10)

Finally we show the list of 10 most relevant Features in Infiltration attacks detection:
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– Flow Duration

– Fwd Packet Length Max

– Fwd Packet Length Min

– Fwd Packet Length Std

– Flow IAT Max

– Fwd IAT Total

– Bwd IAT Total

– Min Packet Length

– PSH Flag Count

– ACK Flag Count

5.4.2 Conclusions

The best algorithms detecting Infiltration attacks with a similar f1-score are Gaussian Naive

Bayes and k-Nearest Neighbors. However, the k-NN algorithm only requires 5 features while

GNB needs 38 to reach that score. Therefore, the k-NN algorithm using 5 features and 3

neighbors obtains the best performance with an f1-score of 0,93 and an Accuracy of 93%.

In spite of the number of false alarms is elevated, about 7% (1 - Recall) with regard to

the flows classified as malicious it is still a suitable performance since the potential danger

of this attack in a few flows. It is interesting to underline that Flow duration is the most

useful feature in this attack type.

5.5 Botnet

The attack performed in the CICIDS2017 is Botnet ARES, an open source trojan. This

attack takes control of every infected computer also named bot. Once a computer is infected,

the trojan has the ability to run command shells, download and upload files, take screenshots

and keylogging.

5.5.1 Results

The models developed in this project have obtained the performance described below de-

tecting Botnet flows.

• k-Nearest Neighbors: K-NN algorithm algorithm reaches its best performance with

3 neighbours and 46 features.

• Logistic Regression: The best configuration for Logistic Regression algorithm is

using 18 variables.

• Gaussian Naive Bayes: Gaussian Naive Bayes algorithm obtains its best scores

with 10 features.
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• Multilayer Perceptron: The best configuration for Multilayer Perceptron algorithm

is using 63 variables with Logistic activation function.

The next graphic representation compares the different algorithms performance using

its best configuration. We display the f1-score obtained and the number of features needed

to reach that score:

Figure 5.4: Botnet Algorithm Performance Comparative

Down below, we show a comparative table with the best rating obtained for each algo-

rithm. The displayed scores are Accuracy, Precision, Recall and f1-score. In addition, the

number of features to reach those scores is also shown.

Algorithm Features Accuracy Precision Recall f1-score

k-NN 46 0.97 (+/- 0.02) 0.97 (+/- 0.02) 0.97 (+/- 0.02) 0.97 (+/- 0.02)

LR 18 0.91 (+/- 0.03) 0.92 (+/- 0.02) 0.91 (+/- 0.03) 0.91 (+/- 0.04)

GNB 10 0.86 (+/- 0.04) 0.89 (+/- 0.02) 0.86 (+/- 0.04) 0.85 (+/- 0.04)

MLP 63 0.96 (+/- 0.02) 0.96 (+/- 0.02) 0.96 (+/- 0.02) 0.96 (+/- 0.02)

Finally we show the list of 10 most relevant Features in Botnet attacks detection:
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– Destination Port

– Flow Duration

– Fwd Packet Length Min

– Bwd Packet Length Max

– Bwd Packet Length Min

– Bwd Packet Length Mean

– Min Packet Length

– PSH Flag Count

– URG Flag Count

– Avg Bwd Segment Size

5.5.2 Conclusions

The best algorithm detecting Botnet attacks is k-Nearest Neighbors using 46 features and

3 neighbors obtaining an f1-score of 0,97 and an Accuracy of 97%. Nevertheless, Logistic

Regression algorithm obtains an f1-score of 0.91 with only 18 features. If the computing

resources are enough and the criticality of the protected infrastructure is elevated, the k-NN

is the best algorithm. Otherwise, Logistic Regression is a good model. In this attack type,

Destination Port and Flow Duration are the most useful variables.

5.6 Web Attacks

The Web Attacks Dataset includes Cross-site scripting, SQL Injection and Web Brute Force

attacks. These cyber-attacks are performed through web applications. Cross-site scripting

or XSS consists of injecting code in JavaScript or a similar language into a web page. An

SQL injection is similar to XSS but the injection is directed to a database. If a web site

is vulnerable to SQL injection, the attacker can perform SQL queries such as drop tables

or modify rows. Finally, Web Brute Force attack consists of accessing or login in restricted

web sites by brute force. It means trying combinations of user and passwords.

5.6.1 Results

The models developed in this project have obtained the performance described below de-

tecting Web Attacks.

• k-Nearest Neighbors: K-NN algorithm algorithm reaches its best performance with

3 neighbours and 61 features.

• Logistic Regression: The best configuration for Logistic Regression algorithm is

using 1 variables.
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• Gaussian Naive Bayes: Gaussian Naive Bayes algorithm obtains its best scores

with 53 features.

• Multilayer Perceptron: The best configuration for Multilayer Perceptron algorithm

is using 11 variables with Logistic activation function.

The next graphic representation compares the different algorithms performance using

its best configuration. We display the f1-score obtained and the number of features needed

to reach that score:

Figure 5.5: Web Attacks Algorithm Performance Comparative

Down below, we show a comparative table with the best rating obtained for each algo-

rithm. The displayed scores are Accuracy, Precision, Recall and f1-score. In addition, the

number of features to reach those scores is also shown.

Algorithm Features Accuracy Precision Recall f1-score

k-NN 61 0.987 (+/- 0.023) 0.987 (+/- 0.022) 0.987 (+/- 0.023) 0.987 (+/- 0.023)

LR 1 0.86 (+/- 0.03) 0.89 (+/- 0.02) 0.86 (+/- 0.03) 0.85 (+/- 0.03)

GNB 53 0.86 (+/- 0.04) 0.89 (+/- 0.03) 0.86 (+/- 0.04) 0.86 (+/- 0.05)

MLP 11 0.96 (+/- 0.03) 0.96 (+/- 0.03) 0.96 (+/- 0.03) 0.96 (+/- 0.03)
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Finally we show the list of 10 most relevant Features in Web Attacks detection:

– Bwd IAT Total

– Bwd IAT Mean

– Bwd IAT Std

– Bwd IAT Max

– Init Win Bytes Forward

– Init Win Bytes Backward

– Min Seg Size Forward

– Idle Mean

– Idle Max

– Idle Min

5.6.2 Conclusions

Similarly to Botnet Dataset, there are two algorithms with a suited performance. k-Nearest

Neighbors obtains an f1-score of 0,987 using 61 features while Multilayer Perceptron obtains

an f1-score of 0,96 using only 11 variables. In this situation, the decision depends on the

nature of the network to be protected. If the infrastructure is critical, we would choose

k-NN with 3 neighbors in spite of the elevated computing cost. Otherwise, we would choose

the MLP with Logistic activation function.

The most important variable in Web Attacks is Destination Port since all malicious flows

are directed to that port. However, the model is trained to analyze only flows directed to

port 80. Besides this variable, the most important features detecting Web Attacks are the

time interval between two packets in the backward direction (Bwd IAT Total, Bwd IAT

Mean, Bwd IAT Std...)

5.7 Brute Force

Brute Force attacks consist of repetitive attempts of user and passwords combination with

the purpose to access a restricted service. Due to the number of possible combinations is

very high, hacking tools use user and password dictionaries. In the CICIDS2017 the Brute

Force attacks are performed Patator Python script against FTP and SSH services.

5.7.1 Results

The models developed in this project have obtained the performance described below de-

tecting Brute Force Attacks.

• k-Nearest Neighbors: K-NN algorithm algorithm reaches its best performance with

3 neighbours and 34 features.
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• Logistic Regression: The best configuration for Logistic Regression algorithm is

using 39 variables.

• Gaussian Naive Bayes: Gaussian Naive Bayes algorithm obtains its best scores

with 3 features.

• Multilayer Perceptron: The best configuration for Multilayer Perceptron algorithm

is using 14 variables with Logistic activation function.

The next graphic representation compares the different algorithms performance using

its best configuration. We display the f1-score obtained and the number of features needed

to reach that score:

Figure 5.6: Brute Force Algorithm Performance Comparative

Down below, we show a comparative table with the best rating obtained for each algo-

rithm. The displayed scores are Accuracy, Precision, Recall and f1-score. In addition, the

number of features to reach those scores is also shown.
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Algorithm Features Accuracy Precision Recall f1-score

k-NN 34 0.993 (+/- 0.011) 0.993 (+/- 0.011) 0.993 (+/- 0.011) 0.993 (+/- 0.011)

LR 39 0.83 (+/- 0.09) 0.87 (+/- 0.06) 0.83 (+/- 0.09) 0.83 (+/- 0.09)

GNB 34 0.79 (+/- 0.04) 0.85 (+/- 0.02) 0.79 (+/- 0.04) 0.78 (+/- 0.04)

MLP 14 0.96 (+/- 0.05) 0.96 (+/- 0.05) 0.96 (+/- 0.05) 0.96 (+/- 0.05)

Finally, we show the list of 10 most relevant Features in Brute Force attacks detection:

– Destination Port

– Flow Duration

– Fwd IAT Total

– Fwd IAT Std

– Fwd IAT Max

– Bwd IAT Total

– Bwd IAT Std

– Fwd PSH Flags

– SYN Flag Count

– Min Seg Size Forward

5.7.2 Conclusions

In Brute Force detection we have two algorithms with a suitable performance: k-Nearest

Neighbors with 34 features and 3 neighbors obtains an f1-score of 0,993 and Multilayer

Perceptron using 14 variables with Logistic activation function obtains and f1-score of 0,96.

The k-NN model is more precise but it requires more information while the MLP algorithm

needs less information but its performance slightly decrease.

The most important information detecting Brute Force attacks is Destination Port due

to all attacks are directed to 21 and 22 ports. In addition, the flow duration and the time

interval between packets in both directions is the most useful information in detecting these

attacks.
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CHAPTER6
Conclusions and future work

In this last chapter, we draw the conclusions and achievements obtained in this project.

Furthermore, we explain the problems faced during the development of the work. Finally,

we show some possible lines of future work and applications of this project.

In section 6.1, we explain the conclusions obtained in this project, the problems faced

during the development of the work and the limitations of the results. Finally, in section

6.2, we outline some future work lines to continue the project.

47



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In Chapter 5 we discussed briefly the conclusions obtained from the evaluation and compar-

ison of the algorithms used in this project for each attack type. As of this comparison, we

can conclude that k-Nearest Neighbors is the best algorithm for attack detection problems.

This algorithm is the best option in four different attacks out of six. However, the rest of

the algorithms (GNB, LR, and MLP) obtain a suitable performance and sometimes even

more useful because they require less information than k-NN.

In this project, we have faced the problem of a binary classification. A binary classifier

must beat the accuracy of a random classifier (50%). The best models developed in this

project for each attack type have obtained an average accuracy of 98%. This is a high

performance, however, due to the elevated number of flows in computer network commu-

nications, false alarm ratio becomes a problem to solve. For this purpose, we can modify

the threshold of positive malicious flows. This way, the number of false alarms decrease,

though, the amount of malicious flows undetected raise.

The features or information contained in the Datasets can be obtained just capturing

the protected network traffic. Therefore, the models developed are applicable to attacks

coming from new machines because they do not need any particular attacker information

such as IP directions. As we can observe in Chapter 5, the most useful variables detecting

malicious flows are:

Destination Port, Packet Length (minimum, maximum, average and standard deviation)

in the forward and backward direction, Time Interval between packets and the number of

times that PSH, ACK and URG flags appear.

This is the expected result because these features characterize the cyber-attacks ana-

lyzed.

We divide into two types the problems faced in this project. Firstly, we describe the

limitations of the results. Next, we review the problems dealt with developing this project.

We must outline the next limitations of the developed models:

– Models require the complete flow information since some training data are based on

the entire communication such as the maximum, minimum and average packet length

or the flag count. In the case of IDS applications, this is not a problem because

the system alerts once the flow is completed. However, IPS applications act in real

time, consequently generating flow information is a problem to solve. Obtaining flows

statistics in real time, it means while the communication is still active, would be the
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solution. However, this requires a more elevated computing capacity.

– The tested models have achieved high scores, nevertheless, these are not strict re-

sult because models are tested only with the Dataset. More accurate a clarifying

results would be accomplished with a simulation of an entire network and an IDS

implementing the models developed.

– Finally, as we explained in Chapter 1, the fast-changing and evolution of cyber-attacks

become efficient models into deprecated in short periods of time. That is why training

and generating new models must be a continuous process with the purpose of being

up-to-date. This implies an additional waste of money.

To conclude, the most notable problem faced during the development of this project

is the computing capacity required due to the elevated volume of information stored in

datasets. However, the investigation group together I develop this project (Grupo de Sis-

temas Inteligentes1) provides me the computing resources needed to train the models.

6.2 Future Work

There are a few lines to keep working on this project. In the first place, we could continue

developing models for IPS. The traffic stored in the Datasets is gathered by the CICFlowMe-

ter tool developed by the CIC. This tool labels each flows once the communication finishes.

However, IPSs require traffic information in real time. Therefore, we need to create an

application able to capture packets and generate the statistical traffic values needed for

models in real time. Furthermore, this would also require new models adapted to the new

information flow. This would be the most interesting line to keep working due to the high

interest not only detecting but preventing intrusions.

On the other hand, another appealing future work would be testing the developed models

in real situations with the purpose of checking their real behaviour. It requires creating a

platform able to capture and generate the information stored in datasets. We could use the

CICFlowMeter, the open source traffic flow processor developed by CIC. Once the packet

capturer and processor is ready, we just need to send the information to the classifier which

determines if the flow is benign or malicious.

1Grupo de Sistemas Inteligentes: https://www.gsi.upm.es/
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[6] Eugène Ezin and Hervé Djihountry. Java-based intrusion detection system in a wired network.

International Journal of Computer Science and Information Security, 9:33–40, 11 2011.

[7] A. Gharib, I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. An evaluation framework

for intrusion detection dataset. In 2016 International Conference on Information Science and

Security (ICISS), pages 1–6, Dec 2016.

[8] Herjavec Group. 2019 Official Annual Cybercrime Report. https:

//www.herjavecgroup.com/wp-content/uploads/2018/12/

CV-HG-2019-Official-Annual-Cybercrime-Report.pdf. (Accessed on 05/31/2019).

[9] Ashish Kumar, Srikant Chandak, and Rita Dewanjee. Recent advances in intrusion detection

systems: An analytical evaluation and comparative study. International Journal of Computer

Applications, 86(4), 2014.

[10] NSS LABS. Next Generation Intrusion Prevention System (NGIPS). https:

//www.fortinet.com/content/dam/fortinet/assets/certifications/

nss-labs-2018-dcips-svm.pdf, September 2018. (Accessed on 06/04/2019).

[11] J. D. Rodriguez, A. Perez, and J. A. Lozano. Sensitivity analysis of k-fold cross validation in

prediction error estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence,

32(3):569–575, March 2010.

[12] J. Schonwalder, M. Bjorklund, and P. Shafer. Network configuration management using netconf

and yang. IEEE Communications Magazine, 48(9):166–173, Sept 2010.

i

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://www.incibe.es/sites/default/files/estudios/cybersecurity_market_trends.pdf
https://www.incibe.es/sites/default/files/estudios/cybersecurity_market_trends.pdf
https://www.herjavecgroup.com/wp-content/uploads/2018/12/CV-HG-2019-Official-Annual-Cybercrime-Report.pdf
https://www.herjavecgroup.com/wp-content/uploads/2018/12/CV-HG-2019-Official-Annual-Cybercrime-Report.pdf
https://www.herjavecgroup.com/wp-content/uploads/2018/12/CV-HG-2019-Official-Annual-Cybercrime-Report.pdf
https://www.fortinet.com/content/dam/fortinet/assets/certifications/nss-labs-2018-dcips-svm.pdf
https://www.fortinet.com/content/dam/fortinet/assets/certifications/nss-labs-2018-dcips-svm.pdf
https://www.fortinet.com/content/dam/fortinet/assets/certifications/nss-labs-2018-dcips-svm.pdf


BIBLIOGRAPHY

[13] Cisco Systems. What is cybersecurity? https://www.cisco.com/c/en/us/products/

security/what-is-cybersecurity.html. (Accessed on 05/31/2019).

[14] International Telecommunication Union. Statistics. https://www.itu.int/en/ITU-D/

Statistics/Pages/stat/default.aspx. (Accessed on 05/31/2019).

[15] Ed. YB. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954, RFC Editor,

October 2004.

ii

https://www.cisco.com/c/en/us/products/security/what-is-cybersecurity.html
https://www.cisco.com/c/en/us/products/security/what-is-cybersecurity.html
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx


APPENDIXA
Impact of the project

In this appendix, we analyze the professional responsibility of engineering project develop-

ment. Furthermore, we describe the project impacts at the social, economic and environmen-

tal level. Finally, we discuss the ethical implications and the responsibility of the practical

application of engineering.
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APPENDIX A. IMPACT OF THE PROJECT

A.1 Introduction

The Internet has changed the way we live and relate. Today, we carry out a big number of

task and activities through connected devices. All these services accessed through Internet

require protection. That is why cybersecurity is a growing and developing field due to the

powerful tool that the Internet has become.

This project is situated in the cybersecurity area in the field of software development. As

we described before, the objective of this work is to improve network security by proposing

a set of solutions based on Machine Learning. The models developed are designed to be

implemented in intrusion detection and prevention systems, IDSs and IPSs.

As with all engineering projects, this work has a series of impacts and responsibilities.

This project aims to contribute to society with new scientific knowledge. The objective

of this work is to make a safer and more protected world through investigation. Next, we

describe the project impact at different levels.

A.2 Social Impact

It is expected that this project improves network security. That would increase the user

trust in the Internet. With better confidence and network protection, the use of the Internet

for all kind of activities in special those that require privacy and security will increase as

well as new applications and features. Both IPSs and IDSs are designed to protect private

networks, consequently, they are mainly used at the enterprise level. However, since a

large proportion of user information is stored in the cloud, protecting the privacy of users

implies protecting the services they use. That is why better corporate network protection

guarantees better user privacy and safety reducing cybercrime.

A.3 Economic Impact

At the economic level, cybersecurity and cybercrime are two sectors that move large amounts

of money. That is why any advance in this area has important economic implications. The

consequence of improving IDSs and IPSs is the increase in their use and marketing. The

applications of new technologies cybersecurity like Machine Learning can improve protection

tools and even develop new products. These products are highly demanded by companies

due to their vital importance in protecting networks.
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A.4 Environmental Impact

Since this project is a software development based, its direct environmental impact is prac-

tically zero. Nevertheless, like any other human activity, this work has an environmental

footprint because its application implies the deployment of infrastructures and technological

devices. These equipment require pollutant materials (batteries, heavy metals, plastics. . . )

and their manufacture also contaminates. We may also mention the use of electricity in

electronic devices. In spite of these negative impacts, there are no other adverse effects on

the environment.

A.5 Ethical and Professional Implications

There are a series of ethical implications due to the improvement of cybersecurity. Like any

other technological advance, it can be used for better or worse. Unfortunately, the use of

knowledge and technology does not depend on the people who developed it. On the one

hand, the improvement of network security guarantees greater safety for those who use that

technology. However, those users that cannot afford the cost of these devices will become

more vulnerable.

On the other hand, improving protection and privacy could increase and facilitate illegal

activities through the Internet. Furthermore, due to cybercriminals can also access to

protection tools, they can develop better and more complex attacks able to bypass actual

cybersecurity systems.
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APPENDIXB
Cost of the System

In this appendix, we show the economic costs of this project. The costs are generated by two

main factors: physical resources and human resources. We also provide a table where we

gather all the expenses.

vii



APPENDIX B. COST OF THE SYSTEM

B.1 Cost of the System

In this appendix, we analyze the economic cost of the project. We only consider the expenses

of developing Machine Learning models.

There are two types of costs:

• Labour cost: The development of this project has required a total of 300 working

hours. We estimate the average salary for a Software Engineer about Euros 15 per

hour. The total expense in human resources is 4.500 e.

• Cost of materials: To develop this project we need a personal computer for working

with text editors, write the code and evaluate models and a training computer to

execute the code. The personal computer does not need any special features however

the training computer requires appropriate hardware. We estimate the cost of the

personal computer about 1.000 e and 2.500 e for the training computer. Finally,

we must attach the waste of energy of these two computers. We estimate in about

720 hours number of computer working hours. The power consumed by a computer

during 720 hours is about 720kWh. We obtain the energy cost multiplying the energy

consumed by the price of kWh (average price of 0.18 e /kWh) for a total of about

130 e.

The total budget is: 7.345,45 e

Next, we gather all cost in a descriptive table:
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APPENDIXC
Dataset Features Description

In this appendix, we describe every feature of the Dataset. We display in a table the feature

name and its description. The Dataset is labelled with 78 features and the tag determining

if a flow is benign or malicious.
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C.1 Dataset Features

This dataset collects a total of 78 features and the tag determining if the flow is benign or

an attack. Next, we describe the list of features:

Feature name Description

Destination Port Destination Port

Flow Duration Flow duration

Total Fwd Packets Total packets in the forward direction

Total Backward Packets Total packets in the backward direction

Total Length of Fwd Packets Total size of packet in forward direction

Total Length of Bwd Packets Total size of packet in backward direction

Fwd Packet Length Max Maximum size of packet in forward direction

Fwd Packet Length Min Minimum size of packet in forward direction

Fwd Packet Length Mean Mean size of packet in forward direction

Fwd Packet Length Std Standard deviation size of packet in forward direction

Bwd Packet Length Max Maximum size of packet in backward direction

Bwd Packet Length Min Minimum size of packet in backward direction

Bwd Packet Length Mean Mean size of packet in backward direction

Bwd Packet Length Std Standard deviation size of packet in backward direction

Flow Bytes/s Flow byte rate that is number of bytes transferred per second

Flow Packets/s
Flow packets rate that is number of packets transferred per

second

Flow IAT Mean Mean time between two flows

Flow IAT Std Standard deviation time two flows

Flow IAT Max Maximum time between two flows

Flow IAT Min Minimum time between two flows

Fwd IAT Total Total time between two packets sent in the forward direction

Fwd IAT Mean Mean time between two packets sent in the forward direction

Fwd IAT Std
Standard deviation time between two packets sent in the

forward direction
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Feature name Description

Fwd IAT Max
Maximum time between two packets sent in the forward di-

rection

Fwd IAT Min
Minimum time between two packets sent in the forward di-

rection

Bwd IAT Total
Total time between two packets sent in the backward direc-

tion

Bwd IAT Mean
Mean time between two packets sent in the backward direc-

tion

Bwd IAT Std
Standard deviation time between two packets sent in the

backward direction

Bwd IAT Max
Maximum time between two packets sent in the backward

direction

Bwd IAT Min
Minimum time between two packets sent in the backward

direction

Fwd PSH Flags
Number of times the PSH flag was set in packets travelling

in the forward direction (0 for UDP)

Bwd PSH Flags
Number of times the PSH flag was set in packets travelling

in the backward direction (0 for UDP)

Fwd URG Flags
Number of times the URG flag was set in packets travelling

in the forward direction (0 for UDP)

Bwd URG Flags
Number of times the URG flag was set in packets travelling

in the backward direction (0 for UDP)

Fwd Header Length Total bytes used for headers in the forward direction

Bwd Header Length Total bytes used for headers in the backward direction

Fwd Packets/s Number of forward packets per second

Bwd Packets/s Number of backward packets per second

Min Packet Length Minimum length of a flow

Max Packet Length Maximum length of a flow

Packet Length Mean Mean length of a flow

Packet Length Std Standard deviation length of a flow

Packet Length Variance Minimum inter-arrival time of packet

FIN Flag Count Number of packets with FIN

SYN Flag Count Number of packets with SYN
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Feature name Description

RST Flag Count Number of packets with RST

PSH Flag Count Number of packets with PUSH

ACK Flag Count Number of packets with ACK

URG Flag Count Number of packets with URG

CWE Flag Count Number of packets with CWE

ECE Flag Count Number of packets with ECE

Down/Up Ratio Download and upload ratio

Average Packet Size Average size of packet

Avg Fwd Segment Size Average size observed in the forward direction

Avg Bwd Segment Size Average size observed in the backward direction

Fwd Header Length.1 Total bytes used for headers in the forward direction

Fwd Avg Bytes/Bulk Average number of bytes bulk rate in the forward direction

Fwd Avg Packets/Bulk Average number of packets bulk rate in the forward direction

Fwd Avg Bulk Rate Average number of bulk rate in the forward direction

Bwd Avg Bytes/Bulk Average number of bytes bulk rate in the backward direction

Bwd Avg Packets/Bulk
Average number of packets bulk rate in the backward direc-

tion

Bwd Avg Bulk Rate Average number of bulk rate in the backward direction

Subflow Fwd Packets
The average number of packets in a sub flow in the forward

direction

Subflow Fwd Bytes
The average number of bytes in a sub flow in the forward

direction

Subflow Bwd Packets
The average number of packets in a sub flow in the backward

direction

Subflow Bwd Bytes
The average number of bytes in a sub flow in the backward

direction

Init Win Bytes Forward
Number of bytes sent in initial window in the forward direc-

tion

Init Win Bytes Backward
Number of bytes sent in initial window in the backward di-

rection

Act Data Pkt Fwd
Number of packets with at least 1 byte of TCP data payload

in the forward directio
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Feature name Description

Min Seg Size Forward Minimum segment size observed in the forward direction

Active Mean Mean time a flow was active before becoming idle

Active Std
Standard deviation time a flow was active before becoming

idle

Active Max Maximum time a flow was active before becoming idle

Active Min Minimum time a flow was active before becoming idle

Idle Mean Mean time a flow was idle before becoming active

Idle Std
Standard deviation time a flow was idle before becoming

active

Idle Max Maximum time a flow was idle before becoming active

Idle Min Minimum time a flow was idle before becoming active
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APPENDIXD
Algorithm Performance Visualization

In this appendix, we provide a deeper performance analysis of the models developed. For

each attack type, we analyze the four algorithms used and their configuration. For each

algorithm, we display the interval of features where the scores reach the maximum value.

Finally, we show the scores achieved by the best algorithm configuration and the number of

features used.
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D.1 DDoS

D.1.1 k-Nearest Neighbors

The k-NN algorithm obtains its best scores in the range of 7 to 15 variables with 3 neigh-

bours:

Figure D.1: k-NN scores

Note that the radial axis is delimited between 0.9 and 1 in the previous graphic repre-

sentation.

The k-Nearest Neighbors algorithm reaches its best performance with 3 neighbours and

12 features obtaining the next scores:

- Accuracy: 0.998 (+/- 0.002)

- Precision: 0.998 (+/- 0.002)

- Recall: 0.998 (+/- 0.002)

- f1-score: 0.998 (+/- 0.002)

D.1.2 Logistic Regression

Logistic Regression algorithm obtains its best scores in the range of 3 to 11 variables:
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Figure D.2: Logistic Regression scores

The best configuration for Logistic Regression algorithm is using 6 variables. . With

this configuration, we get the next performance:

- Accuracy: 0.96 (+/- 0.04)

- Precision: 0.96 (+/- 0.04)

- Recall: 0.96 (+/- 0.04)

- f1-score: 0.96 (+/- 0.04)

D.1.3 Gaussian Naive Bayes

Logistic Regression algorithm obtains its best scores in the range of 3 to 11 variables:

Figure D.3: Gaussian Naive scores

Gaussian Naive Bayes algorithm reaches its best performance with 6 features obtaining

the next scores:

- Accuracy: 0.93 (+/- 0.09)

- Precision: 0.94 (+/- 0.07)
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- Recall: 0.93 (+/- 0.09)

- f1-score: 0.93 (+/- 0.09)

D.1.4 Multilayer Perceptron

The Multilayer Perceptron obtains its best scores in the range of 3 to 11 variables with the

Logistic activation function:

Figure D.4: Multilayer Perceptron scores

The best configuration for Multilayer Perceptron is using 6 variables with Logistic acti-

vation function. With this configuration we get the next scores:

- Accuracy: 0.97 (+/- 0.15)

- Precision: 0.97 (+/- 0.10)

- Recall: 0.97 (+/- 0.15)

- f1-score: 0.96 (+/- 0.17)

D.2 Port Scan

D.2.1 k-Nearest Neighbors

The k-NN algorithm obtains its best scores in the range of 1 to 5 variables with 3 neighbours:
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Figure D.5: k-NN scores

The k-Nearest Neighbors algorithm reaches its best performance with 3 neighbours and

4 features obtaining the next scores:

- Accuracy: 0.995 (+/- 0.003)

- Precision: 0.995 (+/- 0.003)

- Recall: 0.995 (+/- 0.003)

- f1-score: 0.995 (+/- 0.003)

D.2.2 Logistic Regression

Logistic Regression algorithm obtains its best scores in the range of 10 to 18 variables:

Figure D.6: Logistic Regression scores

Note that the radial axis is delimited between 0.9 and 1 in the previous graphic repre-

sentation.

The best configuration for Logistic Regression algorithm is using 15 variables. With this

configuration, we get the next performance:
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- Accuracy: 0.987 (+/- 0.016)

- Precision: 0.987 (+/- 0.015)

- Recall: 0.987 (+/- 0.016)

- f1-score: 0.987 (+/- 0.016)

D.2.3 Gaussian Naive Bayes

Logistic Regression algorithm obtains its best scores in the range of 8 to 16 variables:

Figure D.7: Gaussian Naive scores

Note that the radial axis is delimited between 0.9 and 1 in the previous graphic repre-

sentation. Gaussian Naive Bayes algorithm reaches its best performance with 12 features

obtaining the next scores:

- Accuracy: 0.993 (+/- 0.007)

- Precision: 0.993 (+/- 0.006)

- Recall: 0.993 (+/- 0.007)

- f1-score: 0.993 (+/- 0.007)

D.2.4 Multilayer Perceptron

The Multilayer Perceptron obtains its best scores in the range of 37 to 45 variables with

the Rectified Linear unit function:
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D.3. INFILTRATION

Figure D.8: Multilayer Perceptron scores

Note that the radial axis is delimited between 0.9 and 1 in the previous graphic rep-

resentation. The best configuration for Multilayer Perceptron is using 42 variables with

Rectified Linear unit activation function. With this configuration we get the next scores:

- Accuracy: 0.997 (+/- 0.003)

- Precision: 0.997 (+/- 0.003)

- Recall: 0.997 (+/- 0.003)

- f1-score: 0.997 (+/- 0.003)

D.3 Infiltration

D.3.1 k-Nearest Neighbors

The k-NN algorithm obtains its best scores in the range of 1 to 9 variables with 5 neighbours:

Figure D.9: k-NN scores
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The k-Nearest Neighbors algorithm reaches its best performance with 5 neighbours and

3 features obtaining the next scores:

- Accuracy: 0.93 (+/- 0.11)

- Precision: 0.94 (+/- 0.10)

- Recall: 0.93 (+/- 0.11)

- f1-score: 0.93 (+/- 0.11)

D.3.2 Logistic Regression

Logistic Regression algorithm obtains its best scores in the range of 32 to 40 variables:

Figure D.10: Logistic Regression scores

The best configuration for Logistic Regression algorithm is using 36 variables. With this

configuration, we get the next performance:

- Accuracy: 0.91 (+/- 0.13)

- Precision: 0.92 (+/- 0.12)

- Recall: 0.91 (+/- 0.13)

- f1-score: 0.90 (+/- 0.15)

D.3.3 Gaussian Naive Bayes

Logistic Regression algorithm obtains its best scores in the range of 35 to 43 variables:
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D.3. INFILTRATION

Figure D.11: Gaussian Naive scores

Gaussian Naive Bayes algorithm reaches its best performance with 38 features obtaining

the next scores:

- Accuracy: 0.94 (+/- 0.09)

- Precision: 0.95 (+/- 0.06)

- Recall: 0.94 (+/- 0.09)

- f1-score: 0.94 (+/- 0.09)

D.3.4 Multilayer Perceptron

The Multilayer Perceptron obtains its best scores in the range of 47 to 55 variables with

the Logistic activation function:

Figure D.12: Multilayer Perceptron scores

The best configuration for Multilayer Perceptron is using 51 variables with Logistic

activation function. With this configuration we get the next scores:

- Accuracy: 0.92 (+/- 0.10)
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- Precision: 0.94 (+/- 0.07)

- Recall: 0.92 (+/- 0.10)

- f1-score: 0.92 (+/- 0.10)

D.4 Botnet

D.4.1 k-Nearest Neighbors

The k-NN algorithm obtains its best scores in the range of 42 to 50 variables with 3 neigh-

bours:

Figure D.13: k-NN scores

Notice that the radial axis is delimited between 0.9 and 1 in the previous graphic rep-

resentation.

The k-Nearest Neighbors algorithm reaches its best performance with 3 neighbours and

46 features obtaining the next scores:

- Accuracy: 0.97 (+/- 0.02)

- Precision: 0.97 (+/- 0.02)

- Recall: 0.97 (+/- 0.02)

- f1-score: 0.97 (+/- 0.02)

D.4.2 Logistic Regression

Logistic Regression algorithm obtains its best scores in the range of 16 to 24 variables:
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D.4. BOTNET

Figure D.14: Logistic Regression scores

The best configuration for Logistic Regression algorithm is using 18 variables. With this

configuration, we get the next performance:

- Accuracy: 0.91 (+/- 0.03)

- Precision: 0.92 (+/- 0.02)

- Recall: 0.91 (+/- 0.03)

- f1-score: 0.91 (+/- 0.04)

D.4.3 Gaussian Naive Bayes

Logistic Regression algorithm obtains its best scores in the range of 6 to 14 variables:

Figure D.15: Gaussian Naive scores

Gaussian Naive Bayes algorithm reaches its best performance with 10 features obtaining

the next scores:

- Accuracy: 0.86 (+/- 0.04)
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- Precision: 0.89 (+/- 0.02)

- Recall: 0.86 (+/- 0.04)

- f1-score: 0.85 (+/- 0.04)

D.4.4 Multilayer Perceptron

The Multilayer Perceptron obtains its best scores in the range of 59 to 67 variables with

the Rectified Linear unit activation function:

Figure D.16: Multilayer Perceptron scores

The best configuration for Multilayer Perceptron is using 63 variables with Rectified

Linear unit activation function. With this configuration we get the next scores:

- Accuracy: 0.96 (+/- 0.02)

- Precision: 0.96 (+/- 0.02)

- Recall: 0.96 (+/- 0.02)

- f1-score: 0.96 (+/- 0.02)

D.5 Web Attacks

D.5.1 k-Nearest Neighbors

The k-NN algorithm obtains its best scores in the range of 58 to 66 variables with 3 neigh-

bours:
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D.5. WEB ATTACKS

Figure D.17: k-NN scores

Notice that the radial axis is delimited between 0.9 and 1 in the previous graphic rep-

resentation.

The k-Nearest Neighbors algorithm reaches its best performance with 3 neighbours and

61 features obtaining the next scores:

- Accuracy: 0.987 (+/- 0.023)

- Precision: 0.987 (+/- 0.022)

- Recall: 0.987 (+/- 0.023)

- f1-score: 0.987 (+/- 0.023)

D.5.2 Logistic Regression

Logistic Regression algorithm obtains its best scores in the range of 1 to 9 variables:

Figure D.18: Logistic Regression scores

The best configuration for Logistic Regression algorithm is using 1 variable. With this
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configuration, we get the next performance:

- Accuracy: 0.86 (+/- 0.03)

- Precision: 0.89 (+/- 0.02)

- Recall: 0.86 (+/- 0.03)

- f1-score: 0.85 (+/- 0.03)

D.5.3 Gaussian Naive Bayes

Logistic Regression algorithm obtains its best scores in the range of 49 to 57 variables:

Figure D.19: Gaussian Naive scores

Gaussian Naive Bayes algorithm reaches its best performance with 53 features obtaining

the next scores:

- Accuracy: 0.86 (+/- 0.04)

- Precision: 0.89 (+/- 0.03)

- Recall: 0.86 (+/- 0.04)

- f1-score: 0.86 (+/- 0.05)

D.5.4 Multilayer Perceptron

The Multilayer Perceptron obtains its best scores in the range of 7 to 15 variables with the

Rectified Linear unit activation function:
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D.6. BRUTE FORCE

Figure D.20: Multilayer Perceptron scores

The best configuration for Multilayer Perceptron is using 11 variables with Rectified

Linear unit activation function. With this configuration we get the next scores:

- Accuracy: 0.96 (+/- 0.03)

- Precision: 0.96 (+/- 0.03)

- Recall: 0.96 (+/- 0.03)

- f1-score: 0.96 (+/- 0.03)

D.6 Brute Force

D.6.1 k-Nearest Neighbors

The k-NN algorithm obtains its best scores in the range of 31 to 39 variables with 3 neigh-

bours:

Figure D.21: k-NN scores

Notice that the radial axis is delimited between 0.98 and 1 in the previous graphic
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representation.

The k-Nearest Neighbors algorithm reaches its best performance with 3 neighbours and

34 features obtaining the next scores:

- Accuracy: 0.993 (+/- 0.011)

- Precision: 0.993 (+/- 0.011)

- Recall: 0.993 (+/- 0.011)

- f1-score: 0.993 (+/- 0.011)

D.6.2 Logistic Regression

Logistic Regression algorithm obtains its best scores in the range of 36 to 44 variables:

Figure D.22: Logistic Regression scores

The best configuration for Logistic Regression algorithm is using 39 variable. With this

configuration, we get the next performance:

- Accuracy: 0.83 (+/- 0.09)

- Precision: 0.87 (+/- 0.06)

- Recall: 0.83 (+/- 0.09)

- f1-score: 0.83 (+/- 0.09)

D.6.3 Gaussian Naive Bayes

Logistic Regression algorithm obtains its best scores in the range of 31 to 39 variables:
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D.6. BRUTE FORCE

Figure D.23: Gaussian Naive scores

Gaussian Naive Bayes algorithm reaches its best performance with 34 features obtaining

the next scores:

- Accuracy: 0.79 (+/- 0.04)

- Precision: 0.85 (+/- 0.02)

- Recall: 0.79 (+/- 0.04)

- f1-score: 0.78 (+/- 0.04)

D.6.4 Multilayer Perceptron

The Multilayer Perceptron obtains its best scores in the range of 11 to 19 variables with

the Hyperbolic tangent activation function:

Figure D.24: Multilayer Perceptron scores

Notice that the radial axis is delimited between 0.9 and 1 in the previous graphic rep-

resentation.

The best configuration for Multilayer Perceptron is using 14 variables with Hyperbolic
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tangent activation function. With this configuration we get the next scores:

- Accuracy: 0.96 (+/- 0.05)

- Precision: 0.96 (+/- 0.05)

- Recall: 0.96 (+/- 0.05)

- f1-score: 0.96 (+/- 0.05)
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