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Resumen

En los últimos años, las organizaciones terroristas han utilizado las redes sociales, especial-

mente Twitter, con la intención de provocar miedo, reclutar nuevos miembros y adoctrinar.

Este proyecto tiene como objetivos el desarrollo de un clasificador que nos permita deter-

minar si un tweet es radical o no mediante técnicas de machine learning, la implementación

de un servicio que nos permita analizar la radicalidad de un texto con nuestro clasificador

y la realización de un dashboard para visualizar potenciales usuarios radicales.

Para conseguir nuestro clasificador, hemos desarrollado un programa software utilizando

el lenguaje de programación python con las herramientas que nos proporciona para el proce-

sado de lenguaje natural (NLTK). Para la extracción de las caracteŕısticas que hemos con-

siderado oportunas (NER, POS, hashtags y sentimientos) de los tweets de nuestra base de

datos y para la utilización de algoritmos de aprendizaje automático por medio de datos

etiquetados hemos utilizado la libreŕıa scikit-learn. Como resultado, hemos obtenido un

modelo con una precisión mayor al 90% clasificando la radicalidad de los tweets de las bases

de datos utilizadas durante el proyecto.

La implementación del servicio de análisis de radicalidad de un texto se ha realizado

mediante la API Senpy. Para la realización de un dashboard en el que visulizar posibles

usuarios radicales se ha utilizado el entorno Sefarad.

Palabras clave: NLTK, Scikit-learn, NER, POS, Hashtag, Sentiment, Feature, Pipeline,

Classifier, Twitter, Dashboard
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Abstract

In the last few years, terrorist organizations have been using social networks, specially

Twitter, with the purpose of creating fear, recruiting new members and indoctrinating.

This project has as its objectives the development of a classifier that allows us to de-

termine whether a tweet is radical or not using machine learning techniques, the imple-

mentation of a service for analyzing the radicalization of a text with our classifier and the

execution of a dashboard for visualizing potential radical users.

For creating our classifier, we have developed a software program using the python

programming language and the tools that it provides for the processing of natural language

(NLTK). For the feature extraction that we have considered (NER, POS, hashtags and

sentiments) of the tweet of our database and for the use of machine learning algorithms for

labeled data, we have used the library scikit-learn. As a result, we have obtained a model

with an accuracy greater than 90% classifying the radicalization of the tweets contained in

the database used in the project.

The implementation of the service for analyzing the radicalization of a text has been

carried out using the Senpy API. The development of a dashboard for visualizing possible

radical users has been done using the environment Sefarad.

Keywords: NLTK, Scikit-learn, NER, POS, Hashtag, Sentiment, Feature, Pipeline,

Classifier, Twitter, Dashboard
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CHAPTER1
Introduction

1.1 Context

In the last decades, many terrorist organizations were created with the purpose of creating

terror in our society. A great part of these new organizations have jihadist ideology.

First of all, the members of this organizations spread chaos on their own country with the

aim for establishing salafist governments like in Egypt, where president Anwar Sadat was

killed by a jihadist in 1981, but after, their objective was also attacking in occident because

they think that the defeat of occident is a prerequisite for establishing their caliphate due

to the support that occident governments give to Arabian regimes [11].

11-S showed the world that these groups have the capacity to attack in every part of the

world, since then, the mentality of countries changed in order to avoid risks to people [22] but

terrorist organizations have also changed their mentality and strategies. These organizations

prepared their attacks with centralized cells and now this strategy has changed to lone wolfs

that attack individually [23].

Jihadists want to recruit new members to their ranks in order to make more attacks

and with more efficacy and nowadays, social networks are their more effective and useful
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CHAPTER 1. INTRODUCTION

tools for making that possible. Trying to cause fear and also spread their propaganda on

the population for having more supporters are the main reasons why they use social media

and the internet [2].

Unfortunately, this strategy has worked and the last terrorist attacks have been perpe-

trated by people indoctrinated online and that has never been in conflict zones.

In order to avoid their spread in social media, it is necessary to find and delete their

accounts but it is a laborious work and it requires a lot of time for a human being.

This is why, it is necessary to make a program that detects and predicts radical content

faster than humans and in order to do that, we have to use machine learning techniques.

In this project, we have focused on the Twitter social network and we are going to

develop a classifier of radical tweets using machine learning algorithms.

1.2 Project goals

The purpose of this project is to create a classifier of radical tweets and creating a visual

environment for analyzing tweets visually using this classifier.

The main goals of our work are:

• Preprocessing radicalism related data.

• Building a pipeline for extracting features.

• Evaluation of different machine learning algorithms and comparing their average in

classification tasks.

• Creating a visual environment for analyzing our classifier results with the Twitter

API.

1.3 Structure of this document

Our paper has the following structure:

Chapter 1 explains the situation that has made necessary to use machine learning

technology with social media data.

Chapter 2 introduces the tools used in the project.

2



1.3. STRUCTURE OF THIS DOCUMENT

Chapter 3 describes the model which we have built and the classifiers used.

Chapter 4 explains the steps taken in order to give a graphical visualization of our

model results.

Chapter 5 gives a conclusion for this work and provides ideas for future projects.

3
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CHAPTER2
Enabling Technologies

2.1 Introduction

In this chapter, we explain the technology machine learning, which we have used in our

project, with its different techniques, the documentation related with our case which has

been documented before this project, in order to get notions that can help for creating a

our classifier. We are going to talk also about the python libraries with which we have

developed our program and about other technologies that have been used.

2.2 Machine learning

Machine Learning (ML) [10] is a science discipline from the artificial intelligence field which

creates systems that employs data, experience and training in order to identify patterns with

the objective of predicting future behaviors automatically without human intervention.

It tries to automatize tasks through mathematician methods, in order to give possible

solutions to problems with a big complexity.

We have two types of machine learning techniques depending on whether the data has

5
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continuous values (regression) or a discrete label (classification).

In classification models, there are three types of machine learning techniques depending

on the input data given. We are going to describe briefly the three of them.

• Supervised learning: it is a technique which deduces a function from trained data

which have variables that can be useful for creating an accurate predictive model

(features) and data which has been tagged with one or more labels (labels).

The process of supervised learning follows the steps shown in Fig. 2.1.

First of all, our software receives the data and extracts the features that we want (the

most informative attributes).

After, it transforms the feature data and the labels to a compatible format (matrices)

for classifiers which are the algorithms that are going to train and test with the data

in order to map the input to a label.

Once the model is trained, it can assign labels to new data. First of all, we have

to insert the new text, extract the same features that we took when the model was

trained and finally, using the model to predict the label.

Figure 2.1: Machine learning supervised learning model [9]

• Unsupervised learning: This technique uses input data without labels, their final

objective is not a classification, the purpose of this technique is finding conclusions,

interesting inferences, intrinsic structures through the data.

The main unsupervised learning method is clustering. It consists on dividing the

input into groups, called clusters, whose objects are alike between them and that

have differences with other groups objects.

6



2.2. MACHINE LEARNING

The unsupervised learning work flow can be seen in Fig. 2.2. First of all, we receive

input data and take the features that we want from it. After, we have to use a machine

learning algorithm that is going to find patterns or characteristics that will allow to

differ the data of the different clusters discovered.

Figure 2.2: Machine learning unsupervised learning model [12]

• Semi-supervised learning: This technique emerged for resolving the problem of

classifying the output when we have a small amount of labeled data combined with

unlabeled data. It uses transductive learning for deducing the correct labels in the

unlabeled data and inductive learning for assigning labels to the features.

Its work-flow can be seen in Fig. 2.3.

Figure 2.3: Machine learning semi-supervised learning model [14]
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2.3 Related work

There is not an extensive amount of work related to detect extremism in social networks

because terrorist organizations did not use this media to spread fear until recently.

In this section, some of the research of radicalism classifiers which are related with our

job are described.

• Automated classification of extremist twitter accounts using content-based

and network-based features [25]: the authors design a classifier for identifying

Twitter accounts from specific geographic areas as ISIS related accounts basing on

records collected by Anonymous.

In order to fulfill that, they use the following content-based and network-based fea-

tures:

– Hashtags: first of all, they extract the most common hashtags used in ISIS

related accounts. If a particular user shared a publication including one of the

top 50 most common ISIS accounts hashtags, this user is classified as radical.

– Hashtags tokens: it consists on extracting the tokens included in the top 25

ISIS related accounts hashtags and after, they check if a particular user has used

one of those tokens in his tweet text, classifying him as radical in this case.

– Harmonic closeness: it is based on the closeness of a particular user with a

set of pro-ISIS accounts.

• Identification of extremism on Twitter [26]: in this paper, the authors make a

classifier after a feature extraction based on sentiment analysis whose features are:

– Sentiment tendency feature: it consists on determining whether a particular

user shows positive sentiment with radicalism groups or ideology or neutral/neg-

ative sentiment. First of all, they extract tweets associated to terrorist accounts

and after, for the studied user, they assign the sentiment value 1 if the user

shows affection for these groups or 0 if not. They define the value S, which is the

summation of sentiment values divided with the number of tweets. If this value

is greater than 0.5, they classify this user as radicalist.

– Ego-network extremism support feature: first of all, they look for a user’s

followers, if the user has one or more followers with S greater than 0.5 and the

studied user has also S greater than 0.5, then they give the value 1 to this user.

If not, they give him value 0.

8



2.3. RELATED WORK

– Mention-network feature: this characteristic is based on the study of the

mentions of a particular user. If the user has been mentioned by a radical account

(S greater than 0.5) or if he mentions an ISIS profile and the user has S greater

than 0.5 then they give the value 1 to this user. If not, they give him value 0.

• Robust sentiment detection on Twitter from Biased and Noisy Data [3]:

the authors use two features before using a classifier:

– Meta-features: this characteristic consists on mapping the part-of-speech of

sentences with a part-of-speech dictionary. This feature can show the language

employed on tweets, for example, tweets containing opinions will have more ad-

jectives or interjections. After the pos-tag, they make a polarity classification

(with three categories: positive, negative and neutral) and they watch the sub-

jectivity (weak or strong).

– Tweet Syntax Features: it is used for studying the frequency of hashtags,

retweets, replies, links, the use of exclamation and question marks, emoticons

and upper cases words.

In both extractors, the frequency of the feature is divided by the number of words

contained in the tweet.

• A semantic graph-based approach for radicalization detection on social

media [20]: In this paper, the feature extraction is based on name entities. They

use three selectors:

– Conceptual semantics extraction: in this feature, they extract named-entities

of anti-ISIS and pro-ISIS accounts tweets and then, they expand these entities

with their concepts.

– Semantic graph representation: here, they represent as graphs the semantic

relation of the name-entities that appears together in a tweet.

– Frequent patterns mining: this feature is based on applying pattern mining

techniques for learning similar semantics of pro and anti ISIS accounts.

• Using machine learning to identify jihadist messages on Twitter [18]: The

authors start from three datasets, one with tweets pro-ISIS, other with tweets ran-

domly collected and the last one, with tweets from accounts which are against ISIS.

In terms of feature extraction, this project has focused on:

9
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– Stylometric features: it consists on studying the variations of literary style

between users. They have made feature extraction basing on frequency of func-

tion words, words, punctuation characters, hashtags, letter bigrams and words

bigrams.

– Time-based features: they have elaborated an extraction studying when the

tweet was shared basing on the hour, day of week, period of week and period of

day

– Sentiment features: as in previous projects analyzed in this section, they

determine whether the tweet as a positive sentiment or not.

2.4 NLTK

Natural Language Toolkit (NLTK) [4] is a suite of Python modules providing many natural

language processing data types as tokens, tags, chunks, trees, feature structures and corpus

which allows to work with human language data. It has text processing libraries for classi-

fication, tokenization, stemming, tagging, parsing and semantic reasoning. NLTK provides

the following modules:

• Tokenizer: it divides a text into a sequence of tokens

• Stemmer: it has the function of reducing words to their root.

• Part of speech (POS): the function of the part of speech tagging of NLTK, pos

tag is providing the grammatical category of a given word.

• NER Taggers: tools that are going to provide names, organizations and locations

contained in the tweets.

• Chunking: it consists on selecting a subset of tokens grouped by their part of speech

tags. It is useful for finding nouns and extensive words used around them with their

POS category.

• Collocations: tool for finding group of words that commonly appears together.

• Trees: tool that allows to analyze graphically the structure of the sentences of a text

giving to it a tree structure.

• Corpus: NLTK has a collection of writings in its corpus. We have used the stopword

corpus when preprocessing the data for deleting words without relevant meaning.

10
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2.5 Pandas

Pandas [16] is a python software library developed for data analysis, which provides easy-

to-use data structures that makes flexible and intuitive working with data.

It has two elemental data structures called series, which are unidimensional arrays with

indexing that can be created from dictionaries or lists and dataframes, which are two-

dimensional arrays whose columns are series.

It is built on NumPy, which is the python library for fast array calculations.

Some utilities furnished by pandas [15] are:

• NaN value when it finds squares without data.

• Aggregating and transforming data.

• Inserting and deleting DataFrame’s columns.

• Converting from different python data structures and NumPy to DataFrame.

• Group by functionality for adding and changing data.

• Loading data from files of different extensions.

• Aligning the data that belongs to a set of labels.

• Concatenating, merging and joining data sets.

• Time series functionalities.

2.6 Scikit-learn

Scikit-learn [8] is a Python free software machine learning library built on Numpy, SciPy

and matplotlib which has tools for data mining and data analysis that will be useful in our

supervised machine learning model.

Scikit-learn provides tools for joining features, converting features and labels into ma-

trices and classifiers. As it can be seen in its documentation, it provides the following

functionalities:

11
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Functionality Description

Classification Assigning the correct label category to input data

Regression Predicting the continuous-value assigned to input data

Clustering Grouping into sets similar objects

Dimensionality

reduction
Methods for reducing the number of variables

Model selection
Comparing, validating and choosing parameters and

algorithms in order to improve the accuracy

Preprocessing Normalization and feature extraction

2.7 Meaning Cloud

Meaning Cloud [13] is an enterprise specialized in software which offers APIs for semantic

analysis with the following functions:

• Topics extraction

• Text Classification based on taxonomy or hierarchical categorization.

• Sentiment polarity analysis.

• Language identification.

• Lemmatization, Part of speech (POS) and parsing.

• Corporate reputation.

• Text clustering.

• Summarization.

• Document Structure Analysis.

12
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2.8 Sefarad

Sefarad [5] is an application developed by the ETSIT group GSI, it allows to explore data

by making SPARQL (Protocol and RDF Query Language) queries to the endpoint chose

by the user, it also lets analyze and visualize data.

The representation of data is based in dashboards, which are web pages oriented to

display information collected. Sefarad provides predefined dashboards that can be modified

by the user. Dashboards are divided in Polymer Web Components that globally form the

dashboard. The persistence layer necessary for visualization is based on the technology

ElasticSearch [6], which is a RESTful and analytics engine that can store data.

2.9 Senpy

Senpy [21] is an API developed by ETSIT-UPM’s group GSI. It provides tools for making

a detailed multilingual sentiment analysis of texts and plugins for identifying the gender or

the age of the writer of a text.

Senpy also supplies services for developers, giving a web UI where users can explore,

interact and test their service with the final objective of creating their own plugin.
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CHAPTER3
Machine learning model building and

evaluation

3.1 Introduction

In this chapter, the steps followed for creating the classifier are explained.

First of all, the data from which the project has been carried out is described. This data

has been downloaded from kaggle, which is an online platform that makes competitions for

creating the best predictive model from a dataset provided. After, the concept of pipeline

is explained with all its phases that served us to build our model.

The first phase of our pipeline is the preprocessing; an introduction about the concept

is going to be described with the explanation of the preprocessor developed in our project.

The second phase of the pipeline is the feature extraction. This concept is going to be

explained with the description of each feature extracted for our case. Finally, the last phase

of our pipeline is the climax of what was done before, the algorithms of classification used,

which are provided by python, are remarked.

15
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3.2 Data

First of all, the datasets used in the project have been downloaded from the platform kaggle.

The competition where the data was taken is called Tweets targeting Isis [7] and here, two

datasets can be found, one called isisfanboy which contains pro-ISIS tweets and the other

one, called aboutisis which contains neutral tweets in topics related to ISIS.

In both of them, the next columns are contained:

• Username: it is the identity of the account

• Tweets: the text posted in Twitter.

Aboutisis contains over 122.000 tweets which were collected on two different days,

7/4/2016 and 7/11/2016 starting from terms related to Isis.

Isisfanboy has over 17.000 tweets collected from more than 100 pro-ISIS accounts since

the November 2015 Paris Attacks. This dataset was provided in the How Isis uses twitter [24]

competition with more fields than the explained before, such as name, description, location,

number of followers, number of statuses and the time were the tweet was published.

We have taken this dataset from the Tweets targeting Isis competition because here this

dataset has the same columns than the AboutIsis one.

Inserting both datasets has been done using Pandas’ functionality read csv, which is

going to return a DataFrame object containing the columns of the datasets.

In order to make a realistic classification, the same quantity of tweets has been taken

from both datasets (the first 17.392 tweets).

For both datasets, a new column named radical is added, the value of the column is

“yes” in the IsisFanboy dataset and “no” in the AboutIsis data. The objective of adding this

column is having labeled data for making easier to learn patterns by applying supervised

machine learning algorithms.

After, these datasets have been concatenated using Pandas and with the method values

of the object DataFrame, data is converted to a numpy object in order to make the feature

extraction and applying a classifier. This data is going to enter in the pipeline, which is

going to be explained in the next section.
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3.3 Pipeline

We use the pipeline module provided by scikit-learn to automate the workflow of a classifier.

In this phase, we receive raw data as a input, this data has to be prepared for being ready

for a machine learning algorithm and because of that, we have to make some transformations

to the data in the preprocessing phase, that is going to return the data prepared for being

used by the algorithm.

After preprocessing the raw data, we can make the operations that we want with this

data in order to improve our classifier. We are going to make a feature extraction, which

receives as an input the preprocessed data, make some operations in it and returns a new

column with a new feature that can be used by the machine learning algorithm.

The pipeline has to finish with a machine learning algorithm, the last step that we are

going to do is obtaining the accuracy of the classifier.

In Fig. 3.1, we can see what we have explained before. Each phase is going to be

described in detail in next sections.

Figure 3.1: Model schema

3.4 Preprocessing

It is the process of data cleaning, in this phase, characters that don’t contain content and

can’t change the meaning of a tweet are removed.

In order to remove the not important parts of a tweet, it is significant the concept of

tokenization. It is the process of chopping up the sentence into pieces, called tokens that

can be individual characters (punctuation marks), words, numbers... In conclusion, each

token is the character or group of characters which are separated with spaces.

In this project, the tokenizer used is theTweetTokenizer, provided by NLTK, which

returns a list of tokens contained in a tweet. With this tokenizer, we have made the process

of tokenization and once we had the list of tokens, we have removed the followings ones:
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• Punctuation marks: the tokens with this characters using the list of punctuation

marks provided by the string module of Python have been removed.

• Stop words: they are words which don’t give a change of meaning to the sentence,

they are irrelevant and don’t have a value for classifying the tweets, an example of

stop words are “a”, “the” and “other”. In fact, search engines ignore these words. We

have used the stop words provided by the NLTK corpus.

• Digits: numbers have been removed because they aren’t useful in text classifications.

In order to delete digits, the isdigit method provided by the python String module

has been used.

• Emoticons: emoticons have been deleted because we don’t have a dictionary relating

all the emoticons of the different devices with their corresponding term and because

of that, it won’t help in a language classifier.

• URLs: tokens containing URLs have also been deleted because thay aren’t useful in

our language classifier.

Speaking about Twitter is speaking about hashtags. A hashtag is a string consisting

in one or more concatenated words that are preceded by the hash symbol (#). Tweets

can be grouped with hashtags, if we search for a hashtag in the Twitter bar, all the tweets

containing these hashtags will be seen and consequently, this tweets will have more diffusion,

which is one of the objectives of the ISIS.

The TweetTokenizer is the specific tokenizer for tweets, with it, hashtags can be removed;

if its strip handles option has a boolean value of true, we will remove them, the value false

will leave them. Depending on the feature desired, hashtags will be removed or not. In this

project, hashtags have been removed in all the extractors, except in the hashtag one.

After obtaining the tokens, there are words which are formed from the same root that

have the same meaning. In classification tasks, these words have to be unified in order to let

the machine learning algorithm analyze just features containing all the variations of words;

this function is made by a stemmer.

The objective of using a stemmer is normalizing the data, transforming into a common

word all the words with the same root that carries the same meaning. For example, if we

have as a token value the word killer and as another token value killing, the stemmer groups

these words in their root, which is kill.

In this project, the SnowballStemmer is the one used, it transforms the words into a
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common root that don’t have to be necessarily an existing word and WordNetLemmatizer

has also been used, it transforms the words with a common root to an existing word.

3.5 Feature extraction

It consists on building new sets of features by performing operations for taking derived data

of the initial dataset with the objective of helping in differentiating between the categories

to the subsequent machine learning algorithms. We have to differentiate this method of

giving features to our model with the feature selection method, which consists on choosing

a subset of the original data input.

All the extractors are going to receive the data as an input and after preprocessing the

data, they are going to make operations in order to get what they want from it.

For each feature extracted, a new column is added to our dataset that after, we are

going to analyze if it improves our accuracy or not.

In order to concatenate the feature extractors (which are transformers), the class Fea-

tureUnion provided by scikit-learn has to be used, which has as constructor a list of the

feature extractors that FeatureUnion is going to join into a single one. To do so, each ex-

tractor must have the methods get params (for getting the feature names of the transformer)

and set params (for setting the parameters of the transformer), these methods are inherited

if we make BaseEstimator as our transformer subclass. We should also have Transformer-

Mixin as a subclass of our extractor because this class allows us to fit and transform the

data for getting the feature wanted.

After the extraction, wordcloud [1] is going to be used for watching the most common

tokens extracted in each transformer. Wordcloud enables seeing a graphical representation

of word frequency. It represents the words of a text with different sizes for each word

depending on its frequency in the text. We are going to use this tool for representing the

words, hashtags and NERs off our two data frames.

In the following subsections, the features extracted in our project are explained.

3.5.1 Word extraction

This extractor has been made using the TfidfVectorizer tool provided by scikit-learn.

TfidfVectorizer creates a matrix of term frequency–inverse document frequency (tf-idf)

features, which means that the weight of tokens that appears frequently will be smaller
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than the weight of tokens which appear less times because these are more informative and

can determine the label when it comes to make a classification in this feature.

Applying CountVectorizer followed by TfidfTransformer would have the same result.

First of all, TfidfVectorizer creates a matrix of token counts from our data to a matrix

of token counts (like CountVectorizer) and after, it transforms the matrix of counts to a

normalized tf-idf representation (like TfidfTransformer).

TfidfVectorizer has some parameters that can be edited for adapting it to our project.

We have used as the encoding format utf-8 and as the analyzer, which is the parameter used

for extracting the sequence of tokens, we have chosen our preprocessing method, which was

explained in the previous section.

Finally, each sentence is seen by the classifier as a vector with the tf-idf weight of each

token that the sentence has.

In Fig. 3.2 and Fig. 3.3 the most frequent words contained in each dataset can be seen.

Figure 3.2: Most common words in aboutisis dataset

Figure 3.3: Most common words in isisfanboy dataset
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3.5.2 N-gram extraction

An n-gram is a sub-sequence composed by n elements of a given sequence. When making a

twitter classifier, it is as important analyzing n-grams as analyzing words because with n-

grams expressions or groups of words that are used in isisfanboys or in aboutisis can be seen

and it can help to make a more accurate classification to the machine learning algorithm.

For example, with this feature, the algorithm will see in which dataset the pair of words

islamic state or Donald Trump appears more frequently.

Implementing this feature has been similar to the word extraction, but in this case, it has

been used the CountVectorizer followed by TfidfTransformer because CountVectorizer has

a parameter called ngram range that allows us to choose the minimum and the maximum

range of n values for different n-grams to take.

3.5.3 POS extractor

The objective of this feature extractor is analyzing the grammatical categories used in the

different datasets. We have created an extractor that obtains the number of tokens with

POS categories.

First of all, tokens of each sentence have been extracted from the data with the Tweet-

Tokenizer by putting in its strip handles option the value “True” because in this extractor

usernames and hashtags are not relevant.

After, the pos tag tool provided by NLTK has been used, it gives the POS category of

each token. The objective is getting the weight of each category in all the tweets and in

order to do that, a variable called count has been created whose value is the number of

objects that pos tag has returned for the tweet. The weight of each POS category in the

tweet is the result of dividing the number of times that each category appears in the tweet

between count .

For each sentence, we are going to have a dictionary that has as a key the name of

the POS category and as the key’s value, it has the weight of the category. The categories

selected are noun, adjective, verb, adverb, conjunction, adpositions (it includes prepositions

and postpositions), pronouns and numerical tokens.

Finally, the extractor returns a list containing the dictionaries of all the tweets contained

in the training data, which is transformed to a format that the machine learning algorithm

can understand with the DictVectorizer provided by scikit-learn, which transforms lists of

feature-value mappings to vectors.
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3.5.4 NER extraction

The concept of NER refers to the process of finding and storing tokens which represent

people, organizations, locations, dates, times... The Standford NER Tagger that has been

used finds just names, organizations and locations.

The purpose of the NER extractor is to analyze the named-entities contained in each

tweet.

First of all, the data has been preprocessed using the TweetTokenizer in the mode

without hashtags. After, in order to find and store the entities contained in our data, for

each sentence of this data the Stanford NER tagger’s method tag sents has been applied,

which returns the corresponding token followed by its entity name or by “O” it it isn’t

an entity of the three wanted. We have inserted into a list the tokens that represents an

organization, a location or a person followed by its entity. With this list, a dictionary

containing each list item followed by the value 0 has been initialized. Consequently, the

keys of the dictionary are going to be the list items.

For each tweet, we are going to modify the dictionary. If an entity of the dictionary is

contained in the tweet, we are going to put the value 1 to this entity value.

Finally, a list containing all the dictionaries of the tweets contained in the training data

is returned.

In Fig. 3.4 and Fig. 3.5 the most frequent NER of each dataset can be seen.

Figure 3.4: Most common NER in aboutisis dataset

3.5.5 Hashtag extraction

The objective of the hashtag extractor is analyzing the hashtags included in each tweet.

First of all, all the data has been preprocessed using the TweetTokenizer with the
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Figure 3.5: Most common NER in isisfanboy dataset

parameter strip handles with a value of false because, in this case, hashtags don’t have to

be deleted in the preprocessing phase. After, the tokens of each tweet have been taken in

order to create a list containing the tokens starting with (#) of all the tweets. These tokens

are added as keys to a dictionary, which have as values the integer 1 if the corresponding

hashtag is in the tweet analyzed or a 0 if not.

Finally, as a result, a list containing the hashtag dictionary of each sentence of the

training data is returned.

In Fig. 3.6 and Fig. 3.7 the most frequent hashtags of both datasets can be seen without

the (#) symbol.

Figure 3.6: Most common hashtags in aboutisis dataset

3.5.6 Sentiment extraction

This extractor has been developed using the API meaning cloud for sentiment analysis.

This API returns a JSON with the result of the sentiment analysis of a tweet.

In the first place, a request for each tweet to the meaning cloud sentiment-2.1 API has

been made using our api key followed by the text contained in the tweet. The result of the

request is a JSON including fields analyzing polarity, irony and subjectivity.
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Figure 3.7: Most common hashtags in isisfanboy dataset

For each tweet, the value of the score tag field of each tweet has been added to the

JSON, which indicates the polarity found in the text analyzed, there can be six possible

values:

• P+: strong positive polarity.

• P: positive sentiment polarity.

• N+: strong negative polarity.

• N: negative sentiment polarity.

• NEU: neither positive nor negative polarity.

• NONE: sentiment not found.

Finally, the list containing all the sentiments of our training dataset is returned.

In Fig. 3.8 and Fig. 3.9, the distribution of the sentiment classification of our datasets

can be seen, in these figures, we have painted with red the negative polarity (N and N+),

with blue the positive polarity (P and P+) and with green the neutral tweets and tweets

without polarity.
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Figure 3.8: Sentiment analysis in aboutisis dataset

Figure 3.9: Sentiment analysis isisfanboy dataset

3.6 Classifiers

The last part of our pipeline is the machine learning algorithm, which learns patterns in

order to assign correctly the label given to our input data. In this case, they are going

to receive as input data the features extracted from the input of the pipeline, that were

explained in the previous section.

The algorithms need training data, which are the data that is fitted and testing data,

which is used for checking if the algorithm has assigned the correct label for the given input.

We have trained our model using cross validation, which consists on evaluating the

results of an statistical analysis guaranteeing that the training and the testing data are

independent. The technique of cross validation used is called k-fold, it consists on dividing

the given data in k parts of the same size, each part is used once as testing data and (k -

1) times as training data as it can be seen in Fig. 3.10
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Figure 3.10: K-Fold cross-validator [27]

Machine learning algorithms constructor parameters are called hyper-parameters, they

have values defined that are passed to the constructor of the algorithm. The hyper-

parameters have a big impact in the accuracy of the model and because of that, all the

possible value combinations of these parameters have to be analyzed; this is done with

GridSearchCV, which is a tool provided by scikit-learn that looks for the best value combi-

nations of the parameters.

We have analyzed the performance of different machine learning algorithms on our data;

the tables included in this section represent the accuracy of the correspondent algorithm,

which is a weighted average of the precision and has a maximum value of 1.

Each algorithm is going to be explained with detail in next subsections.

3.6.1 Multinomial Naive Bayes

Scikit-learn supplies the multinomial naive bayes classifier, which is based on Bayes’ theorem

with the ”naive” assumption of independence between every pair of features for multinomial

models.

We have modified the default alpha hyper-parameter value, this is an additive smoothing

parameter. The value used in this project is 0.01, which was the one with best results with

GridSearchCV.

We have used this classifier in conjunction with the Adaptive Boosting (AdaBoost)

Classifier, which is a machine learning algorithm that can be used with other learning

algorithms to improve their perfomance. It works by fitting firstly a classifier on the original

dataset and later more copies of the classifier on this dataset but with weights of incorrectly
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classified instances adjusted; in consequence, the classifier focuses more on difficult cases

and makes a more accurate classification.

The hyper-parameters used with the AdaBoostClassifier have been:

• Base estimator: this parameter has to have the constructor of the classifier that

is used in conjunction with the AdaBoostClassifier. In this case, the value given is

MultinomialNB(alpha=.01).

• Number of estimators: the highest number of estimators at which boosting is

finished.

• Learning rate: parameter that shrinks the contribution of each classifier.

In Table 3.1, we can see the accuracy of the MultinomialNB classifier with each feature

extractor individually. This value has been calculated using k fold with a k=10; for each

iteration, the accuracy is calculated. When the cross validation finishes, the mean and the

deviation of the accuracy values are calculated, these values are shown in the table.

Feature

extractor

Accuracy and

deviation

Words 0.94 (+/- 0.01)

N-grams 0.94 (+/- 0.01)

POS 0.57 (+/- 0.01)

NER 0.84 (+/- 0.02)

Hashtag 0.66 (+/- 0.02)

Sentiment 0.55 (+/- 0.02)

Table 3.1: MultinomialNB accuracy and deviation with each feature extractor

3.6.2 Support Vector Machine (SVM)

The support vector machine is a supervised machine learning algorithm that draws the

examples as points in space and performs classification by searching the hyper-plane which

27



CHAPTER 3. MACHINE LEARNING MODEL BUILDING AND EVALUATION

differentiate between the label categories better. When the model has found the best

hyper-plane, if it has to predict the label of new data, it will just see to which part of the

hyper-plane the new data belongs.

In Fig. 3.11 it can seen graphically what has been described above.

Figure 3.11: SVM [17]

SVM provides two types of algorithms. SVR is the one used for regression problems

and SVC, which is the one used in this project, is typically used for classification.

The SVC hyper-parameters whose values have been defined using GridSearchCV are:

• C: It is the penalty parameter of the error term. We have given to this hyper-

parameter the value 10.

• Kernel: there are five types of kernels, which are linear, polynomial (poly), radial

basis function (rbf), sigmoid and precomputed kernel. The kernel selected has been

the rbf because it can be seen with GridSearchCV that this kernel had the best results

with our classifier.

• Gamma: it represents the spread of the kernel and, consequently, the decision region.

We have given to this parameter the value 1.

• Probability: parameter whose values are true or false; it indicates whether to enable

probability estimates. We have considered the value true.

The mean and deviation of the SVM model accuracy using 10-folds with each feature

extractor individually can be seen in Table 3.2:

28



3.6. CLASSIFIERS

Feature

extractor

Accuracy and

deviation

Words 0.96 (+/- 0.01)

N-grams 0.96 (+/- 0.01)

POS 0.59 (+/- 0.01)

NER 0.86 (+/- 0.01)

Hashtag 0.67 (+/- 0.01)

Sentiment 0.55 (+/- 0.02)

Table 3.2: SVM accuracy and deviation with each feature extractor

3.6.3 K-nearest neighbors (KNN)

Algorithm based on nearest neighbors learning method. It consists on representing the items

contained in the data in the vector space and for a new sample, the algorithm searches the

k nearest data items and assigns to the new sample the label more repeated in its k nearest

neighbors.

In Fig. 3.12, the process of k-nearest neighbors can be seen. There are crosses and

squares, if the star item has to be assigned to one of these two categories, for a k=3, the

algorithm will assign to the new sample the crosses category because it sill look for the 3

nearest neighbors of the star and there, crosses are majority. For k=5, the star will have

the square category and with k=8 the crosses one.

Scikit-learn provides a classifier based k-nearest neighbors algorithm, which is called

KNeighborsClassifier. For this algorithm, the following hyper-parameter values have been

used:

• P: it has been assigned to P hyper-parameter the value 2, which means that the

algorithm looks for the nearest neighbors using the eucledian distance.

• Number of neighbors: this is the value of k, it has been assigned to this hyper-

parameter the value 13 using GridSearchCV.
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Figure 3.12: K-nearest neighbors

Finally, it can be seen in Table 3.3 the mean and deviation of the accuracy of the KNN

algorithm with 10-folds for each feature extractor:

Feature

extractor

Accuracy and

deviation

Words 0.81 (+/- 0.01)

N-grams 0.81 (+/- 0.01)

POS 0.65 (+/- 0.01)

NER 0.85 (+/- 0.01)

Hashtag 0.67 (+/- 0.04)

Sentiment 0.55 (+/- 0.04)

Table 3.3: KNN accuracy and deviation with each feature extractor

3.7 Conclusion

To conclude this chapter, in Fig. 3.13 the process of our classifier that has been explained

can be seen.
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Figure 3.13: Pipelines chema

The accuracy and deviation of each algorithm explained in this chapter (MultinomialNB,

SVM and KNN) using all the feature extractors (words, n-grams, POS, NER, hashtag and

sentiment) that were joined in a pipeline together can be seen in the Table 3.4:

Algorithm Score

MultinomialNB 0.75 (+/- 0.02)

SVM 0.92 (+/- 0.01)

KNN 0.91 (+/- 0.01)

Table 3.4: Accuracy and deviation of each algorithm using all the features extractors

As it can be seen in 3.6.1, the MultinomialNB algorithm best accuracy and deviation

is with the word or the n-gram extractor and using all the extractors this accuracy hasn’t

been improved.

With SVM, the best result is also using the word or the n-gram extractor and this

accuracy hasn’t been improved.

With KNN, as we can see in 3.6.3, the best result is using the NER extractor; combining

all the extractors has improved its accuracy.

The objective of this project is creating the best accurate model and because of that,

we have tried all the possible feature extractors combinations.

The combinations that gave the best results were:
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• MultinomialNB: The best results for this algorithm were obtained using the model

with the word, n-gram and hashtag extractors together.

• SVM: the more accurate model was achieved using the word and n-gram extractor.

• KNN: the best results for this classifier were obtained using all the extractors to-

gether.

In the Table 3.5, the results obtained with these combinations (which are our best

accuracy) can be seen:

Algorithm Score

MultinomialNB 0.95 (+/- 0.00)

SVM 0.96 (+/- 0.01)

KNN 0.91 (+/- 0.01)

Table 3.5: Best accuracy obtained for each algorithm
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CHAPTER4
Radicalization Monitoring Service

4.1 Introduction

In this chapter, we present a service for monitoring radicalization in Twitter, which con-

sists on analyzing Twitter data with the classifier developed in this project and showing a

dashboard with the discovered potential radicalized accounts.

We have encapsulated our classifier in a Senpy plug-in with the purpose of analyzing

tweets and, with the objective of creating a dashboard, we have defined a data processing

pipeline using the framework Sefarad, because it provides tools for reusing Senpy plug-ins

that allows us to ingest data from Twitter, carrying out the radicalization analysis with

Senpy and storing the analyzed data in ElasticSearch so that other tools can exploit this

data as it is described below.

The schema of our service is shown in Fig. 4.1 where it can be seen that Sefarad uses

Luigi [19] module as orchestrator; with a pipeline developed with this module, Sefarad loads

the data extracted from the Twitter API, passes this data to our Senpy plug-in, analyzes

the data using the plug-in and loads it on ElasticSearch for creating our dashboard.
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Figure 4.1: Service for monitoring radicalization in Twitter schema

4.2 Plug-in

The service created for analyzing the radicalization of an inserted text has been developed

using the Senpy API which allows the user to create its own plug-in easily and deploying

it in a Senpy server. A plug-in is a software program which adds the desired feature to an

existing application.

In Fig. 4.2, the Senpy architecture can be seen.

Figure 4.2: Senpy architecture

Senpy’s architecture is composed by two main modules: the Senpy core, which is the

building block of the service and the Senpy plugins (in yellow in the above figure), that is

the part that we have to implement; it consists on the analysis algorithm and that we have

to implement for using our classifier for analyzing texts.
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In order to create our own plug-in, a file with senpy extension has to be created con-

taining the name and the module name of our plug-in, a description, the author, extra

parameters if required and libraries required.

After creating the senpy file, it is necessary to create a file with extension py (python

file) containing the development explained in chapter 3, it means that our preprocessing

methods, feature extractors and our pipeline have to be added to this file in order to use

the model created with our pipeline in the plug-in.

The last part of our extension py file is adding a method where we have to take the

text inserted in the Senpy playground, using our classifier and returning as result a JSON

format text containing in the field (jihad:is jihadist) a true if the classifier determines that

the text inserted in the playground is radical or false if not.

After including our senpy and python file, we had our Senpy plug-in implemented.

Deploying it on the Senpy server shows the Senpy playground as seen in Fig. 4.3.

Figure 4.3: Senpy playground

After inserting a text and pushing the Analyse! button, we have as a result the JSON

with the field jihad:is jihadist indicating if our classifier has determined that the text is

radical or not as seen in Fig. 4.4.
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Figure 4.4: Radicalism Senpy plug-in response

4.3 Dashboard

The dashboard, which is going to use our Senpy plug-in, has been created using the Sefarad

API. It already provides dashboards ready to use. In order to employ its dashboards in our

project, some modifications must be done.

In this section, the Sefarad processing pipeline seen in (Fig. 4.5) and the modifications

made are explained.

4.3.1 Ingestion

The first step for creating our dashboard is downloading the data that is being represented,

to do so, first of all, we have to introduce what our dashboard includes.
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Figure 4.5: Sefarad Processing Pipeline

For our dashboard, an object called myuser containing the above fields is created in a

JSON format.

Tweets have been downloaded using the Twitter API. We have to create our Twitter

credentials for getting the consumer key, token key, consumer secret and token secret, which

are fields required in order to make requests for downloading tweets.

In the Twitter API, we have to distinguish between the tweet object, which contains

the information about a tweet and the user object, which contains information about an

user.

In our case study, we have downloaded tweets including the queries isis, islamic state

and syria, that appear frequently in our datasets as seen in chapter 3 wordclouds, these

tweets downloaded are extracted with a JSON format.

A JSON object is structured as a dictionary, it has the pair key-value and we can access

to its values using the keys contained in the JSON. Each tweet includes a user object inside,

which can be accessed using the key user of the tweet.

The user object is also in JSON format. As we said before, the user object name and

its image are needed. These fields can be extracted using the following user object keys:

Key name Description

screen name
String representing the account

name defined by the user.

profile image url
String with the URL of the profile

image.

For each user object, we have to show its last 10 tweets and analyzing the radicalization

of each of them, this is why last 10 tweets included in their timeline are downloaded. From

each tweet, the following tweet object values are shown:
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Key name Description

id

Integer which represents the tweet. This

number is unique, there can’t be two

tweets with the same id.

text
String representatoin of the tweet with

UTF-8 format.

user Profile name that has published the tweet.

created at
String which contains the date when the

tweet was published.

4.3.2 Processing and Persistence

The Sefarad API uses Luigi for creating pipelines in order to facilitate analysis. The Se-

farad pipeline developed with Luigi allows us to read the JSON file containing the data

downloaded from Twitter and send this data to our Senpy plug-in with the objective of

analyzing the radicalization of the given tweets.

For representing our myuser object, we must dump the result of the analysis on Elastic-

Search, which is the Sefarad persistence layer and stores the data needed for visualization.

To do so, the Sefarad Luigi pipeline uses the index method provided by ElasticSearch

is used. It adds or updates a JSON document in a specific index, making it searchable.

After, Sefarad takes the data dumped out on ElasticSearch, showing the data is carried

out by modifying the web components for displaying just the ones wanted (wordcloud,

sentiments, radicalization and myuser objects).

4.3.3 Visualization

A dashboard is composed by web components, which is the name given by W3C to the

technology standard that allows us to create our own web elements, that after can be

encapsulated between HTML5 tags in our principal webpage. Sefarad uses Polymer, which

is a JavaScript library in which web components can be created.

In our dashboard, the following components are represented:

38



4.3. DASHBOARD

• Wordcloud: most frequent words included in the tweets downloaded with different

sizes depending on their frequency.

• Sentiments: percentage of tweets with positive, negative or neutral polarity; this

analysis is made with meaning cloud.

• Potencial radicalist users: in this component, users are ordered by the number of

tweets classified as radical in their timeline, each user can be seen with the following

fields:

– User name: name of the twitter account.

– Image: user profile image if the API was able to download it.

– Count: number of tweets classified as radical by the model explained in chapter 3

and used in the Senpy plug-in.

– Radicalization: if the user count is greater than 3, the user is labeled as radical,

if the count is smaller than 3, the user is labeled as not radical.

– Tweets: last 10 tweet objects extracted of the user timeline.

• Radicalization: percentage of users classified as radical and not radical.

Sefarad includes dashboards ready to be used, in this case, the demo-dashboard that

this API provides is used and the web components wanted, with the object myuser, are

added to this dashboard, having as a result the dashboard shown in Fig. 4.6.

We can select the radicalism percentages and choose seeing just the potential radical

users or the not radical ones. If we select a user, we can see its last tweets marked each

tweet with the color of its sentiment polarity as seen in Fig. 4.7.
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Figure 4.6: Radicalization dashboard

Figure 4.7: Radicalization dashboard
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CHAPTER5
Conclusions and future work

5.1 Introduction

This chapter explains the conclusions obtained during the implementation of this project,

the goals achieved, problems faced and there are also some suggestions for future develop-

ments.

5.2 Conclusions

In this project, we have developed a radicalization classifier and a dashboard for analyzing

if particular users who published tweets containing terrorism related words are radical or

not.

The objective was obtaining the best possible accuracy in the tweets downloaded from

the platform Kaggle. First of all, the accuracy with individual features was extracted but

in order to get better models, we had to combine different features in order to analyze if

the classifier improved its accuracy or not.

To do so, we developed six feature extractors (words, n-grams, POS, NER, Hashtags
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and Sentiment), the objective was having stylometric features that could help the classifier

algorithm in order to have better results.

We employed the most used machine learning algorithms for classification: Multinomial

Naive Bayes, Support Vector Machine (SVM) and K-Nearest Neighbors (KNN).

As it can be seen in the results, the features that gave best accuracies were the word and

n-gram extractors, both transformers had the same accuracy, it can be because the n-gram

extractor (its features include from one token to three) includes the word extractor feature

names (features composed just by one token) followed by 2-grams and 3-grams, which don’t

improve the word extractor accuracy.

The second best extractor was the NER, this is because locations, people and organiza-

tions named in both datasets can be differentiated easily.

The third best accuracy has been got with the hashtag extractor, it’s accuracy is greater

than sixty percent with the three algorithms, so they can distinguish between hashtags of

each dataset.

The POS extractor had a accuracy of about sixty percent, which mean that the grammar

categories can be used for differing datasets.

The transformer that gave worse results was the sentiment extractor with accuracies

smaller than sixty percent. It happens because there is almost no difference in the polarity

texts of isis fans and its counterpoise dataset as we saw in the sentiment analysis results;

both datasets have a big amount of tweets with negative polarity because they talk about

terrorist attacks either informing or proclaiming and positive tweets talking about military

victories.

Finally, combining the extractors, with MultinomialNB and with KNN, we were able to

improve its accuracy; in the other hand, with SVM there wasn’t a better classifier than the

one using just the words or the n-gram extractor.

The other fulfilled goal was implementing an interface for using our classifier and watch-

ing its classification results, we could make it possible thanks to the Sefarad API by just

using the provided demo-dashboard, adding the fields that we wanted to have and inserting

the web components desired.

5.3 Future work

In this section, some topics for future developments are commented.
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• Adding new tweets to our database: in our project we have used a database

including terrorism related tweets, with fifty percent of tweets labeled as radical and

other fifty as not radical but this is not realistic because this type of content doesn’t

appear in a very extensive amount of tweets.

• Adding a topic classifier: another possible future development consists on imple-

menting a topic classifier before the classifier developed in this project. If the topic

classifier determines that the tweet topic is terrorism, then our classifier has to be

used in this tweet; if the topic is different, the tweet has to be automatically labeled

as not radical.

• Improving Sefarad: during this project, we have used our classifier with the Sefarad

API for creating a dashboard. During the development, we have found the problem

that Sefarad hasn’t the option of inserting scikit-learn’s pipelines in order to have a

field that includes a classification result for a dashboard created. It is proposed to

create a mechanism for allowing Sefarad users to insert their pipeline for visualizing

its results in a dashboard.

• Creating a translator API: during this project, we have just analyzed tweets

written in English but a big amount of tweets that talk about ISIS is posted in

Arabic. We propose as future work to create an API that translates texts offline.
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