
GRADO EN INGENIERÍA DE TECNOLOGÍAS Y

SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A CLASSIFICATION
AND DETECTION SYSTEM OF MALICIOUS EMAILS

WITH NLP

GUILLERMO CANETE RIAZA
2021

TRABAJO DE FIN DE GRADO

T́ıtulo: Diseño y Desarrollo de un Sistema de Clasificación y

Detección de Correos Maliciosos mediante Procesado de

Lenguaje Natural

T́ıtulo (inglés): Design and Development of a Classification and Detection

System of Malicious Emails with NLP

Autor: Guillermo Canete Riaza

Tutor: Óscar Araque Iborra

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A

CLASSIFICATION AND DETECTION SYSTEM

OF MALICIOUS EMAILS WITH NLP

Guillermo Canete Riaza

2021

Resumen

Hoy en d́ıa, es incréıblemente fácil tener acceso a un dispositivo electrónico, y en la mayoŕıa

de casos requieren cuentas de correo electrónico para gestionarlos. Esto se traduce en cerca

de 4.000 millones de usuarios de correo electrónico en 2020 [2]. Es muy probable que la

mayoŕıa de estos usuarios reciban spam o correos maliciosos diariamente. El spam es el

nombre que reciben los correos electrónicos no solicitados, en muchas ocasiones con fines

publicitarios.

Teniendo en cuenta este problema, es importante encontrar una solución, que en este

proyecto consiste en utilizar Procesamiento del Lenguaje Natural (NLP) y el Machine Learn-

ing para clasificar correos electrónicos en las siguientes categoŕıas: ham (correos deseados),

spam o correos fraudulentos.

Las tecnoloǵıas utilizadas en el proyecto son NLP y Machine Learning, que permiten

el procesamiento y la clasificación de textos. Se explican con más detalle en el caṕıtulo de

Background, aśı como se también se describen los principales pipelines utilizados y posibles

algoritmos.

La arquitectura propuesta consta de cuatro modelos de preprocesamiento y feature

engineering, probados en cuatro algoritmos diferentes de Machine Learning. Los modelos

se basan en: obtención directa de features, vectorizadores TFIDF y Count, combinación de

caracteŕısticas y Doc2Vec.

El caṕıtulo de evaluación se centra en el análisis de los diferentes resultados obtenidos

tras la implementación. En cada sección se estudian los diferentes resultados para dos

conjuntos de datos, uno para la clasificación de spam y otro para la clasificación de correos

fraudulentos, viendo los modelos óptimos de entre los propuestos.

En la conclusión, se presenta una visión más general del proyecto, analizando qué ob-

jetivos se han cumplido, cuáles fueron los problemas más importantes que ha habido que

afrontar y en qué se puede mejorar el proyecto.

Palabras clave: NLP, Procesamiento de Lenguaje Natural, Machine Learn-

ing, clasificación de correos, detección de spam.

I

Abstract

Nowadays, it is incredibly easy to have access to an electronic device, in many cases needing

email accounts to manage them. In addition, multiple platforms, such as social media or

video on demand, require email addresses to sign in. This translates to around 4 billion email

users in 2020 [2], and it is almost certain that those users already receive spam or malicious

emails. Spam is the name given to unsolicited emails, most often used as advertisement.

With this problem in mind, it is important to find a solution. The solution proposed in

this project is using Natural Language Processing (NLP) and Machine Learning to classify

a set of emails into the following categories: ham (wanted emails), spam or fraudulent.

The technologies used for the project are NLP and Machine Learning, enabling text

processing and text classification. They are explained in more detail in the Background

chapter, as well as describing the main pipeline used in NLP and the different algorithms

that can be used.

The architecture proposed consists of four models of preprocessing and feature engineer-

ing, tested on four different Machine Learning algorithms. The models are based on: direct

feature obtaining, TFIDF/Count vectorizer, combination of features and Doc2Vec.

The evaluation chapter is focused on analyzing the different results obtained after the

architecture is implemented and tested. Each section studies the different findings for two

datasets, one for ham/spam classification, and another for ham/fraudulent email classifica-

tion, finding the optimal models out of the ones proposed.

In the conclusion, a more general vision of the project is presented, analyzing which

objectives were accomplished, what were the most important problems faced and were can

the project be improved.

Keywords: NLP, Machine Learning, spam detection, email classification.

III

Agradecimientos

Me gustaŕıa agradecer a mis amigos y familiares todo el apoyo que me han dado durante la

carrera. Especialmente a mis padres, Mari Cruz y Evaristo, y a mis hermanos, Santiago y

Roćıo.

V

Contents

Resumen I

Abstract III

Agradecimientos V

Contents VII

List of Figures XI

1 Introduction 1

1.1 Introduction to the problem . 1

1.2 Objectives . 3

1.3 Methodology . 3

2 Background 5

2.1 Enabling Technologies . 5

2.1.1 Python . 5

2.1.1.1 Pandas . 6

2.1.1.2 Scikit-learn . 7

2.1.1.3 Matplotlib . 7

2.1.2 Natural Language Processing . 7

2.1.2.1 Artificial Intelligence . 8

2.1.2.2 Linguistics . 8

VII

2.1.2.3 Building Units . 9

2.1.2.4 Context . 9

2.1.2.5 NLP Approaches . 10

2.1.2.6 Pipeline . 11

2.1.2.7 Feature Engineering Algorithms 12

2.2 Related Work . 16

3 Architecture 17

3.1 Model 1: Word Count and Sentiment Analysis 18

3.2 Model 2: TF-IDF/Count Vectorizer . 18

3.3 Model 3: Model 1 + Model 2 . 18

3.4 Model 4: Doc2Vec . 19

3.5 Training: Machine Learning Algorithms . 20

4 Evaluation 21

4.1 Introduction . 21

4.2 Performance Measurements . 21

4.3 Datasets Used . 22

4.4 Model Evaluation . 24

4.4.1 Model 1: Word Count and Sentiment Analysis 24

4.4.1.1 Dataset 1 . 25

4.4.1.2 Dataset 2 . 27

4.4.2 Model 2: TFIDF/Count Vectorizer 31

4.4.2.1 Dataset 1 . 31

4.4.2.2 Dataset 2 . 33

4.4.3 Model 3: Model 1 + Model 2 . 35

4.4.3.1 Dataset 1 . 35

4.4.3.2 Dataset 2 . 36

4.4.4 Model 4: Doc2Vec . 37

4.4.4.1 Dataset 1 . 37

4.4.4.2 Dataset 2 . 38

4.5 Final Conclusions . 39

5 Conclusions 41

5.1 Conclusions . 41

5.2 Achieved Objectives . 42

5.3 Problems Faced . 43

5.4 Future work . 43

Appendix A Impact of this project i

A.1 Social Impact . i

A.2 Economic Impact . ii

A.3 Environmental Impact . ii

A.4 Ethical Impact . ii

Appendix B Economic Budget iii

B.1 Physical resources . iii

B.2 Project structure . iv

B.3 Human Resources . iv

B.4 Taxes . iv

Bibliography v

List of Figures

2.1 Building Blocks and Applications . 9

2.2 NLP Pipeline . 11

3.1 Architecture . 17

3.2 Model 1 . 18

3.3 Model 2 . 18

3.4 Model 3 . 19

3.5 Model 4 . 19

3.6 ML Algorithms . 20

4.1 Confusion Matrix . 22

4.2 Distribution for Dataset 1 . 23

4.3 Distribution for Dataset 2 . 24

4.4 Word Count Histogram for Dataset 1 . 25

4.5 Sentiment Histogram for Dataset 1 . 26

4.6 Precision and Recall Matrices for Model 1.1 27

4.7 Word Count Histogram for Dataset 2 . 28

4.8 Sentiment Histogram for Dataset 2 . 28

4.9 Precision and Recall Matrices for Model 1.2 30

4.10 Accuracy depending on N-Gram Range . 31

4.11 Precision and Recall Matrices for Model 2.1 with TFIDF 32

4.12 Precision and Recall Matrices for Model 2.1 with Count Vectorizer 33

XI

4.13 Precision and Recall Matrices for Model 2.2 with TFIDF 34

4.14 Precision and Recall Matrices for Model 2.2 with Count Vectorizer 35

4.15 Precision and Recall Matrices for Model 3.1 36

4.16 Precision and Recall Matrices for Model 3.1 37

4.17 Precision and Recall Matrices for Model 4.1 38

4.18 Precision and Recall Matrices for Model 4.2 39

CHAPTER1
Introduction

1.1 Introduction to the problem

In recent years, there has been an important growth in the number of people using electronic

devices, which has led to an increase in the number of unwanted and malicious emails sent,

currently accounting for 47% of the total [15]. This issue may be explained by the ease

with which companies and cybercriminals can send a large number of emails at a high rate

and very little cost. Emails of this sort are commonly known as spam and usually contain

advertisements or some sort of malicious content. On the contrary, ham is the name given

to desired emails, so in other words the opposite of spam. Malicious spam can be classified

in the following ways:

• Spoofing: it is a kind of attack in which someone claims to be from a legitimate

company by disguising things like the email address.

• Phishing: this type of emails try to deceive the receiver into providing passwords or

personal information, by making the emails’ appearance as the one from a legitimate

company. Phishing can use spoofing to make it less obvious that it is an attack.

• Malware Attachments: sending malicious software with an email.

1

CHAPTER 1. INTRODUCTION

• Fraudulent emails: deceiving people into scams, encouraging transactions or revealing

personal information.

Multiple solutions have been proposed to tackle this ongowing issue [12, 27, 28]. One

such solution that has gained popularity in recent years relies on the use of Artificial Intelli-

gence (AI). AI is a broad field which, in general terms, enables finely trained algorithms to

learn from a set of inputs to perform specific tasks. One of the more relevant fields of AI to

the topic of spam classification is known as Natural Language Processing (NLP), with Alan

Turing as its precursor [19]. NLP is commonly based on the application of AI to linguistics

by modelling human language in a way that computers can ”understand”.

Human communication is a complex process that involves combinations of words and

phrases that can acquire different meanings depending on the context. Through NLP, we

are able to accomplish, to a certain degree, text classification [5], language modelling [22],

sentiment analysis [17], or information extraction [7]. This set of methods are commonly

applied in chatbots, sentiment analysis in social media, customer service, etc. In order

to achieve such tasks, we must extract the information a text or sentence is conveying by

subdividing it into simpler units (words, morphemes, lexemes, etc).

To further understand the structure of human languages, we may differentiate between

syntax and context. 1) Syntax can be defined as the way in which words are arranged to

form sentences, 2) context relates to the different meanings a word or a set of words can

have depending on when they are used. In other words, language can be ambiguous when

the context is not considered, making it difficult for a machine to identify the information

contained in a message. For this reason, different approaches for NLP have been proposed:

rule-based, neural-network-based, and machine-learning-based [26].

Rule-based NLP is the oldest approach and it relies on building a set of rules to fulfill a

task. The machine learning (ML) approach is focused on a statistical analysis of the word

vectors that appear in a text. Machine learning based NLP relies on the use of traditional

ML algorithms in the same way they are utilized with other types of data. Although this

method fails at capturing context, it can still be advantageous in certain applications. The

neural network model is used in a similar way to the ML approach but differs in the fact

that it does not require feature engineering.

In this project, I will expand on the use of ML based NLP in order to classify emails

depending on the intent of the sender. This method is suitable for this application since for

email classification context is not necessarily relevant.

2

1.2. OBJECTIVES

1.2 Objectives

The objectives of this project are:

• To perform feature extraction from a pool of emails. By reducing a complex problem

to a set of simpler tasks we will be able to better understand the underlying processes.

• To gain knowledge in the application of some of the main NLP libraries and algorithms,

such as the Natural Language Toolkit (NLTK).

• To analyse and compare the results from different algorithms in order to combine

them effectively.

• To produce a program that combines a set of NLP related methods that achieve the

best performance when classifying emails as spam or with a malicious intent.

By successfully completing these tasks I will broaden my understanding of the Machine

Learning techniques that are most applicable to Natural Language Processing. In addition,

I will produce a basic program capable of classifying emails that will be available in an open

source repository.

1.3 Methodology

The procedure will consist of dividing the problem into features, apply a classification

technique, and produce an output (spam/ham). For this purpose, features will be extracted

by applying different NLP algorithms to the subject and body of the emails.

First, the data set will be managed using the Pandas dataframes. This will be done by

extracting the relevant fields and restructuring the data into the Pandas format. Then, the

data will be cleaned by removing empty or invalid fields. Once the structure of the data is

defined, it will be possible to start the preprocessing phase in order to apply the Machine

Learning algorithms of interest. Preprocessing is often structured in the following way:

1. Removing Punctuation

2. Stemming and lemmatizing

3. Removing stop words

4. Tokenizing

3

CHAPTER 1. INTRODUCTION

5. Vectorizing

Once the preprocessing phase is finished, we can start applying the NLP algorithms to

obtain a set of features. Said features can be joined afterwards and processed by Machine

Learning algorithms to obtain the output. Subsequently, to ensure the best performance,

we will be examining the results from applying these algorithms, by comparing the different

outputs obtained from a set of algorithms. The performance measure used will be the

classification the accuracy of these algorithms. The project will be programmed in Python

3.0, in the PyCharm IDE environment, and using Anaconda for library management.

4

CHAPTER2
Background

In recent years, technology has increasingly become more accessible to the general public,

allowing people to use tools that, not too long ago, where only available to a few. These

technologies span from programming languages to sophisticated machine learning libraries.

These tools, that can be extremely complex, now can be used in a plug and play manner.

In this chapter, we will be explaining which technologies made possible this project, and

will analyze previous work that has attempted to solve similar problems. For this specific

project the following tools have been most helpful:

2.1 Enabling Technologies

There are various technologies that make this type of projects possible. The most important

ones in our case are the following:

2.1.1 Python

The first version of Python was released by Guido Van Rossum in 1991. It is an interpreted

high-level programming language that stands out for its simplicity and ease to learn. In

5

CHAPTER 2. BACKGROUND

addition, it is object-oriented and has memory management. This features make it ideal

for newcomers, and fast prototyping and scripting.

Some of the reasons making Python widely extended as the programming language used

in Machine Learning are:

• Simplicity: simplicity is something to take into consideration when making a project.

In this case, the simple syntax and indentation system makes the code easier to follow

and faster to develop.

• Libraries: this is one of the main reasons since having a wide variety of libraries

will make it easier to develop programs. In this case, Python has many libraries

implementing crucial algorithms and functions for Machine Learning and Natural

Language Processing. Some of the biggest libraries are Scikit-learn, Pandas, Keras,

etc.

• Documentation: when a programming language or library is not well documented,

it can make finding errors and information very difficult. This is not the case with

Python.

• Reliability: it has constant updates and the capability of being deployed in many

environments. It also has great tools for library management.

• Precompiled: although compiled languages are the norm in any application that re-

quires fast run-times and low storage capacity, precompiled languages require less

overhead, making it more accessible to the public.

2.1.1.1 Pandas

Pandas [20] is an open-source Python library that has been under development since 2008.

It is used for data analysis and data manipulation. The main advantage it has is that it

provides organised and clear data structures.

The two basic data structures are Series, for 1-dimensional arrays, and DataFrames for

multi dimensional structures. Dataframes use the object Index as an unambiguous number

referring to each row. In these structures, it is very simple to swap, remove, add or modify

the data. In the preprocessing stage, it is common to modify the dataframe, removing

invalid or empty rows. Pandas allows specifying what kind of data each column has to

contain, handling rows that do not meet the requirements. With the function dropna we

can remove said rows. There is also an option to fill empty values automatically with a

6

2.1. ENABLING TECHNOLOGIES

specified value (fillna). It can be useful to fill these empty values with the mean value of the

column for example. Combining and joining dataframes is quite simple too, using concat

to join by rows or merge to join by columns. There are multiple delimited text formats

supported, such as CSV, JSON, HDF5, etc. Another advantage of using Pandas is how

easy to read the data sets are when converted into a dataframe.

2.1.1.2 Scikit-learn

Scikit-learn [21] is a Machine Learning library built with support for NumPy, SciPy and

Matplotlib, that features a range of common algorithms. These features can be used for

the following tasks:

• Classification

• Regression

• Clustering

• Dimensionality Reduction

• Model Selection

• Preprocessing

The main Scikit functionalities used in this project are the Standard Scaler, TfidfVec-

torizer and CountVectorizer, as well as the different classification algorithms. A great

advantage this library has, is the capability of comparing the results of different algorithms

with ease, enabling adapting the code to our necessities.

2.1.1.3 Matplotlib

This Python open-source library [13]is used to produce publication-quality 2D and 3D

graphs, showing visual results for programs. It makes creating and customizing plots very

easy, being able to generate different types of plots to provide the best visual aid. Some of

these graphs are, for instance: curves, histograms and scatter plots.

2.1.2 Natural Language Processing

Language is the combination of symbols and words used to communicate between humans.

As it was explained in the Introduction, Natural Language Processing is a mixture of

7

CHAPTER 2. BACKGROUND

linguistics and Artificial Intelligence.

2.1.2.1 Artificial Intelligence

Artificial Intelligence is the field of computer science that focuses on making computers

”intelligent”. In its more basic form, AI is the combination of computer science concepts

with robust data sets, enabling problem-solving. In addition, the algorithms used in AI

try to make predictions or classifications based on input data. The two types of Artificial

Intelligence are: 1) Weak AI focused on performing a specific task, 2) Strong AI a theoretical

concept where machines have a broader sense of intelligence.

2.1.2.2 Linguistics

Linguistics is the scientific study and modelling of language [18]. Language can be divided

into five levels:

• Phonology: it is the study of sounds humans can make, that are usable in language.

Each language has shared sounds and characteristic ones, making it a different case

of study for each. Phonemes are the smallest units of language and they do not have

meaning by themselves. The English language is composed of a total of 44 phonemes.

• Morphology: it is the study of morphemes, the smallest units of language with meaning

and lexemes, structural variations applied to morphemes modifying their meaning. It

takes into consideration single words only, it does not study the structural relationship

between words in a sentence.

• Syntax: sentences are structured groups of words that follow a set of rules, these are

the area of study of syntax.

• Semantics: whilst the other fields of linguistics are more focused on the structure of

language, semantics is focused on the meaning of words and sentences. Furthermore,

sentences are can be statements (true or false), questions or requests.

• Pragmatics: it is similar to semantics, but it centres on what sentences and words

imply in different situations.

8

2.1. ENABLING TECHNOLOGIES

Figure 2.1: Building Blocks and Applications

2.1.2.3 Building Units

Natural language is the ordinary language that people use, originated from years of evolution

and adapting to human needs. The main goal of NLP is making computers able to interact

with humans by either processing or generating language, normally both.

As it can be seen in Fig. 2.1, for analysing and generating language we need to divide

it into building blocks that computers can use. These blocks are the ones discussed in the

Linguistics section, and each can be used for different tasks inside NLP.

2.1.2.4 Context

A factor to take into consideration when building an NLP project is context, as words have

more than one meaning and it depends on where and when they are used. So, a broad

definition of context can be the meaning a word or phrase has depending on what it is

surrounded by. Generally, this is studied by the combination of semantics and pragmat-

ics. Although humans tend to understand context easily, computers can have a hard time

capturing certain meanings in different situations. This problem can be due to multiple

causes:

9

CHAPTER 2. BACKGROUND

• Ambiguity: words having multiple meanings that can only be understood by their

context.

• Common Knowledge: as we grow up we acquire certain knowledge that is obvious to

us and common in our environment or culture.

• New words: as it was said before, language adapts to human needs, meaning it is

dynamic and keeps evolving. So something to take into consideration is that new

words keep appearing.

2.1.2.5 NLP Approaches

As it was mentioned in the introduction, there are three main approaches [26] in which NLP

tackles problems, these are:

• Rule-based or Heuristics: it consists of building a set of rules to do a task, requir-

ing previous knowledge from the developer in the field of work. In most cases, they

require a dictionary of words and the use of Regular Expressions or context-free gram-

mar(CFG).

• Machine Learning: the distributional approach using ML is focused on comparing the

similarity of words based on the statistical frequency of occurrence in other texts. For

instance, the word ”calculus” is more probable to appear in a text about mathemat-

ics than in one about politics. After having the statistical representation of a text,

traditional machine learning algorithms can be applied. Although this approach does

not rely on the meaning of words, it can be useful for text classification or checking

if words are being used similarly. The Machine Learning approach, either supervised

or unsupervised has three shared steps: feature selection, learning the model from

the features and evaluating the model. This model is very scalable and flexible, as it

treats text as arrays of data.

• Neural Networks: these networks are composed of layers of nodes, in which the first

layer is the input, the last one is the output and all the layers in between remaining

hidden. Nodes are connected to other nodes and they have an associated weight and

threshold, that determine the importance of a variable in the model. This method

has the advantage that, unlike ML, does not need the feature selection phase as the

neural network does it. Some of the more common neural networks used in NLP are

recurrent neural networks, convolutional, transformers and auto-encoders. Two of the

10

2.1. ENABLING TECHNOLOGIES

main problems of using this approach are that it is easy to do overfitting when the

data sets are not big enough and the high cost involved in training the networks.

2.1.2.6 Pipeline

Pipelines [26, 9, 16] allow addressing problems in an organised and structured way. The most

common NLP pipeline is structured as seen in Fig. 2.2: data acquisition, preprocessing,

training and evaluating the results. However, some of the preprocessing steps can be done

in a different order if necessary.

Figure 2.2: NLP Pipeline

1. Data Acquisition: to build the model we need data that in the case of NLP is text.

Data can be acquired in multiple ways but a common method in NLP is using open

source datasets available or web scraping to retrieve information from websites and

social networks. Another method worth to consider in this project’s context, is creat-

ing an email account spam and malicious email gathering. The next step is extracting

the raw text from the input and cleaning it up by removing empty or invalid fields.

In some cases spelling correction can be added due to the fact the scraped data will

probably have spelling errors and it is necessary to use as much clean data as possible

to train the models more effectively.

2. Preprocessing: once we have the raw text and have cleaned the dataset we can advance

into the preprocessing stage, which will allow advancing into the next stage.

(a) Normalization: in this step, all the text is converted to lower case and punctua-

tion is removed.

[’They won the trophy easily’] would be [’they won the trophy easily’]

(b) Tokenization: the text is divided into an array of smaller units, normally words,

called tokens.

[’they won the trophy easily’] would be [’they’, ’won’, ’the’, ’trophy’, ’easily’]

11

CHAPTER 2. BACKGROUND

(c) Stemming/Lemmatizing: Stemming consists of removing the suffixes of words

leaving the core or stem, even though many times these stems are not linguisti-

cally correct.

Lemmatizing instead of reducing words to their stem, reduces them to its lemma,

their basic form.

Stemming: [’they’, ’won’, ’the’, ’trophy’, ’easily’] would be [’they’, ’won’, ’the’,

’trophi’, ’easili’]

Lemmatization: [’they’, ’won’, ’the’, ’trophy’, ’easily’] would be [’they’, ’win’,

’the’, ’trophy’, ’easily’]

(d) Stopwords: removing irrelevant words can be important before applying further

algorithms, that is why stopwords are removed. It requires a dictionary of words

considered stopwords for the language in which we are working. It is also possible

to add more stopwords if necessary.

[’they’, ’won’, ’the’, ’trophy’, ’easily’] would be [’they’, ’trophy’, ’easily’]

(e) Feature Engineering: After the first part of the preprocessing has been done, we

have to do feature engineering before we apply the machine learning algorithms.

Machine learning works with numbers, not with text, so in this phase, we will

have to map the text into a set of numerical features. The definition of feature

is: ”A prominent or distinctive part, quality, or characteristic”, which is what

we will have to do with our preprocessed text. We will have to find features that

are representative enough to characterise the text when we process it with the

ML algorithms. Some of the most frequent methods will be discussed below.

Once the feature engineering is done, it is important to do feature scaling, because machine

learning algorithms work better when the attributes are in the same range. Two common

ways of achieving this [6, 11] are 1) normalization: shifting and rescaling values so that

they range from 0 to 1, or 2) standarization: subtracting the mean value so that the total

mean is zero. In this project we will be using the second method via the Standard Scaler

provided by Sklearn.

2.1.2.7 Feature Engineering Algorithms

In this part we will be describing some of the many feature engineering algorithms [24, 25]

A vector space model is a way of representing text units as vectors to use them for machine

learning. This model is based on the concept of similarity [14, 26]. A way of calculating

12

2.1. ENABLING TECHNOLOGIES

the similarity between texts is cosine similarity, defined as:

cosϕ =
A ·B

||A|| · ||B||

The closer the two vectors are, the smaller the angle, meaning the cosine is closer to

1 and the words are similar. The more separated they are, the closer they will be to 180,

meaning the cosine will approximate -1 and the words are opposite. When the cosine equals

zero, it means the vectors are orthogonal and the words are not correlated.

The following algorithms fall under the category of vector space models and work simi-

larly.

• One Hot Encoding: [8] given a vocabulary of k words, we assign to each word an

integer between 1 and k, that we will call x to encode it. Now, each word will have

assigned a vector of k dimensions, in which every value is 0 except for the value in

the position x of the vector, which will be 1. While it is a simple way of converting

words into vectors, it is not the most efficient since the dimensions of the vectors will

depend on the vocabulary of the text analysed. An example of one-hot encoding:

Corpus Encoding
One-Hot

Encoding

they 1 [1,0,0,0,0]

won 2 [0,1,0,0,0]

the 3 [0,0,1,0,0]

trophy 4 [0,0,0,1,0]

easily 5 [0,0,0,0,1]

• Bag of Words: the bag of words model or BoW [24] is a way of representing text as

vectors similar to one-hot encoding. In this case a text is viewed as a bag in which

context and word order are ignored. The most relevant thing is the set of words

used and the times they occur in said text. This way we can represent a text with

a vector of k dimensions, being k the number of unique words in our vocabulary.

In this vector, the positions corresponding to words in the text equal the number of

occurrences of those words and zeros in the rest of positions. It is more clear in the

following example:

13

CHAPTER 2. BACKGROUND

With the corpus : ”They won the trophy easily” and ”The car won the race”

They Won The Car Trophy Easily Race Vector

Text 1 1 1 1 0 1 1 0 [1,1,1,0,1,1,0]

Text 2 0 1 2 1 0 0 1 [0,1,2,1,0,0,1]

The main issue BoW has is that the vector dimensions increase with the size of the

vocabulary and it completely ignores context. Another drawback is the sparsity of

the vectors as most values will be zeros.

• N-grams: the n-gram [1] approach centres on analysing the text by dividing it into

groups of n words, allowing to see which words are more probable to go together.

When using n-grams, we are considering a Markovian model, in other words, we are

considering that each word depends on the previous one, making it possible to predict

the next most probable word. Language can be modelled as a probability distribution

of words, so the chain rule for the n-gram model is:

p(w1, w2, w3, ..., wn) ≈ p(w1)p(w2|w1)p(w3|w2, w1)...p(wn|wn−1, wn−2, ..., wn−N))

To estimate the maximum probability, we can use the maximum likelihood estimation

or MLE, that for a bigram model would be:

p(wi|wi−1) =
c(wi−1, wi)∑
w c(wi−1, w)

An example of this, with <s> and </s> indicating the start and end of a sentence:

<s>I ate good </s>, <s>I ate a tasty apple</s>, <s>My friend went fishing</s>

p(I| < s >) =
c(I, < s >)

c(< s >)
=

2

3

p(good|ate) =
c(ate, good)

c(ate)
=

1

2

p(apple|tasty) =
c(tasty, apple)

c(apple)
= 1

It is a way of solving the problem that BoW has with context. However, both models

are often combined in what is called Bag of N-grams, taking sets of words instead of

14

2.1. ENABLING TECHNOLOGIES

Term Count

I 1

Ate 1

Well 1

Term Count

I 1

Ate 1

A 1

Tasty 1

Apple 1

individual ones. Although this model captures context better than the ones mentioned

before, and the co-occurrence of n-grams in different texts will result in a closer

similarity, the resulting matrix will still be sparse.

• TF-IDF: it stands for term frequency-inverse [26] document frequency and it is used

to measure the frequency of a word or n-gram in a document. Unlike the previous

models. TF-IDF does not treat all words with the same importance. If a word appears

a lot in a document but does not appear in the other documents, it means it provides

more information.

Term frequency measures how many times a word appears in a document.

TF =
Number of occurrences in a document

Number of words in the document

Inverse Document Frequency measures how much information a term provides to the

whole corpus by analysing how rare it is.

IDF = log
Number of documents in the corpus

Number of documents containing the term

Term frequency-inverse document frequency:

TFIDF = TF × IDF

For instance:

Document 1: ”I ate well” ; Document 2: ”I ate a tasty apple”

For every word in document 1: TFdoc1 = 1
3

For every word in document 2: TFdoc2 = 1
5

The idf for ”ate”: IDF (”ate”) = log2
2
1 = 1

15

CHAPTER 2. BACKGROUND

TFIDF (”ate”, Doc 1) = 0.33× 1 = 0.33

TFIDF (”ate”, Doc 2) = 0.2× 1 = 0.2

• Word Embedding: many words are related even though they are not similar. Word

embedding [4] is a much more complex model that can capture semantical relationships

between words. A word embedding is a vector that represents a set of words. A

technique frequently used is to create embeddings using Wor2vec. This architecture

has as its core a 3 layer neural network used to learn how words are associated in a

corpus. The neural network can use 1) the continuous bag of words model, a variation

of BoW, that captures word occurrence with respect to a word. This models allowing

prediction given a context. Or it also can use 2) skip-grams, that opposed to CBoW,

try to predict context when given a word. Training word embeddings can be a costly

task, so a common solution is using pre-trained ones, such as Gensim Word2vec. The

Doc2Vec architecture is another possibility, being is based on the Word2Vec model,

but instead of vectorizing words, it creates that represent documents.

2.2 Related Work

Spam detection is a well-researched problem with lots of examples, in this section we will

be talking about two of them.

The first project to discuss is titled ”Mail Spam Detection: A Method of Metaclassifier

Stacking” as found in [28]. It is focused on email spam detection using hybrid methods and

evaluating the results. In this project, first, the author explains different types of classifi-

cation as well as some models. After explaining the methodology to achieve classification,

three models are chosen. Finally, the classification is done, testing the different combina-

tions of those three models. In our project we are going to do something similar with two

of the models, evaluating if there is an improvement when combining them.

In this case, a similar project is ”Adversarial Attacks on SMS Spam Detectors” by

Lowri Williams and Irene Anthi. This article [27], is a part of the whole project, centered

in classifying SMS messages. Although it uses different procedures to the ones implemented

in this project, it was useful to see how some of the problems were dealt with. In their

project, they use the a model based on word embeddings using Gensim Word2vec library

for feature engineering. From the two options mentioned when describing Word2Vec, they

use skipgrams. This enables predicting context out of the SMS messages they are processing.

16

CHAPTER3
Architecture

In this project, the data used as an input comes from two open source datasets from the

Kaggle website. The project will be divided in 2 parts: one for detecting if an email is spam

or ham, and another for detecting if an email is fraudulent. To achieve the best results, we

will study different models to analyse which one works better for each dataset.

There will be four different models varying in the feature engineering phase, and each

model will be tested with various machine learning algorithms. Each model has its own

pipeline that can vary, but the basic one is the one seen in Fig. 3.1.

Figure 3.1: Architecture

17

CHAPTER 3. ARCHITECTURE

3.1 Model 1: Word Count and Sentiment Analysis

In this model, the text will be characterized by the number of words in each text and its

sentiment. The preprocessing will consist of obtaining both parameters. Obtaining the

word count is straighforward, however, for the sentiment we will need to use the Sentiment

Intensity Analyzer from NLTK. This library returns a value ranging from -1 to 1, represent-

ing sentiment. After these two values are obtained, they have to be scaled with the Sklearn

Standard Scaler to prepare them for the training phase. The pipeline will end up with the

structure seen in Fig. 3.2.

Figure 3.2: Model 1

3.2 Model 2: TF-IDF/Count Vectorizer

In this model, we will be using the Sklearn libraries Tfidf Vectorizer and Count Vectorizer,

testing which one gives better results. The normalization, tokenization, lemmatization and

stopword removal is done automatically by these libraries. So the preprocessing phase is

reduced to applying the TFIDF and Count Vectorizer algorithms. After obtaining the

features, we use the Standard Scaler to prepare the data for training. The pipeline will end

up looking as seen in Fig. 3.3.

Figure 3.3: Model 2

3.3 Model 3: Model 1 + Model 2

Model 3 is a combination of the two previous models, including the preprocessing from model

1 and from the Sklearn libraries. In the Feature Engineering phase, once the vectorizer is

trained, the word count, sentiment and vectors are concatenated into a single matrix that

is passed to the Standard Scaler for further training, as it can be seen in Fig. 3.4.

18

3.4. MODEL 4: DOC2VEC

Figure 3.4: Model 3

3.4 Model 4: Doc2Vec

In this model, we will need to do the first part of the preprocessing manually as seen in Fig.

3.4, because it is not included in the Doc2Vec library:

1. Normalization: removing punctuation, removing digits and making every character

lowercase.

2. Stopword Removal: using the nltk corpus of stopwords, we proceed to remove them

from our text, leaving only the relevant words. It allows to add custom words to the

stopwords corpus if necessary.

3. Lemmatizing: the lemmatizing is done with the nltk Word Net Lemmatizer, applied

to the text without stopwords.

4. Tokenization: with the nltk Word Tokenizer, the text is converted into tokens, ready

for the feature engineering.

The feature engineering will be done with the Doc2Vec library from Gensim. It works

similarly to the Word2Vec algorithm, but instead of providing word vectors, it provides a

vector for each text. However, before generating these vectors, it is necessary to build a

vocabulary and train the algorithm.

Figure 3.5: Model 4

19

CHAPTER 3. ARCHITECTURE

3.5 Training: Machine Learning Algorithms

Each model is going to be tested with various ML algorithms to evaluate the different

results, as seen in Fig. 3.6. The 4 algorithms used for every model will be:

• Decision Tree Classifier

• Stochastic Gradient Descent Classifier

• Linear Regression

• Random Forest

Figure 3.6: ML Algorithms

20

CHAPTER4
Evaluation

4.1 Introduction

In this chapter, we will be covering the evaluation of the different models used to detect

spam and fraudulent emails, as mentioned in the architecture. First, we will be examining

the datasets used in the project and what they are used for. After, we will be analyzing

the results of the different models and machine learning algorithms for each dataset, using

as a measurement of success the accuracy of the classifiers.

4.2 Performance Measurements

There are other ways to evaluate the performance of a classifier rather than using only the

percentage of emails classified correctly [11]. One of these is the confusion matrix, which

represents positive values classified as positive (true positive), negative as negative (true

negative), positive as negative (false positive) and vice versa (false negative). This can be

seen more clearly in the Fig. 4.1.

21

CHAPTER 4. EVALUATION

Figure 4.1: Confusion Matrix

From this matrix we can extract some more measurements, such as precision, recall and

F1-score. Precision measures the true positives (TP) out of all positives:

precision =
TP

TP + FP

Recall measures the true positives (TP) out of all the real positives:

recall =
TP

TP + FN

The F1-score is a useful value when comparing classifiers and it is obtained by combining

precision and recall as follows:

F1 =
2

1
precision + 1

recall

4.3 Datasets Used

In this project, we have used two datasets, one for ham/spam classification and another for

fraudulent email detection.

The ham/spam dataset [10] was obtained from the Kaggle website and was already

labelled. It is a ’.csv’ file in which each sample consists of: id number, text, label (ham or

spam) and a numeric label. This file format is simply converted into a Pandas dataframe,

enabling handling each field easily. Once it is converted into a dataframe, the text is divided

into two fields, subject and email body, due to the fact that they were merged.

The dataframe’s data looks as seen in the table below. In addition, in Fig. 4.2 it can

be seen the distribution of ham and spam in the dataset. Having much more ham emails

than spam ones may condition the spam detection accuracy.

22

4.3. DATASETS USED

subject text label

Re: Indian Springs this deal is to... 0

Looking for medication?... it is difficult to make ... 1

re: first delivery ... vance, r ndeal number... 0

Figure 4.2: Distribution for Dataset 1

The second dataset was also obtained from the Kaggle website and contains only fraud-

ulent emails. The file is in ’.txt’ format and contains the raw emails without separation,

meaning that it was necessary to clean and label the dataset. Each email is composed of

around 10 fields such as: ”From”, ”To”, ”Return path”, ”Content type”, etc. These fields

were ignored in this project and we only kept the subject and the body. The label had to

be added manually by creating a new field in the dataframe, which equals 1 (fraudulent) for

every email. This leaves a dataset only composed of fraudulent emails (all labels equal to 1).

So after this, the dataset was merged with the emails labelled as ham from the first dataset,

labelled as 0. Fig. 4.2 shows the distribution of ham and spam for the second dataset. In

this case, the dataset is much more balanced, having 56% ham and 44% fraudulent emails.

The dataframe’s data looks as seen in the table below.

23

CHAPTER 4. EVALUATION

subject text label

URGENT BUSINESS ASSIST... FROM:MR. JAMES NGOLA... 1

URGENT ASSISTANCE... Dear Friend, I am Mr. Ben... 1

GOOD DAY TO YOU FROM HIS ROYAL MAJESTY ... 1

Figure 4.3: Distribution for Dataset 2

4.4 Model Evaluation

This part of the project will test the four models and machine learning algorithms with the

ham/spam (Dataset 1) and with the ham/fraudulent dataset (Dataset 2). In addition, each

model will be evaluated selecting the ML algorithm with the best accuracy.

4.4.1 Model 1: Word Count and Sentiment Analysis

The first model has as main features the word count and sentiment: 1) word count is just

the number of words in each text and 2) sentiment is represented by a number between -1

24

4.4. MODEL EVALUATION

and 1. These two variable are combined to form the features and then are scaled to prepare

them for training. Even though it is a rough approach, it can be useful to see the accuracy

that can be achieved with this model in order to combine it with other features.

4.4.1.1 Dataset 1

With the ham/spam dataset, we can appreciate in the word count histogram (Fig. 4.4)

that the subject is less than 50 for most emails in both the ham and spam categories. The

word count for the main text generally remains below 2000, but ham texts seem to have

most values closer to zero.

Figure 4.4: Word Count Histogram for Dataset 1

In the sentiment histogram seen in Fig. 4.5, there is no obvious pattern, except that

ham emails tend to be more neutral.

25

CHAPTER 4. EVALUATION

Figure 4.5: Sentiment Histogram for Dataset 1

Studying the correlation between this variables and the label, we can see that there

is practically no linear relation between them, which can make some machine learning

algorithms perform badly.

Word

Count
Sentiment

Label 0.066 0.132

Table 4.1: Correlation matrix for the subject

Word

Count
Sentiment

Label 0.006 -0.0729

Table 4.2: Correlation matrix for the text

Looking at the percentage of mails correctly classified, that can be seen below, we can

see that the Random Forest is the one getting more right.

26

4.4. MODEL EVALUATION

ML Algorithm
Success

Rate

Decision Tree 66.28 %

SDG 75.36 %

Logistic Regression 73.82 %

Random Forest 77.87 %

In the Fig. 4.6, we can see from the f1 value that, indeed, the Random Forest algorithm

performs the best for both classifying ham and classifying spam.

Figure 4.6: Precision and Recall Matrices for Model 1.1

4.4.1.2 Dataset 2

With this dataset, it is easier to see certain patterns in the histograms (Fig 4.7 and Fig.

4.8), such as: the word count for the fraud text has a higher mean than the ham text, and

they clearly tend to be positive when looking at the sentiment.

27

CHAPTER 4. EVALUATION

Figure 4.7: Word Count Histogram for Dataset 2

Figure 4.8: Sentiment Histogram for Dataset 2

28

4.4. MODEL EVALUATION

In this case, there is some correlation between the variables and the label, which means

there is a weak linear relation between them. It can be seen in these tables:

Word

Count
Sentiment

Label -0.336 0.132

Table 4.3: Correlation matrix for the subject

Word

Count
Sentiment

Label 0.307 0.4547

Table 4.4: Correlation matrix for the text

Looking at the success rate and precision and recall matrices, we can observe that the

Random Forest is by far the algorithm that performs best in this model, achieving a 90%

of emails correctly classified.

ML Algorithm
Success

Rate

Decision Tree 84.07 %

SDG 44.08 %

Logistic Regression 73.75 %

Random Forest 90.06 %

In the Fig. 4.9, we can see from the f1 value that, the Random Forest algorithm performs

the best again for both ham and spam.

29

CHAPTER 4. EVALUATION

Figure 4.9: Precision and Recall Matrices for Model 1.2

30

4.4. MODEL EVALUATION

4.4.2 Model 2: TFIDF/Count Vectorizer

In this model, we will test the results for TFIDF and Count Vectorizer separately for both

datasets. These Scikit libraries do not require any preprocessing as they already include it

and saves a few steps. The min-df parameter represents the minimum number of times a

term must appear to be considered by the function, in this case is set to three. Another

important thing to consider is what range of n-grams works best for this model. By defining

a test function that plots the probability of success for each model and considering different

n-gram ranges, we obtain the graph seen in Fig.4.10:

Figure 4.10: Accuracy depending on N-Gram Range

It is clear that the bigger the n-gram range used, the worse it performs. This can be

due to the fact that the datasets used are fairly small for NLP and the bigger the n-grams,

the lower probability of appearance in another text. This means that for this model we will

use unigrams, achieving better results.

4.4.2.1 Dataset 1

Using the TFIDF Vectorizer on the first dataset, the four algorithms perform quite well,

having as the best candidate the logistic regression one, with a 98.16 % success rate, while

31

CHAPTER 4. EVALUATION

having 0.99 and 0.97 for the f1 values.

ML Algorithm
Success

Rate

Decision Tree 93.43 %

SDG 95.27 %

Logistic Regression 98.16 %

Random Forest 97.39 %

In the Fig. 4.11, we can see from the f1 value that Logistic Regression performs the best

for ham and classifying spam.

Figure 4.11: Precision and Recall Matrices for Model 2.1 with TFIDF

With the Count Vectorizer, the performance decreases, having the Random Forest as

the best performing.

32

4.4. MODEL EVALUATION

ML Algorithm
Success

Rate

Decision Tree 92.85 %

SDG 94.30 %

Logistic Regression 95.27 %

Random Forest 97.5 %

In the Fig. 4.12, we can see from the f1 value that Random Forest is the most suitable.

Figure 4.12: Precision and Recall Matrices for Model 2.1 with Count Vectorizer

4.4.2.2 Dataset 2

For the TFIDF Vectorizer, the algorithm that works the best in this case is the Logistic

Regression (LR), reaching 99.17 % of correctly classified emails. Even though LR has the

higher success rate, the other algorithms also perform very well.

33

CHAPTER 4. EVALUATION

ML Algorithm
Success

Rate

Decision Tree 96.89 %

SDG 98.56 %

Logistic Regression 99.17 %

Random Forest 98.94 %

In the Fig. 4.13, we can see from the f1 value that Logistic Regression and Random

Forest have the same performance.

Figure 4.13: Precision and Recall Matrices for Model 2.2 with TFIDF

The Count Vectorizer has a decrease in performance, reducing the success rate of the

SDG, LR and Random Forest by 1%, and the Decision Tree by around 6%.

ML Algorithm
Success

Rate

Decision Tree 92.79 %

SDG 98.79 %

Logistic Regression 98.71 %

Random Forest 98.79 %

34

4.4. MODEL EVALUATION

Seeing the Fig. 4.14, we can observe that Random Forest, LR and SGDC have the same

f1 values.

Figure 4.14: Precision and Recall Matrices for Model 2.2 with Count Vectorizer

4.4.3 Model 3: Model 1 + Model 2

In this subsection, we will be studying what happens when we combine Models 1 and 2. For

Model 2 we will be using TFIDF with unigrams, as it outperformed the Count Vectorizer.

Afterwards, we will evaluate if it made the results improve and why.

4.4.3.1 Dataset 1

With the ham/spam dataset, combining the two models produces a decrease in the perfor-

mance compared to the TFIDF model alone. The Decision Tree, SDG and Random Forest

decrease, and the Logistic Regression remains the same.

ML Algorithm
Success

Rate

Decision Tree 92.56 %

SDG 94.49 %

Logistic Regression 98.16 %

Random Forest 97.29 %

As it can be seen in Fig. 4.16, Logistic Regression has the highest f1 values.

35

CHAPTER 4. EVALUATION

Figure 4.15: Precision and Recall Matrices for Model 3.1

4.4.3.2 Dataset 2

In this case, the combination of both models does improve the success rate of all algorithms,

except for the Random Forest, that decreased by 2%.

ML Algorithm
Success

Rate

Decision Tree 94.76 %

SDG 98.94 %

Logistic Regression 99.32 %

Random Forest 99.24 %

In this case, in Fig. ??, Random Forest, LR and SGDC have the highest f1 values, with

0.99.

36

4.4. MODEL EVALUATION

Figure 4.16: Precision and Recall Matrices for Model 3.1

4.4.4 Model 4: Doc2Vec

The last model studied is the Doc2Vec, which is based on word embeddings to create vectors

out of each document, in this case, from each email. This model is the one that takes the

longest to train, due to the fact that it is necessary to build a vocabulary first for it to work.

4.4.4.1 Dataset 1

The results of this model are notably worse than in models 2 and 3, but are still much

better than using word count and sentiment. The best performing algorithm is Random

Forest with a 91.5% of success rate.

ML Algorithm
Success

Rate

Decision Tree 77.34 %

SDG 87.24%

Logistic Regression 88.48 %

Random Forest 91.5 %

Fig. 4.17 confirms that Random Forest is the ML algorithm that works best in this

case.

37

CHAPTER 4. EVALUATION

Figure 4.17: Precision and Recall Matrices for Model 4.1

4.4.4.2 Dataset 2

This model has the Random Forest algorithm as the best performing one with 98.42 %.

Even though it performs better than Model 1, Models 2 and 3 have a higher probability of

classifying fraudulent emails correctly.

ML Algorithm
Success

Rate

Decision Tree 91.38 %

SDG 94.41 %

Logistic Regression 96.05 %

Random Forest 98.42 %

In this case, Random Forest is the more suitable algorithm, as seen in Fig. 4.18

38

4.5. FINAL CONCLUSIONS

Figure 4.18: Precision and Recall Matrices for Model 4.2

4.5 Final Conclusions

As it was established in the introduction of this section, the characteristic used as a mea-

surement of success in this project is the model accuracy , but also considering the f1 values.

For that reason we can say that the models that worked the best were:

• For Ham/Spam Classification: TFIDF and TFIDF combined with word count and

sentiment with 98.16% success rate.

• For Ham/Fraud Classification: The TFIDF model combined with word count and

sentiment had the best results with 99.32% success rate.

This does not mean that we should instantly discard the other models, it could be

interesting to test them in a real environment to analyse how they adapt.

Now we will try to see why some of the models might have failed:

• Model 1: It is a very basic approach to the problem and the results where better than

expected initially. In spite of that, it was not enough to characterize the problem as

well as the other models.

• Model 3: For Dataset 1, even though it has the same accuracy than Model 2 with

TFIDF alone, the word count and sentiment are only adding noise, and in the best

case the probability remains the same than in Model 2.

• Model 4: As it was mentioned before, the Doc2Vec needs to have a vocabulary built

before training the algorithm. This means that if the dataset is not big enough, it will

39

CHAPTER 4. EVALUATION

perform poorly. The datasets used are relatively small, especially Dataset 1, which

explains why the success rate was lower than in models 2 and 3.

40

CHAPTER5
Conclusions

5.1 Conclusions

Human interactions and language are complex processes that with current technology are

extremely hard to model effectively, and even harder to predict. This project has focused on

examining the performance of a set of widely used methods in the field of Natural Language

Processing, applying them for spam and fraudulent detection. This chapter is dedicated to

discuss the conclusions that can be drawn from the results.

An important takeaway has been how challenging it is to tackle an open ended prob-

lem. First, analysing the problem as a whole, doing the necessary reading and background

research. Then, laying out the key components that form the problem in order to consider

the optimal solutions to implement. Finally, analysing critically a set of results drawing

reasonable conclusions.

The spam detection problem is a well studied topic, with a great amount of papers on

it. Doing a deep literature search has helped me in order to understand how problems are

dealt with in this field. However, it is an ongowing issue that is still trying to be solved in

more efficient ways.

41

CHAPTER 5. CONCLUSIONS

It was crucial learning about how important a good dataset is and the different data

acquisition methods, such as web scraping or email account creation for spam gathering.

Although, for this specific project, the datasets used were open source, there was still

cleaning and adaptation to be done.

Another thing that can be extracted from this work, is learning the basics of Machine

Learning and NLP, for instance:

• What supervised and unsupervised ML models are.

• How different ML algorithms work.

• Different NLP approaches.

• The basic NLP pipeline.

• The different NLP models, as well as their advantages and disadvantages.

• Representing and evaluating different models

One of the most important things to highlight from this project, is the challenge of

building a workflow in order to develop a functional program from start to end. In this

process, it is where most work has been done and knowledge was gained. Constant reading,

and trial end error was required for successfully completing the task.

5.2 Achieved Objectives

This section will review if the objectives stated in the Introduction have been achieved:

• Feature extraction was successfully achieved, performing it with 4 different models,

understanding each part necessary to make them work.

• By creating the application, I had to acquire the knowledge necessary to understand

the fundamentals of NLP and how to use many libraries to carry out NLP algorithms.

• The analysis and comparison of results was done in the evaluation section, specifying

which of them worked best.

• The final program combines NLP and ML algorithms achieving email classification,

detecting if they are ham, spam or of malicious intent.

42

5.3. PROBLEMS FACED

5.3 Problems Faced

In this project there were many problems along the way, being key doing the research and

investigation necessary to solve them. The main problems were:

• Finding a suitable dataset: at the start of the project, the dataset chosen was not

suitable for this task. The fields were varying from email to email, and many of the

texts were merged which made it impossible to get enough samples. The dataset used

in the end was very well separated and labelled, however, it did not have many fields

that could have been relevant such as sender, receiver, etc.

• Learning Machine Learning, Natural Language Processing and Python from scratch:

when the project was planned, I had no knowledge of either of those topics, so it was

a challenge to balance learning all of them at the same time.

• Organising all the models in the program, for efficient evaluation and graphic repre-

sentation was quite tedious and caused many errors. However, it payed off in the end

by simplifying the process of comparing every model making it faster.

5.4 Future work

The project achieved the initial goal of detecting spam and malicious emails. For this, we

considered different models, some of them reaching 99% of accuracy. Even though this task

was accomplished successfully, there is still much work that can be done to improve.

A crucial aspect to take into consideration for further work is the resources needed to

train some models, achieving good results. They not only do they require a lot of time to

train, but also, they need large datasets to perform effectively.

Something considered at the start of the planning, was using the email sender address

and receiver, as well as analysing if there were files attached, but it was not possible due

to the bad quality of most datasets found. Another thing that could be of great interest, is

making the program detect more types of malicious emails such as phishing or spoofing.

Another point to improve, is the number of models used. A big part of projects in

this field has to be dedicated to testing different models and Machine Learning algorithms.

That is why the models used in this particular project can be fine tuned, finding the best

hyperparameters with tools like GridSearch, to optimize the results.

43

CHAPTER 5. CONCLUSIONS

Furthermore, is necessary to test the program in a real environment to see how well it

performs outside of the testing dataset, seeing if there was oferfitting done when testing

it in the training environment. This can be achieved with a new dataset or for instance,

making it an add-on for an email service application.

The code for the application can be found at: ”https://github.com/gCanete/Email-

Classification”

44

APPENDIXA
Impact of this project

In the appendix we will analyse the different impacts in relation to this project, including:

social, economic, environmental and ethical.

A.1 Social Impact

Emails are a communication medium very extended in the Internet era, having around 4

billion users worldwide. This project concerns everyone that has an email account due to

the fact that almost everyone receives spam sooner or later. There is a wide range of email

users, from individual people to big companies. This is why having a good spam detection

system can prevent privacy and money loss in many cases, providing security online. Before

there were systems for spam detection, the user had to view every email manually to see if

it was an important email or just spam.

The main objective of this project is to provide commodity and security when using

email accounts, preventing some types of cyberattacks such as fraudulent emails by correctly

detecting them.

i

APPENDIX A. IMPACT OF THIS PROJECT

A.2 Economic Impact

When discussing the economic impact, we have to take into account that cyberattacks can

cause companies or individual users to lose money directly, if for example someone leaks

confidential information. However, with spam the money loss comes more indirectly, due

to the fact that it is not the company the one suffering it, its the employees. Having to find

emails in spam piles can seem insignificant, but in the long run the time used for this, is

time not used to work, causing money loss.

The use of this kind of systems reduces the risk of opening a malicious email by mistake

and can help improving efficiency when using email accounts, having to spend less time to

find things.

A.3 Environmental Impact

To study the environmental impact we have to take a look to the equipment required to

have an email account and to provide the service.

To possess an email account pretty much any device with Internet access will be able

to handle it. This devices require electricity, which needs to be generated, in many cases

in very polluting ways. Another drawback is the process and materials needed to build

these devices, requiring mining heavy metals, as well as the incorrect disposal of the devices

when they end their life cycle. We have mentioned the effect of making electronic devices,

but for email services to work, it is necessary to have data centers were information is

stored. These have a great environmental impact, as they are buildings full of computers

and servers, running uninterrupted.

A.4 Ethical Impact

On the ethical impact, we can see that email filters have the sole purpose of helping people

and companies manage their email accounts without receiving intrusive advertisements and

malicious emails. Another benefit that can be obtained is the risk reduction of privacy

leaking and protection against malware through the email. It can help people who are

not accustomed to the use of technology, preventing them from falling into scams or other

things.

ii

APPENDIXB
Economic Budget

In the appendix we will analyse the economic budget in relation to this project, including:

Project structure, physical resources, human resources and taxes.

B.1 Physical resources

This section is focused on the cost of the resources that made possible this project.

The only paid software used is the OS, which in this case is Windows 10 Home, with a

price of 139.99 $.

The hardware is the following:

• CPU: Intel(R) Core(TM) i9-10900KF CPU

• GPU: NVIDIA GeForce RTX 2080 Ti

• RAM: 64 GB

• Storage: 500 GB

The estimated cost of the hardware is around 2,500 $.

iii

APPENDIX B. ECONOMIC BUDGET

B.2 Project structure

The project was planned with a number of tasks in mind, having the days structured as it

is described in the table below:

Activity Days

Researching about the topic 22

Learning Technologies Required (Python, NLP, etc.) 25

Looking for Possible Solutions 15

Planning the Structure 9

Developing the Application 26

Writing the Document 22

Total 119

B.3 Human Resources

The budget required to cover the cost of human resources will be for one person, considering

the project has been made individually.

Estimating a salary of 1,500 e monthly, that would be 50 e per day. Knowing that the

project took 119 days it would have a cost of 5,950 e (without considering taxes).

B.4 Taxes

If the product was selled it would be subjected to the Value-Added Tax in Spain, that is

21 % of the product value.

iv

Bibliography

[1] N-gram Language models, April 2020. https://web.stanford.edu/˜jurafsky/slp3/

3.pdf.

[2] Number of Email Users Worldwide 2021/2022: Demographics & Predictions, February 2020.

[3] Number of Email Users Worldwide 2021/2022: Demographics & Predictions, February 2020.

[4] Vector Semantic and Embeddings, April 2020. https://web.stanford.edu/˜jurafsky/

slp3/6.pdf.

[5] Simon Baker, Anna Korhonen, and Sampo Pyysalo. Cancer Hallmark Text Classification Using

Convolutional Neural Networks. page 9.

[6] Aniruddha Bhandari. Feature Scaling | Standardization Vs Normalization, April 2020.

[7] Fabio Ciravegna. Adaptive Information Extraction from Text by Rule Induction and General-

isation. page 6.

[8] Michael DelSole. What is One Hot Encoding and How to Do It, April 2018.

[9] Andrea Ferrario and Mara Naegelin. The Art of Natural Language Processing: Classical,

Modern and Contemporary Approaches to Text Document Classification. SSRN Electronic

Journal, 2020.

[10] Venkatesh Garnepudi. Spam Mails Dataset, 2019. CLAIR collection of fraud email,

ACL Data and Code Repository, ADCR2008T001, https://www.kaggle.com/venky73/

spam-mails-dataset.

[11] Aurelien Geron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd

Edition [Book]. ISBN: 9781492032649.

[12] Simon Heron. Technologies for spam detection. Network Security, 2009(1):11–15, January 2009.

[13] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,

9(3):90–95, 2007.

[14] Kithsiri Jayakodi, Madhushi Bandara, Indika Perera, and Dulani Meedeniya. WordNet and

Cosine Similarity based Classifier of Exam Questions using Bloom’s Taxonomy. International

Journal of Emerging Technologies in Learning (iJET), 11(04):142, April 2016.

[15] Joseph Johnson. Spam statistics: spam e-mail traffic share 2019.

[16] Chaitanya Krishna Kasaraneni. Understanding NLP Pipeline, June 2020.

v

https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://web.stanford.edu/~jurafsky/slp3/6.pdf
https://web.stanford.edu/~jurafsky/slp3/6.pdf
https://www.kaggle.com/venky73/spam-mails-dataset
https://www.kaggle.com/venky73/spam-mails-dataset

BIBLIOGRAPHY

[17] Muhammad Taimoor Khan, Mehr Durrani, Armughan Ali, Irum Inayat, Shehzad Khalid, and

Kamran Habib Khan. Sentiment analysis and the complex natural language. Complex Adaptive

Systems Modeling, 4(1):2, February 2016.

[18] Marcus Kracht. Introduction to Linguistics. page 211.

[19] Alan Mathison Turing. Computing Machinery and Intelligence. page 22.

[20] Wes McKinney et al. Data structures for statistical computing in python. In Proceedings of the

9th Python in Science Conference, volume 445, pages 51–56. Austin, TX, 2010.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

[22] Daniel Bastos Pereira and Ivandré Paraboni. A Language Modelling Tool for Statistical NLP.

page 10.

[23] D. Radev. Fraudulent E-mail Corpus. https://www.kaggle.com/rtatman/

fraudulent-email-corpus.

[24] Sam Scott and Stan Matwin. Feature Engineering for Text Classification. page 10.

[25] Jiliang Tang, Salem Alelyani, and Huan Liu. Feature Selection for Classification: A Review.

page 33.

[26] Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana. Practical Natural

Language Processing [Book]. ISBN: 9781492054054.

[27] Lowri Williams. Adversarial Attacks on SMS Spam Detectors, January 2021.

[28] Mi ZhiWei, Manmeet Mahinderjit Singh, and Zarul Fitri Zaaba. EMAIL SPAM DETECTION:

A METHOD OF METACLASSIFIERS STACKING. (200):8, 2017.

vi

https://www.kaggle.com/rtatman/fraudulent-email-corpus
https://www.kaggle.com/rtatman/fraudulent-email-corpus

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Introduction to the problem
	Objectives
	Methodology

	Background
	Enabling Technologies
	Python
	Pandas
	Scikit-learn
	Matplotlib

	Natural Language Processing
	Artificial Intelligence
	Linguistics
	Building Units
	Context
	NLP Approaches
	Pipeline
	Feature Engineering Algorithms

	Related Work

	Architecture
	Model 1: Word Count and Sentiment Analysis
	Model 2: TF-IDF/Count Vectorizer
	Model 3: Model 1 + Model 2
	Model 4: Doc2Vec
	Training: Machine Learning Algorithms

	Evaluation
	Introduction
	Performance Measurements
	Datasets Used
	Model Evaluation
	Model 1: Word Count and Sentiment Analysis
	Dataset 1
	Dataset 2

	Model 2: TFIDF/Count Vectorizer
	Dataset 1
	Dataset 2

	Model 3: Model 1 + Model 2
	Dataset 1
	Dataset 2

	Model 4: Doc2Vec
	Dataset 1
	Dataset 2

	Final Conclusions

	Conclusions
	Conclusions
	Achieved Objectives
	Problems Faced
	Future work

	Appendix Impact of this project
	Social Impact
	Economic Impact
	Environmental Impact
	Ethical Impact

	Appendix Economic Budget
	Physical resources
	Project structure
	Human Resources
	Taxes

	Bibliography

