
GRADO EN INGENIERÍA DE TECNOLOGÍAS Y

SERVICIOS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A LEXICON-BASED
EMOTION CLASSIFIER FOR THE SPORTS DOMAIN

ON TWITTER

LUIS GARCÍA OLIVARES
JULIO 2019

TRABAJO DE FIN DE GRADO

T́ıtulo: Diseño y desarrollo de un clasificador con lexicón en el con-

texto deportivo en Twitter

T́ıtulo (inglés): Design and Development of a Lexicon-based Emotion Clas-

sifier for the Sports Domain on Twitter

Autor: Luis Garćıa Olivares

Tutor: Óscar Araque Iborra

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO FIN DE GRADO

DESIGN AND DEVELOPMENT OF A

LEXICON-BASED EMOTION CLASSIFIER

FOR THE SPORTS DOMAIN ON TWITTER

Luis Garćıa Olivares

Julio 2019

Resumen

El análisis de sentimientos es un campo del Procesamiento de lenguaje natural que trata

de extraer la polaridad, el tema o las emociones de un texto. Twitter es una de las mejores

fuentes de información acerca de los pensamientos y opiniones de las personas ya que se

escriben más de 500 millones de tuits al d́ıa. Hoy en d́ıa es normal recopilar estos tuits y

usarlos para intentar conocer mejor a los usuarios o a los clientes.

El objetivo de este trabajo es desarrollar un modelo que clasifique tanto la polaridad

(clasificación binaria, positivo/negativo) como las emociones (clasificación multietiqueta, las

veinte emociones de la Geneva Emotion Wheel). El modelo está escrito en Python con her-

ramientas de Procesamiento de lenguaje natural como scikit-learn, NLTK, pandas... Hemos

usado SIMON, una utilidad que implementa word embeddings y un lexicón de emociones

con 3099 términos.

Llevaremos a cabo la clasificación sobre un dataset que contiene 953 tuits que fueron

obtenidos a lo largo de la competición de gimnasia en los Juegos Oĺımpicos de 2012.

Hemos probado con tres clasificadores: MultinomialNB, LogisticRegression y LinearSVC.

El resultado final es un clasificador que consigue un F1-score de 0,94 en el caso de la polar-

idad y un F1-score de 0,75 para las emociones. De esta forma hemos mejorado la referencia

que nos hab́ıamos marcado, tanto para la polaridad como para las emociones. El clasifi-

cador empleado para obtener estas puntuaciones es un LinearSVC usando caracteŕısticas

del lexicón de emociones.

Palabras clave: Twitter, Aprendizaje automático, Procesamiento de lenguaje

natural, Análisis de sentimiento, lexicón de emociones, Python, scikit-learn

I

Abstract

Sentiment analysis is a field within Natural language processing that tries to extract the

polarity, the subject or the emotions of a text. Twitter is one of the best source of infor-

mation about people’s thoughts and opinions, with more than 500 million tweets written

every day in whichever language. These days it is common to gather these tweets and use

them to try to know better your users or your clients.

The main objective of this project is to develop a model to classify both polarity (bi-

nary classification, positive or negative) and emotions (multi-label classification, the twenty

emotions of the Geneva Emotion Wheel). The model is written in Python using Natural

language processing tools like scikit-learn, NLTK, pandas... We have employed SIMON, a

word embeddings utility; and an emotion lexicon with 3099 terms.

We will perform the classification on a dataset that comprises 953 tweets gathered during

the gymnastics event of the 2012 Olympic Games.

We experimented with three classifiers: MultinomialNB, LogisticRegression and LinearSVC.

The final result is a classifier that obtains an F1-score of 0.94 for polarity and an F1-score

of 0.75 for emotions classification. This way, we improved the baselines we set up, both for

polarity and for emotions. The classifier used to get these scores was the LinearSVC with

features from the emotion lexicon.

Keywords: Twitter, Machine learning, Natural language processing, Senti-

ment analysis, Emotion lexicon, Python, scikit-learn

III

Contents

Resumen I

Abstract III

Contents V

List of Figures IX

List of Tables XI

1 Introduction 1

1.1 Context . 1

1.2 Project goals . 2

1.3 Structure of this document . 3

2 Enabling Technologies 5

2.1 Introduction . 5

2.2 Machine learning . 5

2.2.1 Python and Jupyter Notebook . 6

2.2.2 NumPy . 6

2.2.3 pandas . 6

2.2.4 scikit-learn . 7

2.3 Natural language processing . 8

2.3.1 Natural Language Toolkit . 8

V

2.3.2 gsitk . 9

2.4 Related work . 9

2.4.1 Emotion lexicon and corpus . 9

2.4.2 Word embedding and SIMON . 10

2.4.3 Baselines . 11

3 Proposed approach 15

3.1 Introduction . 15

3.2 Dataset . 15

3.3 Preprocessing . 18

3.3.1 Tokenization . 18

3.3.2 Stemming . 18

3.3.3 Stopwords and punctuation . 18

3.3.4 Example . 18

3.4 Feature extraction . 19

3.4.1 Lexical stats . 19

3.4.2 tf-idf . 19

3.4.3 Part-of-speech tagging . 19

3.4.4 Use of the lexicon . 20

3.4.5 SIMON . 21

3.5 Classification . 22

4 Evaluation 27

4.1 Introduction . 27

4.2 Evaluation design . 27

4.2.1 Methods . 27

4.2.2 Metrics . 31

4.2.3 Pipelines . 31

4.3 Evaluation results . 32

4.3.1 Polarity results . 32

4.3.2 Emotions results . 36

4.4 Evaluation discussion . 40

4.4.1 Polarity discussion . 40

4.4.2 Emotions discussion . 42

5 Conclusions and future work 45

5.1 Conclusions . 45

5.2 Future work . 46

Appendix A Impact of this project i

A.1 Social impact . i

A.2 Economical impact . i

A.3 Environmental impact . ii

A.4 Ethical impact . ii

Appendix B Economic budget iii

B.1 Physical and computing resources . iii

B.2 Human resources . iv

Bibliography v

List of Figures

2.1 Vector-space representation of some similar words [1]. 10

2.2 CBOW and skip-gram models [2]. 11

2.3 Conceptual diagram of word projection over a lexicon formed only by the set

of words (good/bad) [3]. 11

2.4 Geneva Emotion Wheel [4]. 12

2.5 Per-category emotion scores for some lexica [5]. 14

3.1 Original dataset. 16

3.2 Structure of the tweets’ dataset. 16

3.3 Example of how the preprocessing works. 19

3.4 Overview of the lexicon. 20

4.1 Train/test. 28

4.2 Cross validation [6]. 29

4.3 Confusion matrix. 30

IX

List of Tables

2.1 Polarity scores for some lexica [5]. 13

2.2 Multi-label emotion scores for some lexica [5]. 14

3.1 Polarity distribution of the tweets. 17

3.2 Emotion distribution of the tweets. 17

3.3 n-grams distribution of the lexicon. 20

3.4 Polarity distribution of the tweets used for polarity classification. 22

4.1 Pipelines’ features. 32

4.2 Pipeline 1. 33

4.3 Pipeline 2. 33

4.4 Pipeline 3. 33

4.5 Pipeline 4. 34

4.6 Pipeline 5. 34

4.7 Pipeline 6. 34

4.8 Pipeline 7. 35

4.9 Pipeline 8. 35

4.10 Pipeline 9. 35

4.11 Pipeline 10. 36

4.12 10-fold cross-validation results. 36

4.13 Pipeline 11. 37

4.14 Pipeline 12. 38

XI

4.15 Pipeline 13. 39

4.16 Summary of the polarity classification. 40

4.17 Summary of the emotions classification. 42

4.18 Emotions discussion comparison. 43

CHAPTER1
Introduction

1.1 Context

The twentieth century saw the invention and development of many technological artifacts

that have improved people’s life in many ways. Communication has witnessed one of the

clearest consequences of this progress: in this day and age, we can contact everyone in just

a few seconds, either via message, audio or video.

Social networks have contributed to this frenzy; the growth of social media has bred a

thriving interest in sentiment analysis. Natural language processing techniques are employed

to extract information about the users, their feelings, their connections, their habits...

There are several different social media platforms, each one with its characteristics and

shortcomings. One of them, not the biggest nor the most populous, is Twitter. Born in

2006, as of June 2019 it has 126 million daily active users and more than 500 million tweets

are written every day [7]. However, one of Twitter’s drawback is the character limitation:

in the past, tweets could only have 140 characters; now the limit has increased up to 280.

With such a limited amount of characters, words and sentences, there is almost no context

to dive into.

1

CHAPTER 1. INTRODUCTION

In this project we are going to try to predict the polarity–positive or negative–of a

tweet, as well as the existing emotions (pride, surprise, sadness, anger...). The subject of

the tweets is the gymnastics event of the 2012 Olympic Games in London.

Speaking about Summer Olympic Games, Beijing 2008 was the first Olympic event

with impact on Twitter. Rio 2016 has been the highest point so far, with over seven million

video views in social media platforms and more than 1 billion dollars of revenue. The

digital audience amounted to 1.3 billion people, with half of the population watching them

at some point [8]. An analysis from the 2012 Olympic Games in London states [9] that

one of the nine Olympians who garnered more than 1 million tweets was Gabby Douglas,

an American artistic gymnast. Another American gymnast, Simone Biles, wrote the most

retweeted athlete tweet during the 2016 Olympic Games in Rio and four of the top 10 [10].

These figures show the huge interest that people show for the Olympic Games, and

especially, for the gymnastics event. Sports companies who want to better target their—

potential—users or institutions interested in outlining sports fans’ personalities may be

interested in applying sentiment analysis.

1.2 Project goals

The main and central objective of this project is to build a Machine learning classifier that

can predict the polarity and the emotions of tweets for the gymnastics domain from the

2012 Olympic Games, understanding how people felt during such an important event. We

would also like to improve the score we establish in the baseline. These are the steps we

have followed:

• Download the tweets from that period with the hashtag #gymnastics.

• Preprocess the content of the tweets in order to ease the extraction of features. Extract

features from the text.

• Incorporate the use of the lexicon as additional features.

• Add SIMON’s features.

• Experiment with different algorithms, hyperparameters and pipelines to achieve the

best possible performance.

2

1.3. STRUCTURE OF THIS DOCUMENT

1.3 Structure of this document

In this section we give a brief overview of the content of the chapters included in this project:

Chapter 1. Introduction: we explain the context of the project, specify the project

goals and detail the content and structure of this document.

Chapter 2. Enabling technologies: we illustrate the main technologies that we

use for this project and share some related work.

Chapter 3. Proposed approach: we describe the procedure followed—the dataset,

the feature extraction and the classification process.

Chapter 4. Evaluation: we detail the design and development of an evaluation

system, along with the results and the analysis.

Chapter 5. Conclusions and future work: we present the conclusions of the

project and talk about future work.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
Enabling Technologies

2.1 Introduction

In this chapter we will explain the technologies we have used for this project. To achieve

our goals, we have employed both Machine learning (ML) and Natural language processing

(NLP) tools. With Natural language processing we extract features from the tweets. Then,

we use Machine learning to predict the polarity and emotions of the tweets.

2.2 Machine learning

In these days, Machine learning is one of the most prominent topics in Computer science. It

is the part of Artificial intelligence related to programs that learn from experience [11] and

make predictions. At the same time, Machine learning can be divided into unsupervised

learning and supervised learning.

Supervised learning algorithms, which we are going to use in this project, receive input

data with a label and build a model to try to predict the outcome. There are two main

types of supervised learning: classification and regression. Classification is used when the

5

CHAPTER 2. ENABLING TECHNOLOGIES

output label falls into a category (e.g., passing/failing an exam), whereas regression is used

when the output label can take any value in a range (e.g., the mark of an exam).

In unsupervised learning we feed the algorithm data with no labels, so it has to infer

structures and find similar patterns in the data [12]. For example, clustering input data

into some groups with similar features.

2.2.1 Python and Jupyter Notebook

Python is an open-source general-purpose programming language built in the 90s by Guido

van Rossum [13]. It is also the language of Machine learning and Artificial intelligence

due to the enormous variety of libraries, packages and frameworks devoted to them, like

TensorFlow, Keras, scikit-learn...

Project Jupyter [14] is an open-source project born in 2014 that has created Jupyter

Notebook, an interactive environment to execute different programming languages, includ-

ing Python.

2.2.2 NumPy

NumPy is a package for scientific computing in Python that provides an easy way of manip-

ulating arrays and matrices and operate with them [15]. Among other things, it contains

random number, algebraic operations and Fourier transform capabilities, or tools to append

or store N -dimensional arrays... It also lays the foundations for more complex libraries like

the ones below.

2.2.3 pandas

pandas is a library that eases working with data analysis and with data structures [16] and

is built on top of NumPy. The two most important data structures of pandas are the Series

and the DataFrames:

• Series: is a one-dimensional array that can hold any single type of data, such as

integers, strings, objects... It is size-immutable and every item in a Series is identifiable

by an index.

• DataFrame: is a two-dimensional size-mutable structure that can hold any type of

data. Every item in a DataFrame is identifiable by two indexes, one for the row and

6

2.2. MACHINE LEARNING

one for the column. A DataFrame is a container for Series and can be considered as

a spreadsheet. In our project we use DataFrames to store the tweets and the lexicon.

2.2.4 scikit-learn

scikit-learn [17] is an open-source library released in 2010 that implements a lot of widely

used tools in Machine learning. It is written on top of NumPy and SciPy, and it includes

algorithms to perform classification, regression, clustering, dimensionality reduction, model

selection, preprocessing... Some of the most important tools it includes are:

• Pipelines: a pipeline is a chain of sequential transformations made to the input

data. It allows us to repeatedly apply a predefined workflow. We can also use Feature

unions, that applies a list of transformers in parallel to the data. They are useful to

combine feature extraction mechanisms.

• Vectorizer: it builds a dictionary of feature vectors. It can be a CountVectorizer

(converts a collection of text documents to a matrix of token counts), a DictVectorizer

(transforms lists of feature-value mappings to vectors), a TfidfVectorizer, a HashingVec-

torizer...

• train test split: it allows us to easily cleave the input data into two subsets: the train

subset, the one with which we feed the model and train it; and the test subset, the

one we are going to use to evaluate how our model performs.

• tf-idf: term frequency-inverse document frequency. It measures how important a

word is in the context of a document. For example, the word the will appear many

times, but is not relevant. tf-idf comprises two parts [18]:

– Term frequency: ft, d is the number of times the term t appears in the document

d. tf(t, d) is the term frequency for the term t. The more times a term appears,

the higher this value will be.

tf(t, d) =
ft, d

total number of terms in document d

– Inverse document frequency: n is the number of documents in the corpus. df(t,

d) is the number of documents in the corpus that contain the term t. The less

common the word is throughout the corpus, the higher this value will be:

idf(t, d) = log
1 + n

1 + df(t, d)
+ 1

7

CHAPTER 2. ENABLING TECHNOLOGIES

As we will see in Section 3.5, if smooth idf is set to False, the formula reads:

idf(t, d) = log
n

df(t, d)
+ 1

Then,

tf–idf = tf(t, d)× idf(d, t)

• Classifiers: as previously stated, “classifying” means predicting the category to

which an input value belongs. In this project we are going to use three classifiers:

– MultinomialNB: it is an implementation of a Naive Bayes classifier. It is a simple

algorithm that assumes that the features are independent among them [19].

– LogisticRegression: however weird it may sound, logistic regression is indeed a

classifying algorithm that analyzes how an input value falls into–usually–binary

categories. It uses the sigmoid function to obtain a probability that is mapped

to a category [20].

– LinearSVC: it implements a support-vector machine algorithm. The algorithm

represents the input values as points in space, trying to isolate the different

categories with hyperplanes so that the distance from the hyperplane to the

closest representations (the support vectors) is maximized. Hyperplanes are used

as a decision boundary to classify new input data [21].

2.3 Natural language processing

Natural language processing is a field of Artificial intelligence that tries to make the com-

puters understand the human language and the interaction between them. In this project,

Natural language processing features will be fed into the Machine learning model. Natural

language processing is not an easy and straightforward task as language poses some tricky

subtleties: ambiguity, context, sarcasm...

2.3.1 Natural Language Toolkit

Natural Language ToolKit (NLTK) is the most well-known Python platform for NLP and

comprises many useful libraries and packages. In this project we will mainly use it to

preprocess the tweets:

8

2.4. RELATED WORK

• Tokenization: a token is a sequence of characters we treat as a group [22]. In this

project, the words of the tweets will be the tokens. Tokenization is breaking the tweets

up into words.

• Stopwords: some of these words are very common but not important, like preposi-

tions, articles or pronouns. Hence, we want to ignore them.

• Stemming: stemming consists of reducing words to their root form, normally remov-

ing the suffix.

• Part-of-Speech tagging: part-of-speech (POS) tagging obtains the grammatical

category of a word e.g., verb, noun, adjective, pronoun, adverb, etc.

• Named-entity recognition: named-entity recognition (NER) classifies named en-

tities into categories like people names, locations, organizations, dates, etc.

2.3.2 gsitk

gsitk is a Python library that uses scikit-learn, NumPy and pandas that eases the de-

velopment process on Natural language processing projects providing datasets, features,

classifiers and evaluation techniques [23]. It includes the SIMON feature extractor.

2.4 Related work

2.4.1 Emotion lexicon and corpus

This project heavily relies on the OlympLex paper [5]. Among other things, this paper

generated:

• OlympLex: it is an emotion lexicon for the sports domain, focused on the gymnastics

event at the 2012 Olympic Games. It was built using tweets that contained the hashtag

#gymnastics. The 3099 terms of the lexicon are n-grams up to five words. Each n-

gram has attached twenty-one numbers that can take any value between 0 and 1:

the first twenty represent each of the emotions in the Geneva Emotion Wheel (ten

positive, ten negative) [4]; the last one represents the lack of emotion (NoEmotion).

For each row, the twenty-one numbers add up to 1.

• Sports-Related Emotion Corpus (SREC): it is a dataset that contains 953

gymnastic-related tweets with annotations of their emotion categories. For each tweet,

9

CHAPTER 2. ENABLING TECHNOLOGIES

the authors of the paper provide the following fields: the number of people who an-

notated the tweet, the dominant polarity (positive, negative, neutral or not defined)

and the main emotions, separated by commas. We will later see how the information

about the tweet is gathered.

2.4.2 Word embedding and SIMON

• Word embeddings: traditional word representation in Natural language processing,

like count vectors or frequency vectors, does not take into account the meaning of a

word or the relationship among words. For instance, these traditional approaches

would not infer that apricot and coconut are both fruits. On the other hand, word

embedding is a vector representation of words where every dimension of the vector

captures their meanings, contexts and associations among them. As a result, these

representations have many dimensions and have to be reduced. In word embeddings,

words are represented in vector spaces where words with similar meanings are close

to each other [2]. For example, king is near to queen, or man to woman, strong to

stronger, etc. A dimension would be, for instance, the royalty of the word, where

king/queen would have a high value, and man/woman would not stand. In word

embeddings, words can have around 200 or 300 dimensions.

Figure 2.1: Vector-space representation of some similar words [1].

Well-known methods of building word embeddings are Word2Vec, GloVe or FastText.

Word2Vec [1] comes in two flavors: Continuous Bag-Of-Words (CBOW) model, that

predicts target words from source context words; and Skip-Gram model, that predicts

source context words from target words.

• SIMON: SIMON stands for SIMilarity-based sentiment projectiON [3]. It can be

used in a pipeline and it proposes a similarity-based projection over sentiment words

from the lexicon instead of keyword matching. Thus, a text is represented by how

10

2.4. RELATED WORK

Figure 2.2: CBOW and skip-gram models [2].

similar input words are to lexicon words. A word is represented as a vector with the

values of the similarities to a word selection, e.g., good/bad, as shown in figure 2.3.

This approach also allows to predict how a new dataset is going to perform by tallying

the number of common words between two sets of selected words.

Figure 2.3: Conceptual diagram of word projection over a lexicon formed only by the set of

words (good/bad) [3].

2.4.3 Baselines

In the aforementioned paper they also carry out a numerical analysis of their model and lex-

icon, comparing it with the Geneva Emotion Wheel (GEW) lexicon. The GEW has twenty

emotions, ten positive and ten negative, displayed in a circle with two axis: negative/posi-

tive and high control/low control, as it is shown in Figure 2.4. The positive emotions are:

11

CHAPTER 2. ENABLING TECHNOLOGIES

involvement, amusement, pride, happiness, pleasure, love, awe, relief, surprise and nostal-

gia. The negative emotions are: anger, contempt, disgust, envy, regret, guilt, shame, sorry,

sadness and pity.

Figure 2.4: Geneva Emotion Wheel [4].

In the case of the OlympLex lexicon, they developed an Amazon Mechanical Turk

(AMT) task to manually annotate the tweets from the gymnastic event during the 2012

Olympic Games. Workers had to decide the dominant emotion the author of the tweet

felt while writing it (among the twenty emotions from the GEW), and the strength of it

(three levels). If there was a emotion, they had to point out the words that caused that

emotion. Thus, the polarity of the label of a tweet is the polarity of the main emotion. The

most common emotion was pride, followed by involvement, pleasure, awe and happiness (all

positive emotions).

Thus, the emotion of a word is represented by a tuple with twenty-one values, one for

each emotion (including NoEmotion). To get the emotion tuple for a tweet they sum up all

the tuples of the words within the tweet. As a result, the OlympLex lexicon comprises all

the tuples of the important words that arise in every tweet.

The next step was to evaluate how the lexicon performed. They used a ten-fold cross-

12

2.4. RELATED WORK

validation to avoid overfitting and benchmarked against other lexicons (BingLiu, Opinion-

Finder, GeneralInquirer, NRC, WnAffect and GALC). They evaluated the model classifying

both polarity and emotions.

• Polarity: for polarity, they only considered positive, negative and neutral tweets.

They used the standard classification evaluation metrics: accuracy (A), precision (P),

recall (R) and F1-score (F1) (for precision and recall they only considered positive

and negative tweets). As we can see in Table 2.1, it outperformed the rest of the

lexicons as it was the only one fitted to the gymnastics tweets:

Lexicon P R F1 A

OlympLex 81.7 73.2 77.2 72.5

BingLiu 80.4 52.9 63.8 53.6

OpinionFinder 66.0 46.6 54.6 46.6

GeneralInquirer 69.8 44.4 54.3 44.5

NRC 60.6 39.7 48.0 40.4

WnAffect 78.6 28.1 41.4 30.1

GALC 81.6 25.6 39.0 27.9

Table 2.1: Polarity scores for some lexica [5].

• Emotion: emotion classification is a multi-label classification, as multiple emotions

(labels) can be assigned to a tweet. Here they benchmarked it only against the GALC

lexicon and they evaluated it in two different ways:

– Multi-label evaluation: as before, they used precision, recall, F1-score and accu-

racy (for precision and recall they only considered non-neutral tweets). In this

case, precision shows how many of the predicted emotions are correct; accuracy

shows how many of the true labels were predicted by the classifier; and accuracy

shows how similar the prediction and the true emotions were. OlympLex also

improves GALC’s results in this field.

– Per-category evaluation: they also evaluated each individual category on its own.

They computed precision, recall and F1-score and OlympLex also generally be-

13

CHAPTER 2. ENABLING TECHNOLOGIES

Lexicon P R F1 A

OlympLex 53.5 24.9 34.0 25.4

GALC 49.0 10.2 16.8 12.5

Table 2.2: Multi-label emotion scores for some lexica [5].

haved better than GALC, both for positive and negative emotions:

Figure 2.5: Per-category emotion scores for some lexica [5].

14

CHAPTER3
Proposed approach

3.1 Introduction

In this chapter we will detail the technical approach we have followed to develop the project.

First, we will have a look at the dataset, with which we will train the classifier. Before doing

that, we have to preprocess the content of the tweets to tailor it to our needs. Later, we

describe the feature extraction techniques, that comprises, among other techniques, the use

of an emotion lexicon and of the SIMON library, a similarity-based algorithm. Lastly, we

will illustrate how the classification is done: the classifiers we employ and their optimization.

3.2 Dataset

The dataset is the Sports-Related Emotion Corpus (SREC) provided by [5]. In the original

corpus the text of the tweets was not included because of Twitter Terms of Service [24], as

shown in figure 3.1.

As a result, we had to download the tweets utilizing a Python script with the user

identifier and the tweet identifier provided. Then, we had to create a pandas DataFrame to

15

CHAPTER 3. PROPOSED APPROACH

Figure 3.1: Original dataset.

persist the data in a csv. Figure 3.2 illustrates the format of a dataset entry: InternalId and

TweetId identify the tweet; UserId identifies the user; NumAnnotators represents the number

of people who annotated the tweet; Polarity and Emotions are the target labels–the ones we

want to predict–and describe the dominant polarity and the main emotions of the tweet;

and Text is the content of the tweet.

Figure 3.2: Structure of the tweets’ dataset.

In Table 3.1 the polarity distribution of the tweets is depicted. There are far more posi-

tive tweets than negative ones and only 10% of them are neutral or not defined. Therefore,

when predicting the polarity of the tweets we will discard the neutral and not defined ones

16

3.2. DATASET

and we will only predict positive and negative tweets, so that it is a binary classification

task.

polarity number %

positive 621 65.2

negative 236 24.8

neutral 29 3.0

not defined 67 7.0

total 953 100.0

Table 3.1: Polarity distribution of the tweets.

At the same time, we can predict the different emotions a tweet will have. Altogether,

there are 2155 emotion samples (a tweet usually has more than one emotion) and their

distribution can be seen in Table 3.2:

emotion % emotion % emotion %

pride 15 regret 5.3 sadness 2.3

involvement 11 surprise 4.7 worry 2.1

pleasure 9.9 contempt 3.6 relief 1.2

awe 9.7 love 3 shame 1.2

happiness 9.7 disgust 2.9 nostalgia 1.2

anger 6 pity 2.6 envy 0.7

amusement 5.3 no emotion 2.3 guilt 0.3

Table 3.2: Emotion distribution of the tweets.

17

CHAPTER 3. PROPOSED APPROACH

3.3 Preprocessing

For every tweet in the dataset we performed a series of steps to tailor the tweet to our

needs. The steps, which were introduced in subsection 2.3.1, are:

3.3.1 Tokenization

In this case, tokenization means splitting the tweet into words. For that purpose, we used

TweetTokenizer, a special tokenizer that comes with NLTK that can strip Twitter handles

and reduces the length of the words that have more than three repeated letters to just three

letters (for example, the word “niceeeeeeee” would be cut down to “niceee”).

3.3.2 Stemming

To stem a word means removing its suffix. We do this because words with the same stem will

normally have similar meaning. We used PorterStemmer, one of the most common stem-

mers. As an illustration, the words “connect”, “connected”, “connecting”, “connection”

and “connections” would be cut down to “connect”.

3.3.3 Stopwords and punctuation

Words like “a”, “the”, “you”, “or”, “do”, “again”, etc. are very common and do not

provide any additional information to the sentence that can be useful for Natural language

processing. We used the list of stopwords contained in the NLTK package, comprised of

179 words, and we removed them from the tweets.

Same applies with punctuation. Python comes with a built-in punctuation list that

contains the characters ! ” # $ % & ' () * + , - . / : ; < = > ? @ [\\]ˆ `{ | } ∼.

Besides removing these symbols, we have excluded numbers and links, as they do not

contribute to enrich the meaning of the sentence.

3.3.4 Example

In Figure 3.3 we can see an example of how the preprocessing works for two tweets:

18

3.4. FEATURE EXTRACTION

Figure 3.3: Example of how the preprocessing works.

3.4 Feature extraction

Computers do not understand words and text as we humans do. Therefore, we have to

convert these words into numbers, which the computer understands. This is called feature

extraction. We will normally do the feature extraction inside a pipeline, that, as explained

in subsection 2.2.4, sequentially applies certain transformations. These features will be used

to train the classifiers.

3.4.1 Lexical stats

We extract the number of sentences of the tweets with a sent tokenize, a tokenizer provided

by NLTK that separates the sentences looking for periods, exclamation marks or question

marks. We also count the number of characters in the tweet.

3.4.2 tf-idf

Applying tf-idf to the whole set of tweets, as explained in subsection 2.2.4, gives us in-

formation about how often the most relevant words appear. With this purpose, we use

TfidfTransformer from scikit-learn.

3.4.3 Part-of-speech tagging

POS tagging was also explained in subsection 2.2.4. This lets us know the number of nouns,

verbs, adjectives, etc. in the tweets. NLTK has a tool called pos tag that labels each word

into its grammatical category that comes in handy for this task.

19

CHAPTER 3. PROPOSED APPROACH

3.4.4 Use of the lexicon

The lexicon contains 3099 n-grams, where more than one third of them are unigrams and

almost 90% are unigrams, bigrams or trigrams. The complete breakdown is detailed in

Table 3.3.

n-grams number %

unigrams 1121 36.2

bigrams 956 30.9

trigrams 615 19.8

four-grams 301 9.7

five-grams 106 3.4

total 3099 100.0

Table 3.3: n-grams distribution of the lexicon.

As explained in subsections 2.4.1 and 2.4.3, the lexicon contains twenty-one fields (columns)

with emotions, like Figure 3.4 depicts. All the numbers for each row add up to 1.

Figure 3.4: Overview of the lexicon.

We have extracted three features from the lexicon for every tweet: the numeric emotions,

the main emotions (like the ones in the column ‘Emotions’ from the dataset), and the

polarity. But first of all, we do a light preprocessing: we tokenize the tweet, we convert the

words to lowercase and we remove punctuation, numbers and links. In this case, we do not

stem or lemmatize the words nor remove the stopwords because the n-grams in the lexicon

20

3.4. FEATURE EXTRACTION

are not stemmed nor lemmatized and it contains stopwords. Then, as a previous step before

the feature extraction, since the lexicon has unigrams, bigrams, trigrams, four-grams and

five-grams, we group the tokenized words in twos, in threes, in fours and in fives, and we

join all these n-grams. Now we loop over each n-gram and we check if it is in the lexicon.

If it is, we add the numeric emotions of that n-gram to a dictionary with all the emotions.

• Numeric emotions: after doing the light preprocessing and calculating the numeric

emotions, we obtain a dictionary where the keys are the emotions and the values the

number representing the amount. For the first tweet, which we can see in Figure 3.2,

we obtain:

[0.0333, 0.0000, 0.1417, 0.0000, 0.0000, 0.0500, 0.0000, 0.1000, 0.0583, 0.0000, 0.0000,

0.0000, 0.0000, 0.8500, 0.7083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0583, 0.0000]

• Main emotions: as in the previous feature, we preprocess and get the emotion

dictionary. Then, we extract the emotions with the highest value, provided that they

exceed a certain threshold. For the first tweet, we obtain:

Pleasure, pride

• Polarity: to predict the polarity, we also do the preprocessing and get the emotion.

We add all the values of the positive and negative emotions and the no emotion, and

we obtain the polarity as the one with the highest value. For the first tweet, we obtain:

Positive

3.4.5 SIMON

As described in Subsection 2.4.2, SIMON is an algorithm that extracts similarity-based

features. SIMON needs a word embeddings model compatible with gensim and a sentiment

lexicon of unigrams—the list needs to have two parts because there are two polarities, so

you have Positive and Negative words. For the first, we use a model with 2 million word

vectors trained on Common Crawl, with 300 dimensions and 600B tokens. For the second,

we take the unigrams from OlympLex (1121, Table 3.4) and split them into two lists, with

560 and 561 unigrams. SIMON can extract features from the text, and as it implements fit

and transform, it can be integrated in a pipeline.

21

CHAPTER 3. PROPOSED APPROACH

3.5 Classification

As we already discussed in subsection 2.2.4, we are going to use three of the classifiers that

come with scikit-learn. These are Multinomial Naive Bayes, Logistic Regression and Linear

Support Vector.

Taking into account that the dataset provides information on the polarity and the emo-

tions of the tweets, we can try to predict both:

• Polarity: there are four possible polarities: positive, negative, neutral and not de-

fined. However, neutral and not defined tweets rack up only 10% of the total, as seen

in Table 3.1. Hence, to predict polarity we are going to drop neutral and not defined

tweets. The polarity of the remaining tweets is depicted in Table 3.4:

polarity number %

positive 621 72.5

negative 236 27.5

total 857 100.0

Table 3.4: Polarity distribution of the tweets used for polarity classification.

This way, the classification problem will be a binary one and thus the problem is

simplified. However, we can see that the dataset is not balanced. There are far more

positive tweets than negative, so it will be more difficult to correctly predict a negative

tweet. We will see later how to estimate the performance of the models.

• Emotions: in the case of emotions, we have already seen in subsections 2.4.1 and

2.4.3 that there are twenty-one different emotions. When there are more than two

possible labels that an input value can be assigned to, we have to distinguish whether

it is a multiclass classification or a multilabel classification:

– Multiclass classification: when a sample can only have one label, and the label

is multiple. For example, a fruit can be an apple, a banana or a cherry, but it is

only one of them.

– Multilabel classification: on the other hand, a sample can have more than one

label, as they are not mutually exclusive. For instance, a movie can have more

than one genre, like action, adventure, thriller...

22

3.5. CLASSIFICATION

In this project, we can clearly see that when predicting emotions we have a multilabel

classification problem, because a tweet can have more that one emotion –and will

normally have more than one emotion.

The most common approach to this problem is one-vs-rest (also known as one-vs-all),

where we fit one classifier per class (in our project, we would fit one classifier per

emotion). For each classifier, the class is fitted against the rest of the classes. As we

have previously explained, computers do not directly understand words, so we have to

convert them into numbers. scikit-learn comes with a useful tool called MultiLabelBi-

narizer, that converts a list of possible labels into vectors, where there is a 1 in case the

sample has that class, and 0 otherwise. The MultiLabelBinarizer automatically sorts

alphabetically the labels, so the list of emotions the MultiLabelBinarizer handles is:

Amusement, Anger, Awe, Contempt, Disgust, Envy, Guilt, Happiness, Involvement,

Love, No emotion, Nostalgia, Pity, Pleasure, Pride, Regret, Relief, Sadness, Shame,

Surprise, Worry.

As an example, the first tweet of the dataset, shown in Figure 3.2, has two emotions:

pride and pleasure. The binarized representation of the emotions is:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]

Then, we use scikit-learn’s OneVsRestClassifier, that can be incorporated into a pipeline.

In addition to this, classifiers can be fine-tuned to achieve an optimal performance. In

order to achieve this, scikit-learn provides a useful tool, GridSearchCV [25], that searches

over the specified parameters for an estimator by a cross-validation grid search.

A hyperparameter is a parameter that is set before training, in contrast to other algo-

rithms’ parameters that are learned from the input data. A proper tuning of the hyperpa-

rameters can help to better learn the other parameters and to achieve a greater performance.

Grid search, or parameter sweep, consists in performing a brute-force search over a

defined set of parameters, trying every possible combination. For each combination of pa-

rameters, the algorithm builds a model and performs a k-fold cross-validation on it in order

to find the hyperparameters that yield the better score. k can be defined as a parameter of

GridSearchCV. It has another parameter, n jobs, that indicates how many CPU cores should

be used. We will use n jobs=-1, which means that all the cores will be used. The grid search

returns the best score achieved and the parameters it used to reach that score. Thus, a grid

search has to be done for each pipeline.

23

CHAPTER 3. PROPOSED APPROACH

The hyperparameters that we have tuned and their possible variations are:

• CountVectorizer [26]:

– max df: it tells the algorithm to ignore terms that have a higher document

frequency than the threshold provided. It can take an integer value, in which

case it refers to the number of n-grams, or a decimal value, where it represents

a percentage. By default it is 1.0.

– min df: it tells the algorithm to ignore terms that have a lower document fre-

quency than the threshold (cut-off) provided. It can take an integer value, in

which case it refers to the number of n-grams, or a decimal value, where it

represents a percentage. By default it is 1.

– ngram range: it is a tuple with the lower and upper bounds of the range of n-

grams. For example, if ngram range=(1, 1) the algorithm will only take into

account unigrams. By default it is (1, 1).

• TfidfTransformer [18]:

– smooth idf: if True, it smooths idf weights as if an extra document contained

every n-gram, preventing division by zero. By default it is True.

– sublinear tf [27]: in the tf-idf formula, if True it replaces tf(t, d) with 1+log(tf(t, d)).

This might be done to reduce the influence of a word that appears many times,

because it is unlikely that a word that appears twenty times is twenty times more

important than a word that appears only once. By default it is False.

– use idf: if True, it enables inverse-document-frequency reweighting, this is, it

considers idf in the tf-idf formula. By default it is True.

• MultinomialNB [19]:

– alpha: it is a smoothing parameter. If α = 1 it is called Laplace smoothing. If

α > 1 it is called Lidstone smoothing. By default it is 1.0.

• LogisticRegression [20]:

– C [28]: it is the inverse of regularization strength. Smaller values specify stronger

regularization, which will create simpler models that underfit the data. On the

other hand, higher values of C will result in a more complex model that will

overfit the data. By default it is 1.0.

– penalty: it specifies the norm used in the penalization (to avoid overfitting). By

default it is ‘l2’.

24

3.5. CLASSIFICATION

– fit intercept: it specifies if a constant (intercept or bias, that can be also specified

with a parameter and by default is 1) is added to the decision function. By

default it is True.

• LinearSVC [29]:

– C [30]: it is the penalty parameter of the error term. It controls the trade-off be-

tween a smooth decision boundary and classifying the data correctly. Increasing

C might lead to overfitting. By default it is 1.0.

– penalty: it specifies the norm used in the penalization (to avoid overfitting). By

default it is ‘l2’.

– fit intercept: it specifies whether to calculate the intercept for the model. By

default it is True.

25

CHAPTER 3. PROPOSED APPROACH

26

CHAPTER4
Evaluation

4.1 Introduction

In this chapter we will look at the evaluation process, fundamental in a Machine learning

project to know which model is the best suited. To begin with, we will explain the methods,

metrics and pipelines we will use to evaluate the results. The classifiers that we have

used to predict polarity and emotions of a tweet are MultinomialNB, LogisticRegression and

LinearSVC. Next, we will show the scores and discuss about these results, choosing one

pipeline for each type of prediction.

4.2 Evaluation design

4.2.1 Methods

When facing the evaluation stage, we cannot simply train the algorithm with the whole

dataset and then test it with the whole dataset again, because the parameters learned

would be perfectly fit to these samples, and it would overfit. We need to follow some

strategies. There are two lines of thought:

27

CHAPTER 4. EVALUATION

• Train/test: the dataset is randomly split in two subsets. The bigger one, with

the 70% or 80% of the samples, is called the training set and is used to train the

model. The remaining samples make up the testing set, which is used to evaluate the

performance of the model. There is a risk that the model learns the parameters for

the training set by heart, and, when testing, it fails to predict correctly. That is why

sometimes we form an additional subset, called the validation set. After the training,

a first-step testing is done on the validation set, and then it goes on to the testing set.

However, if the number of samples is small, dividing into three subsets may lead to a

set with very few samples. In addition to this, the results can vary depending on the

choice of the subsets. In this project, the size of the test set is the 25% percent of the

total number of tweets.

Figure 4.1: Train/test.

• Cross-validation: cross-validation tries to overcome these problems. When perform-

ing cross-validation, the dataset is also randomly divided into training and test sets.

In the k-fold cross-validation, the training set is divided into k subsets, called folds.

Then, for each fold, the model is trained with the other k−1 folds and validated with

this fold. This operation is repeated k times. Then, the score is the average of the

k folds. Figure 4.2 shows an example of a five-fold cross-validation. This approach

is costlier than the train/test method, but it makes the most of the dataset, as more

samples are used for both training and testing.

When it comes to evaluating how well a Machine learning algorithm performs, one of

the most common approaches is by using some metrics called precision, recall, accuracy and

F1-score. Before going into details, we have to know some concepts and we are going to

learn them with an example. Imagine we are building a classifier to determine whether a

student has cheated in an exam. We can define four terms, represented in Figure 4.3, which

is called a confusion matrix:

• True positive: when the sample is positive and the classifier correctly predicts that

the sample is positive. In our example, when a student has cheated and the algorithm

correctly guesses that he has cheated.

28

4.2. EVALUATION DESIGN

Figure 4.2: Cross validation [6].

• False positive: when the sample is negative but the classifier mistakenly predicts

that the sample is positive. It is also called type I error, alarm or false hit. In our

example, when a student has not cheated but the algorithm mistakenly guesses that

he has cheated.

• True negative: when the sample is negative and the classifier correctly predicts that

the sample is negative. In our example, when a student has not cheated and the

algorithm correctly guesses that he has not cheated.

• False negative: when the sample is positive but the classifier mistakenly predicts

that the sample is negative. It is also called type II error, or miss. In our example,

when a student has cheated but the algorithm mistakenly guesses that he has not

cheated.

With these concepts, we can also define some metrics:

• Precision (P, or confidence): it is the number of true positives divided by the

number of positive predictions. It shows that when the algorithm predicts that the

sample is positive, it is almost always right, but it might have left out more positive

29

CHAPTER 4. EVALUATION

Figure 4.3: Confusion matrix.

samples. In our example, it is the number of students the algorithm has successfully

caught cheating divided by the number of students the algorithm has guessed they

have cheated.

P =
TP

TP + FP

• Recall (R, or sensitivity): it is the number of true positives divided by the number

of real positives. It shows that every positive sample is correctly predicted, but it

might have also mistakenly predicted some negative samples. It is a measure of the

algorithm’s ability to successfully detect who has cheated. In our example, it is the

number of students the algorithm has successfully caught cheating divided by the

number of students who have actually cheated.

R =
TP

TP + FN

• Accuracy (A): it is the number of correct predictions (the number of true positives

plus the number of true negatives) divided by the number of total predictions (the

number of true positives plus the number of false positives plus the number of true

negatives plus the number of false negatives). In our example, it is the number of

students the algorithm has correctly guessed divided by the total number of students.

A =
TP + TN

TP + FP + TN + FN

There are some considerations regarding these concepts. Normally precision and recall

do not go hand by hand. In addition to this, accuracy is not the best metric for imbalanced

datasets. For example, if we were predicting terrorism using facial recognition, there would

30

4.2. EVALUATION DESIGN

be very few terrorists. If the model predicted every face as a non-terrorist, the accuracy

would be very high. Depending on the purpose of the Machine learning classifier, we might

want to give preference to a high precision or a high recall over other parameters. We can

define another metric, which is a trade-off between precision and recall:

• F1-score: it is the harmonic mean of precision and recall. It tries to make a balance

between them. We do not use a simple average because we want to penalize extreme

values.

F1 = 2× precision× recall

precision + recall

4.2.2 Metrics

For this project we are going to consider two different metrics:

• Precision, recall and F1-score: we are going to use classification report provided by

scikit-learn, which based on the real labels and the predicted labels, creates a report

showing precision, recall and F1-score for each class.

• Cross-validation: we will make use of scikit-learn’s cross val score. It evaluates an

estimator using k-fold cross validation.

4.2.3 Pipelines

As we have explained and detailed along this project, we have extracted several features

from the tweets and we have built some pipelines. Table 4.2 shows the features of each

pipeline, where MNB stands for MultinomialNB, LR for LogisticRegression and LSVC for

LinearSVC; “Pol” for predicted polarity for the lexicon, “Main em.” for the main emotions

predicted by the lexicon and “Num. em.” for the numeric emotions predicted by the lexicon.

31

CHAPTER 4. EVALUATION

Pipeline tf-idf LexStats PosStats SIMON Lexicon Classifier

1 × MNB

2 × LR

3 × LSVC

4 × × × LSVC

5 × Pol LSVC

6 × Main em. LSVC

7 × Num. em. LSVC

8 × Pol + main em. LSVC

9 × LSVC

10 × LSVC

Table 4.1: Pipelines’ features.

4.3 Evaluation results

In this section we will only show the results in the form of tables. We will discuss the results

in Section 4.4.

4.3.1 Polarity results

All the results are given after tuning the hyperparameters. As we explained in Section 3.2,

we will only use positive and negative tweets when predicting the polarity so that it is a

binary classification task. Firstly, we present the results from train/test. At the end of the

section, we show the scores obtained with the 10-fold cross-validation.

32

4.3. EVALUATION RESULTS

Pipeline 1

Polarity Precision Recall F1-score Support

Positive 0.76 0.92 0.83 153

Negative 0.59 0.27 0.37 62

Avg/total 0.71 0.73 0.70 215

Table 4.2: Pipeline 1.

Pipeline 2

Polarity Precision Recall F1-score Support

Positive 0.76 0.92 0.83 153

Negative 0.60 0.29 0.39 62

Avg/total 0.72 0.74 0.71 215

Table 4.3: Pipeline 2.

Pipeline 3

Polarity Precision Recall F1-score Support

Positive 0.77 0.94 0.84 153

Negative 0.67 0.29 0.40 62

Avg/total 0.74 0.75 0.72 215

Table 4.4: Pipeline 3.

33

CHAPTER 4. EVALUATION

Pipeline 4

Polarity Precision Recall F1-score Support

Positive 0.80 0.80 0.80 153

Negative 0.51 0.52 0.52 62

Avg/total 0.72 0.72 0.72 215

Table 4.5: Pipeline 4.

Pipeline 5

Polarity Precision Recall F1-score Support

Positive 0.94 0.98 0.96 153

Negative 0.95 0.84 0.89 62

Avg/total 0.94 0.94 0.94 215

Table 4.6: Pipeline 5.

Pipeline 6

Polarity Precision Recall F1-score Support

Positive 0.93 0.97 0.95 153

Negative 0.91 0.81 0.85 62

Avg/total 0.92 0.92 0.92 215

Table 4.7: Pipeline 6.

34

4.3. EVALUATION RESULTS

Pipeline 7

Polarity Precision Recall F1-score Support

Positive 0.95 0.97 0.96 153

Negative 0.92 0.87 0.89 62

Avg/total 0.94 0.94 0.94 215

Table 4.8: Pipeline 7.

Pipeline 8

Polarity Precision Recall F1-score Support

Positive 0.94 0.98 0.96 153

Negative 0.95 0.84 0.86 62

Avg/total 0.94 0.94 0.94 215

Table 4.9: Pipeline 8.

Pipeline 9

Polarity Precision Recall F1-score Support

Positive 0.85 0.94 0.89 153

Negative 0.80 0.60 0.69 62

Avg/total 0.84 0.84 0.83 215

Table 4.10: Pipeline 9.

35

CHAPTER 4. EVALUATION

Pipeline 10

Polarity Precision Recall F1-score Support

Positive 0.85 0.94 0.89 153

Negative 0.80 0.58 0.67 62

Avg/total 0.83 0.84 0.83 215

Table 4.11: Pipeline 10.

Score +/−

Pipeline 1 0.740 0.019

Pipeline 2 0.771 0.014

Pipeline 3 0.777 0.010

Pipeline 4 0.748 0.016

Pipeline 5 0.940 0.009

Pipeline 6 0.937 0.006

Pipeline 7 0.945 0.008

Pipeline 8 0.941 0.010

Pipeline 9 0.841 0.011

Pipeline 10 0.839 0.009

Table 4.12: 10-fold cross-validation results.

4.3.2 Emotions results

All the results are given after tuning the hyperparameters. Now we are using all the tweets,

not only the positive and negative ones.

36

4.3. EVALUATION RESULTS

Pipeline 11

Emotion Precision Recall F1-score Support

Amusement 0.40 0.14 0.21 28

Anger 0.50 0.27 0.35 37

Awe 0.30 0.17 0.21 48

Contempt 0.00 0.00 0.00 22

Disgust 0.00 0.00 0.00 13

Envy 0.00 0.00 0.00 4

Guilt 0.00 0.00 0.00 1

Happiness 0.37 0.29 0.33 48

Involvement 0.36 0.29 0.32 65

Love 0.22 0.15 0.18 13

No emotion 0.00 0.00 0.00 12

Nostalgia 0.00 0.00 0.00 7

Pity 0.78 0.41 0.54 17

Pleasure 0.40 0.29 0.33 59

Pride 0.58 0.58 0.58 79

Regret 0.43 0.09 0.15 34

Relief 0.00 0.00 0.00 9

Sadness 0.33 0.09 0.14 11

Shame 0.00 0.00 0.00 3

Surprise 0.17 0.10 0.12 21

Worry 0.00 0.00 0.00 11

Avg/total 0.35 0.25 0.28 542

Table 4.13: Pipeline 11.
37

CHAPTER 4. EVALUATION

Pipeline 12

Emotion Precision Recall F1-score Support

Amusement 0.67 0.53 0.59 19

Anger 0.76 0.81 0.78 31

Awe 0.65 0.67 0.66 52

Contempt 1.00 0.75 0.86 24

Disgust 0.77 0.68 0.72 25

Envy 1.00 0.17 0.29 6

Guilt 0.00 0.00 0.00 2

Happiness 0.63 0.69 0.66 52

Involvement 0.79 0.69 0.73 54

Love 0.80 0.53 0.64 15

No emotion 0.50 0.09 0.15 11

Nostalgia 0.40 0.50 0.44 4

Pity 0.62 0.67 0.65 15

Pleasure 0.63 0.65 0.64 52

Pride 0.73 0.84 0.78 80

Regret 0.71 0.57 0.63 35

Relief 0.67 0.22 0.33 9

Sadness 0.89 0.53 0.67 15

Shame 1.00 0.50 0.67 10

Surprise 0.73 0.55 0.63 20

Worry 0.67 0.91 0.77 11

Avg/total 0.72 0.66 0.67 542

Table 4.14: Pipeline 12.
38

4.3. EVALUATION RESULTS

Pipeline 13

Emotion Precision Recall F1-score Support

Amusement 0.94 0.61 0.74 28

Anger 0.92 0.81 0.86 27

Awe 0.85 0.67 0.75 58

Contempt 0.79 0.58 0.67 19

Disgust 0.90 0.60 0.72 15

Envy 0.00 0.00 0.00 0

Guilt 0.00 0.00 0.00 0

Happiness 0.87 0.78 0.82 59

Involvement 0.85 0.52 0.65 63

Love 0.71 0.59 0.65 17

No emotion 1.00 0.14 0.25 14

Nostalgia 0.89 1.00 0.94 8

Pity 0.78 0.70 0.74 10

Pleasure 0.89 0.68 0.77 60

Pride 0.89 0.77 0.83 83

Regret 0.77 0.63 0.69 27

Relief 1.00 1.00 1.00 5

Sadness 1.00 0.67 0.80 12

Shame 0.83 0.71 0.77 7

Surprise 0.78 0.61 0.68 23

Worry 0.83 0.71 0.77 7

Avg/total 0.87 0.67 0.75 542

Table 4.15: Pipeline 13.
39

CHAPTER 4. EVALUATION

4.4 Evaluation discussion

4.4.1 Polarity discussion

Precision Recall F1-score

Pipeline 1 0.71 0.73 0.70

Pipeline 2 0.72 0.74 0.71

Pipeline 3 0.74 0.75 0.72

Pipeline 4 0.72 0.72 0.72

Pipeline 5 0.94 0.94 0.94

Pipeline 6 0.92 0.92 0.92

Pipeline 7 0.94 0.94 0.94

Pipeline 8 0.94 0.94 0.94

Pipeline 9 0.84 0.84 0.83

Pipeline 10 0.83 0.84 0.83

Table 4.16: Summary of the polarity classification.

To get a clearer picture, Table 4.16 shows a summary of the polarity classification with

all the pipelines.

The first three pipelines do not use anything special: just the CountVectorizer, the Tfidf-

Transformer and the three classifiers we are using in this project –MultinomialNB, Logisti-

cRegression and LinearSVC. The performance of the three pipelines is quite similar, although

the third one, with LinearSVC classifier, is the one with the best score. However, the score

is fairly standard. With the objective of not having tens of pipelines, we have decided to

use LinearSVC hereinafter.

The fourth pipeline introduces the Lexical stats and Part-of-Speech stats. The result

does not improve pipeline three, the best so far, so it is not that useful.

Pipelines five to eight make use of the lexicon. With the procedures explained in Subsec-

40

4.4. EVALUATION DISCUSSION

tion 3.4.4, we extracted the polarity, the main emotions and the numeric emotions predicted

by the lexicon. Pipeline six employs the main emotions, along with the CountVectorizer and

the TfidfTransformer. The results are very good, specially if we compare them with the first

three pipelines. Pipeline five uses the polarity, the seventh the numeric emotions and the

eighth combines the polarity and the main emotions. The three of them behave impres-

sively, outpacing the sixth pipeline. However, it seems that pipeline eight does not add any

extra information to the classifier, as the score is the same.

Pipelines nine and ten take advantage of SIMON’s features. Their performance is better

than the pipelines that only use text features, but not as good as the pipelines that utilize

the lexicon.

In order to find out which is the best of the three models (among five, seven and

eight), we can have a look at the cross-validation results, shown in Table 4.12, and at the

confusion matrices. With respect to the cross-validation results, the best pipeline would

be the seventh, which uses the numeric emotions. However, they are very close and if we

watch the confusion matrices, shown below, we see that this pipeline classifies negative

tweets slightly better than pipelines five and eight. On the contrary, the latter pipelines

classify positive tweets better. Nonetheless, the matrices are calculated for a small number

of tweets, 215, compared to the whole dataset of 857. That is why we are going to choose

pipeline seven.

P5 =

150 3

10 52

P7 =

148 5

8 54

P8 =

150 3

10 52

To sum up, the best results are achieved with the three pipelines that use the lexicon.

This should come as no surprise because the lexicon has been generated from the tweets,

and therefore, it is perfectly fit to the content and the topic. Furthermore, with the seventh

pipeline, with a score of 0.94 in precision, recall and F1-score, we have improved the baseline

results, which were 0.817, 0.732 and 0.772, respectively.

41

CHAPTER 4. EVALUATION

4.4.2 Emotions discussion

Precision Recall F1-score

Pipeline 11 0.35 0.25 0.28

Pipeline 12 0.72 0.66 0.67

Pipeline 13 0.87 0.67 0.75

Table 4.17: Summary of the emotions classification.

To begin with, if we have a look at Table 3.2 we can see the emotion distribution of the

tweets. We can observe that for some of the emotions there are almost no samples. We

have to take into account that this will make it difficult for the classifier to correctly predict

the emotion.

Regarding the emotion results, which is a multilabel classification problem, we have built

three pipelines. The first one, pipeline eleven, only uses the CountVectorizer, the TfidfVec-

torizer and the LinearSVC with the OneVsRest classifier. We can see that its performance

is very poor, and with emotions that do not have a big number of samples, the scores are

zero.

Pipeline twelve introduces the lexicon and combines the predicted polarity and the main

emotions, with the LinearSVC and OneVsRest as a classifier. The score improves a lot in

comparison to the previous pipeline. Pipeline thirteen, with the same classifier, utilizes the

numeric emotions and the performance is somewhat better.

In summary, in this case the best results are also obtained with the lexicon, and specif-

ically, with the numeric emotions. We have also surpassed the baseline score, both the

GALC and the OlympLex marks.

42

4.4. EVALUATION DISCUSSION

P R F1

OlympLex 0.535 0.249 0.34

GALC 0.49 0.102 0.168

Pipeline 13 0.87 0.67 0.75

Table 4.18: Emotions discussion comparison.

A high recall might be explained by the fact that the lexicon includes n-grams up to

five-grams, so more emotion expressions can be included for the classification task. A high

precision may be explained due to the fact that we add all the twenty emotions from all the

n-grams found in the tweet.

43

CHAPTER 4. EVALUATION

44

CHAPTER5
Conclusions and future work

In this chapter we will describe the conclusions we can derive from this project. Also, we

will lay out some thoughts about the future work that could be done.

5.1 Conclusions

It is intrinsic to the social nature of humankind to express points of view, feelings and

opinions; to a great extent, social networks are a growing place to do this. By its nature,

Twitter is one of the best-suited social networks to express yourself, to exchange opinions

and to engage with other people.

Sentiment analysis is also a hot topic in Machine learning these days. In this data-driven

world, it is commonly seen as a powerful tool by companies from all sectors of trade and

business. The work on the dataset and the lexicon from the gymnastics Olympic event [5]

has allowed us to deep dive into the topic.

The provided tweets dataset contained a list of 953 tweets with their polarity and emo-

tions. It is useful but its size is limited, so the results should be taken with a pinch of salt.

The most common emotion is pride (15%), followed by involvement (11%) and pleasure

45

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

(9.9%). All of them are positive emotions, and the first negative emotion is anger (6%),

at the seventh place. However, the majority of the tweets (65.2%) are also positive, so

we could say the samples are a little bit biased. The aforementioned work also created an

emotion lexicon with annotations for the twenty emotions of the Geneva Emotion Wheel

[4]. The terms of the lexicon were extracted from the tweets.

Our main goal was to improve these results. We have developed several pipelines

with different approaches using three classifiers: MultinomialNB, LogisticRegression and Lin-

earSVC. We have extracted –and utilized– features with CountVectorizer, TfidfTransformer

and the ones from gsitk’s SIMON, that uses word embeddings. In addition to this, the lexi-

con has allowed us to predict the polarity of the tweet, the main emotions and the numeric

emotions.

After a thorough process of cross-evaluating and fine-tuning the classifiers, choosing the

right features, etc., we have found the pipelines that perform better for the polarity and

emotions classification. For both tasks, the best pipeline has been the one that uses the

numeric emotions from the lexicon (pipelines seven and thirteen, as referred in Subsection

4.2.3). The obtained score for the polarity classification has been 0.94 for precision, recall

and F1-score; the score for the emotions classification has been 0.87 precision, 0.67 recall

and 0.75 F1-score. Both scores have overcome the baseline established in Subsection 2.4.3.

However, we should look at the results carefully. Both the dataset and the emotion lexi-

con are small for the standards and are focused on the gymnastics field, so the performance

might not translate well into another topic.

5.2 Future work

Although this project has been as broad but in-depth as its scope permitted, there is always

room for improvement. These are some examples:

• The first and most obvious task would be trying how the model would perform with

tweets regarding other topics, as suggested in Section 5.1.

• As the dataset is not balanced, we could use stratified folds instead of k-fold for

cross-validation, so that each fold has a representative portion of the dataset.

• We could also try to expand the dataset so it contains more tweets. This way, the

model would be better trained and would yield better results. We could lengthen the

lexicon, too, adding more terms with their respective emotions.

46

5.2. FUTURE WORK

• We could search for more classifiers or attempt to improve the ones we have. We

could introduce deep learning or neural networks.

• We could develop a web app so that we can classify tweets or add them to the dataset

from there.

47

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

48

APPENDIXA
Impact of this project

This appendix reflects on the possible impacts of this topic in today’s society.

A.1 Social impact

Sentiment analysis on social networks can help to better understand the users, how they

think and how they plan to act. This can be useful for companies to know how to organize

themselves in order to provide its service in a better way. Thus, users can benefit too.

However, they can also be manipulated, because the better the companies know the users,

the better they can target the ads and the pieces of news to them, creating a slanted bubble.

A.2 Economical impact

Businesses always want to increment productivity. They can achieve this by reducing the

costs or increasing the work done. Technology can help improve both. With computers,

some tasks are conducted in less time and at less cost.

However, cloud computing is quite expensive. Not only for the equipment you have to

i

APPENDIX A. IMPACT OF THIS PROJECT

buy—or rent—, but also for the electric energy consumption.

A.3 Environmental impact

Machine learning and Artificial intelligence are two of the most important developments

of the last decades. The growth that these fields have experienced in the last few years is

impressive, and will not stop increasing. However, the environmental cost of running all the

computers, servers, data centers and so forth is very high. Without going any further, a grid

search consists in doing an extensive and exhaustive brute-force search over the parameter

grid, trying every single combination. Besides the energy needed to power the computers

and machines, a significant amount of energy is used to cool down this equipment. Also,

recycling this equipment is a very difficult and complex job and nowadays is not yet done

correctly.

[31] suggests that training a big NLP model with neural architecture search emits almost

the same amount of CO2 as five cars over their lifetime. Sometimes, training a model can

require tens of CPU/GPU/TPU working for months, with the consequent electrical–and

economical–cost. The authors suggest, among other things: using renewable energy to

power the machines used to train these models; when developing a model, reporting the

training time and a cost-benefit analysis; or prioritizing the use of computationally efficient

algorithms.

A.4 Ethical impact

In social networks people express themselves and reveal their feelings and thoughts. How-

ever, we have to respect the users’ privacy. Actually, Twitter does not allow us [24] to

directly distribute the tweets, so like in our case, we had to download them using the

identifiers.

ii

APPENDIXB
Economic budget

This appendix draws up a suitable budget for this project.

B.1 Physical and computing resources

The main tool for the development of this project has been a laptop with an i7 micropro-

cessor, 16 GB of RAM, a SSD and a 1 TB hard disk drive and a NVIDIA GeForce GTX

1060 graphic card. This piece of equipment is valued at approximately 1500 e.

In the final stages of the project, we needed to use GSI’s hub, equivalent to a cloud

computing service like Google Cloud, Azure or AWS. We are going to estimate a rough cost

of 0.5 e/hour. We used nearly 50 hours, so it amounts to 25 e.

All the software we have used for this project is open-source: Jupyter Notebooks,

Python, all the libraries... As a result, we do not have to pay anything for it.

iii

APPENDIX B. ECONOMIC BUDGET

B.2 Human resources

The development of this project has taken nearly 370 hours. With an hourly wage of 10 e

per hour for an undergraduate engineer, this amounts to 3700e.

iv

Bibliography

[1] TensorFlow. Vector Representations of Words. https://www.tensorflow.org/

tutorials/representation/word2vec.

[2] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. CoRR, abs/1301.3781, 2013.

[3] Óscar Araque, Ganggao Zhu, and Carlos Á. Iglesias. A semantic similarity-based perspective

of affect lexicons for sentiment analysis. Knowledge-Based Systems, 165:346 – 359, 2019.

[4] Université de Genève. The Geneva Emotion Wheel. https://www.unige.ch/cisa/gew.

[5] Valentina Sintsova, Claudiu-Cristian Musat, and Pearl Pu. Fine-grained emotion recognition

in olympic tweets based on human computation. 2013.

[6] scikit-learn. Cross-validation: evaluating estimator performance. https://scikit-learn.

org/stable/modules/cross_validation.html.

[7] Twitter. Twitter stats. https://www.washingtonpost.com/technology/2019/02/

07/twitter-reveals-its-daily-active-user-numbers-first-time, 2019.

[8] Olympics.org. International Olympic Commitee Marketing Report Rio 2016. https:

//stillmed.olympic.org/media/Document%20Library/OlympicOrg/Games/

Summer-Games/Games-Rio-2016-Olympic-Games/Media-Guide-for-Rio-2016/

IOC-Marketing-Report-Rio-2016.pdf.

[9] Twitter. Olympic (and Twitter) records. https://blog.twitter.com/en_us/a/2012/

olympic-and-twitter-records.html.

[10] Twitter. The Rio2016 Twitter data recap. https://blog.twitter.com/en_us/a/2016/

the-rio2016-twitter-data-recap.html.

[11] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, page 524. 3rd

edition, 2009.

[12] J. Fernando Sánchez, Carlos Á. Iglesias. Course notes for learning intelligent sys-

tems. https://github.com/gsi-upm/sitc/blob/master/ml1/2_5_0_Machine_

Learning.ipynb, 2019.

[13] Python Software Foundation. History and license. https://docs.python.org/3/

license.html.

[14] Project Jupyter. About us. https://jupyter.org/about.

v

https://www.tensorflow.org/tutorials/representation/word2vec
https://www.tensorflow.org/tutorials/representation/word2vec
https://www.unige.ch/cisa/gew
https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://www.washingtonpost.com/technology/2019/02/07/twitter-reveals-its-daily-active-user-numbers-first-time
https://www.washingtonpost.com/technology/2019/02/07/twitter-reveals-its-daily-active-user-numbers-first-time
https://stillmed.olympic.org/media/Document%20Library/OlympicOrg/Games/Summer-Games/Games-Rio-2016-Olympic-Games/Media-Guide-for-Rio-2016/IOC-Marketing-Report-Rio-2016.pdf
https://stillmed.olympic.org/media/Document%20Library/OlympicOrg/Games/Summer-Games/Games-Rio-2016-Olympic-Games/Media-Guide-for-Rio-2016/IOC-Marketing-Report-Rio-2016.pdf
https://stillmed.olympic.org/media/Document%20Library/OlympicOrg/Games/Summer-Games/Games-Rio-2016-Olympic-Games/Media-Guide-for-Rio-2016/IOC-Marketing-Report-Rio-2016.pdf
https://stillmed.olympic.org/media/Document%20Library/OlympicOrg/Games/Summer-Games/Games-Rio-2016-Olympic-Games/Media-Guide-for-Rio-2016/IOC-Marketing-Report-Rio-2016.pdf
https://blog.twitter.com/en_us/a/2012/olympic-and-twitter-records.html
https://blog.twitter.com/en_us/a/2012/olympic-and-twitter-records.html
https://blog.twitter.com/en_us/a/2016/the-rio2016-twitter-data-recap.html
https://blog.twitter.com/en_us/a/2016/the-rio2016-twitter-data-recap.html
https://github.com/gsi-upm/sitc/blob/master/ml1/2_5_0_Machine_Learning.ipynb
https://github.com/gsi-upm/sitc/blob/master/ml1/2_5_0_Machine_Learning.ipynb
https://docs.python.org/3/license.html
https://docs.python.org/3/license.html
https://jupyter.org/about

BIBLIOGRAPHY

[15] NumPy. About numpy. https://www.numpy.org.

[16] Pandas. The pandas project. https://pandas.pydata.org/about.html.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.

[18] scikit-learn. TfidfTransformer. https://scikit-learn.org/stable/modules/

generated/sklearn.feature_extraction.text.TfidfTransformer.html.

[19] scikit-learn. MultinomialNB. https://scikit-learn.org/stable/modules/

generated/sklearn.naive_bayes.MultinomialNB.html.

[20] ML Cheatsheet. Logistic regression. https://ml-cheatsheet.readthedocs.io/en/

latest/logistic_regression.html.

[21] R. Gandhi. Support vector machine — introduction to ma-

chine learning algorithms. https://towardsdatascience.com/

support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47.

[22] S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python. O’Reilly Media,

Inc., 1st edition, 2009.

[23] Ó. Araque. gsitk project. https://github.com/gsi-upm/gsitk.

[24] Twitter. Developer Agreement and Policy. https://developer.twitter.com/en/

developer-terms/agreement-and-policy.

[25] scikit-learn. GridSearchCV. https://scikit-learn.org/stable/modules/

generated/sklearn.model_selection.GridSearchCV.html.

[26] scikit-learn. CountVectorizer. https://scikit-learn.org/stable/modules/

generated/sklearn.feature_extraction.text.CountVectorizer.html.

[27] Stanford. Sublinear TF Scaling. https://nlp.stanford.edu/IR-book/html/

htmledition/sublinear-tf-scaling-1.html.

[28] J. Parreño Garćıa. Tuning parameters for LogisticRegression. https://www.kaggle.com/

joparga3/2-tuning-parameters-for-logistic-regression.

[29] scikit-learn. LinearSVC. https://scikit-learn.org/stable/modules/generated/

sklearn.svm.LinearSVC.html.

[30] M. Ben Fraj. In Depth: Parameter tuning for SVC. https://medium.com/

all-things-ai/in-depth-parameter-tuning-for-svc-758215394769.

[31] Emma Strubell, Ananya Ganesh, and Andrew Mccallum. Energy and policy considerations for

deep learning in nlp. 06 2019.

vi

https://www.numpy.org
https://pandas.pydata.org/about.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://github.com/gsi-upm/gsitk
https://developer.twitter.com/en/developer-terms/agreement-and-policy
https://developer.twitter.com/en/developer-terms/agreement-and-policy
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://nlp.stanford.edu/IR-book/html/htmledition/sublinear-tf-scaling-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/sublinear-tf-scaling-1.html
https://www.kaggle.com/joparga3/2-tuning-parameters-for-logistic-regression
https://www.kaggle.com/joparga3/2-tuning-parameters-for-logistic-regression
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://medium.com/all-things-ai/in-depth-parameter-tuning-for-svc-758215394769
https://medium.com/all-things-ai/in-depth-parameter-tuning-for-svc-758215394769

BIBLIOGRAPHY

[32] J. Brownlee. Supervised and unsupervised machine learn-

ing algorithms. https://machinelearningmastery.com/

supervised-and-unsupervised-machine-learning-algorithms, 2016.

[33] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. chapter 1. Cambridge

University Press, New York, NY, USA, 2011.

[34] Óscar Araque and Ganggao Zhu and Carlos Á. Iglesias. Simon presentation. https:

//github.com/gsi-upm/simon-paper/blob/master/simon_presentation.pdf.

[35] David M. W. Powers. Evaluation: From precision, recall and f-factor to roc, informedness,

markedness correlation. 2008.

vii

https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms
https://github.com/gsi-upm/simon-paper/blob/master/simon_presentation.pdf
https://github.com/gsi-upm/simon-paper/blob/master/simon_presentation.pdf

	Resumen
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technologies
	Introduction
	Machine learning
	Python and Jupyter Notebook
	NumPy
	pandas
	scikit-learn

	Natural language processing
	Natural Language Toolkit
	gsitk

	Related work
	Emotion lexicon and corpus
	Word embedding and SIMON
	Baselines

	Proposed approach
	Introduction
	Dataset
	Preprocessing
	Tokenization
	Stemming
	Stopwords and punctuation
	Example

	Feature extraction
	Lexical stats
	tf-idf
	Part-of-speech tagging
	Use of the lexicon
	SIMON

	Classification

	Evaluation
	Introduction
	Evaluation design
	Methods
	Metrics
	Pipelines

	Evaluation results
	Polarity results
	Emotions results

	Evaluation discussion
	Polarity discussion
	Emotions discussion

	Conclusions and future work
	Conclusions
	Future work

	Appendix Impact of this project
	Social impact
	Economical impact
	Environmental impact
	Ethical impact

	Appendix Economic budget
	Physical and computing resources
	Human resources

	Bibliography

