
TRABAJO DE FIN DE GRADO

T́ıtulo: Desarrollo de un Sistema de Monitorización de Medios So-

ciales basado en Elasticsearch y Tecnoloǵıas de Compo-

nentes Web

T́ıtulo (inglés): Development of a Social Media Monitoring System based on

Elasticsearch and Web Components Technologies

Autor: Enrique Conde Sánchez

Tutor: Carlos A. Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Mercedes Garijo Ayestarán

Vocal: Álvaro Carrera Barroso

Secretario: Juan Fernando Sánchez Rada

Suplente: Tomás Robles Valladares

FECHA DE LECTURA:

CALIFICACIÓN:





UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE GRADO

DEVELOPMENT OF A SOCIAL MEDIA

MONITORING SYSTEM BASED ON

ELASTICSEARCH AND WEB

COMPONENTS TECHNOLOGIES

Enrique Conde Sánchez

Junio de 2016





Resumen

Con el advenimiento de la web social, los usuarios expresan sus opiniones y comentarios

en los medios sociales. Esta información generada por el usuario se ha convertido en un

activo valioso para entender a la gente y sus opiniones y poder aprovechar los conocimientos

obtenidos a partir de encuestas con una población objetivo. Sin embargo, para entender la

sabiduŕıa de la multitud, se necesita desarrollar tecnoloǵıas para recoger, filtrar, analizar y

visualizar los medios de comunicación social. Las herramientas de monitorización de medios

sociales proporcionarán estas comodidades.

Este proyecto fin de carrera tiene como objetivo desarrollar un sistema de monitorización

de medios sociales basados en tecnoloǵıas semánticas. Las principales funcionalidades del

sistema serán los siguientes: (i) Recoger información de las redes sociales utilizando rastreo

y APIs disponibles; (ii) La capacidad para llevar a cabo el análisis semántico y exponer estas

anotaciones como datos vinculados; (iii) Consulta semántica y filtrado; (iv) La visualización

y búsqueda facetada; y (v) La programación de análisis.

Para este propósito, el sistema se beneficiará de los sistemas y servicios disponibles en

el laboratorio GSI, como GSI Crawler o el servicio de análisis de sentimientos y emociones

Senpy.

Las principales tecnoloǵıas utilizadas en el trabajo final serán ElasticSearch y las tec-

noloǵıas de componentes web. ElasticSearch será utilizado para la indexación y consulta

de los medios sociales de una manera escalable. En cuanto a los componentes web, serán

utilizados para permitir la adaptación de la herramienta a diferentes casos de uso.

Se evaluará el sistema a través del desarrollo de varios casos de uso, en el que se evaluaron

los aspectos de rendimiento y facilidad de uso.

Palabras clave: Tecnoloǵıas semánticas, RDF, SPARQL, Componentes Web, Polymer,

JavaScript, Elasticsearch, GSI Crawler, Dashboard, Luigi

V





Abstract

With the advent of the social web, users express their opinions and comments in social

media. This user generated information has become a valuable asset to understand people

opinions and can leverage the insights obtained from surveys with a targeted population.

Nevertheless, to understand the wisdom of the crowd, it is needed to develop technologies

to collect, filter, analyse and visualise social media. Social media monitoring tools provide

these facilities.

This final project aims at developing a social media monitoring system based on semantic

technologies. The main functionalities of the system will be: (i) collecting social media

using crawling and available APIs; (ii) ability to perform semantic analysis and expose

these annotations as Linked Data; (iii) semantic query and filtering; (iv) visualisation and

faceted search; and (v) scheduling of analysis.

For this purpose, the system will benefit from systems and services available in the GSI

laboratory, such as GSI Crawler or Senpy Sentiment and Emotion Analysis services.

The main technologies used in the final work will be Elastic Search and Web Compo-

nents. Elastic Search will be used for indexing and querying social media in a scalable

way. Regarding Web Components, they will be used to enable the adaptation of the tool

to different use cases.

The system will be evaluated through the development of several use cases, where per-

formance and usability aspects will be evaluated.

Keywords: Semantic technologies, RDF, SPARQL, Web Components, Polymer, JavaScript,

Elasticsearch, GSI Crawler, Dashboard, Luigi

VII





Agradecimientos

Primero agradecer a mis padres y a mis hermanos, por todos estos años a mi lado, apoyan-

dome, confiando en mi y ofreciendo todo lo que teńıan para que yo cumpliera mi sueño.

Segundo, a mi novia, mi gúıa, mi luz, mis manos y mis ojos. Es el apoyo que toda

persona necesita y reordenó mi vida hasta ser lo que soy ahora.

A mis abuelas, por el cariño que me han brindado durante toda mi vida, gran parte de

lo que soy hoy es por ellas.

En especial, mención a mis abuelos y mi t́ıo que he sentido su apoyo en todo momento,

siempre he sentido que teńıa un ángel de la guarda, pero tengo 3 ángeles, que estén donde

estén, siempre estarán a mi lado y nunca les olvidaré.

A mi amiga Cristina, a mi lado desde que entramos en pre-escolar, los momentos dif́ıciles

se nota cuando un amigo es para siempre, y ella siempre estaba a mi lado, esto también te

lo debo a t́ı.

A mis compañeros de laboratorio, por el ambiente de trabajo tan grato que se ha creado,

por la relación que se establece aunque no nos conociéramos y las ayudas incondicionales

que te ofrecen.

Y por último, y no menos importante, a Carlos Ángel, mi tutor, por la confianza de-

positada en mi, por la oportunidad única que me ofreció de formar parte del grupo y por

ser el gúıa de mi proyecto y hasta ahora corta vida laboral. Gracias de corazón.

“Nuestra recompensa se encuentra en el esfuerzo y no en el resultado. Un esfuerzo total

es una victoria completa”. Mohandas Karamchand Gandhi

IX





Contents

Resumen V

Abstract VII

Agradecimientos IX

Contents XI

List of Figures XV

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Project goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of this Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Enabling Technologies 5

2.1 ElasticSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Luigi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Web Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Custom HTML Elements . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 HTML Imports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.4 Shadow DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

XI



2.5 Semantic Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.2 SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.3 Fuseki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 GSI Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Senpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Requirement Analysis 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 System actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2.1 Make queries . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2.2 Create Workflow . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Architecture 19

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Model-View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 Graphic interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.2 Web Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Sparql Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Admin Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.7 Workflow Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.8 Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.8.1 Number Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



4.8.2 Pie Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.8.3 Number Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.8.4 Map Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.8.5 Stock and Values Chart . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.8.6 Chernoff Faces Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.8.7 Wheel Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.8.8 Tweet Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Case study 35

5.1 Tourpedia Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Structure and pre-process . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.2 Analysis Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 FTT Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Structure and pre-process . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Analysis Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Conclusions and future work 43

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Achieved goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 46





List of Figures

3.1 Use case diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Make queries case use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Create Workflow case use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 General Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Modules Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Dashboard web interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Query Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Admin Console Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.6 Admin Console Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7 Number Chart Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.8 Pie Chart Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.9 Review Chart Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.10 Map Chart Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.11 Stock and Values Chart Widget . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.12 Chernoff Faces Chart Widget . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.13 Wheel Chart Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.14 Tweet Chart Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Dashboard of Tourpedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Dashboard of FTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

XV





CHAPTER1
Introduction

1.1 Context

Since the concept of the Semantic Web1 appeared, we have observed an important growth

in numbers and quality of applications that demonstrate the possibilities it has in different

areas.

Concretely, some initiatives have been developed around the inclusion of analyzed data

in the semantic web. This is the case of Financial Twitter Tracker [8], a R&D Spanish

project that analyzes data from Twitter which are related to a company and analyze them

storing the result, and it could be represented graphically with charts to get opinions,

sentiments about that topic.

Tourpedia[12] is another attempt to create a sustainable Linked Open Data infrastruc-

ture to promote environmental protection sharing data among public bodies in the European

Union. It aims to demonstrate the impact of sharing this information from many varied

resources developing demonstrators that will provide high quality results in regional devel-

opment working with semantically integrated resources. In the course of the project we will

contribute to this project facing a case study based on a Tourpedia dataset.

1http://www.w3.org/standards/semanticweb/

1



CHAPTER 1. INTRODUCTION

Despite the fact of this growth of available linked data, the user-friendly browsing of

this data at all their different facets remains on a dark spot. There is a need of visualization

tools that allows the user to browse that immense data sea.

In this context, we have created a new workflow attempting to provide a intuitive inter-

face between users and datasets and offering some graphic tools to represent these data.

1.2 Project goals

The goal of this Project is to develop a web application that allows a non-technical user to

query linked data, retrieve and filter the results and make use of graphical tools to extract

useful information.

We present Sefarad, a web-based data visualization and browsing application. Sefarad

can be used to define, execute and visualize queries to different endpoints. The main feature

that puts Sefarad apart is its analysis dashboard, capable of aggregated search and render

thousands of data thanks to the power of bleeding edge technologies as web components

and ElasticSearch, as well as its focus on non-technical users, who are capable of analysing

datasets through our template queries system.

In order to achieve this, we will face these challenges:

• Study and test different web technologies that could help us to develop the application,

reaching conclusions for each one under certain criteria.

• Develop one or more case studies to test the final application and demonstrate its

possibilities.

• Design the architecture of the application through prototype iteration.

• Document the final application to ease future developments or use cases.

2



1.3. STRUCTURE OF THIS PROJECT

1.3 Structure of this Project

In this section we will provide a brief overview of all the chapters of this Project. It has

been structured as follows:

Chapter 1: provides an introduction to the context of the project, introducing concepts

like Semantic web and Linked Data. After that, we explain the goals of this project and

provide the structural overview of this document.

Chapter 2: lists the main technologies that contribute in our project and justify their

use based on their advantages.

Chapter 3: makes a requirement analysis which will enable a more complete vision of

the system, listing the use cases of the system.

Chapter 4: describes in depth all the important aspect of Sefarad 3.0, our product,

Defining its architecture, its interaction model.

Chapter 5: describes the two case studies that we have faced in the project, detailing

for each one the origin of the data, how we process it and which analysis model have we

used to render that data.

Chapter 6: is a comparison of every stage the project has passed through, detailing

for each one the new additions, giving comparative measures and conclusions about what

works and what doesn’t, as well as arising problems and ideas of how to solve them.

3



CHAPTER 1. INTRODUCTION

4



CHAPTER2
Enabling Technologies

This chapter introduces which technologies have made possible this project. First of

all we must introduce ElasticSearch, Luigi, and Web Components, the three most

important tools of this project. Then we’ll move on presenting all technologies that

enable us to build a semantic web with a data analyzing, data filtering, and rendering

system.

2.1 ElasticSearch

Scalability is the main problem which both first versions of Sefarad have faced when they

were made. They had Sparql support but, after time when more data were included, page

loading time was intolerable and it could not continue in this way.

Elasticsearch [3] is a search server based on Lucene. It provides a distributed, multitenant-

capable full-text search engine with an HTTP web interface and schema-free JSON docu-

ments.

Elasticsearch is able to achieve fast search responses because, instead of searching the

text directly, it searches an index instead.

5



CHAPTER 2. ENABLING TECHNOLOGIES

This type of index is called an inverted index, because it inverts a page-centric data

structure (page to words) to a keyword-centric data structure (word to pages). Elasticsearch

uses Apache Lucene to create and manage this inverted index.

It includes some frameworks like Logstash [5] or Kibana [4] that make ElasticSearch very

useful and good in a comprehensive way.

• Logstash is a tool for managing events and logs. When used generically the term en-

compases a larger system of log collection, processing, storage and searching activities.

It enables collecting data via configurable input plugins, in this way, we use Twitter

plugin to recover some tweets and after that Logstash process them by any number of

filters which modify and annotate the event data. Finally it routes events to output

plugins which can forward the events to Elasticsearch.

• Kibana is a browser-based analytics and search interface for ElasticSearch developed

for viewing logstash events.In this way, we could create some charts, both normal and

aggregates, and put them in Dashboards to analyze data.

2.2 Luigi

Facing with a string of tasks as recover data, send them to analyze and storing them in

ElasticSearch could be difficult to handle. As a consequence, we look for some solutions

for this problem, that it can be as easy as plug&play and compatible with ElasticSearch.

Luigi [7] was the solution. It lets assign tasks one by one and handle problems that may arise.

Besides this, a web interface could be used to see how tasks are managed and assign some

other tasks to it. Using Luigi’s visualizer, we get a nice visual overview of the dependency

graph of the workflow. Each node represents a task which has to be run. Green tasks are

already completed whereas yellow tasks are yet to be run. Luigi is similar to GNU Make

where you have certain tasks and these tasks in turn may have dependencies on other tasks.

There are also some similarities to Oozie and Azkaban. One major difference is that Luigi

is not just built specifically for Hadoop, and it’s easy to extend it with other kinds of tasks.

6



2.3. WEB COMPONENTS

2.3 Web Components

Web Components[13] are a set of standards currently being produced by Google engineers

as a W3C specification that enables the creation of reusable widgets or components in web

documents and web applications. The intention behind them is to bring component-based

software engineering to the World Wide Web. The component model enables encapsulation

and interoperability of individual HTML elements.

This idea comes from the union of four main standards: custom HTML elements, HTML

imports, templates and shadow DOMs, described below.

2.3.1 Custom HTML Elements

Custom Elements let the user define his own element types with custom tag names. JavaScript

code is associated with the custom tags and uses them as an standard tag. That code gets

executed each time the compiler reads that tag.

Standard DOM methods can be used on Custom Elements, as accessing their properties,

attaching event listeners, and styling them using CSS as with any standard tag.

Thanks to custom tags the amount of code is reduced, internal details encapsulated,

APIs per element type can be implemented, productivity is increased by reusing elements

and advantage of inheritance is taken to develop new tags based on existing ones.

2.3.2 HTML Imports

HTML Imports let users include and reuse HTML documents in other HTML documents,

as ’script’ tags let include external Javascript in pages. In particular, these imports include

custom element definitions from external URLs. HTML imports use the import relation on

a standard ’link’ tag.

2.3.3 Templates

Templates define a new ’template’ element which describes a standard DOM-based approach

for client-side templating. Templates allow developers to declare fragments of markup which

are parsed as HTML, go unused at page load, but can be instantiated later on at runtime.

7



CHAPTER 2. ENABLING TECHNOLOGIES

2.3.4 Shadow DOM

There is a fundamental problem that makes widgets built out of HTML and JavaScript hard

to use: the DOM tree inside a widget isn’t encapsulated from the rest of the page. This

lack of encapsulation means that the document stylesheet might accidentally be applied to

parts inside the widget; JavaScript might accidentally modify parts inside the widget; IDs

might overlap with IDs inside the widget; and so on.

Shadow DOM separates content from presentation therefore eliminating naming conflicts

and improving code expression. It is internal to the element and hidden from the end-user.

2.4 Polymer

Polymer is an implementation o these four technologies in one elegant framework of con-

structing web-components.

Polymer makes simple to create web components, declaratively. Custom elements are

defined using our custom element, ’polymer-element’, and can leverage Polymer’s special

features. These features reduce boilerplate and make it even easier to build complex, web

component-based applications:

• Two-way data binding: Data binding extends HTML and the DOM APIs to support a

sensible separation between the UI (DOM) of an application and its underlying data

(model). Updates to the model are reflected in the DOM and user input into the

DOM is immediately assigned to the model.

• Declarative event handling: Binding of events to methods in the component. It uses

special on-event syntax to trigger this binding behavior.

• Declarative inheritance: A Polymer element can extend another element by using the

extends attribute. The parent’s properties and methods are inherited by the child

element and data-bound.

• Property observation: All properties on Polymer elements can be watched for changes

by implementing a propertyNameChanged handler. When the value of a watched

property changes, the appropriate change handler is automatically invoked.

Structure of Polymer elements:

8



2.5. SEMANTIC TECHNOLOGIES

Listing 2.1: Custmos element name-tag

<l i n k r e l =’ import ’

h r e f =’bower components/polymer/polymer . html ’>

<dom−module id=’name−tag ’>

<template>

< !−− b ind to t h e ’ owner ’ p r op e r t y −−>
This i s <b>{{owner}}</b> ’ s name−tag element .

</ template>

<s c r i p t>

Polymer ({
i s : ’name−tag ’ ,

ready : func t i on ( ) {
// s e t t h i s element ’ s owner property

t h i s . owner = ’ Enrique ’ ;

}
}) ;

</ s c r i p t>

</dom−module>

Listing 2.2: Usage of custom element name-tag

< !DOCTYPE html>

<html>

<head>

<s c r i p t s r c=’bower components/webcomponentsjs /webcomponents− l i t e . min . j s ’></ s c r i p t>

<l i n k r e l =’ import ’ h r e f =’name−tag . html ’>

</head>

<body>

<name−tag></name−tag>

</body>

</html>

2.5 Semantic Technologies

Semantic Technologies is an attempt to describe entities, its properties and relationship with

the objective of making them easily treated by machines. Linked Data has been recently

suggested as one of the best alternatives for creating these shared information spaces. It

describes a method of publishing structured and related data so that it can be interlinked

and become more useful, which results in the Semantic Web (also called Web of Data).

This project aims to create a web application that enables a non-technical user to use

the Semantic Technologies Web. We will provide a framework where querying Linked Data

and visualizing interactively the results through dashboards will be possible.

9



CHAPTER 2. ENABLING TECHNOLOGIES

2.5.1 RDF

Resource Description Framework (RDF)1 uses URIs to name the relationship between things

as well as the two ends of the link (this is usually referred to as a “triple”). Using this

simple model, it allows structured and semi-structured data to be mixed, exposed, and

shared across different applications.

Below, a sample RDF/XML file is shown, listing a table with two records and three

fields:

Listing 2.3: RDF/XML document example

<rdf : rdf xmlns : rdf="http :// www.w3.org /1999/02/22 - rdf -syntax -ns#"

xmlns : animals="http :// www.some -fictitious -zoo.com/rdf#">

<rdf : seq about="http :// www.some -fictitious -zoo.com/all - animals ">

<rdf : l i >

<rdf : description about="http :// www.some -fictitious -zoo.com/ mammals /lion">

<animals : name>Lion</animals : name>

<animals : spec i e s>Panthera leo</animals : spe c i e s>

<animals : c l a s s>Mammal</animals : c l a s s>

</rdf : description>

</rdf : l i >

<rdf : l i >

<rdf : description about="http :// www.some -fictitious -zoo.com/ mammals / hippopotamus ">

<animals : name>Hippopotamus</animals : name>

<animals : spec i e s>Hippopotamus amphibius</animals : spe c i e s>

<animals : c l a s s>Mammal</animals : c l a s s>

</rdf : description>

</rdf : l i >

</rdf : seq>

</rdf : rdf>

Each rdf:description tag describes a single record. Within each record, three fields are

described, name, species and class. Each of three fields have been given a namespace of

ANIMALS, the URL of which has been declared on the RDF tag, where the semantic

schema is defined.

The Linked Data paradigm hides the complexity of conceptual databases, maintaining

them internal to the data providers and offering an interface where the user only has to know

the semantics occurring in the data, the types that can conform subject-predicate expres-

sions as triples in RDF form. This focus developers on specifying and sharing vocabularies

describing their data instead of granting access to complex distributed databases.

1https://www.w3.org/RDF/

10



2.5. SEMANTIC TECHNOLOGIES

2.5.2 SPARQL

Linked Data can be queried using SPARQL[10] (an acronym for SPARQL Protocol and

RDF Query Language), a query language for RDF which became an official W3C Recom-

mendation2. The SPARQL query language consists of the syntax and semantics for asking

and answering queries against RDF graphs and contains capabilities for querying by triple

patterns, conjunctions, disjunctions, and optional patterns. Results of SPARQL queries can

be presented in several different forms, such as JSON, RDF/XML, etc.

Here we present an example of a SPARQL query done against dbpedia, one of the largest

endpoints available online:

Listing 2.4: SPARQL query example

p r e f i x sch−ont : <http :// educat ion . data . gov . uk/ de f / schoo l/>

s e l e c t ?name WHERE {
? schoo l a sch−ont : School .

? s choo l sch−ont : establishmentName ?name .

? schoo l sch−ont : d i s t r i c tAdm in i s t r a t i v e <http :// s t a t i s t i c s . data . gov . uk/ id / l o ca l−author i ty−
d i s t r i c t /00AA>.

}

order by ?name

In this query, we import the dbpedia semantic schema and look for entities that match

with our triples conditions. Please note how this is done through semantic statements

instead of tables exploration.

2.5.3 Fuseki

Fuseki3 is a SPARQL server. It can run as a service, as a Java web application, and as a

standalone server. It provides security (using Apache Shiro) and has a user interface for

server monitoring and administration.

It provides the SPARQL 1.1 protocols for query and update as well as the SPARQL

Graph Store protocol.

Fuseki is tightly integrated with TDB to provide a robust, transactional persistent stor-

age layer, and incorporates Jena text query and Jena spatial query. It can be used to

provide the protocol engine for other RDF query and storage systems.

2http://www.w3.org/blog/SW/2008/01/15/
3https://jena.apache.org/documentation/serving data/

11



CHAPTER 2. ENABLING TECHNOLOGIES

2.6 GSI Crawler

GSICrawler [2], a service, with an online demo, that will collect and analyze the comments

from the different websites. Implementation of a service to schedule, monitor and admin-

istrate the crawling system. It will be described the development of scrapers to collect

comments. This website is useful to the analysis of comments from any social network or

social website. The user will choose the type of analysis he wants to carry out (Emotions,

Sentiments or Fake Analysis) and the user will also supply, for instance, a direct URL to a

Yelp’s Business, the id of a Facebook’s Fan Page or a YouTube’s Video. GSI Crawler will

download the comments belonging to this element and, later, the pertinent analysis will be

run using the Senpy tool. Once the analysis is finished, a summary of the result will be

shown and the possibility of review each comment one by one will be also offered.

In GSI Crawler, there are Spiders that they work using HTML Parser. Data of the same

category are typically encoded into similar pages by a common script or template. In data

mining, a program that detects such templates in a particular information source, extracts

its content and translates it into a relational form, is called a wrapper. Wrapper generation

algorithms assume that input pages of a wrapper induction system conform to a common

template and that they can be easily identified in terms of a URL common scheme.

2.7 Senpy

Senpy [9] is an open source reference implementation of a linked data model for sentiment

and emotion analysis services based on the vocabularies NIF, Marl and Onyx.

A modular approach allows organizations to replace individual components with custom

ones developed in-house. Furthermore, organizations can benefit from reusing prepackages

modules that provide advanced functionalities, such as algorithms for sentiment and emo-

tion analysis, linked data publication or emotion and sentiment mapping between different

providers.

To sum up, it provides a service that inserting data, them will be analyzed through

different algorithms with linked data, and emotion and sentiment analysis. These processed

data will be send them back through REST API.

12



CHAPTER3
Requirement Analysis

3.1 Introduction

The result of this chapter is a requirement analysis which will enable a more complete vision

of the system to be developed. Besides, this chapter also helps the reader in the process of

understanding the purpose of the Sefarad-3.0 project.

The analysis will use the Unified Modeling Language (UML)1. This language allows us

to specify, build and document a software system using graphical language.

This analysis is important when understanding a system, but also when designing a

software system. Because of this, we present this analysis chapter.

That being said, the aim of this chapter is not to cover all the system requirements, or

all the Sefarad functionalities. In this chapter the analysis will be made briefly; it is not a

thorough analysis of the Sefarad system.

1http://www.uml.org/

13



CHAPTER 3. REQUIREMENT ANALYSIS

3.2 Use cases

This section identifies the main use cases of the Sefarad system. This helps to obtain the

specifications of the uses of the system, and therefore defines a list of requisites to match.

In 3.2.1, a list of the main actors will be presented and a UML diagram representing

all the actors participating in the different use cases in 3.2.2. This representation allows us

to identify the actors that interact with the system, as well as the interconnection between

them. Then, several subsections -3.2.2.1 and 3.2.2.2- will show the sequence diagrams of

some of the use cases. The sequence diagrams are developed following the UML language.

3.2.1 System actors

Identifying the actors of the system is the first step to take into consideration when an

analysis of a system is being made. The actors of the Sefarad system are:

User. Final user of the system, and the main actor. It accesses the Sefarad system

aiming to make queries using the available offered queries or making its own queries to the

default endpoint. This actor could also search data indexed into ElasticSearch, or simply

manages filters used in the dashboard to retrieve data it wants to.

Admin. Administrator of Sefarad, in charge of managing dashboards, could create

new dashboards, edit other dashboards or delete them. It is able to index new data in

ElasticSearch service, manage filters in a different way than users, creating new patterns or

allowing to filter in different fields. It could also create new workflows of Luigi service, and

explore them in Luigi web service.

ElasticSearch. This is a secondary actor. It stores data that were indexed and new

data that are sent and retrieve them through a JavaScript Library making a REST petition.

Fuseki. This is another secondary actor. It recieves queries from any dashboard and

send back data to user in order to look into them. It only accepts Sparql language.

14



3.2. USE CASES

3.2.2 Use cases

Next a use case diagram is presented. In this graphic it is shown the main Sefarad use

cases, and the interconnection with the actors of the system.

Figure 3.1: Use case diagram

15



CHAPTER 3. REQUIREMENT ANALYSIS

3.2.2.1 Make queries

In this use case the main actor is the User and the secondary actor is Fuseki. This actor

accesses any dashboard via web, and the it could execute default queries or write their own

queries, following the process that can be seen in figure 3.2. Thus, results will be deployed

in a fragment where you can filter data received using a pivot table, Google Chart, or simply

explore data in a json or results table. It can be possible making a request from YASGUI

library through a REST petition to the available Fuseki service on the server.

Figure 3.2: Make queries case use

16



3.2. USE CASES

3.2.2.2 Create Workflow

The actor of this use case is the Admin. In this case, the admin accesses to Luigi service

and execute a workflow previously created. It must to be created in Python. A default

workflow was created and it can be seen in figure 3.3. A task would be created and will

call other tasks which are dependent of the first one. They will run command lines and will

response with an output method, to serve those data to the next task. Once the workflow

is completed, it will notice the user the result of the execution, if it was right or wrong. If

the result was pending, the task is scheduled to run later.

Figure 3.3: Create Workflow case use

17



CHAPTER 3. REQUIREMENT ANALYSIS

18



CHAPTER4
Architecture

4.1 Introduction

In this chapter, we cover the design phase of this project, as well as implementation details

involving its architecture. Firstly, we present an overview of the project, divided into several

modules. This is intended to offer the reader a general view of this project architecture.

After that, we present each module separately and in much more depth.

The main purpose of this project is to obtain a framework to analyze data in which

users can explore or filter data and make queries from a Sparql Engine. In addition, it

can consult data from social web pages, in order to check if the info which appears in that

website is true or is created by a bot. Furthermore, an admin can assign tasks, manage the

workflow engine and create new tasks to be processed. Besides this, it manages dashboards.

It means that it can change a dashboard, adding a new chart, new data, removing some

charts or a dashboard, or simply creating a new one.

First of all, we need to present a web page with an automatic dashboard generated, with

some data inside. Then a user could use the Model-View module to filter data through

the way of aggregate searches or textual searches. This module is the main module of the

project. However, we need a tool for filtering data, we call this tool Filtering, which will

19



CHAPTER 4. ARCHITECTURE

process those searches. But, it needs a module of persistence, a database which contains

data stored in it, and ElasticSearch is that service. It can be implemented as server side

technology or client side technology, depending the purpose of use.

With all the modules above, we have a platform that allows us to explore and analyze

data presented in dashboards. Nevertheless, it is not able to search data making queries

Sparql against a Fuseki Service or assign tasks, create new other tasks, or execute them.

This is the reason to implement Sparql Engine and Workflow Engine. On the one hand,

the first one extends the functionalities of Sparql Engine, to make possible create queries,

execute them and check the response. On the other hand, Workflow engine allows us to

extend the functionalities of Luigi. The admin could create new tasks, scheduled them and

they will run automatically. Furthermore, that will be able to create auto analysis of live

data, store them and make scrapers to retrieve other data indexed in a web page.

A diagram of the general architecture is shown in Figure 4.1. Each module will be

detailed in the following sections.

Figure 4.1: General Architecture

20



4.2. GENERAL OVERVIEW

4.2 General overview

The core of this project is the Model-View module. As it can be seen in 4.1, Sefarad

is composed by two ways: Model-View and Filtering, or Sparql Engine. This is in this

way as a user. If you are an admin, there is another different way: Admin Console and

Workflow Engine. All these modules are differentiated following a functional criteria. The

interconnection of these modules into a major functionality is represented by the following

flow diagram:

Figure 4.2: Modules Flow Diagram

In the figure 4.2 can be seen that the user interacts with the Model-View module. That

is, the user choose between filter data among charts or create queries and execute them.

The flow represented above is described as follows.

1. Model-View. The user interacts with dashboards or the web interface for analyzing

data. This interface is primarily graphic, chart based. The main function of this

module is to represent data which were processed and draw different charts to search

interesting data. Furthermore, there is another part, a different tab where the user

can create new queries and execute them, or default queries. Therefore, depending

which way the user has chosen, Model-View will be redirected by two different paths.

2. Filtering. Once the user has filtered data in dashboards, Filtering receives it. The

main function of this module is to make petitions REST to ElasticSearch indicating

which filters will be activated and what kind of parameters will be sought by the user.

Each petition is sent to ElasticSearch where data are stored. With this, the user could

21



CHAPTER 4. ARCHITECTURE

only retrieve data it wants to.

3. Sparql Engine. In the same way, the user could access to YASGUI tab and explore

data stored in Fuseki service, either executing default queries that Sefarad will provide

or queries that the user has created. As a result, data have been retrieved will be

displayed in a table with different formats (JSON, text, sortable table...).

It can be seen a different flow of actions from the admin. It interacts with the Admin

Console module that has different tools to improve the framework, or simply adapt to the

needs of new users. The flow represented in the figure 4.2 is described as follows.

1. Admin Console. The admin interacts with different tools that can be modified ex-

ternally for improving the system, check functionalities of a database, represents or

create new workflows. It is a web interface where these tools are represented by their

logo, with a direct link to their path, their environment of execution.

2. Workflow Engine. Once the admin has chosen Luigi tool, it acceses to workflow

engine where admin can change tasks will be executed, schedule new tasks, create

new scrappers, in short, use Luigi or GSI Crawler with full functionality.

4.3 Model-View

Model View is the core of this project, one of the most important modules. This module

provides an interface composed by two tabs. One of them is related to show many charts

which are representing the data. During the whole project, the most effort has been made to

elaborate this graphical interface, based on adapting charts with the capabilities of filtering,

searching or showing data actions. These are intended to make easy and fast the process of

creating or editing dashboards.

The other tab, is related to Sparql Engine, where a framework appears, enabling the

execution of queries against an endpoint and it retrieves data with a semantic structure.

22



4.3. MODEL-VIEW

4.3.1 Graphic interface

As it is said, Model View interface is composed by two tabs. The first one, charts chosen

by the admin or the developer will be shown. Different fields will be represented and it can

be filtered either clicking in the value you want to or writing the value in a search field you

want to. All widgets are made with Polymer framework as it will be explained later.

With this framework, an admin can simply add a new dashboard choosing the charts it

wants and inserting the index and subindex of where data are stored in Elasticsearch and

it will be deployed in that dashboard.

An example of this interface is presented in the figure 4.3.

Figure 4.3: Dashboard web interface

All this logic is implemented using client-side: JavaScript, CSS, HTML5 and Polymer.

Web components based on Polymer contain the code for filtering and retrieving data using

the ElasticSearch library for JavaScript.

4.3.2 Web Components

Web components are a main feature of Sefarad 3.0, and in this section we will show how

we exploit their capabilities.

All widgets in Sefarad 3.0 are web Components (used under the Polymer implementa-

tion) and, as they, they are ideally encapsulated and isolated from the rest of the code.

23



CHAPTER 4. ARCHITECTURE

First, we have a special HTML to import all web Components.

Then, each widget is instantiated in the dashboard through its custom HTML tag. For

example, if we have imported a wheel-chart widget and now we want to include it in our

dashboard, the required code would be the one listed below ( 4.1).

<!−− wheel−search −−>
<wheel−chart

t i t l e="Wheel Chart Sentiment "

i con="toll"

query="{{ query }}"

index="ftten"

subindex=" entities "

f i e l d=""

f i e l d s=’[" user", " sentiment ", "name", "text "]’

f i l t e r s="{{ filters }}"

param="{{ param }}"

host=’{{ endpoint }}’>

</wheel−chart>

<!−− / . wheel−search −−>

Listing 4.1: Web Components Insertion

Reading carefully, it can be noticed that the entire widget is encapsulated inside the

wheel-search tag, with its parameters set as tag parameters.

A Polymer element is a separated HTML document. It has two main and different parts:

An HTML template and a script.

The HTML template of the web component is the code that will be injected into our

dashboard once the widget is initialized. Here we can write all the HTML code that we

want to be rendered inside the widget. We can also use and import custom styles, that

will not be affected then by the outside’s style. The same issue occurs with the script of

web components, it only affects to what is inside the template and doesn’t reach the other

widgets templates.

This code, therefore, is completely independent of the rest of the dashboard, and that

is the main advantage that we receive from the use of web components.

Inside this HTML template we can use a number of useful features as data-bindings

with the data model or auto iterations through data. We have an example of how to use a

web component, including this bindings in the code listing 4.2.

24



4.4. FILTERING

<dom−module id="wheel -chart">

<l i n k r e l=" import " type="css" hr e f="wheel -chart.css">

<template>

<div class="top -bar">

<i ron−i con icon="{{ icon }}"></iron−icon>

<span>{{ t i t l e }}</span>

</div>

<div id="chart"></div>

<div id="text">{{ t ext}}</div>

</template>

<s c r i p t>

Polymer ({
i s : ’wheel -chart ’ ,

. . .

}) ;

</s c r i p t>

</dom−module>

Listing 4.2: Web Component Structure

In 4.2 we can observe that we bind a set of parameters from the web component’s script

with the template, being that relation completely isolated from the rest of the web’s code.

4.4 Filtering

Each dashboard is enabled the option of filter data clicking the parameter you want to filter

and the value you want to look for. When one of these ways is chosen a trigger will fire an

action inside the web component depending on the way.

defaultQuery : function ( ) {
var c l i e n t = new $ . es . C l i en t ({

host s : this . host

}) ;

c l i e n t . search ({
index : this . index ,

type : this . subindex ,

body : {
s i z e : 10000 ,

query : {
match a l l : {}

}
}

}) . then ( function ( resp ) {
. . .

}
} ,
f i l t e r sChanged : function ( ) {

. . .

} ,
queryChanged : function ( ) {
. . .

}

Listing 4.3: Filtering data function

25



CHAPTER 4. ARCHITECTURE

When the dashboard is loaded for the first time or all filters are removed, the default-

Query function will be triggered, but, when a value is clicked, the function activated will

be filtersChanged.

Despite of this, at the top of the dashboard, a text editor is displayed and we can enter

a natural language query to filter data. When it happens a different function is fired off. It

is queryChanged.

4.5 Sparql Engine

Each dashboard that we have created comes with default queries. These queries will be

automatically executed when the dashboard is loaded and its results are rendered in the

YASR widget.

But we have the choice to view and edit these default queries. In each dashboard we

have the option to display the query editor, with a tab control at the top of the page as

can be seen before. So, if we choose to see the query editor we will be prompted with this

interface:

Figure 4.4: Query Editor

After modifying the query, user can execute it with the button below the query’s text.

When this happens, the query results will be rendered in a YASR element. We have various

ways of viewing the information: the raw response, on a table, on a pivot table or a google

chart.

26



4.6. ADMIN CONSOLE

4.6 Admin Console

The admin console panel allows for the admin manage the different tools of this framework.

It can manage data with Kibana, a tool provided by the team who developed ElasticSearch

and which contains different charts that can be modified as the admin wants to. Further-

more, the admin can manage tasks, creating new tasks, executing or scheduling tasks have

just been created or remove the default tasks created by the developer. Besides this, Se-

farad 3.0 allows admins to modify, create or remove dashboards and charts will be displayed

on them. To conclude with this panel, the admin can manage senpy tool, choosing new

algorithms or the language the text was written. When any of these tools are selected a

new web page will be deployed.

In the figure 4.5 an image of all the tools is presented.

Figure 4.5: Admin Console Web

The main tool of this console is Luigi. It is the core of Workflow Engine and it helps the

admin build complex pipelines of batch jobs. It handles dependency resolution, workflow

management, visualization, handling failures, command line integration, and much more.

It is more explained in the next section 4.7.

4.7 Workflow Engine

The Workflow Engine will be based on Luigi, a framework developed by Spotify. Once the

admin selects Luigi tool, it can execute the workflow and schedules it. This module will

be responsible for retrieving data from a database, scraper, or a simple file and send those

data to a second task. It follows a structure as shown below 4.4.

27



CHAPTER 4. ARCHITECTURE

class FetchDataTask ( l u i g i . Task ) :

def run ( s e l f ) :

. . .

with s e l f . output ( ) . open ( ’w’ ) as output :

j son .dump( j , output )

output . wr i t e ( ’\n ’ )

def output ( s e l f ) :

return l u i g i . LocalTarget ( path=’/tmp/ docs−%s . json ’ % s e l f . f i e l d )

class SenpyTask ( l u i g i . Task ) :

def r e qu i r e s ( s e l f ) :

return FetchDataTask ( )

def output ( s e l f ) :

return l u i g i . LocalTarget ( path=’/tmp/analyzed−%s . j son ld ’ % s e l f . f i l e )

def run ( s e l f ) :

. . .

output . wr i t e ( j son . dumps( i ) )

output . wr i t e ( ’\n ’ )

Listing 4.4: Filtering data function

The second task is for analyzing data in Senpy service. It sends data to the Senpy

endpoint and get the response and store them in an output file. Finally, there are two

different ways of exporting those data: ElasticSearch or Semantic File. On the one hand,

if ElasticSearch will be selected, the data will be transformed to be indexed in it through

LogStash, and the admin may select an index and a subindex to choose where data will

be stored. It gives the path to the data to the admin. On the other hand, SemanticTask

transform the response from Senpy tool from JSON-LD format to S3 format. Then this file

transformed could be indexed in Fuseki service and be available from an endpoint to make

queries against it.

This workflow follows the pattern shown in the figure 4.6:

Figure 4.6: Admin Console Workflow

28



4.8. WIDGETS

4.8 Widgets

Many of these Web Components created are widgets for data visualisation, we have used

D3.js [1] to make them.

Each widget provides us different information based on tweet’s data. Some of these

widgets are described below.

4.8.1 Number Chart

We have created this widget to represent the number of restaurants, points of interest, or

total number of data. This data is real time updated and is located in the main bar. The

parameters accepted by this widget are:

• Index and Subindex: This is required to get the total number of places in each index.

• Query: This parameter is auto filled with search box to determine the number of data

being analysed and studied.

Figure 4.7: Number Chart Widget

4.8.2 Pie Chart

This widget represents the total number of a entity, how many data are retrieved from

database. A pie is divided depending on the percentage total data of one entity. The

parameters accepted by this widget are:

• Index and Subindex: This is required to get the total number of entities in each index.

• Query: This parameter is auto filled with search box to determine the number of

entities being analysed and studied.

29



CHAPTER 4. ARCHITECTURE

Figure 4.8: Pie Chart Widget

4.8.3 Number Chart

We have created this widget to represent reviews of restaurants, points of interest, or accom-

modations. This widget recognizes the social media it comes from and select the icon, and

it shows the number of stars that was qualified. The parameters accepted by this widget

are:

• Index and Subindex: This is required to get the total number of places in each index.

• Query: This parameter is auto filled with search box to determine the number of data

being analysed and studied.

Figure 4.9: Review Chart Widget

30



4.8. WIDGETS

4.8.4 Map Chart

Many of these data we have retrieved from Tourpedia and analyze can be located thanks

to location of the place or user’s location.

We have used this location to place data in a map of Europe. This map has been

designed with D3.js. The parameters accepted are:

• Index and Subindex: Indicates in which Elasticsearch’s database are you querying.

• Query: This parameter is auto filled with search box.

Figure 4.10: Map Chart Widget

4.8.5 Stock and Values Chart

On the one hand, sentiment value chart is a line chart with the evolution of sentiments

along of time, representing the number of positive or negative opinions from users. It can

approximate the future value of its stock value. On the other hand, stock value chart

represents the real evolution of the price of stock value of a certain company along of time.

The parameters accepted are:

• Index and Subindex: Indicates in which Elasticsearch’s database are you querying.

• Query: This parameter is auto filled with search box.

• Show: Selects which value you want to show.

31



CHAPTER 4. ARCHITECTURE

Figure 4.11: Stock and Values Chart Widget

4.8.6 Chernoff Faces Chart

Chernoff faces [6], display multivariate data in the shape of a human face. This chart

draw those faces, separating by individual parts, such as eyes, ears, mouth and nose that

represent values of the variables by their shape, size, placement and orientation. The idea

behind using faces is that humans easily recognize faces and notice small changes without

difficulty. This faces has been designed with D3.js. The parameters accepted are:

• Index and Subindex: Indicates in which Elasticsearch’s database are you querying.

• Query: This parameter is auto filled with search box.

Figure 4.12: Chernoff Faces Chart Widget

32



4.8. WIDGETS

4.8.7 Wheel Chart

This widget represent a wheel divided by companies, and each one are divided by sentiments.

Inside those sentiments, are drawn different opinions from users and filled depending on

the sentiment: green for positive opinions, red for negative opinions and gray for neutral

opinions. The parameters accepted are:

• Index and Subindex: Indicates in which Elasticsearch’s database are you querying.

• Query: This parameter is auto filled with search box.

Figure 4.13: Wheel Chart Widget

33



CHAPTER 4. ARCHITECTURE

4.8.8 Tweet Chart

This widget is used for showing the latest tweets available. The parameters accepted are:

• Index and Subindex: Indicate in which Elasticsearch’s database are you querying.

• Query: This parameter is auto filled with search box.

Data received is presented on a list, tweet’s background is coloured according to each

tweet sentiment: green colour portrays a positive tweet, red colour represents a negative

tweet and gray colour means a neutral tweet.

Figure 4.14: Tweet Chart Widget

34



CHAPTER5
Case study

In this chapter, we present the two use cases we have applied to Sefarad 3.0.

The first one is the redesign of the Sefarad 2.0 demonstration for the Tourpedia use

case. This case will be centred in the development of tools for rendering thousands rows

of data. We will analyse the facets lackness of this dataset, giving ideas of how to solve it,

and how to represent reviews of places which are filtered.

The second case shares a dataset with another project of GSI Group. That project is

Financial Twitter Tracker. Its main objective is the enrichment of financial content with

information extracted from social media Twitter, as well as detection of demand for new

financial content in certain topics. We will try how to implement it with our system, new

charts, more fluid and more enhanced than the originl FTT project.

5.1 Tourpedia Dashboard

TourPedia is the result of an European project. It is a demo of OpenNER1 (Open Polar-

ity Enhanced Name Entity Recognition). It contains information about accommodations,

restaurants, points of interest and attractions of different places in Europe. At the moment

1http://www.opener-project.eu/

35



CHAPTER 5. CASE STUDY

eight cities are covered: Amsterdam, Barcelona, Berlin, Dubai, London, Paris, Rome and

Tuscany. However, they plan to extend the service to all the world. Data are extracted

from four social media: Facebook, Foursquare, Google Places and Booking.

TourPedia provides two main datasets: Places and Reviews. Each place contains useful

information such as the name, the address and its URI to Facebook, Foursquare, Google-

Places and Booking. Reviews contain also some useful details ready for us to exploit.

TourPedia provides two methods to access data: through a Web API and a SPARQL

engine. It is exposed through the SPARQL engine as a linked data node, which provides

access to places. Reviews can only be accessed through web interface.

At first we analyze how improve the demostration of the previous version. We detected

that the dataset was reduced to only two cities to get more handable data, but it is unsup-

portable in the future when TourPedia will be extended to all the world. In this way, we

also implement all type of places to be more consistent with the data and dashboard.

5.1.1 Structure and pre-process

The data is a collection of around 500.000 features with a rich set of facets.

In these data, we can found the following information:

• Id: The unique id that each place has in their database.

• Name: Name of the place.

• Address: Detailed address of the place.

• Location: City in which the place is settled.

• Latitude - longitude: Coordinates used for rendering in the map.

• Number of reviews: Number of reviews stored in their online database.

• Reviews direction: URI of the web service where we can find the reviews asociated

to this place.

• Polarity: Number from 0 to 10 meaning the positive or negative impression that can

be inferred from the reviews of this site.

• Details direction: URI of the web service where we can find more facets of this

place.

36



5.1. TOURPEDIA DASHBOARD

5.1.2 Analysis Design

We have analyzed the information about this rich dataset in the following way:

Figure 5.1: Dashboard of Tourpedia

In the first row of widgets we have four number charts. These are: total elements

selected, Restaurants (value type), POIs (value type) and Accommodation (value type)

which are selected.

In the second row we have two pie chart widgets, one of them is filtering how many types

of places are different and the other is filtering how many quantity of them are selected at

that moment.

In the third row we have two bar chart widgets, they are representing the count of

different polarities and different reviews exists.

37



CHAPTER 5. CASE STUDY

At last, we have implemented a custom chart, that shows a list of reviews of the ten

most important places of data filtered. Apart from that, a map is implemented showing

those places in it.

5.1.3 Conclusions

This dataset is full of information, with a rich set of facets for each feature and has a great

number of features.

Due to these facts, we accept it as a final demonstration dataset. A possible future work

over this dataset would be storing the complete data, including reviews of each datum, on

the server side and serve only the relevant data to the Sefarad 3.0 application, so the

possibility of being extended to the whole world could be ready when it will be released.

38



5.2. FTT DASHBOARD

5.2 FTT Dashboard

Financial Twitter Tracker is an R&D project of GSI Group that needs to be remastered to

offer full funtionalities and properties it must to have. It contains information about people

talking about brands in social media like Twitter, Facebook, and more.

This project contains one dataset separated in several different files depending on brands.

Those files are composed by text without analyzed, person who wrote that text, the id of the

account, where that text was written, and some different results from different algorithms.

These data are stored in ElasticSearch or can be loaded one by one from Json files. GSI

Group are enhancing this to transform them to RDF file. Then, it could be queried from

Query Editor tab.

At first we analyze how improve the demostration of the previous version. We detected

that some functionalities are only enabled when the quantity of data was reduced, further-

more, this affects to load a reduced dataset and the results could not to be right. In this

way, implement ElasticSearch and Web Components technologies will be enough to improve

this project.

5.2.1 Structure and pre-process

The data is a collection of 7 important companies with a rich set of facets.

In these data, we can found the following information:

• Id: The unique id of each comment.

• Date: Date comment was written.

• Paradigma: Results of sentiment analysis using paradigma algorithm. Only spanish

dataset.

• Paradigma: Results of sentiment analysis using paradigma algorithm. Only english

dataset.

• Price: Stock value of that moment.

• Return: Stock value after the analysis.

• Emotions: Resulst of emotion analysis.

39



CHAPTER 5. CASE STUDY

5.2.2 Analysis Design

We have analyzed the information about this rich dataset the following way:

Figure 5.2: Dashboard of FTT

In the first row of widgets we have two line charts. These are: stock values along of

time without analysis, and approximate stock values following the results of analysis.

In the second row we have one Chernoff faces chart and one entities chart widgets. The

first one is a custom chart that shows the emotions of one entity, or an approximation among

them, in a human face. The other one represents a list of ten most important entities of

the dataset.

At last, we have a wheel chart and a pie chart widgets, they are representing the quantity

of sentiment in two different ways, dividing by companies and sentiments, also the text of

40



5.2. FTT DASHBOARD

that sentiment could be seen below of this chart, and how many comments exist of that

sentiment.

5.2.3 Conclusions

This dataset is full of information, with a rich set of facets for each algorithm using for

analyzing.

Due to these facts, we accept it as a final demonstration dataset. A possible future

work over this test would be join into only one chart the stock value charts of the first row.

Chernoff faces works properly, however, it is not the real Chernoff faces because of problems

implementing the library. It could be another possible work to enhance this test.

41



CHAPTER 5. CASE STUDY

42



CHAPTER6
Conclusions and future work

In this chapter we will describe the conclusions extracted from this project, and the thoughts

about future work.

6.1 Conclusions

This project has allowed us to perform a deep insight into the Semantic Web and Linked

Data and all its benefits. We have developed a functional application capable of query, sort

and filter linked data.

Part of this project has been developed in the scope of the Financial Twitter Tracker

project contributing to this project. To work in a working group has helped us to organize

tasks and responsibilities and has forced us to organize with our partners.

We have used existing advanced technologies whenever it was possible, studying in depth

web components philosophy, luigi workflow and d3.js integration issues. We have put all

of them together to build a solid and functional system. We have left a lot of tools and

frameworks on the way, not in vane but learning from each one to build a new and more

solid project stage.

43



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

We have learnt from past experiences developing for Sefarad 3.0, identifying its weak-

nesses and designing a new architecture that assures the same functionality with easier

development.

We experienced big changes as early technology adopters, such as new versions of the

Polymer and Luigi frameworks, fixing bugs and creating new functionalities. We have found

the need to test the tool in order to find failures and possible improvements. Some of our

modules and developments are the result of experimentation and detection of new needs.

6.2 Achieved goals

In Chapter 1 we mentioned a list of goals for the project. The achieved goals can be

summarised as follows:

Study and test different web technologies reaching conclusions for each one

under certain criteria. This goal has been achieved successfully. Its results are presented

in Chapter 2, where we study and analyse the different technologies considered for the

different facets of the project.

Develop one or more case studies to test the final application and demon-

strate its possibilities. The result of this challenge has been evaluated in Chapter 3. We

have gone through three different use cases, analysing each one and evaluating their pros

and cons until we have reach a successful stage.

Design the Architecture of the application through prototype iteration. This

goal has been achieved successfully. The complete architecture of the system and a detailed

explanation of all its modules and sub-modules is included in Chapter 4.

Document the final application to ease future developments or use cases. We

have committed the Chapter 5 to the detailed explanation and documentation of some use

cases of Sefarad 3.0 for future Sefarad developers.

44



6.3. FUTURE WORK

6.3 Future work

The project outcome can also serve as a solid base for future work and development. In

the following points some fields of study or improvement are presented to continue the

development, as well as areas of possible direct application of our framework:

• Develop an installer for Sefarad 3.0 and an auto indexer of data to ElasticSearch.

• Add widgets on the fly, developing a new set of graphical tools for the selection and

parameters settings.

• Apply Sefarad 3.0 to new projects where data graphical analysis is needed, developing

new custom widgets in order to face new problems.

• Create custom dashboard on the fly, selecting parameters to filter and saving the

configuration in ElasticSearch.

• Create new Luigi workflows for auto update data to Fuseki apart from create an N3

file, and return the endpoint to the admin.

• Retrieve and analyze data in realtime with logstash, storing it in ElasticSearch. It

can be possible thanks to Luigi.

• Create this project into one container using Docker.

Sefarad 3.0 is still young. As developers, we can find a lot of new functionality examples

in older web and tools as Influence Tracker [11], Kibana, etc.

All new ideas we could come across can be implemented in this new framework thanks

to the modularity of web components and the power of the rest of our technology selection.

45



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

46



Bibliography

[1] Mike Bostock. D3.js is a JavaScript library for manipulating documents based on data. Docu-

ments. En Ĺınea. Disponible en: https://d3js.org/.

[2] José Emilio Carmona. Development of a Social Media Crawler for Sentiment Analysis., 2015.

[3] Clinton Gormley and Zachary Tong. Elasticsearch - Search and Analyze Data in Real Time.,

2016. En Ĺınea. Disponible en: https://www.elastic.co/products/elasticsearch.

[4] Clinton Gormley and Zachary Tong. Kibana - Explore and Visualize Your Data., 2016. En

Ĺınea. Disponible en: https://www.elastic.co/products/kibana.

[5] Clinton Gormley and Zachary Tong. Logstash - Collect, Enrich and Transport Data., 2016. En

Ĺınea. Disponible en: https://www.elastic.co/products/logstash.

[6] Lars Kotthof. Chernoff faces, display multivariate data in the shape of a human face. En Ĺınea.

Disponible en: http://bl.ocks.org/larskotthoff/2011590.

[7] Luigi. Workflow mgmgt + task scheduling + dependency resolution., 2011. En Ĺınea. Disponible

en: https://pypi.python.org/pypi/luigi.

[8] Paradigma. Financial Twitter Tracker, sistema de análisis y evaluacion financiera,

2011. En Ĺınea. Disponible en: https://www.paradigmadigital.com/portfolio/

financial-twitter-tracker/.

[9] Ignacio Corcuera Platas. Development of an Emotion Analysis System in a University Com-

munity., 2015.

[10] Jorge Pérez and Marcelo Arenas. Querying semantic web data with SPARQL: State of the art

and research perspectives. En Ĺınea. Disponible en: http://web.ing.puc.cl/˜marenas/

talks/pods11.pdf.

[11] Gerasimos Razis and Dr Ioannis Anagnostopoulos. Discover the Influence Metric and var-

ious other characteristics of a Twitter account. En Ĺınea. Disponible en: http://www.

influencetracker.com/.

[12] Tourpedia. TourPedia is the Wikipedia of Tourism., 2013. En Ĺınea. Disponible en: http:

//tour-pedia.org/about/.

[13] Webcomponents. WebComponents.org a place to discuss and evolve web component best-

practices. En Linea. Disponible en: http://webcomponents.org/.

47

https://d3js.org/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://www.elastic.co/products/logstash
http://bl.ocks.org/larskotthoff/2011590
https://pypi.python.org/pypi/luigi
https://www.paradigmadigital.com/portfolio/financial-twitter-tracker/
https://www.paradigmadigital.com/portfolio/financial-twitter-tracker/
http://web.ing.puc.cl/~marenas/talks/pods11.pdf
http://web.ing.puc.cl/~marenas/talks/pods11.pdf
http://www.influencetracker.com/
http://www.influencetracker.com/
http://tour-pedia.org/about/
http://tour-pedia.org/about/
http://webcomponents.org/

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this Project

	Enabling Technologies
	ElasticSearch
	Luigi
	Web Components
	Custom HTML Elements
	HTML Imports
	Templates
	Shadow DOM

	Polymer
	Semantic Technologies
	RDF
	SPARQL
	Fuseki

	GSI Crawler
	Senpy

	Requirement Analysis
	Introduction
	Use cases
	System actors
	Use cases
	Make queries
	Create Workflow



	Architecture
	Introduction
	General overview
	Model-View
	Graphic interface
	Web Components

	Filtering
	Sparql Engine
	Admin Console
	Workflow Engine
	Widgets
	Number Chart
	Pie Chart
	Number Chart
	Map Chart
	Stock and Values Chart
	Chernoff Faces Chart
	Wheel Chart
	Tweet Chart


	Case study
	Tourpedia Dashboard
	Structure and pre-process
	Analysis Design
	Conclusions

	FTT Dashboard
	Structure and pre-process
	Analysis Design
	Conclusions


	Conclusions and future work
	Conclusions
	Achieved goals
	Future work

	Bibliography

