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Resumen

Hasta hace unos anos, la practica comun de la inteligencia artificial no era sostenible fuera de
los laboratorios de investigacién y la ciencia ficcion. En la actualidad, existe una demanda
generalizada de sistemas con inteligencia avanzada, capaces de simular el comportamiento
humano. El aprendizaje automatico ha sido el factor que ha fomentado el cambio, cubriendo
la necesidad que permite aprender y generalizar a las maquinas bajo experiencia.

La evolucién de la inteligencia artificial posiblemente pase por la visién artificial, disci-
plina donde el aprendizaje profundo proporciona mejoras notables asemejandose al sistema
nervioso humano con neuronas artificiales. Entre las aplicaciones mas destacadas de vision
artificial se encuentran: deteccién de objetos, reconocimiento de objetos, reconstruccion de
escenas, restauracion de imagenes y estimacién de movimiento.

El objetivo principal de este proyecto es el desarrollo de un sistema de clasificacién
de imagenes basado en transferencia de aprendizaje con redes neuronales convolucionales,
centrandose en reconocimiento de objetos. Se emplean varias arquitecturas pre-entrenadas
accesibles desde Keras, una API de alto nivel desarrollada sobre TensorFlow destacada para
investigacién en aprendizaje profundo. La evaluacién del sistema se lleva a cabo a través de
un popular conjunto de datos de comida etiquetada (ETHZ Food-101) con el que se mide
la calidad de cada una de las arquitecturas anteriores.

El caso de uso préactico que se lleva a cabo con este sistema es la prediccién de la clase
y etiquetado de miles de imédgenes de comida de restaurantes minadas desde TripAdvisor
con Selenium. A partir de este nuevo conjunto de datos, se implementa un buscador de
restaurantes basado en imagenes de comida, es decir, la bisqueda de restaurantes se realiza
por el aspecto de las fotografias de comida. Todo lo mencionado anteriormente se desarrolla

en una aplicacion web para mostrar todos los objetivos alcanzados.

Palabras clave: redes neuronales convolucionales, keras, aprendizaje profundo, trans-
ferencia de aprendizaje, vision artificial, clasificador comida, web scraping, foodiefy, web

application
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Abstract

A few years ago, the common practice of artificial intelligence was not sustainable beyond re-
search laboratories and science fiction. Currently, there is widespread demand for advanced
systems capable of simulating human behavior intelligence. Machine learning has been the
factor that has fostered change, covering the need that allows learning and generalizing to
machines by experience.

The evolution of artificial intelligence may go through computer vision, a discipline where
deep learning provides remarkable improvements resembling the human nervous system
with artificial neurons. Among the most important machine vision applications include
object detection, object recognition, scene reconstruction, restoration and image motion
estimation.

The main goal of this project is developing an image classification system based on
transfer learning with convolutional neural networks, focused on object recognition. Are
employed several pre-trained architectures accessible from Keras, a high-level API developed
on TensorFlow highlighted for deep learning research. System evaluation is carried out by
a popular dataset of labeled food (ETHZ Food-101) which measures the quality of each of
the previous architectures.

The practical case of use carried out with this system is the prediction of the class and
labeling of thousands of food images of restaurants mined from TripAdvisor with Selenium.
From this new set of data, a restaurant search engine based on food images is implemented,
that means, the search of restaurants is done by food photographs appearance. Everything

mentioned above is developed in a web application to show all the objectives achieved.

Keywords: convolutional neural networks, keras, deep learning, transfer learning,

computer vision, food classifier, web scraping, foodiefy, web application

IX






Agradecimientos

Quiero expresar mi agradecimiento a Marina Molld Ballesteros, una de esas personas que
marcan una vida por su simple forma de ser, equilibrio y apoyo incondicional.

Mi gratitud a todas las autoridades y personal que forman el Grupo de Sistemas In-
teligentes (GSI), por abrirme las puertas, aportarme herramientas e incluirme como uno
mas en el proceso investigacion.

De igual manera mis agradecimientos a la Universidad Politécnica de Madrid (UPM),
a toda la Escuela Técnica Superior de Ingenieros de Telecomunicacién (ETSIT), y a la
Sapienza Universita di Roma, que me han aportado las herramientas necesarias para llegar
a donde estoy profesionalmente y me han permitido conocer gente extraordinaria.

Finalmente, quiero expresar mi maés sincero agradecimiento al Dr. Carlos A. Igle-
sias Fernandez, mi profesor y tutor durante todo este proceso, quién, con su direccién,

conocimiento, y colaboracién me permitié desarrollar este trabajo de fin de master.

Xl






Contents

Resumen VII
Abstract IX
Agradecimientos XI
Contents XIII
List of Figures XVII
List of Tables XIX
1 Introduction 1
1.1 Context . . . . . . . . . e 2
1.2 Project goals . . . . . . . . 3
1.3 Structure of this document . . . . . . .. .. .. L L. 4

2 State of the Art 7
2.1 Food image recognition . . . . . . . .. ... L0 8
2.1.1 Computer Vision . . . . . . . . ... s 8

2.1.2 Food datasets . . . . . . . . .. ... 10

2.1.3 Recognition applications . . . . . . . . ... Lo 10

2.1.4 Related work . . . . . .. 11

2.2 Deep Learning for image analysis . . . . . . ... ... ... ... ... 12
2.2.1 Artificial Neural Networks . . . . . . . . . ... ... ... ...... 12

2.2.1.1 Network functionality . . . .. .. ... ... ... ..... 12

2.2.1.2 Component features . . . . . .. .. ... ... 13

2.2.2  Convolutional Neural Networks . . . . . . ... ... ... ...... 13

2.2.2.1 Comparing architectures . . . . ... ... .. ... .... 14

2.2.2.2  Architectural layers . . . . .. ... o L. 15

2.2.3 Predefined historical architectures . . .. ... ... ... .. .... 17

2.2.4 Transfer learning and fine-tuning . . . . . . . ... ... ... .... 21

Xl



2.2.4.1 Fine-tune strategies . . . . ... ... ... ...

2.2.5 Current Keras applications . . . . . . .. ... ... ... ......

3 Enabling Technologies

3.1 Machine Learning technologies . . . . . ... ... ... ... ........
3.1.1 TensorFlow . . . . . . .. .
3.1.2 Keras . . . . ..
3.1.3 Colaboratory . . . . . . .. . ..
3.1.4 Scikit-Learn . . . . . . . . ..

3.2 Data technologies . . . . . . . . . .. L
3.21 Pandas . . . . ...
3.2.2 BeautifulSoup . . . . . . .. ...
3.2.3 JSON . . . e
3.2.4 Selenium . . . ... e

3.3 Web application technologies . . . . . .. . ... ... ... ... .....
3.3.1 W3.CSS . . . . e
3.3.2 FontAwesome . . . . . . ...
3.3.3 Fusejs . . . .. e
3.34 PhoneGap . . . . . . . . . e
335 Docker. . . .. e

4 General System Structure

4.1 Architecture . . . . . . . .. e
4.2 Mainmodules . . . . . ...
4.2.1 Transfer learning model . . . . . . . . . ... ... ... ... ..
4.2.2 Web scraping system . . . . . ... ... o
4.2.3 Web application . . . . .. . ... .. ... ..o
4.3 Auxiliary modules . . . . . ...
4.3.1 Classification . . . . . .. . ...
4.3.2 External Sources . . . . . . ... L Lo
4.3.3 Devices . . . . . . e

5 Transfer Learning Model for Image Recognition

5.1 Introduction . . . . . . . . . . . ..
5.2  Methodology and configuration of the model building process . . . . . . . .
5.2.1 Data preparation . . . . . . ... ..

5.2.2 Image data generation with augmentation and pre-processing . . . .

5.2.3  Architecture selection and configuration . . . . . .. ... ... ...

25
26
26
26
27
28
28
28
28
28
29
29
29
29
29
30
30

31
32
33
33
33
33
33
33
33
33



6

5.2.4 Model training . . . . ... 40

5.2.5 Prediction evaluation . . . . . . ... ... oo 41
5.3 Analysisof themodels . . . . . . . ... ... 41
5.3.1 MobileNetV2 . . . . . . . .. 42
5.3.2 ResNetb0 . . . . . .. o e 44
5.3.3 InceptionResNetV2 . . . . . .. ... ... . L 46
5.3.4 Xception . . . . .. 48
5.4 Comparison of themodels . . . . . . .. .. ... ... ... ... ... ... 50
5.4.1 Epoch timing . . . . . .. . ... 50
5.4.2  Metric comparison . . . . . ... oL 51
5.5 Analysis of the selected model: Xception . . . . . . ... ... ... ..... 51
5.5.1 Feature summary . . . . . . .. ... 52
5.5.2 Confusion matrix . . . . . . ... 52
5.5.3 Classification report . . . . . . . . . .. ..o 53
Web Scraping System for Data Extraction 55
6.1 Introduction . . . . . . . . . . e 56
6.2 Previous analysis . . . . . . .. . L L 56
6.2.1 Data prerequisites . . . . . . . . .. ... 56
6.2.2 Output database formatting . . . . . . .. .. ... 56
6.2.3 Web analysis . . . . . .. ... 57
6.3 Methodology and configuration of the data modeling process . . ... . .. 57
6.3.1 Configuration of Selenium WebDriver . . . . .. .. ... ... ... 57
6.3.2 Extraction of restaurant URLs . . . . . . .. ... ... ... .... 58
6.3.3 Extraction of restaurant information . . . . . . ... ... ... ... 59
6.3.4 Configuration of the food classification model . . . . . . . . .. ... 59
6.3.5 Classification of the extracted images . . . ... .. .. ... .... 59
6.3.6 Database formatting . . . . . .. ... ... L. 59
Food/Restaurant Searcher Web Application 61
7.1 OVerview . . . . . . e 62
7.2 System architecture . . . .. . .. ... .. ... 62
7.2.1 Structure . . . . ... e 63
7.22 USECASES . . v v v v v i 63
7.2.3 Functional modules. . . . . . . ... ... oL 68
7.3 Application layout . . . . . . . ... 69

7.3.1 User-centered design . . . . . . . . . . ... oL 69



7.3.2 Responsive web design . . . . . . .. ...
7.4 Targeted platforms . . . . . . . . ...
741 Mock-up. . . . ...

8 Case Study — Foodiefy

8.1 Imtroduction . . . . . . . . . . . .
8.1.1 Context of search engines . . . . . .. .. ... ... ...
8.1.2 Application concept . . . . . .. .. Lo

8.2 Features . . . . . . . ..
8.2.1 Technologies . . . . . . . . . . ...
8.2.2 Datasources . . . . . . . ..

8.3 Device 1eSponsiveness . . . . . . .. ..o e e e

8.4 Interaction overview . . . . . . . ... L

8.5 Views . . . . ..
8.5.1 Home page View . . . . . . . . . .o
8.5.2 Searched food view . . . . . . . ...
8.5.3 Selected food modal view . . . . ... ... oL
8.5.4 Restaurant food images view . . . . . . . ... ...
8550 Menuview . . . . . ...

9 Conclusions and Future Work

9.1 Achieved Goals . . . . . . . . ..
9.2 Links of interest . . . . . . . .. .
9.3 Conclusions . . . . . . . . . e
9.4 Future linesof work . . . . . .. ... L

A Project Impact
A1 Social impact . . . . . .. L
A.2 Ethical and professional responsibility . . . . . . ... ... ... .. ....
A.3 Economicimpact . . . . . . . ...

A4 Environmental impact . . . . . . . ... L L

B Project Budget
B.1 Material resources . . . . . . . ..o
B.2 Human fees . . . . . . . . e

B.3 Taxes involved . . . . . . . . . oo

Bibliography

75
76
76
76
77
77
77
78
81
82
82
83
84
85
86

89
90
90
91
91

93
94
94
95
95

97
98
98
98

99



List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

4.1

5.1
5.2
5.3
5.4
5.5
5.6
0.7
5.8

6.1
6.2

7.1
7.2

Food computer vision diagram . . . . . .. .. Lo oL oL 9
ANN functional interpretation extracted from [17] . . . . ... ... . ... 12
ANN layer architecture extracted from [35] . . . . .. .. ... ... .... 14
CNN layer architecture extracted from [35] . . . . ... ... ... .. ... 14
Convolutional and Pooling functionalities extracted from [35] . . . .. . .. 16
Layer diagram of CNN extracted from [32] . . . . . ... ... ... .. ... 16
LeNet-5 architecture extracted from [39] . . . . .. ... ... ... .. ... 17
AlexNet architecture extracted from [38] . . . . . . ... ... ... ... .. 18
ZF-Net architecture extracted from [71] . . . ... ... ... ... .. ... 18
VGG-16 Net architecture . . . . . . .. .. . o oo 19
InceptionV1 architecture extracted from [60] . . . .. ... ... ... ... 19
ResNet34 architecture extracted from [31] . . . . .. ... ... ... .... 20
ResNet, ResNetXt block comparison extracted from [66] . . . . . . .. ... 20
DenseNet architecture extracted from [33] . . . . . ... ... ... ... .. 21
Fine-tuning strategies . . . . . . . . . . . . ... ... ... . 22
General system architecture diagram . . . . . . . . ... ... 32
Model building process methodology and configuration schema . . . . . .. 36
Dataset directories split in train and validation . . . . .. .. .. ... ... 37
Augmentated images example with defined configuration . . . . . . . .. .. 38
MobileNetV2 training accuracy and loss Food-101 dataset . . . . . . .. .. 43
ResNet50 training accuracy and loss Food-101 dataset . . . . . .. ... .. 45
InceptionResNetV2 training accuracy and loss Food-101 dataset . . . . . . 47
Xception training accuracy and loss Food-101 dataset . . . . .. .. .. .. 49
InceptionResNetV2 confusion matrix . . . . . . ... ... ... ....... 52
Database tables obtained . . . . . ... .. .00 56
Modeling and web scraping diagram . . . . . . .. ... 57
System architecture diagram . . . . . . . ... ... 62
Model View Controller (MVC) architecture . . . .. ... ... ... .... 63

XVl



7.3
7.4
7.5
7.6
7.7

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

UML Use cases diagram . . . . . . . . . . .. o i 64

UML Classes diagram . . . . . . . . .. . .0 i 68
Application directory structure . . . . . . . ... ... 70
Application mock-up view . . . . . ... L 71
Modal mock-up view . . . . . ... 72
Foodiefy logo brand . . . . . . . .. oL Lo 76
Smartphone screenshot responsive . . . . . . ... 78
Tablet screenshot responsive . . . . . . . . . . . ... ... ... 79
Laptop & Desktop screenshot responsive . . . . . . . . ... ... ... ... 80
Interaction overview diagram . . . . . . ... ... L L L oL 81
Home page view . . . . . . . .. 82
Searched food view . . . . . . .. .. 83
Selected food modal view . . . . . . .. .. ... 84
Restaurant food images view . . . . . . .. .. Lo oo 85

8.10 Menu VIew . . . . . . . . .o s 86



List of Tables

2.1
2.2
2.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Food datasets . . . . . . . .. 10
Related works accuracy for ETHZ Food-101 . . . . . . .. .. .. .. .. .. 11
Pre-trained models available in Keras with ImageNet weights extracted from

[19] . o o 23
MobileNetV2 ImageNet features . . . . . . . . .. ... ... ... ..... 42
Parameter configuration MobileNetV2 . . . . . .. .. .. .. ... ... 43
Metric results for the optimal MobileNetV2 model obtained . . . . . . . .. 44
ResNet50 ImageNet features . . . . . . . .. . ... .o 44
Parameter configuration ResNet50 . . . . . . . .. .. .. ... .. 45
Metric results for the optimal ResNet50 model obtained . . . . .. . .. .. 46
InceptionResNetV2 ImageNet features . . . . . .. .. .. .. ... ... .. 46
Parameter configuration InceptionResNetV2 . . . . . . .. .. ... ... .. 47
Metric results for the optimal InceptionResNetV2 model obtained . . . . . 48
Xception ImageNet features . . . . . . . ... L oo 48
Parameter configuration Xception. . . . . . . . .. ... L. 49
Metric results for the optimal Xception model obtained . . . .. .. .. .. 50
Epoch timing comparative . . . . . . . ... oL 50
Metric compariSon . . . . . . .. ..o e e e 51
Summary of Xception model features . . . . . . .. ... 52
Xception classification report . . . . . ... Lo 53
Primary and secondary actors . . . . . . ... ..o 64
Use case 1: Search food images . . . . . . . . ... ... ... ... ... . 65
Use case 2: Inspect restaurant food images . . . . .. ... ... ... ... 65
Use case 3: Filter images . . . . . . . . .. . L o oo 66
Use case 4: Visit restaurant website . . . . . . .. .. ... 0oL 66
Use case 5: Compute statistics . . . . . . . .. ... ... ... ....... 67
Use case 6: Show information . . . . . .. ... ... ... ... ....... 67

XIX






CHAPTER

Introduction

This chapter introduces the context of the project, including a brief overview of all the differ-
ent parts that will be discussed in the document. It will also break down a set of objectives
to be carried out during the realization of the project. Furthermore, it will introduce the

structure of the document with an overview of each chapter.




CHAPTER 1. INTRODUCTION

1.1 Context

Artificial Intelligence (AI) is known as the simulation of human intelligence processes by
machines. These processes include those capable of learning, reasoning and improving
themselves. Al has changed our lives substantially with the arrival of many products and
services, but its beginnings were not easy. Currently, there is a widespread desire for systems
with advanced intelligence, capable of simulating human behavior.

The key factors that have encouraged the use of this variety of systems were the increase
in the computational capacity of computers and the digitalization produced huge amounts of
data that could be processed to obtain value from them. An unprecedented investment was
made by technological companies, seeing that by applying analytics and data algorithms,
products, services, and insights could be obtained that would add value to companies and
society. It seems that the advance of artificial intelligence goes through computer vision.
Among the most important applications of computer vision are object detection, object
recognition, scene reconstruction, image restoration, and movement estimation.

One of the fields that include artificial intelligence is deep learning, which focuses on
the development of computer programs and systems that can manage data to transform it
into useful information that generates knowledge without the need for human supervision.
Deep learning techniques includes neural networks, specifically the Convolutional Neural
Networks (ConvNets or CNNs) that is one of the main classes to perform image recognition
and image detection.

Entering other topics of interest, food-related investigations propose multiple applica-
tions and services to improve health, guide human behavior and understand the culinary
culture. The development of social networks has allowed the sharing of lifestyles through
images, recipes, and diets, which have led to the collection of large datasets of information.
This information grants acquiring the necessary knowledge of how food can help people to
solve or improve current social problems. Whereas, search engines emerged from the need
to classify and manage information in a reasonable time. Numerous websites and internet
began to appear every time had a more generalized use reason why the first searchers, be-
gan to fulfill the function of classification of pages, documents, places, and servants of the
network.

The way in which humans are related to technology today is largely due to the apps
change, which has forced an evolution of the web to adapt to the already practically con-
solidated mobile environment. With the appearance of new devices, each with different
screen resolutions that break into the market regularly, it is essential that the web project
is adapted to them, so that the content is liquid, occupying all the available space, and thus

allowing a correct experience for the user, no matter where you are accessing from.



1.2. PROJECT GOALS

1.2 Project goals

All objectives proposed for this project revolve around the context of the previous section.

The aims are divided into general and specific depending on the purpose.
As general project goals, regarding previous job and research to carry out the the
practical project part:

e Understand the current state of the art in terms of image recognition and deep learning

techniques for image analysis.

e Investigate the possible methodologies and frameworks of formatting and extraction

of information.

e Study the different ways of presenting information and reach the widest potential au-

dience.

As specific project goals, regarding the businesslike activity that makes up the case

study:

e Analyze the different image recognition architectures for transferring learning to choose

the most suitable one.

e Build a deep learning model of image classification using transfer learning techniques

to recognize food images.

e Extract the necessary information to elaborate a dataset and generate an extra value

by applying the food image classifier model.

e Develop a multiplatform web application for all devices to show the project achieve-

ments and results.

e Design a general system architecture to fit each of the modules that make up the

project.

e Implement all previous specific objectives as a case study approach.



CHAPTER 1. INTRODUCTION

1.3 Structure of this document
The remaining of this document is structured as follows:

e State of the Art (chapter 2). This chapter introduces the reader all necessary knowl-
edge to understand the project and its different sections. It deals with the current
state of food image recognition systems and the different methodologies to carry it
out. Sections included in this chapter are Food image recognition, and Deep Learning

for image analysis.

e Enabling Technologies (chapter 3). This chapter offers a brief review of the main
technologies that have made possible this project, as well as some of the related
published works. Sections included in this chapter are Machine Learning technologies,

Data technologies, and Web application technologies.

e General System Structure (chapter 4). This episode summarizes the next chapters
showing the general structure of the system. Modules, components, and connections
are described and analyzed. Sections included in this chapter are Architecture, Main

modules, and Auxiliary modules.

e Transfer Learning Model for Image Recognition (chapter 5). This chapter shows
how to build a image classifier model transferring learning and analyzes multiple deep
learning architectures. It describes the overall process of fine-tuning a model, with
specific analysis of each architecture and comparison of results. Sections included
in this chapter are Introduction, Methodology and configuration of the model build-
ing process, Analysis of the models, Comparison of the models, and Analysis of the

selected model: Xception.

e Web Scraping System for Data Extraction (chapter 6). This chapter presents the
data extraction process using web scraping techniques and classifying results with
a deep learning model. Additionally, it contains a previous analysis and database
formatting for the case study. Sections included in this chapter are Introduction,

Previous analysis, and Methodology and configuration of the data modeling process.

e Food/Restaurant Searcher Web Application (chapter 7). This chapter presents the
architecture, features and target devices of the web application for data visualization
as the principal element of the case study and secondary part of the project. Sections
included in this chapter are Overview, System architecture, Application layout, and

Targeted platforms.
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e Case Study — Foodiefy (chapter 8). This chapter shows the result of a practical
case as a web application. It proposes an application concept after analyzing the
context. Additionally, each part of the app and the interactions are shown in detail.
Sections included in this chapter are Introduction, Features, Device responsiveness,

Interaction overview, and Views.

e Conclusions and Future Work (chapter 9). This chapter details the achieved goals
and outcomes done by the master thesis following key points developed in the project.
Additionally, there are described the future lines of work and the repository to continue
in the same way. Sections included in this chapter are Achieved Goals, Links of

interest, Conclusions, and Future lines of work.

e Project Impact (Appendixz A). This appendix shows the social, economic, environ-
mental impact jointly the ethical an professional responsibility. As it is described, the
project uses open source datasets and web scraping techniques to acquire data that
are the main points to be highlighted. Sections included in this chapter are Social
impact, Ethical and professional responsibility, Economic impact, and Environmental

impact.

e Project Budget (Appendix B). This appendix describes the necessary project budget
regarding material resources, human fees, and taxes involved. Sections included in this

chapter are Material resources, Human fees, and Taxes involved.
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CHAPTER

State of the Art

This chapter introduces the reader all necessary knowledge to understand the project and its
different sections. It deals with the current state of food image recognition systems and the

different methodologies to carry it out.



CHAPTER 2. STATE OF THE ART

2.1 Food image recognition

Food-related studies propose multiple applications and services to improve health, guide
human behavior and understand the culinary culture. The development of social networks
has allowed the sharing of lifestyles through images, recipes, and diets, which have led to the
collection of large datasets of information. This information grants obtaining the necessary
knowledge of how food can help people to solve the current problems of society.

It is demonstrated that the foods of a diet have a direct impact on the health of people.
In recent years, the number of people with obesity and overweight has been increasing
progressively due to the widespread consumption of unhealthy diets [47]. This condition of
lifestyle makes people prone to acquire chronic diseases such as cardiovascular, respiratory
and cancer. Therefore, it is completely necessary to build tools to control food habits [48].

Food computing vision acquires and analyzes heterogeneous food data from disparate
sources for perception, recognition, retrieval, recommendation, and monitoring of food. It
proposes different approaches related to human behavior, medicine, biology, gastronomy,
and agronomy. Technological advances together with existing data are transforming the way
of analyzing and interpreting food. Therefore, it uses different areas such as network analy-
sis, computer vision, machine learning and data mining to analyze this class of information

[45].

2.1.1 Computer Vision

Recently, the computer vision community has focused its objectives on areas involved in
the development of automatic systems for food analysis: food image detection, food item
recognition, quantity or weight estimation, food localization, portion estimation and caloric
and nutritional value assessment [14].

On the one hand, food detection is known as a binary classification problem, where the
algorithm tries to distinguish whether an image represents food or not. Classical approaches
try to extract features such as interest point descriptors from scale-invariant feature trans-
form (SIFT), pool the features into a vector representation eg, a bag of words and Fisher
Vectors and then use a clustering algorithm such as Support Vector Machine (SVM) for
classification. Recent studies have shown that the best results obtained are based on Convo-
lutional Neural Network (CNN), in comparison to previous works in conventional machine
learning, CNNs produce better performance.

On the other hand, assuming that only one food is present in the image, food recognition,
tries to solve the problem of categorical classification. Researchers have been working on
food recognition using traditional approaches based on classical image features and machine

learning. Investigations of traditional approaches using multiple techniques achieve between

8



2.1. FOOD IMAGE RECOGNITION

28% and 65% accuracy for datasets of 50-101 classes, depending on the different algorithms
used. In recent years, CNNs are also widely used in food recognition since it achieves better
performance than conventional methods, achieving accuracy above 79% for datasets of 101

classes [58].

In the last couple of years, machine learning and specifically deep learning with convo-
lutional neural networks have achieved significant technological advances for image classifi-
cation and recognition tasks. Although they have been working on a food image, there is a
long way to find a solution with high accuracy, considering that there are many difficulties
due to the great variety and complexity of food. Bearing in mind that many foods are not
distinguishable by the human eye because they have a similar color or shape, it is extremely
difficult to recognize them correctly. Another real problem is when different foods appear
on the same plate, which makes it more difficult to answer this problem. Therefore it is
believed that it is sufficient to recognize general types of food, which can provide very useful

information for diets, calories, etc [58].

Food Data Acquisition

Social Networks Books Surveys Web

N2

Data Analysis

Computer Vision Machine Learning Data Mining

A4

Tasks

Perception Recognition Recommender Monitoring

NI

Applications

Health Culture Agriculture Medicine Biology

4

Food Computing

Figure 2.1: Food computer vision diagram
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2.1.2 Food datasets

Currently, there are multiple datasets of food images [45] to perform tasks of recognition,
quantity estimation, retrieval, detection, segmentation,... Nowadays, benchmark datasets
are frequently released for the recognition of food images, whereas, researchers were focused
on datasets with fewer classes and smaller scale. For example, UEC Food100 [44] consists
of 14,361 images of Japanese food divided into 100 classes. With the rapid development of
social networks, it is easier to get large amounts of images of food. For example, the largest
dataset, Instagram800K [50] contains 808,964 Instagram food images of 43 classes. However,
ETHZ Food-101 [16] is the benchmark dataset chosen for the task of recognizing food images
since it has the highest ratio of images and categories. ETHZ Food-101 consists of a dataset
of 101 food categories, with 101,000 images. For each class, there are 750 training images
with noise and 250 manually cleaned test images.

The following Table shows popular accessible food datasets for recognition task, indicat-

ing the dataset name with link, number of images, classes of food, source, and references.

Dataset Images Classes Sources Ref.
UEC Food100 14,361 100 Web+Manual [44]
UEC Food256 25,088 256 Crowd-sourcing [36]

ETHZ Food-101 101,000 101 foodspotting.com [16]

UPMC Food-101 90,840 101 Google Image Search [64]

Dishes 117,504 3,832 Dianping.com [67]
Instagram800K 808,964 43 Instagram [50]
Food524DB 247,636 524 Existing datasets [23]
ChineseFoodNet 192,000 208 Web [18]

Table 2.1: Food datasets

2.1.3 Recognition applications

There are multiple applications [45] for image recognition tasks. Chronic diseases, control
systems of traditional diets, food diaries, analysis of eating habits and the widespread use of
smartphones have been the precursors of these applications. Most applications are focused

on four types of algorithms:
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Label food recognition: supposes that every image has only one kind of food.

e Food recognition on multiple labels: tries to detect and classify multiple labels

in one image.

Mobile food recognition: focused on mobile technologies.

Specific food recognition: focused on specialized image recognition for a specific

function, like restaurant food recognition.

2.1.4 Related work

The following Table shows recent works of image recognition for ETHZ Food-101 dataset.
For each research, it is shown the method name used and the Top-1 and Top-5 accuracy

ordered from lowest to highest:

Method Ref. Top 1-Acc Top 5-Acc

AlexNet [16]  56.40 -

Modified AlexNet [68] 70.41 -
Modified GooglLeNet [40] 77.40 93.70

VGG16 [53] 79.17 -
InceptionV3 (stratospark) [52] 86.97 97.42
InceptionV3 [29] 88.28 96.88
ResNet-200 [31] 88.38 97.85
Wide Residual Network (WRN) [43] 88.72 97.92
Wide-slice Residual (WISeR)  [43] 90.27 98.71

Table 2.2: Related works accuracy for ETHZ Food-101

All investigations are based on pre-trained models, using fine-tuning to get new models,
it can be deduced that using them is the best way to obtain better results. In addition, some
of them use different techniques such as standard 10-crop and wide-slice residual technique
to improve the accuracy of the models.

As a critic, note that all show the results obtained in articles but none of them makes

their code accessible except Stratospark [52], which creates a completely transparent work.
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2.2 Deep Learning for image analysis

2.2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) [62] are systems modeled in biological neural networks
that trying to simulate the behavior of human brain systems. The neural network is not
regarded as an algorithm, but as a framework to process multiple algorithms working to-
gether.

The human brain is composed of neurons interconnected by dendrites receiving input
signals to transform them into electrical signals that are transmitted by the axon. For
computers, it is easier to process calculations with a great need for processing, while humans
have the ability to recognize shapes and colors easily. Therefore, the focus is on solving
problems benefiting both advantages [30].

Such systems learn through examples regardless of any specific feature. For example,
to identify an object of an image you do not need to know the characteristics of it, but it
automatically generates features by processing them.

The origin of artificial neural networks is due to several related studies [41]. In 1943
neurophysiologist Warren McCulloch and mathematician Walter Pitts conducted a study
of the functioning of neurons. In 1949, Donald Hebb created the learning hypothesis based
on neural plasticity, better known as Hebbian learning. In 1962, Widrow & Hoff developed
a procedure based on the idea of the perceptron, while an active perceptron can have a big
mistake, you can adjust the weight to distribute it over the network. Finally, neural network

research was stalled in 1969 from machine learning by Marvin Minsky and Seymour Papert.
2.2.1.1 Network functionality

. weights
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X @ net input
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Figure 2.2: ANN functional interpretation extracted from [17]
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An ANN is represented as connected nodes or artificial neurons that resemble that of the
human brain. Each neuron can transmit a signal to another through the connections or
edges. Both the nodes and the edges have a weight that adjusts the learning and also the
first ones have to overcome a threshold signal to activate. In short, all these elements form

a directed weighted graph formed by different hidden layers.

2.2.1.2 Component features

For making decision on whether or not the signal passes from one neuron to another activa-
tion functions are used. Among the most important are Sigmoid function, which transforms
the output signal into a value between 0 and 1, Tanh function that transforms the output
signal into a value between 1 and -1, ReLU function transforms the output signal into a
positive value or 0 and finally Softmax function, which works in a similar way as Sigmoid
but divides each of its outputs probabilistically, very useful for classifiers.

To minimize the cost function there are various algorithms to measure accuracy. Among
the most popular are mean squared error and cross-entropy. Adjusting weights in the
training phase in two phases, forward and backward, is performed by a series of techniques
called optimizer. Among the most outstanding are the Stochastic gradient descent, as a
variant of gradient descent, RMSprop, Adam, as a generalization of Adagrad. The most

used for training images are Adam and SGD for its rapid convergence [28].

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs / ConvNets) [35, 72] are very similar to Artificial
Neural Networks explained previously, based on neurons with weights and biases. They are
conceived as a class of deep neural networks that is normally applied to image analysis.

CNNs are inspired by biological processes simulating the pattern of connectivity between
neurons to simulate the visual cortex. It uses a variation of multilayer perceptrons that
need preprocessing little capacity compared to other image classification algorithms. Unlike
traditional ANNs, ConvNet starts from the fact that the input signals are images, which
allows processing some properties in the architecture, achieving a more efficient forward
function and reducing the number of parameters of the network.

Among the most recent applications in which this type of architecture is used, there
are image and video recognition, recommender systems, image classification, medical image
analysis, and natural language processing.

The basics of CNNs are on the neocognitron introduced by Kunihiko Fukushima in
1980 and later improved by Yann LeCun in 1998 by introducing the method of learning

backward. From 2012 it was refined by performing deployments graphics processing units
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(GPU).

2.2.2.1 Comparing architectures

Recapitulating, like the ANNSs, as input signal it has a vector that would be transformed
by hidden layers series. Neurons of a hidden layer interconnect with all neurons in the
preceding layer and with none of the same level, reaching a final layer or output layer
representing scores.

On the one hand, the problem of traditional ANN for image analysis is that as an input
signal has a “wide x high x channels” image that for a 200x200x3 image would have in a
single fully-connected neuron in the first hidden layer 120,000 weights. Therefore this type
of connectivity is wasteful and would produce overfitting. The following Figure shows the

architecture:
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Figure 2.3: ANN layer architecture extracted from [35]

On the other hand, CNNs based on the premise that the input signals are images and
layers containing neurons are organized in 3 dimensions: width, height, and depth. It
transforms an input 3D volume to an output 3D volume with some differentiable function

that may or may not have parameters. The following Figure shows the architecture:
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Figure 2.4: CNN layer architecture extracted from [35]
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2.2.2.2 Architectural layers

CNNs consist of input, hidden and output layers [65]. Hidden layers are composed of
convolutional layers, ReLLU layers, pooling layers, fully-connected layers, and normalization

layers.

e Convolutional Layer: They are the central building block of CNN and where the
greatest computational expense occurs. They apply the convolution operation to the
input and pass the result to the next layer. Every entry can be interpreted as an
output that only take into account one small region. When is needed to deal with
high dimensional data like images is not effective to connect neurons to every neuron
in the next layer so it the strategy consist in connecting a subregion of the input

volume.

Parameters are a set of filters (matrix) with learning capacity, each of these small
filters (size defined by receptive field) extend through the entire depth of the input
volume. Therefore, when performing the convolution of each of the filters, it results
in a matrix called Feature Map which is used for edge detection, blur detection, and

sharpen detection.

Three hyperparameters are used to explain the number and organization of neurons
to control the size of the output volume. The depth of the output volume is a hy-
perparameter that corresponds to the number of filters that will be used. The stride
refers to the number of pixels that is filtered. Finally, zero-padding refers to the size

of the padding applied around the edge.

e Pooling layer: Commonly, pooling layers are inserted after a convolutional layers,
whose function is to reduce the spatial size of the representation progressively and

thus reduce the number of parameters and avoid overfitting.

It takes a filter and a stride of the same length. Then, it applies to the input volume
and outputs the number depending on the technique in every subregion that the filter
convolves around. The two most used techniques are max pooling that selects the
maximum value of the cluster and average pooling that takes the average value of the

cluster.

The following Figures shows the difference between convolution and pooling operation

and resulting effect:
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Figure 2.5: Convolutional and Pooling functionalities extracted from [35]

Figure (a) shows convolution operation over the image before slide the filter for the
next value and indicating the first number result into the output matrix. Meanwhile,

Figure (b) shows the effect of the layer, pooling and down-sampling the image by half.

e Normalization layer: They have developed various types of normalization layers
trying to simulate the brain thread behavior, however, for ConvNets has been shown to
produce no signifiable improvement and are leaving to use. Its function is to normalize

the activation of the previous layers in each batch.

e Fully-connected layer: Connects each neuron in one layer to all neurons in another
layer, resembling a multi-layer perceptron neural network (MLP). For classification

algorithms, Softmax function is usually used.

The next Figure shows a diagram of a standard convolutional neuronal network with
all the layers used [69]. It shows an input image that passes through two stages of extrac-
tion of features composed of a convolutional layer and pooling layer. Finally, there is the
Fully-connected layer that connects all the extracted features and provides the classification

probabilities leaning on Softmax or a similar function.

Input Conv  Pool Conv Pool FC Output

Figure 2.6: Layer diagram of CNN extracted from [32]
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2.2.3 Predefined historical architectures

Creating convolutional neural network architectures can become very complex depending
on the needs of our dataset classification. Therefore, there are predefined ConvNets that
serve different types of image classification. These architectures are frequently accompanied
by weights trained with a dataset, enabling direct use for prediction, feature extraction and
fine-tuning.

ConvNet existing architectures [35, 34, 25, 24] can be divided into classic and mod-
ern. Among the classic highlight LeNet-5, AlexNet, and VGGNet, while modern would
GoogLeNet, ResNet, and DenseNet.

Congress ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [54] has been
key to the development of ConvNets. It is an annual competition organized since 2010
where a number of research teams test their algorithms to classify and locate objects using

ImageNet dataset.

e LeNet-5 [39]: This model, the pioneer of the ConvNets, was developed by Yann

Lecun in the 1990s with the aim of identifying zip codes for the postal service.

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
30%32 6@28x28

S2: f. maps
6@14x14

\
Full con|J1ection ‘ Gaussian connections

Subsampling Convolutions  Subsampling Full connection

Convolutions

Figure 2.7: LeNet-5 architecture extracted from [39]

The architecture consists of two stages of convolutional and average pooling layers,
followed by a flattening convolutional layer to end in two fully-connected layers and

a softmax classifier. The number of parameters of this network is 60,000.

e AlexNet [38]: This model developed by Alex Krizhevsky, Ilya Sutskever, and Geoff
Hinton, popularized CNN in computer vision in the ILSVRC 2012 contest of ImageNet

and convinced the computer vision community to use deep learning.

The key points to win the competition were using ReLU layers, data augmentation
techniques, dropout layers, and train the model using batch stochastic gradient descent
on two GTX 580 GPUs for five to six days.
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Figure 2.8: AlexNet architecture extracted from [38]

AlexNet architecture is similar to LeNet-5 but much larger and deeper. The network
was made up of 5 convolutional layers, max-pooling layers, dropout layers, and 3 fully

connected layers. The number of parameters of this network is 60 million.

ZFNet [71]: ILSVRC 2013 winners were Matthew Zeiler and Rob Fergus with ZFNet.
This network is very similar to AlexNet making changes in hyperparameter, specif-
ically expanded the size of the convolutional layers in the middle and using smaller

stride and filter.

The key to winning this competition, in addition to modifications AlexNet points,
was the use of ReLLU layers to trigger functions, Crossy-entropy loss for the function
error, the development of a visualization technique (Deconvolutional Network) and
train the model using batch stochastic gradient descent on two GTX 580 GPUs for

twelve days.
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Figure 2.9: ZF-Net architecture extracted from [71]
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e VGGNet [57]: The ILSVRC 2014 was not won by VGGNet, but Karen Simonyan
and Andrew Zisserman did a great job of proving that the depth of the network is a
critical component for good performance. The network is composed of 16 CONV/FC

layers using 3x3 filters, along with 2x2 maxpooling layers. The number of parameters
of this network is 138 million.

The key points of this model were, besides those already mentioned, the use of scale
jittering as data augmentation technique, Relu layers, and train the model using batch

gradient descent on Titan Black four Nvidia GPUs for two to three weeks.
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Figure 2.10: VGG-16 Net architecture

e GoogLeNet (Inception) [60]: In 2014, Google created this winning network ILSVRC
2014. His greatest contribution was the reduction of the number of parameters to 4
million in its first version since the v3 has 23 million parameters. It also uses av-

erage pooling instead of layers fully-connected at the top of the net. Although the

architecture consists of 22 layers, the number of parameters is considerably small.

Figure 2.11: InceptionV1 architecture extracted from [60]

In the previous Figure, convolution layers are shown in blue, max-pooling layers in

red, in yellow softmax, in green concatenation channels, in purple fully-connected

layers, and in orange normalization layers.
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20

34-layer residual

e ResNet [31]: The architecture developed by Microsoft was the winner of ILSVRC

2015. It has become the default choice for using ConvNets. These networks are
characterized by being much deeper reaching the order of hundreds of layers. To solve
the problem of degradation the concept of residual blocks, which addresses the idea
that an input (x) go through conv-relu-conv series resulting F(x), however, passes to
the next block H(x) = F(x) + x instead of F(x). With this technique, the number of

parameters that have ResNet50 is 25 million.

Its main features were skipping connections, heavy use of batch normalization, remove

the fully-connected layers at the end of the network, using ultra-deep network 152

layers, and stress that was trained on an 8 GPU machine for two to three weeks

Figure 2.12: ResNet34 architecture extracted from [31]

Each group of layers of the same color represents the same dimension convolutions.
Dotted lines represent residual connections in which 1x1 convolutions are used to

adjust the size of the new block.

In this research, with wide residual networks, it was reached the conclusion that in-
creasing network bandwidth (channel depth) can be more efficient than expanding the
overall network capacity measure. As variant ResNet subsequently emerged ResNetXt
with good evaluation in ILSVRC 2016. This architecture replaces the standard resid-

ual blocks by opponent’s strategy “split-transform-merge” used in Inception.
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Figure 2.13: ResNet, ResNetXt block comparison extracted from [66]

The Figure shows a ResNet block on the left and on the right a ResNetXt block with

almost the same complexity.
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e DenseNet [33]: This architecture promotes a simple idea “it may be useful to refer
to the maps from earlier in the network”. Therefore, each successive layer inside the
dense block is concatenated at the entrance. DenseNet varies between 0.8 and 40

million parameters according to its version.
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Figure 2.14: DenseNet architecture extracted from [33]
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This architecture mimics ResNet but replacing the residual blocks for dense blocks,
which enables the quantity to subsequent layers in the network take the above char-

acteristics.

2.2.4 Transfer learning and fine-tuning

It creates a model for image classification can be very complicated. It is also possible that
the tools and elements necessary for its realization are not available. However, there are
techniques to transfer the knowledge of pre-trained models to your needs.

Transfer learning [42, 46, 55] is a computer vision method that allows creating accurate
classification models in a short time. Instead of starting the training process from scratch
you start with a series of patterns. This requires the use of pre-trained models trained on
a large dataset and so to solve a similar problem.

It is assumed that the convolutional neural networks are composed of a first part for gen-
erating image features (convolutional base) and a second part serving classifier and provides
probabilities (classifier). Furthermore, in the convolutional base, the lower layers generally
refer to features (independent problem), while higher layers refer to specific features (depen-
dent problem). Then, if you have a pre-trained model, you can take advantage of features
obtained from the convolutional base to apply our classifier training entire or part of the

model.

2.2.4.1 Fine-tune strategies

Depending on the type of training applied to pre-trained model there are three strategies.

This technique of fully or partially training convolutional base is known as fine-tuning.

e Entire model training: This strategy is to train all the layers of the pre-trained

model. Therefore, a large dataset and computational capacity are needed.
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e Partial model training: As it has been seen previously, the lower layers and the
higher layers contain information on general and specific features, respectively. There-
fore, this technique consists of partially freezing some layers of the convolutional base
and training the rest. This method is very effective if you do not have a large dataset

or too much computing power.

e Freeze entire convolutional base: This technique consists in training the model
freezing all layers of the convolutional base. It is effective if large computing capacity is

not available, the dataset is small and the pre-trained model solves a similar problem.

Entire model training Partial model training Freeze entire conv base

INPUT INPUT INPUT

Conv Base Conv Base Conv Base

PREDICTION PREDICTION PREDICTION

Figure 2.15: Fine-tuning strategies

Both the first and second strategy must be careful with the learning rate chosen because
it can distort the weights and therefore it is advisable to use a small one.

The choice of fine-tuning strategy depends on two factors, the size of the dataset and
the similarity with the pre-trained dataset. If you have a large dataset, when it is related
or not with the trained dataset leads to training the model partially or whole respectively.
While if the dataset is small, when it relates to the trained dataset or not, it is advisable to
train the model partially in the first case and train the frozen model the entire convolutional

base for the second case.

2.2.5 Current Keras applications

Existing and available on Keras predefined models are rated according to their accuracy,
size and depth for ImageNet dataset with 1.2 million images belonging to 1000 classes.
Among the models available are VGGNet, ResNet, Inception, MobileNet, DenseNet and
NASNet plus all its variants.

The following Table has the most popular Keras architectures with accuracy, size and
depth. The top-1 and top-5 accuracy refers to the model’s performance on the ImageNet

validation dataset.
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Model Size  Top 1-Acc Top 5-Acc Parameters Depth
Xception 88 MB 0.790 0.945 22,910,480 126
VGG16 528 MB 0.713 0.901 138,357,544 23
VGG19 549 MB 0.713 0.900 143,667,240 26
ResNet50 98 MB 0.749 0.921 25,636,712 -
ResNet101 171 MB 0.764 0.928 44,707,176 -
ResNet152 232 MB 0.766 0.931 60,419,944 -
ResNet50Vv2 98 MB 0.760 0.930 25,613,800 -
ResNet101V2 171 MB 0.772 0.938 44,675,560 -
ResNet152V2 232 MB 0.780 0.942 60,380,648 -
ResNeXt50 96 MB 0.777 0.938 25,097,128 -
ResNeXt101 170 MB 0.787 0.943 44,315,560 -
InceptionV3 92 MB 0.779 0.937 23,851,784 159
InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572
MobileNet 16 MB 0.704 0.895 4,253,864 88
MobileNetV2 14 MB 0.713 0.901 3,538,984 88
DenseNet121 33 MB 0.750 0.923 8,062,504 121
DenseNet169 57 MB 0.762 0.932 14,307,880 169
DenseNet201 80 MB 0.773 0.936 20,242,984 201
NASNetMobile 23 MB 0.744 0.919 5,326,716 -
NASNetLarge 343 MB 0.825 0.960 88,949,818 -

Table 2.3: Pre-trained models available in Keras with ImageNet weights extracted from [19]
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CHAPTER

Enabling Technologies

This chapter offers a brief review of the main technologies that have made possible this

project, as well as some of the related published works.
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CHAPTER 3. ENABLING TECHNOLOGIES

3.1 Machine Learning technologies

3.1.1 TensorFlow

TensorFlow (TF) [9, 12] is an open source software library for high-performance numeri-
cal data processing that uses dataflow graphs to represent computation, shared state and
mutational operations of that state.

Originally developed by researchers and engineers from the Google Brain team within
Google’s Al organization was released under the Apache 2.0 open-source license on Novem-
ber 9, 2015. First version 1.0.0 came out on February 11, 2017, and last stable version
1.12.0 was released on November 5, 2018.

This software library operates at large scale and in heterogeneous environments. Its
flexible architecture allows easy deployment of computation across a variety of platforms
including multicore CPUs, general purpose GPUs and custom-designed ASICs known as
Tensor Processing Units (TPUs). Therefore, it can work on devices from desktops to clusters
of servers to mobile and edge devices. There are many APIs already included in TensorFlow,
for example, TensorBoard, which is a suite of visualization tools in order to make it easier
to understand, debug, and optimize TensorFlow programs. A large community of users
and an infinity of project resources, implementations and research provide the stability and
reliability of the library.

TensorFlow supports a variety of applications focused on training and inference on deep
neural networks. Several Google services use TensorFlow in production, it was released as an
open-source project, and it has become commonly used for machine learning/deep learning
research. Some of the current uses of Google are Deep Speech, RankBrain, Inception Image
Classification Model, SmartReply, Massively Multitask Networks for Drug Discovery and
On-Device Computer Vision for OCR.

3.1.2 Keras

Keras [21] is a high-level neural networks API, written in Python and capable of running
on top of TensorFlow, CNTK, or Theano. Designed to enable fast experimentation with
deep neural networks, it focuses on being user-friendly, modular, and extensible. The main
factor is being able to go from idea to result with the least possible delay that is the key to
doing good research.

This API was developed by project ONEIROS (Open-ended Neuro-Electronic Intelli-
gent Robot Operating System) as part of the research effort, and its leading author and
maintainer is Francois Chollet, who is a Google engineer. The first version came out on
March 27, 2015, and last stable version 2.2.4 was released on October 3, 2018.
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Keras is a user-friendliness API designed for human beings, not machines. It focuses on
the user experience and follows best practices for reducing learning effort: it offers consistent
y simple APIs, it minimizes the number of user actions required for common use cases, and

it provides clear and actionable feedback upon user error.

Its modularity shows a model understood as a sequence or a graph of standalone, fully
configurable modules that can be plugged together with as few restrictions as possible.
In particular, neural layers, cost functions, optimizers, initialization schemes, activation
functions, and regularization schemes are all standard modules that can be combined to
create new models. As it is easily extensible, new modules can be added in an easy way (as

new classes and functions), and existing modules provide extensive examples.

It works with Python (2.7-3.6). No separate models configuration files in a declarative
format. Models are described in Python code, which is compact, easier to debug, and allows

for ease of extensibility.

Actually, it claims over 250,000 users as of mid-2018. Keras is the favorite tool for deep
learning researchers, coming in #2 in terms of mentions in scientific papers uploaded to
the preprint server arXiv.org. It has also been adopted by researchers at large scientific

organizations, in particular, CERN and NASA.

3.1.3 Colaboratory

Colaboratory [2] is a free Jupyter notebook environment that runs in the cloud and stores

its notebooks on Google Drive and GitHub.

Following the launch of its Artificial Intelligence opensource library, Tensorflow, launched
Colaboratory [27], a internal development tool completely free. The software works in a
similar way as Google Docs as a collaboration tool but also allows you to run the code and

see the answers.

Google’s strategy to offer this service for free, as with TensorFlow, is to achieve stan-
dardization of software to teach students Data Science. Thus Colaboratory is focused as an
educational tool for collaborative research.

Although the main feature of Colab is running in the cloud, allows the execution in a
local environment. The environment allows code execution in python2 and python3, also
comes preinstalled with the TensorFlow library and more.

The environment has a dedicated CPU per user for computing, Intel (R) Xeon (R) CPU
@ 2.30GHz, with 12.72 GB of RAM and HDD 358.27 GB. In addition, it comes with GPU
Tesla K80 with 12 GB GDDR5, useful to expedite TensorFlow training complex models

faster.
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3.1.4 Scikit-Learn

Scikit-Learn [7] is an open-source library built on NumPy, SciPy, and matplotlib, for ma-
chine learning on Python. It includes simple and efficient tools for data mining and data
analysis like classification, regression and group analysis algorithms.

The project initially called “scikits.learn” was created by David Cournapeau as a Google
Summer of Code project. Subsequently, INRIA assumed the leadership of the project and
made the first distribution in 2010.

3.2 Data technologies

3.2.1 Pandas

Pandas [5] is a Python open-source library that provides high-performance, easy to use
data arrangements and data analysis tools. This library, extension of NumPy, was released
under the three-clause BSD license.The name is derived from “panel data” which is an
econometrics term for naming datasets including multiple time periods observations.

The principal features and functionalities that provide pandas library for data manipu-

lation are:

Data manipulation with indexing on DataFrame object.

Reading and writing tools in different file formats.

Data alignment, handling missing data, reshaping and pivoting.

Split, apply, combine, filter, merging and joining operations.

3.2.2 BeautifulSoup

BeautifulSoup [1] is a Python library designed as a quick analyze project for parsing XML
or HTML documents and based on top parsers like Ixml and html5lib.

This library implements methods for navigating, searching and modifying a parse tree,
so this tool is useful for web scraping. Automatically transforms incoming documents to

Unicode and outgoing documents to UTF-8.

3.2.3 JSON

JSON (JavaScript Object Notation) [4] is an open-standard file format that eases hu-
man reading and writing and machines parsing and generating. It is a lightweight data-

interchange format based on a subset of JavaScript.
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3.2.4 Selenium

Selenium [8] is a browser automation framework for the testing of applications. It is provided
with tools to record /reproduce tests without using a test scripting language (Selenium IDE),
driving a web browser natively (Selenium WebDriver) and controlling web browsers locally
or in other computers (Selenium Remote Control / Grid). The different tests run on the web
browsers desired for Windows, Linux and macOS platforms. It is an open-source software
developed under the Apache 2.0 license.

The framework was developed in 2004 by Jason Huggins who was joined by other experts
in the field. The name comes from its competitor Mercury as a joke since it was said that
the poisoning caused by mercury could be healed by taking selenium supplements.

Selenium WebDriver does not require any special server to run the tests, the WebDriver
creates instances of the browser and controls it. This software is fully implemented and
supports Java Ruby, Python, and C#. The best uses and applications of Selenium are

automated testing, scraping and crawling.

3.3 Web application technologies

3.3.1 W3.CSS

W3.CSS [10] is free to use and easy to learn modern CSS framework with built-in respon-
siveness. It is based on mobile-first design and it is smaller and faster than similar CSS
frameworks.

The main interest between other frameworks is that fits all browsers, devices and applies
CSS only (no jQuery or JavaScript). This framework was designed by Jan Egil Refsnes with

w3schools support.

3.3.2 FontAwesome

FontAwesome [3] is a freemium font and icon toolkit based on CSS and LESS. This li-
brary was designed by Dave Gandy for Twitter Bootstrap and later implemented in Boot-
strapCDN. Nowadays has a team behind it and is one of the top font libraries only behind
Google Fonts.

3.3.3 Fuse.js

Fuse.js [51] is an open-source lightweight fuzzy-search library for JavaScript. It allows
to search inside JSON files with multiple configuration parameters and scoring results by

similarity. This library works on native JavaScript, so it does not need any dependency.
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3.3.4 PhoneGap

PhoneGap [6] is a framework for mobile application developing created by Nitobi and suc-
ceeding bought by Adobe Systems. PhoneGap allows developing hybrid applications for iOS,
Android, and Windows using JavaScript, HTML5, and CCS3, solving multiple platforms
problem. The interfaces are not native and do not use specific system graphic interfaces,
instead of that, it renders the app with web views.

Apache Cordova includes PhoneGap as a distribution. Both systems have similar func-
tionalities, but PhoneGap has a compile access in the cloud by Adobe. Apache Cordoba is

an open-source project and with PhoneGap can be used without licenses.

3.3.5 Docker

Docker [11] is an open-source project to automatize application deployment inside software
containers, providing an additional abstraction frame and application virtualization multi-
device.

A Docker container image is a standalone, lightweight, executable package of software
that includes everything needed to run an application: code, runtime, system tools, system
libraries, and settings. Container images can be built with docker build command, to

become containers when they are executed with docker run command on Docker Engine.
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CHAPTER

General System Structure

This episode summarizes the next chapters showing the general structure of the system.

Modules, components, and connections are described and analyzed.
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CHAPTER 4. GENERAL SYSTEM STRUCTURE

4.1 Architecture

The general system structure is composed of main and auxiliary architectural modules.
Next chapters are assumed as main modules. In spite of auxiliary modules are described in
the preceding chapters too, they are apart from them. The system architecture is composed

of three main modules and three auxiliary modules.

TRANSFER LEARNING MODEL WEB SCRAPING SYSTEM

DATA PREPARATION WEB SCRAPING

©--0 =

DATASET ANALYSIS DATA SPLIT WEB DRIVER SCRAPER DATA
IMAGE GENERATOR MODEL SELECTION
CLASSIFICATION
@ —>
' >
AUGMENTATION OPTIMIZER ARCHITECTURE
PREDICT CLASSIFY DATABASE
TRAINING
WEB APPLICATION
N
h\ ARCHITECTURE
FIT
>
MODEL VIEW CONTROLLER
A
ACTORS
EXTERNAL SOURCES
LEGEND
Activity DEVICE
Bl Add-ons
El Management STORAGE
Hl Data / architecture
Il Actors
DEVICE

Figure 4.1: General system architecture diagram
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4.2. MAIN MODULES

The preceding architectural diagram represents the general system structure. It shows
main and auxiliary modules defined by groups with specific functional colored details. Each

color represents a functionality as can be seen in the legend.

4.2 Main modules

4.2.1 Transfer learning model

This module (chapter 5) prepares and generates data for training an image classification
model using transfer learning of a pre-trained architecture. The resulting model is used in
the classification auxiliary module.

4.2.2 Web scraping system

This module (chapter 6) uses a web driver for web scraping data of a website. Obtained
data is used to generate a database in the auxiliary classification module.

4.2.3 Web application

Web application module (chapter 7) is composed of architectural components and uses the

resulting database generated by the classification auxiliary module and external sources.

4.3 Auxiliary modules

4.3.1 Classification

Classification module (subsection 6.3.5) employs the generated model to recognize every

image class of the web scraped data and builds a database for the web application module.

4.3.2 External Sources

External source module (subsection 7.2.1) refers to an external host of images used in the

web application.

4.3.3 Devices

Devices module (subsection 7.2.2) define actors, devices and platforms that interact with

the web application.
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CHAPTER

Transfer Learning Model for Image

Recognition

This chapter shows how to build a image classifier model transferring learning and analyzes
multiple deep learning architectures. It describes the overall process of fine-tuning a model,

with specific analysis of each architecture and comparison of results.
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5.1 Introduction

This section will analyze and explain the methodology of creating an image classification
model using deep learning methods of transfer learning.

Firstly, model building process and configurations are explained step by step, specifically
applied to the ETHZ Food-101 image dataset, although it could be extrapolated to any
other image dataset. Secondly, the architecture and features of the pre-trained models
used to transfer knowledge are presented to our classifier. Thirdly, is carried out with the
experimental phase the analysis of the pre-trained models used for transfer learning. Finally,

the results obtained are analyzed and the optimal model for the project is chosen.

5.2 Methodology and configuration of the model building process

As a summary, the steps followed to build the model are shown in the following Figure:

Data preparation Image d_ata Model sglecthn
generation and configuration

A

Analysis Augmentation

- VGGNet

) e L - Inception
Train / validation Optimizer - MobileNet

- ResNet
- DenseNet
[ Evaluation ](— Training <

CallBacks

Figure 5.1: Model building process methodology and configuration schema

5.2.1 Data preparation

First of all, the content of the dataset used must be analyzed. In this case, ETHZ Food-101
[16] contains 101,000 images belonging equally to 101 categories, so there are 1,000 images
per class. As a dataset competition, indicates for each class the images used for training
and validation, being a ratio of 75% for training and 25% for validation. Training images
present certain noise on purpose, and maximum image size is 512 pixels.

Having mislabeled images that are not even food, a blacklist [15] is used to improve
results. This is intended to prevent images with high probability that do not correspond to
the category being recognized. For example, ticket images are categorized into hamburgers,

because there are training images of a ticket in that category.
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Due to the nature of the dataset and the challenge, it is not necessary to divide the
dataset into train, validation, and test, since the source images of train and validation are
different. Additionally, fine-tuning this large dataset and image augmentation should not
produce overfitting. Thus it is able to compare results with other implementations.

Starting from this information, it proceeds to divide the dataset into a directory for

training images and other images for validation, being as follows:

train validation
Ih apple_pie Ih apple_pie
Ih caesar_salad Ih caesar_salad
Ih chicken_curry Ih chicken_curry
Ih hamburger Ih hamburger
Ih sushi Ih sushi

Figure 5.2: Dataset directories split in train and validation

5.2.2 Image data generation with augmentation and pre-processing

A convolutional neural network must be invariant against different object orientations,
which implies image augmentation for its training [20, 49]. This option is good for both
when you have little data, and when you have a large dataset. On the one hand, more
images are obtained for the training. On the other hand, more relevant data is obtained.
There are two methods of data augmentation, offline in which the dataset is increased
with augmented images, and online where augmented images are generated during training.
For small datasets, the offline mode is advisable, while for large datasets the online mode
is recommended. When using a transfer learning method, the same image preprocessing
function with which are obtained the weights of the pre-trained model must be used.

Image augmentation techniques used to train the models in this project are:
e Rotate the image between a random range of degrees.

e Shift or translate the image.

e Shear the image indicating a random range of degrees.

e Scale or zoom the image randomly.

e Flip horizontal or vertical the image.

e Fill or interpolate empty image parts using techniques like “constant”, “nearest”,

“reflect” or “wrap”.
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Once the dataset is separated into training and validation sets, it proceeds to configure
the training image generator with preprocessing and augmentation of images. The vali-
dation image generator is advisable to not use data augmentation since different values of
accuracy and loss would be obtained in each epoch and what is wanted is to evaluate the
model with images that serve to check if training results improve or get overfitted. This
statement invites us to think that it would train by producing overfitting, but when training
the network with augmented images in each epoch is difficult to produce that effect.

The training image generator includes image augmentation techniques while the vali-
dation image generator only includes the preprocessing of the image. The following code
fragment includes the configuration of the “ImageDataGenerator” class used to generate

augmented training images, while the validation generator only preprocesses images.

datagen_train = ImageDataGenerator (
rotation_range = 40 , #Rotate
width_shift_range = 0.2, #Shift
height_shift_range = 0.2, #Shift
shear_range = 0.2, #Shear
zoom_range = 0.2, #Scale
horizontal_flip = True , #Flip
fill mode = ’"nearest’ , #Interpolation
preprocessing_function = preprocess_input )
datagen_validation = ImageDataGenerator (

preprocessing_function = preprocess_input )

This configuration mixes all defined techniques of image augmentation and randomly
generates images like the ones shown in the Figure below (original image on the left, aug-

mented images on the right):

Figure 5.3: Augmentated images example with defined configuration
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To generate the augmented online training images, a reader is created from the “Image-
DataGenerator” class that obtains the labeled images from the directory. This generator
applies augmentation and resizes them to the indicated value which will be the size of
the images with which the model has been pre-trained. The generator must also define a
hyperparameter called batch size.

Batch size indicates the number of training samples present in a single batch to be
spread over the network at each training iteration. These samples are processed in parallel
batch independently. It is usually better to have a greater number of images in batch in
each training iteration to improve learning quality and convergence rate. However, it is not
always possible since the available memory in the hardware is a limiting factor [37].

Therefore, larger batch sizes tend to converge faster and produce better performance. A
larger batch size should improve optimization steps and obtain greater convergence speed.
In addition, performance can be improved by reducing the number of communications
between the GPU. It has been chosen batch size 16, 32 or 64.

5.2.3 Architecture selection and configuration

Once configured the data generators of training and validation, the pre-trained model loaded
with the weights of the ImageNet dataset is selected. Keras offers several possibilities such
as Inception, ResNet, VGGNet, DenseNet... to choose the most appropriate depending on
the dataset and computational capacity.

After selecting the architecture, the convolutional base of the model is loaded without
including the part of the classifier to be able to adjust it to the desired requirements.
Subsequently, the classifier composed of pooling layers and dense layers is created, with the
option of adding a dropout layer. Dropout layer will be necessary when the dataset with
which it goes to fine-tuned is small. Dense layer indicates the number of classes to classify

and the activation function used. This project uses the following configuration:

#Select model and get convolutional base
base_model = <model> (

weights = ’imagenet’ ,

include_top = False ,

input_tensor = Input (shape=(299, 299, 3) )
#Configure classifier
x = base_model.output

x = GlobalAveragePooling2D () (x)

#x = Dropout (rate = 0.2) (x) #to avoid overfitting if few samples
predictions = Dense (<num_classes>, activation = ’softmax’) (x)
model = Model (inputs = base_model.input, outputs = predictions)

39



CHAPTER 5. TRANSFER LEARNING MODEL FOR IMAGE RECOGNITION

At this point, it is just needed to compile the model with the optimizer, losses function
and training metrics.

Among the optimizers available in Keras are SGD, RMSprop, Adagrad, Adadelta,
Adam, Adamax and Nadam. As previously seen, the Most Used for training images are
Adam and SGD for ITS rapid convergence. In addition, to fine-tune a model, SGD works
very well as it converges rapidly. This project is set SGD with adaptive learning rate. The
losses function is categorical cross-entropy because it is defining a classification system with
several classes and the training evaluation metric chosen is the accuracy for having equitable

data of each category.

#Compile the model

model.compile (
optimizer = SGD(lr = 0.0l, momentum = 0.9 ,
loss = ’categorical_crossentropy’ ,

metrics=[’accuracy’] )

5.2.4 Model training

To train the model, “fit_generator” function is used. It starts from the train and validation
generator and also needs a series of parameters to configure.

The number of epochs refers to the number of times in which the entire dataset passes
forward and backward through the neural network. There is no optimal number of epochs
since a low value will produce underfitting while a too high will produce overfitting. With
the configuration described in this project, it is unlikely that overfitting will occur, so it is
about training the model until the validation accuracy does not increase more with training
accuracy.

Steps per epochs refer to the number of training iterations in each epoch. This value
will be the length of the training generator that is the number of training samples divided
by the configured batch size. Validation steps are the same as above but for validation

generator.

#Training the model
model.fit_generator (
generator = train_generator,
steps_per_epoch = len(train_generator), #train_samples//batch_size+1l
epochs = 25,
validation_data = validation_generator,
validation_steps = len(validation_generator), #val_samples//batch_size+l

callbacks=[reduce_lr, csv_logger, tb_callback, checkpointer] )
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Finally, this function allows the execution of callbacks. This project has used checkpoints
to automatically save the results, CSV logger to save the accuracy and loss of each epoch,
reduces learning rate on plateau to reduce the learning rate in the case that a metric does
not improve compared to the previous epoch, and TensorBoard to display the parameters
of training and validation.

The training process from scratch in this project is usually quite slow, lasting for weeks.
However, using fine-tuning techniques can obtain a model with more than 80 % within
hours. Depending on the pre-trained architecture, the batch size and the size of the input

images each epoch have variable durations.

5.2.5 Prediction evaluation

Once trained the model, it can be used directly for getting a list of probabilities that belong
to classes. Therefore, the category to which the image belongs or the categories to which
belong are shown if there are doubts.

Based on the challenges of our dataset, evaluation methods are performed on the images
of validation. Between the techniques of evaluating the accuracy and the loss, confusion
matrix and other forms of scoring are used. To compare the models obtained it is taken

into account the training time and some popular metrics from the scikit-learn library.

5.3 Analysis of the models

From the architectures available in Keras (2.2.5) with trained weights on ImageNet, different
models that provide good performance at a low computational cost have been chosen. Due to
the computational constraints of Colaboratory, it has not been possible to train the models
with the same batch size and the largest possible one has been used for each architecture,
speeding up the training process that can take up to a couple of days. In addition, the
default input image size with the weights trained has been used for each architecture.
Depending on the complexity and the batch size, the training process time of each model

varies considerably. Evaluation metrics are used to measure the quality of each model:

e Accuracy: Proportion of correct classifications. Is not reliable metric if the dataset

is unbalanced.

Accuracy TP+TN _ TP+TN (5.1)
P+ N TP+TN+ FP+FN
e Categorical cross entropy (loss):
1 X
Loss = N Zlogpmodel [yi € Cyil (5.2)

i=1
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e Precision: Percent of correct predictions.

TP

PT@CiS’iOTL = m (53)
e Recall: Percent of caught positive cases.
TP TP

l=—=— 4
Recall =5 = Tp T 7N (54)

e F1-Score: Percent of positive predictions correct.
Fl =2 Recall % Precision _ 2+«TP (5.5)

* Recall + Precision 2xTP+ FP 4+ FN

All of these metrics are used to compute the evaluation of every model taking special
attention to the accuracy metric which is the best one because both training and validation

sets are symmetrical, with the same number of samples of each class.

5.3.1 MobileNetV2

MobileNetV2 [56] is a small model, with low latency and power, designed for mobile devices.
It is very useful to meet the computational restrictions of some use cases because of its
lightness.

This model is very effective in executing object detection and segmentation. Mo-
bileNetV2 with respect to its previous version is 30% faster obtaining the same results.
This improvement focuses on the use of linear bottleneck between the layers and shortcut
connections between bottlenecks.

The following Table shows the main features of the MobileNetV2 pre-trained model with
the weights of ImageNet dataset that is going to be used for transferring learning to our

dataset.

Size 14 MB
Top-1 Accuracy 0.713
Top-5 Accuracy 0.901
Parameters 3,538,984
Depth 88

Default input size  224x224

Table 5.1: MobileNetV2 ImageNet features
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The following is the necessary configuration and training process for transfer learning

using ImageNet weights on the ETHZ Food-101 dataset.

Training images
Validation images
Classes

Input size

Batch size

Epochs

75328

25189

101

224x224

64

25

Table 5.2: Parameter configuration MobileNetV2

MobileNetV2 is a light model and the default input size is not high, so the maximum

batch size is 64 and the training process is very fast. As can be seen in the training process

you may not need to train with so many epochs as this process is slow and each epoch has

a duration of 1870 s in this case.

Model accuracy

—— Train
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o
)
L

Accuracy

o
]
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Epoch

(a) Accuracy epochs
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25

Model loss

—— Train
Validation

0 5 10 15 20 25
Epoch

(b) Loss epochs

Figure 5.4: MobileNetV2 training accuracy and loss Food-101 dataset

From the above graphs, it can be highlighted that one epoch is not enough to achieve

a good accuracy in the validation set and it is necessary to go for at least 15 epochs it

achieves 79% accuracy.

The best of the models obtained for the validation set is reached around the epoch 19,

so it would have been necessary to train the model during 19 * 1870 s or what is the same

9.86 h to reach an optimal model.
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Metrics computed for model evaluation using the optimal model are shown in the fol-

lowing Table:

Accuracy 0.817
Loss 0.749
Precision 0.820
Recall 0.820

F1-Score 0.820

Table 5.3: Metric results for the optimal MobileNetV2 model obtained

As can be seen in above results, all metrics except loss (that is a different way of
measuring quality of the model) have almost the same results, that is because the validation
set have the same number of samples for each class so every sample is as important as any

other.

5.3.2 ResNeth0

ResNet50 [31] won the 2015 ILSVRC challenge. This architecture solves the problem of
training deeper neural networks by introducing residual neural networks, which are deeper
neural networks. It reformulates the layers as residual learning functions with reference in
the input.

The following Table shows the main features of the ResNetb0 pre-trained model with
the weights of ImageNet dataset that is going to be used for transferring learning to our

dataset.

Size 98 MB
Top-1 Accuracy 0.749
Top-5 Accuracy 0.921
Parameters 25,636,712
Depth -

Default input size ~ 224x224

Table 5.4: ResNet50 ImageNet features
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The following is the necessary configuration and training process for transfer learning

using ImageNet weights on the ETHZ Food-101 dataset.

Training images 75328

Validation images 25189

Classes 101
Input size 224x224
Batch size 64
Epochs 25

Table 5.5: Parameter configuration ResNet50

ResNet50 is not a heavy model and the default input size is not high, so the maximum

batch size is 64 and the training process is faster. As can be seen in the training process

you may not need to train with so many epochs as this process is slow and each epoch has

a duration of 2550 s in this case.
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Figure 5.5: ResNet50 training accuracy and loss Food-101 dataset

From the above graphs, it can be highlighted that only one epoch achieves an accuracy

of 61% in the validation set and in only 7 epochs it achieves 78% accuracy. In addition, it

can be seen that both the accuracy and the loss validation are better than in training at

the first epoch since it is a process of transfer learning.

The best of the models obtained is reached around the epoch 17, so it would have been

necessary to train the model during 17 * 2550 s or what is the same 12.04 h.
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Metrics computed for model evaluation using the optimal model are shown in the fol-
lowing Table:
Accuracy 0.827
Loss 0.755
Precision 0.830
Recall 0.830

F1-Score 0.830

Table 5.6: Metric results for the optimal ResNet50 model obtained

5.3.3 InceptionResNetV2

InceptionResNetV2 [59] achieves a new state of art in terms of accuracy. It emerges as
a variation of InceptionV3 ideas using ResNet architecture. Residual connections allow
networks to entailment deeper and simplify inception blocks. This model requires twice the
memory and computational capacity than its predecessor InceptionV3. This architecture is
the equivalent to InceptionV4 using ResNet ideas.

The following Table shows the main features of the InceptionResNetV2 pre-trained
model with the weights of ImageNet dataset that is going to be used for transferring learning

to our dataset.

Size 215 MB
Top-1 Accuracy 0.803
Top-5 Accuracy 0.953
Parameters 55,873,736
Depth 572

Default input size  299x299

Table 5.7: InceptionResNetV2 ImageNet features

InceptionResNetV2 is a heavy model having a size of 215 MB and many parameters to

train, plus the large input size affects the maximum batch size that can be used.
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The following is the necessary configuration and training process for transfer learning

using ImageNet weights on the ETHZ Food-101 dataset.

Training images 75328

Validation images 25189

Classes 101
Input size 299x299
Batch size 32
Epochs 21

Table 5.8: Parameter configuration InceptionResNetV2

As can be seen in the training process you may need to train with many epochs as this

process is slow and it takes a long time to reach an optimum. Each epoch has a duration

of 7000 s in this case.
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Figure 5.6: InceptionResNetV2 training accuracy and loss Food-101 dataset

From the above graphs, it is worth noting that only one epoch achieves an accuracy of

66% in the validation set and in only 5 epochs it achieves 81% accuracy. In addition, it can

be seen that both the accuracy and the loss validation are better than in training at the

beginning since it is a process of transfer learning.

The best of the models obtained for the validation set is reached around the epoch 21,

so it would have been necessary to train the model during 21 * 7000 s or what is the same

40.83 h to reach an optimal model.
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Metrics computed for model evaluation using the optimal model are shown in the fol-
lowing Table:
Accuracy 0.887
Loss 0.527
Precision 0.890
Recall 0.890

F1-Score 0.890

Table 5.9: Metric results for the optimal InceptionResNetV2 model obtained

As seen in other models, all metrics except loss have almost the same results, that is
because the validation set have almost the same number of samples for each class so every

sample is as important as any.

5.3.4 Xception

Xception [22] is based on Inception modules, the intermediate step being in-between regular
convolution and the depthwise separable convolution operation. This model may be the
most balanced in terms of results and computational capacity since its size and accuracy
provide a better ratio in ImageNet image training.

The following Table shows the main features of the Xception pre-trained model with
the weights of ImageNet dataset that is going to be used for transferring learning to our

dataset.

Size 88 MB
Top-1 Accuracy 0.790
Top-5 Accuracy 0.945
Parameters 22,910,480
Depth 126

Default input size  299x299

Table 5.10: Xception ImageNet features
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The following is the necessary configuration and training process for transfer learning

using ImageNet weights on the ETHZ Food-101 dataset.

Training images 75328

Validation images 25189

Classes 101
Input size 299x299
Batch size 16
Epochs 24

Table 5.11: Parameter configuration Xception

Although Xception apparently is not a heavy model, the input size directly affects the

maximum batch size that can be used. As can be seen in the training process you may not

need to train with so many epochs as this process is slow and each epoch has a duration of

6700 s in this case.

Accuracy

Model accuracy Model loss
109 — Train 1.64 — Train
Validation Validation
1.4
0.9
1.2
, 1.0
08 S/ 2
S 0.8
0.6
0.7
0.4
0.2
0.6
0.01
0 5 10 15 20 25 0 5 10 15 20 25
Epoch Epoch
(a) Accuracy epochs (b) Loss epochs

Figure 5.7: Xception training accuracy and loss Food-101 dataset

From the above graphs, it is worth noting that only one epoch achieves an accuracy of

67% in the validation set and in only 5 epochs it achieves 82% accuracy. In addition, it can

be seen that both the accuracy and the loss validation are better than in training at the

beginning since it is a process of transfer learning.

to

The best of the models is reached around the epoch 15, so it would have been necessary

train the model during 15 * 6700 s or what is the same 27.9 h to reach an optimal model.
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Metrics computed for model evaluation using the optimal model are shown in the fol-

lowing Table:

Accuracy 0.885
Loss 0.551
Precision 0.880
Recall 0.880

F1-Score 0.880

Table 5.12: Metric results for the optimal Xception model obtained

As seen in every model all metrics have the same behavior because of using a symmetrical

dataset for validation.

5.4 Comparison of the models

Once obtained training results and transferring learning to the pre-trained models, they are
going to be analyzed and compared. Epoch timing determines which architecture is better
if there is no much time for training, while metrics comparison concludes the best model in

terms of evaluation.

5.4.1 Epoch timing

The following Table shows the input size and the batch size maximum required to train
each model. It is complemented with information about epoch duration, epoch number to

achieve the best model and the time spent to get it.

Model Input size Batch size Time/Epoch Epochs Time
MobileNetV2 244x244 64 1870 s 19 9.86 h
ResNet50 244x244 64 2250 s 17 12.04 h
InceptionResNetV2  299x299 32 7000 s 21 40.83 h
Xception 299x299 16 6700 s 15 27.9 h

Table 5.13: Epoch timing comparative
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From these results, it can be determined that the faster training model with the same
computation power is MobileNetV2 but that does not mean that is the best model, only
it is the fastest architecture to obtain the local optimal model. InceptionResNetV2 is the
lowest one but it wants to stand out that it achieves almost the same local optimal in much
less time. To conclude, the Xception model obtains a local optimal in fewer epochs than

the others because of using the lowest batch size.

5.4.2 Metric comparison

To discover the architecture that provides the best performance, the metrics and the time
needed to reach the model are taken into account. The following Table shows each of the

optimal models obtained, evaluated by metrics and the necessary training time:

Model Time Loss Accuracy Precision Recall F1-Score
MobileNetV2 9.86h 0.749 0.817 0.880 0.880 0.880
ResNet50 12.04 h 0.755 0.827 0.830 0.830 0.830
InceptionResNetV2 40.83 h 0.527 0.887 0.890 0.890 0.890
Xception 279h 0.551 0.885 0.880 0.880 0.880

Table 5.14: Metric comparison

From the preceding Table, it can be understood that depending on the available training
time can be picked between MobileNetV2 or RestNet50 that obtain practically the same
results and InceptionResNetV2 or Xception that also achieve similar results. From the first
group, it is chosen MobileNetV2 since it gets almost the same results in 2 hours less, while
from the second group it seems more practical to choose Xception since it obtains almost

the same results in 15 hours less.

5.5 Analysis of the selected model: Xception

Xception is the selected model for the project case study since apparently, it is the one
that renders the best metric results (with InceptionResNetV2). It has been chosen before
InceptionResNetV2 because it is much more efficient (lighter and rapid convergence).

In this section is analyzed the entire model with its corresponding summary, the confu-

sion matrix, and the classification report.
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5.5.1 Feature summary

Accuracy 0.885
Loss 0.551
Time/Epoch 6700 s

Total time 279h

Table 5.15: Summary of Xception model features

5.5.2 Confusion matrix

Figure 5.8: InceptionResNetV2 confusion matrix
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5.5.3 Classification report

Class F1-Score  Precision  Recall  Support
apgle,pie . 0.74 0.77 0.72 250.0
baby_back_ribs 0.86 0.86 0.86 250.0
baklava . 0.92 0.9 0.94 250.0
beef_carpaccio 0.94 0.95 0.93 250.0
beef_tartare 0.85 0.89 0.82 250.0
beet_salad 0.82 0.81 0.82 249.0
beignets 0.89 0.89 0.9 249.0
bibimbap 0.96 0.98 0.93 250.0
bread_pudding 0.77 0.79 0.75 250.0
breakfast_burrito 0.84 0.87 0.82 249.0
bruschetta 0.85 0.86 0.84 250.0
caesar.salad 0.92 0.9 0.95 250.0
cannoli 0.94 0.97 0.92 249.0
caprese_salad 0.89 0.86 0.92 249.0
carrot_cake 0.85 0.86 0.85 248.0
ceviche 0.8 0.8 0.81 250.0
cheese_plate 0.93 0.93 0.93 250.0
cheesecake 0.8 0.83 0.77 247.0
chicken_curry 0.84 0.87 0.8 249.0
chicken_quesadilla 0.9 0.9 0.89 249.0
chicken_wings 0.94 0.94 0.95 250.0
chocolate_cake 0.77 0.74 0.8 249.0
chocolate.mousse 0.74 0.7 0.78 249.0
churros 0.95 0.93 0.97 250.0
clam_chowder 0.92 0.9 0.93 250.0
club_sandwich 0.92 0.92 0.92 250.0
crab_cakes 0.85 0.88 0.83 250.0
creme_brulee 0.92 0.91 0.94 249.0
croque-madame 0.92 0.91 0.94 249.0
cup-cakes 0.91 0.9 0.92 250.0
deviled_eggs 0.95 0.96 0.95 250.0
donuts 0.89 0.88 0.91 250.0
dumplings 0.92 0.92 0.92 250.0
edamame 0.98 0.97 0.99 250.0
eggs-benedict 0.93 0.94 0.92 249.0
escargots 0.93 0.91 0.94 249.0
falafel 0.87 0.88 0.85 250.0
filet_-mignon 0.73 0.73 0.73 249.0
fish_and_chips 0.92 0.9 0.93 250.0
foie_gras 0.79 0.79 0.79 249.0
french_fries 0.94 0.92 0.96 250.0
french_onion_soup 0.88 0.85 0.92 250.0
french_toast 0.87 0.89 0.86 249.0
fried_calamari 0.9 0.91 0.9 250.0
fried_rice 0.92 0.93 0.92 249.0
frozen_yogurt 0.93 0.89 0.97 250.0
garlic_bread 0.86 0.86 0.86 250.0
gnocchi 0.82 0.81 0.83 243.0
greek_salad 0.9 0.93 0.88 250.0
grilled_cheese_sandwich 0.87 0.88 0.87 249.0
grilled_salmon 0.85 0.85 0.85 249.0
guacamole 0.95 0.95 0.94 250.0
%yoza 0.91 0.89 0.93 250.0

amburger 0.88 0.91 0.85 250.0
hot_and_sour_soup 0.93 0.92 0.95 250.0
hot.do 0.91 0.9 0.91 250.0
huevos_rancheros 0.81 0.86 0.76 248.0
hummus 0.87 0.89 0.84 248.0
ice_cream 0.82 0.9 0.75 250.0
lasagna 0.85 0.9 0.8 247.0
lobster_bisque 0.92 0.9 0.94 250.0
lobster_roll_sandwich 0.96 0.97 0.95 250.0
macaroni_and_cheese 0.89 0.89 0.89 246.0
macarons 0.97 0.97 0.96 250.0
miso_soup 0.94 0.93 0.96 250.0
mussels 0.93 0.92 0.94 250.0
nachos 0.89 0.92 0.86 250.0
omelette 0.84 0.86 0.83 250.0
onion.rings 0.92 0.93 0.91 250.0
oysters 0.95 0.93 0.97 250.0
pad.-thai 0.94 0.92 0.96 250.0
paella 0.9 0.91 0.9 250.0
pancakes 0.9 0.9 0.91 249.0
panna_cotta 0.84 0.83 0.84 250.0
peking-duck 0.92 0.89 0.94 250.0
pho 0.93 0.9 0.97 249.0
pizza 0.95 0.95 0.95 249.0
pork_chop 0.68 0.71 0.65 250.0
poutine. 0.93 0.93 0.94 250.0
prime_rib 0.81 0.73 0.9 250.0
pulled_pork-sandwich 0.88 0.86 0.9 250.0
ramen 0.91 0.94 0.88 250.0
ravioli 0.82 0.83 0.8 250.0
red_velvet_cake 0.91 0.9 0.92 250.0
risotto 0.82 0.81 0.84 246.0
samosa 0.91 0.91 0.9 249.0
sashimi 0.92 0.9 0.94 250.0
scallops 0.84 0.83 0.85 247.0
seaweed_salad 0.96 0.96 0.96 250.0
shrimp_and_grits 0.85 0.88 0.82 249.0
spaghetti_bolognese 0.97 0.98 0.97 249.0
spaghetti_carbonara 0.97 0.97 0.98 249.0
spring-rolls 0.9 0.92 0.89 250.0
steak 0.61 0.64 0.57 249.0
strawberry_shortcake 0.88 0.85 0.92 250.0
sushi 0.91 0.92 0.91 250.0
tacos 0.87 0.88 0.87 250.0
takoyaki 0.94 0.94 0.94 250.0
tiramisu 0.85 0.85 0.86 246.0
tuna_tartare 0.78 0.76 0.81 250.0
waffles 0.92 0.92 0.93 250.0
micro avg 0.88 0.88 0.88 25189
macro avg 0.88 0.88 0.88 25189
weighted avg 0.88 0.88 0.88 25189

Table 5.16: Xception classification report
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From the classification report, it can be noticed that not all the categories have obtained
the same metric results, and from the confusion matrix, it can be observed which groups
are confused with each other. Some classes are easier to be recognized because of having
different shapes, color, and density than other categories. On the one hand, edamame has
98% of F1-Score because there are not similar foods like beans, green bean or green peas, so
it is easier to recognize it. On the other hand, steak has 61% of F1-Score getting confused
with baby back ribs (9), filet mignon (31), pork chop (12), and prime rib (41) because they

are similar foods.
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CHAPTER

Web Scraping System for Data Extraction

This chapter presents the data extraction process using web scraping techniques and classi-

fying results with a deep learning model. Additionally, it contains a previous analysis and

database formatting for the case study.
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6.1 Introduction

This chapter shows how to build a database by extracting data from web pages using web
scraping techniques and applying a deep learning model for classifying. Based on the nature
of the project, TripAdvisor web is selected. The main idea is to use TripAdvisor restaurants
information and food images from reviews to model a dataset for the case study.

Firstly, an analysis of the web target is performed to adopt requirements. Secondly,
are fixed the data prerequisites, and is performed database formatting thirdly. Lastly, is

explained the entire process of web scraping, classifying and database formatting.

6.2 Previous analysis

6.2.1 Data prerequisites

From the case study, are known the restaurant fields needed for the project: name, reviews
number, score, price, category, address, and a list of belonging images. These restaurants
must belong to a specific area so will be filtered by city.

Once obtained this information, food class and accuracy of every image is predicted

using the Xception model obtained for food classification.

6.2.2 Output database formatting

For the case study, extracted and predicted data must be formatted. As a result of the
information obtained, there are two JSON tables. However, the case study needs the data

merged into one table for its purpose.

Data
Restaurant Images img_url PK

. food
rest_url PK img_url PK -
name rest_url FK Tl
score food T
reviews acc score
categories reviews
price categories
address priceg

address

(a) Tables obtained formatted
(b) Table merged for the case study

Figure 6.1: Database tables obtained
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6.2.3 Web analysis

From the web page analysis, is known that the web is built using JavaScript for generating
HTML code. Therefore, it is not possible to use common web requests because they are
not able to run scripts. For that reason, is chosen Selenium web driver because it allows
running scripts, like waiting until the document is ready and scrolling for loading all HTML
code before receiving source page.

To parsing HTML requests and getting the required information, BeautifulSoup python
library is used. This library allows searching for HTML components by class or id to ease

data extracting task.

6.3 Methodology and configuration of the data modeling process

After the analysis, can be figured out the entire process diagram including the web scraping
process to get all the required information, the classifier model process, and the database
formatting. The following Figure shows the entire process diagram representing each process

with a color:

Restaurant urls Model Database format
Extract restaurant urls Load trained Output database
for a selected city classification model formatted
@ @ L @ L *—>
WebDriver Restaurant Classify images
configuration information

Classify all images and
Configure WebDriver Extract data from urls get its accuracy

Figure 6.2: Modeling and web scraping diagram

6.3.1 Configuration of Selenium WebDriver

Selenium web driver (chromium) must be downloaded and included in the path to load
configurations. In the project are defined two configuration methods explained below:

Web driver configuration logic follows this code fragment:

chrome_options = webdriver.ChromeOptions ()

chrome_options.add_argument (' ——headless’)
chrome_options.add_argument (/' ——no-sandbox’)
chrome_options.add_argument (' ——disable-dev-shm-usage’)

driver = webdriver.Chrome (' chromedriver’, options=chrome_options)

driver.execute_script (' return document.readyState’)
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Configuration logic runs a script (“return document.readyState”) that waits until doc-

ument and scripts ready. The meaning of each configuration arguments is:

e headless: It is a way to run Chrome browser in a headless environment which means
running Chrome without chrome. It brings all modern web platform features provided

by Chromium and the Blink rendering engine to the command line.

e no-sandbox: When running headless option in a container without a defined user,
the chromeOptions environment property needs this argument or Chrome won’t be

able to startup.

e disable-dev-shm-usage: Allows to launch default flags and prevent from crashing.

Web scrolling logic allows to scroll down the web to load all scripts executed by scrolling.
It executes scripts to get scroll height and scrolling down until the end. Web scrolling logic

follows this code fragment:

scroll_height = ’document.documentElement.scrollHeight’
last_height = driver.execute_script (' return ’"+scroll_height)
while True:
# Scroll down to bottom
driver.execute_script (' window.scrollTo (0, ’+scroll_height+’);’)
# Wait to load page
time.sleep (1)
# Calculate new scroll height and compare with last scroll height

new_height = driver.execute_script (' return ’+scroll_height)
if new_height == last_height:
break

last_height = new_height

6.3.2 Extraction of restaurant URLs

The very first scraping process step is to get the desired data is to collect all restaurant
links belonging to a city. In the case study, has been used restaurants from Majadahonda
and surroundings so URL fragment must be the corresponding one.

The logic of the process consists in visiting the URL corresponding to the city, collecting
restaurant URLs and detecting if there is a next page to iterate again. Special attention
must be paid to “a” HTML tags belonging to a class and to the “href” parameter for
obtaining the links. It is essential to add “time.sleep” functions to avoid blocking.

Once iterated through all pages, is obtained a list of restaurant links belonging to a city

and surroundings and would be used in the next step.
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6.3.3 Extraction of restaurant information

Extracting restaurant information from URLs is more complex than obtaining restaurant
links. Special attention must be paid to every desired field, look for its HT'ML structure, and
deal with missing tags/information. From the prerequisites analysis made, it is necessary to
get the name, score, reviews, categories, price, address and image URLs, of each restaurant
URL obtained before.

The web driver requests HI'ML document scrolled when it is ready to load more images.
This procedure is looped through all restaurant pages using the restaurant URLs. To obtain
information, attention is focused to “div”, “h1”, “span”, and “a” HTML tags, and its
corresponding classes and parameters. Must prevent from crashing dealing with missing
and empty values, so it is more tricky.

Once iterated through all restaurant pages, it is obtained a dictionary that contains
information of each establishment and includes images (restaurants without images are

dispensable).

6.3.4 Configuration of the food classification model

At this point, it is required for the next step to load the food classification model built in
the previous chapter and its configuration. Xception model obtained is loaded with Keras
framework and all its configuration. It is going to be used to classify images in the next

step.

6.3.5 Classification of the extracted images

All the image URLs obtained are opened and preprocessed for prediction using Xception
model. The process consists of opening all images belonging to a restaurant and predict
them saving the category and the accuracy.

Once iterated through all restaurant images, is obtained a dictionary containing image

information.

6.3.6 Database formatting

Finally, it is required to merge the restaurant information table and restaurant images table
into one for the case study and export it as JSON file orient to records. Merging tables into
one gets some duplicate values, but, there is a small amount of data and, it is essential to

make filters using the selected search engine.
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CHAPTER

Food/Restaurant Searcher Web Application

This chapter presents the architecture, features and target devices of the web application

for data visualization as the principal element of the case study and secondary part of the

project.
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7.1 Overview

Here a brief description of the web application for data visualization can be found. The
application will allow the user to search restaurants by images of a certain kind of food.
Additionally, resulting images can be filtered, and it is also implemented to search for images
belonging to a restaurant. The objective of this chapter is to show the architecture, the

main features and target devices of the web application.

e Architecture: Due to the nature of the application, it is possible to execute the
entire application on the user’s device except for image requests to the server, ob-
taining better performance and usability. The structure of the adapted MVC version

developed, use cases, and functionalities are included in this section.

e Features: The application is user-centered designed, fitting all devices due to mobile

first design and responsiveness as can be seen in the mock-ups of application views.

e Target devices: Application targets Android devices or devices with web browser
access. This section shows differences between both platforms and additional files

needed for compilation.

7.2 System architecture

The following Figure shows a diagram of the system architecture:

Multiple
platforms
Clients Phone Client MVC application External
sources
‘ O —
> D- -> [ CL E > n
- (@ o o o]
User Laptop Model View Controller Storage
Desktop

Figure 7.1: System architecture diagram
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As can be observed in the diagram, the architecture of the system starts with users
accessing their devices. There are two ways to reach the application, by android app or by
a web browser. The application architecture follows an adapted version of MVC architecture

and access to external storage by HT'TP requests.

7.2.1 Structure

e Clients: Actor users that access the web application using any available platform

and device.

e Platforms: Different devices that have access to the web application. Mobile, Lap-

top, Tablet, and Desktop are included.

e Application: The application develops an adaptation of Model View Controller
(MVC). The view requests the controller and response visually, the controller requests
data to the model and the model consult the database. The view corresponds to
code that shows the business logic by using templates, the controller is composed by
functions that manage the view and request data to the model, and the model is the

representation of information to be accessed with queries.

Maniuplate : EE :“

Controller

JSON; <
Yo —

Figure 7.2: Model View Controller (MVC) architecture

o External sources: External storage hosts images demanded by HTTP requests.

7.2.2 Use cases

Application use cases interact with principal actors and secondary actors. On the one hand,
the principal actor is the user that wants to search certain types of food images with filters,
see image information, inspect restaurant food images, and visit the restaurant website. On

the other hand, the secondary actor is TripAdvisor external entity.
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In the following Table, each one of the involved actors is explained in detail, indicating

their id, name, type, roll, and description:

ID Name Type Role Description

_ The user is the actor that wants to
ACT-1 User Primary User _
search restaurants by food images.

, _ . TripAdvisor website hosts the im-
ACT-2 TripAdvisor Secondary Entity _
ages and the restaurant sites.

Table 7.1: Primary and secondary actors

The use case diagram is represented using Unified Modeling Language (UML). It is
composed of a primary actor (user), a secondary actor (TripAdvisor) and application use
cases. A complete (concrete) use case can be an extension of other adding features, and an

incomplete (abstract) one, includes other use cases.

In this case, “Filter images” use case is an extension of “Search food images”, as “Visit
restaurant website” is an extension of “Show information” and “Inspect restaurant food
images”. “Search food images” and “Inspect restaurant food images” are abstract use cases,
thus both of them must include “Compute statistics” and “Show information” required use

cases to be completed.

Web-based application

Filter images

<<extend>>

Search food
images

,
N
<<include>> ', <<include>>
, \

Compute statistics Show information

AR
. K ) . R VQ,?
<<include>> [ <<include>> AN
\ TA

Inspect restaurant \_ Visit restaurant
food images ccextendss website

Figure 7.3: UML Use cases diagram

«actor»
TripAdvisor

L/
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The following use cases include the user story with a descriptive table. Every use case
descriptive table has the use case id, name, type, precondition, and events. Precondition
refers to a necessary event that must precede the use case, and events refer to actor input

actions and system response.

e Search food images (UC-1): As a user, I want to search for food images typing
or selecting the kind of food in the search bar for obtaining a displayed grid of food

images and statistics.

ID uC-1
Name Search food images
Type Incomplete (abstract)

Precondition
Actor Input Select available food in the search bar

Grid of searched food images and statis-

System Response |
tics

Table 7.2: Use case 1: Search food images

e Inspect restaurant food images (UC-2): As a user, I want to inspect restaurant
food images from food image information for obtaining a grid of food images and

statistics belonging to the restaurant.

ID uc-2
Name Inspect restaurant food images
Type Incomplete (abstract)

Precondition -

Search restaurant food images from im-

Actor Input _ _
age food information

Grid of restaurant food images and statis-

System Response |
tics

Table 7.3: Use case 2: Inspect restaurant food images
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e Filter images (UC-3): As a user, I want to filter food image results by accuracy,
score, price, and reviews for obtaining a displayed grid of filtered food images and

statistics.

This use case is an extension of “Search food images”.

ID ucC-3
Name Filter images
Type Complete (concrete)

Precondition -

Fill filter boxes and select available food
Actor Input ,
in the search bar

Grid of filtered food images searched and
System Response .
statistics

Table 7.4: Use case 3: Filter images

e Visit restaurant website (UC-4): As a user, I want to visit the restaurant website

of a founded food image so that I can book.

This use case is an extension of “Show information” and “Inspect restaurant food

images”.
ID uc-4
Name Visit restaurant website
Type Complete (concrete)
Precondition Have selected a food image
Actor Input Click TripAdvisor restaurant website but-

ton

Open a new tab to redirect to the corre-
System Response _ _
sponding restaurant website

Table 7.5: Use case 4: Visit restaurant website
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e Compute statistics (UC-5): As a user, I want to see food image statistics like the
number of results out of the total, the number of restaurants out of the total, location,

and filter configuration.

This use case is included in “Search food images” and “Inspect restaurant food im-

ages”.

ID ucC-5

Name Compute statistics
Type Complete (concrete)
Precondition Have made a search

Fill filters and select available food in the
Actor Input
search bar

System Response Show food image statistics

Table 7.6: Use case 5: Compute statistics

e Show information (UC-6): As a user, I want to see food image information like
restaurant name, address, score, price, reviews, categories and accuracy of image

prediction.

This use case is included in “Search food images” and “Inspect restaurant food im-

ages”.

ID ucC-6
Name Show information
Type Complete (concrete)

. Have made a search with food image re-
Precondition it
sults

Actor Input Select a food image

Show modal food image and restaurant
System Response _
information

Table 7.7: Use case 6: Show information
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7.2.3 Functional modules

In this subsection are analyzed functional classes as functional modules using Unified Model

Language (UML). Functional modules to carry out the web application are included in the

following UML diagram of classes:

View Food classes Autocomplete
<<use>>
(List of 101 kinds ~ [<-------------- . )

+ w3_open() + input: string
+w3_close() of food) + array: string][]
+ onClick(element) - currentFocus: integer
+ onScroll()
+ goTop() + onlnput(): string[]

+ onKeyPressed(): string

- addActive(String)

> APPLICATION < - removeActive(String)
- closeAllLists(String)
A
Food
+img_url: string SearchEngine
+ food: string
+ acc: float + accuracy: float
+ rest_url: string + score: float Fuse
+ name: string <<use>>| + price: float
+ score: float < + reviews: integer + shouldSort: boolean
+ reviews: integer <cuses> |+ threshold: integer
+ categories: string|[] +initialState() ~ |------iC s| + maxPatternLength: integer
+ price: float + computeStatistics() + keys: string[]
+ address: string + makeSearchFood(): food]] + database: json
+ makeSearchRest(): food[]

+ getFood(string): food + findPossibilities(string): string][] + search(string): food]]

Figure 7.4: UML Classes diagram

There are three different classes and two auxiliary included in main modules that com-

pose application logic.
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View: View class is composed of all visual functions that generate HTML views. This

class is responsible for managing visual elements like modals, buttons, and effects.

SearchEngine: This class is the search engine of the application completed by food
and fuse classes. SearchEngine has filter parameters and includes fuse engine and
food model to compute food image searches or a restaurant image searches. It has

also added functions to find occurrences and manage state and statistics.
Food: This class defines the food image model to get data from the database.

Fuse: This class contains fuse search engine for JSON databases. It is composed of

some same configuration parameters and a search function with a query parameter.

Autocomplete: The objective of this class is to manage food possible inputs in the

search bar. It has included a list of food classes as the input array.
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7.3 Application layout

Design application has followed a set of standards and techniques for achieving user acces-

sibility and multiplatform adaptability.

7.3.1 User-centered design

User-centered design (UCD) [13] philosophy aims to create products that meet the needs
of end users to achieve the highest satisfaction and best user experience. This theory
resembles a process using multidisciplinary techniques where, each decision, is based on
needs, expectations, objectives, capabilities, and motivations of users. The main stages to

achieve a user-centered design are:
1. Thorough knowledge of end users, using qualitative research or quantitative research.

2. Design a product that meets the needs of the user and adjusts to their capabilities,

expectations, and motivations.
3. Test the design using user tests.

Following this philosophy have achieved valid outcomes in terms of accessibility, devel-
oping an application that gets high satisfaction and transcendent user experience possible
with the minimum effort from the user.

The web application consists of simple use cases in which it is only necessary to write
into the inputs so that the search is auto-completed, and intuitive buttons with a hover

effect that helps to find functionalities.

7.3.2 Responsive web design

Responsive web design (RWD) [26] is a development philosophy that aims to adopt the view
of the website to the device used to visit it. Each device, whether tablet, mobile, laptop or
desktop, has a set of features such as screen size, resolution, CPU power, operating system
or memory. Therefore, this concept pretends that everything is displayed correctly on any
device with a unique web design.

A single HTML/CSS version can cover all screen resolutions hence the website will be
optimized for different devices and screen resolutions. That improves user experience unlike
what happens, for example, with fixed-width websites when accessed from mobile devices.
Thus the production and maintenance costs are reduced for similar target devices.

Adaptive web design becomes possible with media queries in the properties of CSS3
styles. Media queries are a set of commands that are included in the stylesheet that tells

the HTML document how to behave in different screen resolutions.
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W3.CSS framework has been used to develop a responsive design. The application is
oriented to desktop, laptop, tablet, and mobile devices, therefore, media queries have min-
width parameter higher than 601 px and 993 px to build three views, particularly fixed to

mobile design.

7.4 Targeted platforms

Architecture and file structure is different for each developed application platform. This
application is targeted for web browser access and Android devices, thus each application
has its own configuration and deployment.

The following Figure shows the Android directory structure and the web application

content:
fr-'i foodiefy f[-:i www
- hooks - css
- platforms - data
- plugins - fonts
- www - img
D config.xml - js
- res
[ index.html

Figure 7.5: Application directory structure

On the one side, Android application needs all files and folders including Apache Cor-
doba plugins and Android PhoneGap configuration. On the other hand, web browser appli-
cation just needs “www” folder including HTML, CSS and JavaScript files to be deployed
as a web application. The web browser application is built as a Docker image to be deployed

and run on the Docker Engine.

7.4.1 Mock-up

The following Figures show the two main mock-up views of the web application for ev-
ery device including Desktop, Laptop, Tablet, and Smartphone. All mock-up views show

responsiveness of the web application.
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Figure 7.6: Application mock-up view
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Desktop & Laptop

Information

Tablet Mobile

Information

-
Information

Figure 7.7: Modal mock-up view
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In the application mock-up view is drawn the application structure, showing a header
with title and a search bar, another header bar for filters, statistic spaces, result header
with information and a grid of images. In the modal mock-up view is drawn the structure
of the modal shown when clicking an image, including view restaurant food images and visit

restaurant website buttons.
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CHAPTER

Case Study — Foodiefy

This chapter shows the result of a practical case as a web application. It proposes an

application concept after analyzing the context. Additionally, each part of the app and the

interactions are shown in detail.
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8.1 Introduction

8.1.1 Context of search engines

Search engines are undoubtedly the most used instruments to locate information on the
Internet. A search engine is, in fact, a tool that manages databases of URLs with different

contents. There are different types of search engines:

e Search engines: Usually, manage pages. It is search engines by content.

e Thematic indexes: They usually manage complete information resources composed

of one or more web pages. They work as catalogs or directories by categories.

e Metasearch engines: Group or combine the potentials of several search engines.

The process carried out by any search system can be summarized in data collection,

analysis (indexing/categorization), search, and recovery.

8.1.2 Application concept

Nowadays there are numerous search engines, going from finding websites to finding a part-
ner. This case study arises from the idea of looking for restaurants avoiding the traditional
search way and giving a twist to conventional systems.

Have you ever wanted to eat a type of food that has a certain aspect? This search
engine allows you to search for images belonging to food categories and select them by its
appearance, which makes it possible to find the restaurant with the desired food.

This concept is executed in the form of a web application using an image classifier model

to categorize images extracted from TripAdvisor and index them to create the search engine.

Figure 8.1: Foodiefy logo brand

The name chosen for the food /restaurant search engine is Foodiefy composed by “foodie”
who is a person with a particular interest in food and “fy” ending. The logo brand is a

fork contained in a two-color circular bluish-green background.
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8.2 Features

As a summary, the different technologies and data sources used to carry out the application
are listed below.
8.2.1 Technologies

The technologies, libraries, and frameworks used to perform the Foodiefy web application

are listed below:

e Keras — TensorFlow: They have been used to build a model for food image

classification.

e Scikit-Learn: This library has helped to choose the right model by scoring them

with different metrics.

e Selenium Web Driver: The framework used to extract information from the website

of TripAdvisor.

e W3.CSS: It is the base of the CSS view of the application for obtaining a responsive

website.
e Font Awesome: All icons showed in the application come from this font library.

e BeautifulSoup: Useful to parse specific document files and extract information

effortlessly.
e JSON: Output format of the database.
e Fuse.js: JavaScript library working as the search engine.

e Android / PhoneGap: The framework to build an android application with Apache
Cordoba plugins.

e Docker: The open-source project to build Docker images and deploy the web appli-
cation.
8.2.2 Data sources

The data sources that have been used to accomplish the project are:

e ETHZ Food-101: The labeled food image dataset to build Keras classification

model.

e TripAdvisor: It is the website employed to extract and obtain information for the

application.
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8.3 Device responsiveness

The application of Foodiefy has been developed for all kinds of devices, going from smart-
phones to large screens. The following list shows the devices and resolutions with a screen-

shot of one of the main views are shown to display results.

e Smartphone size

This is the limited appearance of the application omitting some buttons and func-

tionalities. It is destined at small screens like a smartphone. The following screenshot

shows the view for devices with a width resolution less than 601px:

=0 B0 B Bioo]

100%

B Results

Hamburger

Figure 8.2: Smartphone screenshot responsive
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e Tablet size

This is the partial form of the application including almost all buttons and function-

alities. It is destined at medium screens like a tablet. The following screenshot shows

the view for devices with a width resolution between 601px and 993px:

Foodiefy Hamburger Q

=@ + G ~ O s €D

Accuracy 2 0%
Score =20
Reviews 2 0
Price = 100€
100%

(B Results

Hamburger

Figure 8.3: Tablet screenshot responsive
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e Desktop & Laptop size

This is the full look of the application including all buttons and functionalities. It is
destined at big screens like laptop and desktop. The following screenshot shows the

view for devices with a width resolution higher than 993px:

Foodiefy Hamburger

= Accuracy u ¥¥ Score u L Reviews m $ Price
Accuracy = 0% 8
m 238/238 > e o Majadahonda

. Reviews = 0o ”
Filter T o Location

B Results

Hamburger

Figure 8.4: Laptop & Desktop screenshot responsive
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8.4 Interaction overview

The following diagram shows the interaction overview of the Foodiefy web application:

[done]

[search]

Search food images

[unfilter] [filter] [repeat]

[close]

View results

and statistics

[browse]

[filter]

Show information

[redirect]

[browse]

Inspect restaurant

food images Visit restaurant website

Figure 8.5: Interaction overview diagram

As can be seen, the interaction starts in the black dot when the application has been
loaded. At that step, there is only one possibility, to make a search. The search can be
filtered or unfiltered so that the results and statistics are shown. Now, there are two available
options, to repeat the search, or to browse one image to show the information. Finally, in
the modal view, there are three options, to browse and inspect restaurant food images, to

close and return to the initial point, or to redirect and visit the restaurant website.
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8.5 Views

The section of views exposes the functionality of each one of the aspects of the web applica-
tion and shows for each device how it is rendered. All views are composed of the search bar
with a button to display the menu, the filter bar, a search statistics area, the area where

the results are displayed and the footer with information.

8.5.1 Home page view

The home page is the main view that is displayed when you open the application, ready to

make a search with the desired filters.

0 0 $ED

B Results
@ Resul.ts Make your search!

Make your search!

INFORMATION DATA & TECHNOLOGIES

[l-a]
Trip)

G Tensorfiow / Keras
@ python
INFORMATION
p s the result of the use E E
of 'DEVELOPMENT OF A y =
el # Android / PhoneGap
SYSTEM BASED ON TRANSFER
This tool allows you to search for restaurants LEARNING WITH
(from TripAdvisor) based on the appearance of the CONVOLUTIONAL NEURAL

. NETWORKS® final project (by
images of a type of food to choose from.

Foodiefy | Search restaurant by food image

ducted at the UPM in the GSI
This app is the result of the use case of h group.

"DEVELOPMENT OF A FOOD IMAGE

Foodiefy

Photo

B Results

Make your search!

INFORMATION DATA & TECHNOLOGIES

CLASSIFICATION SYSTEM BASED ON
TRANSFER LEARNING WITH
CONVOLUTIONAL NEURAL NETWORKS"
fin

Figure 8.6: Home page view
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8.5.2 Searched food view

The “searched food view” is the composition that is displayed after making a request in the
search engine. The statistics show the number of images found for this type of food, the
number of restaurants to which these images belong, the filters introduced and the selected
location. Each of the results obtained as an image is clickable and opens a modal with

information.

Foodiefy Hamburger

Hamburger

B 238/238
Photo

B Results

Hamburger

e 238/238
100% 100%

B Results

Hamburger

2a}
Photo

B Results

Hamburger

!./‘

41 P YR o

Figure 8.7: Searched food view
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8.5.3 Selected food modal view

The “selected food modal view” is the composition that is displayed after clicking an image
from the searched results. It shows the full-size image with accuracy prediction information
and all restaurant information. Additionally, it includes three buttons, one for seeing more
restaurant images in Foodiefy, another for redirecting to TripAdvisor website, and an extra

one to close the modal.

hamburger (100%)

hamburger (100%) Wallmok @

Score: 45 | Reviews: 49 | Price: 165

‘Address: Calle Grecia 1 Pozuelo de Alarcon, 28224 Madrid Espana
Wallmok s s it e

Score: 4.5 | Reviews: 49 | Price: 16.5
Address: Calle Grecia 1 Pozuelo de Alarcon, 28224
Madrid Espana
Categories: comida rapida, americana,
mediterranea

hamburger (100%)

Wallmok (&) €

Score: 45| Reviews: 49 | Price: 165
‘Address: Calle Grecia 1 Pozuelo de Alarcon, 28224 Madrid Espaia
Categories: ricana, mediterranea

Figure 8.8: Selected food modal view
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8.5.4 Restaurant food images view

The “restaurant food images view” is the composition that is displayed after clicking more
restaurant information button. The statistics show the number of images belonging to the
restaurant, the number of restaurants to which these images belong, the filters introduced
and the selected location. Each of the results obtained as an image is clickable and opens

a modal with information.

Hamburger Foodiefy Hamburger

=E 0 <0 56D

B Wallmok &&

B Wallmok && Score: 45| Reviews: 49 | Price: 165

Address: Calle Grecia 1 Pozuelo de Alarcon, 28224 Madirid Espania
Categories: comida rapida, americana, mediterranea

Score: 4.5 | Reviews: 49 | Price: 16.5
Address: Calle Grecia 1 Pozuelo de
Alarcon, 28224 Madrid Espana
Categories: comida rapida, americana,
mediterranea

B Wallmok &

Score: 45 | Reviews: 49 | Price: 165
Address: Calle Grecia 1 Pozuelo de Alarcon, 28224 Madrid Espana
Categories: comida rapida. americana, mediterranea

Figure 8.9: Restaurant food images view
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8.5.5 Menu view

The “menu view” is the composition that is displayed after clicking the menu button at the
search bar. It shows a slideable menu with index, about and reset search options. Index
option goes to the top page, about option goes to the top of the page and reset search

options restart the search, filters, and results.

x

INDEX
INDEX ABOUT

ABOUT RESET SEARCH

RESET SEARCH

x

INDEX

ABOUT

RESET SEARCH

Figure 8.10: Menu view
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As has been observed, each of the views is rendered correctly to each of the device
sizes gratefulness to the responsive design. In addition, the simple use of the application is

demonstrated with the interaction diagram commonly with the views.
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CHAPTER

Conclusions and Future Work

This chapter details the achieved goals and outcomes done by the master thesis following

key points developed in the project. Additionally, there are described the future lines of work

and the repository to continue in the same way.
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0.1 Achieved Goals

All the objectives raised at first, have been satisfactorily completed. Furthermore, the
new proposals and ideas that have emerged during the development of the work have been

incorporated by the additional value that they entailed.

In state of the art, it has been investigated all linked to image recognition and deep
learning techniques for image analysis, going through the most important artificial network
architectures. Next, in enabling technologies are described all methodologies and frame-
works used in the project for image processing, data extraction, and web application tools.
Techniques and methodologies proposed have been used in the next chapters and in the

case study.

As a result of analyzing the different image recognition architectures for transferring
learning, it has been trained a Keras model of image classification achieving almost 89% of

accuracy for ETHZ Food-101 challenge dataset with Xception architecture.

Food images and restaurant information have been extracted using web scraping tech-
niques with Selenium web driver from TripAdvisor’s website. The model obtained has been
applied to predict the labels of the food images extracted, so that extra value is reached in

the dataset.

Finally, for summarizing, a general system architecture to fit each of the modules that
make up the project has been done. To show project achievements and results, all jointly
goals succeed in Foodiefy, a web application that has been developed for every device with

a web browser or Android OS.

0.2 Links of interest

The code of the tools for building an image classification model using transfer learning
techniques and the web scraping system developed during the project, is available in the

following GitHub repository, including all obtained results:

https://github.com/sanxlop/tfm_etsit

Foodiefy web application can be downloaded in GooglePlay for Android devices and
accessible in the link included in the readme file from the previous GitHub repository for

every device with a web browser.
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9.3

9.4

Conclusions

Image recognition tasks are generally challenging for machines, while humans do not
have any difficulty. Therefore, it is essential to use computational models, such as

artificial neural networks that simulate the human brain.

Building a convolutional neural network architecture for image recognition is a man-
ageable task with Keras, the difficult job is to achieve an architecture with high
validation accuracy. Using predefined and tested architectures solve this accuracy

dilemma.

Large datasets with several similar classes need very deep networks to find useful
features. Training a very deep model for image classification is a process that requires
significant time and costly computation capacity. However, transfer learning technique
with pre-trained models solves those difficulties, so that is possible to obtain a model

for categorizing 100 classes of similar images with 89% of accuracy in just 28h.

In the training process, reaching a certain level of accuracy does not take too long,

the slow task, is to improve that level.

Adjusting model training and image generator hyperparameters is a tedious process
since it consists of multiple configuration parameters, and it is not easy to find the

appropriate values.

Nowadays, the extraction of data to generate a dataset can become very complex due
to the difficulties posed by large social networks. Web scraping techniques facilitate

the extraction of data for one’s own convenience.

Designing an accessible application for all devices and adaptable to all platforms can
be a problem, however, developing it as a web application, one single design works for

all platforms.

Future lines of work

Apply transfer learning technique developed on other architectures to generate new

models based on other datasets or simply improve the model challenge accuracy.

Implement the concept of this model in another architecture of recurrent neural net-

works for object detection.

Develop another case study using the food image classification model generated, such

as a real-time food image classification application with the camera of a device.
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APPENDIX

Project Impact

This appendiz shows the social, economic, environmental impact jointly the ethical an pro-
fessional responsibility. As it is described, the project uses open source datasets and web

scraping techniques to acquire data that are the main points to be highlighted.
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A.1 Social impact

The individuals and entities affected in this project are the potential users who use the
application, the restaurants included in the database and the target website from which
the information has been extracted. It can be accessed to the web application from any
device with an Internet connection that has a web browser or Android operating system.
The developed web application aims to generate social welfare trying to facilitate searches

and reach the product in the most efficient way possible.

A.2 Ethical and professional responsibility

In this section, the ethical and professional issues of the technologies used in the project
are treated. One ethical concept that applies the whole project is a copyright infringement,
that has to do with the dataset sources employed to build the model, that in this case, is
open source, and the stored data does not contain any risky information. Talking about
technologies it can be highlight one main responsibility topic, web scraping. The different
points that determine the legality of scraping [63] a website and the subsequent use of the

data extracted are:

e The risk of incurring in a violation of the intellectual property rights of the owners of
the website, proving the original structure of the database object of the web scraping,

turning it into an intellectually protected work.

e The possible consideration of a conduct of unfair competition when the purpose carried
out by those third parties that apply the techniques of web scraping is susceptible
to be considered an imitation, by offering services similar to those provided by the
website object of scraping, assuming a risk of confusion on the part of the users or

the improper use of the reputation or effort of others.

e An eventual violation of the legal terms and conditions of use established by the owners
of the website object of scraping, from the moment in which they are accepted by users

who browse the web page and have access to the information contained therein.

e The potential breach of the regulations on data protection and the violation of the
rights of holders of personal data subject to scraping, as remembered in personal data
protection law, requires that you have the consent of the owner of the data at the

time of proceeding with the storage and treatment thereof.
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A.3 Economic impact

The economic impact is linked mainly to the case study developed as a web application that
is the one that could generate some type of income directly like monetizing it. In addition,
it can generate value any of the tools developed to generate models of image classification
or data extraction. Automatization is one of the main concepts of the project by classifying
data automatically and extracting data. FEither of the economic models can be viable at
the industry, with a relatively low maintenance cost, and with possible improvements and

arising business ideas.

A.4 Environmental impact

The development of this project does not have any environmental impact except for the
electrical consumption and the necessary technological components. The usual practice of
this computational capacity is to use shared resources in the cloud on demand, optimizing

consumption in this way, and being an environmentally friendly project.
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APPENDIX

Project Budget

This appendix describes the mecessary project budget regarding material resources, human

fees, and taxes involved.
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B.1 Material resources

The material resources necessary to carry out this project would be the computational
capacity necessary to generate the classification models and the servers to deploy the web
application.

Since it has been used Google Colaboratory for this project, with free computational
capacity, no expense has been required. Although, the equivalent would be the price of a
computer with 12 GB of RAM, a 10 GB GPU and a mid-range processor, which corresponds
to about 800 €, or rent the equivalent computational capacity.

The hosting server, in this case, has also been chargeless since the application is available
on Google Play and access to the web application is hosted on servers of the research group
also costless. The equivalent price would be the domain and hosting that is around 20
€ /year.

B.2 Human fees

In this section is estimated all human fees necessary to develop the entire project according
to the hours proposed by the rules of the master thesis of the university.

As the estimation of this project is 900 hours or equal 37.5 working days according to the
ECTS credits of the master thesis, and considering an average salary of a software engineer
as 31,000 € /year gross, the total human fees budget to develop the project is around 12,600
€, taking into account that the worker earns 2,583 €/month and to work 900 hours must
be working for almost 5 months.

There must be a person in charge of the application maintenance, although this cost

has been ignored.

B.3 Taxes involved

The fees paid by the company that finances the project would be the corresponding VAT
established in the local country for material resources, while it must also pay the social
security and some other taxes of the employees hired.

In the case that a second company wanted to buy the project, the regularization of the
local country would come into play again, which in this case corresponds to the tax of a

software product.
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