
MÁSTER UNIVERSITARIO EN

INGENIERÍA DE TELECOMUNICACIÓN

TRABAJO FIN DE MASTER

DESIGN AND DEVELOPMENT OF A SCHEDULING
INGELLIGENT SYSTEM FOR YOUTH CAMPS

ASSOCIATIONS BASED ON CONSTRAINT
PROGRAMMING

DAVID PÉREZ SANZ

2021

TRABAJO DE FIN DE MASTER

T́ıtulo: DISEÑO Y DESARROLLO DE UN SISTEMA IN-

TELIGENTE DE PLANIFICACIÓN PARA ASOCIA-

CIONES JUVENILES BASADO EN PROGRAMACIÓN

CON RESTRICCIONES

T́ıtulo (inglés): DESIGN AND DEVELOPMENT OF A SCHEDULING IN-

GELLIGENT SYSTEM FOR YOUTH CAMPS ASSOCIA-

TIONS BASED ON CONSTRAINT PROGRAMMING

Autor: DAVID PÉREZ SANZ

Tutor: CARLOS ÁNGEL IGLESIAS FERNANDEZ

Departamento: Departamento de Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: —–

Vocal: —–

Secretario: —–

Suplente: —–

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

TRABAJO DE FIN DE MASTER

DESIGN AND DEVELOPMENT OF A SCHEDULING
INGELLIGENT SYSTEM FOR YOUTH CAMPS

ASSOCIATIONS BASED ON CONSTRAINT
PROGRAMMING

FEBRERO 2021

Resumen

Como es bien conocido, la vida es un conjunto de problemas a los que la sociedad debe

enfrentarse continuamente para la consecución de unos objetivos propuestos. Estos proble-

mas están presentes en todos los contextos del d́ıa a d́ıa: académico, profesional o incluso

en la vida familiar. Existe un tipo concreto de problemas conocido como los problemas de

planificación, cuyo principal objetivo es asignar unos recursos a otros de forma ordenada

y cumpliendo con algunas restricciones predefinidas. Este tipo de problemas es bastante

común; por ejemplo, en la creación de grupos de trabajo en empresas o para la elaboración

de turnos. Las planificaciones elaboradas deben respetar algunos requisitos como las horas

de trabajo, tiempos de descanso, vacaciones, convenios de los trabajadores, preferencias,

etc. Algunos ejemplos son: los turnos de enfermeras en hospitales, la distribución de profe-

sores y aulas en centros educativos, los turnos de personal de servicios 24x7, la asignación de

tareas en proyectos, el horario de conferencias de congresos o la planificación de exámenes.

También existe este tipo de problemas en las asociaciones juveniles a la hora de definir

los grupos de trabajo cuando comienza el año. Su elaboración es muy compleja debido a

todos los requisitos que deben cumplir, tanto en la estructura como los propios del personal

involucrado, y se debe dedicar mucho tiempo para conseguir una solución adecuada. Medi-

ante este proyecto se proporciona a los grupos scout una aplicación web capaz de generar

planificaciones, en pocos minutos, una vez se introducen los requisitos del personal y de los

grupos de trabajo, sin exigir ningún esfuerzo humano adicional.

El desarrollo de la aplicación web se ha realizado en varias fases. En primer lugar, se

han estudiado los detalles de la problemática para conocer el contexto y las caracteŕısticas

del problema a resolver. Esta información permite realizar el análisis de requesitos para

extraer qué funcionalidades concretas debe disponer la aplicación a desarrollar. El resultado

del análisis de requesitos proporciona la información necesaria para elaborar la arquitectura

del sistema. Finalmente, se detalla un ejemplo introduciendo datos sintéticos en el sistema,

similares a los datos reales que la aplicación recibiŕıa, y se analiza la solución proporcionada.

Palabras clave: Programación basada en restricciones, Grupo scout, Planificación,

OptaPlanner, Spring, MySQL.

VII

Abstract

As all we know, life is a set of problems that society must face continuously to achieve

the goals proposed. Problems appear in all contexts of life; academic, professional, or

even in family life. One type of these problems is scheduling and planning problems. The

objective here is to assign some resources to others in an orderly manner while complying

with some restrictions predefined. The presence of this type of problem is common in

society, for example, for creating workgroups in businesses or for work shifts definition. The

planning should respect some requirements such as working hours, rest time, vacations,

workers’ conventions, preferences, etc. This context includes subjects like nurse rostering in

hospitals, schools teachers and classrooms planning, 24x7 services personnel coverage, cloud

balancing systems, project task assigning, congress conference schedule, or exams planning.

This problem is present in youth associations when they have to define a planning with

the workgroups at the beginning of the year. The preparation of a planning gets complex

with all the considerations that workgroups and personnel request, and people should spend

a long time to obtain a suitable solution. The project provides a web application capable of

generating valid plannings for scout associations in some minutes by introducing the data

of the personnel and workgroups requirements, and without any additional human effort.

The process of developing the application requires some steps to elaborate the accurate

solution to the problem. The project exposes the problematic to know the context and the

exact problem to solve as the first step. This information allows us to perform the require-

ment analysis to extract the characteristics of the application to develop. The requirement

analysis provides the necessary information to elaborate the architecture of the system.

Finally, the thesis includes an example where the system receives synthetic data similar to

the real data that the application would receive to analyze the solution that it provides.

Keywords: Constraint Programming, Scout association, Planning, Scheduling, Opta-

Planner, Spring, MySQL.

IX

Agradecimientos

En primer lugar, me gustaŕıa agradecer a Carlos el esfuerzo, la ayuda y los consejos pro-

porcionados para la elaboración del proyecto.

En segundo lugar, queŕıa reflejar en esta memoria unas pocas palabras sobre la Escuela

Técnica Superior de Ingenieros de Telecomunicación que durante todos estos años me ha

brindado los conocimientos necesarios para poder dedicarme hoy en d́ıa a una profesión que

me encanta. Han sido años que han requerido mucho esfuerzo y dedicación, pero sin ellos,

estoy seguro de que no seŕıa la persona que soy ahora.

Por otro lado, me gustaŕıa dar las gracias a Sof́ıa por todo el apoyo y la enerǵıa que me

ha transmitido durante todo este tiempo. Todo seŕıa más dif́ıcil sin tu ayuda.

No querŕıa finalizar esta memoria sin agradecer a mis padres todo lo que han hecho para

que sea la persona en la que me he convertido.

XI

Contents

Resumen VII

Abstract IX

Agradecimientos XI

Contents XIII

List of Figures XIX

1 Introduction 1

1.1 Context . 2

1.2 Project goals . 3

1.3 Structure of this document . 3

2 Enabling Technolgies 5

2.1 Constraint programming . 6

2.1.1 Definition . 6

2.1.2 Categories of problems . 8

2.1.3 Constraint solving . 10

2.1.4 Example: N-Queens . 11

2.1.5 Optaplanner . 13

2.1.5.1 Types of constraints . 14

2.1.5.2 Problem solutions . 14

XIII

2.1.5.3 Solver . 15

2.2 Functional programming . 16

2.2.1 Definition . 16

2.2.2 Concepts . 16

2.2.2.1 Pure functions . 16

2.2.2.2 Function composition . 17

2.2.2.3 Shared state . 17

2.2.2.4 Immutability . 18

2.2.2.5 Side effects . 18

2.2.2.6 Higher order functions . 18

2.2.2.7 Commonly used data structures 19

2.3 Web applications . 19

2.3.1 Native apps and Web apps . 20

2.3.1.1 Native apps . 20

2.3.1.2 Web apps . 21

2.3.2 Client-Server architecture . 22

2.3.3 Java Web Applications Development 24

2.3.3.1 Model-View-Controller pattern 24

2.3.3.2 Web Application Structure 25

2.3.3.3 Web server frameworks and modules 26

2.3.3.4 Persistence . 28

3 Problem characterization 29

3.1 Problematic . 30

3.2 Scout Association Structure . 30

3.3 Feasible planning characteristics . 32

3.4 Problem example . 35

4 Requirement Analysis 39

4.1 Use cases . 40

4.1.1 Actors . 41

4.1.2 Configure the planning details use case 42

4.1.2.1 Configure the scout association parameters 43

4.1.2.2 Configure the planning parameters 44

4.1.3 Generate planning . 45

4.1.4 Visualize results . 46

4.1.5 Export results . 47

4.2 Requirements . 47

4.2.1 Functional requirements . 47

4.2.2 Non-functional requirements . 48

5 Architecture 51

5.1 General architecture . 52

5.2 Intelligent system . 53

5.2.1 Optaplanner . 53

5.2.1.1 Planning entities . 53

5.2.1.2 Planning solution . 54

5.2.2 Constraints . 55

5.2.3 Solver Manager . 56

5.2.4 Application to the project . 57

5.2.5 Entities and solution . 58

5.2.5.1 Planning Entities . 58

5.2.5.2 Planning Solution . 59

5.2.6 Constraint Provider . 61

5.2.6.1 Hard Constraints . 63

5.2.6.2 Medium Constraints . 66

5.2.6.3 Soft Constraints . 70

5.2.7 Solver Manager . 73

5.3 Web server . 74

5.3.1 Spring Framework . 74

5.3.1.1 Beans . 74

5.3.1.2 MVC Pattern . 75

5.3.1.3 Spring Security . 78

5.3.2 Application to the project . 79

5.3.2.1 Models . 79

5.3.2.2 Controllers . 86

5.3.2.3 Views . 91

5.3.3 Authentication and authorization . 100

5.3.4 API . 102

5.4 Persistence . 106

5.4.1 MySQL . 106

5.4.2 Application to the project . 106

6 Case study 111

6.1 Problem . 112

6.2 Application configuration . 114

6.3 Solution . 115

7 Conclusions 121

7.1 Achieved Goals . 122

7.2 Conclusions . 123

7.3 Future work . 125

A Impact of the project 127

A.1 Social Impact . 128

A.2 Economic Impact . 128

A.3 Environmental Impact . 128

A.4 Ethical Impact . 129

B Project Budget 131

B.1 Human resources . 132

B.2 Physical assets and services . 132

B.3 Licenses . 133

C Functional programming 135

C.1 λ Calculus . 136

C.2 Functional programming and Imperative programming comparison 137

C.3 Transition from Object Oriented Programming to Functional Programming 138

C.4 Disadvantages of functional programming 139

C.5 Applications of functional programming . 139

Bibliography 141

List of Figures

2.1 Example of dynamically chaging problems chain 10

2.2 N-Queens problem with n = 8, possible solution 12

2.3 OptaPlanner Planning Problem Definition 13

2.4 OptaPlanner Solver diagram . 15

2.5 Number of websites over time . 20

2.6 Client-Server architecture diagram . 23

2.7 Model-View-Controller diagram . 25

2.8 Dynamic Web Application WAR file structure 26

3.1 Structure of reference of sections of a scout association 31

3.2 Example of Scout group association unit structure 32

4.1 Use cases diagram . 40

4.2 Configure the planning details sequence diagram 42

5.1 Architecture of the application diagram . 52

5.2 Intelligent system components diagram . 57

5.3 OptaPlanner elements diagram . 58

5.4 No repeated scout leaders constraint diagram 63

5.5 Number of scout leaders per unit constraint diagram 64

5.6 Age of scout leaders in the unit constraint diagram 65

5.7 Banned colleagues in the same unit constraint diagram 66

5.8 Mixed units constraint diagram . 67

XIX

5.9 Weekend camps attendance constraint diagram 68

5.10 Preferred colleagues in the same unit constraint diagram 70

5.11 Preferred units to be in constraints diagram 71

5.12 UML diagram . 80

5.13 Log in view . 91

5.14 Sign up view . 92

5.15 Create Scout Association view . 93

5.16 Scout Association view . 94

5.17 Edit Unit view . 95

5.18 Planning view . 96

5.19 Scout leader details form view . 97

5.20 Solved planning view . 98

5.21 Error view . 99

5.22 Database scheme diagram . 107

6.1 Scout association for the case study . 114

6.2 Example planning configuration . 115

6.3 Case study solved planning . 116

CHAPTER1
Introduction

This chapter introduces the context of the project, including a brief overview of all the

different parts that will be discussed in the project. It introduces a series of objectives to be

carried out during the realization of the project. Moreover, it will introduce the structure of

the document with an overview of each chapter.

1

CHAPTER 1. INTRODUCTION

1.1 Context

The world contains so many youth camp associations with diverse themes, such as multi-

adventure camps, religious associations, or even the well-known scouts1. These associations’

main objectives are to teach children social and ethical values in a crosscutting way to

traditional schools.

Many young people of all ages enroll in scout associations, and also associations have

people in charge of these children. These people’s primary functions are taking care of

children and educating them in the scouting knowledge they should have at their age. The

personnel in charge of carrying these tasks are the scout leaders, Scouters, or monitores2.

Depending on the age, the association distributes children into small groups of pupils of

a range of three years apart, called sections. These small groups’ size determines whether to

split them into smaller groups to facilitate tasks to scout leaders and provide personalized

attention to their children. The name of these smaller groups is units.

When I was eight years old, I became part of one of these scout associations. I had

participated in almost all of the activities until adulthood, when I started collaborating as

a scout leader. As scout associations are NGOs, the work that scout leaders perform is

entirely volunteer. One of the main problems identified in this scope, while being scout

leader, was the difficulties while composing scout leader teams in charge of each unit.

Commonly, this task takes hours and even days if done manually, but using the technology

present nowadays, it can be automated and performed effortlessly in several minutes.

This thesis’s main subject is the development of an intelligent system allowing the

automation of distributing the set of scout leaders into the units of a scout association.

Moreover, the project covers the development of a web application to enable the use of the

system for non-technological people, accessing anywhere and anytime.

1People usually call Boy Scouts wrongly to these associations, but the name changed progressively world-

wide when girls became part of this groups. The only country that maintains this name in the USA, where

they receive the name of Boy Scouts of America, although there are other groups named Girl Guides, just

for girls.
2Spanish term

2

1.2. PROJECT GOALS

1.2 Project goals

The following general objectives have been defined within this Master Thesis.

• To acquire more in-depth knowledge of intelligent systems based on constraint pro-

gramming.

• To obtain greater ability in problem description and requirements gathering.

• To apply functional programming techniques for the development of efficient programs

working with data flows.

• To broaden knowledge in web applications deployment for their main components:

client and server.

1.3 Structure of this document

The remaining of this document is structured as follows:

Chapter 2 covers the main essential concepts used to develop the project’s solution. In

particular, the chapter includes subjects as constraint programming, functional program-

ming, and web application development.

Chapter 3 explains the problematic in detail that the application solves. The chapter

includes the problem characteristics, the details of scout associations, the properties that a

valid planning should have, and an example of the problem.

Chapter 4 contains the requirement analysis with all the use cases and actors. After

performing the analysis, the chapter details the functional and non-functional requirements.

Chapter 5 explains the architecture of the application and the implementation using

the technologies presented in Chapter 2 . The chapter explains the architecture of the

application’s three main components and its subcomponents: the intelligent system, the

web server, and the persistence system.

Chapter 6 contains a case study of the application developed and an analysis of the

results obtained. This chapter details a problem, the application configuration, and the

analysis of the results generated with the application.

Chapter 7 gathers the conclusions of the whole thesis as a result of the work performed.

The chapter covers the achieved goals, conclusions, and future work.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER2
Enabling Technolgies

This chapter offers a brief review of the main concepts and technologies that have made

possible this project. The chapter centers in three sections: Constraint programming, Func-

tional programming and Web applications.

5

CHAPTER 2. ENABLING TECHNOLGIES

2.1 Constraint programming

2.1.1 Definition

[12] provides an accurate definition of what the term constraint programming refers to.

Constraint programming1 is a paradigm for solving combinatorial search prob-

lems that draws on a wide range of techniques from artificial intelligence, com-

puter science, and operations research.

To do so, users define constraints to achieve a feasible solution with the variables in-

volved. The program does not need to specify the steps to solve the problem [22], as in

imperative programming.

In this context, problems contain a set of variables, whose possible values belong to a

domain, and a set of constraints [25]. In other words, a tuple (X,D,C) being:

• X = x1, x2, ..., xn the set of variables.

• D = d1, d2, ..., dn the set of domains, where di is a finite set of potential values for

xi.

• C = c1, c2, ..., cm the set of constraints.

Constraint programming would probably not obtain the optimal solution to a problem

because its design does not contemplate to optimize functions. Instead, the main objective

is to find feasible solutions complying with the constraints determined. This behavior is

because constraint programming focuses on the constraints and variables rather than the

objective function. Moreover, a constraint programming problem may not have an objective

function [12].

A simple example [25], using mathematics and following the previous notation, could

be:

x, y, z ∈ {0, 1}, x1 + x2 = x3

1In this case, the word programming refers to the arrangement of a plan and the reader should not

misunderstand it as the concept of programming in a computer language.

6

2.1. CONSTRAINT PROGRAMMING

Where:

• x, y, z are variables.

• dx = dy = dz = {0, 1} are domains.

• x+ y = z is the unique constraint in this problem.

A pair (S,R) defines a constraint C, where:

• S = (xi1 , xi2 , ..., xik) are the variables of C, and known as scope.

• R ⊆ di1 , di2 , ..., dik are the tuples satisfying C, and meaning the relation.

So in the previous problem, another expression of the constraint x1 + x2 = x3 could be:

((x1, x2, x3), (0, 0, 0), (1, 0, 1), (0, 1, 1))

A tuple τ ∈ di1 × ...× dik satisfies C iff τ ∈ R.

The extensional representation remains in the arity of a constraint [25], being the size

of its scope. So depending on its arity, a constraint could be:

• Arity 1: unary constraint

• Arity 2: binary constraint

• Arity n: n-ary constraint

However, the description of constraints is usually compact and uses an intensional rep-

resentation [25]. This means that a function determines a constraint with scope S:

∏
xi∈S

di → {true, false}

So the satisfying tuples are precisely those whose result to the constraint function is

true. With this notation, expressing constraints becomes more manageable and provides a

useful way to implement them.

A solution for a constraint programming problem is an assignment of values to variables

(x1 7→ v1, ..., xn 7→ vn) such complying these requirements:

7

CHAPTER 2. ENABLING TECHNOLGIES

• Domains are respected: vi ∈ di

• The assignment satisfies all constraints in C

Nevertheless, we consider a constraint programming problem solved when we find a solu-

tion even if it is not the best (Constraint Optimization Problem) [25]. To solve a constraint

programming problem, we do not need to find all the possible solutions. This concept is

essential at the time of using this technique to solve problems. If the solution should be

optimal, we should consider other alternatives depending on the solution’s requirements.

2.1.2 Categories of problems

Constraint programming is an extremely successful technique for reasoning about assign-

ment problems. This relies on its formulation; values from a domain assigned to decision

variables, following defined restrictions. This technique has two assumptions on these type

of problems [12]:

• The definition of the problem is completely certain, not leaving any room for doubt.

• Problems are static, and the requirements do not change during the finding of a

solution.

Not all problems found based on assignment comply with the two assumptions because

the world is dynamic. For example, if we thought of assigning tasks in an office, we can

prepare an approximation of tasks in advance for a project. However, things happen,

and personnel’s computers might break, the material could be delivered late, or employees

may become in a disease. However, in many cases, an approximated deterministic and

static model may be enough to define the problem going alone with the previous premises.

Users treat the dynamism by reformulating the problem continuously, to adapt solutions

for changes, or even defining a more complex problem with more restrictions according to

the possible issues that might arise to avoid having to plan new solutions.

In other words, problems could be one of the following broad categories when talking

about real-world problems[12]:

• Problems where a solution is enough, known as uncertain problems.

• Dynamically changing problems that require multiple solutions. This category

contains three types, depending on the actions the solver should take to comply with

the problem requirements:

8

2.1. CONSTRAINT PROGRAMMING

– The solver reacts while the problems change.

– The solving process records information about the problem structure,

and uses it during the reaction phase.

– The solver searches pro-actively for solutions that anticipate the expected

changes.

Uncertain problems do not include a complete description of the problem, but the

solving process can produce a first initial unchangeable solution. The imprecision in the

problem description leads the progress of developing accurate solutions. Depending on the

imprecision, uncertain problems consider three important cases; the problem is intrinsi-

cally imprecise (fuzzy problems), the problem has more than one realizations, or the

problem has probability distributions over the full realizations.

In fuzzy problems, they capture the imprecision by partially satisfying constraints.

Constraints receive a value of a range within completely satisfied or completely unsatisfied.

For example, when talking about the prize of a configuration that must be cheap and a

fuzzy membership function defines this behavior. This technique characterizes the extent

of constraints’ satisfaction, defining concepts as fairly cheap or relatively expensive. So the

problem has a rank of different solutions classified to search for the optimal ones.

For problems with multiple possible realizations, firstly, the solving process needs

to identify the facts of the incomplete description. This may be because the complete set of

variables X is unknown or the problem does no fully specifies the domains D or constraints

C. This case needs to reformulate the definition explicitly specifying the constraints, so

domains would be unary constraints using values from a universal set, and the constraint

set defines the variables implicitly. So the constraint set contains all the uncertainty.

Problems based on probability include two different formalisms. One involves un-

certainty over the problem constraints so that each one has associated probability. The

goal here is to find the solution with the highest probability, assuming that the solution

will not have an assignment with a probability of 1. The other assigns a probability to

the uncontrollable parameters, and the objective is to make a decision with the maximal

probability of being a solution to the full problem.

Problems that change over time, known as dynamically changing problems, should

respond to alterations caused by a user, an external agent, or the environment. This usually

happens during the finding of a solution. A dynamic problem is a chain of problems where

an external agent adds and removes constraints. The solving process should solve the

problems of the chain sequentially to obtain the overall solution.

9

CHAPTER 2. ENABLING TECHNOLGIES

1 2 3 4 5

Figure 2.1: Example of dynamically chaging problems chain

In some cases, we do not know how the problem will change in the future. For this cases,

the solver should react while the problem changes. To be efficient, solvers should

explore the past history of problems and solutions to have a reference for providing the new

solution. Some solving methods keep all the assignments from the previous solution as an

starting point, then progressively modify them to obtain a compatible solution to the actual

problem. This methods receive the name of Local Repair methods.

The solver could also gather information while finding solutions, having pre-

pared in advance for future changes. This behavior is useful because of the premise that

the following problem’s structure has similarities with the previous ones. For each problem

in a dynamic sequence, the solver stores the path taken to the solution to perform future

searches during resolutions. This information is useful to search and prune the solution

space based on previously taken decisions.

Finally, some problems could be recurrent; this means that some issues could repeatedly

happen in time. For example, the occasional temporary loss of a resource due to reliability

problems. To produce robust solutions, the solver should be able to acquire and process this

kind of information. The solver could improve the initial solutions by reasoning about

likely changes and the ones provided may be likely to remain or modified at a little cost.

The solver should monitor changes while generating solutions to elaborate the distribution

of probability. The solver would penalize then solutions that use frequently lost values.

2.1.3 Constraint solving

The solving process of constraint programming problems can use multiple techniques:

• Generate and test: Brute-force method consisting of generating all possible can-

didate solutions [25]. The set of solutions contain a solution per each combination

of values from the domains of the variables. Then, the solver tests each solution to

discover the compliance with the restrictions. This method is extremely inefficient, so

solvers do not use it widely.

• Backtracking search: Algorithm that incrementally builds candidates to the so-

10

2.1. CONSTRAINT PROGRAMMING

lutions and discards candidates as soon as they could not form a valid solution [66]

[25].

• Local search: Method which iteratively improves a solution, based on their variables’

assignments until satisfying all constraints [66] [25]. Every step, the solver modifies the

value of a variable so that the solution is close to the previous one in the assignment

space.

• Dynamic programming: Breaks the problem down into simpler sub-problems re-

cursively [66]. The solver solves problems optimally finding solutions to the sub-

problems until reaching the optimal structure. Some problems can not use this method

globally (decision problems), but the solver can split them in some points to solve

them partially with this manner. The method combines mathematical optimization

procedure and a computer programing one.

The exploration of solutions is a searching tree where the root corresponds to the vari-

ables’ empty assignments, and each branch assigns a different value to a variable. Each node

contains as many children as values in the domain of the variable concerned. The generate

and test method needs to visit each of the leaves until finding a solution, so computational

complexity becomes elevated [25].

O(mn · e · r)

Where

• n is the number of variables.

• m is the size of the largest domain

• e is the number of constraints

• r is the largest arity

Backtracking search performs a depth-first transversal, which in the worst case has the

same complexity as generate and test method, but in practice works bette [25]r.

2.1.4 Example: N-Queens

N-Queens problem [25] is one of the most common examples of constraint solving problems.

The problem consists of: given n ≥ 4, set n queens on an n× n chessboard so that they do

11

CHAPTER 2. ENABLING TECHNOLGIES

not interfere with each other in terms of attack. The chessboard must have one queen per

row so that two of them do not match in the same column or diagonal.

To solve this problem, the generate and test method is very inefficient, so firstly, we

will solve the problem using the backtracking search method [25]. To do so, the algorithm

maintains partial assignments consistent with the constraints. This means the algorithm

explores leaves and their children while considering valid the assignments. When the solver

runs into a non-complying solution, it undoes the last assignment and stops exploring that

leave and its children. The steps will be [25]:

1. Initial stage will maintain empty assignment of the variables.

2. Every step, assign a value to a variable in its domain.

3. When the solving process detects a partial assignment that can not extend to a solu-

tion, do backtracking : undo last decision and stop exploring that branch.

With local search with constraint propagation [25], the strategy is similar to the previous

one but with specific differences. With this method, the search tree receives a previous prune

removing values from the domains to obtain a valid solution. The main advantage is the

smaller search tree compared to previous methods, but the time to spend on each node is

higher. Constraint propagation considers some types of propagation with different trade-offs

between pruning power and costs in time.

8 QZ0Z0Z0Z
7 Z0Z0Z0L0
6 0Z0ZQZ0Z
5 Z0Z0Z0ZQ
4 0L0Z0Z0Z
3 Z0ZQZ0Z0
2 0Z0Z0L0Z
1 Z0L0Z0Z0

a b c d e f g h

Figure 2.2: N-Queens problem with n = 8, possible solution

Finally, all algorithms should converge to a valid solution like the one shown in Figure

2.2. The conclusions related to the solution are that the chessboard should have one queen

12

2.1. CONSTRAINT PROGRAMMING

per row, one per column, one per diagonal, and the maximum number of queens that a

chessboard of n · n can accommodate is n.

This problem is a kind of conceptual challenge, so it satisfies the two premises about

constraint solving problems. The problem definition does not contain uncertainty, and the

requirements do not change during the solution’s execution. The solving process does not

need to consider approaches or look for complex alternatives to find a feasible solution, like

when treating with dynamic or uncertain problems.

2.1.5 Optaplanner

OptaPlanner [16] is an open-source, lightweight, and embeddable AI constraint solver design

to optimize planning and scheduling problems. It abstracts mathematical equations to

code, applying constraints on plain domain objects and combining sophisticated Artificial

Intelligence optimization algorithms with very efficient score calculation.

For OptaPlanner, a planning problem has an optimal goal, based on limited resources

and under specific constraints [15]. Optimal goals could be to maximize or minimize some

variables, or even both of them. While some variables need to be as maximum as possible,

others need to have minimum values, such as buying the highest quality products and

minimizing the total budget of buyouts. To reach these goals, programs should consider

the available resources such as the number of people, the amount of time, physical assets,

or even total budget.

Figure 2.3: OptaPlanner Planning Problem Definition

source by:

https://docs.optaplanner.org/7.45.0.Final/optaplanner-docs/html_single/

13

https://docs.optaplanner.org/7.45.0.Final/optaplanner-docs/html_single/

CHAPTER 2. ENABLING TECHNOLGIES

OptaPlanner framework solves constraint satisfaction problems efficiently, combining

optimization heuristics and metaheuristics with very efficient score calculation. Basic tech-

niques such as brute force algorithms will take too long to solve a problem because of the

wide range of combinations of the problem’s variables. Furthermore, a quick algorithm will

return a non-optimal solution and may not comply with the required constraints. Opta-

Planner deals with these problems, establishing a trade-off between them and providing a

right solution in a reasonable time.

2.1.5.1 Types of constraints

Optaplanner defines a basic approach depending on the importance of the constraints that

uses two levels [15]. The framework initially proposes two types of constraints, that a user

can customize for a determined program:

• Hard constraints: A solution must fulfill all of them to consider the solution feasible.

An example of them in an employee rostering problem could be to respect an eight-

hour working day.

• Soft constraints: A solution should fulfill them, and the algorithm should take them

into account, but they do not determine the feasibility of the solution. An example of

a soft constraint following the previous problem could be the preference of an employee

of working in a morning shift instead of a night shift.

Some problems could define only hard constraints. Others may need to define both of

them, and other problems would require higher-level implementations to reach a feasible

solution due to its complexity.

2.1.5.2 Problem solutions

With variables, their domains, and constraints, the search space becomes typically massive

[15]. Inside, a problem can have some types of candidate solutions:

• Possible solution: OptaPlanner documentation defines this category for all candi-

dates contained in the space, whether they comply with the constraints or not.

• Feasible solution: Refers to solutions not breaking hard constraints, but they may

not comply with all the soft constraints or even none of them.

14

2.1. CONSTRAINT PROGRAMMING

• Optimal solution: Solution with the highest score. At least, a problem has one

optimal solution, but it can have more. If a problem does not have feasible solutions,

the optimal solution would not be feasible too.

• Best solution found: Solution with the highest score found in a given amount of

time. The main characteristic is that likely it would be feasible and, with enough

time, it might be an optimal solution.

Usually, a problem has a massive amount of possible solutions. To find an optimal

solution for an implementation, a program needs to evaluate a subset of possible solutions.

The algorithm’s election could be difficult in advance, as the programmer does not know

the problem’s complexity on most occasions. OptaPlanner allows users to easily choose the

optimization algorithm by typing a few code lines so that people can test to find a suitable

algorithm for each problem.

2.1.5.3 Solver

The solver is the component in charge of finding a solution to the problem [16]. This element

test combinations and evaluates their performance until getting the combination with the

best score.

Figure 2.4: OptaPlanner Solver diagram

source by: https://www.optaplanner.org/

15

https://www.optaplanner.org/

CHAPTER 2. ENABLING TECHNOLGIES

The solver receives all the components of a problem: the variables, the domains of

their values and the constraints. The user defines the score function that assigns a score

to the set of combinations from a solution depending on the constraints that this solution

meets. To generate a solver with a specific configuration, OptaPlanner provides a class

called SolverFactory that returns a solver configured and ready to solve a certain type of

problems.

2.2 Functional programming

2.2.1 Definition

Functional programming [2] has become really trendy these days in many languages because

of the broad advantages that it can provide on the developed software. Many companies use

this technique to develop some components in their applications, such as Facebook, Yahoo,

or Amazon [7].

A proper definition of what this concept consists of could be the process of building

software by composing pure functions, avoiding shared state, mutable data, and side effects.

Functional programming is declarative, rather than other standard programming techniques

considered imperative, and application states flow through pure functions.

Functional code is more concise, predictable, and more manageable to test than im-

perative or object-oriented one. Functional programming is a programming paradigm that

changes the traditional way of conceiving software development, basing it on some funda-

mental principles.

2.2.2 Concepts

As seen before, functional programing has some important concepts that this section ex-

poses.

2.2.2.1 Pure functions

Pure functions refer to functions that, given the same inputs, always return the same outputs

without side effects [7]. This means that this function will always perform the same actions

independently of the program’s variables’ values.

Another essential property of these functions, called referential transparency, consists in

16

2.2. FUNCTIONAL PROGRAMMING

the equality of substituting a function call with its resulting value without maintaining the

meaning of the problem.

Using pure functions has some advantages [1] as:

• Improved readability and maintainability because a function can perform some tasks

over given arguments, instead of searching in global variables or states.

• Easier incremental development because as functions perform actions in a closed and

reduced scope, the code is easier to refactor and changes to design.

• Effortless for testing and debugging, as functions could be considered small compo-

nents and tested separately.

2.2.2.2 Function composition

The combination of functions produce a new function [7]. This concept is similar to math

function composition, where if there are two functions f(x) = 3x+ 2 and g(x) = x2 + x+ 1

the composition (g ◦ f)(x) will be:

h(x) = (g · f)(x) = (3x+ 2)2 + (3x+ 2) + 1 = 9x2 + 15x+ 7

So solving h(2) will produce the same result as solving f(2) and then g(f(2)) which in

both cases will be 73. Equally occurs with computational function combining, so that the

developer could split complex functions into simpler ones and call them when needed.

2.2.2.3 Shared state

If an item, such as a variable, object, or memory space, exists in a shared scope or as the

property of an object shared across scopes [7]. These scopes can be object scope, shared

variables between objects, program scope, or even shared state between multiple software.

The main drawback with shared states is traceability because the debugging process

requires understanding the shared variable’s complete history to know the reasons for the

effects of a function. In a program with a shared state between components executed

in different processes, threads, or even applications executing in different machines, race

conditions can appear and cause undesirable issues.

Another critical problem with the shared state is the relation between the order in which

the program calls functions and the final result. Changing this order can cause a cascade of

17

CHAPTER 2. ENABLING TECHNOLGIES

failures because functions acting with a shared state are also timing-dependent. Avoiding

shared state and using pure functions, timing, and order of function calls do not change the

functions’ result. Moreover, function calls are entirely independent of other function calls,

so changing and refactoring the program is simpler.

2.2.2.4 Immutability

Mutability means the possibility of change of something. If something is mutable, it could

suffer alterations internally or externally due to external agents or internal behavior [7]. So

the opposite, immutability, means something does not perform changes after created.

This becomes an important concept in functional programming because saying that a

program is mutable means a program is lossy, so strange bugs can appear then. Some

functional programming languages implement unique immutable data structures named

trie data structures [4]. The program’s execution can not modify the properties of these

structures regardless of the level of the property in the hierarchy. Trie data structures

use structural sharing to allow sharing reference memory location, using less memory, and

better performance for certain operations.

2.2.2.5 Side effects

Side effects are the changes in the application state that are visible from outside the called

function [7]. Functional programming does not use them, providing clearness when under-

standing the code and making it easier to test.

Like the immutability case, some functional programming languages implement what

they call monads [60]. These structures provide isolation and encapsulation of side effects

from pure functions.

2.2.2.6 Higher order functions

Some patterns as object-oriented programming tend to use attributes and methods in the

object’s context and forcing them to work only with the types defined of their parameters [7].

Functional programming has some functions that can operate with multiple types without

having to determine various implementations using different signatures.

These functions are higher-order functions, and normally, they can take another func-

tion or functions as arguments. They can even return another function as a result of the

18

2.3. WEB APPLICATIONS

execution. A program commonly uses higher-order functions for multiple purposes, such

as to abstract or isolate actions, effects, or async flow control. Moreover, to create utilities

that can receive any arguments or partially apply a function to its arguments and to create

curried functions. Also, for function composition or to orchestrate some functions from a

list passed as an argument and return the composition as a result.

A common example of this concept is function map(), present in every functional pro-

gramming language. The function can map over objects, strings, numbers, or any other

data type because it takes a function as an argument that appropriately handles the given

data type.

2.2.2.7 Commonly used data structures

Functional programming uses some specific data structures such as containers, functors,

lists or streams [7]. They are not unique from functional programming, but they provide

advantages such as efficiency or concurrency into multiple processes or even machines, this

structures facilitate this performance.

Functors [3] are some special structures whose main characteristic is that they can be

mapped over. They are containers with an interface whose methods can apply a function

to the values inside it. Functors are mappable.

2.3 Web applications

A web application [63], generally known as Web App, is an application software hosted in a

web server that serves resources to clients. Computer-based software programs differ from

web applications because the device’s operating system stores them locally.

Web apps [61], typically, do not require any additional installation but the browser.

As technology keeps changing constantly, some sites need some browser complements to

perform specific tasks to provide a better user experience. Nowadays, the internet contains

many web apps, from small dynamic tools to graphic software or browser video games. Web

technologies have grown so that companies usually produce two options for applications; the

native OS software and the web app ones. Both of them have the same functionalities, and

even web apps include some additional ones such as sharing with other users or integration

with other web apps.

19

CHAPTER 2. ENABLING TECHNOLGIES

Figure 2.5: Number of websites over time

source by:

https://www.statista.com/chart/19058/how-many-websites-are-there/

Figure 2.5 shows the growth of website over time, showing the number of active sites per

year. As the image outlines, the number of web apps has increased significantly over the

last twenty years from the creation of the web. The tendency shows how web apps become

increasingly more important for the supply of services in society.

2.3.1 Native apps and Web apps

2.3.1.1 Native apps

Developers create native apps [61] based on the requirements and characteristics of the

platforms that will execute them. Applications should run in a broad set of OS such

as traditional computers running Windows, macOS, or Linux and newer devices such as

smartphones with Android, iOS, or even IoT gadgets. Actually, companies focus on the

new developments of native apps on smartphones or mobile devices. This fact is important

because it has resulted in a new category called Native Mobile Apps or Mobile Apps. This

category covers all the developed software running on mobile devices.

20

https://www.statista.com/chart/19058/how-many-websites-are-there/

2.3. WEB APPLICATIONS

The main characteristic of native apps is that they only run on a dedicated platform [61].

However, their main drawback is that if an application needs to have compatibility with

multiple OS, developers should build a different application for each platform, considering

how OS manages information, I/O, and all the components. This results in a higher effort

in all aspects, a more significant budget, higher development time, more personnel, etc.

Nevertheless, native apps fit perfectly to the platforms they run and can use all OS modules.

2.3.1.2 Web apps

Unlike native apps, web apps [61] do not need to perfectly suit in all the platforms because

their access is through a web browser. Their main advantage is the facilities they provide

to users, which use them on every browser from all devices. Moreover, developers need only

to implement just one application, in contrast with the previous case. This case has an

exception: each browser has its own implementation, so some web apps components could

not work correctly on some browsers.

Another advantage of web apps over native apps is the update manner: developers just

have to upload the new version to the hosting server. In native apps, users have to download

manually and install the newly developed version of each platform’s software. This becomes

important when discussing security because web apps rapidly correct vulnerabilities found,

but native apps need users to become aware of applying updates.

Nowadays, web apps can provide a broad range of services to users [61]. For instance,

Google suite includes multiple web apps such as Google Maps, Gmail or even its own search

engine, or Amazon with online shopping, Amazon Video or Amazon Music, or Facebook

with WhatsApp, Instagram, or Facebook social network. These applications usually have

two versions, the web app and a native app for each platform that acts as an interface to

connect with the server. These second apps do not follow precisely the definition of native

apps shown above because they are network connection dependent.

Some traditional native applications, such as Microsoft Office environment, are moving

into web apps to extend their native applications’ features. For example, Office offers ser-

vices such as Word, Excel, or PowerPoint online, providing users an alternative to installing

their native apps. Another feature of web apps is collaborative work, allowing users to

create, read, edit, or delete documents simultaneously. Web apps provide this functionality

because they centralize the information in servers, and users can share the view of a docu-

ment. Depending on the application, sometimes people can use a web app locally without

having an Internet connection.

21

CHAPTER 2. ENABLING TECHNOLGIES

Native App Web App

Platform Platform dependent Platform independent

Data storage Users device Commonly in the server, but can

store some data in the browser

Native OS

functions

Commonly used Can use some of them in some oc-

casions but it is not common and

usually require user to give per-

missions

Source Repositories, App stores and

downloaded from websites

Web access

Setup Imperative Not needed

Update Users should install manually Service provider implements them

and are available to all users

Internet con-

nection

Commonly not needed Imperative

Table 2.1: Native apps and Web apps comparison

Table 2.1 shows a comparison of the main characteristics of both types of applications

[61]. Both of them have some important specifications, but none is the best one in this

scope as they fit different requirements.

2.3.2 Client-Server architecture

Client-Server architecture [64] is primarily the most used architecture model for the de-

velopment of web services [62]. This architecture basically defines the separation between

providers and service demanders, receiving the names of servers and clients, respectively.

Clients requests servers for resources, which are responsible for creating a response that

clients can interpret. This separation allows developers to concentrate all the business logic

in a single machine and ensures clients’ simplicity, not requiring, in many cases, a high

computing capacity.

22

2.3. WEB APPLICATIONS

Figure 2.6: Client-Server architecture diagram

source by: http://www.qababu.com/2019/07/api-testing-05-client-server.html

The use of this architecture has certain advantages in this area, such as [62]:

• Clients share logical and physical resources. This occurs by centralizing the servers in

a Data Processing Center, which is responsible for managing the servers.

• Clients initiate the requests for resources when and servers wait passively for connec-

tions. When clients receive the resources requested, they close the connection so that

the components do not need to maintain a constant connection.

• Transparency with the physical location of clients and servers. Clients often do not

know where the location of the responding server. This feature allows traffic balanc-

ing, assigning the less busy server to the more demanding clients and avoiding the

saturation of some servers that receive a vast amount of requests.

• Independence of hardware and software platforms, as well as service encapsulation.

The details of the different implementations used on the server-side are transparent

to clients.

• Simple maintenance, as the architecture disperse responsibilities. Service providers

can replace, repair, upgrade, and relocate a server while clients remain unaffected.

• Enhanced security management, because servers and resources have better control

access to ensure that only authorized clients can perform some types of requests.

23

http://www.qababu.com/2019/07/api-testing-05-client-server.html

CHAPTER 2. ENABLING TECHNOLGIES

Moreover, servers require authorization to manipulate data and to apply updates.

Nevertheless, the client-server architecture also has some drawbacks that are important

to choose this architecture or to consider other alternatives [62].

• Service providers should continuously monitor the server’s load to detect and prevent

server overload. This could happen when servers receive a considerable amount of

simultaneous client requests producing traffic congestion.

• If servers do not receive the traffic correctly balanced, when a critical server fails, the

impact of centralized architecture can cause an interruption in the service.

2.3.3 Java Web Applications Development

The development of web applications can use many technologies present in the market. At

the beginning of the Internet, web servers’ main goal was to provide resources located in

their network. Nowadays, they perform so many business logic activities and their archi-

tecture has become definitely more complicated. New technologies have appeared in order

to carry on different tasks and improving performance significantly. Some well known are

[67] NodeJS, Ruby, Go, Java, Python, C#, Scala, PHP...

For this project, the technology selected is Java because of the simplicity of integrating

the web application with the OptaPlanner constraint solver modules.

2.3.3.1 Model-View-Controller pattern

The most commonly used model for developing Java web applications is Model-View-

Controller [6], dividing responsibilities into these components.

• Models: the layer responsible for data structure and management, containing mech-

anisms to operate and store information. The primary use resides mainly to perform

functions as creation, recovery, modification, and deletion of data, so the defined

models should implement these functions.

• Views: They maintain the code which produces the visualization of the user inter-

faces. Usually, they are dynamic and use some additional languages allowing servers

to include code or data. This code coexists with other common languages, and when

the server renders web pages, the content results in an organized and elegant way.

24

2.3. WEB APPLICATIONS

• Controllers: They connect the other two components and contain all the logic of

the application. They are the orchestrators deciding what to do based on the data

and requests received. To do so, they use functions of the model and render the

corresponding views as the response.

Figure 2.7: Model-View-Controller diagram

source by: https://stips.wordpress.com/2019/04/15/

model-view-controller-mvc-en-ios-un-enfoque-moderno/

2.3.3.2 Web Application Structure

Java bases web applications in using a structure called Servlets for controllers and JSPs

language for the development of views [23]. Also, dynamic web applications WAR file, the

one generated for production, in Java follows a particular structure shown in Figure 2.8.

• Static files: As its name outlines, files which do not change such as images, styles,

media, documents or scripts.

• Java classes: Contains the logic of the application including servlet files and addi-

tional Java classes.

• Manifest file: The MANIFEST.MF file, where developers should list all the exten-

sions that the WAR needs.

• Lib files: Stores libraries as jar files.

• Deployment Descriptor: web.xml file, containing originally a mapping for servlets,

welcome pages, security configurations, session timeout settings, etc...

25

https://stips.wordpress.com/2019/04/15/model-view-controller-mvc-en-ios-un-enfoque-moderno/
https://stips.wordpress.com/2019/04/15/model-view-controller-mvc-en-ios-un-enfoque-moderno/

CHAPTER 2. ENABLING TECHNOLGIES

Figure 2.8: Dynamic Web Application WAR file structure

source by: https://stackoverflow.com/questions/30796114/

using-property-files-in-web-applications

2.3.3.3 Web server frameworks and modules

The development of web application implies the use of many developed frameworks and

modules to make easier the web application implementation, this section exposes the ones

used in the project.

Spring Framework [46]: Designed to provide a comprehensive programming and con-

figuration model for Java-based applications. Spring offers infrastructure support at the

application level, providing a complete model for both the configuration and programming

of business applications developed with Java. Moreover, the main advantage is the change

in programmers’ focus, allowing programmers to stay centered entirely on business logic.

Spring is a modular framework that allows programmers to use only the required mod-

ules for their applications. The framework uses some of the existing technologies, such as

ORM, JEE, Quartz and JDK timers, logging frameworks, and other visualization frame-

works. Spring provides templates for various technologies such as: JDBC, Hibernate, and

JPA, so programmers do not need to write extensive code, as these templates simplify work

[21].

Spring Web MVC [47]: Is the web module built on the Servlet API and included in Spring

from its origins. The module dispatches requests to handlers through a dispatcher servlet

26

https://stackoverflow.com/questions/30796114/using-property-files-in-web-applications
https://stackoverflow.com/questions/30796114/using-property-files-in-web-applications

2.3. WEB APPLICATIONS

and configurable mappings, view resolution, locale, and theme resolution. This module’s

main tags to identify the application components are @Controller and @RequestMapping.

The framework uses the first to recognize the controllers and the second one to define

mappings between URIs and their controller’s servlet. Programmers can easily configure

requests and responses parameters using this module.

Spring Security [48]: Module part of the Spring Framework in charge of the authentication

and access control for a web application. Some of its features are the protection against

attacks like session fixation clickjacking, cross-site request forgery, a base login form, and

a logout method, among other things. The module offers some customizable options such

as to use an own login form, the algorithm used to encrypt passwords, the definition of

user details, possible roles for user authorization, or the way to recover users from storage.

Moreover, the framework allows the integration with other authentication and authorization

network methods such as Kerberos, OAuth, or SAML.

Apache Tiles [9]: Provides an easy mechanism for creating modular view templates. The

user can define basic templates with a set of components that are common on multiple

views. When the application renders some view, the module loads each of the components

of the view’s template. This behavior has some advantages: developers do not need to

rewrite code and reuse the common components easily. Moreover, this module allows users

to develop applications with a uniform look and feel effortlessly.

String Template [24]: This module allows users to create string templates with some

parameters introduced dynamically. Users store the template in a file, and when required,

the program loads the template and injects the values of the parameters defined in the

template. The result is a string that the application can use for multiple purposes. The

behavior is similar to the defined with views in a dynamic application, where controllers

inject the values into the views’ templates.

Apache Tomcat [10]: Is an open-source web container that hosts Java servlets and JSP.

The container includes a compiler that generates servlets from JSP and executes dynamic

web applications from their WAR file. Apache Tomcat works as a web server in environ-

ments with a high level of traffic with high availability. The language of development for

Apache Tomcat is Java, so it can work in every operating system that contains a Java

virtual machine [59].

27

CHAPTER 2. ENABLING TECHNOLGIES

2.3.3.4 Persistence

Web applications traditionally use a persistence system to keep data between sessions.

The most common persistence systems are databases, that store data usually in servers.

Actually, users can find two types of databases: relational and non-relational databases.

The first one stores information in a structured way and requires defining the attributes

of an entity primarily. The second one can store any data type and does not require

information to have a closed structure.

MySQL [54] is the most popular open-source relational database management system.

It uses a client-server architecture, so a server stores data and web applications act as

clients. One of its main characteristics is the reading speed while not using transactional

functions, a commonly used feature in web programming. Furthermore, the language used

for performing queries is an extensive subset of SQL and databases give a critical relevance

of data indexing. MySQL would not be the best candidate for concurrent environments

because of their problems in this aspect, but this project does not use concurrency [68].

At the time of developing web applications, they manage persistence through DAOs and

Data Repository services. One of their main advantages is the abstraction of the applica-

tion from the storage methods, reducing the use of query languages when implementing

the server’s code. Moreover, if the server changes of persistent system, the application’s

modifications will consist of adapting DAOs and Data Repository services to the new envi-

ronment.

28

CHAPTER3
Problem characterization

This chapter explains all the details of the problems that the system will try to solve. Firstly,

the chapter details the problematic and how people solve these problems actually. The fol-

lowing section contains the main characteristics of a scout association that concern this

problem. Afterwards, a section presents the groups of restrictions that a solution should

comply with a brief explanation. Finally, the chapter contains an example of a problem and

a possible solution.

29

CHAPTER 3. PROBLEM CHARACTERIZATION

3.1 Problematic

This project’s main goal is the development of an intelligent system able to create feasible

groups of scout leaders to take care of different groups of children.

A scout association performs multiple activities during the school year with children of

all ages. The association divides these children into small groups between fifteen to thirty

kids per group so that scout leaders can easily take care of them. The groups of children

are immutable for all the activities performed by the scout association. These groups of

children have a team of scout leaders associated that does not change during the whole

year.

When every school year starts, the scout leaders join various meetings to start with the

activities preparation. The agenda of one of these meetings include the elaboration of the

scout leaders’ teams. As the scout leaders’ teams are immutable, the planning should be

as perfect as possible. If the association needs to make some changes to the groups, the

impact should be minimum on the actual planning.

To do this planning, all of the scout leaders give their opinions of some aspects to

prepare the best scout leaders’ teams. This makes more complex the activity of creating a

planning, typically spending a considerable amount of time. The people of the association

have tried some attempts to make the task of planning easier; for instance, sometimes the

primary responsible of the association prepares multiple drafts and presents them in the

meeting. Naturally, the drafts suffer modifications because they do not consider all the

essential aspects regarding scout leaders, unit preferences, methodology knowledge, etc.

Making an unsuitable group planning could have a negative impact on the association.

This could involve problems between scout leaders, trouble with children, instabilities in

scout leaders’ teams, overconfidence between children and their scout leaders, lack of per-

sonnel for some activities and so much more. Wrong planning could cause instability in the

whole association.

3.2 Scout Association Structure

Scout associations have a common structure composed of sections. Sections are composed

in turn by one or more units.

The concept of section was created because of the methodology to use based on the ages

and the point in the maturity process where kids are. That is the reason why the smaller

30

3.2. SCOUT ASSOCIATION STRUCTURE

sections, called Beaver Scouts and Cub Scouts, are set in children’s stories to make easier

for them knowledge acquisition. When they keep growing over eleven years old, this is no

longer necessary and scout leaders can reflect with them in a similar adult manner.

Figure 3.1 shows an example of the structure of an association. In this case, the associ-

ation contains five sections. The names of the sections are the common ones used for every

group, as scout associations follow the methodology of international organisms such as the

WOSM [27]. Scout associations could have fewer sections for some reasons like the lack of

scout leaders, the lack of children in this age range, or even the lack of expertise on some

sections methodology.

17-20

years
Rovers Clan

14-16

years
Explorers Escultas

11-13

years
Scouts Tropa

8-10

years
Cub Scouts Manada

6-7

years
Beaver Scouts Colonia

Figure 3.1: Structure of reference of sections of a scout association

As another example, Figure 3.2 illustrates the structure of units of an existing scout

group association in Spain. The association contains nine units and the five sections exposed

previously in Figure 3.1. This association has more than two hundred children and thirty

scout leaders, so it has a considerable size. Moreover, the association has nine units, each

one with a scout leaders’ team associated. This one is not a common scout association

because of its size. However, the solution is based on this association because it defines the

most complex situation the system would face.

31

CHAPTER 3. PROBLEM CHARACTERIZATION

Scout group association

Beavers Cubs Scouts Explorers Rovers

Selawik Peace Stone

Khanhiwara

Waingunga

Ionkere

Eengonyama

Yin-do

Yang-do

Annapurna

Figure 3.2: Example of Scout group association unit structure

3.3 Feasible planning characteristics

An optimal planning is a set of assignments of scout leaders into teams that comply with

some restrictions. The analysis of the details of scouts’ associations provides the set of

constraints that valid plannings need to have. Before detailing the constraints required, we

should describe the activities a scout association carries out.

Scout associations perform multiple activities with children during the school year.

These activities could be of three different types:

• Weekly meetings: Performed usually on weekends, and lasting less than one day.

The location where the meeting takes place is typically in a park outdoors in order to

allow children to move freely.

• Weekend camps: Small camps of one night’s stay located close to the place of resi-

dence. Generally, leaving on Saturday morning and returning on Sunday afternoon.

• Long term camps: At the end of every scholar term, the association organizes a long

term camp. Two of them take place at Christmas and Easter, and there is another

in summer. Firsts ones usually last for five days and the summer camps duration is

about fifteen days.

With the information about a scout association’s activities, we could extract some im-

portant characteristics that scout leaders’ teams should have. The following classification

enumerates the restrictions that each planning should respect to consider it optimal.

32

3.3. FEASIBLE PLANNING CHARACTERISTICS

Structural restrictions:

These group contain constraints related to the structural composition of every unit. The

aspects of these constraints are the identity of scout leaders and the size of the scout leaders’

teams.

• No repeated scout leaders: The association performs all the activities simultane-

ously, so a scout leader can not be in two units at the same time.

• Number of scout leaders per unit: Each unit has a determined number of children

of a range of ages. Based on this fact, each unit must have a fixed number of scout

leaders per unit that the planning must respect.

Availability restrictions:

The availability of scout leaders is an important fact to consider in terms of attendance to

activities. The association may not have scout leaders’ teams where any members can not

attend one or more association activities.

• Weekend camps attendance in a unit: As weekend camps take place during

weekends, the scout leaders’ team may require to have at least one person who can

attend to them.

• Camps attendance in a unit: Like the previous case, but here the number of scout

leaders who can attend would not be so high as to weekend camps. The main reason

is that the association would have scout leaders in an employed situation so that they

might have incompatibilities.

Social restrictions:

Social restrictions respect relations between scout leaders. Every workgroup can have prob-

lems between people that disrupt harmony in the workgroups. Their main goal is to ensure

that every scout leader is comfortable with their colleges.

• Banned colleagues in the same unit: People whom a scout leader can not work

with because their personalities have incompatibilities. A person can not work with

others because of heavy problems in the past between them or because they have been

in a relationship or so much more.

• Preferred colleagues in the same unit: The opposite as the other case, the idea

is to respect as possible the people whom a scout leader would like to work with. This

33

CHAPTER 3. PROBLEM CHARACTERIZATION

criterion is not mandatory, but as much as it is respected, more satisfied the scout

leaders would be in their teams.

Restrictions related to kids requirements:

Due to the age and maturity of the kids, the units might have some restrictions.

• Mixed scout leaders’ teams: Units containing younger children may require to

have a father figure and a mother figure.

• Age of scout leaders in the unit: Units containing younger children may be

suitable for younger scout leaders, and older scout leaders fit better in units with

older kids. When kids become teenagers, the ways to reason with them change, and

older scout leaders become more suitable because of their maturity.

Training restrictions:

Scout leaders’ teams need to have people with knowledge in some aspects, such as the

unit’s methodology or how the association performs processes. The project considers only

one restriction, but in the future can appear more of them.

• Scout leaders with experience in the unit: Scout leaders’ teams may require to

have people with experience in the teams in order to train newer scout leaders.

Restrictions related to preferences:

Scout leaders may have some preferences in the assignation. The planning should comply

as much as possible to guarantee the satisfaction of the personnel. Like the previous case,

this category can receive future requirements, while now it only contains one.

• Preferred units to be in: Scout leaders may prefer to be assigned to some units

than in others.

The ideal planning is the one that complies with all these requirements, but in practice,

plannings can not meet all of them. The main reason is that trying to optimize one criterion

could break others. If we prioritize the requirements, the task of creating optimal planning

becomes more manageable. While the planning optimizes some high priority requirements,

it breaks others could without having high relevance.

34

3.4. PROBLEM EXAMPLE

3.4 Problem example

This section details an an example of a real problem to solve by the intelligent system

developed in this project.

A scout association contains three of the sections shown in Figure 3.1 (Cubs, Scouts and

Explorers), and one unit per section. At the beginning of the school year, the association

has eight possible scout leaders with some of their characteristics shown in the table of

Figure 3.1. The association has fifty five children, divided into groups of ages from fifteen

to twenty kids per section.

For simplicity reasons, this example does not take into account preferred units and

preferred colleges. The availability is shown in terms of: WC meaning weekend camps

attendance and C meaning camps attendance.

Name Gender Age Experience Availability Banned people

Javier Male 18 No WC, C Teresa

Antonio Male 19 Yes WC, C -

Sof́ıa Female 18 No - -

Maŕıa Female 22 Yes WC, C Juan Carlos

Juan Carlos Male 21 Yes C Maŕıa

Manuel Male 27 Yes WC -

Teresa Female 24 Yes WC, C -

Laura Female 23 Yes WC -

Table 3.1: Example of scout leaders reduced characteristics

As shown, the problem has much important information to consider for producing a

feasible solution, such as how many scout leaders each unit needs to have, which units

may have scout leaders from both genders, the planning can not have scout leaders with

eighteen years old in charge of Explorer or Rover sections because the difference of ages is

not enough, each unit should have scout leaders with attendance to all the activities of the

association, the planning must consider problems existing between scout leaders, etc.

35

CHAPTER 3. PROBLEM CHARACTERIZATION

In the initial meeting between scout leaders, they decide that units with younger kids

should have a scout leaders’ team composed by three members. Moreover, the teams related

to Cubs and Scouts should be mixed teams having scout leaders from both genders: male

and female. The scout leaders’ team associated to Explorers needs to have two people and

do not require to be a mixed team.

Unit Team size Age range Mixed team

Cubs 3 18-23 yo True

Scouts 3 18-23 yo True

Explorers 2 22-27 yo False

Table 3.2: Unit characteristics in the example

With the details provided in the tables above, a possible solution that meets all the

requirements is shown here.

Unit
Scout
lead. Size

Mixed
team Age Exp. WC avl. C avl.

Cubs

Sof́ıa

OK
3/3

OK
1 male,

2 female

OK
18, 22,

19

OK
2 true

OK
2 true

OK
2 trueMaŕıa

Antonio

Scouts

Juan Carlos

OK
3/3

OK
2 male,

1 female

OK
21, 18,

23

OK
2 true

OK
2 true

OK
2 trueJavier

Laura

Explorers
Manuel OK

2/2

OK
1 male,

1 female

OK
27, 24

OK
2 true

OK
2 true

OK
1 true

Teresa

Table 3.3: Possible solution to the example problem

As the table of Figure 3.3 shows, the solution meets all the requirements so that it would

be a feasible solution. The planning respects the units’ size, the scout leaders’ teams are

mixed, the planning respects the age ranges, the planning has people with experience in all

teams and available for the activities. However, the table does not show the information

related to the banned scout leaders. Figure 3.1 defines that Javier can not stay in the

36

3.4. PROBLEM EXAMPLE

same team as Teresa and the same for Juan Carlos and Maŕıa. The assignations of Figure

3.3 have respected all the restrictions covered. Finally, the example does not consider two

restrictions for simplicity: the preferred units and preferred teammates for every scout

leader. The system developed has been designed to consider all.

The example uses random data, but each case is completely different and the finding

of the optimal solution is related to the input data. Some cases can not have a feasible

solution and the association have to conform with the best solution found.

37

CHAPTER 3. PROBLEM CHARACTERIZATION

38

CHAPTER4
Requirement Analysis

This chapter presents the requirement analysis, which is fundamental in software develop-

ment. The methodology eases in identifying actors and use cases to help to define require-

ments. All this information applied to the project is detailed here.

39

CHAPTER 4. REQUIREMENT ANALYSIS

4.1 Use cases

This chapter analyzes the problem characterized in the previous chapter to obtain the

requirements that the system needs to meet expectations. Figure 4.1 shows the general

diagram of the use cases and the actors involved. The following sections detail the actors

and how to interact with the system to provide the final list of requisites.

Figure 4.1: Use cases diagram

The system will be used by two actor roles, organizer and scout leader. Organizer is the

main actor. He uses the system for I) the configuration of the details of the planning; ii)

generate the planning, and iii) visualize the results, through a visual interface. In addition,

he can export the results. Scout leaders only contribute to the planning configuration pro-

viding their personal data and preferences. Uses cases are further detailed in the following

subsections.

• Configure planning details, explained in Sect. 4.1.2.

• Generate planning, explained in Sect. 4.1.3.

• Visualize results, explained in Sect. 4.1.4.

• Export results, explained in Sect. 4.1.5.

40

4.1. USE CASES

4.1.1 Actors

The problem involves two actors: Scout leaders and Organizer, that normally is the legal

representative of the association. All their details are included in the following table.

Actor identifier Role Description

ACT-1 Organizer The main user of the application. Commonly is the

legal representative of the association and has the fi-

nal say in every subject concerning the association’s

organization. Normally, he is an scout leader.

ACT-2 Scout leader Prepares activities for the kids of the unit assigned

with the other scout leaders of his team.

Table 4.1: Actor list

41

CHAPTER 4. REQUIREMENT ANALYSIS

4.1.2 Configure the planning details use case

This use case is the first one to perform in the process. A planning has multiple parameters

to configure and requires both actors. The use case contains in turn, two additional use

cases.

Figure 4.2: Configure the planning details sequence diagram

• Configure the scout association parameters, detailed in Sect. 4.1.2.1.

• Configure the planning parameters, detailed in Sect. 4.1.2.2.

42

4.1. USE CASES

4.1.2.1 Configure the scout association parameters

This use case is explained in Table 4.2.

Use Case Name configure the scout association parameters

Use Case ID UC1.1

Primary Actor Organizer

Pre-Condition The application shows the home screen and the organizer

visualizes the available options.

Post-Condition -

Flow of Events Actor Input System Response

1 The organizer presses Create

association option.

The application shows the

form for the introduction of

the association’s details.

2 The organizer introduces the

association’s general details.

The application stores the

association’s information and

redirects to the association

view containing the details

introduced.

3 The organizer configures

sections.

The application stores the

sections’ information and

redirects to the association

view.

4 The organizer configures

units.

The application stores the

units’ information and

redirects to the association

view.

Table 4.2: Configure the scout association parameters use case

43

CHAPTER 4. REQUIREMENT ANALYSIS

4.1.2.2 Configure the planning parameters

This use case is explained in Table 4.3.

Use Case Name configure the planning parameters

Use Case ID UC1.2

Primary Actor Organizer

Pre-Condition The organizer has configured the association parameters. The

application shows the home screen and the organizer visualizes

the available options.

Post-Condition -

Flow of Events Actor Input System Response

1 The organizer presses Create

planning option.

The application shows the

form for the introduction of

the planning’s details.

2 The organizer introduces the

planning general details.

The application stores the

information and shows the

planning view.

3 The organizer adds scout

leader names and emails.

The application stores the

scout leader information and

redirects to the planning view.

4 The organizer presses Send

notifications to scout leaders

option.

The application generates

requests and sends them to

scout leaders.

5 The scout leader presses in

the link of the request.

The application loads the

form.

6 The scout leader fulfills the

details requested in the form.

The application stores the

details of the scout leader.

Table 4.3: Configure the planning parameters use case

44

4.1. USE CASES

4.1.3 Generate planning

After carrying out all the configurations, the application can generate the planning. The

use case related to the generation of a planning is shown in Table 4.4.

Use Case Name generate planning

Use Case ID UC2

Primary Actor Organizer

Pre-Condition All the configurations have been performed. The organizer is in

the planning view.

Post-Condition -

Flow of Events Actor Input System Response

1 The organizer presses in the

Generate planning button.

The application asks for

confirmation.

2 The organizer confirms. The application starts

generating the planning and

redirects to the visualization

view.

Table 4.4: Generate planning use case

45

CHAPTER 4. REQUIREMENT ANALYSIS

4.1.4 Visualize results

Once the planning has finished solving, the application presents the results. The use case

related to the visualization of the results of a planning is shown in Table 4.5.

Use Case Name visualize results

Use Case ID UC3

Primary Actor Organizer

Pre-Condition The generation of the planning has finished. The organizer is in

the home view.

Post-Condition -

Flow of Events Actor Input System Response

1 The organizer presses in the

plannings section.

The application loads the

organizer plannings.

2 The organizer choose the

planning to visualize.

The application loads the

resolved planning view.

Table 4.5: Visualize results use case

46

4.2. REQUIREMENTS

4.1.5 Export results

After carrying out all the configurations, the application can generate the planning. The

use case related to the generation of a planning is shown in Table 4.6.

Use Case Name export results

Use Case ID UC3

Primary Actor Organizer

Pre-Condition The generation of the planning has finished. The organizer is in

the planning view.

Post-Condition -

Flow of Events Actor Input System Response

1 The organizer presses the

Export planning button.

The application presents the

exportation formats.

2 The organizer chooses the

exportation format.

The application generates the

file and downloads it.

Table 4.6: Export results use case

4.2 Requirements

After identifying the use cases relating to the kind of problems this project focuses on, the

analysis provides the following requirements. Software engineering describes two types of

requirements: Functional requirements and Non-functional requirements.

4.2.1 Functional requirements

Functional requirements define the basic system behavior. They specify the actions that

the system must do or must not do. This section contains the functional requirements for

this project.

• FR1: The organizer must be able to configure the association details: association

general details, sections and units. Use case 4.1.2 provides this requirement.

47

CHAPTER 4. REQUIREMENT ANALYSIS

• FR2: The organizer must be able to configure the planning parameters: planning

general parameters and scout leaders’ name. Use case 4.1.2 provides this requirement.

• FR3: The organizer should be able to request to scout leaders to complete their

details. Use case 4.1.2 provides this requirement.

• FR4: The scout leader should receive the request to complete its details by email.

Use case 4.1.2 provides this requirement.

• FR5: The scout leader must be able to configure its details. Use case 4.1.2 provides

this requirement.

• FR6: The organizer must be able to generate the planning. Use case 4.1.3 provides

this requirement.

• FR7: The organizer must be able to visualize the results of a generated planning.

Use case 4.1.4 provides this requirement.

• FR8: The organizer may be able to export the results of a generated planning. Use

case 4.1.5 provides this requirement.

4.2.2 Non-functional requirements

While functional requirements define what the system must do or what it must not do,

non-functional requirements specify how the system should perform the actions. They do

not affect the basic functionalities of the system. For the project, the system has to consider

the following requirements.

• NFR1: Planning generation should provide a solution in a short period of time. Use

case 4.1.3 provides this requirement.

• NFR2: The application directories and files should be easy to move/copy and execute

in commonly used platforms. Use cases 4.1.2, 4.1.3, 4.1.4 and 4.1.5 provide this

requirement.

• NFR3: The application must export the results in commonly used and generally

accepted formats. Use case 4.1.5 provides this requirement.

• NFR4: Application screens may be simple and user-friendly. Use case 4.1.2 provides

this requirement.

48

4.2. REQUIREMENTS

• NFR5: The application must request identification by username and password to

configure, create, visualize and export plannings. Use cases 4.1.2, 4.1.3, 4.1.4 and

4.1.5 provide this requirement.

• NFR6: The application should have an API to allow interaction from other applica-

tions. Use cases 4.1.2, 4.1.3, 4.1.4 and 4.1.5 provide this requirement.

49

CHAPTER 4. REQUIREMENT ANALYSIS

50

CHAPTER5
Architecture

This chapter presents the architecture of the application developed in the master thesis. The

architecture contains three main components: the intelligent system, the web server, and

the persistence system.

51

CHAPTER 5. ARCHITECTURE

5.1 General architecture

The project’s main goal is to develop an intelligent system capable of distributing scout

leaders into workgroups. The project has the requirement to develop a web application to

allow non-technical people access to the intelligent system. Figure 5.1 shows a diagram of

the architecture of the application developed and its components.

Figure 5.1: Architecture of the application diagram

As the diagram shows, the system has three important components hosted in the same

machine that are:

• Web server: Structured following the Model-View-Controller pattern [6], is the com-

ponent that manages the rest of the elements present in the architecture. The server

provides authentication and authorization to the architecture, requests and retrieves

information from the persistence system, generates the user interfaces and requests to

perform operations to the intelligent system.

• Intelligent system: Is the key part of the architecture because it provides the busi-

ness logic. Performs operations to solve users’ problems in the context of the project

and retrieves the solution. The intelligent system uses the OptaPlanner framework to

allow the finding of solutions.

52

5.2. INTELLIGENT SYSTEM

• Persistence: Allows the application to store and retrieve information by using a

relational database with MySQL engine [54].

5.2 Intelligent system

5.2.1 Optaplanner

Optaplanner defines a common structure for the problems to solve. This structure has four

important components [29]:

• Planning entities: Are the objects that get the assignation values to form a solution

[32].

• Planning solution: Contains all the domains of the planning variables and the

planning entities. This object is given to the solver to find the solution [34].

• Constraints: Define the requirements for generating a valid solution [36].

• Solver Manager: Solves the problem from its statement, configured in the planning

solution and considering the constraints defined [28]. The Solver Manager contains

the solving configuration.

5.2.1.1 Planning entities

Planning entities [32] are a key component in the architecture of Optaplanner problems. A

planning entity has the following aspects to consider [29]:

• Planing Entity: Is a JavaBean (POJO) that changes during solving [32]. Normally,

a planning problem has several planning entities, being all objects from one class. A

planning problem can have more than one planning entity class but is uncommon.

The annotation reserved for a planning entity class is @PlanningEntity.

• Planning Variables: Planning entities have one or more planning variables [35] that

change during problem solving inside each planning entity. Moreover, planning vari-

ables have one or more defining properties [29], the immutable attributes describing

each planning variable. The annotation for each planning variable is @PlanningVari-

able. Also, each planning variable needs to specify its domain, the candidate values

that could be assigned.

53

CHAPTER 5. ARCHITECTURE

• Planing Id: Is the identifier assigned to each planning entity [33]. The solver uses

the identifier during assignments of planning variables to locate each planning entity.

The tag @PlanningId identifies this variable.

5.2.1.2 Planning solution

OptaPlanner needs to define a class containing the parameters to allow the execution and

finding a solution. A planning solution [34] initially contains the problem statement, and

after performing the solving, the planning solution contains a possible solution for that

problem. A possible solution does not have to be optimal or even feasible. The components

for a solution and their characteristics are the following [29]:

• Planning Solution: A solution is mutable and changes during the execution [34].

For scalability reasons, the system manages only one instance of the solution class

that is cloned to recall the one with the best score. The annotation tag associated

with planning solutions is @PlanningSolution.

• Planning Entity Collection Property: Each planning solution can have more

than one Planning Entity Collection Property [38]. As its name outlines, the prop-

erty refers to the collection of planning entities that will be used. The tag associated

to the Planning Entity Collection Properties for each problem is @PlanningEntity-

CollectionProperty. All of the objects of the collection should be marked with the

@PlanningEntity annotation.

• Problem Fact Collection Property: The problem facts used to generate a solution

[40]. They do not change during solving, except if an event of type ProblemFactChange

[42] is generated. As problem facts are part of the problem, they should not receive

the annotation of @PlanningEntity. Constraints use the problem facts to create the

solution. Each problem fact collection must have the annotation @ProblemFactCol-

lectionProperty.

• Value Range Provider: The value range provider defines the domain of the vari-

ables [41]. It defines the relation between the planning variables and the possible

values they can have. Planning variables share the identifier with the value range

provider to make the relation.

• Planning Score: A planing solution must have exactly one planning score property

[39]. The score allows to compare multiple solutions, being the one with the highest

score the best one. The annotated attribute as the planning score holds that solution’s

54

5.2. INTELLIGENT SYSTEM

score, which can be null if the planning solution is not initialized. The solver modifies

this property when the planning solution’s score is calculated newly. The annotation

the planning score should have is @PlanningScore.

5.2.2 Constraints

The constraints [36] are the key component of an OptaPlanner project because they define

the correct or/and incorrect system’s behavior. When an assignation does not comply with

some criterion, the system can perform a penalization. Moreover, if some assignations

improve performance, the system could also give a reward.

The framework defines multiple methods to declare constraints: using DRL or the re-

cently developed Constraints Streams API [43]. Using DRL constraints implementation

requires learning a different language, such as the one shown below.

Listing 5.1: Example of DRL constraint

rule "Don’t assign Ann"

when

Shift(getEmployee().getName() == "Ann")

then

scoreHolder.addSoftConstraintMatch(kcontext, -1);

end

The Constraints Streams API [43] is based on Java 8 Streams and SQL [20], and has

the advantage that users can write constraints in Java. Constraints Streams use functional

programming to act over streams efficiently.

Listing 5.2: Example of Constraint Stream constraint

Constraint constraint = constraintFactory

.from(Shift.class)

.filter(shift -> shift.getEmployee().getName().equals("Ann"))

.penalize("Don’t assign Ann", HardSoftScore.ONE_SOFT);

All the constraints must provide a score if they are met. The score provided by each

constraint have some properties [37]:

• Score signum: Positive or negative. To penalize or reward if some constraints are

met. This allows the system to know the constraints to maximize and minimize.

55

CHAPTER 5. ARCHITECTURE

• Score level: Simple or multilevel. To define multiple levels of constraints in a type of

problem depending on their importance. The program will prioritize the compliance

of the constraints with more importance, and once it has reached the best score on

that level, the program tries to do the same with the next level.

• Score weight: To define the degree of penalization or reward if some constraint is

met. This property allows ordering constraints by importance inside each level.

Depending on the number of levels to use by the score, OptaPlanner provides some

classes that can be used directly. The user can also define a custom score implementing the

interface Score that must implement methods to be Comparable [37].

• Simple Score: Just one score level. Depending on the type of score values to use

in a problem, OptaPlanner supplies various classes: SimpleScore for integer values,

SimpleLongScore for integers with a wide range of values, or SimpleBigDecimalScore

for decimal values.

• Hard Soft Score: Two score levels. Hard score must be a positive number or zero

to consider a solution feasible by the OptaPlanner framework. This type of score also

has classes depending on the type of values that store the score like the previous case:

HardSoftScore, HardSoftLongScore, and HardSoftBigDecimalScore.

• Hard Medium Soft Score: Three score levels. Like the previous case, OptaPlanner

considers a solution feasible while the hard score is positive or zero. The implemen-

tation of this type of score contains only one class: HardMediumSoftScore for integer

score values.

OptaPlanner implements another type of score more complex than the previous ones

exposed, that is Pareto Scoring [37]. This type of score is used for more complex that deals

with multi-objective optimization.

5.2.3 Solver Manager

The Solver Manager [28] is the component that initiates the process of finding a solution.

This element reads the configuration that could be defined by multiple means, in an ad-

ditional XML file [56], using the application’s properties file (application.properties) under

resources folder, or even declaratively calling methods from the Java API of the OptaPlan-

ner framework.

56

5.2. INTELLIGENT SYSTEM

The configuration of the solver contain the following aspects [29]:

• Entities and solution: The planning entity class [32] and the solution class [34].

• Score function and constraints file: The type of score class and the file containing

the problem’s constraints.

• Termination configuration and optimization algorithms: The configuration

related to the execution’s termination and optionally configure the optimization algo-

rithms to use.

Once configured, the Solver Manager [28] has a method called solve that receives an

object of the planning solution class. This method starts the execution of finding a solution

to the problem. When the system finishes executing, solve returns a Solver Job, which

is a kind of bundle. The bundle contains the planning solution solved with the planning

entities fulfilled with the planning variables assigned and a UUID to identify that solution.

5.2.4 Application to the project

The intelligent system is based on an OptaPlanner program structure [16]. To comply with

this structure, the program needs to define the elements explained in the previous section.

Figure 5.2 shows the components of the intelligent system and the processes.

Figure 5.2: Intelligent system components diagram

The system first introduces the object entities ScoutLeader and Unit configured for the

problem to an empty Planning object. Then, the same Planning object acquires the empty

planning entities of the UnitAssignment class. The solver receives the configured Planning

object and starts running to find a solution considering the constraint provider’s constraints.

57

CHAPTER 5. ARCHITECTURE

When the execution finishes, the solver produces another Planning object with the planning

entities fulfilled.

5.2.5 Entities and solution

The intelligent system defines some components in order to perform scheduling operations.

Figure 5.3 shows three important types of them: Planning Entities [32], Problem Facts [29]

and Planning Solution [34].

Figure 5.3: OptaPlanner elements diagram

5.2.5.1 Planning Entities

The Optaplanner components for planning entities explained in Sect. 5.2.1.1 applied to the

project are detailed here.

• Planning Entity: For this project, the planning entity class is UnitAssignment.

• Planning Variables: In this case, the planning variables for each UnitAssignment

are one Unit and one ScoutLeader.

• Defining Properties: For the case of ScoutLeader, its defining properties are:

– Id1

– Gender

– Age

– Experience

1Some constraints use the unique identifier to distinguish each ScoutLeader uniquely. Once a ScoutLeader

gets an Id, it does not change during the solving process, so it is also considered a defining property.

58

5.2. INTELLIGENT SYSTEM

– Camp attendance

– Weekend camps attendance

– Preferred units

– Preferred colleagues

– Banned colleagues

Similarly, defining properties for Unit are:

– Id2

– Section

– Number of scout leaders

– Age range

– Mixed unit

Listing 5.3: Planning entity: UnitAssignment

@PlanningEntity

public class UnitAssignment {

@PlanningId

private UUID id;

@PlanningVariable(valueRangeProviderRefs = "scoutLeadersRange")

private ScoutLeader scoutLeader;

@PlanningVariable(valueRangeProviderRefs = "unitsRange")

private Unit unit;

...

}

5.2.5.2 Planning Solution

The project implements the planning solution components with the following classes and

attributes.

• Planning Solution: For this project, the planning solution class [34] is Planning.

2Same case as ScoutLeader.

59

CHAPTER 5. ARCHITECTURE

• Planning Entity Collection Property [38]: For the project, the system has just

one type of planning entities being all objects of the class UnitAssignment.

• Problem Fact Collection Property: For this case, the system considers two prob-

lem facts collections [40] the ScoutLeader list and the Unit list.

• Value Range Provider [41]: This case contains a relation between the ScoutLeader

attribute in the planning entity (UnitAssignment) with the problem fact collection

which contains all the possible objects of ScoutLeader class the attribute can have.

Similar to this case, the problem fact collection of Unit is associated with the planning

variable related in each UnitAssignment object.

• Planning Score [39]: In this case, as the constrains use three levels of score, the score

is of the type HardMediumSoftScore [30], that include the the three levels required.

Listing 5.4: Planning solution: Planning

@PlanningSolution

public class Planning {

@ProblemFactCollectionProperty

@ValueRangeProvider(id = "scoutLeadersRange")

private List<ScoutLeader> scoutLeaderList;

@ProblemFactCollectionProperty

@ValueRangeProvider(id = "unitsRange")

private static List<Unit> unitList;

@PlanningEntityCollectionProperty

private List<UnidadAssignment> unitAssignmentList;

@PlanningScore

private HardMediumSoftScore score;

...

}

60

5.2. INTELLIGENT SYSTEM

5.2.6 Constraint Provider

This component is the key component of this project, due to the fact that contains the

constraints to provide solutions to the problem. The project uses the Constraints Streams

API based on Java 8 Streams and SQL [20], instead of using DRL [57].

OptaPlanner provides an interface to declare constraints allowing the framework to

identify the class that contains them. The ConstraintProvider interface [31] requires

to implement the method defineConstraints which returns an array of Constraint

objects.

Listing 5.5: Method defineConstraints

@Override

public Constraint[] defineConstraints(ConstraintFactory constraintFactory)

{

unitNumber = constraintFactory.from(Unit.class).groupBy(count());

return new Constraint[] {

// Hard constraints

nonRepeatedScoutLeadersConflict(constraintFactory),

scoutLeaderNumberConflict(constraintFactory),

scoutLeaderAgeConflict(constraintFactory),

bannedScoutLeadersConflict(constraintFactory),

// Medium constraints

mixedUnitConflict(constraintFactory),

weekendCampsAttendanceConflict(constraintFactory),

longTermCampsConflict(constraintFactory),

unitExperienceConflict(constraintFactory),

// Soft constraints

preferredScoutLeadersConflict(constraintFactory),

preferredUnitsReward(constraintFactory),

preferredUnitsConflict(constraintFactory)

};

}

Depending on the punctuation on the level of the score of each constraint provides, the

system contains three types of constraints: Hard, Medium, and Soft [30]. The types contain

specific constraints depending on their importance.

61

CHAPTER 5. ARCHITECTURE

• Hard constraints: They must not be broken in any case because the assignment

would not be valid. Hard constraints are all the ones related to the basic structure of

a Planning. The problem requires to have four hard constraints:

– No repeated scout leaders

– Number of scout leaders per unit

– Age of scout leaders in the unit

– Banned colleagues in the same unit

• Medium constraints: They should not be broken. The compliance fully or par-

tially of them would make better assignments. Some of the solutions where medium

constraints are broken may not be valid, but the relevance compared to the previous

group of constraints is lower. The application considers four medium constraints:

– Mixed units

– Weekend camps attendance in a unit

– Camps attendance in a unit

– Scout leaders with experience in the unit

• Soft constraints: The compliance with all of them would produce the best Planning

possible, but it is extremely complex. This group manages the preferences of the scout

leaders. This case requires to define two soft constraints.

– Preferred colleagues in the same unit

– Preferred units to be in

62

5.2. INTELLIGENT SYSTEM

5.2.6.1 Hard Constraints

This group contains four important constraints related to the structural format of the

Planning. This section details all the hard constraints developed.

No repeated scout leaders: By default, OptaPlanner tries to create the best combinations

without taking care of the repetition of the elements assigned. This constraint declares that

if a scout leader is assigned to one unit, the system can not assign it another time.

Figure 5.4: No repeated scout leaders constraint diagram

To do so, the system compares the unique identifier of each scout leader by pairing two

of them. If this constraint is broken, the global score will add a penalization of one hard

negative point in its value.

Listing 5.6: No repeated scout leaders constraint code

private Constraint nonRepeatedScoutLeadersConflict(ConstraintFactory

constraintFactory) {

return constraintFactory.fromUniquePair(UnitAssignment.class, Joiners.

equal(UnitAssignment::getScoutLeaderId))

.penalize("Conflict with the scout leader’s id",

HardMediumSoftScore.ONE_HARD);

}

63

CHAPTER 5. ARCHITECTURE

Number of scout leaders per unit: When configuring the scout association parameters,

the user defines the number of scout leaders that units should have. If the quantity of scout

leaders assigned to a unit is higher than the predefined number configured, the constraint

would penalize the global score.

Figure 5.5: Number of scout leaders per unit constraint diagram

To perform this operation, the constraint groups all the assignments by unit, counting

the elements per group. If the count’s value is higher than the number of scout leaders

predefined by unit, the global punctuation will penalize with one hard negative point.

Listing 5.7: Number of scout leaders per unit constraint code

private Constraint scoutLeaderNumberConflict(ConstraintFactory

constraintFactory) {

return constraintFactory.from(Unit.class)

.join(UnitAssignment.class, Joiners.equal(Unit::getId,

UnitAssignment::getUnitId))

.groupBy((unit, unitAssignment) -> unit, countBi())

.filter((unit, unitAssignmentCount) -> unit.

getScoutLeadersNumber() < unitAssignmentCount)

.penalize("Conflict with the scout leaders’ number in each unit

", HardMediumSoftScore.ONE_HARD);

}

64

5.2. INTELLIGENT SYSTEM

Age of scout leaders in the unit: Each unit has associated a range of ages the scout

leaders have to be within. This is important because younger scout leaders would find

difficulties being in charge of older learners because they could be only one or two years

difference. Moreover, if the system assigns older scout leaders to lower units, it may assign

younger scout leaders to upper units, which is undesirable behavior.

Figure 5.6: Age of scout leaders in the unit constraint diagram

This constraint starts comparing the scout leader age with the assignment’s unit age

range. If it is not included, the global punctuation will add one hard negative point.

Listing 5.8: Age of scout leaders in the unit constraint code

private Constraint scoutLeaderAgeConflict(ConstraintFactory

constraintFactory) {

return constraintFactory.from(UnitAssignment.class).filter(

(unitAssignment) -> unitAssignment.getScoutLeaderAge() <

unitAssignment.getUnitInitialAge()

|| unitAssignment.getScoutLeaderAge() > unitAssignment.

getUnitFinalAge())

.penalize("Conflict with the age of the scout leader",

HardMediumSoftScore.ONE_HARD);

}

65

CHAPTER 5. ARCHITECTURE

Banned colleagues in the same unit: A scout leader could have lots of reasons for not

sharing the unit with others. An ideal environment may not have this type of issue, but

problems happen between people and the system can not perform some combinations of

scout leaders per unit. The constraint tries to avoid this behavior strongly.

Figure 5.7: Banned colleagues in the same unit constraint diagram

To do so, the implementation of this constraint starts pairing UnitAssignments by the

same unit. If one of the scout leaders in the pair has the other scout leader in its banned

colleagues’ list, the system must penalize the assignment. Similar to other cases, the penal-

ization involves giving one hard negative point to the global punctuation.

Listing 5.9: Banned colleagues in the same unit constraint code

private Constraint bannedScoutLeadersConflict(ConstraintFactory

constraintFactory) {

return constraintFactory.fromUniquePair(UnitAssignment.class, Joiners.

equal(UnitAssignment::getUnitId))

.filter((unitAssignment1, unitAssignment2) -> unitAssignment2.

getScoutLeaderBannedScoutLeaders()

.contains(unitAssignment1.getScoutLeader())

|| unitAssignment1.getScoutLeaderBannedScoutLeaders().

contains(unitAssignment2.getScoutLeader()))

.penalize("Conflict with banned scout leaders",

HardMediumSoftScore.ONE_HARD);

}

5.2.6.2 Medium Constraints

These constraints provide a better result once basic structural ones have been fulfilled. They

are used to refine the result taking into account special aspects.

66

5.2. INTELLIGENT SYSTEM

Mixed units: Some units may need to have scout leaders of both genders, male and female.

This is mostly because of the ages of the kids. They might need to find a kind of father

figure and mother figure in their leaders. Other reasons would be because kids have some

needs, mostly biological, that could be solved by one gender in preference. The organizer

would define which units require to have scout leaders from both genders.

Figure 5.8: Mixed units constraint diagram

To allow having scout leaders from both genders in the units predefined, the constraint

groups UnitAssignments by unit, counting the number of different genders that each unit

has. If the unit needs to have scout leaders from both genders and the number of the

counted different genders per unit is lower than two, the overall score suffers penalization.

This case’s penalization is different from the others explained previously, subtracting one

medium negative point to the global punctuation.

Listing 5.10: Mixed units constraint code

private Constraint mixedUnitConflict(ConstraintFactory constraintFactory) {

return constraintFactory.from(UnitAssignment.class)

.groupBy(UnitAssignment::getUnit, countDistinct(UnitAssignment

::getScoutLeaderGender))

.filter((unit, scoutLeaderGender) -> unit.isMixt() &&

scoutLeadersGender < 2)

.penalize("Conflict with mixed unit", HardMediumSoftScore.

ONE_MEDIUM);

}

Weekend camps attendance in a unit: An important fact to do a valid Planning is

distributing people who can attend weekend camps in all units. This allows each unit

to have scout leaders available for this type of activity. If some unit does not have any

67

CHAPTER 5. ARCHITECTURE

scout leader with weekend camps availability, the planning would not be valid. To consider

satisfied this constraint, at least one of the scout leaders per unit needs to have positive

attendance to weekend camps as a minimum requirement.

Figure 5.9: Weekend camps attendance constraint diagram

The constraint first groups UnitAssignment by units and by the attendance to this type

of activity. Afterwards, the system groups newly the previous result by the attendance to

weekend camps while counting each type’s elements. The result provides the number of

units that have scout leaders with attendance and without it. The last operation performed

is to check if the number of attendance count is equal to the total number of units of the

association. The constraint provider class contains an additional function performing the

count and storing as an attribute of the class to know the number of units. This function

is executed when the constraint provider is configured initially.

Listing 5.11: Weekend camps attendance in a unit constraint code

private Constraint weekendCampsAttendanceConflict(ConstraintFactory

constraintFactory) {

return constraintFactory.from(UnitAssignment.class)

.groupBy(UnitAssignment::getUnit, UnitAssignment::

isScoutLeaderWeekendCampsAttendance)

.groupBy((unit, isScoutLeaderWeekendCampsAttendance) ->

isScoutLeaderWeekendCampsAttendance,countBi())

.join(unitNumber)

.filter((isScoutLeaderWeekendCampsAttendance, count,

unitNumber) -> isScoutLeaderWeekendCampsAttendance

&& count != unitNumber)

.penalize("Conflict with weekend camps attendance in a

unit", HardMediumSoftScore.ONE_MEDIUM);

}

68

5.2. INTELLIGENT SYSTEM

Camps attendance in a unit: Similarly to the previous case, but now evaluating the

attendance to long term camps. Commonly, this case is different from the previous one

because employed people normally can not attend camps, or at least to all of them. As

seen previously, the system should ensure that people who can attend long-term camps

are correctly distributed in all the association units. As a minimum, the system requires

assigning at least one scout leader per unit attending camps.

The code implementation is the same as the previous case, adapting variables and func-

tion calls.

Listing 5.12: Long term camps attendance in a unit constraint code

private Constraint longTermCampsConflict(ConstraintFactory

constraintFactory) {

return constraintFactory.from(UnitAssignment.class)

.groupBy(UnitAssignment::getUnit, UnitAssignment::

isScoutLeaderLongTermCampsAttendance)

.groupBy((unit, isScoutLeaderLongTermCampsAttendance)

-> isScoutLeaderLongTermCampAttendance,countBi())

.join(unitsNumber)

.filter((isScoutLeaderLongTermCampsAttendance, count,

unitsNumber) ->

isScoutLeaderLongTermCampsAttendance && count !=

unitsNumber)

.penalize("Conflict with long term camps attendance in

a unit", HardMediumSoftScore.ONE_MEDIUM);

}

Scout leaders with experience in the unit: Having a unit with all its scout leaders newly

enrolled in the association can cause problems because of the work group’s lack of knowledge.

Every unit should have people able to teach new scout leaders and show them the unit’s

functioning, how to treat children and their parents, and solve any problem that could

happen during the activities. This is similar to the cases of camps seen previously, where

all the units require to have people with some specific characteristic. The system will try

to set at least one scout leader with experience in each unit.

The implementation uses the same code as camps constraints but adapting functions

and variables.

69

CHAPTER 5. ARCHITECTURE

Listing 5.13: Scout leaders with experience in the unit constraint code

private Constraint unitExperienceConflict(ConstraintFactory

constraintFactory) {

return constraintFactory.from(UnitAssignment.class)

.groupBy(UnitAssignment::getUnit, UnitAssignment::

isScoutLeaderExperience)

.groupBy((unit, isScoutLeaderExperience) ->

isScoutLeaderExperience,countBi())

.join(unitsNumber)

.filter((isScoutLeaderExperience, count, unitsNumber)

-> isScoutLeaderExperience && count != unitsNumber)

.penalize("Conflict with experience in a unit",

HardMediumSoftScore.ONE_MEDIUM);

}

5.2.6.3 Soft Constraints

The group of soft constraints contains restrictions related to scout leaders’ preferences. The

system should respect constraints only when the maximum number of hard and medium

constraints has been fulfilled. In this case, most of the constraints give positive punctuation

to the overall score. This behavior gives a bigger reward if the system respect as many

preferences as possible.

Preferred colleagues in the same unit: Scout leaders can select if they want any person

to work with in the same unit. The idea is to insert one or two people in the list and the

system will try to take them into account at the time of elaborating the planning. This

constraint is more related to personal preferences than association requirements, so the

non-compliance of this constraint will not break the feasibility of a possible solution.

Figure 5.10: Preferred colleagues in the same unit constraint diagram

70

5.2. INTELLIGENT SYSTEM

This constraint pairs UnitAssignments by units and checks if the preferred scout leader

list of one scout leader of the pair contains the other scout leader. If this is met, instead of

penalizing, the system rewards the soft overall score positively.

Listing 5.14: Preferred colleagues in the same unit constraint code

private Constraint preferredScoutLeadersConflict(ConstraintFactory

constraintFactory) {

return constraintFactory.from(UnitAssignment.class).join(UnitAssignment

.class, Joiners.equal(UnitAssignment::getUnitId))

.filter((unitAssignment1, unitAssignment2) -> unitAssignment2.

getScoutLeaderPreferredColleagues().contains(

unitAssignment1.getScoutLeader()))

.reward("Reward with scout leader preferred colleagues",

HardMediumSoftScore.ONE_SOFT);

}

Preferred units to be in: Similar to the previous case with preferred colleagues, this case

handles units. Scout leaders can define an ordered list of the units present in the scout

association. The list contains the units preferred in the firsts positions and the units where

the scout leader does not want to be in the last positions. Newly, a scout leader could

prefer to stay in a determinate unit, but if other higher priority constraints are not met,

this preference will not be respected.

Figure 5.11: Preferred units to be in constraints diagram

To perform this operation, the ConstraintProvider contains two constraints implemented.

Both of them look for the unit’s position assigned in the preferred units list for a scout leader.

If the list’s position is the first or second one, the constraint assigns a reward of two or one

soft points respectively to the overall score. However, if the list’s position is the last or the

penultimate one, instead of rewarding, the system penalizes negatively with two soft points.

71

CHAPTER 5. ARCHITECTURE

Listing 5.15: Preferred units to be in by a scout leader constraints reward code

private Constraint preferredUnitsReward(ConstraintFactory constraintFactory

) {

return constraintFactory.from(UnitAssignment.class)

.filter((unitAssignment) -> {

int position = unitAssignment.getPreferredUnitMultiplierPos

();

return position == 1 || position == 2;

})

.reward("Reward with preferred units", HardMediumSoftScore.

ONE_SOFT, UnitAssignment::getPreferredUnitMultiplierPos);

}

Listing 5.16: Preferred units to be in by a scout leader constraints penalization code

private Constraint preferredUnitsConflict(ConstraintFactory

constraintFactory) {

return constraintFactory.from(UnitAssignment.class)

.filter((unitAssignment) -> {

int position = unitAssignment.getPreferredUnitMultiplierNeg

();

return position == 2;

})

.penalize("Conflict with preferred units", HardMediumSoftScore.

ONE_SOFT, UnitAssignment::getPreferredUnitMultiplierNeg);

}

To know the list’s position and the corresponding reward or penalization points, each

object of the class UnitAssignment contains two additional methods. One of them returns

the positive points to assign depending on the position: if the list’s position of the unit is

the first, the function returns two. If the list’s position of the unit is the second one, the

function returns one. In any other case the function returns zero.

The other function has similar but negative behavior. If the list’s position of the unit

is the last or the penultimate one, it returns two. In any other case, the function returns

zero. The constraints definitions uses both functions to know if the constraints have to be

activated and as multipliers on the negatives and positives points.

72

5.2. INTELLIGENT SYSTEM

5.2.7 Solver Manager

The initial way OptaPlanner proposes to create the Solver Manager [28] is by using tags

that automatically inject the component with the configuration described in the applica-

tion.properties file. Moreover, OptaPlanner scans all the application components to find

the tags defining all the OptaPlanner elements.

Listing 5.17: Solver Manager

@Inject

SolverManager<Planning, UUID> solverManager;

The Solver Manager initial configuration that the OptaPlanner framework proposes has

some problems when using other additional frameworks. For instance; by using the Spring

framework in the web application, some incompatibilities make this manner really complex

or even impossible to create the Solver Manager this way.

To solve this problem, the easiest manner is to create the Solver Manager programmat-

ically. This way requires to create two attributes: the Solver Config [44] and the Solver

Manager Config [45]. The first one contains the configuration previously registered in the

application.properties file. This case requires to indicate elements, such as the solution class

and the entities, that were not needed in the previous manner of implementation. The code

used to do so is the following.

Furthermore, the configuration of the Solver Manager using the Java API requires to

declare the type of the definition of constraints. The solver can manage constraints could

stored in an XML file [56] or by using the Constraint Provider interface. Also, the con-

figuration should indicate the maximum time of execution, because if not, OptaPlanner

executes indefinitely.

Listing 5.18: Solver Manager configuration

SolverConfig solverConfig = new SolverConfig()

.withSolutionClass(Planning.class)

.withEntityClasses(UnidadAssignment.class)

.withScoreDirectorFactory(

new ScoreDirectorFactoryConfig()

.withConstraintProviderClass(

PlanningConstraintProvider.class))

.withTerminationConfig(new TerminationConfig()

.withSecondsSpentLimit(60L));

73

CHAPTER 5. ARCHITECTURE

SolverManager<Planning, UUID> solverManager = SolverManager.create(

solverConfig, new SolverManagerConfig());

The code above reflects all the characteristics explained about the Solver Manager con-

figuration explained in the previous paragraphs. It is the code developed for the web

application. Once the Solver Config has all the important parameters configured, the prob-

lem’s specific Solver Manager can be created. The solver manager’s signature includes the

solution class and the type of identifier for problems that will be submitted.

5.3 Web server

5.3.1 Spring Framework

The Spring Framework [46] eases developers to create applications. The framework provides

tools to create easily web applications. The framework has some important components

described in this section to understand the application implementation.

5.3.1.1 Beans

The framework bases the performance on a concept called Beans [55]. These are the objects

that form the backbone of an application, and the Spring IoC Container is responsible for

managing them. This allows the application classes to use objects from other classes without

having to create them explicitly. The Spring IoC Container creates these objects when the

application starts running.

To allow Spring IoC Container to identify the classes to create an object to inject them

to others, the Spring Framework needs components to have annotations. Some of these

annotations, and the most important ones, are:

• Configuration: Each configuration file must be annotated with the @Configuration

annotation.

• Controller: Used to identify the controllers of the application (@Controller).

• Service: The service tag (@Service) indicates components that hold the business

logic.

74

5.3. WEB SERVER

• Repository: Related to persistence components and oriented to catch persistence

specific exceptions. The annotation for this class is @Repository.

When some class needs to have an object such as some repository or service, the object

does not have to be created and tagged with the annotation @Autowired. Moreover, the

class this object pertains must have one of the previous tags exposed related to Spring

application components.

5.3.1.2 MVC Pattern

Using the Spring Framework implies applying the Model-View-Controller pattern [6] di-

rectly. This pattern distributes functions into the three components of the pattern. Each

component represents a layer depending on the functions that perform: persistence, pre-

sentation and logic.

• Models: Include the entities and how to store and recover them from the persistence

system. The persistent system interaction is produced normally by using Data Services

and DAOs.

• Views: Include the presentation layer and all the components of web pages. The

controllers render the views after performing business logic actions.

• Controllers: Cover the business logic of the application. Ask models to store and

recover information from the persistence system, perform actions with the information

and generate a response to the client that commonly is a view.

Models

Models are responsible for data storage and characterization. Java is an object-oriented

language, so every type of data is considered as objects of different classes. Web applications

manage three components relating to data characterization and storage that are:

• Entities: An entity is a class containing the attributes and methods related to a

concept in the application.

• Data Repository Service: Is the class in charge of providing data retrieved from

the storage and adapting the structures to the application needs.

75

CHAPTER 5. ARCHITECTURE

• DAO: The objects responsible for contacting the database are Data Access Objects

[19]. They provide CRUD operations (Create, Read, Update and Delete) to applica-

tions. The Data Repository Service calls DAOs when applications need to store and

recover data in the storing system.

While using the Spring Framework, some of the components must have an annotation of

the ones exposed in Sect. 5.3.1.1. In this case, the Data Repository Service needs to have the

annotation @Service because it holds the methods to store and recover data. Furthermore,

all DAOs must have the annotation @Repository, because they implement the methods

purely to contact the storing system.

Views

The views are in charge of the presentation of information. They provide user interfaces to

allow users to interact with the application. Dynamic web applications can present different

information depending on the context, the user, and so many variables.

Views are JSP files [65] normally in Java. Moreover, to implement dynamic web ap-

plication views, Java provides annotations called JSTL [58]. The Spring Framework also

contains annotation to provide more functionalities.

To avoid developers have to repeat common code present on multiple views, views

are split into components. Some common components on multiple views are the navbar,

menus, application logo, login information, or footer. Apache has developed a module called

Apache Tiles [9] that developers commonly use along with the Spring Framework to ease

the distribution of code related to the views into multiple components.

The Apache Tiles module has a definition file (tiles.xml) with the components of each

view to render. The file contains the name of the basic templates that include tags indicating

the exact location of each of the components which compound the view. When a controller

asks to render some view, Apache Tiles loads the proper components and injects them into

the basic template to generate the view.

Listing 5.19: Example of tilex.xml

<tiles-definitions>

<definition name="template" template="/WEB-INF/views/template.jsp">

<put-attribute name="head" value="/WEB-INF/views/head.jsp" />

<put-attribute name="header" value="/WEB-INF/views/header.jsp" />

<put-attribute name="sidebar" value="/WEB-INF/views/sidebar.jsp" />

<put-attribute name="footer" value="/WEB-INF/views/footer.jsp" />

76

5.3. WEB SERVER

</definition>

<definition name="home" extends="template">

<put-attribute name="content" value="/WEB-INF/views/home/home.jsp" />

</definition>

</tiles-definitions>

The XML code [56] above contains a simple example of the definition file of Apache

Tiles. The file contains a basic template called template that imports all the components

(head, header, sidebar and footer) except the content that will depend on the views to

render. The other component (home) specifies the content of the view related to the home

of the application. When the controller asks to render the home view, Apache Tiles loads the

template component including the common elements and the content of the home definition.

Controllers

The controllers are the most important part of a web application, due to the fact that they

contain the business logic of the application. An application can have multiple controllers

in charge of performing multiple functions. The Spring Framework provide some tools to

develop controllers in a more easier manner. Each controller class must be tagged as @Con-

troller to allow the Spring Framework to identify the controller classes of the application.

Controllers contain multiple methods in charge of handling client requests. Traditionally,

a controller should manage two types of requests: GET for requesting resources from the

server and POST for creating and modifying resources. The methods inside a controller

class should be able to manage both type of requests. The Spring Framework provides the

annotation @RequestMapping to indicate the properties of the request that maps to the

method which holds that request. The main properties of a request are the URI and the

type.

Listing 5.20: Example of controller class method or servlet

@RequestMapping(value = {"/home"}, method = RequestMethod.GET)

public ModelAndView home(HttpServletRequest req) {

ModelAndView mav = new ModelAndView("home");

return mav;

}

The code above represents a simple servlet present in a controller class that loads a

view called home, as the one explained in the previous section. As detailed before, the

@RequestMapping tag specifies that the method holds GET requests with the URI /home.

77

CHAPTER 5. ARCHITECTURE

Five simple lines of code that perform lots of actions internally, this is one of the main

advantages of using the Spring Framework.

5.3.1.3 Spring Security

Spring Security [48] is the Spring framework to manage authentication and access-control

in an application. The framework provides different methods and classes that could be

modified to adapt them to the application. Some of the customizable options are: the way

of acquiring users from the storage, the definition of authorized sites for users, or the type

of password encoder to use. Spring Security requires to implement the following modules:

• Configuration: The configuration of the authentication and authorization. The ap-

plication should have a class implementing the WebSecurityConfigurerAdapter

interface [49]. The class has to contain methods to describe how to retrieve users for

comparison and the protected URIs that require login, and the type of users that can

access them.

• User Details Service: This service is similar to the Data Repository Service be-

cause the User Details Service implements how to retrieve users from the storage.

Like in the configuration, the class that contains the service has to implement the

UserDetailsService interface [52].

• User Details: For Spring Security, the user definition should contain some methods

to perform comparisons and permit access to determined URIs. So the user class

in the applications that use Spring Security should implement the UserDetails

interface [51].

Listing 5.21: UserDetails interface

public interface UserDetails extends Serializable {

Collection<? extends GrantedAuthority> getAuthorities();

String getPassword();

String getUsername();

boolean isAccountNonExpired();

boolean isAccountNonLocked();

boolean isCredentialsNonExpired();

boolean isEnabled();

}

78

5.3. WEB SERVER

One important concept the framework defines are user roles or authorities [50]. Each role

allows users to perform specific actions in the application. When some user tries to access

a URL, the system checks its roles and the ones required to access there. If the user does

not have enough permissions, he will not be able to access the mentioned URL. However,

if the user can access that URL, the request is passed to the corresponding controller to

process the actions to take.

5.3.2 Application to the project

The web server uses the Java Dynamic Web application framework. The structure of

the development follows the Mobile-View-Controller pattern that the use of Spring MVC

facilitates.

5.3.2.1 Models

Models represent data and how to acquire them from the storing system. The applica-

tion performs these operations using three types of components explained in this section:

Entities, Data Repository Service and DAOs.

Entities

As mention before, an entity is a class that represents a concept. The class contains its at-

tributes and methods. The project contains the following seven entities with their relations,

represented using Unified Modeling Language [11].

79

CHAPTER 5. ARCHITECTURE

Figure 5.12: UML diagram

User

The application has users that perform the functions. The user class implements the

UserDetails interface [51] provided by Spring Security [48] to implement authentica-

tion and authorization. The attributes of this class are the following:

• Id: The unique identifier of the user.

• Email: The email address of the user.

• Password: Encrypted password of each user. Spring Security performs encryption.

• Api key: The key to carry out authentication when using the application’s API.

80

5.3. WEB SERVER

• Expired account: Boolean flag that represents if an account has expired. Actually,

the application does not consider cases for account expiration.

• Expired credentials: Another boolean variable that indicates whether an account’s

credentials are valid.

• Locked: The system administrator can decide to lock some user for so many reasons:

misbehavior, security incidents, etc. This boolean flag represents if a user is locked or

not.

• Enabled: Like the previous case, the enabled flag identifies whether a user account

is enabled or disabled. A user account could be disabled by the lack of use of the

application.

• Role: The role a user has. Initially, the application considers two roles: Common

user and administrator. The only difference is that an administrator can perform

actions over user accounts.

Scout Association

The ScoutAssociation class represents the concept of the scout association. The class is

really simple because it contains just four attributes.

• Id: The unique identifier of the scout association.

• Name: The name of the scout association.

• Number: Each scout association in Spain has a number. The number contains three

digits.

• User: The user that created the scout association in the application.

Section

A section is a division of children of a range of ages. Similar to the ScoutAssociation entity,

the class contains just four attributes.

• Id: The unique identifier of the section.

• Name: The proper name of the section.

• Color: Each section in Spain have a color for multiple purposes. Some of the purposes

are: to help people identify the section a kid pertains and as a resource for the scout

association’s activities.

81

CHAPTER 5. ARCHITECTURE

• Scout Association: The section belongs to one scout association.

Planning

A Planning, is the main objective to solve this problem. The attributes that describe a

Planning are the followings.

• Id: The unique identifier of each planning.

• Name: The name of the planning.

• State: The planning state determines whether the planning is in a configuring phase,

in the solving process, or solved.

• User: The user owner of the planning.

• Scout Association: The scout association that contains the units this planning has

to assign.

• Scout leader list: Contains all the scout leaders participating in the planning and

their details and preferences to elaborate the solution. This list is a Problem Fact

Collection Property, of the ones mentioned in Sect. 5.2.5.2.

• Unit list: This collection lists the units and the configured parameters. The unit list

is the other Problem Fact Collection Property.

• Unit Assignment list: List containing the relations between scout leaders and

units. These are the assignations that the system has performed between each scout

leader and unit. This list changes continuously when solving the planning, to evaluate

different assignations until reaching the best planning. This attribute is the Planning

Entity Collection Property, seen in Sect. 5.2.5.2.

• Score: This parameter hosts the HardMediumSoft score presented in Sect. 5.2.5.2.

Scout Leader

Scout leaders are the people to distribute in groups (units). To describe them, this problem

uses the following characteristics.

• Id: The unique identifier of each scout leader.

• Name: The person’s real name or a nickname used to identify him for operations

carried out by users manually in the system.

82

5.3. WEB SERVER

• Email: To communicate with the scout leader, each one has to provide its email

address.

• State: Similar to the Planning case, the attribute that determines whether a scout

leader has completed its details or not.

• Gender: The scout leader gender (male or female).

• Age: The actual numerical age.

• Experience: Attribute defining whether the scout leader has worked previously in

the association or is newly enrolled. This concept could be abstract, but the idea is

to consider whether it is the first time for a scout leader to perform its responsibilities

or has a long trajectory in the association as a relevant fact in group scheduling.

• Camp attendance: Determines whether the scout leader can attend the several

camps performed by the scout association during the scholar year.

• Weekend camps attendance: Like the previous attribute, this variable specifies

whether a scout leader can attend specifically to weekend camps.

• Preferred units: An ordered list containing the association units shorted, where

starting positions are for the favorite units where the scout leader wants to be and

final ones for disliked units, the ones where the scout leader may feel unpleasant.

• Preferred colleagues: Set that contains the preferred colleagues. The ones the

scout leader wants to work with, but not excluding the rest of them.

• Banned colleagues: Similar to preferred colleagues, but in this case, each of the

scout leaders contained here can not stay in the same work group with this one.

The reasons why a scout leader can include others in this set could be various ones:

personal problems, have been engaged before, or simply personality incompatibilities.

Unit

The system generates assignations between scout leaders and units. To perform the assig-

nations, each unit has its own properties that the system should consider.

• Id: The unique identifier of each unit.

• Name: The name of the unit.

• Section: The unit’s section.

83

CHAPTER 5. ARCHITECTURE

• Number of scout leaders: Requirement of the total number of scout leaders to

assign to the unit. The total number of scout leaders for all units must be equal to

the total number of available scout leaders.

• Age range: Represented by two attributes: minAge and maxAge. This unit should

contain scout leaders whose age may be within the age range defined. This parameter

has significant relevance, especially for units containing older children. Usually, young

scout leaders look after younger kids, and older ones take care of older children. This

behavior is because younger scout leaders usually have one or two years more than

the oldest children in an association, so they can not be their responsibles.

• Mixed: Because of the children’s ages, some units require to have people of both

genders to comply with their needs. The attribute is a boolean variable indicating

whether to have scout leaders from both genders or is not relevant. Setting this at-

tribute to false does not necessarily mean that a unit will have scout leaders exclusively

from one gender in the unit.

UnitAssignment

This class is the Planning Entity described in Sect. 5.2.5.1. When the system finishes the

finding of a solution, each UnitAssignment match a scout leader with a unit in a specific

planning. So UnitAssignment class contains the solution relations in a planning. The details

of the class are the following:

• Id: The unique identifier of each UnitAssignment.

• Scout Leader: The scout leader of the assignment.

• Unit: The unit assigned to the scout leader.

This class contains two additional methods that the intelligent system uses for the

preferred units constraint detailed in Sect. 5.2.6.3. The methods evaluate the assignation

and return an integer number that the constraint uses.

Data Repository Service

The service connecting to repositories containing the data related to the application. The

Data Repository Service includes all the methods for the creation, recovery, edition and dele-

tion of data from the storage system. This class provides centralization of all the possible

sources of data, so that they can be called without the need of importing all the sources each

84

5.3. WEB SERVER

time. Normally, this component has two elements: an interface (DataRepositoryService)

and its implementation (DataRepositoryServiceImpl).

Controllers have an instance of the interface when the application is initialized and use

it when they require to perform one of the operations mentioned before. Due to the design

of the storage system used, the data repository service needs to parse retrieved data into

objects for the application, the rest of the methods (create, update and delete) are called

directly from the different DAOs. If the storage system changes, or multiple ones are used

depending on the type of data, the implementation of the methods will change but always

complying with the interface.

DAOs

They are purely the connections with the storing system. Their main use is to abstract

the application from the way the information is stored. For the project, the data storage

system is a MySQL server executed in the same machine as the application. The language to

interact with the database is SQL, so Data Access Objects [19] contain methods translating

Java objects attributes into SQL statements to perform operations.

Like the Data Repository Service, each DAO contains two components: the interface

and its implementation. This also allows changing the storing system without modifying

all the application components that use DAOs. For instance, if developers decide to move

from MySQL to MongoDB, the only action in the code will be to adapt DAOs to the new

storing system, but the rest of the application would remain unchanged.

The application contains a DAO class associated with each table in the database, mostly

corresponding to each entity. The project contains has the following ten DAOs:

• DaoScoutAssociation

• DaoScoutLeader

• DaoPreferredScoutLeaders

• DaoBannedScoutLeaders

• DaoPlanning

• DaoSection

• DaoUnit

• DaoUnitAssignment

85

CHAPTER 5. ARCHITECTURE

• DaoPreferredUnits

• DaoUser

In comparison with the seven entities presented, the application contains three more

DAOs. This is because of the need to store the ScoutLeader attributes preferredColleagues,

bannedColleagues and preferredUnits. These attributes are collections of existing

objects that need to be stored creating N:M relations. When the system asks to perform

a specific ScoutLeader operation, the four DAOs are involved: DaoScoutLeader, DaoPre-

ferredScoutLeaders, DaoBannedScoutLeaders and DaoPreferredUnits.

5.3.2.2 Controllers

The application contains four controllers in charge of the business logic. By having multiple

controllers, the system distributes responsibilities and functions into all of them.

• Main Controller: Performs operations related to users sessions, user registration,

rendering of the index page and manage of errors.

• Scout Association Controller: Covers operations related with the shaping of the

structure of a scout association.

• Planning Controller: Allows the creation and modification of a Planning, adding

and modifying scout leaders involved on a determined Planning, solving a Planning

and visualizing of the results. Moreover, the controller includes servlets to export a

Planning in different formats.

• API Controller: Responsible for the API, this controller contains the servlets for

performing operations directly using the API. The details of the controller are in Sect.

5.3.4.

Main Controller

The Main Controller contains servlets to perform multiple general operations necessary for

the application. The controller implements the following functions:

• Log in: A servlet maps the GET operation to supply the login form for non-

authenticated users.

• Sign up: Two servlets perform these operations:

86

5.3. WEB SERVER

– One provides the form view when the application receives a GET request.

– The other receives POST requests and checks if the data of the user is valid. If

the information is correct, the system stores it in the database creating a new

user.

• Error: A servlet renders the error view when the system receives a request for the

error page. If the application turns into an error, the web.xml file redirects to this

servlet by using a GET request.

Listing 5.22: Error redirecting in web.xml

...

<error-page>

<location>/error</location>

</error-page>

...

Scout Association Controller

The controller contains all the operations for shaping a scout association. A scout asso-

ciation has sections, and each section includes units. This controller performs operations

related to these entities.

• Scout Association operations: The controller implements CRUD operations by

using multiple servlets:

– Create Scout Association: Is the only function which has two servlets associ-

ated: GET servlet rendering the create form and the servlet for POST requests

that validates the data and stores it in the database.

– Read Scout Association: This servlet is essential because it needs to load all

the information of a scout association. After checking that the user is the owner

of the scout association of the request, the servlet loads the scout association’s

sections and units. Finally, the servlet passes data to the view.

– Update and Delete Scout Association: Each function has its own servlet

for responding to POST operations. Firstly, the servlets check the validity of

the request’s information and the scout association’s owner. The owner should

be the session’s user and, after the validations, the servlet performs the update

or deletion.

87

CHAPTER 5. ARCHITECTURE

• Section operations: Like the previous case, the controller implements CRUD oper-

ations for this entity. As the scout association’s view contains sections, the implemen-

tation does not need to create an additional servlet to show the section’s information.

The controller contains several servlets for the mapping of POST operations because

the scout association’s view contains modals with forms to perform operations over

these entities. As other cases, before carrying out actions over data, servlets perform

validity and owners of the information checks.

• Unit operations: Like section’s operations, the controller holds servlets to perform

operations over units. Section’s and unit’s operations have only two differences: one is

the volume of information required to provide for a unit, which is relatively broader.

The other difference is the validity checks. In this case, units belong to sections,

sections to a scout association, and a scout association to a user. For this case, the

servlet needs to check all parents until arriving at the scout association’s owner that

should be the session’s user. If one of these checks fails or checks on the forms’

information, the method will not continue executing, and the servlet will redirect to

the error page.

Planning Controller

After shaping the scout association, is the time for configuring the Planning parameters.

To do so, the Planning controller contains the following functions.

• Planning CRUD methods: As other entities, the controller has methods to create,

read, update and delete this entity. As happens with the scout association entity, two

servlets respond to GET and POST requests respectively for the create operation.

One of them for providing the form and the other for creating the entity and storing

it in the database if it is valid. For the rest of the operations, the controller contains

one servlet per each one. The read method considers the state of the Planning, if the

planning is in an initial configuration status or the user has solved it yet. In the last

case, the servlet loads the view for the solved planning and its list of Unitassignments.

• Scout leader’s operations: Each planning has scout leaders, so the controller in-

cludes the scout leader’s CRUD methods. The life cycle of a scout leader has some

critical considerations.

– Create scout leader: The organizer of the association creates ScoutLeader

entities, one per scout leader who participates in the planning. The organizer

completes the name and email for each scout leader. This method will create a

ScoutLeader object with this data and store it in the database.

88

5.3. WEB SERVER

– Read scout leader: As the view of the planning contains all the participant

scout leaders, the controller does not need to implement this function.

– Update scout leader: The controller includes three types of update methods:

∗ Modify data: the application considers a method to modify the scout leader

name and email that the organizer executes if he needs to update these data.

∗ Fill details: Initially, each scout leader completes its details, but the or-

ganizer can fulfill or edit them too. Some of these details are: gender, age,

experience, camp attendance, Etc. Moreover, another servlet provides the

form to allow the scout leaders to fulfill their details. The controller im-

plements an additional servlet to modify this data after fulfilling it. If the

organizer fills the scout leader’s details, he can perform the operation directly

by a modal embedded in the planning view.

– Delete scout leader: The controller implemens a servlet to delete a scout

leader from a specific planning.

• Email sending: The application contains a servlet in charge of sending emails when

the organizer requests, to allow scout leaders to introduce its details. The server has

a template that contains the gaps specifically for the scout leader’s information and

the planning data. The servlet fulfills this information and sends the emails to the

scout leaders’ addresses. The application uses the module StringTemplate [24] for the

generation of dynamic templates and its fulfillment.

Listing 5.23: Email sending to each scout leader

List<Monitor> monitores = dataRepositoryService.

readMonitoresFromPlanningSimple(parrilla);

ServletContext context = req.getServletContext();

String pathToEmailTemplate = context.getRealPath("/WEB-INF/views/jsp/

emailTemplate.stg");

STGroup mailTemplateGroup = new STGroupFile(pathToEmailTemplate, ’$’, ’$’);

for(Monitor monitor: monitores) {

ST mailTemplate = mailTemplateGroup.getInstanceOf("monitorFillTemplate

");

mailTemplate.add("parrilla_name", parrilla.getNombre());

mailTemplate.add("monitor_name", monitor.getNombre());

String monitor_url = "http://localhost:8080/TFM/monitor/" + monitor.

getId() + "/fill";

mailTemplate.add("monitor_url", monitor_url);

89

CHAPTER 5. ARCHITECTURE

String mailTemplateRendered = mailTemplate.render();

String monitor_email = monitor.getEmail();

String mailSubject = "plan.x: " + parrilla.getNombre() + " completar

datos de monitor";

GenericUtils.sendMail(monitor_email, mailSubject, mailTemplateRendered)

;

}

• Planning solving: When all the scout leaders have introduced their details, the

organizer can solve the planning. The controller contains a servlet that, firstly, imports

the unit list of this scout association from the database and the scout leaders’ list with

their details. Secondly, the servlet adds these lists to the planning object and finally

uses the intelligent system’s solver to find a solution. When the solver finishes this

operation, the servlet stores the assignments in the database, updates the planning

status to SOLVED and finally, redirects the user to visualize the results.

• Export planning: Finally, with the planning solved, the organizer can export the

results in different formats: HTML, PDF, and JSON. Each format has associated a

different GET servlet that generates the file with the planning information. When

the organizer requests to export the results in HTML, the file that obtains contains a

table with the units and scout leaders assigned. The generation of this file is similar to

the behavior for the creation of the email template explained before using also, in this

case, the StringTemplate module [24]. The application first creates the HTML code

that then converts to a PDF file to generate the PDF file, for this transformation the

applicaiton uses the html2pdf converter module [18]. For the JSON format, the servlet

generates a structured JSON [17] code with the UnitAssignment and the information

about the units and scout leaders of each assignment.

90

5.3. WEB SERVER

5.3.2.3 Views

The application does not have any huge amount of views, because the information managed

does not require to elaborate them. The views are split into components by using Apache

Tiles [9], so that components can be reused to produce similar views.

The application contains two basic templates used to generate the rest of views. One

of the templates covers the log in and sign up pages and a more complex one the views

supplied when the user is authenticated.

Login page

Figure 5.13: Log in view

The login page contains a basic form to introduce the username and password of the

user. For the application, the username is the user’s email address that he submit when

registering in the application. The page is the first one shown if the session does not contain

a logged-in user. To use the application, users must log in using the login form. If a user

tries to access some URI that needs to log in, the application redirects him to this page.

Figure 5.13 shows in the lower-right corner the icon of reCAPTCHA [14], a Google

service that protects from spam and abuse a web site. The service calculates a score that

determines whether a person or a machine uses the application. This protects websites from

undesirable bots that can be malicious. Also, the service avoids brute force attacks in the

login form, preventing the form’s sending.

91

CHAPTER 5. ARCHITECTURE

Sign up page:

Figure 5.14: Sign up view

The signup page is similar to the login page. This page contains a form where the user

specifies his email address and the password that he wants to use for the application. The

user should indicate this information twice in the corresponding fields to check that the

information is correct. Furthermore, when registering, the user has to accept the Terms

and Conditions of the application to submit the form.

To prevent bots from creating a vast amount of users, this form also includes the re-

CAPTCHA [14] service. The login form and the signup form are the only ones that include

this tool to ensure that physical people use the application.

92

5.3. WEB SERVER

Create Scout Association page:

Figure 5.15: Create Scout Association view

The Create Scout Association view contains a form where the user configures the first

details of the scout association. In particular, these information is the name and number

of the scout association.

The Create Planing page is precisely the same but with other fields in the form, the

ones required to complete the planning’s necessary details.

93

CHAPTER 5. ARCHITECTURE

Scout Association page:

Figure 5.16: Scout Association view

This view contains all the details of a scout association. Here the user can create, edit,

and delete all the sections, units, and even the scout association. Figure 5.16 shows a scout

association that contains all its details fulfilled. The first table contains the list of units and

all their details. The second one lists all the sections of a scout association. When a user

configures a section, he has to define the color of the section. The colors highlight units of

the same sections so that users can quickly identify all the section units.

To perform operations over each component of a scout association, the user can click on

the view’s corresponding buttons. Each button displays a modal with a form like the one

shown in Figure 5.17.

94

5.3. WEB SERVER

Edit Unit in Scout Association page:

Figure 5.17: Edit Unit view

Depending on the function to perform, the form of the modal contains some fields or

others. The edit fields contain the item’s actual data to modify, such as in Figure 5.17,

which shows the edit form for a unit. The creation form of an item is the same as the edit

form but with all the fields blank to allow the user to introduce the data that each item

requires. Moreover, the delete modal does not contain a form like the previous ones exposed

but asks the user to confirm the action.

The application uses modals to carry out the actions to create, edit, and delete all

the items that the system manages. The only exception is with the creation of a scout

association and with the creation of a planning.

95

CHAPTER 5. ARCHITECTURE

Planning page:

Figure 5.18: Planning view

The planning page has two views, one for solved plannings and the other for the ones

in the configuration phase. Figure 5.18 shows the view of a non solved planning. This

view includes the planning details that are the scout association and the scout leaders that

participate in the planning. Like in the Scout Association page, the page contains buttons

to display the modals to perform actions over the planning and scout leaders. The view

displays two additional buttons: one to send emails to the scout leaders to ask them to

complete their details and the other to ask the system to generate the planning.

Another important fact is that when a scout leader submits its details, the application

updates the state to completed. The view presents each scout leader’s state so that the

organizer can see who has fulfilled the form or not. This view allows users to edit each

scout leader’s details, the name and the email address, and the details that the scout leader

submitted.

96

5.3. WEB SERVER

Scout leader details form:

Figure 5.19: Scout leader details form view

This view represents the form that scout leaders receive by email when the organizer

requests them to complete their details. As Figure 5.19 shows, the form contains all the

specific fields required to build a planning. The form fields are mainly checkboxes, radio

buttons, and option selection fields, not requiring the scout leaders to write extensive texts.

The only exception is with the age field, which requires the scout leader to introduce a

number. This is important because it speeds up the fulfillment of the form, recovering all

the required data. When the scout leader has introduced all the details, he presses the

submit button contained at the end of the form.

97

CHAPTER 5. ARCHITECTURE

Solved planning page:

Figure 5.20: Solved planning view

When the intelligent system has finished solving the planning, the application presents

the results. The organizer presses in the planning’s name to access them, like when config-

uring the planning. The application checks the state of the planning, and if the planning is

solved, loads the solved planning view shown in Figure 5.20.

Figure 5.20 contains a table with all the scout leaders and the unit assigned. Further-

more, the view includes some of the scout leader’s details to allow the organizer to check

visually if units comply with all the requirements. Like in the Scout Association page,

the table contains each unit’s sections’ colors to ease the organizer with the visualization.

Furthermore, in the table’s upper right corner, the view shows the button for exporting the

planning results into the formats explained.

98

5.3. WEB SERVER

Error page:

Figure 5.21: Error view

The application redirects users to the error page when they try to perform actions that

the application does not contemplate. For instance, when a user tries to access a URI

different from the ones configured.

99

CHAPTER 5. ARCHITECTURE

5.3.3 Authentication and authorization

The application uses the Spring Security framework [48] to easily manage authentication

and authorization without having to develop any additional system. The authentication

requires to implement three classes containing some special methods.

Configuration

Spring Security framework [48] requires creating a new configuration file (WebSecurityConfig)

related exclusively to this module’s configuration. This class has to extend the abstract class

WebSecurityConfigurerAdapter [49] to override the methods of Spring Security for

authentication and authorization. Some aspects that should be configured here are the

password encoder used, the URIs that require authentication, and which user roles can

access.

For the project, the password encoder chosen is BCryptPasswordEncoder [53] which

has some advantages over other encoders, such as the generation of random salts for every

password. The output of the encoder is a String with the password hash and the salt.

However, the encoder provides different hashes even if the password is the same. An example

of this algorithm’s output is shown here. For this case, the password encoded is 1234.

Listing 5.24: Example of password encoded using BCrypt encoder

$2a$10$4NmOhfTSJ66LRnaXJAJNt.iRK9LQs/XWchk8blq3kG258fLQZzKB.

Another essential subject to configure here is the set of URIs that require login to access

and the redirection to the login form instead. Nevertheless, the framework requires to define

the opposite, the URIs that do not require authentication. Moreover, the module enables

to describe the login form to use if the application contains a customized one. This project

contains the login form is under the /login URI. Finally, the configuration should define the

site to redirect after the user logs out, in this case to the login form.

Listing 5.25: Security configuration

@Override

protected void configure(HttpSecurity http) throws Exception {

http.authorizeRequests()

.antMatchers("/", "/signup", "/assets/**",

"/monitor/*/fill", "/monitor/*/fill/edit")

.permitAll()

100

5.3. WEB SERVER

.anyRequest()

.authenticated()

.and()

.formLogin()

.loginPage("/login")

.permitAll().defaultSuccessUrl("/index",false)

.and()

.logout()

.logoutSuccessUrl("/login")

.permitAll();

}

Furthermore, Spring Security should know how to authenticate users. The module pro-

vides multiple options to store users, such as keeping them in memory or using a database.

For this project, the application stores user information in the MySQL database, so Spring

Security’s configuration to retrieve users is the following.

Listing 5.26: Code used to specify how to retrieve users from the storage

@Autowired

public void configureGlobal(AuthenticationManagerBuilder auth) throws

Exception {

auth.userDetailsService(userDetailsService).passwordEncoder(

passwordEncoder());

}

The code above specifies to Spring Security where the User Details Service is defined

and the password encoder to use, in this case, the encoder described before.

User Details Service

The UserDetailsService [52] is an interface whose implementation should include the method

loadUserByUsername(final String username). The project stores users in the

database, so the application should retrieve users from there. The method searches for a

user by the given user name and returns the user details if it is found.

Listing 5.27: Code used to look for users in the storage

@Transactional(readOnly=true)

@Override

public UserDetails loadUserByUsername(final String username)

throws UsernameNotFoundException {

101

CHAPTER 5. ARCHITECTURE

User user = dataRepositoryService.findByUserName(username);

if (user != null) {

return user;

}

throw new UsernameNotFoundException("User ’" + username + "’ not found");

}

Spring Security uses the user details object to perform the comparisons by the username

and password provided in the login form. If the result of the comparisons is valid, the

username is stored in the session.

User Details

Finally, the entity user has to implement the interface UserDetails [51] which obliges to

develop methods relating to user description. Spring Security calls these methods to know

the user’s username, password, roles, and state.

The implementation of these methods in the project is straightforward. They only return

the values of the user object’s attributes, so they could be considered getters. However,

the User class should contain a special method: getAuthorities that should return a

collection with the user’s roles.

Listing 5.28: Code used to return the list of roles of a user

@Override

public List<GrantedAuthority> getAuthorities() {

List<GrantedAuthority> authorities = new ArrayList<GrantedAuthority>();

authorities.add(new SimpleGrantedAuthority(role));

return authorities;

}

The project considers just two roles: USER and ADMIN. The only difference is that

an ADMIN user can manage other users, but an administrator is also a user. So the

implementation considers that users will have one role.

5.3.4 API

The application needs to define a way to allow connections from other systems to perform

tasks. Other applications from the scout associations may use this system to generate

plannings and directly introduce the data to their systems automatically. The connector

for this side of the application is the API defined.

102

5.3. WEB SERVER

Basically, the API allows users to perform the same functions explained in previous

sections but changing the interface. In this case, the application receives data using a

structured language (JSON [8]) instead of providing them using the forms shown in Sect.

5.3.2.3. The following code creates a scout association with three sections and one unit per

section.

Listing 5.29: JSON code to create a scout association using the API

{

"grupo":

{

"numero": 334,

"nombre": "Proel",

"secciones": [

{

"color": 2,

"nombre": "Tropa",

"unidades": [

{

"nombre": "Mascaron",

"edad_inicial": 20,

"edad_final": 25,

"numero_monitores": 3,

"mixta": true

}]

},

{

"color": 0,

"nombre": "Colonia",

"unidades": [

{

"nombre": "Destellos",

"edad_inicial": 18,

"edad_final": 23,

"numero_monitores": 3,

"mixta": true

}]

}]

}

}

To allow a user to perform operations using the API, he has assigned an API key that

he has to provide within each request. Moreover, the request should contain the code with

103

CHAPTER 5. ARCHITECTURE

the operation data to perform in a variable called data. Furthermore, the URI present in

the request determines the operation to carry on. For example, if using curl to perform

operations, the request to create the scout association shown previously should have the

following form.

Listing 5.30: Example of curl command to use the API

curl -d "apikey=134aebf4-1e6e-4439-aa25-3c5397a9b180" -d ’data=JSON_CODE’ -

X POST http://localhost:8080/TFM/api/grupo

Where JSON CODE contains the JSON code with the scout association’s data in this

case.

Before doing any actions, the application checks if the request contains a valid apikey.

All the system associates all the operations requested to the API with the user owner of

the apikey provided. The responsible for performing the functions of the API is the Api-

Controller, that implements the necessary servlets. The functions that a user can perform

by using the API are the followings:

• Create and update scout association: Unlike when configuring the scout asso-

ciation with the user interface, this time, the POST request has to contain all the

details of the scout association, the sections, and the units. The application checks

whether each element of the JSON code of the request (scout association, section, or

unit) contains the id attribute. If the elements contain the id attribute with a valid

identification number, the system updates the elements and creates new ones if the

attribute is not present. Before carrying on any action, the servlet checks the validity

of the data received. As a result, if the operations are correct, the servlet returns the

id of the scout association created or updated.

• Create and update planning: Similar to the previous case, users can create and

update plannings by providing the required data. In this case, the name of the plan-

ning, id of the scout association and the scout leaders’ data: name and email. Like in

the previous case, if the elements contain a valid id attribute, instead of creating a new

one, the application updates the element’s information. Newly, before performing any

action, the servlet checks the validity of the data of the POST request. The servlet

returns the id of the planning created or updated if all the operations are correct.

• Send emails to scout leaders: The application can receive a GET request to send

the emails to scout leaders to ask them to complete their details. This request does

104

5.3. WEB SERVER

not need to include any additional data under the data variable because the URI

contains the id of the planning with the scout leader data implicitly.

• Solve planning: When the scout leaders have completed their details, the user can

ask to solve the planning. The GET request associated with this case is similar to

the one of sending emails and does not require to submit any additional data under

the data variable. When the application finishes generating the planning, the servlet

sends OK to the client that requested the operation.

• Read planning: Finally, clients can request the data of a planning by sending a GET

request to the API that will return the data using JSON code. The code returned

contains the UnitAssignment of a planning with the unit’s information and the scout

leader. This request does not require the data variable.

As detailed previously, the create/update requests send to the API are POST requests.

The system needs to have disabled the CSRF control to map these requests with the corre-

sponding servlet, because this type of control only applies when using cookies. While the

web interface uses sessions and cookies, the API does not require them to work, so this type

of control is unnecessary. To disable the CSRF control for the API request, the configure

method seen on Sect. 5.3.3 has to include the following code.

Listing 5.31: Code to disable CSRF control over API requests

@Override

protected void configure(HttpSecurity http) throws Exception {

...

http.csrf().ignoringAntMatchers("/api/**");

}

105

CHAPTER 5. ARCHITECTURE

5.4 Persistence

5.4.1 MySQL

A MySQL system [54] uses the Client-Server architecture like many other applications. The

server stores data and the clients access the data connecting to the server. A server contains

one or more databases and multiple users that can access databases. To perform actions

on a server’s databases, clients need to have valid credentials of a user with permissions in

the database they would like to act.

Commonly an application contains one database with multiple tables and one user with

permissions to operate in the database. In a simple development, the server that hosts

the application corresponds to a client that connects to the MySQL server. For broader

applications, the number of clients can be higher as the number of application servers grows.

As mentioned before, each database contains multiple tables with columns and rows.

Columns indicate the data structure that the table stores and rows contain the data to

save. While MySQL is a relational database, each row must have the values subject to the

columns that the table defines. This means that rows cannot have more or fewer fields than

the ones of the columns. Additionally, each row must have a unique key that identifies its

data properly. Besides, tables can have relations with others through foreign keys.

5.4.2 Application to the project

The application needs to implement a persistence system to store the managed data. When

the application stops, the data that the application was managing should be able in the

next execution. The project uses a MySQL server that stores the structured information of

the application.

The MySQL server runs on the same machine as the server that hosts the application.

The application employs Java as the primary language, and Java uses object-oriented pro-

gramming, so the MySQL server should store objects. To do so, each of the entities seen

on Sect. 5.3.2.1 contains a table that saves their attributes’ values. An entity corresponds

to a table, and an attribute of the entity corresponds to a column in the table. Finally, an

object of an entity matches a row in the table.

A class’s attributes may require particular storage actions if they are not simple types

of data. For instance, if an attribute is an object from another entity, the database tables

should contain a relation between them. The relations can be 1:1 1:N or N:M, depending

106

5.4. PERSISTENCE

on the number of objects a specific attribute of an entity can have. Figure 5.22 contains

the database scheme with each table and the relations for the application of the project.

Figure 5.22: Database scheme diagram

The figure contains ten tables in comparison with the seven entities that the applica-

tion manages. This is because the ScoutLeader entity contains three collections of objects:

preferredUnits, preferredColleagues and bannedColleagues. Each of the col-

107

CHAPTER 5. ARCHITECTURE

lections has an associated table with the same name that stores the id of the ScoutLeader

object and each of the ids of the entities of each lists. So when the application saves a

ScoutLeader object, the persistence system updates four tables.

As the figure shows, each of the entities contains a table with the values of their at-

tributes. One important attribute is the id, where the application uses unique identifiers of

type UUID generated randomly. The database does not create this ids like when they are

integers auto-incremented, but generates an exception if a client asks to store an item with

the same id of another in the same table. The application is responsible for generating the

ids and catching the exceptions of the database system.

Most of the relations Figure 5.22 contains are of the type belongs to. All of them are

1:N3 relations.

• A ScoutAssociation belongs to a User and a User can have N ScoutAssociation.

• A Section belongs to a ScoutAssociation and a ScoutAssociation can have N Section.

• A Unit belongs to a Section and a Section can have N Unit.

• A UnitAssignment belongs to a Unit and a Unit can have N UnitAssignment.

• A Planning belongs to a User and a User can have N Planning.

• A Planning belongs to a ScoutAssociation and a ScoutAssociation can have N Plan-

ning.

• A UnitAssignment belongs to a Planning and a Planning can have N UnitAssignment.

• A ScoutLeader belongs to a Planning and a Planning can have N ScoutLeader.

• A UnitAssignment belongs to a ScoutLeader and a ScoutLeader can have N UnitAs-

signment.

Also, the collections mentioned previously apply relations more complex than the pre-

vious ones. The tables with the same names as the collections implement M:N4. relations,

that are the following:

• A ScoutLeader can have N ScoutLeader and a ScoutLeader can have M ScoutLeader,

both by the preferredColleagues relation.

3Here N represents multiplicity, not an specific value
4Here M represents multiplicity, not an specific value

108

5.4. PERSISTENCE

• A ScoutLeader can have N ScoutLeader and a ScoutLeader can have M ScoutLeader,

both by the bannedColleagues relation.

• A ScoutLeader can have N Units and a Unit can have M ScoutLeader, both by the

preferredUnits relation.

109

CHAPTER 5. ARCHITECTURE

110

CHAPTER6
Case study

This chapter presents a case study that contains a problem introduced to the application

and executed to find a possible solution. The first section provides the statement, then the

application receives the configuration of the problem to solve, and finally, the last section

covers the analysis of the results that the system supplies.

111

CHAPTER 6. CASE STUDY

6.1 Problem

Similar to the example seen in Chapter 3, this chapter defines a problem, but in this case,

the application solves it directly. The difficulties to solve the problem manually considering

all the variables and constraints would require lots of hours or even days, but the application

gives a solution in a minute. Check a solution is really easy, just by examining that the

solution provided complies with all the requirements.

For the example, the scout association has the five sections of reference, seen in Chapter

3: Beavers (B), Cubs (C), Scouts (S), Explorers (E), and Rovers (R). Each section has just

one unit, and the scout association has ninety kids distributed in the units shown in Table

6.1. The units have the following requirements for the scout leaders, based on the children’s

ages and characteristics.

Unit
Children’s
age range

Number of
kids Team size

Scout leaders’
age range Mixed team

Beavers 6-7 y.o. 15 3 18-23 y.o. True

Cubs 8-10 y.o. 25 4 18-23 y.o. True

Scouts 11-13 y.o. 20 3 20-24 y.o. True

Explorers 14-16 y.o. 17 3 22-25 y.o. True

Rovers 17-20 y.o. 13 2 23-27 y.o. False

Table 6.1: Unit characteristics in the case study

As shown in Table 6.1, the scout leaders team size, and the number of kids are positively

correlated. Furthermore, the total number of scout leaders is equal to the sum of all the

scout leaders’ teams’ sizes. Moreover, all the units require scout leaders from both genders

except the Rovers section because the children here are between seventeen and twenty years

old. The children’s maturity at these ages does not require both a man and a woman as a

referent figure.

Table 6.2 shows the fifteen members’ complete set of characteristics that compose the

scout leaders team. The table contains some abbreviations to include all the details in

the same space. Like in Chapter 3, the availability is shown in terms of: WC meaning

weekend camps attendance and C meaning camps attendance. Also, the scout leaders have

a reference Ai where A is a letter, and i is a number that both the banned and preferred

colleagues columns use. Finally, the preferred units column shows each unit’s initial letter

112

6.1. PROBLEM

ordered from left to right, being the one on the left the more preferred and the one right

the least preferred one.

Id Name Gender Age Exp. Avl.
Banned
people

Preferred
people

Preferred
units

M1 Miguel Male 18 No WC, C - J1,J2 B,C,S,E,R

M2 Mario Male 19 Yes WC, C - N C,B,S,E,R

S1 Sof́ıa Female 18 No - - M1 C,B,S,E,R

M3 Maŕıa Female 22 Yes WC, C J1 J3 B,C,S,E,R

J1 Juan Male 21 No C M3 A1,J2 C,B,S,E,R

M4 Manolo Male 27 Yes WC - - R,E,S,C,B

L Luis Male 24 Yes WC, C - - E,R,S,C,B

J2 Jorge Male 19 No WC, C A1 M1 B,C,S,E,R

A1 Aitana Female 20 No WC - - C,B,S,E,R

S2 Sara Female 23 Yes WC, C - N S,B,C,E,R

M5 Marta Female 25 Yes WC S2 - E,R,S,C,B

N Natalia Female 22 Yes - - - S,C,B,E,R

J3 Joan Male 23 Yes WC, C - L S,E,C,B,R

A2 Ana Female 26 Yes C M5 M4 R,E,S,C,B

J4 Jaime Male 24 Yes WC, C - S2,M5 E,R,S,C,B

Table 6.2: Scout leaders characteristics for the case study

The number of scout leaders and their characteristics make really complicated to find

a solution to the problem. The number of dimensions to consider is vast, but the applica-

tion developed will produce the optimal solution. This solution will try a vast number of

combinations until finding the best result, attending to the constraints explained in section

5.2.6.

113

CHAPTER 6. CASE STUDY

6.2 Application configuration

The first step to solve the problem is to introduce the problem specific characteristics in the

corresponding options. At first, the application needs the user to detail the scout association

parameters, that are the ones of Figure 6.1.

Figure 6.1: Scout association for the case study

Figure 6.1 contains the scout association defined in the previous section introduced in the

application. For the example, the scout association name selected is Test and the number

of the scout association is 0. Besides, sections and units have the same names because the

association has only one unit per section.

After configuring the scout association details, the next step is to introduce the details of

the planning. Similar to the scout association, the name for this planning is Test Planning.

The application receives the names and the emails of all the scout leaders of Figure 6.2.

This time, the organizer has to introduce the details of each scout leader manually. This

behavior is not the one users will have to face when using the application because each scout

leader will have to introduce his own details. However, in some cases, the organizer would

need to modify some specific data relating to scout leaders through the planning view.

114

6.3. SOLUTION

Figure 6.2: Example planning configuration

6.3 Solution

After performing the scout association and the planning configurations, the application can

generate the solution. To do so, the organizer should press the Generate planning button,

the application starts executing and returns the following result. Figure 6.3 contains the

list of scout leaders and the units assigned after one minute of execution.

The view allows the organizer to rapidly check the compliance of some requirements, such

as if units contain scout leaders from both genders, the presence of people with experience

in the units, or attendance requirements to the scout association’s activities during the year.

However, the page does not include the preferred and banned colleagues and the ordered

list of preferred units to allow some privacy over scout leaders’ preferences.

The score of the optimal solution presented that the system gives through the debug

console is 0 hard / 0 medium / 32 soft. This means:

• The system has respected all the defined Hard Constraints:

– The planning does not contain repeated scout leaders.

– The planning respects the number of scout leaders defined per unit.

115

CHAPTER 6. CASE STUDY

– The planning respects the age range in each unit.

– The planning does not contain banned colleagues in the same unit for any scout

leader.

• The system has covered all the defined Medium Constraints:

– The planning respects mixed units.

– The planning considers the availability of scout leaders in weekend camps atten-

dance in each unit.

– The planning considers the availability of scout leaders in camps attendance in

each unit.

– The planning includes scout leaders with experience in each unit.

• The system has taken into account some of the preferences of the scout leaders relating

to Soft Constraints:

– The planning tries to create combinations taking into account the preferred col-

leagues of some scout leaders.

– The planning tries to respect the order of preferred units for some scout leaders.

Figure 6.3: Case study solved planning

116

6.3. SOLUTION

Table 6.3 lists the assignations and some of the basic checks related to requirements

that a planning should have.

Unit
Scout
lead. Size

Mixed
team Age Exp. WC avl. C avl.

Beavers

(M1) Miguel

OK
3/3

OK
2 male,

1 female

OK
18, 22,

19

OK
1 true

OK
3 true

OK
3 true(M3) Maria

(J2) Jorge

Cubs

(J1) Juan

OK
4/4

OK
2 male,

2 female

OK
19, 18,
22, 19

OK
3 true

OK
1 true

OK
2 true(S1) Sofia

(N) Natalia

(M2) Mario

Scouts

(S2) Sara

OK
3/3

OK
1 male,

2 female

OK
23, 23,

20

OK
2 true

OK
3 true

OK
2 true(J3) Joan

(A1) Aitana

Explorers

(J4) Jaime

OK
3/3

OK
2 male,

1 female

OK
24, 24,

25

OK
3 true

OK
3 true

OK
2 true(L) Luis

(M5) Marta

Rovers
(A2) Ana OK

2/2

OK
1 male,

1 female

OK
26, 27

OK
2 true

OK
1 true

OK
1 true

(M4) Manolo

Table 6.3: Case study solution requirement check (1/2)

WC avl.: Weekend camps availability, C avl.: Camps availability

As the table shows, all the units comply with the requirements of size, mixed scout

leaders’ team, age, experience, and availability for the scout association’s activities. Fur-

thermore, while the Rovers unit does not require to be a mixed unit, the application has

assigned scout leaders from both genders.

Some details to consider with the planning are that, for instance, the availability for the

Cubs unit is not so high compared to other units. While the planning contains three units

117

CHAPTER 6. CASE STUDY

with a 100% of attendance to weekend camps, the Cubs unit has only a 25%. This behavior

might be because of the other constraints that Table 6.3 does not show. To understand

why the system has taken these decisions, Table 6.4 analyzes the rest of the scout leaders’

requirements.

Unit
Scout
lead.

Banned
people

Preferred
people

Preferred units
position

Beavers

(M1) Miguel (-) OK (J1,J2) OK (1)

(M3) Maria OK (J1) - (J3) OK (1)

(J2) Jorge OK (A1) OK (M1) OK (1)

Cubs

(J1) Juan OK (M3) - (A1,J2) OK (1)

(S1) Sofia (-) - (M1) OK (1)

(N) Natalia (-) (-) OK (2)

(M2) Mario (-) OK (N) OK (1)

Scouts

(S2) Sara (-) - (N) OK (1)

(J3) Joan (-) - (L) OK (1)

(A1) Aitana (-) (-) - (3)

Explorers

(J4) Jaime (-) OK (S2,M5) OK (1)

(L) Luis (-) (-) OK (1)

(M5) Marta OK (S2) (-) OK (1)

Rovers
(A2) Ana OK (M5) OK (M4) OK (1)

(M4) Manolo (-) (-) OK (1)

Table 6.4: Case study solution requirement check (2/2)

The table shows the compliance of the planning with the last requirements and pref-

erences of scout leaders. The system has respected all the banned colleagues defined by

scout leaders when creating the planning, something that the score has revealed previously.

Moreover, the application has tried to assign in the same unit colleagues marked as pre-

ferred ones by others, achieving this purpose in five cases from the ten scout leaders that

define preferred colleagues. Finally, the system has behaved really good assigning each

118

6.3. SOLUTION

scout leader in the unit contained in the first position of his list for the 86.6% of the cases.

One scout leader is in the unit content in the second position and another in the third one.

The configuration of the constraints defines that assigning scout leaders in units content in

the first or second position is the best behavior to have. The third position would be an

acceptable performance and assigning in the least positions, lousy functioning.

The case study shows how the system behaves when using data with characteristics

similar to the real data that the system will receive. As analyzed before, the system behaves

really well for the data introduced. The system prioritizes the most critical constraints

and attempts to generate the best suitable planning respecting scout leader preferences

to the extent possible. The application tries to guarantee the minimums in some aspects

such as experience or attendance to activities and afterward considers the preferences. An

important thing to highlight is the dependence of the system’s behavior on the input data,

which means that the planning would not comply with the minimums in some cases. For

instance, if the total number of girls for a planning is less than the number of units and

all the units require scout leaders from both genders, the system can not comply with this

requirement. So the performance of the system depends mostly on the quality of the data

introduced.

119

CHAPTER 6. CASE STUDY

120

CHAPTER7
Conclusions

This chapter describes the achieved goals done by the master thesis, the conclusions extracted

and the thoughts about the future work.

121

CHAPTER 7. CONCLUSIONS

7.1 Achieved Goals

The project has developed a solution to a common problem in scout associations. The

process to obtain the solution has covered multiple phases. The achieved goals for this

process are the following ones:

• Study of the problematic: The first phase consisted of understanding the problem-

atic to extract the common aspects that all the plannings have. An in-depth analysis

of scout associations provides the main characteristics that all plannings should have.

These details contain the minimum requirements to generalize the problem and estab-

lish the constraints that ensure the plannings’ minimum requirements. The constraints

express the characteristics of the units and scout leaders.

• Analyze the requirements: After understanding the problematic correctly, the

following step was to perform a requirement analysis to extract the characteristics that

the application should have. The requirement analysis contains the use cases and the

actors that the application has to consider. The use cases express the functions that

the application has to perform, allowing users to consider the application useful for

the objectives proposed. The requirement analysis provided the mandatory, desirable,

and optional requirements for the development of the system.

• Design the system’s architecture: The design phase started with the require-

ments known to elaborate the application’s structure, the entities, and the rest of the

system’s components. The MVC pattern helps with this phase because it structures

the functions in three components. The model defines the entities with their charac-

teristics, the views present the information to the users, and the controllers hold all the

system’s logic. These structures help resolve how to represent the information, how

users should interact, and what the application has to do with the information when

users select one option. Furthermore, this phase includes the design of the database

schema that stores the information between sessions.

• Implement the application: When the application’s design has provided all the

schemes and the architecture, the implementation phase started. The implementa-

tion was modular, first implementing the basic entities and the intelligent system and

performing unit tests until reaching the desired behavior. The following module de-

veloped was the web application that allows people to interact with the intelligent

system without requiring technical knowledge.

122

7.2. CONCLUSIONS

• Test the development: With the full system implemented, the next step was to

test the full development with all the modules connected. The activities here were

to identify errors and solve them until reaching the solution explained in the master

thesis.

• Analyze the system’s results: This document includes an example of one of the

tests performed and an analysis of the results that the application has provided. The

example shows the application’s performance and the good results that the system

provides for this case with synthetic data, very similar to the ones that users will

introduce.

7.2 Conclusions

The project result is a web application capable of generating valid plannings of scout leader’s

teams within some minutes. The development of the application has been the methodology

used to fulfill the goals proposed in the project. This section reviews the objectives proposed

and whether the project has worked on them or not.

To acquire more in-depth knowledge of intelligent systems based on constraint pro-

gramming. After investigating this subject, the project uses this type of technology to

elaborate the results. For the problem to solve, this type of intelligent systems is the one

that fits the best, providing good results without much difficulty once understood the basic

concepts. To provide the best results, the application uses constraint programming with

the OptaPlanner framework that provides a suite of configuration options to allow users

customization for their programs. Users should try multiple options of configuration to

obtain the best results for the problems to solve.

To obtain greater ability in problem description and requirements gathering. The de-

velopment of an application requires understanding deeply and analyzing the problem to

solve to extract all the characteristics to prepare for the design phase. A good analysis pro-

vides the requirements and all the functionalities that the system needs to be useful. This

project has covered this aspect at the time of characterizing the problem and performing

the requirement analysis. These aspects have determined the design of the application and

the components to implement.

123

CHAPTER 7. CONCLUSIONS

To apply functional programming techniques for the development of efficient programs

working with data flows. Applications should be efficient so that users can find in them

alternatives to perform tasks. The project uses functional programming in the constraints

that work with data flows so that they can rapidly evaluate their compliance. The prob-

lems that this application solves have a significant number of variables to consider and the

system should behave adequately even if the data grows. Functional programming requires

a change in the way of programming that creates confusion until fully understanding the

considerations to have. The OptaPlanner framework provides various classes and methods

that aid with the development process in this aspect.

To broaden knowledge in web applications deployment for their main components: client

and server. Nowadays, developers have implemented lots of technologies and frameworks

to help with the development of web applications. Practically anyone can implement a web

application just by understanding some basic concepts and sometimes without requiring

special knowledge in programming. This project uses the Spring framework and its multiple

modules for the development of the web application. Furthermore, the application uses Java

as its primary language and dynamic web application techniques and methods.

As mentioned, the project develops widely all the goals proposed with the implementa-

tion of the application and the previous work related to analysis and design.

To conclude, the project shows a real example of using new technologies for solving

problems that people actually figure out manually. The new developments in technology

provide tools to aid in the digital transformation easing users to perform tasks efficiently.

The intelligent systems have supposed a revolution in the ways of living because they provide

solutions to problems that require human intelligence and, in some cases, exceeding the

human abilities because they can predict some aspects of the future.

On the other hand, the increasing use of web applications has allowed companies to

develop technologies that improve the user experience. Each day the number of new services

published on the Internet grows, and users can perform new activities with all their devices

and in any location. These are two of the advantages of web applications that motivate

the development of this field. Society demands more applications ever with these two

characteristics, so engineers should take these requests into account when creating new

programs.

Moreover, NGOs are entities that dedicate their time and budget to perform social

activities, and most of their personnel are volunteers so that they spend their time preparing

the activities. Innovation and development activities typically take second place in these

124

7.3. FUTURE WORK

associations’ objectives, so the digital transformation is slower than in other entities. These

associations appreciate the contributions that people make to facilitate their social work.

With this project, scout associations receive an application that eases elaborating plannings,

so they will not have to spend a considerable amount of time in this fact.

7.3 Future work

The project has covered the initial version of the application, but future application updates

will contain additional functionalities improving user experience. Some of these improve-

ments are:

• Implement advanced configuration options for elaborating plannings so that the or-

ganizer can select the algorithms, the time of execution, the constraint penalizations

or rewards, etc. This option will give customization to allow more technological users

to generate better plannings.

• Generate multiple plannings with different scout association configurations and reusing

the details of scout leaders from other plannings. With this functionality, the orga-

nizer can have multiple alternatives for a planning without asking scout leaders to

complete their details each time.

• Allow scout leaders to vote for one planning and generate newer ones if none of them

receive a majority. This functionality will implicate more scout leaders, giving them

new responsibilities.

• Create an administrative panel to allow administrators to perform actions over users

through a user interface.

• Improve the API capabilities so that other connected applications can perform more

options directly.

125

CHAPTER 7. CONCLUSIONS

126

APPENDIXA
Impact of the project

This appendix contains the social, economic, environmental and ethical impact that the

project could have.

127

APPENDIX A. IMPACT OF THE PROJECT

A.1 Social Impact

This project’s primary goal is to provide a solution to a problem that resides in scout

associations. The thesis supplies an alternative to ease scout associations in creating yearly

plannings. Traditionally, people do a planning manually, spending lots of hours due to the

high number of considerations to take into account. Moreover, elaborating a planning in a

traditional manner involves lots of arguments between scout leaders because of the relevance

of assignations.

The advantages of using the application are really high: firstly to avoid the requirement

of performing a meeting for the elaboration, secondly to prevent arguments between scout

leaders and third to obtain a good solution to a complicated problem in just a minute.

A.2 Economic Impact

Scout associations are NGOs, so their main objective is not to obtain an economic profit

from their activities. Because of this reason, the economic impact is collateral: the meeting

to approve the planning of the year will last in less time, so the consumption of electrical

energy and allowances would reduce.

However, with the application, a free alternative arises, and scout associations do not

need to consider other options like subcontracting the elaboration of a planning to external

companies. Although the economic impact is collateral, scout associations would reduce

costs by using the application.

A.3 Environmental Impact

The project does not provide any significant change from an environmental point. The only

subject implicated is the energy consumption spent on the development and the maintenance

of the system, if scout associations would like to keep the system active. When the intelligent

system module runs to find a solution, the server resources required increase, so the energy

consumption is higher. Moreover, the fabrication of the servers’ physical components where

the application runs also has implications in the environmental impact.

If the use of the application grows, the maintainers can decide to run the system in

cloud services. The energy consumption to maintain these services is higher than that used

in personal computers or small servers, so the environmental impact becomes affected.

128

A.4. ETHICAL IMPACT

A.4 Ethical Impact

The ethical impact of the project resides in the personal data introduced by scout leaders

to create plannings. If the people involved in creating the planning use these data for other

purposes, the scout association could have problems. For instance, if the organizer uses the

permissions to fulfill or edit the information of the scout leaders to know the people that do

not want to stay with others or if he modifies these data before creating the planning without

the approval of the scout leaders to create plannings more favorable for him. Moreover, if

the application suffers a data leak, scout leaders’ personal information would be exposed.

129

APPENDIX A. IMPACT OF THE PROJECT

130

APPENDIXB
Project Budget

This appendix covers the costs that the project requires. This costs include human resources,

physical assets and licenses.

131

APPENDIX B. PROJECT BUDGET

B.1 Human resources

This section estimates the total cost of the human resources required to elaborate the

project. The project requires a Telecommunications Engineer with knowledge and experi-

ence in Java application development.

The calculus of the time to elaborate the project is based on the ECTS assigned to

the elaboration of the Master thesis. The Master thesis involves 30 ECTS, where 1 ECTS

represents 30 hours of student work. So the total time assigned to the project ascends to

900 hours of work. Considering that working hours for a person are 8 per business day and

that a month has 22 business days, an engineer would spend between 5 and 6 months to

elaborate the project.

The average salary of a junior Telecommunications Engineer with the knowledge and

experience required for this subject is 24.000eyearly. So the human resources costs for

the project will ascend to 12.000e. These costs do not include the maintenance of the

application once the development has finished.

B.2 Physical assets and services

The only physical asset required to elaborate the project is a personal computer. The

minimum specifications that the personal computer needs to have are the following:

• Processor: AMD A9-9425, dual-core

• RAM: 8GB

• Hard Disk: 512GB SSD

A computer with these specifications has cost over 400eat the beginning of 2019. More-

over, to search for information, the personal computer needs to connect to the Internet,

and with the situation produced by COVID-19, this requirement becomes crucial. The

restrictions and the risks that society is experiencing make fundamental to connect to the

Internet to allow people to telework without going out from home.

132

B.3. LICENSES

B.3 Licenses

All the modules and frameworks that the development uses are open source, so they do not

imply additional costs over the project’s total budget.

133

APPENDIX B. PROJECT BUDGET

134

APPENDIXC
Functional programming

This is the description of the appendix.

135

APPENDIX C. FUNCTIONAL PROGRAMMING

C.1 λ Calculus

The functional programming paradigm is based on λ calculus, consisting on a single trans-

formation rule and a single function definition scheme. Its considered to be the smallest

universal programming language of the world and it is an approach more related to software

than to hardware [26].

The most relevant concept in λ calculus is the expression. That is defined as:

<expression> := <name> | <function> | <application>

<function> := λ <name>.<expression>

<application> := <expression><expression>

So an application could be defined as a set of expressions, where an expression could be

a variable, a function or even an application. Expressions are evaluated from the left to the

right, so expressions could be chained. An example of a function is the identity function

really common in multiple programming languages.

λx.x

Where λx defines the arguments, in this case there is just one (x), and the expression at

the right part of the dot is the function definition. To apply this function to an expression,

the function should be located at the left side of the expression.

(λx.x)y

This expression is used to apply the identity function defined previously to variable y.

As seen before, expressions could be concatenated to be evaluated from left to right in order

to produce more complex operations.

As it can be seen, this language is really useful and opens lots of possibilities in order

to develop some kind of programs. Some of its characteristics are:

• Simplicity, as it can perform operations without having to develop a large amount of

lines of code and because of its syntax.

• Practical, as with not so much code it can become a practical programming language.

Some programs can be defined using λ calculus and the amount of code is shorter

than its equivalent in other high-level languages.

136

C.2. FUNCTIONAL PROGRAMMING AND IMPERATIVE PROGRAMMING COMPARISON

• One-line universal program, because powerful programs can be developed in just one

line.

• Represents data with functions, so small vocabulary notation is used but enough to

carry out complex needed functions.

• Solves halt problem by using types, so λ calculus problems can be ensured to always

halt in some point.

• Developed code is probably correct, because of the relation existing between λ calculus

and foundations of mathematics. The advanced types used for programing make

bugs impossible to express, so every syntactically correct program is also semantically

correct.

Usually λ calculus is expressed in a reduced notation. This makes an abstraction over

mathematical expressions and makes notation even easier to understand. An example using

this reduction:

(+ (* 5 6) (* 8 3))

(+ 30 (* 8 3))

(+ 30 24)

= 54

That expression will return 54 as the result of evaluating, firstly inner parentheses

expressions (products) will be solved and finally, the outer parentheses expression will return

the last result of evaluation. Languages which implement this kind of notation, usually

include some built-in functions to allow performing more complex operation in a natively

manner.

C.2 Functional programming and Imperative programming com-

parison

Traditional programming, or what is commonly known as programming is called impera-

tive programming. Basically, the developer types software specifying the steps the computer

should carry out to reach the defined goals. Sometimes, this is known as algorithmic pro-

gramming while developers are centered on developing the steps of a program in an efficient,

sequential and ordered manner. With functional programming, attention should be focused

137

APPENDIX C. FUNCTIONAL PROGRAMMING

on functions or methods and its composition. Users define carefully the parameters and

the result returned, so programs are formed by a set of functions normally called by each

other. Imperative code usually treats with statements, pieces of code which performs some

actions. Functional programming code uses expressions, pieces of code which evaluates to

some value by a combination of function calls, values and operators. Table C.1 shows a

comparison of both, imperative and functional techniques [13].

Imperative programming Functional programming

Programmer

focus

The way to perform tasks (algo-

rithms) and to track changes in

state

The information desired and the

transformations required

State changes Important Non-existent

Order of exe-

cution

Important Low importance

Primary flow

control

Loops, conditionals, and function

or method calls

Function calls, including recur-

sion

Primary ma-

nipulation

unit

Instances of structures or classes Functions as first-class objects

and data collections.

Table C.1: Functional programming and imperative programming comparison

C.3 Transition from Object Oriented Programming to Functional

Programming

Object Oriented Programming languages are commonly taught as the initials of developing

code because of the simplicity of concepts in this type of programming. While this kind

of languages are been taught, programmers minds become suited to this way of thinking.

To switch from object oriented programming to developing in a pure functional style, a

transition has to be made on how traditional software developers think and their approach

to development.

Object oriented programming problem solving design class hierarchies, focus on proper

encapsulation and think in terms of class contracts. The behavior and state of object types

138

C.4. DISADVANTAGES OF FUNCTIONAL PROGRAMMING

are key concepts and in order to address this, languages provide structures such as classes,

interfaces, inheritance, and polymorphism.

In the other side, functional programming base problems in the evaluation of pure

functional transformations of data collections as seen before. Programs avoid to use states,

mutable data and emphasizes the use of pure functions.

For the purpose of making the transition easier for traditional developers, common used

programming languages support both imperative and functional programming approaches.

A developer can choose which approach is suitable for an application, but typically an

application uses a combination of both approaches depending on their components, its

characteristics and requirements.

C.4 Disadvantages of functional programming

Other sections cover the main functional programming characteristics and advantages each

of them provide to software. Now disadvantages will be exposed in order to what charac-

teristics are been lost while coding this way [1].

• The combination of immutable variables with recursion could perform a reduction in

performance.

• Code could become difficult to read because of the use of pure functions in some cases

when treating with large functions.

• The integration of pure functions may become hard with the rest of the application,

while coding them is considered to be easier. I/O operations might be included here

as penalized also because of pure functions.

• Functional programming style can become laborious because of the use of recursivity

instead of loops or working with streams and other structures detailed before.

C.5 Applications of functional programming

Traditionally, functional programming has been used for academic purposes rather than

commercial software development, but nowadays tendency is changing as properties are

being discovered to solve problems present in modern technology. Associated with this,

functional programmers are difficult to be found as this paradigm of programming was not

commonly used before.

139

APPENDIX C. FUNCTIONAL PROGRAMMING

Several programming languages are designed for the development of functional program-

ming software such as Clojure, Erlang, F#, Haskell and Racket, widely used for developing

a variety of commercial and industrial applications. Organizations as Facebook make use

of Erlang using functional programming paradigm to manage the data of 1.5 billion users

in WhatsApp. Also it uses Haskell in their anti-spam filtering system.

This paradigm is widely employed in applications design to work with concurrency or

parallelism and for resolving mathematical computations, traditionally in programs working

with large amounts of data.

140

Bibliography

[1] Akhil Bhadwal. Functional Programming: Concepts, Advantages, Disadvantages, and

Applications, 2020 (accessed November 01, 2020). URL: https://hackr.io/blog/

functional-programming.

[2] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall, 1987.

[3] Jacques Carette and Oleg Kiselyov. Multi-stage programming with functors and monads: Elim-

inating abstraction overhead from generic code. Science of Computer Programming, 76(5):349

– 375, 2011.

[4] Ting Chen and Steven S. Skiena. Trie-based data structures for sequence assembly. Springer,

Berlin, Heidelberg, 2005.

[5] Binildas Christudas. curl and postman. In Practical Microservices Architectural Patterns, pages

847–855. Apress, Berkeley, CA, 6 2019.

[6] John Deacon. Model-View-Controller (MVC) Architecture. JOHN DEACON Computer Sys-

tems Development, Consulting and Training, 2009.

[7] Eric Elliott. Master the JavaScript Interview: What is Functional Programming?, 2017

(accessed October 29, 2020). URL: https://medium.com/javascript-scene/

master-the-javascript-interview-what-is-functional-programming-7f218c68b3a0.

[8] Fernando Suárez Mart́ın Ugarte Felipe Pezoa, Juan L. Reutter and Domagoj Vrgoč. Foundations

of json schema. WWW ’16: Proceedings of the 25th International Conference on World Wide

Web, pages 263–273, 4 2016.

[9] The Apache Software Foundation. Apache TilesTM, 2017 (accessed October 06, 2020). URL:

https://tiles.apache.org/framework/index.html.

[10] The Apache Software Foundation. Apache Tomcat R©, 2020 (accessed October 03, 2020). URL:

http://tomcat.apache.org/.

[11] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison Wesley, 2004.

[12] Peter van Beek Francesca Rossi and Toby Walsh. Handbook of Constraint Programming, vol-

ume 2. Elsevier Science, 2006.

[13] Microsoft .NET Fundamentals. Functional programming vs. imperative programming (LINQ to

XML), 2015 (accessed October 30, 2020). URL: https://docs.microsoft.com/en-us/

dotnet/standard/linq/functional-vs-imperative-programming.

141

https://hackr.io/blog/functional-programming
https://hackr.io/blog/functional-programming
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-functional-programming-7f218c68b3a0
https://medium.com/javascript-scene/master-the-javascript-interview-what-is-functional-programming-7f218c68b3a0
https://tiles.apache.org/framework/index.html
http://tomcat.apache.org/
https://docs.microsoft.com/en-us/dotnet/standard/linq/functional-vs-imperative-programming
https://docs.microsoft.com/en-us/dotnet/standard/linq/functional-vs-imperative-programming

BIBLIOGRAPHY

[14] Google. What is reCAPTCHA?, 2020 (accessed November 15, 2020). URL: https://

developers.google.com/recaptcha/.

[15] Red Hat. OptaPlanner User Guide, 2020 (accessed June 16, 2020). URL: https://docs.

optaplanner.org/7.45.0.Final/optaplanner-docs/html_single/index.html.

[16] Red Hat. What is OptaPlanner?, 2020 (accessed June 16, 2020). URL: https://www.

optaplanner.org/.

[17] Sean Leary. JSONObject, 2020 (accessed November 10, 2020). URL: https://github.com/

stleary/JSON-java.

[18] Bruno Lowagie. Create PDF from HTML with pdfHTML. iText Software, 2017.

[19] Gustavo A. Oliva Mauŕıcio F. Aniche and Marco A. Gerosa. Are the methods in your data

access objects (daos) in the right place? a preliminary study. In 2014 Sixth International

Workshop on Managing Technical Debt. IEEE, 9 2014.

[20] Jim Melton and Alan R. Simon. SQL: 1999: Understanding Relational Language Components.

Morgan Kaufmann Publishers, 2002.

[21] Yanina Muradas. Conoce qué es Spring Framework y por qué usarlo, 2018

(accessed October 05, 2020). URL: https://openwebinars.net/blog/

conoce-que-es-spring-framework-y-por-que-usarlo/.

[22] Google OR-Tools. Constraint Optimization, 2020 (accessed October 25, 2020). URL: https:

//developers.google.com/optimization/cp.

[23] Pankaj. Java Web Application Tutorial for Beginners, 2020 (accessed

October 01, 2020). URL: https://www.journaldev.com/1854/

java-web-application-tutorial-for-beginners.

[24] Terence Parr. String Template, 2020 (accessed November 02, 2020). URL: https://www.

stringtemplate.org/.

[25] Enric Rodŕıguez-Carbonell. Introduction to Constraint Programming, 2020 (accessed Octo-

ber 30, 2020). URL: https://www.cs.upc.edu/˜erodri/webpage/cps//theory/cp/

intro/slides.pdf.

[26] Raúl Rojas. A Tutorial Introduction to the Lambda Calculus, 1997 (accessed November 07,

2020). URL: https://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf.

[27] Scout.org. World Scout Foundation, 2020 (accessed June 01, 2020). URL: https://

worldscoutfoundation.org/home.

[28] Pivotal Software. Interface SolverManager, 2020 (accessed July 02, 2020). URL:

https://docs.optaplanner.org/7.33.0.Final/optaplanner-javadoc/org/

optaplanner/core/api/solver/SolverManager.html.

[29] Pivotal Software. Planner Configuration, 2020 (accessed June 15, 2020). URL:

https://docs.optaplanner.org/7.28.0.Final/optaplanner-docs/html_

single/#plannerConfiguration.

142

https://developers.google.com/recaptcha/
https://developers.google.com/recaptcha/
https://docs.optaplanner.org/7.45.0.Final/optaplanner-docs/html_single/index.html
https://docs.optaplanner.org/7.45.0.Final/optaplanner-docs/html_single/index.html
https://www.optaplanner.org/
https://www.optaplanner.org/
https://github.com/stleary/JSON-java
https://github.com/stleary/JSON-java
https://openwebinars.net/blog/conoce-que-es-spring-framework-y-por-que-usarlo/
https://openwebinars.net/blog/conoce-que-es-spring-framework-y-por-que-usarlo/
https://developers.google.com/optimization/cp
https://developers.google.com/optimization/cp
https://www.journaldev.com/1854/java-web-application-tutorial-for-beginners
https://www.journaldev.com/1854/java-web-application-tutorial-for-beginners
https://www.stringtemplate.org/
https://www.stringtemplate.org/
https://www.cs.upc.edu/~erodri/webpage/cps//theory/cp/intro/slides.pdf
https://www.cs.upc.edu/~erodri/webpage/cps//theory/cp/intro/slides.pdf
https://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
https://worldscoutfoundation.org/home
https://worldscoutfoundation.org/home
https://docs.optaplanner.org/7.33.0.Final/optaplanner-javadoc/org/optaplanner/core/api/solver/SolverManager.html
https://docs.optaplanner.org/7.33.0.Final/optaplanner-javadoc/org/optaplanner/core/api/solver/SolverManager.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-docs/html_single/#plannerConfiguration
https://docs.optaplanner.org/7.28.0.Final/optaplanner-docs/html_single/#plannerConfiguration

BIBLIOGRAPHY

[30] Pivotal Software. Class HardMediumSoftScore, 2020 (accessed June

18, 2020). URL: https://docs.optaplanner.org/7.28.0.Final/

optaplanner-javadoc/org/optaplanner/core/api/score/buildin/

hardmediumsoft/HardMediumSoftScore.html.

[31] Pivotal Software. Interface ConstraintProvider, 2020 (accessed June 18, 2020). URL:

https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/

optaplanner/core/api/score/stream/ConstraintProvider.html.

[32] Pivotal Software. Annotation Type PlanningEntity, 2020 (accessed June 20, 2020). URL:

https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/

optaplanner/core/api/domain/entity/PlanningEntity.html.

[33] Pivotal Software. Annotation Type PlanningId, 2020 (accessed June 20, 2020). URL:

https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/

optaplanner/core/api/domain/lookup/PlanningId.html.

[34] Pivotal Software. Annotation Type PlanningSolution, 2020 (accessed June 20, 2020). URL:

https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/

optaplanner/core/api/domain/solution/PlanningSolution.html.

[35] Pivotal Software. Annotation Type PlanningVariable, 2020 (accessed June 20, 2020). URL:

https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/

optaplanner/core/api/domain/variable/PlanningVariable.html.

[36] Pivotal Software. Interface Constraint, 2020 (accessed June 20, 2020). URL:

https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/

optaplanner/core/api/score/stream/Constraint.html.

[37] Pivotal Software. Score Calculation, 2020 (accessed June 22, 2020). URL: https:

//docs.optaplanner.org/7.28.0.Final/optaplanner-docs/html_single/

#scoreCalculation.

[38] Pivotal Software. Annotation Type PlanningEntityCollectionProperty, 2020 (ac-

cessed June 23, 2020). URL: https://docs.optaplanner.org/7.28.0.Final/

optaplanner-javadoc/org/optaplanner/core/api/domain/solution/

PlanningEntityCollectionProperty.html.

[39] Pivotal Software. Annotation Type PlanningScore, 2020 (accessed June 23, 2020). URL:

https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/

optaplanner/core/api/domain/solution/PlanningScore.html.

[40] Pivotal Software. Annotation Type ProblemFactCollectionProperty, 2020 (accessed

June 23, 2020). URL: https://docs.optaplanner.org/7.28.0.Final/

optaplanner-javadoc/org/optaplanner/core/api/domain/solution/drools/

ProblemFactCollectionProperty.html.

143

https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/score/buildin/hardmediumsoft/HardMediumSoftScore.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/score/buildin/hardmediumsoft/HardMediumSoftScore.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/score/buildin/hardmediumsoft/HardMediumSoftScore.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/score/stream/ConstraintProvider.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/score/stream/ConstraintProvider.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/entity/PlanningEntity.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/entity/PlanningEntity.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/lookup/PlanningId.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/lookup/PlanningId.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/solution/PlanningSolution.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/solution/PlanningSolution.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/variable/PlanningVariable.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/variable/PlanningVariable.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/score/stream/Constraint.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/score/stream/Constraint.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-docs/html_single/#scoreCalculation
https://docs.optaplanner.org/7.28.0.Final/optaplanner-docs/html_single/#scoreCalculation
https://docs.optaplanner.org/7.28.0.Final/optaplanner-docs/html_single/#scoreCalculation
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/solution/PlanningEntityCollectionProperty.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/solution/PlanningEntityCollectionProperty.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/solution/PlanningEntityCollectionProperty.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/solution/PlanningScore.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/solution/PlanningScore.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/solution/drools/ProblemFactCollectionProperty.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/solution/drools/ProblemFactCollectionProperty.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/solution/drools/ProblemFactCollectionProperty.html

BIBLIOGRAPHY

[41] Pivotal Software. Annotation Type ValueRangeProvider, 2020 (accessed June 23, 2020). URL:

https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/

optaplanner/core/api/domain/valuerange/ValueRangeProvider.html.

[42] Pivotal Software. Interface ProblemFactChange, 2020 (accessed June 25, 2020). URL:

https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/

optaplanner/core/impl/solver/ProblemFactChange.html.

[43] Pivotal Software. Constraint Streams - Modern Java constraints without the Drools Rule

Language, 2020 (accessed June 27, 2020). URL: https://www.optaplanner.org/blog/

2020/04/07/ConstraintStreams.html.

[44] Pivotal Software. Class SolverConfig, 2020 (accessed November 01, 2020). URL:

https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/

optaplanner/core/config/solver/SolverConfig.html.

[45] Pivotal Software. Class SolverManagerConfig, 2020 (accessed November 01, 2020). URL:

https://docs.optaplanner.org/7.38.0.Final/optaplanner-javadoc/org/

optaplanner/core/config/solver/SolverManagerConfig.html.

[46] Pivotal Software. Spring Framework, 2020 (accessed October 01, 2020). URL: https://

spring.io/.

[47] Pivotal Software. Spring Web MVC, 2020 (accessed October 05, 2020). URL: https://

spring.io/projects/spring-security.

[48] Pivotal Software. Spring Security, 2020 (accessed October 20, 2020). URL: https://spring.

io/projects/spring-security.

[49] Pivotal Software. Class WebSecurityConfigurerAdapter, 2020 (accessed October 29, 2020).

URL: https://docs.spring.io/spring-security/site/docs/5.4.0/api/

org/springframework/security/config/annotation/web/configuration/

WebSecurityConfigurerAdapter.html.

[50] Pivotal Software. Authorization, 2020 (accessed October 30, 2020). URL: https:

//docs.spring.io/spring-security/site/docs/5.4.0/reference/html5/

#servlet-authorization.

[51] Pivotal Software. Interface UserDetails, 2020 (accessed October 30, 2020). URL:

https://docs.spring.io/spring-security/site/docs/5.4.0/api/org/

springframework/security/core/userdetails/UserDetails.html.

[52] Pivotal Software. Interface UserDetailsService, 2020 (accessed October 30, 2020).

URL: https://docs.spring.io/spring-security/site/docs/5.4.0/api/org/

springframework/security/core/userdetails/UserDetailsService.html.

[53] Pivotal Software. Class bcryptpasswordencoder, 2020 (accessed October 31, 2020).

URL: https://docs.spring.io/spring-security/site/docs/5.4.0/api/org/

springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html.

144

https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/valuerange/ValueRangeProvider.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/api/domain/valuerange/ValueRangeProvider.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/impl/solver/ProblemFactChange.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/impl/solver/ProblemFactChange.html
https://www.optaplanner.org/blog/2020/04/07/ConstraintStreams.html
https://www.optaplanner.org/blog/2020/04/07/ConstraintStreams.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/config/solver/SolverConfig.html
https://docs.optaplanner.org/7.28.0.Final/optaplanner-javadoc/org/optaplanner/core/config/solver/SolverConfig.html
https://docs.optaplanner.org/7.38.0.Final/optaplanner-javadoc/org/optaplanner/core/config/solver/SolverManagerConfig.html
https://docs.optaplanner.org/7.38.0.Final/optaplanner-javadoc/org/optaplanner/core/config/solver/SolverManagerConfig.html
https://spring.io/
https://spring.io/
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://docs.spring.io/spring-security/site/docs/5.4.0/api/org/springframework/security/config/annotation/web/configuration/WebSecurityConfigurerAdapter.html
https://docs.spring.io/spring-security/site/docs/5.4.0/api/org/springframework/security/config/annotation/web/configuration/WebSecurityConfigurerAdapter.html
https://docs.spring.io/spring-security/site/docs/5.4.0/api/org/springframework/security/config/annotation/web/configuration/WebSecurityConfigurerAdapter.html
https://docs.spring.io/spring-security/site/docs/5.4.0/reference/html5/#servlet-authorization
https://docs.spring.io/spring-security/site/docs/5.4.0/reference/html5/#servlet-authorization
https://docs.spring.io/spring-security/site/docs/5.4.0/reference/html5/#servlet-authorization
https://docs.spring.io/spring-security/site/docs/5.4.0/api/org/springframework/security/core/userdetails/UserDetails.html
https://docs.spring.io/spring-security/site/docs/5.4.0/api/org/springframework/security/core/userdetails/UserDetails.html
https://docs.spring.io/spring-security/site/docs/5.4.0/api/org/springframework/security/core/userdetails/UserDetailsService.html
https://docs.spring.io/spring-security/site/docs/5.4.0/api/org/springframework/security/core/userdetails/UserDetailsService.html
https://docs.spring.io/spring-security/site/docs/5.4.0/api/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html
https://docs.spring.io/spring-security/site/docs/5.4.0/api/org/springframework/security/crypto/bcrypt/BCryptPasswordEncoder.html

BIBLIOGRAPHY

[54] Steve Suehring. MySQL Bible. Wiley Publishing, Inc, 2002.

[55] Nguyen Nam Thai. What is a Spring Bean?, 2020 (accessed October 05, 2020). URL: https:

//www.baeldung.com/spring-bean.

[56] Jean Paoli Tim Bray and C. M. Sperberg-McQueen. Extensible Markup Language(XML) 1.0.

W3C (MIT, INRIA, Keio), 1998.

[57] TutorialsPoint. Drools - Rule Syntax, 2020 (accessed June 19, 2020). URL: https://www.

tutorialspoint.com/drools/drools_rule_syntax.htm.

[58] TutorialsPoint. JSP - Standard Tag Library (JSTL) Tutorial, 2020 (accessed October 10, 2020).

URL: https://www.tutorialspoint.com/jsp/jsp_standard_tag_library.htm.

[59] Aleksa Vukotic and James Goodwill. Apache Tomcat 7. Apress, Berkeley, CA, 2011.

[60] Philip Wadler. Monads for functional programming. Springer, Berlin, Heidelberg, 1995.

[61] Desarrollo web. Conceptos básicos: definición de web app y ejemplos, 2019 (accessed

November 08, 2020). URL: https://www.ionos.es/digitalguide/paginas-web/

desarrollo-web/que-es-una-web-app-y-que-clases-hay/.

[62] CIO Wiki. Client Server Architecture, 2020 (accessed November 11, 2020). URL: https:

//cio-wiki.org/wiki/Client_Server_Architecture.

[63] Wikipedia. Web application, 2020 (accessed November 08, 2020). URL: https://en.

wikipedia.org/wiki/Web_application.

[64] Wikipedia. Client–server model, 2020 (accessed November 10, 2020). URL: https://en.

wikipedia.org/wiki/Client%E2%80%93server_model.

[65] Wikipedia. Jakarta Server Pages, 2020 (accessed October 10, 2020). URL: https://en.

wikipedia.org/wiki/Jakarta_Server_Pages.

[66] Wikipedia. Constraint programming, 2020 (accessed October 30, 2020). URL: https://en.

wikipedia.org/wiki/Constraint_programming.

[67] David Yang. The 9 Best Programming Languages to Learn in 2020, 2020 (ac-

cessed November 15, 2020). URL: https://www.fullstackacademy.com/blog/

nine-best-programming-languages-to-learn.

[68] Ángel Robledano. Qué es MySQL: Caracteŕısticas y ventajas, 2019 (accessed October 10, 2020).

URL: https://openwebinars.net/blog/que-es-mysql.

145

https://www.baeldung.com/spring-bean
https://www.baeldung.com/spring-bean
https://www.tutorialspoint.com/drools/drools_rule_syntax.htm
https://www.tutorialspoint.com/drools/drools_rule_syntax.htm
https://www.tutorialspoint.com/jsp/jsp_standard_tag_library.htm
https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/que-es-una-web-app-y-que-clases-hay/
https://www.ionos.es/digitalguide/paginas-web/desarrollo-web/que-es-una-web-app-y-que-clases-hay/
https://cio-wiki.org/wiki/Client_Server_Architecture
https://cio-wiki.org/wiki/Client_Server_Architecture
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Jakarta_Server_Pages
https://en.wikipedia.org/wiki/Jakarta_Server_Pages
https://en.wikipedia.org/wiki/Constraint_programming
https://en.wikipedia.org/wiki/Constraint_programming
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://www.fullstackacademy.com/blog/nine-best-programming-languages-to-learn
https://openwebinars.net/blog/que-es-mysql

	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	Introduction
	Context
	Project goals
	Structure of this document

	Enabling Technolgies
	Constraint programming
	Definition
	Categories of problems
	Constraint solving
	Example: N-Queens
	Optaplanner
	Types of constraints
	Problem solutions
	Solver

	Functional programming
	Definition
	Concepts
	Pure functions
	Function composition
	Shared state
	Immutability
	Side effects
	Higher order functions
	Commonly used data structures

	Web applications
	Native apps and Web apps
	Native apps
	Web apps

	Client-Server architecture
	Java Web Applications Development
	Model-View-Controller pattern
	Web Application Structure
	Web server frameworks and modules
	Persistence

	Problem characterization
	Problematic
	Scout Association Structure
	Feasible planning characteristics
	Problem example

	Requirement Analysis
	Use cases
	Actors
	Configure the planning details use case
	Configure the scout association parameters
	Configure the planning parameters

	Generate planning
	Visualize results
	Export results

	Requirements
	Functional requirements
	Non-functional requirements

	Architecture
	General architecture
	Intelligent system
	Optaplanner
	Planning entities
	Planning solution

	Constraints
	Solver Manager
	Application to the project
	Entities and solution
	Planning Entities
	Planning Solution

	Constraint Provider
	Hard Constraints
	Medium Constraints
	Soft Constraints

	Solver Manager

	Web server
	Spring Framework
	Beans
	MVC Pattern
	Spring Security

	Application to the project
	Models
	Controllers
	Views

	Authentication and authorization
	API

	Persistence
	MySQL
	Application to the project

	Case study
	Problem
	Application configuration
	Solution

	Conclusions
	Achieved Goals
	Conclusions
	Future work

	Impact of the project
	Social Impact
	Economic Impact
	Environmental Impact
	Ethical Impact

	Project Budget
	Human resources
	Physical assets and services
	Licenses

	Functional programming
	 Calculus
	Functional programming and Imperative programming comparison
	Transition from Object Oriented Programming to Functional Programming
	Disadvantages of functional programming
	Applications of functional programming

	Bibliography

