UNIVERSIDAD POLITECNICA DE MADRID

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE

TELECOMUNICACION

SEMANTIC SERVICE DISCOVERY TECHNIQUES
FOR THE COMPOSABLE WEB

TESIS DOCTORAL

JOSE IGNACIO FERNANDEZ VILLAMOR

Ingeniero de Telecomunicacién

2012

UNIVERSIDAD POLITECNICA DE MADRID

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE

TELECOMUNICACION

SEMANTIC SERVICE DISCOVERY TECHNIQUES
FOR THE COMPOSABLE WEB

TESIS DOCTORAL

JOSE IGNACIO FERNANDEZ VILLAMOR

Ingeniero de Telecomunicacién

2012

DEPARTAMENTO DE INGENIERIA DE SISTEMAS
TELEMATICOS

ESCUELA TECNICA SUPERIOR DE INGENIEROS DE

TELECOMUNICACION

UNIVERSIDAD POLITECNICA DE MADRID

dit
UPM

SEMANTIC SERVICE DISCOVERY TECHNIQUES
FOR THE COMPOSABLE WEB

AUTOR:
JOSE IGNACIO FERNANDEZ VILLAMOR

Ingeniero de Telecomunicacién

TUTORES:
CARLOS ANGEL IGLESIAS FERNANDEZ

Doctor Ingeniero de Telecomunicacion

MERCEDES GARIJO AYESTARAN

Doctora Ingeniera de Telecomunicacion

2012

POLITECNICA

Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la
Universidad Politécnica de Madrid, el dia 1 de junio de 2012.

Presidente:

Vocal:

Vocal:

Vocal:

Secretario:

Suplente:

Suplente:

Realizado el acto de defensa y lectura de la Tesis el dia 1 de
julio de 2012 en la E.T.S.IL'T. habiendo obtenido la calificacién de

EL PRESIDENTE LOS VOCALES

EL SECRETARIO

A mis padres

Agradecimientos

Prefiero dar agradecimientos en persona, pero aceptaré inmortalizarlos en esta
seccion. Muy merecidamente le doy las gracias a mis tutores Carlos y Mercedes,
que mas alla de la gran direccion de tesis, han sabido crear un ambiente de trabajo
extraordinario en el grupo. Desde el dia en que entré, en el que era el Gnico
doctorando en el laboratorio, me he sentido como en casa y os lo agradezco
enormemente. Gracias también al resto de profesores del grupo: Gregorio, José
Carlos, Luis Enrique y Marifeli.

Por fortuna el grupo se repoblé con gente magnifica. Gracias a Nacho, Alvaro,
Dani, Paloma, Jorge, Laura, Elena, Adam, Paco, Miguel, Vicente, Alvaro, Jotay
Geovanny por los dias que hemos compartido juntos, tanto dentro como fuera
del laboratorio, de los que me llevo algunos inolvidables. Gracias a ese estupendo
elenco de futuras promesas que ha sido el plantel de becarios. Especialmente, por
su contribucién a la tesis, gracias a Alberto, Adriano, Pablo, Jacobo, Dani, Toni,
Patricia, Adrian, Rubén y Danny. Y gracias a toda la gente del DIT con la que he
trabajado; muy especialmente a Boni y Samuel.

Gracias a mis padres, mi hermano, mis abuelas, y también a mis abuelos, que
ya no estan, porque sin su compafiia y sin la educacién que me inculcaron no
habria terminado un doctorado ni por casualidad.

Gracias a mis amigos, que son los mas grandes: Rodrigo, Alvaro, Berta, Irene,
Antonio, Esther, Luigi, Hesse, Javi, Mireia, Juan, Ana Alhama, Jorge, Ana y Dani,
Pablo, Luis. ..

Und, natiirlich, vielen Dank an die deutschen Leute aus Chemnitz. Es war
wirklich sehr schon, mit euch zu arbeiten. Danke schon, Frank, Alexey, Hendrik
und Martin. Und es war ganz toll, dass du drei Monate hier in Madrid gewohnt
hast, Tilo. Ich hoffe, dass du bald wiederkommst. Alle sind willkommen.

Y sobre todo, mil disculpas a quien haya olvidado incluir aqui, que seguramente

alguien habra.

X

Abstract

This PhD thesis contributes to the problem of resource and service discovery in
the context of the composable web. In the current web, mashup technologies
allow developers reusing services and contents to build new web applications.
However, developers face a problem of information flood when searching for

appropriate services or resources for their combination.

To contribute to overcoming this problem, a framework is defined for the
discovery of services and resources. In this framework, three levels are defined for

performing discovery at content, discovery and agente levels.

The content level involves the information available in web resources. The

web follows the [Representational Stateless Transfer (REST)|architectural style, in

which resources are returned as representations from servers to clients. These

representations usually employ the[HyperText Markup Language (HTML)|, which,

along with |Content Style Sheets (CSS), describes the markup employed to render

representations in a web browser. Although the use of Semantic Web standards

such as[Resource Description Framework (RDF) make this architecture suitable

for automatic processes to use the information present in web resources, these
standards are too often not employed, so automation must rely on processing
This process, often referred as Screen Scraping in the literature, is the
content discovery according to the proposed framework. At this level, discovery
rules indicate how the different pieces of data in resources’ representations are
mapped onto semantic entities. By processing discovery rules on web resources,

semantically described contents can be obtained out of them.

The service level involves the operations that can be performed on the web.
The current web allows users to perform different tasks such as search, blogging,
e-commerce, or social networking. To describe the possible services in REST}ul
architectures, a high-level feature-oriented service methodology is proposed at this

level. This lightweight description framework allows defining service discovery

X1

rules to identify operations in interactions with [REST|resources. The discovery
is thus performed by applying discovery rules to contents discovered in [REST]

interactions, in a novel process called service probing. Also, service discovery can

be performed by modelling services as contents, i.e., by retrieving
IProgramming Interface (API)documentation and listings in service registries

such as Programmable Web. For this, a unified model for composable components

in Mashup-Driven Development (MDD)| has been defined after the analysis of

service repositories from the web.

The agent level involves the orchestration of the discovery of services and
contents. At this level, agent rules allow to specify behaviours for crawling and
executing services, which results in the fulfilment of a high-level goal. Agent rules
are plans that allow introspecting the discovered data and services from the web
and the knowledge present in service and content discovery rules to anticipate
the contents and services to be found on specific resources from the web. By the
definition of plans, an agent can be configured to target specific resources.

The discovery framework has been evaluated on different scenarios, each one
covering different levels of the framework. Contenidos a la Carta project deals
with the mashing-up of news from electronic newspapers, and the framework was
used for the discovery and extraction of pieces of news from the web. Similarly, in
Resulta and VulneraNET projects the discovery of ideas and security knowledge
in the web is covered, respectively. The service level is covered in the OMELETTE
project, where mashup components such as services and widgets are discovered
from component repositories from the web. The agent level is applied to the
crawling of services and news in these scenarios, highlighting how the seman-
tic description of rules and extracted data can provide complex behaviours and
orchestrations of tasks in the web.

The main contributions of the thesis are the unified framework for discovery,
which allows configuring agents to perform automated tasks. Also, a scraping
ontology has been defined for the construction of mappings for scraping web
resources. A novel first-order logic rule induction algorithm is defined for the
automated construction and maintenance of these mappings out of the visual
information in web resources. Additionally, a common unified model for the
discovery of services is defined, which allows sharing service descriptions.

Future work comprises the further extension of service probing, resource

ranking, the extension of theScraping Ontology}, extensions of the agent model,

and contructing a base of discovery rules.

Resumen

La presente tesis doctoral contribuye al problema de descubrimiento de
servicios y recursos en el contexto de la web combinable. En la web actual,
las tecnologias de combinacién de aplicaciones permiten a los desarrolladores
reutilizar servicios y contenidos para construir nuevas aplicaciones web. Pese a
todo, los desarrolladores afrontan un problema de saturacion de informacién a la

hora de buscar servicios o recursos apropiados para su combinacion.

Para contribuir a la solucion de este problema, se propone un marco de trabajo
para el descubrimiento de servicios y recursos. En este marco, se definen tres capas

sobre las que se realiza descubrimiento a nivel de contenido, servicio y agente.

El nivel de contenido involucra a la informacién disponible en recursos web.

La web sigue el estilo arquitectdnico[Representational Stateless Transfer (REST)| en

el que los recursos son devueltos como representaciones por parte de los servidores

alos clientes. Estas representaciones normalmente emplean el lenguaje de marcado

IHyperText Markup Language (HTML), que, unido al estandar

Sheets (CSS)} describe el marcado empleado para mostrar representaciones en un
navegador web. Aunque el uso de estindares de la web semantica como

IDescription Framework (RDF)|hace apta esta arquitectura para su uso por procesos

automatizados, estos estandares no son empleados en muchas ocasiones, por lo
que cualquier automatizacion debe basarse en el procesado del marcado
Este proceso, normalmente conocido como Screen Scraping en la literatura, es el
descubrimiento de contenidos en el marco de trabajo propuesto. En este nivel,
un conjunto de reglas de descubrimiento indican cémo los diferentes datos en
las representaciones de recursos se corresponden con entidades semanticas. Al
procesar estas reglas sobre recursos web, pueden obtenerse contenidos descritos

semanticamente.

El nivel de servicio involucra las operaciones que pueden ser llevadas a cabo en

la web. Actualmente, los usuarios de la web pueden realizar diversas tareas como

X111

busqueda, blogging, comercio electronico o redes sociales. Para describir los posi-
bles servicios en arquitecturas se propone en este nivel una metodologia de
alto nivel para descubrimiento de servicios orientada a funcionalidades. Este marco
de descubrimiento ligero permite definir reglas de descubrimiento de servicios para
identificar operaciones en interacciones con recursos Este descubrimiento
es por tanto llevado a cabo al aplicar las reglas de descubrimiento sobre contenidos
descubiertos en interacciones en un nuevo procedimiento llamado sondeo
de servicios. Ademas, el descubrimiento de servicios puede ser llevado a cabo

mediante el modelado de servicios como contenidos. Es decir, mediante la re-

cuperacién de documentacién de[Application Programming Interfaces (APIs)|y
listas de en registros de servicios como Programmable Web. Para ello, se ha

definido un modelo unificado de componentes combinables para[Mashup-Driven]|

IDevelopment (MDD)| tras el anélisis de repositorios de servicios de la web.

El nivel de agente involucra la orquestacion del descubrimiento de servicios y
contenidos. En este nivel, las reglas de nivel de agente permiten especificar compor-
tamientos para el rastreo y ejecucion de servicios, lo que permite la consecucion
de metas de mayor nivel. Las reglas de los agentes son planes que permiten la intro-
speccion sobre los datos y servicios descubiertos, ast como sobre el conocimiento
presente en las reglas de descubrimiento de servicios y contenidos para anticipar
contenidos y servicios por encontrar en recursos especificos de la web. Mediante
la definicion de planes, un agente puede ser configurado para descubrir recursos

especificos.

El marco de descubrimiento ha sido evaluado sobre diferentes escenarios, cada
uno cubriendo distintos niveles del marco. El proyecto Contenidos a la Carta
trata de la combinacion de noticias de periddicos digitales, y en él el framework
se ha empleado para el descubrimiento y extraccion de noticias de la web. De
manera analoga, en los proyectos Resulta y VulneraNET se ha llevado a cabo un
descubrimiento de ideas y de conocimientos de seguridad, respectivamente. El
nivel de servicio se cubre en el proyecto OMELETTE, en el que componentes
combinables como servicios y widgets se descubren en repositorios de compo-
nentes de la web. El nivel de agente se aplica al rastreo de servicios y noticias
en estos escenarios, mostrando como la descripcién semantica de reglas y datos
extraidos permiten proporcionar comportamientos complejos y orquestaciones

de tareas en la web.

Las principales contribuciones de la tesis son el marco de trabajo unificado para

descubrimiento, que permite configurar agentes para realizar tareas automatizadas.

Ademas, una ontologia de extraccion ha sido definida para la construccién de corre-
spondencias y extraer informacion de recursos web. Asimismo, un algoritmo para
la induccion de reglas de logica de primer orden se ha definido para la construccion
y el mantenimiento de estas correspondencias a partir de la informacién visual de
recursos web. Adicionalmente, se ha definido un modelo comun y unificado para
el descubrimiento de servicios que permite la comparticion de descripciones de
Servicios.

Como trabajos futuros se considera la extension del sondeo de servicios, clasi-
ficacion de recursos, extension de la ontologia de extraccidn y la construccion de

una base de reglas de descubrimiento.

Contents

Resumen|
Contents
[1_Introductionl
L1 Motvationl
(1.2 Objectives|o vt
2 State of the art|
21 TIntroductionl.
[2.2° Screenscraping
[2.2.1 Regularexpressions|iieiii.. ..
222 Treematching|.
2.2.3 Wrapperinduction|.
[2.2.4 Vision-based approaches|
2 €) 0)
[2.2.6 Unsupervised approaches|
2.2.7 Discussionl oot
2.3 Servicediscovery|.
|2‘3.1 ;;ct! ;EQI !icc:d tttttttttttttttttttttttttttttt
2.3.2 Semantic Web Services
2.3.3 Semantic REST services|
2.3.4 Otherapproaches
235 Discussion|o
24 Conclusions

xi

xiii

xvil

CONTENTS

[3 Discovery framework|

[3.4.1 Descriptionmodel|.

[3.4.2 Servicediscoveryrules|

[3.5.1 Semantic Scraping approach|. oLl

[3.5.2 Semantic scrapingontology|

[3.5.3 Content discovery rules|

4.3.1 Training attributes and classes|

4.3.2 Inductionalgorithm|.

[4.3.3 Wrapper conversion|.

[5 Service discoveryl|

[5.2.1 Feature-Oriented descriptions|
[5.2.2 Serviceprobing|.
5.3 Servicesas contentslttt

36
38
39
40
41
41
43
43
46
46
47
48
53
54

55
56
57
61
64
64
68
69

70
72
73
73
75
78
79
85
89

CONTENTS

6.2.1 Scraping Ontology|.« oot 93

6.2.2 Automatic rule induction| oL 94

(6.3 Servicediscovery|. 100
[6.3.1 Serviceprobing/.......... 100

[6.3.2 Services asCoNLents| « « « « v v v v v v v vt 108

(6.4 Agentlevell 115
[6.4.1 Description| 117

642 Resultd . ..o ovvei i 119

.5 _Conclusions L 121
7__Conclusions and future workl 122
71 _Conclusions| 124
7.2 _Publications 126
(73 _Futureworkl 129
Bibliography 133
149
[List of Tables| 151
153
Acronyms 155

XIX

XX

Chapter 1

Introduction

In this chapter, the motivation and objectives of the thesis are introduced to
the reader. The current web contains a vast amount of information in web ap-
plications. Additionally, web applications usually publish their services so that
third-party applications can consume them. Through the use of standards like

IResource Description Framework (RDF)|proposed by the appli-

cations can consume the contents and use the services automatically. However,

very frequently semantic descriptions of contents and services are not used, which
limits the construction of these kinds of applications. This thesis contributes
to the problem of bootstrapping semantic descriptions in the web by defining a

uniform framework for discovery of contents and services.

1. INTRODUCTION

1.1 Motivation

The web has an increasing number of applications and services that cover different
domains and fields. Users can enjoy a wide range of applications, from e-commerce
to blogging, media or social networking. The possibilities of the current web are
only limited by the interoperability between applications. Internet versatility

would increase if applications could be arbitrarily composed and automatically

executed to fulfil a user’s goal. This[Service-Oriented Architecture (SOA)approach

[[Erl, 2005] has led to research in several areas, such as|Semantic Web Services|

[Zhou et al., 2006]] or mashups [Yu et al., 2008].

SOA|suggests services being publicly accessible to make the Web a kind of
global software library, with software services and components ready for their
use by developers. In order to make services machine processable,
[[Zhou et al., 2006] standards such as OWL-S [World Wide Web
Consortium) [2004]] or[Web Service Modeling Ontology (WSMO)|[Roman et al.,

2005]] allow building semantic service descriptions.

The architecture misses integration with [Representational Statef
lless Transfer (REST) architectural style [Wilde and Gaedkel 2008]], resulting in

the use of the Web as a platform and thus adding unnecessary complexity to the

protocol stack. In order to improve the integration of the service architecture with
the REST]architectural style of the Web, initiatives such as[Web Application De]
lscription Language (WADL) [Hadley, |2009] try to enable|Semantic Web Services|
approach with aRESTful design in mind.

Anyway, both[Web Servicestbased and [REST}based [Semantic Web Services|

approaches share the common target of defining semantically rich service de-

scriptions in order to enable agents to perform automatic tasks such as service

discovery, execution, and composition.

Such approaches for semantic description provide means to describe every
kind of service and process the respective descriptions to automate tasks such as
execution or composition. They are abstract and flexible enough to allow describ-
ing every possible service. Whenever a new service is deployed, a description
has to be built in order to make the service available for automatic agents to pro-
cess it. Usually, this implies describing service’s inputs and outputs semantically,
as well as defining the precise operation the service performs, which can be a

time-consuming task.

As a result, although these kinds of approaches are formally sound and many

Objectives

have been successful from a research point of view, none has reached wide adoption
in the industry [Murphy et al.,|2008]]. The effort of describing services in web
applications can be too big and too often web developers do not perform such
task.

Similarly, the contents that are published in web resources experience a similar

situation. Semantic technologies such as|Resource Description Framework in|
|Attributes (RDFa)| [[Adida and Birbeck, 2008]] allow annotating web resources
and publishing [Linked Data| [Bizer et al., 2009], which makes information ma-
chine processable. However, the lack of applications that exploit

annotated contents is small, resulting in content providers not annotating their

contents semantically.

Still, even with semantically annotated contents, there are pieces of informa-
tion which are either hidden behind search services (or, in general, any HyperTex{]
IMarkup Language (HTML)|form) or hardly accessible, so long as information

discovery in the Web is performed through web spidering. This makes that tasks
such as getting a particular archive of posts in a web log is a tough task that requires
spidering techniques such as focused crawling [[Chakrabarti et al.,|1999] or using
search forms. By describing search services semantically, access to information is

improved.

1.2 Objectives

As mentioned, the|Semantic Web|experiences a bootstrapping problem because

of the reduced amount of semantically described services and contents. Applica-
tions that exploit semantically annotated services and contents are scarce, while
annotated resources do not grow because this scarcity of semantically empowered
applications. This chicken and egg problem can be addressed through automatic
resource discovery, which is the main topic of the thesis.

The thesis has the following objectives:

e Define a unified discovery framework for architectural style. The
web follows the architectural style, which consists of a stateless
hypermedia system comprisen by resources with uniform interfaces. The
possible interactions with these resources are the services available in the
system, while representations include the possible contents available in the
web. Some approaches to discovery and semantic description dismiss these

design guidelines of the web. This thesis attempts to define a framework

1. INTRODUCTION

that fits the REST|architectural style of the web while providing unified

techniques to perform discovery at content and service levels.

e Research techniques for automatic content discovery. Plenty of the resources
available in the web are not annotated. Therefore, their representations
contain unstructured contents which require techniques for their extraction
and discovery. The thesis attempts to contribute to information extraction

by defining models and algorithms for content discovery.

e Research techniques for automatic service discovery. In the REST|architec-
tural style, interactions with resources follow a uniform interface, whereby

a user agent is able to perform a predictable action on a resource. How-

ever, aspects such as [HyperText Transfer Protocol (HTTP) parameters,

the specific domain of the web resource which receives the interaction, or
the loose semantics of operations make semantics useful to clarify
the particular action being performed on an interaction. Discov-
ering the precise semantics behind a service is a challenge that is most
times achieved by sharing a semantic description of the interface of the
service. Due to the bootstrapping problem of the[Semantic Web} the thesis
researches techniques to discover the services and automatically discover

service descriptions.

The dissertation is organized as follows. The state of the art regarding the
topics of the thesis is described in chapter 2 Chapter |3| describes the unified
discovery framework that is followed in the thesis. Chapter 4| details the content
level of the discovery framework, while chapter 5| describes the service level of
the framework. The evaluation of the framework and the discovery techniques
is detailed in chapter[6] Finally, chapter[7]draws some conclusions and proposes

possible future work.

Chapter 2

State of the art

This chapter covers the state of the art in the context of the thesis. The thesis
targets discovery of contents and services. Therefore, techniques for extracting
information from unstructured web resources, and the main approaches and

standards for service description and discovery are described in this chapter.

2. STATE OF THE ART

2.1 Introduction

As introduced in chapter|1] the thesis addresses the problem of resource discovery.
This involves solving several issues, from screen scraping to service description.
Unstructured REST] resources might contain relevant contents for discovery,
or be services subject to be discovered. Web mining [Kosala and Blockeel, 2000]
and, more specifically, information extraction [|[Chang et al., 2006] are research

fields that cover the problem of extracting information from unstructured re-

sources. The term [Screen Scrapingis the one usually employed to represent the
kind of problem of extracting data out of unstructured [HTML|pages.

In the case of service discovery, there are several approaches to service mod-

elling. These service description frameworks allow describing services, publishing
their descriptions, and performing service discovery. As will be seen in section
the thesis researches techniques for automatically building service descrip-
tions through an approach called service probing. Therefore, the thesis does not
focus on defining a new service description framework. However, a background

on these kinds of frameworks is given for the reader’s interest.

2.2 Screen scraping

Plenty of approaches have already dealt with the problem of extracting informa-
tion out of web sites which do not publish metadata that describe them. Usually,
web servers return[HTML] representations of the web resources they host. The
problem of [Screen Scraping|attempts to locate and extract relevant information

from these|[HTML| representations. Whenever the[HTML] code does not contain

indicators to identify the relevant information, it is considered an unstructured

document that is subject to being screen-scraped.

The techniques for scraping unstructured representations of web
resources are listed in this section. They can be classified into supervised and
unsupervised approaches, depending on the requirement of human supervision
over some data sets before the execution of training algorithms.

The techniques behind these kinds of systems are summarized in this section.

2.2.1 Regular expressions

In order to extract a particular piece of information out of an[HTML|document,

one alternative consists of considering the document as plain text and applying

Screen scraping

Document Regular expression

<html>

<body>

<p>Data: 32

</p> <p>Data: (.*)
</body>

</html>

<html>

<body>

<p>

Data: 32 <p>\nData: (.*)
</p>

</body>

</html>

Table 2.1: Regular expressions for two equivalent[HTML|documents

patterns for data extraction. These patterns are usually represented by regular
expressions, which allow defining anchor texts that delimit the targeted data and
extract these data.

An example would be extracting the location data from an frag-
ment such as <p>Location: Madrid</p>. The
location data could be extracted by using the regular expression (.*) .

Regular expressions are a quick and simple way to extract information from
web resources. However, as they dismiss the tree structure of documents,
they are not proper[HTML]document The main disadvantage of this fact
is the poor resistance to changes in serializations of the document. An
example of this issue is shown in table 2.1} which shows two documents
that have equivalent[Document Object Model (DOM) trees but different serializa-

tions. Each one requires a different regular expression to select their data, which
makes it hard to define robust regular expressions. Obviously, a common regular
expression that fits both documents can easily be defined, but the example points

out the drawback of mixing parsing and extraction tasks into one same pattern.

2.2.2 Tree matching

By dismissing the structured nature of[HTML|documents, regular expressions are

vulnerable to changes in document serializations and are hard to maintain and

generate. Unlike regular expressions, using the tree of an[HTML|document

2. STATE OF THE ART

prevents parsing problems and allows operations such as tree matching. Figure [2.1]

shows the DOM tree associated to an document.

HTML

<html>
<head>
<title>Newspaper</title>
</head>
<body>
<div class="header">
<hl>
Microsoft acquires Skype
</h1>
by <a href=
"http://johntheblogger.com">
John the blogger
</div>
<div class="description">
<p>After weeks of negotiation,
Microsoft has finally reached an
agreement for buying Skype.</p>
</div>
</body>
</html>

Figure 2.1: Example of tree

An operation that is relevant to [Screen Scraping|is tree matching. Given

two trees, tree matching is the set of mappings between the nodes of the trees.
Tree matching is a method that is useful to induct tree patterns in web resources.
It is based on tree edit distance, i.e. the minimum amount of editions that are
needed to make on a tree to transform it into another one. Addition, removal or
modification of a node are the considered possible editions.

An example of tree matching is shown in figure[2.2] In that figure, two different
trees are shown with their respective mappings. The tree distance is two, as long
as two operations (two node additions) are needed to transform one tree into

another.

Figure 2.2: Example of tree matching

Screen scraping

The matching among more than two trees is employed when trying to find a
general pattern across many tree fragments and is called multiple tree alignment.
The center star method [[Gustfield, [1997]] or partial tree alignment [Zhai and Liu,
2005a] are algorithms to perform this task, whose optimal solution has exponential
time complexity [Carrillo and Lipman, [1988]]. Therefore, given a set of similar
tree fragments, it is possible to extract a general pattern that fits the samples. An
example of multiple tree alignment with three trees is shown in figure 2.3} where
an pattern tree is obtained after the alignment. In such figure, nodes marked with
a ? symbol are optional in the pattern, whereas nodes marked with a * symbol

might appear repeated times (from zero to any).

77N BN
{span)* { a)?
\\}/ \\,/

Figure 2.3: Example of multiple tree alignment

As will be seen, supervised approaches employ tree matching to induct gen-
eralized trees by processing tree fragments that have been previously selected
and annotated by human users. Additionally, unsupervised approaches use tree
edit distance to find similar fragments in web resources and automatically induct

wrappers out of unannotated instances.

2.2.3 Wrapper induction

Wrapper induction is the technique in which, by using tree matching, inducts
generalized patterns for data extraction. In such approach, given a target web
page that wants to be scraped, a user manually annotates desired information
that he/she wants to extract. With these annotated samples, a generalized pattern
is inducted by using tree matching. Inducting a pattern ensures that if the data
changes in the web resource, it will be extracted anyway, as the extractor is not
tied to some specific data.

However, if the layout of the document changes in a way that the tree pattern

does not fit it anymore, this technique would fail to extract the desired data. These

2. STATE OF THE ART

kinds of layout changes typically take place in web redesigns. Therefore, the
vulnerability to layout changes is the major drawback of the technique of wrapper
induction.

Some systems provide tools that allow the manual annotation of web resources
and induct wrappers for information extraction. Some examples are Piggy Bank
[Huynh et al., 2007]], Reform [[Toomim et al.,[2009]], Thresher [Hoguel 2005]]
and Marmite [[Wong and Hong, 2007]]. Piggy Bank provides also a web scraper
that produces out of web pages. Their approach is based on a browser
plugin that provides a visual interface for programming the scraper and produces
JavaScriptas a result. Reform [[Toomim et al.,[2009] proposes scrapers that can
be attached to web pages by non-programmers. The system is also integrated
in Firefox web browser and allows users to annotate which parts of the web
page contains a predefined pattern, and includes machine learning techniques for
generalizing these annotations in the scraper. Thresher [Hogue, 2005] provides an
interface where users can specify examples of semantic patterns by highlighting
and assigning relevant features in the semantic web browser Haystack.

Also, some systems are targeted to experienced developers that need to con-
struct scrapers and do not mind dealing with low-level concepts such as
selectors, and wrappers. This is the case of systems like Chickenfoot [Bolin et al.,

2005]] or Denodo [Pan et al., 2002]. Both define libraries for scraping,

so that programmers can quickly and easily create extractors.

2.2.4 Vision-based approaches

Similarly, the systems that are based on visual features do not require manual
supervision when applied to new web sites. Some approaches [Cai et al., 2003
such as the[Vision-based Page Segmentation (VIPS)|algorithm [[Wei et al., 2006]]

perform this by defining some heuristics that are based on the[HTML|tags used
for layouts, such as tables or titles. This limits the approach to the web sites that

follow these design guidelines. Finally, another tool [Pembe and Giing6r, [2010]
uses visual information to extract data from web pages, which makes it work in
web pages without preliminar knowledge about them. This tool only builds a
hierarchical structure of the web page based on titles and sections.

There are studies that provide solutions to the problem of wrapper mainte-
nance [[Raposo et al., 2005], some of them using machine learning techniques for
this purpose [Lerman et al., 2003]. However, they do not address the problem of

wrapper generalization to different web sites.

10

Screen scraping

2.2.,5 GRDDL

|Gleaning Resource Descriptions from Dialects of Languages (GRDDL)| [[Con
nolly, [2007] is the standard recommendation for constructing[RDF graphs out of
[HTML] or [Extensible Markup Language (XML)|documents. In order to extract
the semantic information, a[GRDDL}aware agent should read the
annotations of the resources, which are usually provided as
[sible Stylesheet Language Transformation (XSLT)|annotations. [GRDDL]proposes
a syntactic approach that can benefit from the reuse of scrapers among web sites.
However, specifies an unidirectional mapping between the implemen-

tation (XSLT scraper) and the web resource. This prevents this solution from

dereferencing scraped data and reasoning about the scraping process. A transpar-
ent programmatic description would allow enhacements in the scraping process,
such as reasoning on visual aspects of the web resource, distributed scraping using
multiagent systems, or focused scraping and reasoning on the scraped resources

(for example, search a piece of sports news about Rafa Nadal taken in China).

2.2.6 Unsupervised approaches

Some approaches perform automatic unsupervised wrapper induction. These
systems attempt to identify repetitive patterns that occur in a document to build
extraction patterns. This technique is applied by different extractors [Crescenzi
et al., 2001]] [Arasu, 2003]] by identifying differences among neighbour resources,
as well as in a supervised basis [[Zhai and Liu, 2005b].

These approaches do not rely on user-annotated document fragments, and
therefore require no interaction from a user. Some approaches integrate external
knowledge to annotate the data type, such as Wikipedia [|[Cimiano et al., 2004], to
classify and identify the type of the extracted structured data.

The main limitation with these approaches is that the output of the scraping is
usually syntactical. Identifying the semantic relations of the extracted contents is

out of their scope, and they focus on building a structure out of the unstructured

input[HTML|document.

2.2.7 Discussion

This section discusses the techniques on|Screen Scraping|after covering the state

of the art behind it. Some pending challenges are identified in the state of the art:

robustness, generalization, and introspection.

11

2. STATE OF THE ART

The mentioned tools are not compatible among them. In fact, many scrapers
are based on code, leaving room for improvements if the extractor
definitions were transparent. First, the definition of a general model for scrapers
allows separating its programming model for its interface. In addition, scraping
task goals could be queried, analysed and composed in a common language such as
This is not feasible if these goals are specified in an implementation language
such as[JavaScripg These tools work on web sites that have been annotated by a
user. The main limitation is that they require user supervision for every new web
site, as long as a wrapper that was built for one web site cannot be applied to a

different site.

2.3 Service discovery

The current web has applications with plenty of services available, which are
of many different kinds. Approaches to describe services semantically allow
automatic agents to execute and compose services automatically. The idea behind
service discovery is that automatic agents are able to understand a service and
its semantics in order to perform automatic execution and composition. The
common approach to fulfil this goal is to define a service description that provides
this information to the agent.

Service discovery involves identifying services that satisty some specific re-
quirements. In the context of the web, this involves tasks such as advertisement,
storage, or matchmaking [Kirchberg et al.,|2010].

Services are described in order to being advertised to service consumers. These
service descriptions are usually documents in a standard format that can be pro-
cessed by an automated processed to register the service or, in the case of semantic
descriptions, perform advanced operations such as automatic composition.

Some approaches to semantic service description follow the Web Services Ar-
chitecture, such aslOWL Services (OWL-S) [World Wide Web Consortium, 2004],
[Roman et al., 2005], or [Semantic Annotations for WSDL (SAWSDL)
[Kopecky et al., 2007]. To favour the integration with Internet’s architecture,
[RESTHul services started to be employed in web applications, which caused
[RESTul and lightweight alternatives to semantic web services to appear. SAJREST]
[[Sheth et al., 2007] or [[Wright State University, 2008 are approaches

that provide languages to describe RESTful APIs specifications. Similarly,[WADL
[Hadleyl, [2009] proposes describing REST}ful [Application Programming Inter]

| 12 |

| Service cﬁscoveryl

taces (APIs) by defining a] WADL} based file. Also, [[Vitvar et al.,2007] is a
reduced variant of[WSMO)|to simplify service description.

The type of service description determines the discovery process by affecting
mainly the quality of the service matching. Service matching considers several tech-
niques, which can be summarized into functional-based and non-functional-based
methods [D’Mello and Ananthanarayana, |2010]. As functional-based methods

the following approaches are proposed in the literature:

e Syntactic matching. Under this approach, lightweight techniques such as
keyword/category matching [|[Curbera et al., 2002] or interface matching
are employed [[Wang and Stroulia, 2003]. In these cases, the matching only
involves textual matching or comparison of input and output names or

types, and no advanced semantic matching is performed.

e Behaviour-based matching [[Park et al.,|2009]. This approach focuses on the
discovery of non-atomic services which are composition of other services. It
works under the assumption that services are formally described, and works

with process constraints and process algebras.

e Semantic matching. In this case, semantic information in the service de-
scription is employed to perform an advanced matching between the user’s
goals and the service function. The matching between the searched term
and the candidate term employs semantic techniques like semantic distance
or similar. For this, information retrieval methods [Wu and Chang, 2007]],

functional semantics-based matching [[Ye and Zhang, 2006], ontology-based

matching [J1, 2009, Zhang and Li, 2005], [Inputs Outputs Preconditions|
land Effects (IOPE)tbased matching [Spanoudakis et al.,)2007], and context

information-based methods [Martin et al., 2005]], are considered approaches.

Similarly, non-functional properties of services can be employed to perform

the service matching. The approaches that are considered in the literature are|Qual

lity of Service (QoS) matching [[Ye et al.,2009], usability-based matching [Nam}

goong et al., 2006]], usage-based discovery [Birukou et al.,|2007]], or preferences-
based methods [M’Bareck and Tata, [2007].

This section summarizes the main standards regarding service discovery,
grouped into|Web Services| [Semantic Web Services| and Semantic[REST|services.

13

2. STATE OF THE ART

2.3.1 Web services
The architecture comprises a set of standards often known as WS-

* standards. These standards provide means to model services syntactically in
terms of messages, operations, and ports. The available operations are mapped or
bound to some specific[HT TP methods, [Uniform Resource Locators (URLs)|and
parameters. This modelling freedom is a mismatch with the web’s architectural
style, where the uniform interface suggests using specific methods for each
operation. These kinds of mismatches are the reason why the alternative of
services has gained advocates recently. The section [2.3.3will cover the alternative
of RESTIservices in contrast to[Web Services The current section reviews the main

standards that comprise the stack in relation to service discovery:
namely,Web Service Definition Language (WSDL), a service description language,

and [Universal Description, Discovery and Integration (UDDI), an architecture of

service registry.

WSDL

[[Christensen et al., 2001] is the language employed in the WS-* standards
for describing services. It is an [XML}based language which provides means to
define messages, operations, and ports. only provides means to define
a syntactical functional description, i.e. a functional description where only
primitive types such as string, integer or boolean are allowed ways to model

Inputs, outputs or message types.

An example of document is the following [[Christensen et al.,|2001]):

<?xml version="1.0" encoding="UTF-8"7>

<wsdl:description
targetNamespace="http://example.org/TicketAgent.wsd120"
xmlns:xsTicketAgent="http://example.org/TicketAgent.xsd"
xmlns:wsdl="http://wuw.w3.org/ns/wsdl"
xmlns:xs="http://www.w3.0org/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=

"http://wuw.w3.org/ns/wsdl http://www.w3.org/2007/06/wsdl/wsd120.xsd">

<wsdl:types>
<xs:import schemalocation="TicketAgent.xsd"
namespace="http://example.org/TicketAgent.xsd" />
</wsdl:types>

<wsdl:interface name="TicketAgent">

<wsdl:operation name="listFlights"

14

Service discovery

pattern="http://www.w3.org/ns/wsdl/in-out">
<wsdl:input element="xsTicketAgent:listFlightsRequest"/>
<wsdl:output element="xsTicketAgent:listFlightsResponse"/>
</wsdl:operation>

<wsdl:operation name="reserveFlight"
pattern="http://www.w3.org/ns/wsdl/in-out">
<wsdl:input element="xsTicketAgent:reserveFlightRequest"/>
<wsdl:output element="xsTicketAgent:reserveFlightResponse"/>
</wsdl:operation>
</wsdl:interface>

</wsdl:description>

As it can be observed in the example, the description provides infor-
mation on the operation that the service performs, their input and output types
and the endpoint (i.e. used by the service.

The operation represents an exchange of messages. allows different
patterns of message exchanges, to indicate whether a communication is unidirec-
tional from client to server or viceversa, or bidirectional. It is also possible to
indicate that an operation returns an answer only in case of failure.

The format used by the service messages is specified by using bindings. A

service can employ [HTTP|for exchanging messages or encapsulate them
into the[Simple Object Access Protocol (SOAP)|protocol (and in this case using

HTTP| as transport protocol and violating the REST| architectural style con-
straints). bindings define the serialization details of the messages exchanged

between client and server.

UDDI

is an architecture for service registry that can be employed by service
providers to publish their services, and by consumers to query and retrieve services.
A acts thus as a broker between service providers and consumers by
publishing available[WSDL]service descriptions, enabling service discovery.

also provides services to describe businesses that provide services in the
registry. A[UDDIbusiness registration includes white pages (contact information),
yellow pages (industrial categorization based on taxonomies), and green pages
(technical information about the services provided by the company).

At design time,[UDDI| was envisioned in a scenario where consumers would
be linked to services by this kind of brokerage system. Service consumers would
select services dynamically and at runtime. However, in practice the industry has

not typically needed these features, which has resulted in alternative non-standard

15

2. STATE OF THE ART

registries to be proposed, such as [Electronic Business using XML (ebXML)Y}

[Websphere Service Registry and Repository (WSRR)[*, or[Mule Enterprise Service]

BuslPl

2.3.2 Semantic Web Services

This section covers the approaches to attempt to achieve semantic service discovery

by defining semantic service descriptions that automatic agents can process and

use. The difference with traditional Web Services is the level of automation that
semantics allow. descriptions such as only cover the syntactic
level of service modelling.

For example, the interface needed to execute a service is defined in terms of
parameter names or input types, which allows a human administrator to get a
certain idea about how to use the service. This human administrator relies on his
natural language knowledge to properly interpret the parameter names and other
textual descriptions. An automatic process, however, is not capable of taking
advantage of such descriptions to the same level.

By using semantics to represent the elements that describe services, automatic
agents are allowed to employ relations among similar concepts for tasks such
as service selection and mediation, among others. This allows automating the
development of composed applications by enabling automatic selection, execution
and composition.

The main approaches to build semantic service descriptions are covered next.

OWL-S

OWL-S|is the standard for describing|Semantic Web Services|that is based on
Ontology Language (OWL) Because of being based on [OWL} it fits naturally
other ontologies, provinding an vocabulary for service description.

The motivating tasks for (OWL-S|are enabling automatic web service discovery,

automatic invocation, and automatic composition and interoperation. [(OWL-S
attempts to allow declarative advertisements of service properties and capabilities
that can be used for automatic service discovery.

There are four main elements in|[OWL-S|descriptions, as shown in figure

OWL-§|acts as an upper ontology for services. The service class shown in the

'http://wuw.ebxml.org/
“http://www-01.ibm.com/software/integration/wsrr/
Shttp://www.mulesoft.org/

16

http://www.ebxml.org/
http://www-01.ibm.com/software/integration/wsrr/
http://www.mulesoft.org/

Service discovery

ServiceGrounding

support (how to access it)

ServiceProfile

present (what it does) describedBy (how it works)

ServiceModel

Figure 2.4:|OWL-§|elements

figure is extended with three subclasses, which attempt to answer three questions

about the modelled service:

e What does the service provide for clients?. The service profile attempts to
answer this question. In practice, an OWL-S|subclass of service profile is
defined and semantic matching is made against this concept at matchmaking
time. Additionally, the profile allows defining information about the service
provider, the function in terms of and non-functional properties

such as service quality and ratings.

e How is it used?. This is given by the service process model. The semantic
content of requests and responses, conditions under which certain outcomes
will take place and possible step-by-step processes are defined by the service
model. Therefore, services that involve several interactions on different
methods are subject to have a service model that provides useful information

to agents interested in using these services’ functionalities.

e How does one interact with it?. The service grounding answers this question
by allowing defining the usage of underlying transport protocols. Typically,
the service grounding will be tied to a|[WSDL|description by specifying a

communication protocol, message formats, [Uniform Resource Identifiers|

(URIs), and ports.
An example of OWL-§|service description is shown next:

<rdf :RDF
xmlns:rdf= "grdf ;#"
xmlns:rdfs= "grdfs;#"

17

2. STATE OF THE ART

xmlns:owl = "&owl;#"
xmlns:service= "&service;#"
xmlns:process= "&process;#"
xmlns:profile= "&profile;#"
xmlns:actor= "&actor;#"
xmlns:addParam= "&addParam;#"
xmlns:profileHierarchy= "&profileHierarchy;#"
xmlns:country= "&country;#"
xmlns:concepts= "&concepts;#"
xmlns:ba_process= "&ba_process;#"
xmlns:ba_service= "&ba_service;#"
xmlns= "&DEFAULT ; #"

xml :base= "&DEFAULT ;">

<profileHierarchy:AirlineTicketing rdf:ID="Profile_BravoAir_ReservationAgent">
<service:presentedBy rdf:resource="&ba_service;#BravoAir_ReservationAgent"/>

<profile:has_process rdf:resource="&ba_process;#BravoAir_Process"/>

<profile:serviceName>BravoAir_ReservationAgent</profile:serviceName>

<profile:textDescription>
This service provide flight reservations based on the
specification of a flight request. This typically involves a departure
airport, an arrival airport, a departure date, and if a return trip is
required, a return date.

If the desired flight is available, an itinerary and reservation number

will be returned.

</profile:textDescription>

<profile:serviceParameter>
<addParam:GeographicRadius rdf:ID="BravoAir-geographicRadius">
<profile:serviceParameterName>
BravoAir Geographic Radius
</profile:serviceParameterName>
<profile:sParameter rdf:resource="&country;#UnitedStates"/>
</addParam:GeographicRadius>

</profile:serviceParameter>

<profile:hasInput rdf:resource="&ba_process;#DepartureAirport"/>
<profile:hasInput rdf:resource="&ba_process;#ArrivalAirport"/>
<profile:hasInput rdf:resource="&ba_process;#0utboundDate"/>
<profile:hasInput rdf:resource="&ba_process;#InboundDate"/>
<profile:hasInput rdf:resource="&ba_process;#RoundTrip"/>
<profile:hasInput rdf:resource="&ba_process;#AcctName"/>
<profile:hasInput rdf:resource="&ba_process;#Password"/>
<profile:hasInput rdf:resource="&ba_process;#Confirm"/>
<profile:hasOutput rdf:resource="&ba_process;#FlightsFound"/>
<profile:hasOutput rdf:resource="&ba_process;#PreferredFlightItinerary"/>
<profile:hasOutput rdf:resource="&ba_process;#ReservationID"/>

<profile:hasResult rdf:resource="&ba_process;#HaveSeatResult"/>

18

Service discovery

</profileHierarchy:AirlineTicketing>
</rdf :RDF>

Regarding the annotation task, it is worth mentioning the METEOR-S|frame-
work [[Patil et al., 2004} [Sivashanmugam et al.,2003]], which helps in annotating

descriptions with terms from|OWL-S|ontology. This framework was later
on extended to support other description models such as[WSMO

Therefore, an description captures information about inputs, outputs,
preconditions, and effects, all grouped into an class that can be matched
using semantic technologies. Regarding service matchmaking, four types of match-
ing are typically distinguished when analyzing the matching of a desired service

(i.e. a user’s goal) with actual described services [[Paolucct et al., 2002]:

e Exact match. The output of the request and the one of the service are exactly

the same.
e Plugin match. The output of the service subsumes the output of the request.

e Subsumption match. The output of the request subsumes the output of the

service.
e Fail. There is no matching between the compared service profiles.

Additionally, process information is provided so that step-by-step interactions
(e.g., booking a ticket, which usually involves a search task and a booking task)
can be known in advance by automatic agents. Finally, the necessary means to

execute the service is present thanks to the service grounding.

WSMO

SMO,| [[ESSI WSMO working group, |2004] is an initiative for semantic web
service description that proposes a framework and a set of ontologies for such

purpose. It is based on the following principles:

e Web compliance. identifies resources using[URIgand adopts names-
paces for defining information spaces. Additionally, it supports XML]and
otherWorld Wide Web Consortium (W3C)|recommendations like resource
decentralization. This does not necessarily mean that sticks to all
guidelines behind the architectural style principles.

19

2. STATE OF THE ART

e Ontology-based. Resource descriptions and all interchanged data by services

are represented using ontologies. Although[WSMO)|thus supports

[Web] vision, it uses alternative representation languages for its ontologies,

instead of RDE and [OWT1]standards.

Strict decoupling. [WSMO| resources are defined in isolation. Le. resources
are independent and without being specified to perform an implicit usage of

other resources.

Centrality of mediation. [WSMO)| addresses the problem of mediation in
service composition and makes it a core component of the framework in

order to tackle heterogeneity problems on data, protocols or processes.

Ontological role separation. makes a difference between user desires
and the services available in the system, as long as users’ contexts are usually

not the same as the ones the web services have been designed in.

Description versus implementation. [WSMO)| separates the description of
service elements from the actual executable technologies employed. It
focuses on providing a description model without concerning about the

implementation that allows the web services to be executed.

Execution Semantics. In order to verify the[WSMO]specification, the formal
execution semantics of reference implementations like[Web Service Mod
lelling Execution Environment (WSMX)|as well as other[WSMO}enabled
systems provide the technical realization of

e Service versus web service. differentiates the two concepts by
considering a web service a computational entity that is able to achieve a

user goal, while a service is the actual value provided by the invocation

[Preist, [2004]. Therefore, in web services provide access to services.

defines a formal model for describing services. Service descriptions
consist of preconditions and postconditions that model the service effects on the
inputs, outputs, and the system’s state. An example of a|WSMO)|description of a

ticket booking web service is shown next [Feier and Domingue, 2005]:

namespace {_"http://example.org/bookTicket#",

dc _"http://purl.org/dc/elements/1.1#",
tr _"http://example.org/tripReservationOntology#",
foaf _"http://xmlns.com/foaf/0.1/",

20

Service discovery

wsml _"http://www.wsmo.org/wsml/wsml-syntax#",
bti _"http://www.example.org/BookTicketInterfaceOntology#"}
webService _"http://example.org/bookTicketWebService"
importsOntology _"http://example.org/tripReservationOntology"
capability BookTicketCapability

interface BookTicketInterface

capability BookTicketCapability
sharedVariables {7creditCard, ?initialBalance, 7trip,

?reservationHolder, ?ticket}
precondition

nonFunctionalProperties
dc#description hasValue "The information of a trip which starts in
Austria together with the information about the person who wants to
have a reservation must be given as a part of a reservation request.
A credit card is also required."
endNonFunctionalProperties
definedBy
?reservationRequest [
reservationItem hasValue 7trip,
reservationHolder hasValue 7reservationHolder
] memberOf tr#reservationRequest
and
?trip member0f tr#tripFromAustria and
?creditCard[
balance hasValue 7initialBalance
] memberOf po#creditCard.
assumption

nonFunctionalProperties

dc#description hasValue "The credit card information provided by the
requester must designate a valid credit card that should be either
PlasticBuy or GoldenCard."
endNonFunctionalProperties
definedBy
po#validCreditCard(?creditCard)
and (?creditCard[
type hasValue "PlasticBuy"]
or
?creditCardl[
type hasValue "GoldenCard"]

postcondition
nonFunctionalProperties
dc#description hasValue "A reservation containing the details of a ticket

for the desired trip and the reservation holder is the result of the
successful execution of the Web service."

endNonFunctionalProperties

definedBy

?reservation memberOf tr#reservation[

reservationItem hasValue 7ticket,

reservationHolder hasValue 7reservationHolder

21

2. STATE OF THE ART

]
and
?ticket[
trip hasValue 7trip
]
member0f tr#ticket.
effect
nonFunctionalProperties
dc#description hasValue "The credit card will be charged with the cost of
the ticket."
endNonFunctionalProperties
definedBy
ticketPrice(?ticket, "euro", ?ticketPrice)
and
?finalBalance= (7initialBalance - ?ticketPrice)
and
?creditCard[

po#balance hasValue 7finalBalance

Regarding service discovery, describes three steps in the process of
discovery: goal discovery, web service discovery, and service discovery. As said,
according to terminology, a web service is a computational entity, while a
service is the actual obtained value. Goal discovery targets retrieving abstract goal
descriptions given some inputs that are provided by a user, such as input keywords
or logical expressions. Web service discovery attempts to identify suitable abstract
web services that match the discovered goals. Finally, service discovery targets the
discovery of actual services that fit the abstract web service description previously

discovered.

For the service discovery task, three approaches, varying in complexity, are
considered: syntactical matching, lightweight semantic matching, and heavyweight
semantic matching. Syntactical approaches do not vary greatly from [WSDLtbased

discovery and are based on keyword-based search or basic [Natural Language]

IProcessing (NLP) methods. Lightweight semantic matching considers ontologies,

action-object-modelling, and coarse-grained semantic descriptions, very much
in the fashion of the already mentioned[OWL-§ matchmaking (exact matching,
plugin matching, subsumption matching, etc.). Finally, heavyweight semantic
matching considers detailed service descriptions, with description of capabilities

and states.

22

Service discovery

SWSF

ISemantic Web Services Framework (SWSF)| [Battle et al., 2005] is an approach

to semantic service description that proposes an ontology called
IServices Ontology (SWSO)|and modelling language [Semantic Web Services Lan{

cuage (SWSL)| that is employed to define formal characterizations of services.
SWSEF| proposes two variants for service modelling: using first-order logic or logic

programming, resulting in two different ontologies: [First-order Logic Ontol}
logy for Web Services (FLOWS)|and |[Rule Ontology for Web Services (ROWS),
respectively.

SWSE|is similar to due to the fact that proposes three views of
a service: service descriptor, process model, and grounding (in the way of
service profile, service process and service grounding). The main difference resides
in the expressiveness of the language employed by [SWSH, which is based on first-

order logic, making use of logic predicates and terms to model states. Aspects such

as terms which vary over time are used to model changes in the world.

SAWSDL

SAWSDL| [Kopecky et al., 2007] allows mapping a syntactical functional de-
scription in to a semantic service description such as|OWL-S|or[WSMO|

SAWSDLspecification is motivated by the continuous growth in service descrip-

tion frameworks. Instead of defining a language for representing the semantic
models, provides mechanisms to reference semantic entities from within
WSDIL annotations.

Although does not define a service model, it introduces some termi-

nology of interest:

e Semantic model. A set of representations that are used to model an area of

knowledge. Ontologies are an example of semantic models.
e Concept. Any element of a semantic model, identified by a

e Semantic annotation. Additional information in a document’s element that

maps such element to a concept of a semantic model.

e Semantics. The set of concepts identified by semantic annotations.

SAWSDL]is defined by the principle of enhancing[WSDL| with annotations
that are agnostic to the semantic model employed. An example of a semantically-

annotated [WSDL| using[SAWSDLis given next:

23

2. STATE OF THE ART

<wsdl:description
targetNamespace="http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order#"
xmlns="http://www.w3.0rg/2002/ws/sawsdl/spec/wsdl/order#"
xmlns:wsdl="http://wuw.w3.org/ns/wsdl"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:sawsdl="http://wuw.w3.org/ns/sawsdl">

<wsdl:types>
<xs:schema targetNamespace="http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order#"
elementFormDefault="qualified">
<xs:element name="OrderRequest"
sawsdl :modelReference=
"http://wuw.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#0rderRequest"
sawsdl:loweringSchemaMapping=
"http://www.w3.0rg/2002/ws/sawsdl/spec/mapping/RDFOnt2Request . xml">
<xs:complexType>
<xs:sequence>
<xs:element name="customerNo" type="xs:integer" />
<xs:element name="orderItem" type="item" minOccurs="1"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="item">
<xs:all>
<xs:element name="UPC" type="xs:string" />
</xs:all>
<xs:attribute name="quantity" type="xs:integer" />
</xs:complexType>
<xs:element name="OrderResponse" type="confirmation" />
<xs:simpleType name="confirmation"
sawsdl:modelReference=
"http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#0rderConfirmation">
<xs:restriction base="xs:string">
<xs:enumeration value="Confirmed" />
<xs:enumeration value="Pending" />
<xs:enumeration value="Rejected" />
</xs:restriction>
</xs:simpleType>
</xs:schema>
</wsdl:types>

<wsdl:interface name="Order"

sawsdl :modelReference=

"http://example.org/categorization/products/electronics">
<wsdl:operation name="order" pattern="http://www.w3.org/ns/wsdl/in-out"
sawsdl :modelReference=
"http://wuw.w3.0rg/2002/ws/sawsdl/spec/ontology/purchaseorder#RequestPurchaseOrder">
<wsdl:input element="OrderRequest" />
<wsdl:output element="OrderResponse" />

</wsdl:operation>

24

Service discovery

</wsdl:interface>

</wsdl:description>

As it can be observed, a plain document is enriched with semantic
annotations. The construct modelReference is employed to indicate a one-to-one
mapping between[WSDL]elements and semantic concepts. Similarly, the construct
schemaMapping allows associating[XML Schema Definition (XSD)|elements to

semantic data as one-to-many mappings.

USDL

|Unified Service Description Language (USDL)| [Kadner and Oberle, [2011] is a

language for describing services. Its follows a more general approach than other

frameworks in the sense that it targets a broad definition of service, and not just
web services. Examples of services that are targeted by [USDL]are [SAP Research),
2011]:

e Purely human/professional: e.g., project management and consultancy.

Transactional: e.g., purchase order requisition.

Informational: e.g., spatial and demography look-ups.

Software component: e.g., software widgets for download.

Digital media: e.g., video and audio clips.

e Platform: e.g., middleware services such as message store-forward.

Infrastructure: e.g., CPU and storage services.

Such generic approach to service description makes that not all aspects of

USDL | are applied to all domains. [USDL]| needs to be tailored for the specific

needs of applications, where concepts are adapted and new ones introduced.
USDL | takes initiatives such as|[WSDL{as starting point and adds business and

operational information on top. To achieve this, Modules for pricing, legal,

functional, participants, interactions and [Service-Level Agreement (SLA)|aspects

are defined to extend the service description.

25

2. STATE OF THE ART

2.3.3 Semantic REST services

In contrast with the architecture, [REST|services attempt to fit in a
better way the architectural style of the web. couple applications

they integrate and only use the web as a transport platform, incurring into mis-
matches by violating architectural constraints of REST| [Pautasso et al., 2008]].

The main differences of REST]|services in comparison to traditional

are the following:

e Resource identification through Every resource in the web has, by
definition, a REST|services are web resources (or a set of them) and
therefore their execution endpoints are[URIs|

e Uniform interface. Unlike[Web Services| [REST]services are simply web

resources whose possible interactions should be predictable depending on

the[HTTP| method employed in the HTTP|interaction. E.g. get method is

used to retrieve the representation of a resource, while PUT is employed to
update a resource. The semantics of each[HT'TP|method are the same for

cvery Web resource.

e Self-descriptive messages. Resources cannot be accessed, but only their
representations. Additionally, these representations can be retrieved in a

variety of formats, which can be negotiated between client and server using

HTTP|request headers.

e Stateful interactions through hyperlinks. As long as interactions with
resources are stateless because of architectural decision, states need to be
maintained using techniques such as cookies, session-identified or
hidden form fields.

The number of architectural constraints behind [REST] is bigger than the
architecture. Additionally, the pervasiveness of web tools such

as web browsers and the fact that REST! follows well-known standards such as
HTTP, XML, [URI, or [Multipurpose Internet Mail Extensions (MIME) make

that REST] services are usually perceived to be simpler than the
stack. This makes REST| an approach recently regarded as more elegant for

application composition than the architecture. This section reviews
the approaches to provide semantic service descriptions to [REST]services.

26

Service discovery

WADL

[Hadley}, [2009]] defines a format for building and publishing [REST}ful

semantic service descriptions which can be discovered and processed by auto-
matic agents. It attempts to follow an approach similar to but applied to
services. Hence, a document that defines syntactic aspects of the service is
published in order to be discovered by automatic processes.

An example of [WADL|document is given next [[Hadley, |2009]:

<?7xml version="1.0"7>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://wadl.dev.java.net/2009/02/wadl.xsd"
xmlns:tns="urn:yahoo:yn"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:yn="urn:yahoo:yn"
xmlns:ya="urn:yahoo:api"
xmlns="http://wadl.dev.java.net/2009/02">
<grammars>
<include
href="NewsSearchResponse.xsd"/>
<include
href="Error.xsd"/>
</grammars>
<resources base="http://api.search.yahoo.com/NewsSearchService/V1/">
<resource path='"newsSearch">
<method name="GET" id="search">
<request>
<param name="appid" type="xsd:string"
style="query" required="true"/>
<param name="query" type="xsd:string"
style="query" required="true"/>
<param name="type" style="query" default="all">
<option value="all"/>
<option value="any"/>
<option value="phrase"/>
</param>
<param name="results" style="query" type="xsd:int" default="10"/>
<param name="start" style="query" type="xsd:int" default="1"/>
<param name="sort" style="query" default="rank">
<option value="rank"/>
<option value="date"/>
</param>
<param name="language" style="query" type="xsd:string"/>
</request>
<response status="200">
<representation mediaType="application/xml"
element="yn:ResultSet"/>
</response>

<response status="400">

27

2. STATE OF THE ART

<representation mediaType="application/xml"
element="ya:Error"/>
</response>
</method>
</resource>
</resources>

</application>

As can be observed, a service is modelled as a set of resources. Each resource
contains a set of methods that describe the possible interactions with that particu-
lar resource. For each method, requests and responses are modelled. A request is
modelled as a set of input parameters. Input parameters have a name and a type,
and might have a closed set of allowed values. Also, a method includes the available
responses, which have a type, a[MIME]|type, and a status code. Requests can also
specify any needed [HTTP| header, while responses allow dealing the errors and
failures during the service execution.

descriptions are syntactic in the sense that no semantic information
is provided, but just primitive types of input parameters. This allows some
basic code generation functionalities client-side, but no advanced discovery or
selection. Input parameters are identified by plain text names that does not convey
their semantics, thus not allowing mediation for composition. On the other
hand, draws concepts from [WSDL]and applies them to the case of
services, where different methods are employed and non{SOAP] responses

are allowed.

MicroWSMO

MicroWSMO]is a lightweight revision of WSMO|that can be employed to annotate
services directly on[HTML] pages. Typically, services are documented in web sites

that provide textual descriptions and examples of the services. [MicroWSMO

proposes reusing these documentation pages for building service descriptions by
including semantic annotations directly into the[HTML]documents. For such task,
MicroWSMO]uses the reduced revision of calledWSMO-Litel The model
behind allows describing both REST]ful and [REST]ess web services
in a similar though more lightweight fashion as the full-fledged[WSMO|standard.
does not include goals and mediators, present in Besides,
[WSMO-Lite|uses a simplified model for [OPES] grouping them into preconditions
and effects, and, unlike allows categorizing services using taxonomies.

An example of annotated[HTML|document by usingMicroWSMO)is shown

28

Service discovery

next:

<div class="service" id="svc">
<h1>ACME Hotels service API</h1>
<p>This service is a

hotel reservation service.
</p>
<div class="operation" id="opl">
<h2>0Operation <code class="label">getHotelDetails</code></h2>
<p>
Invoked using the GET
at <code class="address">http://example.com/h/{id}</code>

Parameters:

<code>id</code> - the identifier of the particular hotel
(lowering)

Output value: hotel details in an
<code>ex:hotelInformation</code> document

</p>
</div>
</div>

As it can be observed in the sample fragment, there are no annotations,

thus no schema is strictly present in the HTML|document. Instead,

croWSMO)| relies on using|[Poshformats{ (i.e. non-standard [Microformats, or the
embedment of particular[HTML|classes with agreed semantics) for representing

the relations, extending thehRESTS|framework, which is detailed later, with
data.
A particularization of [WSMO-Lite| is [Resource-Oriented Service Modell

(ROSM)| [[Fischer and Norton), [2009], a tailored version for[REST]|services.

is thus a[WSMO|subset that applies concepts from|WSMO|on a more restrictive
and lightweight model that fits the REST|architectural style. The defined model

is similar to [WADL)} allowing the definition of input parameters and expected

outputs, though is used for the definition of the schema, as
standard in line with [Linked Data| principles.

hRESTS and SA-REST

Other [RESTful approaches are Semantically-Annotated REST (SA-REST)|[Sheth!
et al.,[2007]] and hRESTS| [Wright State Universityl, 2008, Kopecky et al., 2008]],

29

2. STATE OF THE ART

which allow building semantic service descriptions by annotating textual descrip-

tions of services’ with respectively RDFaand [Microformats| [Microformats

community, 2008]].

An|SA-REST}enhanced[HTML]page is a regular[HTML|{document with

annotations that provide the semantics of the service, as shown in the following

example:

<html xmlns:sarest="http://lsdis.cs.uga.edu/SAREST#">

<p about=" http://craigslist.org/search/">
The logical input of this service is an

http://1sdis.cs.uga.edu/ont.owl#Location_Query

object. The logical output of this service is a list of

http://1sdis.cs.uga.edu/ont.owl#Location

objects. This service should be invoked using an

HTTP GET

<meta property="sarest:lifting"
content="http://craigslist.org/api/lifting.xs1"/>
<meta property="sarest:lowering"
content="http://craigslist.org/api/lowering.xsl"/>
<meta property="sarest:operation"
content="http://lsdis.cs.uga.edu/ont.owl#Location_Search"/>
</p>

Similarly, hRESTS| use[Poshformats), or agreed semantics of annota-

tions, to annotate documentations, as shown in the next example:

<div class="service" id="svc">
<p>Description of the
ACME Hotels service:</p>
<div class="operation" id="op1l">
<p>The operation <code class="label">getHotelDetails</code> is
invoked using the method GET
at <code class="address">http://example.com/h/fidg</code>,
with the ID of the particular hotel replacing
the parameter <code>id</code>.
It returns the hotel details in an
<code>ex:hotelInformation</code> document.
</p>
</div>
</div>

30

Service discovery

Both approaches use a similar service model. Essentially, they provide a
schema to represent input and output messages on particular service operations
that are tied to a[URT} Also, the method used in the operation is defined
as part of the model. These properties are included as[HTML]classes in
and as properties in

RDForms

research focus on[HTML|form description. [Baker, 2005] at-
tempt to “add to the Semantic Web capabilities similar to[HTML|forms”. Schemas

for indexable, container and settable operations are defined, which represent

HTTP|GET, POST, and PUT methods, respectively.
An example of RDForm is shown nexlﬂ

<form id="personform" action="" about="#forml" typeof="pb:RDForm">
<div rel="pb:operation">
<div about="#crud-opl" typeof="pb:CRUDOperationDELETE">

</div>
</div>
<fieldset>
<legend>Person</legend>
<div rel="pb:field">
<div about="#forml.fieldl" typeof="pb:UpdateableField">
<label rel="pb:key" resource="#forml.fieldl.key">Name</label>:
<div rel="pb:value">
<div about="#forml.fieldl.value" typeof="pb:FieldValue">
<input type="text" id="person-name" property="rdf:value"
content="Jason Dunno" value="Jason Dunno" />
</div>
</div>
</div>
</div>
</fieldset>

</form>

allow defining interfaces to [REST|resources using by enhanc-
ing the execution forms through the use of The proposed model does

not differ greatly from other RESTful approaches to service description. Hence,
the proposed schema is similar to[WADL]or ROSM], though adding the idea of
enriching[HTML|forms with semantic annotations.

*http://www.w3.org/wiki/PushBackDataToLegacySourcesRDForms

31

http://www.w3.org/wiki/PushBackDataToLegacySourcesRDForms

2. STATE OF THE ART

OpenSearch

On the specific topic of search services, [[A9.com, inc., 2005] is
an approach to the description of search services. By creating an

description document, a search service is published in a similar way as other

standards for service description are applied to services in general.

An example of description is shown next:

<?xml version="1.0" encoding="UTF-8"7>
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/">
<ShortName>Web Search</ShortName>
<Description>Use Example.com to search the Web.</Description>
<Tags>example web</Tags>
<Contact>admin@example.com</Contact>
<Url type="application/rss+xml"
template=
"http://example.com/?q={searchTerms}&pw={startPage?}&format=rss"/>

<LongName>Example.com Web Search</LongName>
<Image height="64" width="64" type="image/png">

http://example.com/websearch.png</Image>
<Query role="example" searchTerms="cat" />
<Developer>Example.com Development Team</Developer>
<Attribution>

Search data Copyright 2005, Example.com, Inc., All Rights Reserved
</Attribution>
<SyndicationRight>open</SyndicationRight>
<AdultContent>false</AdultContent>
<Language>en-us</Language>
<OutputEncoding>UTF-8</0utputEncoding>
<InputEncoding>UTF-8</InputEncoding>

</OpenSearchDescription>

The description document enumerates the services’ capabilities and configura-

tions. delegates to service providers to build an appropriate [RESTful

interface that can be described using[OpenSearch| Some services might require
adaptation in order to be described by an description, but this issue is

not addressed. is limited to search services, so it considers fine-grain

aspects such as content encoding, formatting, and type of results.

2.3.4 Other approaches

Many research fields have already researched service discovery [Etzioni,|1996] in

parallel to the development of the web. Research behind[Foundation for Intelligent]

IPhysical Agents (FIPA) agents has already analysed the problem of service discov-

ery, developing several protocols for the diverse possible environments [Pirker

32

Service discovery|

et al., 2004] [Jun et al.,|2000] [[Cao et al., 2001]]. In pervasive computing, where
services are widespread around ad-hoc networks, service discovery is a research
field [Ratsimor et al., 2004] [|[Chakraborty et al.,2006]. These approaches differ
greatly because of the[REST]ess nature of the platform they are based on, i.. often
middlewares of different kind. Some approaches [Sycara et al., 2004 [Colucct
et al.,[2004] [Sidnal et al.,[2010] [Netat et al., 2009] consider semantic web services,
where the web is used more as platform by following the web services architectures
instead of RESTfful services. [Khriyenko and Nagy| [2011] considers the[RESTful
architecture of the Web and integrates an agent-based framework on it and the
initiative, though it does not consider the automatic construction of
the semantic descriptions that are required for these kinds of solutions.

Some research approaches in the current literature also perform service mining
tasks. \Wang et al.| [2011] mine Programmable Web and build a domain ontol-
ogy out of the keywords available in the textual descriptions of the services. It
helps to validate Programmable Web’s categorization scheme. Blake and Nowlan
[2011] performs an automatic categorization of services using the internals of
[WSDL]descriptions, and not just the keywords available in the textual descriptions.
Elmeleegy et al. [2008]] is a mashup advisor, which also builds a catalogue of
mashup components to exploit in recommendations for mashup development and

ranks components for their use.

2.3.5 Discussion

This section has reviewed the state of the art in service discovery. To sum up,
service discovery involves a set of tasks from service description to the actual
selection of the service through service matching. For these tasks, there are several
techniques that can be employed. In general, most service discovery solutions
found in the literature follow a similar paradigm. A service description model
is proposed, which is employed to build a service description that is advertised
for service consumers to use it. Service registries aggregate descriptions and con-
sumers query services according to some selection constraints to find a desired
service. Whenever these service descriptions are not available, the chain breaks
and no matching can be performed as long as no services are registered. There-
fore, the challenge behind service discovery lies in integrating the task of service
description to the process of service discovery. Hence, research on automated
service description would lead to a service discovery process that does not rely on

the effort of developers on describing services semantically.

33

2. STATE OF THE ART

2.4 Conclusions

As described, there are different approaches for information extraction in web
resources depending on the manual or automatic method, the supervised or unsu-
pervised approach, and the performance of each technique. The main challenges
that have been identified deal with robustness, generalization and introspection

capabilities of the approaches.

In the case of robustness, there are still many approaches that require a layout
that is fixed in time whenever performing screen scraping. In other words, once a
web resource’s representation changes itsHTML]layout, many wrapper techniques
fail to keep providing appropriate results. Similarly, generalization capabilities
are still a problem, in the sense that most screen scraping techniques require that
extractors are defined ad-hoc for each targeted web resource. An inducted wrapper
for a web resource does not work for other web resources which provide the
same types of contents, as long as[HTML]layouts are not the same [Kushmerick|
1997]]. Finally, fragmentation in extractor techniques and tools lead to a non-
standard representation of wrappers. As mentioned, some approaches even use
programming languages such as[JavaScript|to represent wrappers. This makes it
not possible to reason about extractors or progressively improve them, hampering
the development of more advanced applications such as focused crawlers or agent-

based scrapers.

Regarding services, several approaches deal with web components of different
kinds, from services to widgets. There are many initiatives to describe services’ in-
terface to allow automation of certain tasks, in the Web Service field [|Christensen
et al.}[2001]] [ESSI WSMO working groupl,2004], or in the[REST]service area with
heavy-weight approaches such as[WADL] [Hadley}, [2009], or more light-weight
approaches such as[WSMO}Lite [Vitvar et al.,2007],[SA-REST] [Sheth et al.,[2007]
or [Wright State Universityl, 2008]]. [W3C| widgets [Alario-Hoyos and
Wilson, [2010] define a standard for describing widgets. These and other already
mentioned alternatives such as[WSMO], [SA-REST| or [WADL]are heavy-weight

approaches that provide means to describe every possible service from scratch.

The reviewed approaches for service discovery allow describing the inners
of these components, and they operate at an abstraction level that is lower than

the models proposed in the thesis. As will be seen in the thesis, they will be

used by allowing linking[Linked Mashups Ontology (LiMOn) or feature-oriented

descriptions to[WSDL|[WSMO)| descriptions. In all of the reviewed approaches it

34

Conclusions

is expected that a developer provides a service description which one published
makes the service discoverable, in contrast to this thesis’ proposal, which attempts

to build these kinds of descriptions to achieve discovery.

35

36

Chapter 3
Discovery framework

This chapter describes the integrated framework for content and service discovery
and extraction. The framework is divided in several levels where discovery of
contents and services is done in a[RESTJful system such as the Web. The lowest
level is the content discovery level, where contents are extracted out of web pages.
Rules are used in that level to map data from unstructured resources to
actual semantic entities. The middle level is the service level, where discovery rules
are employed to map discovered content from interactions to semantic
service descriptions. The top level is the agent level, where orchestration takes

place by the use of rules that act as plans for crawling and service execution.

37

3. DISCOVERY FRAMEWORK

3.1 Introduction

The phenomenon of Web 2.0 has caused the mushrooming of websites and ap-
plications that allow users producing content without any sort of technical skill.
This has caused the web to be a highly rich source of contents in the so-called
Digital Age thanks to users’ collaboration and other content providers. Also, with
the emergence of mashup technologies, developers are able to combine existing
services and data sources to quickly build new applications, in a similar fashion to
Web 2.0.

This vast amount of information and services available in the web makes it a
platform for development of mashed-up applications with intensive information
usage. The research field of Semantic Web [Berners-Lee et al., 2001]] and the
initiative [Bizer et al., 2009] have defined techniques and standards
for the semantic representation of information, which have been experiencing an

increasing adoption in the web.

However, there are still plenty of web sites that do not provide appropriate
semantic metadata in the resources they publish. This causes that their services
and contents are only processable by the human users that visit these web sites.
The reasons for this can be various: because of limited knowledge by developers
about Semantic Web standards or because of limited effort that developers can

spend on these tasks.

Also, the so-called deep web contains many web resources that are not discov-
erable by crawlers. The deep web is the subset of the web that is only accessible
behind web forms. It thus requires a different treatment for reaching the informa-
tion and accessing their contents and services, which makes this part of the web
hidden to most automatic agents.

In this chapter, a framework for the discovery of services and contents in the
web is proposed. The framework allows intelligent focused crawling [Chakrabarti
and Dom), 1999]] and agents accessing the deep web. Therefore, an agent architec-
ture that uses this discovery framework for goal-oriented discovery of resources
is also described. This agent architecture allows implementing agents that intelli-
gently crawl and use services for retrieving contents in the web that fit some top
goals, usually stated by users.

The chapter first presents a big picture of the framework, and a top-down
overview of each level. Section 3.2 defines the discovery framework which is
followed in the rest of the dissertation. Section [3.3|proposes the agent model that

38

Framewor k overview

[Goals]
r - 3 Composition
o Human agent Automatic agent Execution
os.::) Selection
& Pl Belief
<C ans eliets BDI agent
° (REST resources | Discovery
9 rules
e || \rTP HTTP HTTP HTTP |
R GET PUT POST | |DELETE| |2~ b>c]
L) Service features
2 HTTP Requests HTTP Responses | Discovery O
g [HTML][XML] rules OO
S| [panms] (Lo]
o) Params URI ~
S (JsoN) roF]|*7P>c o ©
L) Contents

Figure 3.1: Discovery framework

builds plans for smart discovery of contents, while sections[3.4/and[3.5|describe

the service- and content-level discovery, respectively.

3.2 Framework overview

The integrated framework for content and service discovery is defined in this
section. We understand discovery as the process of identification and construction
of an element’s semantically meaningful description at some particular level. The
tramework is shown in figure 3.3 It is stacked on top of the architectural
style [Fielding, |2000], the architectural style the one the World Wide Web is
based on. The framework considers three levels of abstraction on the content and

services that are available on the web. They are listed next from top to bottom:

o Agent level. This layer comprises the orchestration of services for fulfilling a
user goal. Searching blogs to obtain relevant information about a product,
look for the best price and suggest the user which are the best ones is an
example of an orchestrated plan that is executed by an agent (either human

or machine) attempting to reach a particular goal.

e Service level. This layer comprises the services that agents are able to use in

39

3. DISCOVERY FRAMEWORK

the Web, which nowadays vary from search services to booking services,
social networking ones, etc. These services are generally orchestrated on the
higher layer. They make use of contents in the lower layer by exchanging
requests and responses with representations of resources that are present in

the web.

e Content level. This level comprises the requests and responses that are
exchanged between clients and servers when interacting with web resources.
In the REST|architectural style, requests consist mainly of a verb and a URI,

optionally with parameters, while responses vary in format, although in the

web it will usually be

Discovery will take place at these mentioned levels. At the service level,
resources would be the discoverable elements to be analyzed, with semantic service
descriptions being obtained. Discovery of data at the content level would produce
meaningful semantically-annotated information.

Therefore, a method to extract semantic descriptions out of unstructured
data at every level of the framework will be described. A uniform approach that
employs first-order logic rules is employed to model discovery rules that allow to
identify features on all levels. The combination of these features will comprise a
semantic description for a discovered element.

In the next sections we will describe the agent architecture that operates at the
orchestration layer and composes plans for fulfilling goals. Also, the techniques

that allow to perform discovery for already existing pieces of contents and services

will be described.

3.3 Agent model

The agent model that is stacked on top of the service level in the discovery
framework is defined in this section. The agent model makes use of the
architectural style through the semantically annotated services and contents. As
shown on the general framework in figure (3.3} the agent is designed to perform
the same tasks as a regular, human user of the web.

This problem statement leads to the agent being able to browse the web and
run services just in the same way a human user would, with discovery rules as the
means for extracting semantic descriptions out of regular resource representations.

The agent would attempt to achieve a top level goal in the same way as human

40

Agent model

users, e.g. finding a fact, a place or pictures about a particular person.
Additionally, the agent is able to manage the lower levels’ discovery logic, i.e.
manage service and content discovery rules. Discovery rules can be the result of a
machine learning algorithm performed on supervised data. This supervised data
can be added manually as training data set that is processed in a later stage. Further
on, by introspecting into the discovery rules, the agent can anticipate the content
and services that can be extracted out of resources, thus modifying its behaviour

without interacting with those resources.

3.3.1 Architecture

The agent follows the Belief-Desire-Intention (BDI) pattern, which differentiates

the independent modules that comprise a reactive system that interacts with other
systems. In our case, beliefs are contents that are extracted out of web pages.
The agent has plans that represent the possible actions that it can perform, such
as executing discovered services or visiting links, while the intentions are stacks
of these plans to reach a particular goal. These top-level goals therefore represent
discovery targets, i.e., contents that the agent attempts to add to its knowledge
base.

Thus, both beliefs and goals are sets of triples, while intentions are stacks
of plans that are fired upon the creation or deletion of triples in the beliefs and
goals triple sets. This makes up a naive adaptation of AgentSpeak’s agent model
[Rao} (1996] to which results in an agent model that is similar to approaches
that integrate and Semantic Web standards with[BDI|agents [Laclavik et al}
2006]]. The resulting architecture is shown in figure[3.2]

3.3.2 Plans

As long as the agent makes use of a[RESTJul architecture, it is able to interact
with resources by exchanging requests and responses. This allows following
hyperlinks and executing services such as web forms. Therefore, the four main
methods make up the set of actions employed by the agent. Plans are
defined around these actions to specify the possible behaviour of the agent to reach
its goals. They consist of a triggering condition and a set of consequences, either
subplans or actions.

The set of plans can be extended according to different domains in order

to establish domain-specific behaviours, especially upon the presence of certain

41

3. DISCOVERY FRAMEWORK

D
Goals

Plan selection

H H o .

P 2 action
GET, POST,
PUT, DELETE

Intentions Plan execution

belief

<subject>
<predicate>
<object>

plan

trigger
subplans
actions

Figure 3.2: Agent model

services in the considered system. However, a base set of plans is defined here in

order to provide the basic discovery capabilities of the agent.

Focused crawling plan

Whenever a resource’s representation is expected to have contents with triples
that are present in the goal set (trigger), perform a GET on that resource (action).
This way, the agent will crawl the web in a greedy basis looking to fulfil its
top-level goals. This can be done thanks to the content discovery rules in the
knowledge base, which allow anticipating the contents to be found in a resource’s

representation. In AgentSpeak language, this plan is represented asEl:

H[x,rdf:type,t]: content rule(y,x)A

[y,sc:itype,t] (3.1)
— get(x)

Note that, according to the Scraping Ontology| [Fernandez-Villamor et al., 2011],

which will be introduced in section sc:ty pe predicate indicates that, in a
triple <a,sc:type, b >, the[HTML|fragment a is of type b after the extraction is

performed.

"The syntax [subject, predicate,object] has been used to represent triples, which are
not considered in the AgentSpeak language.

42

Service level

Deep web crawling plan

Whenever a keyword-filtered retrieval resource is expected to provide results that
meet triples in the goal set (trigger), perform a GET on that resource. This allows
using search forms to look for desired contents. The keywords that are entered in
the form is the label of the resource, as a naive conversion of RDF into natural
language, which is subject to finer grain definition in domain-specific plans. In

AgentSpeak, this plan is represented as:

H[x,rdf:type,y]: [z, ms:bhas feature,
ms:Retrieval] A
[z, ms:has_feature,
ms:KeywordFiltered] A (3.2)
[z, ms:woutputs,y] A
[x, rdfs:label,l]
«— get(z,{(keywords,l)})

3.4 Service level

The discovery at service level involves building semantic service descriptions out
of the[HTTPlinteraction data and the discovered semantic contents from the lower
level in the proposed discovery framework. The input service model is therefore
comprisen by the output content model and the HTTP|interaction data, i.e. the
involved [URI, the[HTTP|method and the parameters.

A lightweight service description model that represents the semantics of

discovered services [[Fernandez-Villamor et al., 2010b] is employed for this task,
and is described in the next section. This service model is used as the output model

for this layer, i.e. the model that discovered elements (in this case, services) use.

3.4.1 Description model

The output service model used for service discovery applies ideas inspired in mix}
[Aspect-Oriented Programming (AOP)| and [Feature-Oriented Programming]
paradigms to semantic service description, as will be detailed in chapter[5]
These paradigms extend |Object-Oriented Programming (OOP)| by allowing the

modelling of secondary concerns in an isolated way. Services are modelled in a
similar way in the service level of the framework to facilitate their discovery out

of semantically discovered contents.

43

3. DISCOVERY FRAMEWORK

A service is modelled as a set of features f;, f,, ..., f; that it has. In web appli-
cations, some examples of service features are “performing a retrieval operation”,
“requiring user authentication”, “performing a storage operation”, “handling images”,
or “outputting a set of resources”. This allows reusing feature descriptions in ser-
vices that are different but have one or more features in common. The library of

features comprise the output service model.

The output service model is therefore a vocabulary of terms that can be
extended, each term representing a feature. As the framework follows the REST
architectural style, terms for[HTTP|GET, POST, PUT or DELETE requests are

part of the vocabulary.

An example of service description is keyword-filtered multiple picture
get, which describes a search service of pictures that are filtered by keywords.
Four terms represent the features that are used in order to define the service:
keyword-filtered, multiple, picture, and get. Because of following the[REST]
architectural style, at least a term that represents the underlying[HT TP|method

used has to be included in the description.

An extended service description can be built by combining term definitions.
Definitions can be tied to more than one term. For example, there can be a
definition for get, a definition for picture, but also a definition for picture and
get altogether. Some possible definitions for terms keyword-filtered, picture,

multiple, and get are shown next:

method(x)=GET A
status(x)=200 = (3.3)
ms:has_feature(x,get)

|Output(x)|>1A
ms:has_feature(x,get) = (3.4)
ms:has_feature(x,multiple)

Ve,y(k€lInput(x)A
y€Output(x) A
dcisubject(y, k) A (3.5)
ms:has_feature(x,get)) =
ms:has_feature(x,keyword filtered)

44

Service level

Vy(y€Output(x)A
rdf:type(y, foaf:Image) A (3.6)
ms:has_feature(x,get)) = .
ms:has_feature(x, picture)

By combining the definitions for a service x with the previously mentioned de-
scription keyword-filtered multiple picture get, an extended description

would be the following:

Vk,y(method(x)=GET A
status(x)=200 A
|Output(x)|>1A
kelnput(x) A
y€Output(x)A
de:subject(y,k) A
y€Output(x)A
rdf:type(y, foaf:Image))

The result of wrapping services with the provided semantic feature-based

(3.7)

descriptions is:

e Searchability. Service descriptions can be advertised as |Linked Datal by
publishing their description, which allows being processed by an

automatic agent.

e Testability. Preconditions and postconditions for each feature can be
checked when executing a service, which allows checking the service’s

correct execution.

e Execution. Thanks to the semantic description, the services have a known

interface which can be used by automatic agents to run the services.

As a feature-oriented description framework, this approach has the following
advantages: (i) it allows the reuse of feature descriptions among different services,
and (ii) it reduces the description task to selecting a set of features that describes

the considered service, given a vocabulary of terms.

45

3. DISCOVERY FRAMEWORK

3.4.2 Service discovery rules

In order to perform discovery, there must exist a mapping between the service’s
feature set and the service input model. To achieve this, feature definitions are
used as service discovery rules. Thus, discovery rules map a set of features f;,
..., J3 to a set of conditions, defined using the output content model and the
interaction data. For example, given the features f; (“outputting a set of
resources”) and £, (“handling images”), some discovery rules would just be the
feature definitions shown on equations[3.4|and3.6]

Discovery rule on equation 3.4]formalizes the feature of term multiple by
stating that the service’s output cardinality has to be higher than one. Meanwhile,
discovery rule on equation 3.6 formalizes that all output resources are images, and
is applicable for services that (i) output a set of resources (as of feature f;) and
(i1) handle images (feature f;). Allowing definitions that are activated upon the
presence of more than one feature might be regarded as unnecessary complexity.
However, this serves to resolve the issue of feature interaction, already identified
in feature-oriented programming [Prehofer,|1997].

With these mentioned discovery rule, a service’s features can be identified
after knowing the semantics of the contents involved in the interaction.
Further details on the service model and the automatic construction of service

discovery rules will be given in chapter 5|

3.5 Content level

A growing amount of data is available to users in the web. Web users can enjoy
plenty of services and information in e-commerce web sites, electronic newspapers,
blogs and social networks. Although this data is available for its consumption by
users, its format is not suited for automated agents and computer programs. This
has favoured the research in several fields such as web content mining [Kosala and
Blockeel, |2000] or Semantic Web [Berners-Lee et al., 2001]], that seek manners to
build linked interoperable data that can be automatically processed by software
systems.

Several approaches such as[Linked Datd|initiative [Bizer et al.,2009] are favour-
ing the publication of annotated data in web resources, so that automatic processes
can actually consume this data and perform other operations. Similarly, other
research fields attempt to take advantage of this amount of available information,

such as mashup applications. However, ontologies and applications that expose

46

Content level

their data are not widespread, constraining the[Linked Datdinitiative, mashups
and service composition.

The field of Web Content Mining applies data mining techniques to the
discovery and extraction of information available on the Web. Web Content
Mining comprises several research fields such as Information Extraction or Natural
Language Processing, which research related techniques that are used to extract
data from web documents [|[Chang et al., 2006].

Approaches to the problem of extracting information out of HTML doc-
uments considers processing either the DOM tree or the resulting rendering
information. The first approach involves defining an extractor or [wrapper] [Kush{
merick} [1997]] [Kushmerick, 2000] that selects the relevant information out of
the DOM tree. The latter is a vision-based approach that attempts to provide a
more general solution to the problem by assuming that similar content types have
similar visual features [Weti et al.,|2006]] [|Cai et al., 2003].

The lowest level of the framework is the content level, where content is
discovered out of unstructured web resources. The next section describes content

level discovery rules.

3.5.1 Semantic Scraping approach

As said, the web is a hypermedia system that follows the architectural
style [Fieldingl |2000]. When a client accesses a web resource on a server, the
server returns a representation of the resource. Usually, these representations are
formatted in[HTML] a language that allows defining the structure of a document
for its rendering on a web browser. documents are structured as a[DOM|
tree, which defines the logical structure of the document that will be used
for rendering the representation on a web browser. In order to have information
about the resource’s content and not about its rendering structure,
proposes using resources’ representations that include metadata, by enhancing
[HTML] with semantic annotations or by providingRDF representations.
Whenever a resource provides unannotated [HTML] a technique that processes
the[DOM]tree in some way needs to be used to identify the structure of the data
present in the document and build the associated RDF|graph. Also, in a
web resource there are fragments that do not provide information, such as
advertisements, headers, footers, or decorative elements, while other fragments
such as posts or comments have valuable information. In our framework, discov-

ery rules will be employed to identify what pieces of information are relevant in

47

3. DISCOVERY FRAMEWORK

o A
2 . . QR QP
< Semantic scraping level ~ OWL RDF 8 6 SeE=
g . o O N
g Triple stores SPARQL S RDF \:ID:
A }{ Semantic Web o
Syntactic scraping level csg XPath
= Trees
o
3 XHTML Regexps
Q
3]
g : RESTful architecture Forums :
& Blogs |
: Newspapers |
Social networks |
! User agent
Y bt e e a

Figure 3.3: Semantic scraping approach

a web resource and to identify what relations are stated in a web fragment. For

instance, a heading in a piece of news might represent the news title. A discovery

rule will use|Content Style Sheets (CSS)|information, rendering information or
INLP|to identify the relevant data in the resource’s representation.

Therefore, the input model that discovery rules use at this level comprise
fragments, which identify relevant pieces of data in a document, and

selectors, which are any mean to identify a fragment inside a document. Usually,

web scrapers use regular expressions or or XPath selectors to achieve these
tasks, while the output of a web browser when rendering a web fragment, which
consists of a set of properties such as typeface, color or dimensions, can also be
used through visual selectors.

On the contrary, the output model is comprisen by the different types of

contents that are available in the web. Ontologies like [Semantically-Interlinked|
Online Communities Project (SIOC), [Friend of a Friend (FOAF)| or[Dublin Core|
address this issue by defining schemas for the modeling of blog posts, relation-

ships between users or annotation of metadata in publications, thus comprising

the output content model of our discovery framework.

3.5.2 Semantic scrapingontology

An ontology for semantic scraping is proposed in this section. The approach to
using semantics for contents extracted from the web is shown in figure[3.3] The
model considers three levels of abstraction in order to provide an integrated model

for semantic scraping:

48

Content level

e Semantic scraping level. This level defines a model that maps[HTML]frag-
ments to semantic web resources. By using this model to define the mapping
of a set of web resources, the data from the web is made available as knowl-
edge base to scraping services. This level provides semantics to the syntactic

scraping capabilities of the level below.

e Syntactic scraping level. This level gives support to the interpretation to
the semantic scraping model. Wrapping and Extraction techniques such as
DOM selectors are defined at this level for their use by the semantic scraping

level.

The model is stacked on top of the architectural style. The additional
semantics and data mappings that are necessary to allow information scraping on
a[RESTJful architecture are defined by the upper levels of our framework.

On top of the semantic scraping level there could exist scraping services that
make use of semantic data extracted from unannotated web resources. Possible
services that benefit from using this kind of data can be opinion miners, recom-
menders, mashups that index and filter pieces of news, etc. In the case of the
framework being proposed in this chapter, there would be services that make use
of the semantically annotated contents.

The paradigm behind scraping services has subtle differences from that be-
hind traditional Semantic Web applications or knowledge-based systems. While
annotated data in the Semantic Web allows automatic knowledge extraction and
retrieval by automatic agents, data in unstructured web documents require prior
supervision of some kind to allow information extraction. This implies that when

designing a scraping service, the following steps are required:

e Scraping data identification. Data that wants to be scraped and merged with
other knowledge is identified in this task. Target web sites and resources are

identified for fragment extraction.

e Data modelling. A model to represent the extracted data is defined in this
task. Either existing ontologies might be available or new ones should be
defined. The result from this step is an ontology that fits the data that
needs to be extracted. A bounded context, i.e. a conceptual context where
a domain model has a non-ambiguous meaning, should be identified in
order to separate domain models of similar fields. Methodologies for the

definition of ontologies can be useful for this task.

49

3. DISCOVERY FRAMEWORK

e Extractor generalization. In order to perform massive extractions, enough
samples need to be collected to generalize an appropriate extractor. This
collection of samples needs to be provided to a human administrator or an
automated or semi-automated module. Using this data set, one or more
extractors are defined at the semantic scraping level and serve to provide

additional knowledge to the scraping service.

Let’s consider a movie recommender that requires extracting data from the
Internet Movie Databasd?l Data about reviews are added to the recommender’s
knowledge in order to enable collaborative filtering of movies. Reviews and
user reviewers are therefore the identified data to scrape. As long as an existing
movie ontology is defined, no ontology modelling would be needed. Also, in case
extractors are built automatically using a machine learning approach, data samples

should belong to the bounded context of cinema and movies.

Semantic scraping

Semantic scraping defines the mapping between web data and semantic web
resources. An model that allows formalizing this mapping has been defined,
and is called the[Scraping Ontologyf|

Applying the model to the definition of extractors of web resources allows

separating the declarative from the procedural model in the web content extrac-
tion process. This enables implementing technology-independent extractors or
automating certain tasks such as focused and personalized scraping.

The [Scraping Ontology|allows to reference[HTML) fragments in and

define web content extractors, being a basis for the programmatic definition of

extractors for screen scraping. This requires bridging the gap between both
and [HTML}s data models. is a markup language for documents with a
tree-structured data model. On the other hand, RDF's data model is a collection
of node triples, defined by a subject, a predicate, and an object. Each node can be
atext literal, a resource (identified by a[URI) or a blank node.

A model comprisen of a vocabulary of RDF| terms has been defined to rep-
resent fragments and their mapping to RDH resources. This serves as a
model for the discovery framework’s content level. A summary of the model is
shown in figure[3.4] The basic classes of the model are described next:

“http://imdb. com
Shttp://lab.gsi.dit.upm.es/scraping.rdf

50

http://imdb.com
http://lab.gsi.dit.upm.es/scraping.rdf

Content level

XPathSeclector
CssSelector
UriSelector

UriPatternSelector

VisualSelector

extracts NullSelector

selector

child

mapping identifier
2

rdf:Resource

Mapping

Figure 3.4: Semantic scraping[RDF model

Scraper A scraper is an automatic agent that is able to extract particular fragments

out of the web.

Fragment Any element of an [HTML| document. It serves to represent and

traverse a whole subtree of a document.

Selector A condition that indicates which this element is. Different selector terms

are defined for each selector type. Selectors can be [XML Path Language]
expressions, selectors, selectors, etc. Selectors are means

to identify a web document fragment.

Mapping The mapping between a fragment and an resource or blank node.
An identifier is defined to map the fragment to a[URI] A predicate between
the parent’s mapped fragment and this is defined to produce an[RDHtriple.
Also, an[RDF|class can be assigned to the mapped resource of this fragment.

Presentation The representation of a fragment. This includes|HTML)attributes

as well as visual parameters such as color, size or font.

The proposed vocabulary serves as link between[HTML|document’s data and
data by defining a model for scraping agents. With this model, it is

possible to build an graph of HTML|nodes given an[HTML|document, and

provides semantics to syntactic scraping.

51

3. DISCOVERY FRAMEWORK

The objective of thisRDF| model should not be confused with that of

defines a format for marking up[HTML]elements to extract an graph.
Our model complements by allowing[RDF|graphs to refer to data that is

present in[HTML|fragments in an unannotated HTML|document.

Syntactic scraping

Syntactic scraping comprises the required technologies to extract data from web

resources. Some of the considered scraping techniques are the following:

3 selectors. define the visual properties of HTML|elements. These
visual properties are mapped to elements through the use of selectors,

defined through a specific language. Therefore, is one technology that

serves to select and extract data.

. selectors. Similarly to selectors, [XPathl'|is a different language
for[HTML node selection.

. patterns. patterns allow to select web resources according to a
regular expression that is applied on the resource’s While or
selectors are able to select an element at document level, patterns

allow selecting documents, 1.e. resources representations, according to the

resource’s[URI

e Visual selectors. Visual information can be used to select nodes.
nodes are rendered with a set of visual properties given by the used browser.
It is common that human users prefer uniform web designs. Web designers
thus make elements of a same kind to be rendered with similar visual prop-
erties to help identification. A visual selector is a condition that combines

several visual properties of an element to identify the element’s class.

Other kinds of selectors that process HTMLs inner text are available as well and
fit into the model. This way, extractions from natural language parsing or text
tokenization are possible.

Selectors at the syntactic scraping level allow to identify[HTML|nodes. Either
a generic element or an unambiguously identified element can be selected using

these techniques. Their semantics are defined in the upper semantic scraping level,
allowing to map data in[HTML) fragments to resources.

*http://www.u3.org/TR/xpath/

52

http://www.w3.org/TR/xpath/

Content level

sc:Mapping sc:Fragment
sc:selector

Graph for http://www.example.com/news

sc:UriSelector

rdfitype

scxchild rdfivalue

se:mapping

http://www.example.com/news/1
se:XPathSelector http://wvww.example.com/news P P

sc:selector

This is the first post

detitle

sciextracts

hitp://www.example.com/news/2

de:title This is the second post

rdf:type

detitle

This is the third post

Figure 3.5: Example of semantic scraper

An example of the usage of selectors for a news scraper is shown in figure

In this case, a scraper is defined that is able to scrape a set of posts (by using the

SIOC|ontology [Breslin et al., 2006]]) from a specific A sample mapped

graph is shown in the figure, too.

3.5.3 Content discovery rules

This section introduces content discovery rules, once the|Scraping Ontology| has

been presented. At the content level, discovery rules allow to identify data in
web resources and map them to the For this, they use as input model the
IScraping Ontologyy, thus using selectors to identify the different fragments of data.
The output model is comprised by the different ontologies available in the
[Datalcloud.

An example of content discovery rule is given next:

Vx,y(uri(x,http://nytimes.com) A
parent(x,y) A
css(y,”.story h2a”))=>
rdf:type(sioc:Post,y))

(3.8)

This sample rule defines that all tree nodes that satisfy a particular
selector in New York Times home page are posts, according to [SIOC|ontology
[Breslin et al.,|[2006]).

The main challenge at the content level is defining discovery rules which are

53

3. DISCOVERY FRAMEWORK

robust and generalizable. A robust rule is one that extracts the same data even
with changes in the DOM]tree of the web resource. If a rule is not robust, it might
stop working once the layout of a web site is changed by its web administrator on
a redesign stage [Lerman et al.,|2003]]. A rule that generalizes is one that is valid for
all the web resources that contain the same kind of data. If a rule is only valid for
the web resource (or resources) that it was defined for, it does not generalize across
different resources. The main limitation of wrapper induction is that wrappers
are only valid for the web pages they were designed for [Kushmerick, [1997]].
Using[NLP|and visual selectors as input content model improves generalization
capabilities of the discovery rules [[Cai et al., 2003]]. This problem will be covered
in more detail in chapter 4

3.6 Conclusions

Throughout this chapter a framework for the discovery of services and contents
in the web has been proposed. An agent model that fits the discovery framework
is also defined for the implementation of combined services or contents in cases
where discovery is required. With this agent model, an agent is able to perform dis-
covery tasks whenever appropriate and plans thanks to the semantic descriptions
of the discovered elements and the agent’s ultimate goals.

A feature-based service description approach has been introduced as an ap-
proach to simplify service description. These kinds of service descriptions are
simple and allow automating various tasks in order to push service automation in
the semantic web, thus offering uniform interfaces, discoverability, and automat-
ing validation.

Additionally, an[RDF model for web scraping has been defined at the content
discovery level. This enables an open framework for web scraping. The tasks
of building an graph out of a web document have been shown. With
this, a semantic screen scraper has been developed. The semantic screen scraper
produces RDF graphs out of web documents and RDF-defined extractors, that
offer interoperable scraping information.

In chapters[5|and [4] the automatic construction of service and content discov-

ery rules, respectively, will be covered.

54

Chapter 4
Content discovery

This chapter describes the automatic induction of content discovery rules. In-
formation extraction out of web pages, commonly known as screen scraping, is
usually performed through wrapper induction, a technique that is based on the
internal structure of [HTML] documents. As such, the main limitation of these
kinds of techniques is that a generated wrapper is only useful for the web page it
was designed for. To overcome this, in this chapter it is described an algorithm that
generates content discovery rules that can be used to extract data from web pages.
These rules are based on visual features such as font size, elements positioning or
types of contents. Thus, they do not depend on a document’s internal structure,

and are able to work on different sites.

55

4, CONTENT DISCOVERY

4.1 Introduction

The vast amount of information available on the Web turns it into an important
knowledge source for many different domains. Semantic Web standards [[Berners
Lee et al., 2001] and the initiative [Bizer et al.,2009] propose the
annotation of web resources with metadata, which allows the processing of web
resources by automated agents. Despite the growth in adoption of standards of
this kind, many web sites still do not provide means to retrieve their contents ac-
cording to a known, structured schema. For example, out of 17 popular electronic
newspapers surveyecﬂ none of them provide semantic annotations of a Semantic
Web standard.

Examples of applications that make use of web data can be travelling mashups,
which scan web pages for flights, hotels and trains, and provide the best trip plan
according to a user’s preferences. Those flight, hotel and train web sites that
adopted the initiative would publish metadata that allows a simple
extraction of these sites’ data. However, in order to get data from other sites that
do not publish appropriate metadata, it would be neccesary to use Screen Scraping
techniques to get access to data that is published in an unstructured way [[Chang
et al.,|2006]] [Kosala and Blockeel, 2000].

Traditional scraping approaches are based on some kind of tree process-
ing. Usually, techniques such as tree-to-tree edit distance [Bille, 2005] [Barnard
et al.,|1995] [|[Chen, 2001]] and wrapper induction [Kushmerick, 1997] [Kushmer;
ick, 2000]] are used to, either manually [Hoguel 2005] or automatically [[Crescenzi
et al., 2001, build wrappers that allow extracting data from web resources. The
main limitation of tree processing is that these wrappers are specific to one
web site, and therefore do not show generalization capabilities for extracting data
from other visually similar web sites. Wrappers also require being rebuilt, as part
of a maintenance process, when a web resource layout changes [[Lerman et al.,
2003]. Alternatively, other approaches consider processing visual properties of
[DOM]elements when rendered by a web browser [Wei et al.,[2006] [Pembe and
Giingor, 2010]. The advantage of these kinds of approaches is its generalization

across different sites.

This chapter describes a system that performs extraction of [Linked Datal out

"The surveyed newspapers were New York Times, Wall Street Journal, The Guardian, The
Telegraph, Spiegel, Bild, Frankfurter Allgemeine Zeitung, Le Monde, L’Equipe, ABC, El Mundo,
El Pais, ADN, 20 Minutos, Pablico, Marca, and As.

*http://www.w3.org/TR/DOM-Level-2-Core/

56

http://www.w3.org/TR/DOM-Level-2-Core/

Problem statement

of web resources and which shows high generalization capabilities and robustness.
Semantic information in a web resource is a graph that, following Semantic Web’s
standards, can be represented using the RDF| [Lassila and Swick} [1999]]. Therefore,
extracting[RDF| data implies building the associated graph out of the information
present in the web page. We propose using first-order logic rules to extract RDF
graphs. To build these rules, we have built an algorithm which follows a specific-
to-general basis. First, the information to be extracted is manually identified in
web pages and with these samples a set of overfitting rules are built. Then, the
algorithm combines and generalizes rules progressively. This supervised first-
order logic classifier makes use of web elements’ visual properties. Therefore, the
knowledge acquired by the classifier generalizes across web sites and is robust to

layout changes on them.

4.2 Problem statement

The Web is a hypermedia system that follows the architectural style [Field}
ing, 2000]. When a client accesses a web resource on a server, the server returns
a representation of the resource. Usually, these representations are formatted
in a language that allows defining the structure of a document for its
rendering on a web browser. documents are structured as a[DOM]tree,
which defines the logical structure of the document (see Fig. that
will be used for rendering the representation on a web browser. In order to have

information about the resource’s content and not about its rendering structure,

Linked Datal proposes using resources’ representations that include metadata, by

enhancing[HTML] with semantic annotations or by providing representa-
tions, such as in Fig. Such figure shows the representation of a piece

of news by using[SIOC|ontology [Breslin et al.,2006] and[DC|schema [Weibel,
1997]], ontologies chosen due to their high adoption and popularity among the
Semantic Web community.

Whenever a resource provides unannotated [HTML] a technique that processes
the[DOM]tree in some way needs to be used to identify the structure of the data
present in the[HTML]document and build the associated[RDF|graph. This process

is known as Screen Scraping, and it implies solving the following problems:

e Identifying what pieces of information are relevant in a web resource. Usu-
ally, in a web resource there are fragments that do not provide infor-

mation, such as advertisements, headers, footers, or decorative elements,

57

4, CONTENT DISCOVERY

HTML

<html>
<head>
<title>Newspaper</title>
</head>
<body>
<div class="header">
<hl>
Microsoft acquires Skype
</h1>
by <a href=
"http://johntheblogger.com">
John the blogger
</div>
<div class="description">
<p>After weeks of negotiation,
Microsoft has finally reached an
agreement for buying Skype.</p>
</div>

RDF

<sioc:Post>
<dc:title>
Microsoft acquires Skype
</dc:title>
<dc:creator
rdf:about=
"http://johntheblogger.com">
<rdfs:label>
John the Blogger
</rdfs:label>
</dc:creator>
<dc:description>After weeks
of negotiation, Microsoft has
finally reached an agreement for
buying Skype.</dc:description>
</sioc:Post>

After weeks of negotiati...

dc:description

rdf:type
dc:creator

http://johntheblogger.cont

Microsoft acquires Skype

</body>
</html>

Figure 4.1: [HTML|vs RDF|documents

while other fragments such as posts or comments have valuable information.

e Identifying what relations are stated in a web fragment. For instance, a

heading in a piece of news might represent the news title.

The conceptual model behind the process of building an graph out of an
[HTML] page is shown in Fig. [4.2]and serves as a basis for addressing the problem
of web resource screen scraping. It shows the elements involved in the process
of Screen Scraping in order to familiarize the reader with the process. The figure
shows the relations among these elements and how a scraper requires different
pieces of information to complete the process of converting a web page into a
set of RDF resources. As shown, the main elements involved in the problem of

Screen Scraping are:

Web page The HTML|representation that is returned by a web browser when
attempting to retrieve a web resource. Web pages are designed to be used by

human users through a web browser.

Fragment Any web fragment inside a web page, or a web page itself. A web page
fragment usually shows information about one or more concepts, such as a

blog post, a flight, a web result, etc.

Selector Any mean to identify a fragment inside a document. Usually, web
scrapers use regular expressions or or XPath selectors to achieve these
tasks.

[DOM I element Each of the elements in the DOMltree of an [HTMI] document.

58

Problem statement

analyzes

contains

I Visual selector | @)M element | I Web page

URI selector

Dimension

Content

S
7
]
7

part of

renders produces

» Presentation

Fragment
>
selects i

A contains

has some

part of part of

maps part of

I DOM selector | I Relation Positi
osition

is a

/ is a \is a
Mapping }—){ RDF Resource
I XPath selector I CSS selector | maps to
is /

Tis a interprets produces

Typeface

I Color

I Type

Identifier | Scraper

Figure 4.2: Scraping conceptual model

They represent the hierarchical structure of the document, and can be

referenced through the usage of selectors.

Presentation The output of a web browser when rendering a web fragment,
which consists of a set of properties such as typeface, color or dimensions.
This output is used by users to interpret the contents of a web page, and can
be used by visual selectors as well to identify web fragments according to

their visual properties.

Mapping The mapping that exists between a fragment inside an [HTML| doc-
ument and the resource it represents. A mapping might consist of
stating a predicate about a resource or that a resource has a particular

Scraper An automated process that is able to interpret mappings to produce
data. An document that defines the extraction mappings on web
fragments can be used by the appropriate scraper to extract the data from a

web resource in [RDF format.

Several challenges are involved behind the problem of Screen Scraping. The

main difficulties are listed next:

o Identification of data to extract. First, the desired data to be extracted needs

to be defined. Either tools for manual annotation or automated approaches

59

4, CONTENT DISCOVERY

that compare similar pages or analyse documents’ structure are used for this
task.

e Definition of selectors. After the data to extract have been identified, appro-
priate selectors need to be constructed. Either regular expressions, wrappers,

(CSS], XPath, or visual selectors can be used. The type and quality of the
defined selector will affect its applicability to other sites.

e Changes in web pages. Whenever a web page’s layout changes, the defined
selectors can be not valid anymore. The consequences are usually badly
extracted data or no extracted data at all. Quality checks and better selectors

help to prevent this from happening.

e Dynamic, JavaScript-intensive web pages. Some web sites change the layout
after page load or after interaction with the user. A solution consists of
executing JavaScript and reproducing the interactions with mocked-up users
to access those data, although overcoming this problem is out of the scope
of this thesis.

Scraping mappings contain the selectors that identify data and their general-
ization capabalities. Therefore, when employing mappings to tackle the problem
of Screen Scraping, the main problem is defining quality mappings that allow a
scraper to extract the data from a web resource. Then, we identify two desire-
able aspects on the definition of a mapping, which are obtaining robustness and

generalization:

e A robust mapping is one that extracts the same data even with changes in
the tree of the web resource. If a mapping is not robust, it might stop
working once the layout of a web site is changed by its web administrator

on a redesign stage [Lerman et al., 2003].

e A mapping that generalizes is one that is valid for all the web resources that
contain the same kind of data. If a mapping is only valid for the web resource
(or resources) that it was defined for, it does not generalize across different
resources. The main limitation of wrapper induction is that wrappers are

only valid for the web pages they were designed for [Kushmerick,|1997].

Therefore, the problem that is addressed in this chapter is building robust and
generalizable extraction mappings that allow scraping web resources. Metrics to

measure robustness and generalization will be given in section[6.2.2}

60

elpais.es

CONSF.CUENCIAS SOCIALES DE LA CRISIS

Visual mapping

iles de ‘gigas de ados en las
Ison el germen de un futuro archivo del Movimiento

= Politica: Todo sobre el Movimiento 15-M
= Asi ve El Roto el Movimiento 15-M

¥ <div 1d="mod92274ale_0" class="tipo_l

» <div class="mod_grafico_foto"=.</d
v<div class="mod_grafico_txt">
¥v<h2 class="t-1">

<a href="/articul o/madrid/disc:

memoria de Sol"=Los custodios ¢
</h2=
>CARMEN PEREZ - LANZAC</h4=>
w=/p=
class="hermanas"=.</ul=>
<div class="limpiar"=</div>
=/div=

¥ =div class="apertura-a3 noticia20l0
¥<div class="doc">
¥=div class="lead"=

Rule induction for content extraction

» <div class="photo-alt2"=.</div
» <div class="overhead"=.</div>
¥ <h3 class="headline">
<a class="tamano28" href="/20
"Arrestados por intentar vend
vender a Iran y Venezuela hel
</h3>
p =<div class="subhead"=.</div=
p =div class="numcoment"=>.</div>
=script language="javascript"=g
</div=

<div class="limpiar"=></div> </div>
</div> </div>

Figure 4.3: Conversion of a@ tree into an RDF graph

4.3 Rule induction for content extraction

In this section, we describe an approach to automatically create mappings for
extracting[RDF| data from [HTML] documents while attempting to solve the issues
described above. The approach uses visual features of the elements displayed in
a web browser in a way as shown in Fig. which compares the approach of
using wrappers against visual selectors. The figure shows two Spanish news sites
(Abc and El Pais), which have different layouts but similar looks. When using the
techniques behind wrapper induction, it is required to define a new wrapper for
each different web site, as they are based on the@tree structure of a web site,
which is rarely shared among different web sites. Using techniques that are based
on visual features allows mappings to generalize accross different web resources,

as these web resources share similar looks.

As introduced in section [3.5.2} the Scraping Ontology is an schema
that allows defining mappings between elements and the data the

mappings represent [Fernandez-Villamor et al., 2011]], and is used in this chapter

to represent the mappings. This ontology contains the terms that were

defined in the conceptual model.

61

4, CONTENT DISCOVERY

The mappings defined in this ontology are sequences of fragments with the
data that they represent. An example of the mappings that are considered by

the algorithm is shown next:

<?xml version="1.0" encoding="utf-8"7>
<rdf:RDF
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns:sc="http://lab.gsi.dit.upm.es/scraping.rdf#"
xmlns:sioc="http://rdfs.org/sioc/ns#">
<sc:Fragment>
<sc:type rdf:resource="http://rdfs.org/sioc/ns#Post"/>
<sc:selector>
<sc:VisualSelector>
<sc:max_height>139</sc:max_height>
<sc:max_relative_x>508</sc:max_relative_x>

<sc:max_relative_y>1084</sc:max_relative_y>

</sc:VisualSelector>
</sc:selector>
<sc:subfragment>
<sc:Fragment>
<sc:max_cardinality>1</sc:max_cardinality>
<sc:min_cardinality>1</sc:min_cardinality>
<sc:type
rdf :resource="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#Literal"/>
<sc:relation
rdf:resource="http://purl.org/dc/elements/1.1/title"/>
<sc:selector>
<sc:VisualSelector>
<sc:font_family>serif</sc:font_family>

<sc:max_font_size>24</sc:max_font_size>

</sc:VisualSelector>
</sc:selector>
</sc:Fragment>

</sc:subfragment>

</sc:Fragment>
</rdf :RDF>

As it can be seen, not only is the output of extraction mappings expressed
in but also the mappings themselves, as a result of using the Scraping
Ontology. In the previous document, a fragment that represents a news post
(according to ontology) is defined. The fragment is selected out of a web
resource thanks to a visual selector, for which some visual conditions are defined.
Additionally, this news post has other subfragment, which is also selected thanks

to another visual selector. This subfragment is related to the parent through a title

62

Rule induction for content extraction

relation (according to schema).
These mappings can be represented as rules that are applied to web resources.
If the rule succeeds, data is extracted from the web page. Two examples of rules

are the following ones:

width(x)>200 A width(x)<300A font_size(x)< 14

. 4.1)
= rdf:type(x,sioc:Post)

width(x)>200Awidth(x) <300A font size(x)< 14 A
parent(x,y)\ font_size(y)>16A font weight(y)> 400 (4.2)
= rdf:type(x,sioc:Post)Ndc:title(x,y)

Equation [4.1]shows a rule which states that an[HTML]fragment x represents a
blog post if some font and size conditions are evaluated as true. The rule shown
in equation (4.2|is a more complex one, and makes a statement about a post by
considering it also has a subfragment that represents a title. If the conditions are
evaluated as true, then triples (i.e. data structures that consist of a subject, a
predicate and an object) are built and thus a post with a title is generated as output.
The rules make use of the already mentioned [SIOC|and[DC ontologies to model
the extracted data.

As seen, rules have a left-hand side with conditions about the visual features
of HTML fragments (e.g., width(x) > 200 or font_size(x) < 14), as well as
structural conditions about how these fragments are organized in the
tree (e.g., parent(x,y)). The right-hand side contains statements
about the fragments involved in the left-hand side. More formally, the

rules have the following structure:

/\Ci(xi E%)/\/\parent(xi EX,x; €)= /\Ti(xl,...,xN) 4.3)

[i,]
where:
o X ={x{,%,,...,xx} is the set of HTML|{ragments involved in the rule.

e ¢;(x;) is a condition on attributes of the [HTML| fragment x; (e.g.
width(x;) < 300).

e parent(x;,x;)is a binary predicate that states that x; has to be a parent of

x; in thetree (i.e.[HTML|fragment x; is contained in fragment x;).

63

4, CONTENT DISCOVERY

o T;(xy,...,xy) s an statement about the RDF resource represented by x; € &’
which can involve one or more of the variables x; that are used in the left-
hand side (e.g. rd f:type(xy,sioc:Post) or de:title(x,,x3)).

4.3.1 Training attributes and classes

As said before, robustness and generalization are aspects that are desireable to have
in extraction mappings. An RDF mapping can be defined using different selectors.
Selectors such as or XPath might result in extraction mappings that can only
be applied on a reduced set of web resources. The usage of visual selectors allows
extraction mappings to work on different web sites. The algorithm makes use
of several visual features of the[DOM|tree elements present in a web resource, as

listed next:
e Continuous attributes:

- Positioning (X and Y).
- Width and height.

- Font size and weight.
e Discrete attributes:

- Font family: sans, sans-serif or monospace.

- HTML tag: link, image or other.

The values of these attributes are captured by using a web browser, which
renders web pages according to and other files, such as images.

The classes of the samples can be any triple. As have been shown
previously, the rule examples used RDF|properties such as rd f:ty pe, sioc:Post
ordc:title, but any other kind of triple could be employed.

4.3.2 Induction algorithm

The algorithm builds a rule set in a specific to general basis, by using overfitting
rules that are combined into more general ones. This decision is taken in order
to reduce the search space; in top-down induction of logical rules [Blockeel and
De Raedt, |1998] all the possible combination of conditions need to be explored,
while in rule combination approaches, such as ours, the search space is reduced to

the possible combinations among similar rules [Domingos, |1995]].

64

Rule induction for content extraction

The algorithm requires a supervised dataset as input. There are many tech-
niques that could be used to obtain such supervised database by performing an
extraction from a set of web resources. It can be done by using a manually defined
wrapper, so the typical techniques for wrapper induction can be used for this
purpose. Once this is done, a training dataset is obtained and used as input for the

induction algorithm.

Then, overfitting rules are built out of the results of the supervised extraction.
An example of the overfitting rules is given with after the following training

sample, classified as a szoc:Post:

width(x) = 100

height(x) = 200
font size(x) = 12 (4.4)
font type(x) = sans

rdf:type(x , sioc:Post)

As it can bee observed, the sample represents an[HTML)fragment x which has
some visual properties about size and font. This|HTML|fragment x is converted

into the following overfitting rule:

width(x)> 100 A width(x) <100 A
height(x)>200A height(x) <200 A
font size(x)>12A font size(x) <12 A (4.5)
font type(x)=sans
= rdf:type(x,sioc:Post)

Afterwards, the set of overfitting rules is iteratively reduced by grouping
similar rules into more general ones, and by simplifying rules by generalizing
conditions. A rule r* is considered more general than rule » according to the

following definition:
more_general(r*,r) <= (Ihs(r)(x(s..sx,) = Lhs(r*) (x50 x,)) (4.6)

We use 7 hs(7) to denote the right-hand side of a rule » and /hs(7) for the left-hand

side.

The process of generalization is shown in algorithm (1} which accepts a ruleset

R and a set of [HTML| documents 2 on which perform the extractions. A

65

4, CONTENT DISCOVERY

generalization operation is considered valid if the resulting ruleset produces a
score as high as or higher than with the previous ruleset. Regarding the score
function, we have used F-score, which will be defined in section|6.2.2} although

other score function could be employed. The algorithm finishes when no more

generalization operations can be performed, returning a new ruleset.

Algorithm 1 Rule generalization algorithm

1: procedure GENERALIZE(Z, D)

2:

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

W N

T <0
R — R
repeat
if SCORE(Z*,9) > SCORE(Z,9) then
R— R
end if
for (r,7,) €EZ x # do
if RHS(r;)=RHS(r,)AN=((r{,7,) €T) then
T —(r;; 7))
P — {0, € LHS(r)), 0.(x,y)= parent(x,y)}
[hs* /\91_69, 9,
for (¢;,c;) € LHS(r) x LHS(7,) do
if (¢; =(a(x)>th,))A(c,=(a(x)>th,)) then
Lhs* «— (Ihs* N(a(x) > min(thy,th,)))
else if (¢; =(a(x) < th))A(c,=(a(x)<th,)) then
Lhs* «— (Ihs* N(a(x) < max(thy,th,)))
else if (¢; =(a(x)=v))A(c; =(a(x)=v)) then
Lhs* —(Ihs* N(a(x)=17))
end if
end for
r*«—(lhs* = rhs(r)))
2 A\ 7, Ui}
break for
end if
end for
until Z* =%
return #

30: end procedure

rule pruning to reduce overfitting [Quinlan, 1993]]. Our system thus requires a
building subset out of the training dataset during the training phase. This building
dataset is the one that is used to build the set of overfitting rules. Then, the whole

This approach is similar to other machine learning techniques that perform

66

Rule induction for content extraction

training dataset is used by the algorithm|1]to generalize the obtained rules.

As said, algorithm|[I| progressively merges rules into new, more general ones.
Lines 10-26 attempt to group two rules into a new one whenever two rules share
the same structure. The requirement for this operation is that the two rules share
the same right-hand side. Otherwise, the rules are not grouped and no new rule
is built. We use RHS(7) to denote the set of terms that appear on rhs(r), and
similarly LH §(r) for the left-hand side. If two rules 7, and 7, are to be grouped,
lines 14-22 state that for each of the terms ¢, from left-hand side of rule », and
¢,, from left-hand side of rule r,, are combined into a more general one so that
c1(x)V ¢y(x) = ¢*(x). This allows to produce a new rule »* which is more general
than the original rules r; and 7,. Le., after combining r, and 7,, the following

condition meets:
Lhs(r)(xqs e %) V LDS(75) (%4 eees %) = LS () (24, o0 X)) (4.7)

It can be proved that equation implies more_general(r*,r) and

more_general(r*,r,).

An example of combining two rules is shown using the next ruleset:

r,=(width(x) > 100 A width(x) <300A font_size(x)< 14 A
parent(x,y) A font_size(y)> 16
= rdf:type(x,sioc:Post)Ndc:title(x,y))

r, =(width(x) > 100 A width(x) <400A font_size(x) < 14
. 4.8)
= rdf:type(x,sioc:Post))
rs =(width(x)>250 ANwidth(x) <400A font _size(x) <14 A
parent(x,y) A font_size(y)> 14 A font_weight(y)> 500
= rdf:type(x,sioc:Post)Ndc:title(x,y))

Only rules 7, and r; can be combined because of sharing their right-hand sides.

After combining term by term according to lines 14-22, the resulting rule * is:

r*=(width(x)> 100 A width(x) <400A font_size(x) <14 A
parent(x,y)\ font_size(y)> 14 4.9)
= rdf:type(x,sioc:Post)Ndc:title(x,y))

67

4, CONTENT DISCOVERY

The new rule is more general than the previous ones, as the condition from

equation [4.7|is satisfied:

(widrh(x) > 100 A width(x) <300A font_size(x) < 14 A
parent(x,y)\ font_size(y)>16)V
(width(x)>250 Nwidth(x) <400A font_size(x) < 14 A
parent(x,y)A font_size(y)>14A font_weight(y) > 500)
= (width(x)>100A width(x) <400A font_size(x)< 14 A
parent(x,y)\ font_size(y)> 14)

(4.10)

Afterwards, the algorithm checks the new score with the resulting ruleset. If
the score is as high as the previous one, the new ruleset is kept, otherwise the
ruleset is rolled back. In all cases, a different pair of rules is tried in the next
iteration (in order to achieve this, the already tried rule combinations are stored

in set 7). The algorithm finishes when no more rules can be combined.

4.3.3 Wrapper conversion

When a scraper processes a visual mapping, it will obtain a set of resources
which are mapped to the fragments in a particular web resource. In our system,
we will use this intermediate output to induct a wrapper with traditional wrapper

induction techniques. This has the advantages explained next.

First, it improves the results of the visual patterns. Wrapper induction tech-
niques require only a few correctly supervised samples to induct a wrapper [Anton,
2005[]. When inducting a wrapper, all extracted data in a list can be extracted even
if not all the samples are marked for extraction during the supervision process.
This lets increase the recall of the visual patterns, as long as all news with a similar
tree will be selected whenever the visual extractor produces an acceptable

amount of data as output.

Finally, wrappers are more lightweight, as they do not require visual features
to be computed. The visual attributes enumerated above require a web browser
to render the web resource and load and images. By converting the visual

patterns into a wrapper, a web browser is not necessary anymore for using the

mapping.

68

Conclusions

4.4 Conclusions

In this chapter, the induction of content discovery rules has been covered. An
algorithm that performs induction of first-order logic rules to extract data from
unstructured web resources has been described. Such system can be used to extract
data from web sites with an unknown [DOM]tree structure, thanks to the fact that
it is based on the visual features of the elements shown in the web browser. This
allows extracting semantic information from unstructured web resources without

external supervision, given a previous training stage.

69

70

Chapter 5
Service discovery

This chapter analyzes techniques for service discovery in the web. As said, devel-
opers are able to create new applications by composing already existing services
from third-party vendors. However, the vast amount of choices, technologies
and repositories can make discovering these services a tedious task. The chapter
analyzes two approaches to perform discovery at the service level. Under one
approach, services are discovered by the use of service discovery rules out of the
knowledge provided by the underlying content layer. Under the second approach,
services are found as content in web repositories and discovered as such. For
that, the aspects behind service modelling are analysed and a component model is

proposed.

71

5. SERVICE DISCOVERY

5.1 Introduction

In the current Web, developers enjoy the availability of plenty of services, data
feeds, widgets and other components that can be reused to build new web appli-
cations. This ecosystem of reusable web components comprise elements such
as data feeds of various domains, telco services or desktop and mobile widgets.
Additionally, there is a growing set of tools for the creation of mashups such as
MyCocktaill| or mashAre|that ease developers the combination of services for
application construction. Also, Programmable Webf| Yahoo Pipeg| or Opera
widgets’|are examples of repositories that include services and widgets of many
different kinds. They can be queried by users in order to search useful applications

and services that they can reuse for mashup composition.

However, because of this mushrooming of web components and mashup
platforms, developers face some difficulties when working in this development
process of mashup construction. First, it is not immediate for a developer to
find the most appropriate component for a mashup she is building, as there are
many of them available and the information might be scattered across various
repositories in the web. Second, components employ different standards and
semantics, thus requiring some study of the documentation by the developer.
And third, the components often need to be adapted for their usage by a specific

mashup platform.

This chapter contributes to the solution of building semantic descriptions of
services through two different approaches. Section[5.2.2|describes a novel approach
called service probing, in which interactions are the input to service
discovery rules, serving to identify features, which comprise service descriptions.
Section [5.3| raises the fact that the information about several services is already
available in web service registries such as Programmable Web and Yahoo Pipes.
Therefore, services can be regarded as contents in this case, and be described using
the same techniques outlined in section 4 For this, a component model is defined,
which allows to build a metaregistry that aggregates services discovered as contents

in the web.

"http://www.ict-romulus.eu/web/mycocktail
"http://mashart.org
Shttp://www.programmableweb. com
“http://pipes.yahoo.com
Shttp://widgets.opera.com

72

http://www.ict-romulus.eu/web/mycocktail
http://mashart.org
http://www.programmableweb.com
http://pipes.yahoo.com
http://widgets.opera.com

Services as REST resources

5.2 Services as REST resources

This section focuses on service discovery by regarding services as[REST]| resources,
which participate in[HTTP|interactions to provide value to the top, agent level of
the discovery framework. For this task, a novel approach called service probing

will be introduced after detailing the feature-oriented approach behind service

descriptions, which was introduced in section

5.2.1 Feature-Oriented descriptions

As said in chapter[3] the service model used for service discovery level applies ideas

inspired in [mixins, |[AOP| and [FOP| paradigms to semantic service description.
These paradigms extend[OOP| by allowing the modelling of secondary concerns in
an isolated way. [Prehofer,|1997] is a composition model that allows refining
classes through the definition of features, i.e., subclasses with core functionality.
[Bracha and Cook, (1990], or abstract subclasses, are separate groups
of methods that can be inserted into a class to override the original behaviour,
but which cannot be instantiated on their own. Therefore, serve to
implement features ifFOP| [Apel et al.||2006]]. [FOP|can be seen as a generalization
of traditional class inheritance in and is used to develop the so-called

software product lines, i.e. programs that provide different combinations of

features [Lopez-Herrejon, 2005].

[Elrad et al.,|2001]] similarly proposes separating concerns that cross-cut
various classes or methods, with the logging aspect as the most popular example
of a cross-cutting concern. Code from aspects is injected into specified join points
in classes. This way, by usindAOP] logging commands can be inserted into
appropriate join points in a class without changing the original code of the class.

and[FOP)are different paradigms despite the existing similarity between
them, as pointed out in [[Lopez-Herrejon, 2005[], so long as they propose different
methods to combine code (code weaving vs. modification of inheritance chains).
Some efforts try to combine the two approaches by introducing new concepts
such as Multi Mixins, Aspectual Mixins, and Aspectual Mixin Layers [[Apel et al.,
2005].

Feature and aspect orientation have inspired other modelling approaches, such
as|[Feature-Oriented Model-Driven Development (FOMDD)| [Trujillo et al., 2007],

in which models are created by composing features. Similarly,
IProgramming (ROP) [[Stetmann, 2000] or|Subject-Oriented Programming (SOP)

73

5. SERVICE DISCOVERY

[Harrison and Ossher, [1993]] regard separation of object roles and the so-called
subjective perceptions, respectively.

In the service level, the idea of separating features and concerns is employed
to enable discovery at a feature level. A service description is a composition of
features, allowing the reuse of feature descriptions in a similar way as features,
aspects and abstract classes are reused in the previously mentioned paradigms. This
modelling approach, and how is applied to service discovery rules, is described in
this section.

In order to provide a mapping between a service’s feature set and a service’s
formal description, the service level framework includes feature definitions. A
feature definition . is a rule that maps a set of features f, ..., f, to a set of
conditions. It is activated when the set of features is present in the service’s
feature-oriented description, and produces a formal description. By aggregating
all descriptions from the activated feature definitions, a service formal description
can be obtained.

For example, given a service description F and features f; (“outputting a set
of resources”) and £, (“handling images”), some feature definitions can be the
following:

fLEF = |Output|>1 (5.1)

HLEFANfL,EF =>Vx(x €Output — image(x)) (5.2)

Feature definition 5.1]formalizes feature f] by stating that the service’s output
cardinality has to be higher than one. Meanwhile, feature definition 5.2]formalizes
that all output resources are images, and is applicable for services that (i) output
a set of resources (as of feature f;) and (i1) handle images (feature f,). Therefore,
the formal description of a service that is feature-oriented-described by f; and f,
would be:

(|Output|>1)AVx(x € Output — image(x)) (5.3)

It can be observed that feature definition 5.1|is activated by the presence of
one feature in the feature-oriented description. Therefore, that definition serves to
formalize one feature. However, feature definition 5.2is activated by the presence
of two features in the feature-oriented description.

Allowing definitions that are activated upon the presence of more than one
feature might be regarded as unnecessary complexity. However, this versatility is
justified. Consider feature f; as “The service stores a resource that is provided as

input”. When using f, with f, a postcondition should be set (i.e. “multiple images

74

Services as REST resources

Algorithm 2 Service probing algorithm

1: procedure PROBE(/)

2 S0

3 repeat

4: AR

5: for fe Z\Sdo

6: valid « false

7 for interaction el do
8 if 1hs(f)(i,S) then
9 valid < true
10: end if

11: end for

12: if valid then

13: S < SuU{f}

14: end if

15: end for

16: until $*=§

17: return §

18: end procedure

will be returned”), but when used with feature f;, a precondition should be set
(i.e. “an image has to be provided as input”). This can be achieved by setting one

definition for £, and f; (as shown in definition [5.2), and another definition for f,

and £;, as shown next:
hEFNf[eF=>Vx(x€lnput — image(x)) (5.4)

This serves to resolve the issue of feature interaction, already identified in [FOD)|
[Prehoter,|1997]]. By describing features semantically, feature descriptions can be

combined to produce a semantic service description.

5.2.2 Service probing

This section describes the approach of service probing, which is employed to
discover services by applying discovery rules at the service level. The main idea
behind the technique is to reason on the interactions performed on a[REST]
resource to identify its functionalities, represented as features.

An interaction x is modelled as a method method(x) (i.e. GET,
POST,PUT,etc.), aset of inputs [nput(x), a set of outputs Out put(x), and
astatus status(x), which, according to the specification [[Fielding et al.,

75

5. SERVICE DISCOVERY

Feature Requires Definition

get - method(x)=GET ANstatus(x) € {200,300,...,307}
multiple get |Output(x)|>1

filtered get t€lnput(x)Ny € Output(x)Actag:tagged(y,t)
image get Yy €Output(x)Afoaf:Image(y)

news get y€Output(x)Asioc:Post(y)

post - method(x)=POST Astatus(x) € [200,400)
multiple post [Input(x) >1

image post y€E€Input(x)Afoaf:Image(y)

news post yE€lInput(x)Asioc:Post(y)

Table 5.1: Sample feature set for service probing

Method Input

1 get ctag:Tag(t)Nrdfs:label(t,”beach”)

2 get ctag:Tag(t)ANrdfs:label(t,”sun”)

3 get ctag:Tag(t)Nrdfs:label(t,”holiday”)

Table 5.2: Requests in service probing sample

2009], indicates the result of the request. Service discovery rules use
interactions as the input.

With a set of interactions, service discovery rules can be applied to
determine the features that the service being discovered has. This set of interactions
can be obtained after probing the service, i.e. querying the resource with
sets of inputs and storing the resulting[HTTD|interactions.

The set of tentative inputs to be used on the service can be obtained by
monitoring users via a browser plugin in order to collect full[HTTD|interactions.
An automated approach after analyzing the domain of the web resource can be
considered, but is out of the scope of the thesis and thus proposed as future work
(see section[7).

Algorithm 2] shows the process of building a service feature-based description
S out of a set of interactions [with a resource through service
probing.

A service description § is iteratively built by selecting features out of the
feature base 7. Lines 6-14 add a feature f to the service description whenever the
left-hand side of a discovery rule is satisfactory. For that, the service description

must already contain the features that the rule requires, and the interaction has to

meet the conditions stated in the rule. If this applies to all theHTTP|interactions,

76

Services as REST resources

Status Output
1 2000K foaf:Image(y,) N ctag:tagged(y,,”tarifa”) A
ctag:tagged(yl,”beacb”)/\
foaf:Image(y,) N ctag:tagged(y,,”ocean™) A
ctag:tagged(yy,”beach”) A
ctag:tagged(y,,”moon”) A
foaf:Image(y;) N ctag:tagged(y;, lngt”)
ctag:tagged(ys;,"woman”) A
ctag:tagged(ys,”beach”)
2 200K foaf:Image(y,) N ctag:tagged(y,,”summer”) A
ctag:tagged(y,,”sun”) A
foaf:Image(y,) N ctag:tagged(yy,”summer”) A
ctag:tagged(y,,"sun”) A
ctag:tagged(y,,”film”) A
(
(
(
(
(
(
(
(
(
(
(
(
(

ctag:tagged(y,, "architecture”) A
foaf:Image(y;) N ctag:tagged V5] sky YA
ctag:tagged(y;,”sun”) A
ctag:tagged Vs, Imcklzght”)
3 2000K foaf:Image(y,) N ctag:tagged(y,,"trip”) A
ctag:tagged(y,, /oolzday”)/\
ctag:tagged]]ozpan ") A
foaf:Image(y,) N ctag:tagged(y,,”trip”) A
ctag:tagged(y,,"travel”) A
ctag:tagged(y,,"holiday”) A
foaf:Image(y;) N ctag:tagged Vs, holzday”)
ctag:tagged(ys,”enrope”) A
ctag:tagged(y;,”croatia”

Table 5.3: Responses in service probing sample

the feature is added to the description. Once there are no more definitions to
try, or no modifications on the resulting description, the loop finishes and the
description § is ready.

An example is given next. Let’s suppose a particular feature set as base knowl-
edge for the service level. The discovery rules for these features are shown in table
6.4

Let’s consider that a user uses Flickr’s search form to find pictures about
beaches, sun and holidays. The user employs the search terms beach, sun, and
holiday on the input box, which results in different queries with their own[HT TP
methods, outputs, and statuses. These HT TP|interactions involve pairs of requests
and responses, which, according to the service discovery level (see section |3) can
be translated into semantic contents thanks to content discovery rules.

Therefore, the raw output of the requests and responses of the search form

77

5. SERVICE DISCOVERY

is converted into an graph, and service discovery rules can be applied to
identify features. Tables[5.2]and[5.3|show respectively the requests and responses
of the[HTTPinteractions.

By checking the conditions for each service discovery rule, service features are
identified, and a semantic, feature-oriented service description is built. Feature
post is not identified because of the HT TP| method used. Feature get is identi-
fied, and therefore other definitions with get are considered. Then, multiple,
filtered, and image are identified, as their conditions fit the considered
interactions. Finally, a filtered image multiple get service is discovered.

This section has shown how to discover services by probing with inputs,
obtaining outputs and checking the conditions they meet. The feature-based
approach allows to define service discovery rules that allow building service

descriptions in this way.

5.3 Services as contents

Usually, services are documented in pages that allow developers learn about
their usage. These documentation pages are often registered in web sites such as
Programmable Web or Yahoo Pipes. These kinds of web sites act as hubs in a
similar fashion as news aggregators, allowing interested parties to be aware about
services by accessing these centralized aggregators. Furthermore, repositories do
not usually employ Semantic Web standards nor follow [Linked Data| principles,
thus difficulting automatic processing, discovery or reasoning. This problem is
thus similar to the one of semantic data availability. To sum up, services are served
as contents and exposed in web service repositories, and as such the discovery
methodology applied to contents can be applied to services under these conditions.

Therefore, this section covers how to perform service discovery when un-
derstanding services as contents. For this, an integrated metadirectory of web
components for mashup composition is defined, which aggregates the knowledge

offered in service registries by adding a semantic level. The metadirectory makes

use of [Linked Mashups Ontology| (LiMOn), a component model that comprises

useful information for querying web services and searching the most appropriate

ones. Additionally, reuses other underlying standards, such as[WSMO,
[ESSI WSMO working group, [2004] or the Widgets standard [Alario-Hoyos

and Wilson, 2010]], as low-level grounding description languages that allow web

components to be readily executable. These descriptions are built automatically,

78

Services as contents

when possible, in a discovery phase that has allowed to populate the metadirectory
with actual components from the web.

The section first analyzes the problem of choosing web components when

developing mashups in and discusses how fits in a framework of
component selection. The metadirectory that makes use of is described,

as well as the approach that has been followed to populate the metadirectory with

actual web components.

5.3.1 SOA domains

IMashup-Driven Development (MDD) proposes reusing web components to build

new applications. These components vary from a service to a widget,
gadget, portlet or even a web application that shares its information as a data feed.
Therefore, when developing an application, developers can choose among a wide
range of available components available to combine them and obtain a new work-
ing system. Then, developers face the problem of choosing the right component
for the right task. First, the component needs to fit the functional requirements
behind the tasks it has to perform in the newly constructed application. E.g. if a
service for geolocation is seeked, a developer first needs to filter out all non-related
services that do not deal with mapping services or geolocation. And second, the
component needs to fit other non-functional requirements, such as trust in the
company behind the component, or certain quality aspects that the component
needs to meet.

Thus, developers need to search for the appropriate component according
to some high-level needs they have. According to the type of component (API,
service, widget...) the developers would have to check one registry or another
(e.g. either a widget repository or some service registry). Also, depending on
the features seeked in the component, some registries would be more appropriate
than others (e.g. some registries might show information about semantics of the
service and others not). And again, according to the features seeked, it would be
necessary to query external sources to fill up the component information (e.g. it
might be necessary to look up a components’ vendor at Wikipedia in order to get
an idea of the component’s trust).

The Software Engineering Institute distinguishes several domains in the man-
agament and development of [Lewis and Smith, 2007]]. These domains are
business domain, engineering domain, operations domain and cross-cutting con-

cerns. Each domain maps to an aspect which is relevant in component selection

79

5. SERVICE DISCOVERY

when dealing with

e The business domain comprises all the consequences that a service orien-
tation has on a given organization, application domain or context. This
includes business aspects such as cost or legal issues when selecting a compo-

nent for its reuse.

e The engineering domain deals with the service-oriented lifecycle. At the
time of selecting a component for reuse, this domain would contain the
technical aspects of a service, 1.e. formats, interface, semantic descriptions,

and so on.

e The operations domain deals with the operation, evaluation and optimiza-
tion of service-oriented systems. Namely, in this domain the aspects that
are involved when selecting a component will be Quality of Service aspects,

which determines the evaluation of a component’s performance.

e Cross-cutting concerns include aspects that are orthogonal to all the do-
mains. The main aspects are trust and social aspects, which affect and deter-

mine other aspects in some way or another.

These aspects are detailed and discussed next, along with the references found

in the literature.

Business aspects

Business aspects are any selection criteria that fall into the business domain of
Service-Oriented Architectures. Whenever a decision aspect when selecting a
service can have an impact on a given organization’s structure, it is considered a
business aspect to our understanding.

Cost is the most notable business aspect when selecting a service. Raj and
Sasipraba [[2010] understands cost as the economic condition of using a service,
and includes it into a Quality of Service model for service selection. Similarly,
Rehman et al.[[2011],|Zeng et al.| [[2009] and Li et al.| [[2010] define frameworks
for comparison of cloud providers that also include cost as one of the selection
aspects. Although some of these works use a broad definition of cost (involving
non-monetary aspects as well), it can be considered a fundamental business aspect
in component selection.

Legal restrictions are also a business aspect regarding component selection. Very

often components are only usable under certain conditions on a reduced number

80

Services as contents

of countries, which affect the selection process depending on the company’s
activities and targets. Shimba| [2010] considers legal issues as one challenge in
cloud computing, enumerating the different difficulties that are encountered
because of countries having different regulations and laws on the topic. The
complexity behind this diverse regulation makes legal restrictions hard to model,
which, as will be seen later, might be the reason why most component registries
dismiss legal restrictions.

The vendor and the possible agreements with the consumer company may
influence the decision of component selection. A company often agree to use
other company’s components under a certain domain. For example, Apple’s
mobile devices started to provide tight integration with Twitter although other
microblogging services were available, after reaching an agreement that benefited
both companies [[Eaton, |2011]. Therefore, most times knowing the specific vendor
that provides the service behind a web component is needed prior to taking the
decision to use it. Thus, the vendor is another business aspect to consider regarding

component selection.

Trust aspect

According to |/Amoroso et al.| [[1991]], software trust is the degree of confidence
that exists that the software will be acceptable for “one’s needs”. This implies that,
after a developer has been convinced about a software component’s specifications,
thanks to some documentation, trust would be the confidence that these specifi-
cations would be met over time. Related subaspects that have been identified are
popularity, maturity, company trust and community trust.

Popularity is an indicative of success of a web component [Mileva et al.,|2010].
Success can be understood in several ways, and different indicators can be used
to measure it. A component that is widely used is considered succesful, while
one with many bugs has lack of success. However, a component which lacks
bug reports might also lack community support because of a lack in popularity.
Thus, popularity is a combination of different indicators that convey an active
usage of a big enough community of users. Popularity increases the so-called
trusting-intention [Kutvonen, 2007]], or the will to depend on another component
with the involved risks. Therefore, popularity is a relevant metric inside the trust
aspect.

Maturity is another software feature which increases trust. The topic of

maturity is widely covered on the area of Open Source [[Polancic et al., 2004]

81

5. SERVICE DISCOVERY

because of the nature behind these kinds of projects - they usually follow an
iterative growth, with frequent releases until they reach some point of maturity
[Raymond, [1999]. The|Capability Maturity Model (CMM)| [Paulk, |1993]] and
the|Open Source Software Maturity Model (OSSMM)| [[Golden, 2005] are models

to improve the software process’s maturity in companies for traditional software

development and Open Source software development, respectively. These models
emphasize the importance of seeking maturity in software.

Company trust is critical factor behind the global trust of component. A
component is more trustworthy if a trustworthy company is behind it. Many
factors are involved in comprising trust on a company, which can vary from
company size to financial equity or customer service. Nguyen et al.| [2006]
identifies communication, cultural understanding and capabilities as the three
top factors that determine trust on a software company. Similarly, a survey has
for instance revealed that 75% of users perceive more trust on companies that
use microblogging services such as Twitter [Gershberg, 2010]. All this reveals
communication channels as key factors that determine company trust and thus

the trust aspect.

Quality of Service aspects

Quality of Service in the Internet is traditionally regarded as the combination of
network-imposed delay, jitter, bandwidth and reliability [Ferguson and Huston,
1998]]. This is a typically network-level definition that can be extended to the
application level by considering the metrics that a particular vendor offers for their
commercial components. Hu et al. [2005]] proposes a decision model of Quality
of Service applied to Web Services that can be extended to components. They
propose a model to select Web Services according to metrics of execution cost,
execution time, reliability and availability. Similarly, Menasce and Almeidal [2002]

define Quality of Service as a combination of availability, security, response time
and throughput issues. We will generalize these terms into availability, reliability
and performance.

Awvailability is the percentage of time a web component is operating [Menasce,
2002[]. When applying this definition to complex web components, this availability
depends on the availability of several resources. Le. in the case of a widget, both
its assets (external scripts and[HTML] pages) and its services must be available for
the widget’s availability. [Zhang and Zhang| [[2005] point out similar problems in

the domain of mashups. We identify availability as an important aspect when

82

Services as contents

selecting a web component.

Reliability, as a general term in software, is the probability of failure-free oper-
ation of a computer program for a specified time in a specified environment [Musa
et al., 1987]]. This definition can be applied to Service-Oriented Architectures
by considering web components as the software elements that are to provide
failure-free operation. Zhang and Zhang|[2005] state that a reliable web service
must exhibit correctness, fanlt-tolerance, testability, availability, performance and
interoperability. Those are a set of requirements that a service must keep in order
to consider it failure-free. Other papers [Majer et al., 2009] consider as well the
problem of reliability in more complex components, such as mashups, which
reuse other services, thus depending on third-parties’ reliability and availability.

We identify the performance aspect as a way to encompass execution times,
responsiveness, and throughput issues, noted as important elements when regard-
ing Quality of Service [Menasce and Almeida, 2002]]. Depending on the nature
of a web component, some metrics would make sense and others would not. For
example, the concept of throughput cannot be applied to a web component such
as widget (but it can be to a service), although its user interaction’s responsivity
can be measured in the same way as a web service’s. These kinds of issues are

regarded as performance aspects.

Technical aspects

The technical aspects behind selecting a web component involve all the issues
related to component operation. Several component description standards such as
[Christensen et al., 2001], [[ESSI WSMO working group [2004] or
[W3C|widgets [[Alario-Hoyos and Wilson},[2010] model the main characteristics
that involve operation aspects for specific web component types such as services
or widgets. The operation aspects these standards consider can be grouped into a
few areas: interface, dependencies and cross-cutting concerns.

Interface comprises aspects such as conditions that are involved in the commu-
nication with the component. employs preconditions and postconditions
to model a service’s interface, and offers means to identify formats and protocols
employed in the communication [Lara et al., 2004].

Dependencies include any requirement of external components. Especially,
mashups [Majer et al., 2009]] are components that are mainly built out of other
components, such as web services, widgets or data feeds. Awareness about these

dependencies can help to know about indirect requirements or usage restrictions

83

5. SERVICE DISCOVERY

(if, e.g., a client-side mashup requires a geolocation service that is not available in
the user’s country).

Cross-cutting concerns involve non-functional technical aspects such as security,
choreography issues, or required standards. Web Services often group these
aspects in the so-called WS-* standards [[Alonso, 2004]. Similarly, allows
defining non-functional properties for a service in order to specify these kinds
of aspects [[Toma and Foxvog, 2006]. An interesting cross-cutting concern in
is discoverability, which measures the extent to which the service, service
consumers expect to look for, is easily and correctly found [Choi and Kim), |2008]].
It takes place if a component capabilities are published in one way or another.
In order to allow web components to be found by developers, their capabilities
need to be announced for an agent to discover them. A textual description of
the component’s functionality is a minimum requirement to make a component

discoverable, although a semantic description allows automatic processing.

Support and coverage in existing repositories

In the web, we can find several repositories of components that can be reused
for creating new applications. By taking a glance into these repositories, we can
evaluate the support and coverage of the different aspects that we have identified
for component selection.

A repository will be said to fully support an aspect if it provides appropriate
and complete information related to that aspect. For example, Programmable
Web provides a field to link a component to a[WSDL]file. A[WSDL|file is a Web
Service standard description language that allows describing a service’s interface,
among other things. This allows components in Programmable Web to have full
support to the interface aspect.

On the other hand, a repository provides full coverage of an aspect if all of
its components make use of the supported fields for that aspect. For instance,
Programmable Web supports annotated services by providing a field to
reference a[WSDLfile. However, most in Programmable Web do not make
use of that field, hence resulting in low coverage of the interface aspect. The metric
of coverage thus represents the actual degree of usage of a repository’s capabilities.

Table|5.4 shows the analysis of support to every aspect on three repositories.
The support that each repository gives to each aspect is marked from 0 points (no
support) to 4 points (full support). We have selected three repositories that are

both heterogeneous and popular. A short description of each of the considered

84

Services as contents

repositories 1s given next:

e Programmable Web is the most popular directory of mashups and APIs on
the web. It is a collaborative directory where users can provide awareness
of a mashup or an API. There are several fields that the users can fill up to
provide information about a particular component. such as Google
Mapsf|and mashups such as Panoramid'| have their own page where users add
information on related[APIs and mashups, or any other useful information.

e Yahoo Pipes is a repository of user-built mashups called “pipes”. Each pipe
is created using an editor developed by Yahoo, which allows users to create
new data feeds out of existing ones. Then, pipes appear listed in Yahoo
Pipes’ web site, where users can find, and clone, other pipes and even reuse

them to build new ones.

e Opera Widgets is a repository of widgets that are created by users. Opera
does not provide an editor for this task, and simply allows users to upload
their widgets and publish them in their web site. The web site then provides
a browsing interface so that users can search widgets by category and load

them into their browser.

As said, coverage is a complementary metric that reveals the actual degree of
usage of each aspect. Fig. [5.1]illustrates the coverage for each repository and aspect.
The region inside each graph represents the degree of coverage for each repository.
It is worth noting that both Yahoo Pipes and Opera Widgets are strict repositories
that require all fields to be filled for each component. Programmable Web, on the
other hand, accepts optional information, such as the mentioned case of
descriptions. As not all APIs in Programmable Web are linked to a[WSDLfile,

this reduces the values in the technical axes.

5.3.2 Linked Mashups Ontology

In this section, we describe a model that integrates the properties and fields that
are provided by current component repositories in the web. It is called the
IMashups Ontology| (LiMOnl), for its approach of bringing Linked Data to mashup-

driven development.

*http://maps.google.com
’http://panoramio.com

85

http://maps.google.com
http://panoramio.com

5. SERVICE DISCOVERY

Aspect Subaspect Programmable Web Yahoo Pipes Opera Widgets

Business Cost A field that plainly All the “pipes” in the All the widgets in the
indicates whether or repository are free, repository are free,
not there are usage so cost is implicit (4 so cost is implicit (4
fees is indicated (2 points) points)
points)

Legal issues Links to commercial ~ All “pipes” share All widgets share
and free licenses (1 the same license (4 the same license (4
point) points) points)

Vendor Vendor is provided (4 Author is shown (3 Author is shown (3
points) points) points)

Trust Popularity Developers can rate Number of “cloned Widget users can vote
APIs and mashups pipes” are shown, up and down widgets
and the number of which is an indicator (3 points)
mashups that use of popularity (1
an API is shown (4 point)
points)

Maturity Addition date of a Creation date of the Addition date of a

Company trust

component is a naive
indicator of maturity
(1 point)

Vendor and home
page are shown,
but with no trust
indicators (1 point)

“pipe” can be an indi-
cator of maturity (2
points)

Author is shown, but
with no trust indica-
tors (1 point)

widget is a naive in-
dicator of maturity (1
point)

Author is shown, but
with no trust indica-
tors (1 point)

@ Availability No indicators (0 No indicators (0 No indicators (0
points) points) points)

Reliability No indicators (© No indicators (© No indicators (0
points) points) points)

Performance No indicators (@ No indicators (0 No indicators (0
points) points) points)

Technical Interface Yes, through alink to Implicitly provided Yes, by sharing wid-
a WSDL service de- through an HTML gets the W3C widget
scription (4 points) form and a well- standard (4 points)

known uniform
output for every
“pipe” (4 points)
Dependencies Mashups are con- “Pipes” are connected ~ No information
nected to the APIs with the feeds they about dependencies
they use (4 points) use (4 points) (0 points)

Cross-cutting
concerns

Information akgut
SSL usage, category,
tags, plus the infor-
mation available in
WSDL (4 points)

Tags and a textual
description are pro-
vided to categorize a
pipe (2 points)

Only a taxonomy and
a textual description
is provided (2 points)

Table 5.4: Repositories’ support to aspects

Services as contents

Technical Business
Cost —— Opera Widgets
0S8’
Cross-cutting concerns Legal -=" Programmable Web
---------- Yahoo Pipes

Interface _ Vendor
: -
\
\

i \ .
Dependencies fmemememem. = ——= Popularity

Performance Maturity

Reliability Company trust
Availability

QoS Trust

Figure 5.1: Repositories’ coverage of aspects

With these considerations in mind, we have defined the model presented in

Fig. Regarding the technical aspect that was introduced in section the

properties listed next have been included in the model.

e A set of properties allow to cover interface aspects. The property description
allows linking to a lower-level component description, such asfWSMO|[W3(]
widgets or[WSDL] depending on the nature of the component. The property
endpoint allows to link to the particular[URL] where the component runs.
Also, the properties of dataFormat and protocol allow to specify how the

data, if any, is exchanged with the component.

The property uses is employed to link to reused components. For example,

it can be used to indicate which services or data feeds a mashup reuses.

Some properties address cross-cutting concerns. The property clientInstall-
Required indicates whether or not the web component requires an additional
component installed client-side to work. The property example allows to
reference examples of usage of the component’s API. The properties tag and
category allow to link to tags and categories, respectively, that represent the
functionality of the component. The property api links to the specification
of the component’s programming interface. Finally, the properties authenti-
cation and sslSupport allow to specify how the security over component’s

data transport is performed.

The trust aspect comprises popularity and company trust issues, and includes

the properties listed next:

87

5. SERVICE DISCOVERY

Terms &
Conditions

URL

Source
URL

required

i
!

!

!

:

!

' Developer key
!

' Boolean
!

!

!

Business aspect

Usage fees '

Commercial ’

Rating
:usageFees « Integer
License

Provider

URL

:provider

Protocol

ctag:tagged

:dataFormat :authentication

Tag
ctag:Tag

Homepage
de:source URL
D N
\ !
1 ! 1
i

i | Concept ST sioc:horhepage API forum
! [skos:Concept |, f:type Category . \ URL
\ :categorizedBy 1 zapiForum
' ' '
! dfs:subClassOf : , : API blog
i Application r uoha ; » Component T 7| URL
! rdfs:subClassOf 'z\plﬁsfo_g" -oIIIIZZZZZZIzzz::
. \ : \)
! . . i Description H
| Service . :describedBy ; \\"SM(I)/ROSI\I !
. rdfs:subClassOf ' ' WSDL H
i . ! W3C Widget '
. (NS AR E VP . N NG SO 1 WADL '
! :endpoint !
! !
: Widget Endpoint :
| URL '
\ |

" e -exampl !
E ssISuppgfre api cxample :clientInstallRequired '
1 !
. SSL support API Ei‘;i"]]])lo Client install |
' Boolean URL ¢ required !
. :protocol Boolean '
! !
! !
\ !
\ !
\ !
\ !
| !
! !
! !
! !
! !

Data Authentication
format scheme

Technical aspect

Figure 5.2: [Linked Mashups Ontology|

The rating property serves as an indicator of popularity. It represents the

rating made by users in repositories to reflect their degree of satisfaction

with a particular component.

The properties of apiForum and apiBlog fall into the company trust by

providing means to reference support facilities (i.e. forums and blogs) that

the vendor provides to component users. Also, the property provider allows

to identify the vendor of the component, for any company trust issues

involved.

The business aspect comprises costs or legal issues, and is covered by the model

through the following properties:

e The property usageFees is a cost aspect property that link to any cost required

88

Conclusions

when using the component.

e Regarding legal issues, the property termsAndConditions allows linking to a
document that informs about the conditions of usage of the component. The
property commercialLicense links to a commercial license for the usage of
the component, if any. Finally, the property developerKeyRequired indicates
whether or not the component requires creating a developer account prior

to its usage.

e The property provider serves to identify the vendor of the component for

any business issues involved.

Additionally, the source of a component is included as a property. In next
sections, the model will be used to build a metadirectory. This makes it useful to
reference where the component was obtained from, thus requiring a property to
link it to the source repository. Also, regarding the Quality of Service aspect, no
information was found in any repository, so no field was included in the model.

In total, the component repositories of Yahoo Pipes, Programmable Web,
Opera Widgets, iGoogle Gadgets’} AppStored’] Android Markef!™, and OhloH]]
were analysed to identify relevant properties for the model.

Fig. [5.3|shows the connections between the component model and the ontolo-
gies that have been reused, illustrating how these links can be exploited thanks
to already existing tools. Such tools generally consist of ways of exploiting the
graph, either by allowing the identification of new relations between
resources or by providing ways to visualize the data.

In chapter|[6] the evaluation of applying this model to discover services from

the web is performed.

5.4 Conclusions

Through this chapter two different approaches to service discovery have been
covered. First, strictly on the service level of the discovery framework, the
discovery process has been shown to be possible thanks to a novel technique called

service probing. With this approach, service discovery rules are applied to sets of

Shttp://www.google.com/ig/directory
http://itunes.apple.com/de/genre/ios/id36
®https://market.android.com
http://www.ohloh.net

89

http://www.google.com/ig/directory
http://itunes.apple.com/de/genre/ios/id36
https://market.android.com
http://www.ohloh.net

5. SERVICE DISCOVERY

Freebase

Figure 5.3: Connections between and other ontologies

[HTTP|interactions to identify service features and therefore discover services. The
second approach considers the problem where services are already referenced in
the contents of web sites, which is the usual case in web registries and repositories
such as Programmable Web and Yahoo Pipes web sites. In this case, the same

methodology as in content discovery can be applied, and a component model,

has been defined for performing content-level discovery of services.

90

Chapter 6
Evaluation

In this chapter, the evaluation of the discovery framework is described. The frame-
work and its different layers have been applied to several scenarios. The content
layer was evaluated in scenarios of security knowledge extraction, news discovery,
and idea management. The service layer was applied to mashup development.
The full framework is used in a scenario of electronic newspapers. An intelligent
agent crawls the web for related news, and uses services and visits links automati-
cally according to its goal. The scenario illustrates how the discovery is achieved
at the different levels and how the use of semantics help to implement agents
that perform high-level tasks. The chapter therefore summarizes the evaluations

performed to validate the proposed framework.

91

6. EVALUATION

6.1 Introduction

This chapter describes the evaluation of the different contributions of the thesis.
The discovery framework has been evaluated on a variety of scenarios. These
scenarios are the result of the definition of different case studies in several research

projects. The main projects are listed next.

ROMULUS (FP7-ICT-2007-1) is a European funded project which researches
into and agile development by defining a unified framework for mashup
development. The Spanish funded project Java sobre Ruedas (FIT-350401-2007-8)
similarly deals with and agile development, and thesis’ contributions have

been also applied on it. The framework was applied at the service level to provide

integration of REST|services in mashups.

Contenidos a la Carta (TSI-020501-2008-114) is a Spanish funded project which
researches into the improvement of news processing by the use of mashup devel-
opment techniques. The contributions on content discovery from the thesis were
applied extensively in this project to discover relevant news and build semantic

descriptions for content combination.

OMELETTE (FP7-ICT-2009-5) is a European funded project which researches
into the definition of an open framework for the construction and execution of
telco mashups. The service discovery level of framework was applied extensively
on this project to provide mashup component discovery in order to keep the

database of mashup components of the platform up to date.

Other projects where the discovery framework was used are THOFU project,
which deals with innovation in hotels and tourism, Resulta project (TSI-020301-
2009-31), which deals with the improvement of business collaboration in a web
2.0 basis, and VulneraNET project (TSI-020302-2009-64), which deals with the
provision of software security knowledge. In these cases, the thesis’ contributions

were applied in order to support other research lines.

The chapter’s structure follows the different levels of the framework. Section
covers content discovery evaluation. Section |6.3|describes the evaluation of
service discovery. Finally, section 6.4 describes the evaluation of the agent level of

the framework.

92

Content discovery

6.2 Content discovery

This section covers the evaluation of the content discovery. A software system
called was built to perform content discovery. It is an Open Source

Semantic scraper that uses the[Scraping Ontology|for its mappings and implements

the induction algorithm|[{]for building generalizable mappings automatically.

6.2.1 Scraping Ontology

This section covers the evaluation of the [Scraping Ontologyl TheScraping Ontol}

logy] was used to manually build content discovery rules in several scenarios.

In projects Resulta and THOFU, the [Scraping Ontology| was employed to val-

idate GIZMO ontology [[Westerski et al., 2010], an ontology for|[Ildea Management|

[[Westerski and Iglesias, [2012]] which was employed in these projects. Some web
sites with ideas, such as Ubuntu Brainstorm?] were mined in order to obtain about
28,000 of semantically-annotated ideas for further processing [[Poveda-Cardona,
2011].

In project Contenidos a la Carta, the Scraping Ontology was employed to

mine eight electronic newspapers and combine data from different sources. The

ontology served to extract information that is not present in content aggregators

like[Really Simple Syndication (RSS)|feeds, such as location, comments or the full

body of news.

In project VulneraNET, the Scraping Ontology was employed to automati-
cally build an ontology of software security knowledge by mapping the contents

of [The Open Web Application Security Project (OWASP)|onto semantic enti-

ties. Content was discovered after crawling the website with the defined content

discovery rules.

Project OMELETTE uses the Scraping Ontology to discover services, and is
thus detailed in section[6.3l

The variety of scenarios provides an idea of the flexibility of the ontology

to create mappings for extracting information from the web after applying the

mappings and using[Scrappy|to extract the data.

"http://github.com/josei/scrappy
“http://brainstorm.ubuntu.com
‘http://owasp.org

93

http://github.com/josei/scrappy
http://brainstorm.ubuntu.com
http://owasp.org

6. EVALUATION

6.2.2 Automatic rule induction

This section covers how the rule induction algorithm from section was
employed to generate content discovery rules.

The system has been evaluated on a set of web pages. It has been trained to
extract news posts with title, description and image by using|[FOAF| [Brickley and
Miller;, 2000], and [SIOC|ontologies, chosen because of their high adoption

and popularity. An example of extracted piece of news in is the following:

<?xml version="1.0" encoding="utf-8"7>
<rdf :RDF
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/spec/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns:sioc="http://rdfs.org/sioc/ns#">
<sioc:Post
rdf :about=
"http://abc.es/20110629/internacional/abci-bolivia-coca-201106291637 .html">
<dc:description>La Convencion de Viena considera la hoja de coca un estupefaciente,
pero su masticado es una practica ancestral de los indigenas del pais
sudamericano
</dc:description>
<dc:title>Bolivia denunciara la convencion de la ONU que prohibe el masticado de
coca
</dc:title>
<foaf:depiction
rdf :resource="http://www.abc.es/Media/201106/29/10557169--229x229. jpg" />
</sioc:Post>
</rdf :RDF/>

In the evaluation, a set of experiments are run to check the performance of
the solution. First, the metrics that will be obtained out of each experiment
are defined. Then, the training and testing datasets which have been used are

described, and, finally, the results are presented and discussed.

Evaluation metrics

In order to evaluate the algorithm, a set of metrics will be calculated out of
each test. Typically, recall and precision are the most common metrics used in
information extraction, and they will be used in the evaluation along with F-score,
a combined metric of precision and recall. These metrics are defined next.

Given a single extraction of a set of data out of a web resource, let n* be the
number of triples that were extracted right, let 7 be the number of triples that

were extracted, and let N be the number of triples that should have been extracted.

94

Content discovery

With these variables, the following formulae for precision and recall is obtained:

nt
precision = — 6.1)
nt
recall = — 6.2)
N

Precision and recall are separate metrics that provide an idea of the perfor-
mance of an information extraction or retrieval test. Precision indicates the ratio
of results that are correct, while recall indicates the ratio of correct results that are

extracted.

In order to have a global indicator that combines both metrics, F-score metric
is defined. F-score is defined as the harmonic mean of precision and recall, which

lets us write:

precision-recall
F=2.

— (6.3)
precision+recall

As of section 4.2} it is desirable to measure the robustness and generalization

of the system. To do so, the testing data is splitted into a robustness test data and a

generalization test data, so robustness and generalization can be defined as follows.

Robustness is defined as the mean of F-scores on a set #; of altered

web resources 7;:
Z F(r;)
robustness:& (6.4)
| &l

ADOMialtered web resource is a web resource taken from the training dataset
which has been subject to changes in its tree. This makes traditional
wrapper-based approaches to fail, as they base the extraction on a particular
structure of the[DOM]tree. Examples of variations performed in the[DOM]tree
can be renaming|CSS|classes, removing parent nodes, or relabelling[HTML|nodes.

These variations affect only the internal structure of the document, while the

visual aspect experiences less changes.

Generalization is defined as the mean of F-scores on a testing set & of

web resources 7; which belong to web sites that were not used at training time.

> F(r)

. . riGYT
generalization = —— (6.5)

|7

95

6. EVALUATION

Table 6.1: Training dataset
elpais.es abc.es

sioc:Post 326 122
dc:title 343 126
dc:description 343 123
foaf:depiction 175 56

Total triples 1193 427

Because these resources have completely different[DOM|trees from the resources
used in the training phase, wrapper-based techniques cannot be applied, as they
would require a new wrapper to be constructed. The approach is based on visual
features, so it will be able to extract data, as for usability reasons web sites often

share similar visual aspects.

Evaluation datasets

The datasets used for the evaluation are home pages of three Spanish newspapers:
Abd, El Pai| and El Mundd®¥} These web sites have some visual aspects in
common and therefore comprise a suitable dataset for the evaluation.

Wrappers were built manually to obtain the supervised data of these web sites.
Sample home pages from different days for each newspaper were selected and a
set of triples were extracted out of them. Table|6.1|summarizes the data in
the training dataset, while table|6.2|shows some samples with their attributes and
classes. Table [6.3|summarizes the testing datasets.

Abc and El Pais home pages are used as training datasets, while El Mundo is
used as testing dataset for the generalization test. Regarding the robustness test,
El Pais newspaper performed a layout redesign on 237¢ May, 2011, as of Spanish
elections held the day before, in order to better present the elections’ results. This
affected the performance of the manually constructed wrapper, and therefore

makes it an interesting testing sample for the robustness test.

Results and discussion

Table |6.4] shows the results of the generalization test. As the testing samples

belong to a news site, they share some visual aspects with the training data, so the

*http://www.abc.es
Shttp://www.elpais.es
http://www.elmundo.es

96

http://www.abc.es
http://www.elpais.es
http://www.elmundo.es

Table 6.2: Training samples
X Y Width Height Fontsize Font type

Content discovery

Triple

x, 118 5552 310 243 N/A N/A rdf:type(x,,sioc:Post)
x, 119 5558 310 26 18 serif de:title(xy,x;)

x3 118 5736 310 28 16 sans-serif de:description(xy,x;)
x, 787 332 300 703 N/A N/A rdf:type(xy,sioc:Post)
x5 787 507 284 53 22 sans-serif de:title(xy, xs)

x, 787 569 300 34 12 sans-serif dc:description(x4,xg)
x, 114 1247 390 301 N/A N/A rdf:type(x,,sioc:Post)
xg 114 1474 299 26 22 sans-serif de:title(x;,xg)

xg 114 1509 390 34 12 sans-serif de:description(x;,xg)
x;g 114 1258 390 194 N/A N/A foaf:depiction(x;,x)

Table 6.3: Testing datasets
Robustness test Generalization test

elpais.es elmundo.es
sioc:Post 79 529
de:title 79 546
dc:description 79 545
foaf:depiction 39 223
Total triples 276 1843

97

6. EVALUATION

Table 6.4: Evaluation of generalization
Wrapper Rules

Triples - 1843

Extracted triples - 1423

Correct triples - 1325

sioc:Post precision - 98.07%
sioc:Post recall - 76.94%
sioc:Post F-score - 86.23%
dc:title precision - 98.13%
dc:title recall - 76.74%
dc:title F-score - 86.13%
dc:description precision - 83.60%
dc:description recall - 76.70%
dc:description F-score - 80.00%
foaf:depiction precision - 100.00%
foaf:depiction recall - 36.32%
foaf:depiction F-score - 53.29%
General precision - 93.11%
General recall - 71.89%
General F-score - 81.14%

system managed to extract most pieces of news right. Regarding precision, the
system failed to extract properly some pieces of news that are shown in figure
According to the learned patterns, the top text in a piece of news should represent
the title and the lowest one the news description, although in this case the top text
is just a news category. Also, the system could not extract some pieces of news in
the middle column, as their size is smaller than the pieces of news that were used

to learn the patterns, which affected the results of the recall metric.

In the case of the technique of wrapper induction, it requires a new wrapper to
be constructed for each new site. Therefore, generalization results do not include

wrapper induction as long as it does not have generalization capabilities.

Table[6.5|shows the results of robustness test. The system shows top precision
and very high recall. The high precision is achieved because all the news that
appear in the web site have a similar one whose pattern was already learned in the
training phase. Regarding recall, the system managed to extract news that were
published under a new layout, while the manually built wrapper failed to achieve

SO.

The tests prove the robustness of the approach, which makes it a suitable tool

98

Missing extractions

CoPA AMER

Expulsal

por una
ar

er Rojo, pide
oneny

Content discovery

Incorrect extractions

R -
20 afios sin Apartheid Africa en avioneta, canoa y 4x4

| Mot |
| Cuidadou con et but ot - :
=
» Chavez tras > — s L_;' A V‘l
e jehwm:Maun:“ﬁm F 2 i‘g,;\) & j
i ol A |G G Snwes |
plicada al frente de a
Figure 6.1: Extraction errors on a new web site
Table 6.5: Evaluation of robustness
Wrapper ~ Rules
Triples 276 276
Extracted triples 196 238
Correct triples 196 238
sioc:Post precision 100.00% 100.00%
sioc:Post recall 68.35% 86.08%
sioc:Post F-score 81.20% 92.52%
dc:title precision 100% 100.00%
dc:title recall 67.50% 86.25%
dc:title F-score 80.60% 92.62%
dc:description precision 100.00% 100.00%
dc:description recall 67.50% 86.25%
dc:description F-score 80.60% 92.62%
foaf:depiction precision 100.00% 100.00%
foaf:depiction recall 91.89% 86.49%
foaf:depiction F-score 95.77% 92.75%
General precision 100.00% 100.00%
General recall 71.01% 86.23%
General F-score 83.05% 92.61%

99

6. EVALUATION

for automatic maintenance of wrappers. Additionally, the system shows good
generalization capabilities, which turns it into a useful tool for the automatic,
unsupervised generation of wrappers in unforeseen web sites. The evaluation
has been performed on a specific domain. In a different domain, it is expected
that the rules would extract those HTML]fragments that resemble pieces of news
according to the evaluation performed. Mismatches would only happen in those
cases where fragments visually appear to be pieces of news but which are not

because of their contents.

6.3 Service discovery

This section describes the evaluation of the service level of the discovery frame-
work. The approach of using features to describe services is evaluated on the
domain of picture search to build a metasearch service. Also, service discovery
is evaluated by building a metadirectory that aggregates the services available on

several different repositories from the web.

6.3.1 Service probing

As said, feature-oriented descriptions attempt to simplify the process of defining

service descriptions to favour automatic service consumption in the(Semantic Web

This section defines a vocabulary for describing services that perform retrieval
operations, i.e. search services, and discovers a set of service using service probing.
In order to narrow the scope of the task, only image search services are considered.
These kinds of services attempt to fulfil the user’s goal of finding a particular kind
of image on the web. This work was performed to provide a baseline of search
services for the mashup platform of ROMULUS project.

In order to perform the task of discovering a set of image search services, the

next steps are followed:
1. Identify popular image search services.
2. Collect features across the considered services.
3. Model features through feature definitions.
4. Adapt services to fit the modelled interface.

5. Discover service features for each service using service probing.

100

Service discovery

Service modelling

Google Images, Panoramio, Bing Images and Flickr search are the search services
that are analyzed and modelled. Other image search services are available, but the

decision to choose this set 1s based on the fact that:

1. Flickr offers capabilities that are not present on the other services, such as

tag search.

2. Panoramio offers additional capabilities that are not present on the rest of

services, such as search by location.

3. Google Images and Bing Images have similar capabilities, but offer a different

interface. This fact could impact on the vocabulary.

After identifying the services that are considered for the modelling task, raw
features from these services are collected. By observing each of these services,
it can be observed that some features define the obvious behaviour of a search
service and are enabled by default, while others require additional configuration
in the service, often accessible through an “advanced search” option. Therefore,
for this task, it was necessary to access “advanced search” and help pages of the
services in order to discover their capabilities.

It is immediate to identify raw features such as “the service returns a set of
images as search result”. However, this raw feature can be split into finer-grained
features, such as “returning a set of results”, “returning an image” and “performing
a retrieval operation”. The combination of these three features matches the

aforementioned raw feature.

Table[6.6 summarizes the features that have been identified in the considered
services. The first column shows raw features that were identified in the services,
while the next column represents the specific finer-grain features that are produced.

The third column is a shorthand term that represents the feature.

The next step is modelling the features, so that feature discovery can be
performed and an extended service description can be produced out of a plain list
of features. This is done by defining features through service discovery rules. An
example is the fact of outputting images: feature image and feature get should set

the condition that the service’s output has to be an image, which can be expressed

101

6. EVALUATION

Raw feature Feature Term
. . Retrieval operation per- get

A set of images is returned p P &
formed

to the user as search result .)
Multlple resources multiple
involved
Resource represents an image

image

Images are filtered accord-
ing to a location

Resource s filtered by lo-
cation

location-filtered

Images are indexed from Resource cannot belong local
anywhere in the web to another domain

Images are summarized and Resource is summarized summarized
have a thumbnail Resource has a title titled

Images can be searched by
keywords

Resource is filtered by
given keywords

keyword-filtered

Images can be searched by
tags

Resource is filtered by
given tags

tag-filtered

Images can be searched by
dimensions

Resource is filtered by di-

mensions

size-filtered

Images can be searched by
creation or taking date

Resource s filtered by cre-
ation date

Resource is filtered by
publishing date

creation-filtered

publishing-filtered

Images can be selected by
license

Resourece is filtered by li-
cense

license-filtered

Images can be searched by
colour and content

Resource is filtered by
colour
Resource is filtered by
content

colour-filtered

content-filtered

Table 6.6: Analysis of detailed features out of raw ones

through the following discovery rule:

y€Output(x)Asioc:Image(y) = ©6)
ms:has_feature(x,image)Nms:has_feature(x,get)) '

This feature definition solves the feature interaction between image and get.
Therefore, for each of the identified features, a set of feature definitions that
consider the possible feature interactions are built. The identified feature defini-
tions are shown in table
The first column shows the features that are involved in each definition, and
the next two columns show the preconditions and postconditions. These feature
definitions allow producing an extended service description when combining

different features. This service description can be processed to perform operations

102

Service discovery

Feature Conditions

get method(x)=GET ANstatus(x)=200

image y €Output(x)A feature(x, get)

multiple |Output(x)|> 1A feature(x,get)

summarized y € Output(x)Ndc:descriprion(y,z) A feature(x, ger)

keyword-filtered y€EInput(x)Nrdf:type(y,rdf:Literal) A
z€Output(x)Ndcisubject(z,y) A\ feature(x,get)

tag-filtered ye€lnput(x)Actag:Tag(y) A
z€Output(x)Nctag:tagged(z,y) N feature(x,get)

local y €Output(x)Ndomain(y)=domain(x)) A
feature(x,get)

titled y€Output(x)Ndc:title(y,z) A feature(x, get)

size-filtered

creation-filtered

publishing-filtered

license-filtered

location-filtered

content-filtered

colour-filtered

yElnput(x)Apic:Size(y)Az € Output(x) A
picisize(z, y)/\featnre(x image)A feature(x,get)
yEInput(x)ANrdf:type(y, pic:MinCreation) A

z€Output(x)ANdc:dateSubmitted(z,j)Ny<j A
feature(x,get)
y€Elnput(x)Nrdf:type(y,pic:MinPublishing) A
z€Output(x)Ndc:dateAccepted(z,j)Ny <j A
feature(x, get)
yElnput(x)Nrdf:type(y
z€Output(x)Ndc: lzcense(x z)A feature(x,get)
y€E€lnput(x)ANrdf:type(y,loc:Location) A
z€Output(x)Nloc:inLocation(z,y) A

feature(x, get)
yEInput(x)ANrdf:type(y,pic:Content) A
z€Output(x)A picicontent(z,y) A
feature(x,get)

y€E€lnput(x)Nrdf:type(y, pic:Colonr) A
z€Output(x)A picicolonr(z,y) A
feature(x,get)

,pic:License) A

Table 6.7: Specification of features

such as automatic validation (validating conditions), automatic discovery of the

semantics of inputs, or automatic user interface generation, as will be seen later

on.

A system that allows wrapping existing services into services that fit a specific

interface was implemented. In the proposed vocabulary, there are assumptions

such as input types and semantics. In order for the services to fit this interface,

an adaptation has to be performed. For each service, content discovery rules

are defined to transform information into the specific model. This lets using the

existing services with the interface that has been defined in the vocabulary.

103

6. EVALUATION

Method Input

1 get rdfs:label(x;,”guitar”)Nrdf:type(x,, pic:BigSize)
2 get rdfs:label(x;,”rock”)

3 get rdfs:label(x;,”blues”)Nrdf:type(x,,ctag:Tag) A

rdfs:label(xy,”eric clapron”) A
rdf:type(x;, pic:RedColounr)

Table 6.8: Sample requests used for service probing

Service probing

Once feature definitions are defined and wrappers for each service are created, the
service probing algorithm can be applied to discover service descriptions. For
such task, according to a set of input requests for the services are generated
by monitoring the user’s execution of such services. In other words, a user
performs sample searches entering keywords, filtering by the available options
of the services, and these interactions are recorded as samples. A set of sample
requests obtained and used as input for service probing is shown in table[6.8] The
associated outputs for these requests when employing Google Images are shown
in table

When executing the algorithm, discovery rules are applied to the sample
[HTTP)interactions and features are identified. From the supplied subset of samples
shown in tables[6.8]and[6.9] the features get, multiple, image, keyword-filtered, size-
filtered and summarized were identified. Although tags for filtering are provided
on the third request sample, Google Images does not respond to such inputs, and
thus feature tag-filtered is not identified, as expected.

An issue with certain features is the lack of semantic annotations on the output
that reveal some properties such as colour of the images or the type of content (e.g.
is it a picture of faces, or clipart?). This requires additional manual annotation
of outputs in order to obtain suitable results when running the service probing
algorithm.

Table[6.10|shows the discovered services’ capabilities, i.e. the presence of the
identified features on the considered services after running the service probing
algorithm. As anticipated, Google Images and Bing Images share the same capabil-
ities, while Flickr and Panoramio services serve to enrich the vocabulary in order
to cover a wider set of features.

Each service can be executed through a user interface that is generated au-

tomatically by analysing the feature discovery rules. Also, a description of the

104

Service discovery

Status

Output

1

2

3

200 OK

200 OK

200 OK

foaf:Image(y,) A
foaf:Image(y,) A
foaf:Image(y;) A
foaf:Image(y,) A
foaf:Image(ys) A
;oaf:lmage(yl) A
foaf:Image(y,) A
foaf:Image(y;) A

foaf:Image(y,) A

foaf:Image(ys) A
foaf Tmage(y,) A
foaf:Image(y,) A
foaf:Image(ys) A
foaf:Image(y,) A

foaf:Image(ys) A

ctag:tagged(y,,”guitar”) A
dcdescription(y,,”Guitar wall paper..”) A
pic:size(y,, pic:BigSize) A
ctag:tagged(y,,”guitar”) A
dc:description(yy,,”Wireless guitar”) A
picisize(y,, pic:BigSize) A
ctag:tagged(ys,”guitar”) A
dcdescription(ys,”Electric guitar..”) A
pic:size(ys, pic:BigSize) A
ctag:tagged(y,,”guitar”) A
dc:description(y,,”"Heritage cherry..”) A
picisize(y,, pic:BigSize) A
ctag:tagged(ys,”guitar”) A
dc:description(ys,”"How to play..”) A
picisize(ys, pic:BigSize) A

de:subject(y,,”rock”) A
dcdescription(y,,”During the times...”) A
dc:subject(y,,"rock”) A
dc:description(yy,”Too old to rock™) A
de:subject(yy,”rock”) A
dc:description(y;,”Rocks and soils”) A
de:subject(y,,”rock”) A
dc:description(y,,”Rock saved my life..”) A
de:subject(ys,”rock”) A
dc:description(ys,”l have a rock...”) A

de:subject(y,,”blues™) A
dcdescription(y,,”Piano blues..”) A
pic:color(y,, pic:RedColour) A
de:subject(y,,”blues™) A
de:description(yy,”Strumming blues..”) A
pic:color(y,, pic:RedColour) A
deisubject(y;,”blues™) A
dc:description(yy,”Blues jam art..”) A
pic:color(yy, pic:RedColour) A
deisubject(y,,”blues™) A
dc:description(y,,”piano man playing”) A
pic:color(y,, pic:RedColour) A
deisubject(ys,”blues™) A
dc:description(ys,”Blues brothers”) A
pic:color(ys, pic:RedColour) A

Table 6.9: Sample responses obtained when probing Google Images service

105

6. EVALUATION

Term Google Bing Flickr Panoramio
get

multiple

image
location-filtered
local

summarized

titled
keyword-filtered
tag-filtered
size-filtered
creation-filtered
publishing-filtered
license-filtered
colour-filtered
content-filtered

AAEZX XX AXEAX AR X ANANN
AAX XX AX AR AR X ANANN
XX ANANANANAAANANAEAX NSNS
MXX X XXX EAXASNANNANANNYN

Table 6.10: Mapping between features and the considered services

service can be obtained by combining the feature definitions. Additionally, when
executing the service adapters, the preconditions and postconditions are checked,
which allows automatic validation of the services. Finally, the service descriptions
are published as Linked Data, as well as the services’ output.

Some additional aspects of the approach are worth mentioning. For example,
both Bing and Google Images allow filtering images by content. Bing allows
image filtering by photographies, illustrations and content filtering by face or
face and shoulders. Instead, Google supports ‘clip art’ filtering, as well as photos,
illustrations and face filtering, but not face and shoulders filtering. Therefore,
although both of them have the capability of filtering images by content type, the
specific feature is slightly different in each of them. In order to reduce complexity,
it has been assumed that both services share the content-filtered feature, and
adapt the input appropriately through the content discovery rules.

The feature-oriented approach allows reusing features across different services,
even in the case that they belong to different domains. Many of the modelled
features can be combined to describe services that do not target image retrieval, but
resource retrieval in general. A video search service would only need to introduce
a new feature (“dealing with videos”) and define a few feature definitions. Similarly,
a document search service is simply a subset of the defined vocabulary (i.e. to
define a web page search service, the image feature should be left out). Storage
services (i.e. those performed with the[HTTP|POST and PUT methods) would

require more feature definitions, as most definitions interact with get feature.

106

Service discovery

A metasearch service

A metasearch service has been implemented as a case study for the defined vocabu-
lary. This metasearcher aggregates results from the described services (i.e. Google
Images, Bing Images, Flickr and Panoramio). As these services have heterogeneous
features, the problem is not trivial.

The metasearcher works as follows. First, it considers a service description that
includes all the features shown in table|6.6| Then, by analizing the preconditions
that result from combining feature definitions, it identifies required inputs and
their types. With this set of inputs, it builds a user interface that allows executing
the service.

However, as can be observed in table no service has all the mentioned
features. The metasearcher will then select matching services according to the
features that are used in each query. In order to do so, the metasearcher validates
preconditions for each feature. If the precondition is not valid, the feature is
considered inactive. Only active features will be considered when filtering services.
Then, the matching services are executed and their results are aggregated.

For example, let’s consider that a user interacts with the metasearcher
by providing some keywords, picking an image size, and clicking the submit
button. Then, location-filtered, tag-filtered, creation-filtered,
publishing-filtered, license-filtered, coloured-filtered and
content-filtered features will be deactivated, as long as their precondi-
tions are not satisfied (as long as their required inputs are not provided).

It is remarkable that the process of detecting the features to deactivate is not
immediate. An insatisfied condition belongs to a feature definition which can
involve many features. For example, if no keywords are passed to the metasearcher,
it has to decide whether to deactivate feature get or feature keyword-filtered,
as both are involved in the definition that requires keywords as input. We consider
that the number of feature interactions is an indicator of the importance of a fea-
ture. Therefore, the employed criteria has been to perform the minimum number
of deactivations of definitions (and thus the minimum number of deactivation of
feature interactions), and an algorithm has been implemented for this purpose.

Also, the activation state of certain features cannot be identified automatically.
This is the case of the 1ocal feature and titled feature, which are present only
in Flickr and Panoramio, and do not set preconditions. These features are thus
not considered by the metasearcher for service matching, as their inclusion would

make that only Flickr and Panoramio are able to match the required features.

107

6. EVALUATION

The metasearcher has been implemented as a generic service aggregator, in
which a set of features are selected for service matching and aggregation. This
means that this implementation is independent of the considered features, as the
user interface is built by analyzing a microservice description, and the features
are selected according to the satisfaction of their preconditions. We have also
experimented on aggregating plain search services with same satisfactory results,
allowing to aggregate image results as well as document results. This makes
this implementation an interesting foundation for the definition of an abstract
microservice aggregator based on sets of required features, which however is out

of the scope of this paper.

Discussion

The feature-oriented approach for service description has been used to build a
vocabulary that can be employed to build semantic service descriptions for image
search services in the web. The solution is a small set of terms that illustrates
the feature-oriented approach of the framework and highlights the versatility of
lightweight semantics. The feature-oriented approach has provided a solution that
generalizes well to other search services while it is specific to the targete domain.
The vocabulary has been used to semantically describe a set of services that are

aggregated on a metasearcher.

6.3.2 Services as contents

We propose a semantic service discovery process and description of existing service
repositories, such as Programmable Web and Yahoo Pipes, which are two service
repositories which provide plenty of services that can be reused by developers to
build new web applications. The challenges behind integrating these repositories
involved the problems of defining a common model, identifying relevant data and
integrating and ranking the extracted data.

A metadirectory that makes use of has been built. This metadirectory
integrates heterogeneous components that can be potentially used in various web
applications. More specifically, mashup applications, services, and widgets from
the Web are the considered components that will be included into the metadirec-
tory because of the repositories that have been targeted, again Programmable Web,
Yahoo Pipes and Opera Widgets.

In order to make the components addressable by developers, the metadirec-

108

Service discovery

tory stores relevant metadata that can be used by the developers for selecting
components. Additionally, these metadata should be available in the web in order
to make it possible to automate the population of the metadirectory with real
components. Usually, web component repositories usually contain metadata such
as a component’s name, textual description, tags or categorization. Other specific
properties that depend on the nature of the component can also be found, such as

inputs, endpoints, web service dependencies, or underlying formal descriptions

like WSMO| or [WSDLI

Data harvesting and integration

In this section, we will cover how the metadirectory has been populated with
components from the targeted repositories (i.e. Programmable Web, Yahoo Pipes
and Opera Widgets) and how the data has been integrated.

We have defined a semantic proxy layer on top of the repositories. For each
repository, we have defined the mappings between their HTML]contents of their
web resources and the data they provide according to the model defined at
section To define these mappings we have used the Scraping Ontologyf|
[Fernandez-Villamor et al}; 2010b]. This approach lets the system to have an[RDF
view of the unstructured data in the source repositories. With that, an automated
agent crawls the source repositories and extracts the data, which are then
stored into the metadirectory.

Once the metadirectory is populated with components from the web, a unified
categorization scheme is seeked in order to provide an homogeneous interface
for querying the metadirectory. This is necessary because of the diversity that is
present in the categorization of the targeted repositories. For instance, compo-
nents retrieved from Programmable Web are already tagged and use their own
categorization scheme. The ones from Yahoo Pipes only have the tags that have
been set by the users. On the other hand, Opera Widgets repository provide
components that are classified under a closed set of categories. Therefore, the
components do not share a common categorization scheme, which limits the
querying capabilities.

To integrate all the categorization schemes, we will define mappings between
the concepts of each taxonomy. This enables querying the metadirectory by using
any of the available categorization schemes without restricting the query to a par-

ticular repository. To achieve this, we will define a new categorization scheme by

’http://lab.gsi.dit.upm.es/scraping.rdf

109

http://lab.gsi.dit.upm.es/scraping.rdf

6. EVALUATION

clustering the components available in the metadirectory. This automatically built
scheme will be mapped to the categorization schemes provided by Programmable
Web and Opera Widgets. Additionally, a mapping between Programmable Web
scheme and Opera Widgets’ will be manually defined.

Automatic categorization

In this section, we will describe how to automatically build a categorization system
that allows users to query the metadirectory. In many cases, components already
belong to a category that was defined in their source repository. As said, both
Programmable Web and Opera Widgets provide some categorization schemes,
with categories such as “Tools”, “Mapping”, or “Sports”. In the case of Yahoo

Pipes repository, only tags are used to categorize each pipe.

Whenever only tags are used to categorize components, we propose the fol-
lowing method to build a categorization scheme based on the most common
tag combinations in the component space. We will use clustering techniques
to identify the most common categories in the space, and thus to define a new
categorization scheme. The resulting categorization scheme will be mapped to
the other schemes in section [6.3.2]to provide a uniform interface for querying the

metadirectory.

To perform the clustering, components are modeled as a vector representing
the tags they have:
a=(ay,ay,...,a,),a; €{0,1} 6.7)

A weighted euclidean distance between a pair of components 4 and b is used

by the clustering algorithm:

d(ﬂ’b)z\]zwi'(”’i—bz’)z (6.8)
=1

The weights for each dimension are adjusted according to the popularity of

the tag. This way, less relevant tags will have less weight in the measuring.

According to[6.7] an example of a simple set of components like the following:

110

Service discovery

foursquare = (mapping,social,games)
googlemaps = (mapping) 6.9)
facebook = (social)
bluevia = (mapping,telephony,geolocation)

would be represented by the next vectors:

foursquare = (1,1,1,0,0)
googlemaps = (1,0,0,0,0) (6.10)

facebook = (0,1,0,0,0)

bluevia = (1,0,0,1,1)

According to the popularity of each tag, the set of weights would be the

following:
W =(0.375,0.250,0.125,0.125,0.125) (6.11)

And thus some sample distances would be as follows:

d(bluevia,googlemaps) = +/0.125* 4+0.125% ~0.1768
d(foursquare, facebook) = 4/0.375%40.125% ~0.3953

d(facebook,bluevia) = +/0.375%+0.250% 4 0.125% 4 0.125% ~ 0.4841
(6.12)

With this we can compute the similarity between two components in the
metadirectory. By using this similarity measure, we can perform some clustering
to identify which are the most characteristic sets of components in the metadirec-

tory.

A Sammon mapping has been used to represent the components and clusters
[Sammon, 1969]]. The Sammon’s mapping function allows to perform a dimen-
sionality reduction on the component space and map the n-dimensional space
to a bidimensional one while attempting to preserve the distances between the
represented vectors. This allowed us to visually estimate the number of clusters

that were present in the system.

111

6. EVALUATION

skos:exactMatch skos:closeMatch skos:broadMatch skos:narrowMatch

Figure 6.2: Mapping detection among categories

Mapping identification

Mappings between categorization schemes are identified automatically using an
algorithm that checks set intersections. Given two categories ./ and B with
the component sets A and B, respectively, the following mappings are identified

according to the overlap between sets:

o If ML > 095 then .of and B are considered equivalent categories.
max(|AL,|B])
IANB|

o I oA

> 0.85, then .o and 9B are considered close categories.

|A—B|

i N

<0.05, then .¢/ is considered a subcategory of 2.

[B—A]|

o I mm

< 0.05, then 2 is considered a subcategory of ..

These conditions are illustrated in Fig. As shown, [Simple Knowledge]
(Organization System (SKOS)| [Miles and Bechhofer, 2008] ontology concepts are

employed to define the mappings between categories. proposes a schema
for the definition of taxonomies and mappings between them. The relation
skos:exactMatch is employed for categories that are considered equivalent;
skos:closeMatch indicates that two categories are very similar and could be
used interchangeably in certain contexts; skos:nar rowMatch indicates that the
subject category is a subcategory of the object; skos:broadMatch states that the
subject category is a supercategory of the object.

This allowed to identify a set of mappings among the different taxonomies.
Fig. [6.3[shows some of the mappings. Opera Widgets repository provides no tags,
so mappings with Programmable Web’s taxonomy were defined manually. As it
can be seen, some categories are defined as sub- or supercategories of others, whilst
others are defined as close or exact matches. In the case of Yahoo Pipes repository,
the previously described method for automatically building a taxonomy was used.

We executed a clustering algorithm to obtain nine different categories. Then, the

112

Service discovery

Yahoo Pipes Programmable Web Opera Widgets

Social

“
RSS search Photos Pictures
skos closelMatch

Search Search Search tools
skos closelMatch skos:exactMatch

» Movies and TV

Mail and Messaging

skos closelMatch skos relatedMatch

skos narrowMatch

skos:broadMatch Social websites

News search

il

skos broadMatch

skos broadMatch

Webcams

Games

skosmarrowMafc

skos:closeMatc

skos exactMatch

Fun and Games

Radio and Music

“

Other > Other Miscellaneous
skos:broadMatch skos:exactMatch

il

Figure 6.3: Mapping among the different categorization schemes

resulting categories were applied to Programmable Web’s data. The resulting sets
were compared to the ones that Programmable Web already provides as shown in
this section, which resulted in the identified relations among the categories of the
different taxonomies.

The metadirectory contains 10,194 services, 7,032 mashups and 1,804 widgets,
as of a crawling performed in July 2011 on the mentioned repositories of Yahoo
Pipes, Programmable Web and Opera Widgets.

In order to evaluate the metadirectory, a set of queries have been defined
to check its selection capabilities. Table shows the[SPARQL Protocol and|
IRDF Query Language (SPARQL) queries that result for each of the previously

stated queries, along with the resulting components retrieved from the metadirec-
tory. The queries are ones that a developer would make in order to retrieve the

appropriate component for a particular problem:

1. Which free components deal with photos /pictures?. Usually, mashup editors

offer a list of available components organized by categories. This is easily

113

6. EVALUATION

achievable in the metadirectory by filtering components that do not match
a particular category. Without a metadirectory, this would imply visiting
several repositories and browsing the desired category in order to get a list

of suitable components.

2. What mapping services are provided by Microsoft?. Because of business is-
sues, often developers need to select components based on the provider
of the component. Registries such as Programmable Web provide vendor

information but do not allow filtering by vendor.

3. Which APIs are more commonly used by telco mashups?. Occasionally, de-
velopers need insights on component usage in a particular domain. This
query is focused towards telco mashups and the kind of APIs they use. A
query like this, though simple, is not allowed in the repositories where the

components were extracted from.

4. What commercial mapping services are readily usable?. In some cases, compo-
nent repositories only help to provide awareness of a component, i.e. know
that the component exists and is available. This makes that the metadirec-
tory is populated with components with purely general metadata such as
a broad categorization and components with precise semantic description
such as descriptions. Le. some components are already runnable
and others do not. Our metadirectory retrieved services from Yahoo Pipes
and transformed the execution forms into service descriptions.
Also, many components in Programmable Web are linked to their[WSDL]
file. This make it possible to find readily runnable components in our

metadirectory and filter them in a query.

5. What data sources are more often employed by news mashups?. This query
insights into the sources that are employed in the field of digital news. The
metadirectory allows performing the query among applications present in

different repositories.

6. Which mapping APIs are provided by the most trustable companies?. This
query attempts to select services according to their trust. We will model
trust by employing provider’s number of employees, as an indicator of
company’s size. The query could be reformulated as retrieving all APIs
which belong to the mapping category, sorted by vendor’s number of

employees. The vendor information is retrieved from DBpedia, which

114

Agent level

illustrates the advantage of using LiMOn for linking information on mashup

components.

In comparison with searching multiple repositories manually, the metadirec-

tory enables:

e Accessing information about components that were are originally available
in separate, heterogeneous repositories from the web. As seen, compo-
nent repositories offer information in their own format, which required
extraction and integration in a harvesting task. After that integration, the

metadirectory allows querying through a uniform interface.

e Performing complex queries about these components. Usually, component
repositories such as the ones employed are very limited in their querying
capabilities. Although they offer plenty of information, the offer browsing

functionalities rather than complex search interfaces.

e Using external information that is available in the Linked Data cloud to
complement the information from the source repositories. Information
available in DBpedia or other Linked Data sources can be integrated in
queries to the metadirectory, allowing to extend the queries with data that

is present in other systems.

As a result, the different challenges that developers face when selecting com-
ponents for building a mashup have been summarized. By using[LiMOn| several
component repositories have been mined and loaded onto a metadirectory. A
clustering method has been used to integrate the different taxonomies of the reposi-
tories in order to unify the categorization of the metadirectory. The metadirectory
then offers a unified query interface that allows retrieving components through

complex queries, involving components of different nature, and allowing making

use of external data from the cloud.

6.4 Agent level

A scenario that makes use of the agent model and the discovery framework has
been defined. A bare-bone implementation of the agent has been developed based
on[Scrappy] which was extended with the intelligent agent model. The result is an
agent that is able to address top-level goals for discovering contents and services in

the web and is used in a scenario to validate the proposed framework. The agent

115

6. EVALUATION

Query

Results

SPARQI] query

Which free components
deal with photos/pic-

tures?

What ~ mapping
vices are provided by
Microsoft?

ser-

Which APIs are more
commonly used by telco
mashups?

What commercial map-
ping services are readily
usable?

What data sources are
more often employed by
news mashups?

Which mapping APIs are
provided by the most
trustable companies?

Photobucket, TweetPhoto, AOL
Pictures, Lockerz, Pixlr, Mood-
stocks, Fonxvard, Steply, Pixe-
WHERE nate, Fishup, Shutterfly, Picmem-

{ ?component rdf:type limon:Component; ber, ExposureManager, PicApp,
limon:categorizedBy limon:PhotoCategory;and 46 more

FILTER NOT EXISTS {
?component limon:usageFees 7fees .

SELECT 7?component

T}

Bing Maps

SELECT
WHERE
{ 7service

?service

rdf:type limon:Service;
limon:categorizedBy limon:MappingCategory;
limon:provider <http://www.microsoft.com> . }

Twilio (52%), Twitter (5.7%),
Tropo (3.9%), Facebook (3.6%),

SELECT (count(?api) as 7apis) 7api other (34.5%)
WHERE {
?mashup limon:uses 7api ;
limon:categorizedBy
limon:TelcoCategory . }

GROUP BY 7api

ORDER BY DESC (?7apis)
CDYNE IP2Geo, ArcWeb,
Postcode Anywhere, PeekaCity,

SELECT = 7service ShowMylIP, FraudLabs Mex-

WHERE ico Postal Code, FraudLabs

{ ?service rdf:type limon:Service; ZIPCodeWorld United States
limon:categorizedBy limon:MappingCategory ;
limon:usageFees 7fees ;
limon:describedBy ?wsdl . }

CNN (2.18%), Google News
(1.36%), NY Times (1.18%), BBC
(1.09%), Yahoo News (0.91%),
others (93.17%)

SELECT (count(7api) as ?7apis) ?api
WHERE {
?mashup limon:uses 7api ;
limon:categorizedBy
limon:NewsCategory ;
limon:categorizedBy
limon:FeedCategory . }
GROUP BY 7api
ORDER BY DESC (7apis)

7api

Nokia Ovi Maps (Nokia: 132,430

employees), Ericsson Mobile

SELECT 7api ?provider 7employees Maps (Ericsson: 90,260 em-
WHERE.{ .)] ployees), Bing Maps (Microsoft:
7api limon:cajqgorizedBy omr:mapping ;89000 employees), Google Maps

limon:provider 7provider . (Google: 24,400 employees),
7dbpcompany dbpedia-owl:wikiPageExternalligk} ,q Maps (Yahoo: 13,600
?provider ;
dbpedia-owl :numberOfEmployees
?employees . }
ORDER BY 7employees

employees), others

Agent level

Feeding phase Execution phase
Automatic ; User requests New goal addud Triggered plan picks Agent gets keywords
induction of related matching service through new plan
Manual discovery rules Browser esources —> lan) —> g0 lan2
supervision ,| HTML resource ¥\
HEAN - word word
a’brd>e ! Y S Agent Service
@ —> fAg h>1i e | New beliefs Beliefs trigger focused Agent uses

Admin

Results are k\\ fit goal, task Crawlmg plans search service
provided to is {'mshcd @ k
user RDF < @

Figure 6.4: Agent’s lifecycle and interaction with scenario

is then configured to perform high-level tasks under a scenario that deals with

electronic newspapers.

6.4.1 Description

The scenario addresses the problem of contrasting similar pieces of news when
surfing the web. Electronic newspaper readers often read a same piece of news
in several sources to cross-check the views of the different newspapers, therefore
spending a considerable amount of time searching the web for news. Also, users of-
ten browse news by similar topics, as they represent their own interests. Although
most electronic newspapers provide recommendations to guide users when they
are browsing their web sites, they do not provide outlinks to other newspapers so
that the users can easily contrast different sources and how news are edited.

A contribution to the solution of this problem is using an agent that searches
various electronic newspapers on behalf of the readers. For this purpose, a browser
plugin is developed as a button that triggers the agent’s execution. After clicking
the button, the agent is launched and searches contents that might be useful for
the user.

The main challenges that are addressed in this scenario are:

e Extracting the data from the addressed contents. By following the proposed
discovery framework, discovery rules are used to perform this extraction.
Defining the discovery rules for the information extraction is done semiau-

tomatically thanks to rule induction algorithms.

e Using services for relating the news posts and identifying the recommenda-
tions. According to the discovery framework, the agent can use services by
using feature-oriented descriptions of these services. Services will be used

by the agent according to the plans that are available in the agent’s plan set.

117

6. EVALUATION

CONSOLIDACION FISCAL »

El Gobierno negocia con Bruselas un
nuevo objetivo de déficit ‘

= El Ejecutivo anuncia que el Consejo de Ministros aprobara el techo de gasto este viernes

Related news
Cristébal Montoro

EL PAlS
Las autonomias disparan el déficit de 2011 por

encima de |la peor prevision
= Para fijar el tope, el Gobierno necesita antes conocer la cifra del desfase de 2012

EL MUNDO
CARLOS E. CUE/EL PAIS | Madrid | 28 FEB 2012 - 15:08 CET 1318
.. El Gobierno espera que Bruselas suavice la mela
Archivado en: Macroeconomia Financiacion déficit Deéficit publice ~ Finanzas piblicas ~ Finanzas de déficit antes del viemes

Comisién Europea
EL PAIS
El recorte de Rajoy sera de 33.000 millones
Guindos achaca la desviacion a la falta de
esfuerzos de Zapatero
ABC
La negativa de Merkel a aumentar el fondo de
rescate desbarata la cumbre del euro
Espafia
EL PAIS
Detenidas en Espafa cuatro personas vinculadas a
Anonymous

"En 2008 vi que las cuentas no eran claras pero no
denuncie"

El ‘nimero dos' de ESADE facturd a firmas del

Figure 6.5: Browser plugin which shows related news by using the automated
agent

As a result, two stages take place during the agent’s lifecycle:

1. Feeding phase. The agent is provided with a set of pages from the
addressed newspapers which are annotated with the data that their
represent. The agent then inducts discovery rules for extracting
the semantic representation of the newspapers’ resources. Also, service
discovery rules are provided for newspapers search forms and OpenCalais
service. OpenCalais is used to enrich the semantic descrip-
tions of news posts to identify recommendations. OpenCalais is a service
that returns Linked Data information about a piece of text, returning dis-

ambiguated entities about places or people that are mentioned in the text.

2. Execution phase. A plugin that is installed into the web browserf|allows
launching the agent with the goal of returning services that are related to
the current news post that is being browsed. After clicking the button, the
agent performs its focused crawling and discovers a set of results that are

returned to the web browser, so that the user can review the related news

$In our implementation, the plugin is simply a bookmark that links to a web service which
triggers the execution of the agent.

118

Agent level

Level Rule

Content uri(x,”http:/[abc.es”)Ncss(x,” lead”) N parent(x,y) A
css(y,”.headline”) = sioc:Post(x)ANdc:title(x,y)

Content width(x)>70A ...\ parent(x,y)\ font size(y)>12A
separation_y(x,y)>5A...=>sioc:Post(x)Ndc:title(x,y)

Content c¢ss(x,”form.search”)As =attr(x,”action”) =
ms:has_feature(s,{ms:Retrieval ,ms:KeywordFiltered,
ms:News})

Service method(s)=get Astatus(s) =200 =
ms:has_feature(s,ms:Retrieval)

Service x€Input(s)Ny€Output(s)Actag:tagged(y,x) =
ms:has_feature(s,ms:KeywordFiltered)

Service x €Output(s)ANrdf:type(sioc:Post,x)=>
ms:has_feature(s,ms:News)

Service x€Input(s)ANrdf:type(sioc:Post,x)Ny € Output(s) A
calaisisubject(x,y) = ms:has_feature(s,ms:Related)

Agent +[x,rdf:type,sioc:Post]:[z,ms:has_feature,ms:Related] A
[x,si0c:content,c] — get(z,(body,c))

Agent +[x,calaisisubject,y]:true —+[z,rdfs:label,y]A

+![z,rd f:type,sioc:Post]

Table 6.12: Example of rules used in the sample scenario

that the agent found in the newspapers.

These phases are shown in figure 6.4, which illustrates how the agent is managed

and used.

6.4.2 Results

Table shows the rules used to configure the agent. As said, it was configured

with content rules to extract newspapers contents, with some content extraction

rules automatically generated using rule induction techniques. One of them is

shown in the table and uses visual features such as font size or width and height.

Additionally, some feature definitions were added to the service-level knowledge

base of the agent. The “related” feature is used to describe OpenCalais service,

which returns related entities about a piece of news. In the case of agent-level rules,

119

6. EVALUATION

Question Result (1-5)
In general, are news related? 3.6 (£ 0.49)
Number of newspapers is OK 3.8 (£0.75)
Number of sections is OK 4.1 (£0.70)
Number of posts is OK 4.2 (£ 0.60)

The agent provides useful information 4.1 (£ 0.70)
Is it better to surf with the agent’s help? 3.8 (£ 1.54)

Table 6.13: Results of users’ survey

a plan for using OpenCalais service upon news retrieval was defined. A second
rule is defined for using search services to retrieve news for a particular entity,
where a goal for spotting a piece of news is set after an entity’s label.

After the definition of discovery rules and the already present base plans, the
agent was able to mine and discover contents in different newspapers. Additionally,
the agent properly employed OpenCalais to enrich the semantic description of
contents. After retrieving related entities for a piece of news, the agent executes
the newspapers’ search services with these entities to retrieve related news.

To evaluate the agent, we provided users different news posts and the recom-
mendations by the agent in the browser plugin shown in figure Users were
then asked to answer different questions about their experience when browsing
the web using the agent. Questions about the number of recommendations, the
quality, the degree of relation with the original post were asked and a rating
between 1 and 5 was obtained for each question.

As can be observed in table users are overall satisfied with the agent’s
recommendations. This helps to validate that the agent’s functionality is useful
and that a system that is relevant to users has been built.

The approach has been validated on an environment of newspapers that share
some visual features but which have with very different[DOM|tree structures. The
performance of the algorithm shows high precision and good recall. After a first
training stage, the system is able to extract data from sites with similar appearance,
as well as keep working even on the event of changes on a web resource’s DOM|
tree. This helps in solving the typical maintainability and generalization problems
that exist in wrapper induction techniques. Thus, it is a step forward to solving
the bootstrap problem of Linked Data, i.e., the lack of semantically annotated
data in the Web.

120

Conclusions

6.5 Conclusions

The three levels of the framework have been evaluated in this chapter against
real scenarios as part of different research projects. The content discovery level

was evaluated against several projects, such as Resulta, VulneraNET, THOFU,

or Contenidos a la Carta, showing the flexibility of the [Scraping Ontology]as

well as the rule induction algorithm. The service discovery level was evaluated
on ROMULUS and OMELETTE projects, where extensive service description
discovery was performed in order to provide a basic set of building blocks for
creating mashups. The project Contenidos a la Carta was used as well for applying

agent model to a news recommender that assists users when browsing the web.

121

122

Chapter 7
Conclusions and future work

This chapter summarizes the conclusions of the thesis. As discussed in the dis-
sertation, the current web faces a chicken and egg problem with the amount of
semantically described contents and services. Although standards for semantic de-
scription of resources are available, often they are not used, which results in a lack
of applications that automate the usage of semantic contents and services. To over-
come this issue, the thesis proposes a unified framework for content and service
discovery, and the main contributions are highlighted and discussed. Additionally,

the research done has allowed to identify potential research lines.

123

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

One of the challenges in the current Web is the efficient use of all the available
information. The Web 2.0 phenomenon has favoured the creation of contents by

average users, and thus the amount of information which can be found for diverse

topics has growth exponentially in the last years. Initiatives such as|Linked Data)
attempt to build up the envisioned |Semantic Web), in which a set of standards

are proposed for the exchange of data among heterogeneous systems. However,
these standards are sometimes not used, and still plenty of web sites require naive
techniques to discover the contents and services present in them.

Similarly, in the current Internet, several services are published in web applica-
tions by following[SOA|through either the Web Services architecture or the REST]
architectural style. Machine agents can automatically process service descriptions
to perform execution, discovery and composition operations in an automated
way. Again, the lack of semantically described services limits the applicability of
automatic processing. In other words, if no services are semantically described for
their automatic processing, no applications which use this services are developed,
facing a chicken and egg problem that is similar to the one with semantic contents.

In this thesis, a unified framework for discovery of contents and services has
been proposed in order to help the vision of the[Semantic Web|to gain traction and
overcome the lack of semantically described resources in the web. As described in
this dissertation, the discovery framework allows extracting semantic descriptions
of contents and services in the web, and orchestrating the discovery thanks to an
upper agent level.

The main contributions of the thesis are listed next:

e A unified discovery framework for service and content discovery. The web
follows the REST|architectural style, which defines a stateless hypermedia
system with resources with uniform interfaces. The discovery framework is
designed to suit the style by defining a content level for the resources
representations, a service level for the actual transformations taking place
in the representations, and an upper agent level for orchestration of the

discovery in the basis of a human user browsing the web.

e A scraping model for content discovery. The[Scraping Ontology| allows

to represent the mappings between the unstructured elements in a web
document and the resources they represent. With this ontology,

it is possible to define extractors that are interoperable and are not tied

124

Conclusions

to a particular scraper or tool (e.g. PiggyBank Huynbh et al.| [2007])) for
their interpretation and execution. Additionally, representing extractors
as a transparent structure such as an[RDF|graph allows reasoning over the
information, e.g., to extract information only from web sites that are likely
to have information about flights. The mappings can be represented as rules,

which result in the discovery rules used at content level.

An algorithm for induction of content discovery rules. While content
discovery rules, like other approaches like wrappers or scrapers, can be
handcrafted, it is a tedious task that is overcome thanks to automated ap-
proaches such as machine learning. The algorithm for induction of discovery
rules that is proposed in this thesis allows overcoming this problem while
addressing issues such as robustness and generalization of rules. Thanks
to the novel technique of employing visual attributes to represent, the pro-
duced content discovery rules are more resistant to changes in document

layouts than other approaches and are suitable for different web sites.

A feature-oriented approach to service description. Service description
approaches consist of annotating inputs, outputs, preconditions and post-
conditions of services, which are modelled as functions that transform a
closed universe in a particular way. This approach is formally sound but
describing a service requires a big effort that is usually not taken. To re-
duce description efforts, a feature-oriented approach is proposed in the
thesis, where services are modelled as a set of features. Features are then
the reusable semantically described building blocks that are used to achieve
formal service descriptions after their combination. Feature definitions
can be modelled as rules, which make up the service discovery rules. This
results in a lightweight description framework that reduces efforts when

describing services semantically.

An algorithm for discovery of services based on input probing. By following
the discovery framework, once the contents from an interaction
have been extracted, services can be discovered by analyzing the interaction
and by using service discovery rules. For this task, a novel approach called
service probing has been proposed in the thesis in order to achieve service
discovery out of HTTP]interactions. The approach is based on probing
services with sets of inputs and applying service discovery rules to identify

sets of features and classify services.

125

7. CONCLUSIONS AND FUTURE WORK

e A service model for service discovery. The current web has a number
of registries, repositories, and stores which offer plenty of services
available for their reuse. The information available on these repositories
is usually on a higher-level than typical service description frameworks,
which deal with inputs, outputs and formal representations. Therefore, a
higher-level model to semantically represent this information is missing.
After analyzing service repositories, the ontology has been defined
in order to allow the representation of the information that is available in

service repositories.

e An agent model for automation of content and service discovery. Often the
problem of discovery involves crawling for a specific resource and visiting
different web sites by following hyperlinks. An agent model that performs
this process has been defined in the thesis. It employs the knowledge stored
in content discovery rules and service discovery rules to perform a focused
crawling for a specific goal. By following theBDI| paradigm, an agent which
follows this model can stack plans to target specific contents executing

discovered services whenever appropriate.

7.2 Publications

A set of publications on conferences and journals have been produced during
the development of this thesis. Most of them contain the work presented in
this dissertation, although some contain works on different topics, as a result of

parallel research in diverse projects. The publications are summarized next:

e José Ignacio Fernandez-Villamor and Mercedes Garijo. A machine learning
approach with verification of predictions and assisted supervision for a
rule-based network intrusion detection system. In Proceedings of the Fourth
International Conference on Web Information Systems and Technologies, 2008:
This paper proposes an integrated Intrusion Detection System (IDS) based
on induction of decision trees. It serves partly as background for the re-
search on rule induction that is present in the thesis. [Fernandez-Villamor
and Garijo, 2008]] is a similar paper which was published on a national

conference.

e José Ignacio Fernandez-Villamor, Laura Diaz-Casillas, and Carlos A. Iglesias.

A comparison model for agile web frameworks. In Proceedings of the 2008

126

Publications

Euro American Conference on Telematics and Information Systems, 2008: This
paper defines a methodology for the comparison of agile web development
frameworks, as part of ROMULUS project.

José Ignacio Fernandez-Villamor, Carlos A. Iglesias, and Mercedes Garijo.
Descripcion semantica de aplicaciones web mediante microservicios. In
Proceedings of the Symposium on Telematics Engineering, 2009: This paper in-

troduces a first draft of the feature-oriented approach to service description.

Carlos A. Iglesias, Mercedes Garijo, José Ignacio Fernandez-Villamor, and
José Javier Duran Martin. Agreement Patterns. In Workshop on Agreement
Technologies (CAEPIA’09), pages 57-68, 2009: This paper proposes first ideas
on agreement patterns which serve as background for the agent model that
has been defined in the thesis.

José Ignacio Fernéndez-Villamor, Carlos A. Iglesias, and Mercedes Garijo.
Microservices: lightweight service descriptions for rest architectural style.
In Proceedings of the Second International Conference on Agents and Artificial
Intelligence, 2010b: This paper defines the feature-oriented approach to

service description from a methodological and theoretical view.

José Ignacio Fernindez-Villamor, Carlos A. Iglesias, and Mercedes Garijo. A
vocabulary for the modelling of image search microservices. In Proceedings
of the Fifth International Conference on Evaluation of Novel Approaches
to Software Engineering, 2010a: This paper applies the feature-oriented
framework for service description to the domain of picture search services.
These kinds of services were employed to provide ready-to-use services for

mashup composition as part of the ROMULUS project.

Boni Garcia, Juan C. Duefias, José Ignacio Fernandez-Villamor, Adam
Westerski, Mercedes Garijo, and Carlos A. Iglesias. Romulus: Do-
main driven design and mashup oriented development based on open
source java metaframework for pragmatic, reliable and secure web de-
velopment. In Proceedings of the 14th European Conference on Soft-
ware Maintenance and Reengineering, 2010, Madrid, Spain, March 2010.
CSMR10. URL administrator/components/com_jresearch/files/
publications/20100124_180809.pdf: This paper summarizes the re-
search done behind the ROMULUS project on mashup composition.

127

administrator/components/com_jresearch/files/publications/20100124_180809.pdf
administrator/components/com_jresearch/files/publications/20100124_180809.pdf

7. CONCLUSIONS AND FUTURE WORK

e Carlos A. Iglesias, José Ignacio Fernandez-Villamor, David del Pozo, Luca
Garulli, and Boni Garcia. Service Engineering: European research results,
chapter Combining Domain Driven Design and Mashups for Service Devel-
opment, pages 171-200. Springer Verlag, 2010: This book chapter focuses on
by analyzing a use case and following the development methodology
that was researched in the ROMULUS project.

e José Ignacio Fernandez-Villamor, Jacobo Blasco-Garcia, Carlos A. Iglesias,
and Mercedes Garijo. A semantic scraping model for web resources - ap-
plying linked data to web page screen scraping. In Proceedings of the Third
International Conference on Agents and Artificial Intelligence, 2011: This

paper introduces the [Scraping Ontology|by proposing an semantic proxy
approach on top of the[REST|architectural style. It was the result of research
in Contenidos a la Carta and OMELETTE projects.

e José Ignacio Fernandez-Villamor, Tilo Zemke, Carlos A. Iglesias, and Mer-
cedes Garijo. A semantic metadirectory of services based on web mining
techniques. In Proceedings of the Association for the Advancement of Artificial
Intelligence 2012 Symposia, 2012b: This paper describes the service model
for discovery that is proposed in the thesis. It summarizes the various tasks

done to build the service registry that is part of the OMELETTE platform.

e Francisco Javier Blanco, José Ignacio Fernéndez-Villamor, and Carlos A.
Iglesias. Vulnerapedia: Security knowledge management with an ontology.
In Proceedings of the Fourth International Conference on Agents and Artificial
Intelligence, 2012: This paper describes the evaluation of the[Scraping Ontol]
ogy]over the discovery of security contents for the construction of a unified
security encyclopedia. It is part of the research done for VulneraNET

project.

e Olexiy Chudnovskyy, Tobias Nestler, Martin Gaedke, Florian Daniel,
José Ignacio Fernandez-Villamor, Vadim Chepegin, José Angel Fornis,
Scott Wilson, Christoph Kogler, and Heng Chang. End-user-oriented telco
mashups: The omelette approach. In Proceedings of the World Wide Web Con-
ference, 2012: This paper summarizes the research behind the OMELETTE
project, and includes research on automatic service discovery and the service

model included in the thesis.

128

Future work

e Tilo Zemke, José Ignacio Fernindez-Villamor, and Carlos A. Iglesias. Rank-
ing web services using centralities and social indicators. In Proceedings of the
Evaluation of Novel Approaches to Software Engineering, 2012: This paper
focuses on research on service ranking. Service ranking is a feature included

in the service registry employed in the OMELETTE project.

e José Ignacio Fernandez-Villamor, Carlos A. Iglesias, and Mercedes Gar-
jjo. First-order logic rule induction for information extraction in web
resources. International Journal of Artificial Intelligence Tools, 2012a: This
paper proposes the algorithm for first-order rule induction that is used in
the discovery framework to build content discovery rules automatically. It
includes the evaluation on the domain of electronic newspapers, as part of
the Contenidos a la Carta project. This publication is to be published in
the International Journal of Artificial Intelligence (ISSN: 0218-2130, impact
factor: 0.330).

7.3 Future work

The research behind this thesis has opened some research lines that deserve focus.
Hence here some future work is proposed for continuing the research work done
in the thesis.

Service domain classification for service probing. In the service probing
algorithm, services are probed with sets of inputs that suit their preconditions.
Although potentially any input can be probed, it is reasonable to probe services
with inputs that provide expected behaviours so that relevant features can be
discovered. A suitable approach is to automatically identify inputs for service
probing out of the web resources” domain. A service domain can be identified
by using bayesian classifiers on the text surrounding the execution form and the
returned representation. E.g., flight search forms usually involve terms related
to travel, flights, cities or airports. By classifying the domain of the service,
appropriate inputs can be probed instead of monitorizing a user browsing to
obtain valid interactions with services.

Content and service ranking. In addition to discovery, an agent targeting some
goal usually ends up with several options or results that fit the goal. In a search
or discovery problem such as the case study described in this dissertation, an
immediate approach consists of showing results to the user. However, by ranking

discovered resources, users can better identify the most suitable. The problem

129

7. CONCLUSIONS AND FUTURE WORK

behind this ranking function is very broad. There are many different aspects
which can be used to rank contents and services, and also their degree of matching
to the user goal can be taken into account. Some preliminary work on service
ranking has already been undertaken in [[Fernandez-Villamor et al.,|[2012b]] and
[Zemke et al.,[2012].

Extension of the[Scraping Ontology| with [NLP| patterns. The
allows mapping elements from unstructured representations of web resources
onto the resources they represent. The current state of the ontology allows
selecting nodes from the[DOM]tree and some basic selections inside the nodes’
texts. In order to extract content from certain web resources, patterns are

a useful way to target contents otherwise impossible to extract. E.g., docu-
mentation pages usually contain long textual explanations which include valuable
information such as service parameter names, licenses, or interesting[URLs| As
this kind of information is embedded into texts, it belongs to the same
node as other non-relevant data, such as the rest of sentences that surrounds the
targeted data. Similarly, occasionally it is desired to extract entities such as people
names, locations or dates out of plain text. By using[NLDP|it is possible to extract
the actual information precisely. Therefore, the inclusion of patterns into

the [Scraping Ontology]is proposed as future work. A challenging aspect is the

integration of selectors into the algorithm for content rule induction in
order to build based content discovery rules automatically.

Construction of an extended base of discovery rules. A broader library of
extensive reusable feature descriptions and content types would enhance output
models at each discovery level. In the thesis, a reduced subset of building blocks has
been shown to solve certain use cases that involved typical elements in the web such
as news posts. Further training sets for the semantic definitions would improve
the generalization of the discovery rules to other scenarios that differ greatly
from the ones considered, thus increasing the agent’s versatility. Additionally,
[LiMOnl can be extended with a feature orientation. The dissertation describes the
model [LiMOn]for discovering services as contents, along with a feature-oriented
approach to service description which is applied to discovery through service
probing. Discovery rules that produce[LiMOnldescribed services would leverage
both approaches.

Extension of the agent model. The model can be extended to multiagent sys-
tems in order to allow cooperation between agents with different knowledges (i.e.

different discovery rules in their knowledge bases). This would allow combining

130

Future work

and complementing discovery rules on resources. Negotiation capabilities can be
added in order to allow agents to share hypothesis about web resources and select

the most appropriate discovery rules and plans.

131

132

Bibliography

A9.com, inc. OpenSearch specification. http://www.opensearch.org/
Specifications/OpenSearch/1.1, 2005.

Ben Adida and Mark Birbeck. RDFa Primer - Bridging the Human and Data
Webs. http://www.w3.org/TR/xhtml-rdfa-primer/, 2008.

C. Alario-Hoyos and S. Wilson. Comparison of the main alternatives to the
integration of external tools in different platforms. In Proc. International
Conference of Education, Research and Innovation, ICERI, pages 3466-3476,
2010.

G. Alonso. Web services: concepts, architectures and applications. Springer Verlag,
2004.

E. Amoroso, T. Nguyen, J. Weiss, J. Watson, P. Lapiska, and T. Starr. Toward an
approach to measuring software trust. Published by the IEEE Computer Society,
1991.

T. Anton. Xpath-wrapper induction by generalizing tree traversal patterns. Lernen,
Wissensentdeckung und Adaptivitt (LWA), pages 126-133, 2005.

S. Apel, T. Leich, and G. Saake. Aspectual mixin layers: aspects and features
in concert. In Proceedings of the 28th international conference on Software
engineering, page 131. ACM, 2006.

Sven Apel, Thomas Leich, Marko Rosentiiller, and Gunter Saake. Combining
feature-oriented and aspect-oriented programming to support software evolu-
tion. In In AMSE’05, at ECOOP’05, 2005.

Arvind Arasu. Extracting structured data from web pages. In ACM SIGMOD,
pages 337-348, 2003.

133

http://www.opensearch.org/Specifications/OpenSearch/1.1
http://www.opensearch.org/Specifications/OpenSearch/1.1
http://www.w3.org/TR/xhtml-rdfa-primer/

BIBLIOGRAPHY

Mark Baker. RDF Forms. http://www.markbaker.ca/2003/05/RDF-Forms/,
2005.

David T. Barnard, Gwen Clarke, and Nicolas Duncan. Tree-to-tree correction for

document trees, 1995.

S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer,
D. Martin, S. Mcllraith, D. McGuinness, et al. Semantic web services framework
(swst) overview. World Wide Web Consortium, Member Submission SUBM-SWSF-
20050909, 2005.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

P. Bille. A survey on tree edit distance and related problems. Theoretical computer
science, 337(1-3):217-239, 2005.

A. Birukou, E. Blanzieri, V. D’Andrea, P. Giorgini, and N. Kokash. Improving
web service discovery with usage data. IEEE software, pages 47-54, 2007.

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.
International Journal on Semantic Web and Information Systems (IJSWIS), 2009.

M.B. Blake and M.E. Nowlan. Knowledge discovery in services (kds): Aggre-
gating software services to discover enterprise mashups. IEEE Transactions on
Knowledge and Data Engineering, 23(6):889-901, 2011.

Francisco Javier Blanco, José Ignacio Ferndndez-Villamor, and Carlos A. Iglesias.
Vulnerapedia: Security knowledge management with an ontology. In Proceed-
ings of the Fourth International Conference on Agents and Artificial Intelligence,
2012.

H. Blockeel and L. De Raedt. Top-down induction of first-order logical decision
trees. Artificial Intelligence, 101(1-2):285-297, 1998.

Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller.

Automation and customization of rendered web pages. Symposium on User
Interface Software and Technology, page 163, 2005. URL http://portal.acm.
org/citation.cfm?id=1095062.

134

http://www.markbaker.ca/2003/05/RDF-Forms/
http://portal.acm.org/citation.cfm?id=1095062
http://portal.acm.org/citation.cfm?id=1095062

BIBLIOGRAPHY

G. Bracha and W. Cook. Mixin-based inheritance. In Proceedings of the European
conference on object-oriented programming on Object-oriented programming sys-
tems, languages, and applications, pages 303-311. ACM New York, NY, USA,
1990.

J.G. Breslin, S. Decker, A. Harth, and U. Bojars. SIOC: an approach to connect
web-based communities. International Jowrnal of Web Based Communities, 2(2):
133-142, 2006.

D. Brickley and L. Miller. Foaf vocabulary specification 0.91. Technical
report, Tech. rep. ILRT Bristol, Nov. 2007. ur I: http://xmlns. com/-
foaf/spec/20071002. html, 2000.

M.G. Butuc. Semantically enriching content using opencalais. EDITIA, 9:77-88,
2009.

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Extracting content
structure for web pages based on visual representation. In Proc.5 th Asia Pacific
Web Conference, pages 406-417, 2003.

J. Cao, D. Kerbyson, and G. Nudd. Use of agent-based service discovery for
resource management in metacomputing environment. Euro-Par 2001 Parallel
Processing, pages 882-886, 2001.

H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology.
SIAM Journal on Applied Mathematics, pages 1073-1082, 1988.

S. Chakrabarti, M. Van den Berg, and B. Dom. Focused crawling: a new approach
to topic-specific web resource discovery. Computer Networks, 31(11-16):1623-
1640, 1999.

Soumen Chakrabarti and Byron Dom. Focused crawling: a new approach to

topic-specific Web resource discovery. Computer Networks, 31:1623-1640, 1999.

D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. Toward distributed service
discovery in pervasive computing environments. Mobile Computing, IEEE
Transactions on, 5(2):97-112, 2006.

C.H. Chang, M. Kayed, M.R. Girgis, and K.F. Shaalan. A survey of web informa-
tion extraction systems. [EEE Transactions on Knowledge and Data Engineering,
pages 1411-1428, 2006.

135

BIBLIOGRAPHY

Weimin Chen. New algorithm for ordered tree-to-tree correction problem. J.
Algorithms, 40(2):135-158, 2001. ISSN 0196-6774. dot: http://dx.doi.org/10.
1006/jagm.2001.1170.

Si Won Choi and Soo Dong Kim. A Quality Model for Evaluating Reusability of
Services in SOA. Quality, pages 293-298, 2008. doi: 10.1109/CEC/EEE.2008.
55.

E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, et al. Web services
description language (wsdl) 1.1, 2001.

Olexiy Chudnovskyy, Tobias Nestler, Martin Gaedke, Florian Daniel, José Ig-
nacio Fernandez-Villamor, Vadim Chepegin, José Angel Fornds, Scott Wilson,
Christoph Kogler, and Heng Chang. End-user-oriented telco mashups: The
omelette approach. In Proceedings of the World Wide Web Conference, 2012.

Philipp Cimiano, Siegfried Handschuh, Siegfried H, and Steffen Staab. Towards
the self-annotating web, 2004.

Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, M Francesco, Marina
Mongiello, Giacomo Piscitelli, and Gianvito Rossi. An agency for semantic-

based automatic discovery of web-services. Discovery, pages 1-14, 2004.

Dan Connolly. Gleaning resource descriptions from dialects of languages. http:
//www.w3.org/TR/grddl/, 2007.

Valter Crescenzi, Giansalvatore Mecca, Paolo Merialdo, UniversitAd Roma, Tre
UniversitAa, Basilicata UniversitAa, and Roma Tre. Roadrunner: Towards
automatic data extraction from large web sites. In Proceedings of the International

Conference on Very Large Databases, pages 109-118, 2001.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana.
Unraveling the web services web: an introduction to soap, wsdl, and uddi.
Internet Computing, IEEE, 6(2):86-93, 2002.

D.A. D’Mello and VS Ananthanarayana. A review of dynamic web service de-
scription and discovery techniques. In Integrated Intelligent Computing (ICIIC),
2010 First International Conference on, pages 246-251. IEEE, 2010.

Pedro Domingos. Rule induction and instance-based learning: A unified approach.
In Proceedings of the 14th international joint conference on Artificial intelligence,
pages 1226-1232. Morgan Kaufmann, 1995.

136

http://www.w3.org/TR/grddl/
http://www.w3.org/TR/grddl/

BIBLIOGRAPHY

Kit Eaton. Facebook won’t like this apple-twitter union,
2011. URL http://www.fastcompany.com/1783467/

fresh-crispy-apple-twitters-could-deep-fry-facebooks-future.

H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin. Mashup advisor: A
recommendation tool for mashup development. In Web Services, 2008. ICWS?08.
IEEE International Conference on, pages 337-344. IEEE, 2008.

Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented programming:
Introduction. Commun. ACM, 44(10):29-32, 2001. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/383845.383853.

T. Erl. Service-oriented architecture: concepts, technology, and design. Prentice Hall
PTR Upper Saddle River, NJ, USA, 2005.

ESSI WSMO working group. Web Service Modeling Ontology. http://www.
wsmo . org/), 2004.

Oren Etzioni. Quagmire or Gold Mine? Communications of the ACM, 39(11):
65-68, 1996.

C. Feier and J. Domingue. WSMO primer. DERI Working Draft, Apr, 2005.

P. Ferguson and G. Huston. Quality of service in the internet: Fact, fiction, or
compromise. AUUGN, page 231, 1998.

José Ignacio Fernandez-Villamor and Mercedes Garijo. Sistema de deteccion
de intrusiones con mantenimiento asistido de bases de datos de ataques medi-
ante aprendizaje automatico. In Proceedings of the Symposium on Telematics

Engineering, 2008.

José Ignacio Fernandez-Villamor and Mercedes Garijo. A machine learning ap-
proach with verification of predictions and assisted supervision for a rule-based
network intrusion detection system. In Proceedings of the Fourth International

Conference on Web Information Systems and Technologies, 2008.

José Ignacio Fernandez-Villamor, Carlos A. Iglesias, and Mercedes Garijo. A
vocabulary for the modelling of image search microservices. In Proceedings of
the Fifth International Conference on Evaluation of Novel Approaches to Software
Engineering, 2010a.

137

http://www.fastcompany.com/1783467/fresh-crispy-apple-twitters-could-deep-fry-facebooks-future
http://www.fastcompany.com/1783467/fresh-crispy-apple-twitters-could-deep-fry-facebooks-future
http://www.wsmo.org/
http://www.wsmo.org/

BIBLIOGRAPHY

José Ignacio Fernandez-Villamor, Carlos A. Iglesias, and Mercedes Garijo. Mi-
croservices: lightweight service descriptions for rest architectural style. In
Proceedings of the Second International Conference on Agents and Artificial Intelli-
gence, 2010b.

José Ignacio Fernindez-Villamor, Jacobo Blasco-Garcia, Carlos A. Iglesias, and
Mercedes Garijo. A semantic scraping model for web resources - applying
linked data to web page screen scraping. In Proceedings of the Third International
Conference on Agents and Artificial Intelligence, 2011.

José Ignacio Fernandez-Villamor, Carlos A. Iglesias, and Mercedes Garijo. First-
order logic rule induction for information extraction in web resources. Interna-

tional Jowrnal of Artificial Intelligence Tools, 2012a.

José Ignacio Fernandez-Villamor, Tilo Zemke, Carlos A. Iglesias, and Mercedes
Garijo. A semantic metadirectory of services based on web mining techniques.
In Proceedings of the Association for the Advancement of Artificial Intelligence
2012 Symposia, 2012b.

José Ignacio Ferndndez-Villamor, Laura Diaz-Casillas, and Carlos A. Iglesias. A
comparison model for agile web frameworks. In Proceedings of the 2008 Euro

American Conference on Telematics and Information Systems, 2008.

José Ignacio Fernandez-Villamor, Carlos A. Iglesias, and Mercedes Garijo. Descrip-
cidn semantica de aplicaciones web mediante microservicios. In Proceedings of

the Symposium on Telematics Engineering, 2009.

R. Fielding,]J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Rfc 2616: Hypertext transfer protocol-http/1.1, 1999. http://www.rfc.
net/rfc2616.html, 2009.

Roy T. Fielding. Architectural Styles and the Design of Network-based Software

Architectures. PhD thesis, University of California, 2000. URL http://www.
ics.uci.edu/"fielding/pubs/dissertation/top.htm.

Florian Fischer and Barry Norton. D3.4.6 MicroWSMO v2 - Defining the
second version of MicroWSMO as a systematic approach for rich tagging.
http://www.soadall.eu/docs/D3.4.6+MICROWSMO_V2.PDF, 2009.

Boni Garcia, Juan C. Duefias, José Ignacio Fernandez-Villamor, Adam Westerski,

Mercedes Garijo, and Carlos A. Iglesias. Romulus: Domain driven design

138

http://www.rfc.net/rfc2616.html
http://www.rfc.net/rfc2616.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.soa4all.eu/docs/D3.4.6+MICROWSMO_V2.PDF

BIBLIOGRAPHY

and mashup oriented development based on open source java metaframework
for pragmatic, reliable and secure web development. In Proceedings of the
14th European Conference on Software Maintenance and Reengineering, 2010,
Madrid, Spain, March 2010. CSMR10. URL administrator/components/
com_jresearch/files/publications/20100124_180809.pdfl

Michele Gershberg. Consumers ~ say: "In tweets we trust”,
2010. URL http://www.reuters.com/article/2010/06/23/
us-retail-summit-tweets-idUSTRE65L6C320100623.

B. Golden. Succeeding with Open source. Addison-Wesley Professional, 2005.

D. Gustield. Algorithms on strings, trees, and sequences: computer science and

computational biology. Cambridge Univ Pr, 1997.

Marc J. Hadley. Web application description language. http://www.w3.org/
Submission/wadl/}, 2009.

W. Harrison and H. Ossher. Subject-oriented programming: a critique of pure
objects. ACM Sigplan Notices, 28(10):411-428, 1993.

Andrew Hogue. Thresher: Automating the unwrapping of semantic content from
the world wide web. In Proceedings of the Fourteenth International World Wide
Web Conference, pages 86-95. ACM Press, 2005.

J. Hu, C. Guo, H. Wang, and P. Zou. Quality driven web services selection. In
e-Business Engineering, 2005. ICEBE 2005. IEEE International Conference on,
pages 681-688. IEEE, 2005.

D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank: Experience the semantic
web inside your web browser. Web Semantics: Science, Services and Agents on
the World Wide Web, 5(1):16-27, 2007.

Carlos A. Iglesias, Mercedes Garijo, José Ignacio Fernéndez-Villamor, and
José Javier Duran Martin. Agreement Patterns. In Workshop on Agreement
Technologies (CAEPIA’09), pages 57-68, 2009.

Carlos A. Iglesias, José Ignacio Fernandez-Villamor, David del Pozo, Luca Garulli,
and Boni Garcia. Service Engineering: European research results, chapter Com-
bining Domain Driven Design and Mashups for Service Development, pages
171-200. Springer Verlag, 2010.

139

administrator/components/com_jresearch/files/publications/20100124_180809.pdf
administrator/components/com_jresearch/files/publications/20100124_180809.pdf
http://www.reuters.com/article/2010/06/23/us-retail-summit-tweets-idUSTRE65L6C320100623
http://www.reuters.com/article/2010/06/23/us-retail-summit-tweets-idUSTRE65L6C320100623
http://www.w3.org/Submission/wadl/
http://www.w3.org/Submission/wadl/

BIBLIOGRAPHY

X. Ji. Research on web service discovery based on domain ontology. In Computer
Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International
Conference on, pages 65-68. IEEE, 2009.

Kyungkoo Jun, Krzysztof Palacz, Dan C Marinescu, and West Lafayette. Agent-
Based Resource Discovery. Sciences-New York, 2000.

Kay Kadner and Daniel Oberle. Unified Service Description Language XG Final
Report. http://www.w3.0rg/2005/Incubator/usdl/XGR-usd1-20111027/,
2011.

O. Khriyenko and M. Nagy. Semantic web-driven agent-based ecosystem for
linked data and services. In The Third International Conference on Advanced

Service Computing, pages 110-117, 2011.

M. Kirchberg, R. Kanagasabai, et al. Review of semantic web service discovery
methods. In Services (SERVICES-1), 2010 6th World Congress on, pages 176-177.
IEEE, 2010.

J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell. Sawsdl: Semantic annotations

for wsdl and xml schema. IEEE Internet Computing, pages 6067, 2007.

J. Kopecky, K. Gomadam, and T. Vitvar. hrests: An html microformat for describ-
ing restful web services. In Web Intelligence and Intelligent Agent Technology,
2008. WI-IAT08. IEEE /WIC /ACM International Conference on, volume 1, pages
619-625. IEEE, 2008.

R. Kosala and H. Blockeel. Web mining research: A survey. ACM SIGKDD
Explorations Newsletter, 2(1):1-15, 2000.

Nicholas Kushmerick. Wrapper induction for information extraction, 1997.

Nicholas Kushmerick. Wrapper induction: Efficiency and expressiveness. Artifi-
cial Intelligence, 118(1-2):15-68, 2000.

Lea Kutvonen. Trust Aspects in the Architecture of Interoperable Systems. In
The 2nd international workshop on Interoperability solutions to Trust, Security,
Policies and QoS for Enhanced Enterprise Systems, 2007.

M. Laclavik, Z. Balogh, M. Babik, and L. Hluchy. Agentowl: Semantic knowledge
model and agent architecture. Computing and Informatics, 25:419-437, 2006.

140

http://www.w3.org/2005/Incubator/usdl/XGR-usdl-20111027/

BIBLIOGRAPHY

R. Lara, D. Roman, A. Polleres, and D. Fensel. A conceptual comparison of wsmo
and owl-s. Web Services, pages 254-269, 2004.

O. Lassila and R.R. Swick. Resource description framework (RDF) model and
syntax. World Wide Web Consortium, http: //www.w3.org/IR /WD-rdf-syntax,
1999.

Kristina Lerman, Steven N. Minton, and Craig A. Knoblock. Wrapper mainte-
nance: A machine learning approach. Journal of Artificial Intelligence Research,
18:2003, 2003.

Grace A Lewis and Dennis B Smith. Proceedings of the International Workshop
on the Foundations of Service-Oriented Architecture (FSOA 2007). Special
report CMU /SEI-2008-SR-011, May 2007. ISSN 0008-543X. URL http://www.
ncbi.nlm.nih.gov/pubmed/21695829.

A.Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp: comparing public cloud
providers. In Proceedings of the 10th annual conference on Internet measurement,
pages 1-14. ACM, 2010.

R.E. Lopez-Herrejon. Understanding feature modularity in feature oriented pro-
gramming and its implications to aspect oriented programming. In ECOOP2005
PhDOOS Workshop and Doctoral Symposium, Glasgow, Scotland, 2005.

F. Majer, M. Nussbaumer, and P. Freudenstein. Operational challenges and
solutions for mashups-an experience report. In 2nd Workshop on Mashups,
Enterprise Mashups and Lightweight Composition on the Web (MEM 2009), held in
comjunction with 18th International World Wide Web Conference (WWW 2009),
2009.

D. Martin, M. Paolucci, S. Mcllraith, M. Burstein, D. McDermott, D. McGuin-
ness, B. Parsia, T. Payne, M. Sabou, M. Solanki, et al. Bringing semantics
to web services: The owl-s approach. Semantic Web Services and Web Process
Composition, pages 26-42, 2005.

N.O.A. M’Bareck and S. Tata. How to consider requester’s preferences to enhance
web service discovery? In Internet and Web Applications and Services, 2007.
ICIW07. Second International Conference on, pages 59-59. IEEE, 2007.

D.A. Menasce. Qos issues in web services. Internet Computing, IEEE, 6(6):72 - 75,
nov/dec 2002. ISSN 1089-7801. doi: 10.1109/MIC.2002.1067740.

141

http://www.ncbi.nlm.nih.gov/pubmed/21695829
http://www.ncbi.nlm.nih.gov/pubmed/21695829

BIBLIOGRAPHY

D.A. Menasce and V.A.F. Almeida. Capacity Planning for Web Services: metrics,
models, and methods. Prentice Hall, 2002.

Microformats community. Microformats. http://microformats.org/, 2008.

A. Miles and S. Bechhofer. Skos simple knowledge organization system reference.
W3C Recommendation, 2008.

Y. Mileva, V. Dallmeier, and A. Zeller. Mining api popularity. Testing—Practice
and Research Techniques, pages 173-180, 2010.

M.]J. Murphy, M. Dick, T. Fischer, IAO Fraunhofer, and G. Stuttgart. Towards
the" Semantic Grid": A state of the art survey of Semantic Web services and
their applicability to collaborative design, engineering, and procurement. Com-
munications of the [IMA, 8(3):11-24, 2008.

J.D. Musa, A. Iannino, and K. Okumoto. Software reliability: measurement,

prediction, application. McGraw-Hill, Inc., 1987.

H. Namgoong, M. Chung, K. Kim, H.S. Cho, and Y. Chung. Effective semantic
web services discovery using usability. In Advanced Communication Technology,
2006. ICACT 2006. The 8th International Conference, volume 3, pages 5-pp.
TEEE, 2006.

Azadeh Ghari Neiat, Mehran Mohsenzadeh, Rana Forsati, and Amir Masoud
Rahmani. An Agent-based Semantic Web Service Discovery Framework. 2009
International Conference on Computer Modeling and Simulation, pages 194-198,
February 2009. doi: 10.1109/ICCMS.2009.75. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4797381.

P.T. Nguyen, M.A. Babar, and J.M. Verner. Critical factors in establishing and
maintaining trust in software outsourcing relationships. In Proceedings of the

28th international conference on Software engineering, pages 624-627. ACM,
2006.

Alberto Pan, Juan Raposo, Manuel Alvarez, Paula Montoto, Vicente Orjales,
Justo Hidalgo, Lucia Ardao, Anastasio Molano, and Angel Vifia. The denodo
data integration platform. Very Large Data Bases, page 986, 2002. URL http:
//portal.acm.org/citation.cfm?id=1287369.1287456.

142

http://microformats.org/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4797381
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4797381
http://portal.acm.org/citation.cfm?id=1287369.1287456
http://portal.acm.org/citation.cfm?id=1287369.1287456

BIBLIOGRAPHY

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. The Semantic WebiATISWC 2002, pages 333-347, 2002.

Y. Park, W. Jung, B. Lee, and C. Wu. Automatic discovery of web services
based on dynamic black-box testing. In Computer Software and Applications
Conference, 2009. COMPSAC’09. 33rd Annual IEEE International, volume 1,
pages 107-114. IEEE, 2009.

Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, and Kunal Verma. Meteor-
s web service annotation framework. In Proceedings of the 13th international
conference on World Wide Web, WWW ’04, pages 553-562, New York, NY,
USA, 2004. ACM. ISBN 1-58113-844-X. doi: 10.1145/988672.988747. URL
http://doi.acm.org/10.1145/988672.988747.

M. Paulk. Capability maturity model for software. Wiley Online Library, 1993.

C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services vs. big’web
services: making the right architectural decision. In Proceeding of the 17th
international conference on World Wide Web, pages 805-814. ACM, 2008.

F. Canan Pembe and Tunga Gling6r. A tree learning approach to web document
sectional hierarchy extraction. In Proceedings of the 2nd International Conference

on Angents and Artificial Intelligence, 2010.

M. Pirker, M. Berger, and M. Watzke. An approach for fipa agent service discovery
in mobile ad hoc environments. UbiAgentsO4, http://www.ift.ulaval.ca/
~“{}mellouli, 2004.

G. Polancic, R.V. Horvat, and T. Rozman. Comparative assessment of open
source software using easy accessible data. In Information Technology Interfaces,
2004. 26th International Conference on, pages 673 =678 Vol.1, june 2004. doi:
10.1109/IT1.2004.242703.

Geovanny Poveda-Cardona. Asistente para la creacion de consultas semanticas.
aplicacion a la fabrica de ideas de proyectos de codigo abierto ubuntu ideas.
Master’s thesis, Universidad Politécnica de Madrid, 2011.

C. Prehofer. Feature-oriented programming: A fresh look at objects. Lecture Notes
in Computer Science, 1241:419-443, 1997.

143

http://doi.acm.org/10.1145/988672.988747
http://www.ift.ulaval.ca/~{}mellouli
http://www.ift.ulaval.ca/~{}mellouli

BIBLIOGRAPHY

C. Preist. A conceptual architecture for semantic web services. The Semantic
Web-ISWC 2004, pages 395-409, 2004.

J.R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.

R.J.R. Raj and T. Sasipraba. Web service selection based on qos constraints. In
Trends in Information Sciences & Computing, pages 156-162. IEEE, 2010.

A. Rao. Agentspeak (I): Bdi agents speak out in a logical computable language.
Agents Breaking Away, pages 42-55, 1996.

J. Raposo, A. Pan, M. Alvarez, and A. Vifia. Automatic wrapper maintenance for
semi-structured web sources using results from previous queries. In Proceedings
of the 2005 ACM symposium on Applied computing, pages 654-659. ACM, 2005.

O. Ratsimor, D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha. Service discovery
in agent-based pervasive computing environments. Mobile Networks and Ap-
plications, 9(6):679-692, 2004. URL http://www.springerlink.com/index/
HP12N863244M2534 . pdfl

Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 1st edition, 1999. ISBN 1565927249.

Zia Ur Rehman, Farookh K. Hussain, and Omar K. Hussain. Towards Multi-
criteria Cloud Service Selection. 2011 Fifth International Conference on In-
novative Mobile and Internet Services in Ubiquitous Computing, pages 44-48,
June 2011. doi: 10.1109/IMIS.2011.99. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=5976164.

D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontology, Applied
Ontology. IOS Press, 2005.

J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transac-
tions on Computers, C-18(5):401-409, May 1969, 1969.

SAP Research. = What is USDL and why do we need it. http:
//www.internet-of-services.com/index.php?7id=288&tx_ttnews[tt_
news]=218&L=0, 2011.

144

http://www.springerlink.com/index/HP12N863244M2534.pdf
http://www.springerlink.com/index/HP12N863244M2534.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5976164
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5976164
http://www.internet-of-services.com/index.php?id=288&tx_ttnews[tt_news]=218&L=0
http://www.internet-of-services.com/index.php?id=288&tx_ttnews[tt_news]=218&L=0
http://www.internet-of-services.com/index.php?id=288&tx_ttnews[tt_news]=218&L=0

BIBLIOGRAPHY

Amit P. Sheth, Karthik Gomadam, and Jon Lathem. SA-REST: Semantically
Interoperable and Easier-to-Use Services and Mashups. In IEEE Computer
Society, 2007.

F. Shimba. Cloud computing: Strategies for cloud computing adoption. Dublin
Institute of Technology, 2010.

N.S. Sidnal, R.S. Malashetty, and S.S. Manvi. Service discovery using software
agents in semantic web. In Control Automation Robotics & Vision (ICARCV),
2010 11th International Conference on, pages 139-143. IEEE, 2010.

K. Sivashanmugam, K. Verma, A. Sheth, and]J. Miller. Adding Semantics to Web
Services Standards. In Proceedings of the 1st International Conference on Web
Serwvices , 2003.

G. Spanoudakis, K. Mahbub, and A. Zisman. A platform for context aware
runtime web service discovery. In IEEE 2007 International Conference on Web
Services (ICWS 2007), Salt Lake City, Utah, USA. Citeseer, 2007.

F. Steimann. On the representation of roles in object-oriented and conceptual
modelling. Data & Knowledge Engineering, 35(1):83-106, 2000.

K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan. Dynamic discovery and
coordination of agent-based semantic web services. Internet Computing, IEEE,
8(3):66-73, 2004.

I. Toma and D. Foxvog. Non-functional properties in web services. WSMO
Deliverable, 2006.

Michael Toomim, Steven M. Drucker, Mira Dontcheva, Ali Rahimi, Blake Thom-
son, and James A. Landay. Attaching UI enhancements to websites with end
users. Conference on Human Factors in Computing Systems, pages 1859-1868,
2009. URL http://portal.acm.org/citation.cfm?id=1518701.1518987.

S. Trujillo, D. Batory, and O. Diaz. Feature oriented model driven development:
A case study for portlets. In Proceedings of the 29th international conference on

Software Engineering, pages 44-53. IEEE Computer Society, 2007.

T. Vitvar, J. Kopecky, and D. Fensel. Wsmo-lite: Lightweight semantic descrip-
tions for services on the web. In Proceedings of the Fifth European Conference on
Web Services, pages 77-86. Citeseer, 2007.

145

http://portal.acm.org/citation.cfm?id=1518701.1518987

BIBLIOGRAPHY

J. Wang, J. Zhang, P.C.K. Hung, Z. Li, J. Liu, and K. He. Leveraging fragmental
semantic data to enhance services discovery. In High Performance Computing
and Communications (HPCC), 2011 IEEE 13th International Conference on,
pages 687-694. IEEE, 2011.

Y. Wang and E. Stroulia. Flexible interface matching for web-service discovery.
In Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the
Fourth International Conference on, pages 147-156. IEEE, 2003.

Liu Wei, Xiaofeng Meng, and Weiyi Meng. Vision-based web data records extrac-
tion. In WebDB, 2006.

S. Weibel. The dublin core: a simple content description model for electronic
resources. Bulletin of the American Society for Information Science and Technology,
24(1):9-11, 1997.

Adam Westerski and Carlos A. Iglesias. Mining sentiments in idea management
systems as a tool for rating ideas. In Large-Scale Idea Management and Delib-
eration workshop. 10th International Conference on the Design of Cooperative

Systems (COOP2012), Marseille, France, April 2012. URL http://www.gi2mo.
org/files/papers/coop2012/opinions_coop2012_paper.pdfl

Adam Westerski, Carlos A. Iglesias, and Fernando Tapia Rico. A model for
integration and interlinking of idea management systems. In 4th Metadata and
Semantics Research Conference (MTSR 2010), Alcala de Henares, Spain, October
2010. URL http://www.gi2mo.org/files/papers/mtsr/mtsr2010_gi2mo_
paper . pdfl

E. Wilde and M. Gaedke. Web Engineering Revisited. In Proceedings of the
2008 British Computer Society (BCS) Conference on Visions of Computer Science,
London, UK (September 2008), 2008.

Jetfrey Wong and Jason I. Hong. Making mashups with marmite: towards end-user
programming for the web. Conference on Human Factors in Computing Systems,
page 1435,2007. URLhttp://portal.acm.org/citation.cfm?id=1240842.

World Wide Web Consortium. OWL-S: Semantic Markup for Web Services.
http://www.w3.org/Submission/0OWL-S/, 2004.

146

http://www.gi2mo.org/files/papers/coop2012/opinions_coop2012_paper.pdf
http://www.gi2mo.org/files/papers/coop2012/opinions_coop2012_paper.pdf
http://www.gi2mo.org/files/papers/mtsr/mtsr2010_gi2mo_paper.pdf
http://www.gi2mo.org/files/papers/mtsr/mtsr2010_gi2mo_paper.pdf
http://portal.acm.org/citation.cfm?id=1240842
http://www.w3.org/Submission/OWL-S/

BIBLIOGRAPHY

Wright State University. HTML Microformat for Describing RESTtul Web
Services and APIs. http://knoesis.wright.edu/research/srl/projects/
hRESTs/#hRESTs, 2008.

C. Wu and E. Chang. Searching services on the web: A public web services
discovery approach. In Signal-Image Technologies and Internet-Based System,
2007. SITIS’07. Third International IEEE Conference on, pages 321-328. IEEE,
2007.

G. Ye, C. Wu, J. Yue, and S. Cheng. A qos-aware model for web services dis-
covery. In Education Technology and Computer Science, 2009. ETCS09. First
International Workshop on, volume 3, pages 740-744. IEEE, 2009.

L. Ye and B. Zhang. Discovering web services based on functional semantics. In
Services Computing, 2006. APSCC°06. IEEE Asia-Pacific Conference on, pages
348-355. IEEE, 2006.

Jin Yu, Boualem Benatallah, Fabio Casati, and Florian Daniel. Understanding
mashup development. IEEE Internet Computing, 12(5):44-52, 2008. ISSN
1089-7801. dot: http://dx.doi.org/10.1109/MIC.2008.114.

Tilo Zemke, José Ignacio Ferndndez-Villamor, and Carlos A. Iglesias. Ranking web
services using centralities and social indicators. In Proceedings of the Evaluation

of Novel Approaches to Software Engineering, 2012.

Wenying Zeng, Yuelong Zhao, and Junwei Zeng. Cloud service and ser-
vice selection algorithm research. In Proceedings of the first ACM/SIGEVO
Summit on Genetic and Evolutionary Computation, GEC ’09, pages 1045-
1048, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-326-6. doi:
http://doi.acm.org/10.1145/1543834.1544004. URL http://doi.acm.org/
10.1145/1543834.1544004.

Y. Zhai and B. Liu. Web data extraction based on partial tree alignment. In
Proceedings of the 14th international conference on World Wide Web, pages 76-85.
ACM, 2005a.

Yanhong Zhai and Bing Liu. Extracting web data using instance-based learning.
In Proc. of 6th Intl. Conf- on Web Information Systems Engineering (WISE05,
pages 318-331, 2005b.

147

http://knoesis.wright.edu/research/srl/projects/hRESTs/#hRESTs
http://knoesis.wright.edu/research/srl/projects/hRESTs/#hRESTs
http://doi.acm.org/10.1145/1543834.1544004
http://doi.acm.org/10.1145/1543834.1544004

BIBLIOGRAPHY

J. Zhang and L.-]. Zhang. Criteria analysis and validation of the reliability of
web services-oriented systems. In Web Services, 2005. ICWS 2005. Proceedings.
2005 IEEE International Conference on, pages 2 vol. (xxxiii4856), july 2005. doi:
10.1109/ICWS.2005.44.

P. Zhang and J. Li. Ontology assisted web services discovery. In Service-Oriented
System Engineering, 2005. SOSE 2005. IEEE International Workshop, pages 45-50.
TEEE, 2005.

Jiehan Zhou, J.-P. Koivisto, and E. Niemela. A survey on semantic web services
and a case study. In Computer Supported Cooperative Work in Design, 2006.
CSCWD °06. 10th International Conference on, pages 1-7, May 2006. doi:
10.1109/CSCWD.2006.253254.

148

List of Figures

2.1 Example of DOM[tree| 8
[2.2 Example of tree matching| 8
2.3 Example of multiple tree alignment| 9
2.4 IOWLSlelements|ottt 17
[3.1 Discovery framework| 39
3.2 Agentmodell........ 42
[3.3 Semantic scraping approach| L 48
[3.4 Semantic scrapingRDF[model| 51
[3.5 Example of semantic scraper|, .. 53
4.1 HTMLvsRDFldocumentslc.couuunnnn.... 58
f4.2 Scraping conceptual model|. oL oL 59
4.3 Conversion of a[DOM]|tree into an RDF graph| 61
[5.1 Repositories’ coverage of aspects| 87
[5.2 |Linked Mashups Ontology| 88
[5.3 Connections between [LiMOn|and other ontologies| 90
(6.1 Extraction errorsonanew websitel 99
[6.2 Mapping detection among categories| 112
[6.3 Mapping among the different categorization schemes| 113
[6.4 Agent’s lifecycle and interaction with scenario|. 117
{6.5 Browser plugin which shows related news by using the automated |
.. 118

149

150

List of Tables

[2.1 Regular expressions for two equivalentfHTML|documents| 7
[5.1 Sample feature set for service probingl. 76
[5.2 Requests in service probing sample| 76
[5.3 Responses in service probing sample] 77
[5.4 Repositories’ SUDPOIt tO aSPECLS| « « v v v v v v v v e e e e 86
[6.1 Tramingdataset|. 96
[6.2 Tramingsamples| 97
(6.3 Testing datasets|ttt 97
[6.4 Evaluation of generalization|. 98
[6.5 Evaluation of robustness|ttt 99
[6.6 Analysis of detailed features out of raw ones| 102
[6.7 Specification of features|. 103
[6.8 Sample requests used for service probing|. L. 104
[6.9 Sample responses obtained when probing Google Images service| . 105
[6.10 Mapping between features and the considered services|. 106
[6.11 Evaluation of metadirectory’s interface| 116
[6.12 Example of rules used in the sample scenariof 119
[6.13 Results of users’survey|o 120

151

152

Glossary

hRESTS
Idea Management

JavaScript
Linked Data

METEOR-S
Microformats
MicroWSMO
mixin

Mule Enterprise Service Bus
OpenSearch

parser

Poshformats
RDForms

Scraping Ontology
Scrappy

Screen Scraping
Semantic Web

Semantic Web Services

GEl
e Gz

MBI NE
|3

EREEEE
d 9} 109} [124

153

GLOSSARY

Web Services
wrapper
WSMO-Lite

154

Acronyms

AOP

API

BDI

CMM

CSS

DC

DOM

ebXML

FIPA

FLOWS

FOAF

FOMDD

FOP

GRDDL

Aspect-Oriented Programming.

Application Programming Interface. _
PAH ER BF 124159

Belief-Desire-Intention.

Capability Maturity Model. |82

Content Style Sheets. , _
WIS

Dublin Core.
Document Object Model. ,

[°% % % % P P4 (129, 159,149

Electronic Business using XML.

Foundation for Intelligent Physical Agents.

First-order Logic Ontology for Web Services. [23

Friend of a Friend.

Feature-Oriented Model-Driven Development.

&
Feature-Oriented Programming.

Gleaning Resource Descriptions from Dialects of
Languages. E

155

ACRONYMS

HTML

HTTP

IOPE

LiMOn

MDD
MIME
NLP
OOP
OSSMM
OWASP

OWL
OWL-S

QoS

RDF

RDFa

REST

ROP

HyperText Markup Language.
[T1} 2831} B4 [0} B2} B7H52} 55} [57H59 (6T} [63} /65,

B3 P5}[[O% [F0%} [L18} (149} 151
HyperText Transfer Protocol. EL

B1} 37 41} 43} 444 46} 724 [73} [75H78, 53 [104) [106)
[

Inputs Outputs Preconditions and Effects.

il

Linked Mashups Ontology.
[108} [TT3} [126} [130} [T49]

Mashup-Driven Development.
[

Multipurpose Internet Mail Extensions.

Natural Language Processing.

Object-Oriented Programming.
Open Source Software Maturity Model.

The Open Web Application Security Project.
Web Ontology Language. , _ @

OWL Services. , , ,
Quality of Service.

Resource Description Framework.
(T2} 20} 29} BT} B TH43} B3} 47, BOH54, 57H59} [THe4,

(6% 8 P4 P4 [TO% (178} (124} 125} 150} 149

Resource Description Framework in Attributes.

BEHIE2
Representational Stateless Transfer.

/6 [C2HT5) [T 27629 55357 B9HAT 7
BR3P PR 124 129

Role-Oriented Programming.

156

ROSM
ROWS
RSS

SA-REST
SAWSDL
SIOC

SKOS
SLA
SOA
SOAP
SOP
SPARQL
SWSF
SWSL
SWSO
UDDI
URI

URL
USDL

VIPS

W3C
WADL

WSDL

WSMO

ACRONYMS

Resource-Oriented Service Model. ,
Rule Ontology for Web Services.
Really Simple Syndication.

Semantically-Annotated REST.
&

Semantic Annotations for WSDL.
Semantically-Interlinked Online Communities
Project.

Simple Knowledge Organization System.
Service-Level Agreement.

Service-Oriented Architecture.

SPARQL Protocol and RDF Query Language.

uetus

Semantic Web Services Framework.

Semantic Web Services Ontology.

Semantic Web Services Language.

Universal Description, Discovery and Integra-

tion.
Uniform Resource Identifier.

B B3
Uniform Resource Locator.

Unified Service Description Language.

Vision-based Page Segmentation.

World Wide Web Consortium.
2 [12]

Web Application Description Language.

[P2} B P
Web Service Definition Language.

o oding oo TR BB
P2 5 S T P T T

157

ACRONYMS

WSMX Web Service Modelling Execution Environment.

P

WSRR Websphere Service Registry and Repository.

XML Extensible Markup Language.
XPath XML Path Language.
|

XSD XML Schema Definition
XSLT Extensible Stylesheet Language Transformation.

il

158

	Abstract
	Resumen
	Contents
	Introduction
	Motivation
	Objectives

	State of the art
	Introduction
	Screen scraping
	Regular expressions
	Tree matching
	Wrapper induction
	Vision-based approaches
	GRDDL
	Unsupervised approaches
	Discussion

	Service discovery
	Web services
	Semantic Web Services
	Semantic REST services
	Other approaches
	Discussion

	Conclusions

	Discovery framework
	Introduction
	Framework overview
	Agent model
	Architecture
	Plans

	Service level
	Description model
	Service discovery rules

	Content level
	Semantic Scraping approach
	Semantic scrapingontology
	Content discovery rules

	Conclusions

	Content discovery
	Introduction
	Problem statement
	Rule induction for content extraction
	Training attributes and classes
	Induction algorithm
	Wrapper conversion

	Conclusions

	Service discovery
	Introduction
	Services as REST resources
	Feature-Oriented descriptions
	Service probing

	Services as contents
	SOA domains
	Linked Mashups Ontology

	Conclusions

	Evaluation
	Introduction
	Content discovery
	Scraping Ontology
	Automatic rule induction

	Service discovery
	Service probing
	Services as contents

	Agent level
	Description
	Results

	Conclusions

	Conclusions and future work
	Conclusions
	Publications
	Future work

	Bibliography
	List of Figures
	List of Tables
	Glossary
	Acronyms

