
UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE

TELECOMUNICACIÓN

SEMANTIC SERVICE DISCOVERY TECHNIQUES

FOR THE COMPOSABLE WEB

TESIS DOCTORAL

JOSÉ IGNACIO FERNÁNDEZ VILLAMOR

Ingeniero de Telecomunicación

2012

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE

TELECOMUNICACIÓN

SEMANTIC SERVICE DISCOVERY TECHNIQUES

FOR THE COMPOSABLE WEB

TESIS DOCTORAL

JOSÉ IGNACIO FERNÁNDEZ VILLAMOR

Ingeniero de Telecomunicación

2012

DEPARTAMENTO DE INGENIERÍA DE SISTEMAS

TELEMÁTICOS

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE

TELECOMUNICACIÓN

UNIVERSIDAD POLITÉCNICA DE MADRID

SEMANTIC SERVICE DISCOVERY TECHNIQUES

FOR THE COMPOSABLE WEB

AUTOR:

JOSÉ IGNACIO FERNÁNDEZ VILLAMOR

Ingeniero de Telecomunicación

TUTORES:

CARLOS ÁNGEL IGLESIAS FERNÁNDEZ

Doctor Ingeniero de Telecomunicación

MERCEDES GARIJO AYESTARÁN

Doctora Ingeniera de Telecomunicación

2012

Tribunal nombrado por el Magfco. y Excmo. Sr. Rector de la
Universidad Politécnica de Madrid, el día 1 de junio de 2012.

Presidente:

Vocal:

Vocal:

Vocal:

Secretario:

Suplente:

Suplente:

Realizado el acto de defensa y lectura de la Tesis el día 1 de
julio de 2012 en la E.T.S.I.T. habiendo obtenido la calificación de

.

EL PRESIDENTE LOS VOCALES

EL SECRETARIO

A mis padres

Agradecimientos

Prefiero dar agradecimientos en persona, pero aceptaré inmortalizarlos en esta
sección. Muy merecidamente le doy las gracias a mis tutores Carlos y Mercedes,
que más allá de la gran dirección de tesis, han sabido crear un ambiente de trabajo
extraordinario en el grupo. Desde el día en que entré, en el que era el único
doctorando en el laboratorio, me he sentido como en casa y os lo agradezco
enormemente. Gracias también al resto de profesores del grupo: Gregorio, José
Carlos, Luis Enrique y Marifeli.

Por fortuna el grupo se repobló con gente magnífica. Gracias a Nacho, Álvaro,
Dani, Paloma, Jorge, Laura, Elena, Adam, Paco, Miguel, Vicente, Álvaro, Jota y
Geovanny por los días que hemos compartido juntos, tanto dentro como fuera
del laboratorio, de los que me llevo algunos inolvidables. Gracias a ese estupendo
elenco de futuras promesas que ha sido el plantel de becarios. Especialmente, por
su contribución a la tesis, gracias a Alberto, Adriano, Pablo, Jacobo, Dani, Toni,
Patricia, Adrián, Rubén y Danny. Y gracias a toda la gente del DIT con la que he
trabajado; muy especialmente a Boni y Samuel.

Gracias a mis padres, mi hermano, mis abuelas, y también a mis abuelos, que
ya no están, porque sin su compañía y sin la educación que me inculcaron no
habría terminado un doctorado ni por casualidad.

Gracias a mis amigos, que son los más grandes: Rodrigo, Álvaro, Berta, Irene,
Antonio, Esther, Luigi, Hesse, Javi, Mireia, Juan, Ana Alhama, Jorge, Ana y Dani,
Pablo, Luis. . .

Und, natürlich, vielen Dank an die deutschen Leute aus Chemnitz. Es war
wirklich sehr schön, mit euch zu arbeiten. Danke schön, Frank, Alexey, Hendrik
und Martin. Und es war ganz toll, dass du drei Monate hier in Madrid gewohnt
hast, Tilo. Ich hoffe, dass du bald wiederkommst. Alle sind willkommen.

Y sobre todo, mil disculpas a quien haya olvidado incluir aquí, que seguramente
alguien habrá.

ix

Abstract

This PhD thesis contributes to the problem of resource and service discovery in
the context of the composable web. In the current web, mashup technologies
allow developers reusing services and contents to build new web applications.
However, developers face a problem of information flood when searching for
appropriate services or resources for their combination.

To contribute to overcoming this problem, a framework is defined for the
discovery of services and resources. In this framework, three levels are defined for
performing discovery at content, discovery and agente levels.

The content level involves the information available in web resources. The
web follows the Representational Stateless Transfer (REST) architectural style, in
which resources are returned as representations from servers to clients. These
representations usually employ the HyperText Markup Language (HTML), which,
along with Content Style Sheets (CSS), describes the markup employed to render
representations in a web browser. Although the use of Semantic Web standards
such as Resource Description Framework (RDF) make this architecture suitable
for automatic processes to use the information present in web resources, these
standards are too often not employed, so automation must rely on processing
HTML. This process, often referred as Screen Scraping in the literature, is the
content discovery according to the proposed framework. At this level, discovery
rules indicate how the different pieces of data in resources’ representations are
mapped onto semantic entities. By processing discovery rules on web resources,
semantically described contents can be obtained out of them.

The service level involves the operations that can be performed on the web.
The current web allows users to perform different tasks such as search, blogging,
e-commerce, or social networking. To describe the possible services in RESTful
architectures, a high-level feature-oriented service methodology is proposed at this
level. This lightweight description framework allows defining service discovery

xi

rules to identify operations in interactions with REST resources. The discovery
is thus performed by applying discovery rules to contents discovered in REST
interactions, in a novel process called service probing. Also, service discovery can
be performed by modelling services as contents, i.e., by retrieving Application
Programming Interface (API) documentation and API listings in service registries
such as Programmable Web. For this, a unified model for composable components
in Mashup-Driven Development (MDD) has been defined after the analysis of
service repositories from the web.

The agent level involves the orchestration of the discovery of services and
contents. At this level, agent rules allow to specify behaviours for crawling and
executing services, which results in the fulfilment of a high-level goal. Agent rules
are plans that allow introspecting the discovered data and services from the web
and the knowledge present in service and content discovery rules to anticipate
the contents and services to be found on specific resources from the web. By the
definition of plans, an agent can be configured to target specific resources.

The discovery framework has been evaluated on different scenarios, each one
covering different levels of the framework. Contenidos a la Carta project deals
with the mashing-up of news from electronic newspapers, and the framework was
used for the discovery and extraction of pieces of news from the web. Similarly, in
Resulta and VulneraNET projects the discovery of ideas and security knowledge
in the web is covered, respectively. The service level is covered in the OMELETTE
project, where mashup components such as services and widgets are discovered
from component repositories from the web. The agent level is applied to the
crawling of services and news in these scenarios, highlighting how the seman-
tic description of rules and extracted data can provide complex behaviours and
orchestrations of tasks in the web.

The main contributions of the thesis are the unified framework for discovery,
which allows configuring agents to perform automated tasks. Also, a scraping
ontology has been defined for the construction of mappings for scraping web
resources. A novel first-order logic rule induction algorithm is defined for the
automated construction and maintenance of these mappings out of the visual
information in web resources. Additionally, a common unified model for the
discovery of services is defined, which allows sharing service descriptions.

Future work comprises the further extension of service probing, resource
ranking, the extension of the Scraping Ontology, extensions of the agent model,
and contructing a base of discovery rules.

Resumen

La presente tesis doctoral contribuye al problema de descubrimiento de
servicios y recursos en el contexto de la web combinable. En la web actual,
las tecnologías de combinación de aplicaciones permiten a los desarrolladores
reutilizar servicios y contenidos para construir nuevas aplicaciones web. Pese a
todo, los desarrolladores afrontan un problema de saturación de información a la
hora de buscar servicios o recursos apropiados para su combinación.

Para contribuir a la solución de este problema, se propone un marco de trabajo
para el descubrimiento de servicios y recursos. En este marco, se definen tres capas
sobre las que se realiza descubrimiento a nivel de contenido, servicio y agente.

El nivel de contenido involucra a la información disponible en recursos web.
La web sigue el estilo arquitectónico Representational Stateless Transfer (REST), en
el que los recursos son devueltos como representaciones por parte de los servidores
a los clientes. Estas representaciones normalmente emplean el lenguaje de marcado
HyperText Markup Language (HTML), que, unido al estándar Content Style
Sheets (CSS), describe el marcado empleado para mostrar representaciones en un
navegador web. Aunque el uso de estándares de la web semántica como Resource
Description Framework (RDF) hace apta esta arquitectura para su uso por procesos
automatizados, estos estándares no son empleados en muchas ocasiones, por lo
que cualquier automatización debe basarse en el procesado del marcado HTML.
Este proceso, normalmente conocido como Screen Scraping en la literatura, es el
descubrimiento de contenidos en el marco de trabajo propuesto. En este nivel,
un conjunto de reglas de descubrimiento indican cómo los diferentes datos en
las representaciones de recursos se corresponden con entidades semánticas. Al
procesar estas reglas sobre recursos web, pueden obtenerse contenidos descritos
semánticamente.

El nivel de servicio involucra las operaciones que pueden ser llevadas a cabo en
la web. Actualmente, los usuarios de la web pueden realizar diversas tareas como

xiii

búsqueda, blogging, comercio electrónico o redes sociales. Para describir los posi-
bles servicios en arquitecturas REST, se propone en este nivel una metodología de
alto nivel para descubrimiento de servicios orientada a funcionalidades. Este marco
de descubrimiento ligero permite definir reglas de descubrimiento de servicios para
identificar operaciones en interacciones con recursos REST. Este descubrimiento
es por tanto llevado a cabo al aplicar las reglas de descubrimiento sobre contenidos
descubiertos en interacciones REST, en un nuevo procedimiento llamado sondeo
de servicios. Además, el descubrimiento de servicios puede ser llevado a cabo
mediante el modelado de servicios como contenidos. Es decir, mediante la re-
cuperación de documentación de Application Programming Interfaces (APIs) y
listas de APIs en registros de servicios como Programmable Web. Para ello, se ha
definido un modelo unificado de componentes combinables para Mashup-Driven
Development (MDD) tras el análisis de repositorios de servicios de la web.

El nivel de agente involucra la orquestación del descubrimiento de servicios y
contenidos. En este nivel, las reglas de nivel de agente permiten especificar compor-
tamientos para el rastreo y ejecución de servicios, lo que permite la consecución
de metas de mayor nivel. Las reglas de los agentes son planes que permiten la intro-
spección sobre los datos y servicios descubiertos, así como sobre el conocimiento
presente en las reglas de descubrimiento de servicios y contenidos para anticipar
contenidos y servicios por encontrar en recursos específicos de la web. Mediante
la definición de planes, un agente puede ser configurado para descubrir recursos
específicos.

El marco de descubrimiento ha sido evaluado sobre diferentes escenarios, cada
uno cubriendo distintos niveles del marco. El proyecto Contenidos a la Carta
trata de la combinación de noticias de periódicos digitales, y en él el framework
se ha empleado para el descubrimiento y extracción de noticias de la web. De
manera análoga, en los proyectos Resulta y VulneraNET se ha llevado a cabo un
descubrimiento de ideas y de conocimientos de seguridad, respectivamente. El
nivel de servicio se cubre en el proyecto OMELETTE, en el que componentes
combinables como servicios y widgets se descubren en repositorios de compo-
nentes de la web. El nivel de agente se aplica al rastreo de servicios y noticias
en estos escenarios, mostrando cómo la descripción semántica de reglas y datos
extraídos permiten proporcionar comportamientos complejos y orquestaciones
de tareas en la web.

Las principales contribuciones de la tesis son el marco de trabajo unificado para
descubrimiento, que permite configurar agentes para realizar tareas automatizadas.

Además, una ontología de extracción ha sido definida para la construcción de corre-
spondencias y extraer información de recursos web. Asimismo, un algoritmo para
la inducción de reglas de lógica de primer orden se ha definido para la construcción
y el mantenimiento de estas correspondencias a partir de la información visual de
recursos web. Adicionalmente, se ha definido un modelo común y unificado para
el descubrimiento de servicios que permite la compartición de descripciones de
servicios.

Como trabajos futuros se considera la extensión del sondeo de servicios, clasi-
ficación de recursos, extensión de la ontología de extracción y la construcción de
una base de reglas de descubrimiento.

Contents

Abstract xi

Resumen xiii

Contents xvii

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

2 State of the art 5

2.1 Introduction . 6

2.2 Screen scraping . 6

2.2.1 Regular expressions . 6

2.2.2 Tree matching . 7

2.2.3 Wrapper induction . 9

2.2.4 Vision-based approaches . 10

2.2.5 GRDDL . 11

2.2.6 Unsupervised approaches . 11

2.2.7 Discussion . 11

2.3 Service discovery . 12

2.3.1 Web services . 14

2.3.2 Semantic Web Services . 16

2.3.3 Semantic REST services . 26

2.3.4 Other approaches . 32

2.3.5 Discussion . 33

2.4 Conclusions . 34

xvii

CONTENTS

3 Discovery framework 36
3.1 Introduction . 38
3.2 Framework overview . 39
3.3 Agent model . 40

3.3.1 Architecture . 41
3.3.2 Plans . 41

3.4 Service level . 43
3.4.1 Description model . 43
3.4.2 Service discovery rules . 46

3.5 Content level . 46
3.5.1 Semantic Scraping approach . 47
3.5.2 Semantic scrapingontology . 48
3.5.3 Content discovery rules . 53

3.6 Conclusions . 54

4 Content discovery 55
4.1 Introduction . 56
4.2 Problem statement . 57
4.3 Rule induction for content extraction 61

4.3.1 Training attributes and classes 64
4.3.2 Induction algorithm . 64
4.3.3 Wrapper conversion . 68

4.4 Conclusions . 69

5 Service discovery 70
5.1 Introduction . 72
5.2 Services as REST resources . 73

5.2.1 Feature-Oriented descriptions 73
5.2.2 Service probing . 75

5.3 Services as contents . 78
5.3.1 SOA domains . 79
5.3.2 Linked Mashups Ontology . 85

5.4 Conclusions . 89

6 Evaluation 91
6.1 Introduction . 92
6.2 Content discovery . 93

xviii

CONTENTS

6.2.1 Scraping Ontology . 93
6.2.2 Automatic rule induction . 94

6.3 Service discovery . 100
6.3.1 Service probing . 100
6.3.2 Services as contents . 108

6.4 Agent level . 115
6.4.1 Description . 117
6.4.2 Results . 119

6.5 Conclusions . 121

7 Conclusions and future work 122
7.1 Conclusions . 124
7.2 Publications . 126
7.3 Future work . 129

Bibliography 133

List of Figures 149

List of Tables 151

Glossary 153

Acronyms 155

xix

xx

Chapter 1

Introduction

In this chapter, the motivation and objectives of the thesis are introduced to
the reader. The current web contains a vast amount of information in web ap-
plications. Additionally, web applications usually publish their services so that
third-party applications can consume them. Through the use of standards like
Resource Description Framework (RDF) proposed by the Semantic Web appli-
cations can consume the contents and use the services automatically. However,
very frequently semantic descriptions of contents and services are not used, which
limits the construction of these kinds of applications. This thesis contributes
to the problem of bootstrapping semantic descriptions in the web by defining a
uniform framework for discovery of contents and services.

1

1. INTRODUCTION

1.1 Motivation

The web has an increasing number of applications and services that cover different
domains and fields. Users can enjoy a wide range of applications, from e-commerce
to blogging, media or social networking. The possibilities of the current web are
only limited by the interoperability between applications. Internet versatility
would increase if applications could be arbitrarily composed and automatically
executed to fulfil a user’s goal. This Service-Oriented Architecture (SOA) approach
[Erl, 2005] has led to research in several areas, such as Semantic Web Services
[Zhou et al., 2006] or mashups [Yu et al., 2008].

SOA suggests services being publicly accessible to make the Web a kind of
global software library, with software services and components ready for their
use by developers. In order to make services machine processable, Semantic
Web Services [Zhou et al., 2006] standards such as OWL-S [World Wide Web
Consortium, 2004] or Web Service Modeling Ontology (WSMO) [Roman et al.,
2005] allow building semantic service descriptions.

The Web Services architecture misses integration with Representational State-
less Transfer (REST) architectural style [Wilde and Gaedke, 2008], resulting in
the use of the Web as a platform and thus adding unnecessary complexity to the
protocol stack. In order to improve the integration of the service architecture with
the REST architectural style of the Web, initiatives such as Web Application De-
scription Language (WADL) [Hadley, 2009] try to enable Semantic Web Services
approach with a RESTful design in mind.

Anyway, both Web Services-based and REST-based Semantic Web Services
approaches share the common target of defining semantically rich service de-
scriptions in order to enable agents to perform automatic tasks such as service
discovery, execution, and composition.

Such approaches for semantic description provide means to describe every
kind of service and process the respective descriptions to automate tasks such as
execution or composition. They are abstract and flexible enough to allow describ-
ing every possible service. Whenever a new service is deployed, a description
has to be built in order to make the service available for automatic agents to pro-
cess it. Usually, this implies describing service’s inputs and outputs semantically,
as well as defining the precise operation the service performs, which can be a
time-consuming task.

As a result, although these kinds of approaches are formally sound and many

2

Objectives

have been successful from a research point of view, none has reached wide adoption
in the industry [Murphy et al., 2008]. The effort of describing services in web
applications can be too big and too often web developers do not perform such
task.

Similarly, the contents that are published in web resources experience a similar
situation. Semantic technologies such as Resource Description Framework in
Attributes (RDFa) [Adida and Birbeck, 2008] allow annotating web resources
and publishing Linked Data [Bizer et al., 2009], which makes information ma-
chine processable. However, the lack of Semantic Web applications that exploit
annotated contents is small, resulting in content providers not annotating their
contents semantically.

Still, even with semantically annotated contents, there are pieces of informa-
tion which are either hidden behind search services (or, in general, any HyperText
Markup Language (HTML) form) or hardly accessible, so long as information
discovery in the Web is performed through web spidering. This makes that tasks
such as getting a particular archive of posts in a web log is a tough task that requires
spidering techniques such as focused crawling [Chakrabarti et al., 1999] or using
search forms. By describing search services semantically, access to information is
improved.

1.2 Objectives

As mentioned, the Semantic Web experiences a bootstrapping problem because
of the reduced amount of semantically described services and contents. Applica-
tions that exploit semantically annotated services and contents are scarce, while
annotated resources do not grow because this scarcity of semantically empowered
applications. This chicken and egg problem can be addressed through automatic
resource discovery, which is the main topic of the thesis.

The thesis has the following objectives:

• Define a unified discovery framework for REST architectural style. The
web follows the REST architectural style, which consists of a stateless
hypermedia system comprisen by resources with uniform interfaces. The
possible interactions with these resources are the services available in the
system, while representations include the possible contents available in the
web. Some approaches to discovery and semantic description dismiss these
design guidelines of the web. This thesis attempts to define a framework

3

1. INTRODUCTION

that fits the REST architectural style of the web while providing unified
techniques to perform discovery at content and service levels.

• Research techniques for automatic content discovery. Plenty of the resources
available in the web are not annotated. Therefore, their representations
contain unstructured contents which require techniques for their extraction
and discovery. The thesis attempts to contribute to information extraction
by defining models and algorithms for content discovery.

• Research techniques for automatic service discovery. In the REST architec-
tural style, interactions with resources follow a uniform interface, whereby
a user agent is able to perform a predictable action on a resource. How-
ever, aspects such as HyperText Transfer Protocol (HTTP) parameters,
the specific domain of the web resource which receives the interaction, or
the loose semantics of HTTP operations make semantics useful to clarify
the particular action being performed on an HTTP interaction. Discov-
ering the precise semantics behind a service is a challenge that is most
times achieved by sharing a semantic description of the interface of the
service. Due to the bootstrapping problem of the Semantic Web, the thesis
researches techniques to discover the services and automatically discover
service descriptions.

The dissertation is organized as follows. The state of the art regarding the
topics of the thesis is described in chapter 2. Chapter 3 describes the unified
discovery framework that is followed in the thesis. Chapter 4 details the content
level of the discovery framework, while chapter 5 describes the service level of
the framework. The evaluation of the framework and the discovery techniques
is detailed in chapter 6. Finally, chapter 7 draws some conclusions and proposes
possible future work.

4

Chapter 2

State of the art

This chapter covers the state of the art in the context of the thesis. The thesis
targets discovery of contents and services. Therefore, techniques for extracting
information from unstructured web resources, and the main approaches and
standards for service description and discovery are described in this chapter.

5

2. STATE OF THE ART

2.1 Introduction

As introduced in chapter 1, the thesis addresses the problem of resource discovery.
This involves solving several issues, from screen scraping to service description.

Unstructured REST resources might contain relevant contents for discovery,
or be services subject to be discovered. Web mining [Kosala and Blockeel, 2000]
and, more specifically, information extraction [Chang et al., 2006] are research
fields that cover the problem of extracting information from unstructured re-
sources. The term Screen Scraping is the one usually employed to represent the
kind of problem of extracting data out of unstructured HTML pages.

In the case of service discovery, there are several approaches to service mod-
elling. These service description frameworks allow describing services, publishing
their descriptions, and performing service discovery. As will be seen in section
5.2.2, the thesis researches techniques for automatically building service descrip-
tions through an approach called service probing. Therefore, the thesis does not
focus on defining a new service description framework. However, a background
on these kinds of frameworks is given for the reader’s interest.

2.2 Screen scraping

Plenty of approaches have already dealt with the problem of extracting informa-
tion out of web sites which do not publish metadata that describe them. Usually,
web servers return HTML representations of the web resources they host. The
problem of Screen Scraping attempts to locate and extract relevant information
from these HTML representations. Whenever the HTML code does not contain
indicators to identify the relevant information, it is considered an unstructured
document that is subject to being screen-scraped.

The techniques for scraping unstructured HTML representations of web
resources are listed in this section. They can be classified into supervised and
unsupervised approaches, depending on the requirement of human supervision
over some data sets before the execution of training algorithms.

The techniques behind these kinds of systems are summarized in this section.

2.2.1 Regular expressions

In order to extract a particular piece of information out of an HTML document,
one alternative consists of considering the document as plain text and applying

6

Screen scraping

Document Regular expression
<html>
<body>
<p>Data: 32
</p>
</body>
</html>

<p>Data: (.*)

<html>
<body>
<p>
Data: 32
</p>
</body>
</html>

<p>\nData: (.*)

Table 2.1: Regular expressions for two equivalent HTML documents

patterns for data extraction. These patterns are usually represented by regular
expressions, which allow defining anchor texts that delimit the targeted data and
extract these data.

An example would be extracting the location data from an HTML frag-
ment such as <p>Location: Madrid</p>. The
location data could be extracted by using the regular expression <span

class=“city”>(.*) .

Regular expressions are a quick and simple way to extract information from
web resources. However, as they dismiss the tree structure of HTML documents,
they are not proper HTML document parsers. The main disadvantage of this fact
is the poor resistance to changes in serializations of the HTML document. An
example of this issue is shown in table 2.1, which shows two HTML documents
that have equivalent Document Object Model (DOM) trees but different serializa-
tions. Each one requires a different regular expression to select their data, which
makes it hard to define robust regular expressions. Obviously, a common regular
expression that fits both documents can easily be defined, but the example points
out the drawback of mixing parsing and extraction tasks into one same pattern.

2.2.2 Tree matching

By dismissing the structured nature of HTML documents, regular expressions are
vulnerable to changes in document serializations and are hard to maintain and
generate. Unlike regular expressions, using the DOM tree of an HTML document

7

2. STATE OF THE ART

prevents parsing problems and allows operations such as tree matching. Figure 2.1
shows the DOM tree associated to an HTML document.

Figure 2.1: Example of DOM tree

An operation that is relevant to Screen Scraping is tree matching. Given
two trees, tree matching is the set of mappings between the nodes of the trees.
Tree matching is a method that is useful to induct tree patterns in web resources.
It is based on tree edit distance, i.e. the minimum amount of editions that are
needed to make on a tree to transform it into another one. Addition, removal or
modification of a node are the considered possible editions.

An example of tree matching is shown in figure 2.2. In that figure, two different
trees are shown with their respective mappings. The tree distance is two, as long
as two operations (two node additions) are needed to transform one tree into
another.

Figure 2.2: Example of tree matching

8

Screen scraping

The matching among more than two trees is employed when trying to find a
general pattern across many tree fragments and is called multiple tree alignment.
The center star method [Gusfield, 1997] or partial tree alignment [Zhai and Liu,
2005a] are algorithms to perform this task, whose optimal solution has exponential
time complexity [Carrillo and Lipman, 1988]. Therefore, given a set of similar
tree fragments, it is possible to extract a general pattern that fits the samples. An
example of multiple tree alignment with three trees is shown in figure 2.3, where
an pattern tree is obtained after the alignment. In such figure, nodes marked with
a ? symbol are optional in the pattern, whereas nodes marked with a * symbol
might appear repeated times (from zero to any).

Figure 2.3: Example of multiple tree alignment

As will be seen, supervised approaches employ tree matching to induct gen-
eralized trees by processing tree fragments that have been previously selected
and annotated by human users. Additionally, unsupervised approaches use tree
edit distance to find similar fragments in web resources and automatically induct
wrappers out of unannotated instances.

2.2.3 Wrapper induction

Wrapper induction is the technique in which, by using tree matching, inducts
generalized patterns for data extraction. In such approach, given a target web
page that wants to be scraped, a user manually annotates desired information
that he/she wants to extract. With these annotated samples, a generalized pattern
is inducted by using tree matching. Inducting a pattern ensures that if the data
changes in the web resource, it will be extracted anyway, as the extractor is not
tied to some specific data.

However, if the layout of the document changes in a way that the tree pattern
does not fit it anymore, this technique would fail to extract the desired data. These

9

2. STATE OF THE ART

kinds of layout changes typically take place in web redesigns. Therefore, the
vulnerability to layout changes is the major drawback of the technique of wrapper
induction.

Some systems provide tools that allow the manual annotation of web resources
and induct wrappers for information extraction. Some examples are Piggy Bank
[Huynh et al., 2007], Reform [Toomim et al., 2009], Thresher [Hogue, 2005]
and Marmite [Wong and Hong, 2007]. Piggy Bank provides also a web scraper
that produces RDF out of web pages. Their approach is based on a browser
plugin that provides a visual interface for programming the scraper and produces
JavaScript as a result. Reform [Toomim et al., 2009] proposes scrapers that can
be attached to web pages by non-programmers. The system is also integrated
in Firefox web browser and allows users to annotate which parts of the web
page contains a predefined pattern, and includes machine learning techniques for
generalizing these annotations in the scraper. Thresher [Hogue, 2005] provides an
interface where users can specify examples of semantic patterns by highlighting
and assigning relevant features in the semantic web browser Haystack.

Also, some systems are targeted to experienced developers that need to con-
struct scrapers and do not mind dealing with low-level concepts such as HTML,
selectors, and wrappers. This is the case of systems like Chickenfoot [Bolin et al.,
2005] or Denodo [Pan et al., 2002]. Both define JavaScript libraries for scraping,
so that programmers can quickly and easily create extractors.

2.2.4 Vision-based approaches

Similarly, the systems that are based on visual features do not require manual
supervision when applied to new web sites. Some approaches [Cai et al., 2003]
such as the Vision-based Page Segmentation (VIPS) algorithm [Wei et al., 2006]
perform this by defining some heuristics that are based on the HTML tags used
for layouts, such as tables or titles. This limits the approach to the web sites that
follow these design guidelines. Finally, another tool [Pembe and Güngör, 2010]
uses visual information to extract data from web pages, which makes it work in
web pages without preliminar knowledge about them. This tool only builds a
hierarchical structure of the web page based on titles and sections.

There are studies that provide solutions to the problem of wrapper mainte-
nance [Raposo et al., 2005], some of them using machine learning techniques for
this purpose [Lerman et al., 2003]. However, they do not address the problem of
wrapper generalization to different web sites.

10

Screen scraping

2.2.5 GRDDL

Gleaning Resource Descriptions from Dialects of Languages (GRDDL) [Con-
nolly, 2007] is the standard recommendation for constructing RDF graphs out of
HTML or Extensible Markup Language (XML) documents. In order to extract
the RDF semantic information, a GRDDL-aware agent should read the GRDDL
annotations of the HTML/HTML resources, which are usually provided as Exten-
sible Stylesheet Language Transformation (XSLT) annotations. GRDDL proposes
a syntactic approach that can benefit from the reuse of scrapers among web sites.
However, GRDDL specifies an unidirectional mapping between the implemen-
tation (XSLT scraper) and the web resource. This prevents this solution from
dereferencing scraped data and reasoning about the scraping process. A transpar-
ent programmatic description would allow enhacements in the scraping process,
such as reasoning on visual aspects of the web resource, distributed scraping using
multiagent systems, or focused scraping and reasoning on the scraped resources
(for example, search a piece of sports news about Rafa Nadal taken in China).

2.2.6 Unsupervised approaches

Some approaches perform automatic unsupervised wrapper induction. These
systems attempt to identify repetitive patterns that occur in a document to build
extraction patterns. This technique is applied by different extractors [Crescenzi
et al., 2001] [Arasu, 2003] by identifying differences among neighbour resources,
as well as in a supervised basis [Zhai and Liu, 2005b].

These approaches do not rely on user-annotated document fragments, and
therefore require no interaction from a user. Some approaches integrate external
knowledge to annotate the data type, such as Wikipedia [Cimiano et al., 2004], to
classify and identify the type of the extracted structured data.

The main limitation with these approaches is that the output of the scraping is
usually syntactical. Identifying the semantic relations of the extracted contents is
out of their scope, and they focus on building a structure out of the unstructured
input HTML document.

2.2.7 Discussion

This section discusses the techniques on Screen Scraping after covering the state
of the art behind it. Some pending challenges are identified in the state of the art:
robustness, generalization, and introspection.

11

2. STATE OF THE ART

The mentioned tools are not compatible among them. In fact, many scrapers
are based on JavaScript code, leaving room for improvements if the extractor
definitions were transparent. First, the definition of a general model for scrapers
allows separating its programming model for its interface. In addition, scraping
task goals could be queried, analysed and composed in a common language such as
RDF. This is not feasible if these goals are specified in an implementation language
such as JavaScript. These tools work on web sites that have been annotated by a
user. The main limitation is that they require user supervision for every new web
site, as long as a wrapper that was built for one web site cannot be applied to a
different site.

2.3 Service discovery

The current web has applications with plenty of services available, which are
of many different kinds. Approaches to describe services semantically allow
automatic agents to execute and compose services automatically. The idea behind
service discovery is that automatic agents are able to understand a service and
its semantics in order to perform automatic execution and composition. The
common approach to fulfil this goal is to define a service description that provides
this information to the agent.

Service discovery involves identifying services that satisfy some specific re-
quirements. In the context of the web, this involves tasks such as advertisement,
storage, or matchmaking [Kirchberg et al., 2010].

Services are described in order to being advertised to service consumers. These
service descriptions are usually documents in a standard format that can be pro-
cessed by an automated processed to register the service or, in the case of semantic
descriptions, perform advanced operations such as automatic composition.

Some approaches to semantic service description follow the Web Services Ar-
chitecture, such as OWL Services (OWL-S) [World Wide Web Consortium, 2004],
WSMO [Roman et al., 2005], or Semantic Annotations for WSDL (SAWSDL)
[Kopeckỳ et al., 2007]. To favour the integration with Internet’s architecture,
RESTful services started to be employed in web applications, which caused
RESTful and lightweight alternatives to semantic web services to appear. SA-REST
[Sheth et al., 2007] or hRESTs [Wright State University, 2008] are approaches
that provide languages to describe RESTful APIs specifications. Similarly, WADL
[Hadley, 2009] proposes describing RESTful Application Programming Inter-

12

Service discovery

faces (APIs) by defining a WADL, XML-based file. Also, [Vitvar et al., 2007] is a
reduced variant of WSMO to simplify service description.

The type of service description determines the discovery process by affecting
mainly the quality of the service matching. Service matching considers several tech-
niques, which can be summarized into functional-based and non-functional-based
methods [D’Mello and Ananthanarayana, 2010]. As functional-based methods
the following approaches are proposed in the literature:

• Syntactic matching. Under this approach, lightweight techniques such as
keyword/category matching [Curbera et al., 2002] or interface matching
are employed [Wang and Stroulia, 2003]. In these cases, the matching only
involves textual matching or comparison of input and output names or
types, and no advanced semantic matching is performed.

• Behaviour-based matching [Park et al., 2009]. This approach focuses on the
discovery of non-atomic services which are composition of other services. It
works under the assumption that services are formally described, and works
with process constraints and process algebras.

• Semantic matching. In this case, semantic information in the service de-
scription is employed to perform an advanced matching between the user’s
goals and the service function. The matching between the searched term
and the candidate term employs semantic techniques like semantic distance
or similar. For this, information retrieval methods [Wu and Chang, 2007],
functional semantics-based matching [Ye and Zhang, 2006], ontology-based
matching [Ji, 2009, Zhang and Li, 2005], Inputs Outputs Preconditions
and Effects (IOPE)-based matching [Spanoudakis et al., 2007], and context
information-based methods [Martin et al., 2005], are considered approaches.

Similarly, non-functional properties of services can be employed to perform
the service matching. The approaches that are considered in the literature are Qual-
ity of Service (QoS) matching [Ye et al., 2009], usability-based matching [Nam-
goong et al., 2006], usage-based discovery [Birukou et al., 2007], or preferences-
based methods [M’Bareck and Tata, 2007].

This section summarizes the main standards regarding service discovery,
grouped into Web Services, Semantic Web Services, and Semantic REST services.

13

2. STATE OF THE ART

2.3.1 Web services

The Web Services architecture comprises a set of standards often known as WS-
* standards. These standards provide means to model services syntactically in
terms of messages, operations, and ports. The available operations are mapped or
bound to some specific HTTP methods, Uniform Resource Locators (URLs) and
parameters. This modelling freedom is a mismatch with the web’s architectural
style, where the uniform interface suggests using specific HTTP methods for each
operation. These kinds of mismatches are the reason why the alternative of REST
services has gained advocates recently. The section 2.3.3 will cover the alternative
of REST services in contrast to Web Services. The current section reviews the main
standards that comprise the Web Services stack in relation to service discovery:
namely, Web Service Definition Language (WSDL), a service description language,
and Universal Description, Discovery and Integration (UDDI), an architecture of
service registry.

WSDL

WSDL [Christensen et al., 2001] is the language employed in the WS-* standards
for describing services. It is an XML-based language which provides means to
define messages, operations, and ports. WSDL only provides means to define
a syntactical functional description, i.e. a functional description where only
primitive types such as string, integer or boolean are allowed ways to model
inputs, outputs or message types.

An example of WSDL document is the following [Christensen et al., 2001]:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:description

targetNamespace="http://example.org/TicketAgent.wsdl20"
xmlns:xsTicketAgent="http://example.org/TicketAgent.xsd"
xmlns:wsdl="http://www.w3.org/ns/wsdl"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"http://www.w3.org/ns/wsdl http://www.w3.org/2007/06/wsdl/wsdl20.xsd">

<wsdl:types>
<xs:import schemaLocation="TicketAgent.xsd"

namespace="http://example.org/TicketAgent.xsd" />
</wsdl:types>

<wsdl:interface name="TicketAgent">
<wsdl:operation name="listFlights"

14

Service discovery

pattern="http://www.w3.org/ns/wsdl/in-out">
<wsdl:input element="xsTicketAgent:listFlightsRequest"/>
<wsdl:output element="xsTicketAgent:listFlightsResponse"/>

</wsdl:operation>

<wsdl:operation name="reserveFlight"
pattern="http://www.w3.org/ns/wsdl/in-out">

<wsdl:input element="xsTicketAgent:reserveFlightRequest"/>
<wsdl:output element="xsTicketAgent:reserveFlightResponse"/>

</wsdl:operation>
</wsdl:interface>

</wsdl:description>

As it can be observed in the example, the WSDL description provides infor-
mation on the operation that the service performs, their input and output types
and the endpoint (i.e. URL) used by the service.

The operation represents an exchange of messages. WSDL allows different
patterns of message exchanges, to indicate whether a communication is unidirec-
tional from client to server or viceversa, or bidirectional. It is also possible to
indicate that an operation returns an answer only in case of failure.

The format used by the service messages is specified by using bindings. A
WSDL service can employ HTTP for exchanging messages or encapsulate them
into the Simple Object Access Protocol (SOAP) protocol (and in this case using
HTTP as transport protocol and violating the REST architectural style con-
straints). WSDL bindings define the serialization details of the messages exchanged
between client and server.

UDDI

UDDI is an architecture for service registry that can be employed by service
providers to publish their services, and by consumers to query and retrieve services.
A UDDI acts thus as a broker between service providers and consumers by
publishing available WSDL service descriptions, enabling service discovery.

UDDI also provides services to describe businesses that provide services in the
registry. A UDDI business registration includes white pages (contact information),
yellow pages (industrial categorization based on taxonomies), and green pages
(technical information about the services provided by the company).

At design time, UDDI was envisioned in a scenario where consumers would
be linked to services by this kind of brokerage system. Service consumers would
select services dynamically and at runtime. However, in practice the industry has
not typically needed these features, which has resulted in alternative non-standard

15

2. STATE OF THE ART

registries to be proposed, such as Electronic Business using XML (ebXML)1,
Websphere Service Registry and Repository (WSRR) 2, or Mule Enterprise Service
Bus 3.

2.3.2 Semantic Web Services

This section covers the approaches to attempt to achieve semantic service discovery
by defining semantic service descriptions that automatic agents can process and
use. The difference with traditional Web Services is the level of automation that
semantics allow. Web Services descriptions such as WSDL only cover the syntactic
level of service modelling.

For example, the interface needed to execute a service is defined in terms of
parameter names or input types, which allows a human administrator to get a
certain idea about how to use the service. This human administrator relies on his
natural language knowledge to properly interpret the parameter names and other
textual descriptions. An automatic process, however, is not capable of taking
advantage of such descriptions to the same level.

By using semantics to represent the elements that describe services, automatic
agents are allowed to employ relations among similar concepts for tasks such
as service selection and mediation, among others. This allows automating the
development of composed applications by enabling automatic selection, execution
and composition.

The main approaches to build semantic service descriptions are covered next.

OWL-S

OWL-S is the standard for describing Semantic Web Services that is based on Web
Ontology Language (OWL). Because of being based on OWL, it fits naturally
other OWL ontologies, provinding an OWL vocabulary for service description.
The motivating tasks for OWL-S are enabling automatic web service discovery,
automatic invocation, and automatic composition and interoperation. OWL-S
attempts to allow declarative advertisements of service properties and capabilities
that can be used for automatic service discovery.

There are four main elements in OWL-S descriptions, as shown in figure 2.4.
OWL-S acts as an upper ontology for services. The service class shown in the

1http://www.ebxml.org/
2http://www-01.ibm.com/software/integration/wsrr/
3http://www.mulesoft.org/

16

http://www.ebxml.org/
http://www-01.ibm.com/software/integration/wsrr/
http://www.mulesoft.org/

Service discovery

ServiceServiceProfile

ServiceGrounding

ServiceModel

present (what it does)

support (how to access it)

describedBy (how it works)

Figure 2.4: OWL-S elements

figure is extended with three subclasses, which attempt to answer three questions
about the modelled service:

• What does the service provide for clients?. The service profile attempts to
answer this question. In practice, an OWL-S subclass of service profile is
defined and semantic matching is made against this concept at matchmaking
time. Additionally, the profile allows defining information about the service
provider, the function in terms of IOPEs, and non-functional properties
such as service quality and ratings.

• How is it used?. This is given by the service process model. The semantic
content of requests and responses, conditions under which certain outcomes
will take place and possible step-by-step processes are defined by the service
model. Therefore, services that involve several interactions on different
methods are subject to have a service model that provides useful information
to agents interested in using these services’ functionalities.

• How does one interact with it?. The service grounding answers this question
by allowing defining the usage of underlying transport protocols. Typically,
the service grounding will be tied to a WSDL description by specifying a
communication protocol, message formats, Uniform Resource Identifiers
(URIs), and ports.

An example of OWL-S service description is shown next:

<rdf:RDF
xmlns:rdf= "&rdf;#"
xmlns:rdfs= "&rdfs;#"

17

2. STATE OF THE ART

xmlns:owl = "&owl;#"
xmlns:service= "&service;#"
xmlns:process= "&process;#"
xmlns:profile= "&profile;#"
xmlns:actor= "&actor;#"
xmlns:addParam= "&addParam;#"
xmlns:profileHierarchy= "&profileHierarchy;#"
xmlns:country= "&country;#"
xmlns:concepts= "&concepts;#"
xmlns:ba_process= "&ba_process;#"
xmlns:ba_service= "&ba_service;#"
xmlns= "&DEFAULT;#"
xml:base= "&DEFAULT;">

<profileHierarchy:AirlineTicketing rdf:ID="Profile_BravoAir_ReservationAgent">
<service:presentedBy rdf:resource="&ba_service;#BravoAir_ReservationAgent"/>
<profile:has_process rdf:resource="&ba_process;#BravoAir_Process"/>

<profile:serviceName>BravoAir_ReservationAgent</profile:serviceName>
<profile:textDescription>

This service provide flight reservations based on the
specification of a flight request. This typically involves a departure
airport, an arrival airport, a departure date, and if a return trip is
required, a return date.

If the desired flight is available, an itinerary and reservation number
will be returned.

</profile:textDescription>

<profile:serviceParameter>
<addParam:GeographicRadius rdf:ID="BravoAir-geographicRadius">

<profile:serviceParameterName>
BravoAir Geographic Radius

</profile:serviceParameterName>
<profile:sParameter rdf:resource="&country;#UnitedStates"/>

</addParam:GeographicRadius>
</profile:serviceParameter>

<profile:hasInput rdf:resource="&ba_process;#DepartureAirport"/>
<profile:hasInput rdf:resource="&ba_process;#ArrivalAirport"/>
<profile:hasInput rdf:resource="&ba_process;#OutboundDate"/>
<profile:hasInput rdf:resource="&ba_process;#InboundDate"/>
<profile:hasInput rdf:resource="&ba_process;#RoundTrip"/>
<profile:hasInput rdf:resource="&ba_process;#AcctName"/>
<profile:hasInput rdf:resource="&ba_process;#Password"/>
<profile:hasInput rdf:resource="&ba_process;#Confirm"/>
<profile:hasOutput rdf:resource="&ba_process;#FlightsFound"/>
<profile:hasOutput rdf:resource="&ba_process;#PreferredFlightItinerary"/>
<profile:hasOutput rdf:resource="&ba_process;#ReservationID"/>
<profile:hasResult rdf:resource="&ba_process;#HaveSeatResult"/>

18

Service discovery

</profileHierarchy:AirlineTicketing>
</rdf:RDF>

Regarding the annotation task, it is worth mentioning the METEOR-S frame-
work [Patil et al., 2004, Sivashanmugam et al., 2003], which helps in annotating
WSDL descriptions with terms from OWL-S ontology. This framework was later
on extended to support other description models such as WSMO.

Therefore, an OWL-S description captures information about inputs, outputs,
preconditions, and effects, all grouped into an OWL class that can be matched
using semantic technologies. Regarding service matchmaking, four types of match-
ing are typically distinguished when analyzing the matching of a desired service
(i.e. a user’s goal) with actual described services [Paolucci et al., 2002]:

• Exact match. The output of the request and the one of the service are exactly
the same.

• Plugin match. The output of the service subsumes the output of the request.

• Subsumption match. The output of the request subsumes the output of the
service.

• Fail. There is no matching between the compared service profiles.

Additionally, process information is provided so that step-by-step interactions
(e.g., booking a ticket, which usually involves a search task and a booking task)
can be known in advance by automatic agents. Finally, the necessary means to
execute the service is present thanks to the service grounding.

WSMO

WSMO [ESSI WSMO working group, 2004] is an initiative for semantic web
service description that proposes a framework and a set of ontologies for such
purpose. It is based on the following principles:

• Web compliance. WSMO identifies resources using URIs and adopts names-
paces for defining information spaces. Additionally, it supports XML and
other World Wide Web Consortium (W3C) recommendations like resource
decentralization. This does not necessarily mean that WSMO sticks to all
guidelines behind the REST architectural style principles.

19

2. STATE OF THE ART

• Ontology-based. Resource descriptions and all interchanged data by services
are represented using ontologies. Although WSMO thus supports Semantic
Web vision, it uses alternative representation languages for its ontologies,
instead of RDF and OWL standards.

• Strict decoupling. WSMO resources are defined in isolation. I.e. resources
are independent and without being specified to perform an implicit usage of
other resources.

• Centrality of mediation. WSMO addresses the problem of mediation in
service composition and makes it a core component of the framework in
order to tackle heterogeneity problems on data, protocols or processes.

• Ontological role separation. WSMO makes a difference between user desires
and the services available in the system, as long as users’ contexts are usually
not the same as the ones the web services have been designed in.

• Description versus implementation. WSMO separates the description of
service elements from the actual executable technologies employed. It
focuses on providing a description model without concerning about the
implementation that allows the web services to be executed.

• Execution Semantics. In order to verify the WSMO specification, the formal
execution semantics of reference implementations like Web Service Mod-
elling Execution Environment (WSMX) as well as other WSMO-enabled
systems provide the technical realization of WSMO.

• Service versus web service. WSMO differentiates the two concepts by
considering a web service a computational entity that is able to achieve a
user goal, while a service is the actual value provided by the invocation
[Preist, 2004]. Therefore, in WSMO web services provide access to services.

WSMO defines a formal model for describing services. Service descriptions
consist of preconditions and postconditions that model the service effects on the
inputs, outputs, and the system’s state. An example of a WSMO description of a
ticket booking web service is shown next [Feier and Domingue, 2005]:

namespace {_"http://example.org/bookTicket#",
dc _"http://purl.org/dc/elements/1.1#",
tr _"http://example.org/tripReservationOntology#",
foaf _"http://xmlns.com/foaf/0.1/",

20

Service discovery

wsml _"http://www.wsmo.org/wsml/wsml-syntax#",
bti _"http://www.example.org/BookTicketInterfaceOntology#"}

webService _"http://example.org/bookTicketWebService"
importsOntology _"http://example.org/tripReservationOntology"
capability BookTicketCapability
interface BookTicketInterface

capability BookTicketCapability
sharedVariables {?creditCard, ?initialBalance, ?trip,

?reservationHolder, ?ticket}
precondition

nonFunctionalProperties
dc#description hasValue "The information of a trip which starts in
Austria together with the information about the person who wants to
have a reservation must be given as a part of a reservation request.
A credit card is also required."

endNonFunctionalProperties
definedBy

?reservationRequest[
reservationItem hasValue ?trip,
reservationHolder hasValue ?reservationHolder

] memberOf tr#reservationRequest
and
?trip memberOf tr#tripFromAustria and
?creditCard[

balance hasValue ?initialBalance
] memberOf po#creditCard.

assumption
nonFunctionalProperties

dc#description hasValue "The credit card information provided by the
requester must designate a valid credit card that should be either
PlasticBuy or GoldenCard."

endNonFunctionalProperties
definedBy

po#validCreditCard(?creditCard)
and (?creditCard[

type hasValue "PlasticBuy"]
or

?creditCard[
type hasValue "GoldenCard"]

).
postcondition

nonFunctionalProperties
dc#description hasValue "A reservation containing the details of a ticket
for the desired trip and the reservation holder is the result of the
successful execution of the Web service."

endNonFunctionalProperties
definedBy

?reservation memberOf tr#reservation[
reservationItem hasValue ?ticket,
reservationHolder hasValue ?reservationHolder

21

2. STATE OF THE ART

]
and
?ticket[

trip hasValue ?trip
]
memberOf tr#ticket.

effect
nonFunctionalProperties

dc#description hasValue "The credit card will be charged with the cost of
the ticket."

endNonFunctionalProperties
definedBy

ticketPrice(?ticket, "euro", ?ticketPrice)
and

?finalBalance= (?initialBalance - ?ticketPrice)
and
?creditCard[

po#balance hasValue ?finalBalance
] .

Regarding service discovery, WSMO describes three steps in the process of
discovery: goal discovery, web service discovery, and service discovery. As said,
according to WSMO terminology, a web service is a computational entity, while a
service is the actual obtained value. Goal discovery targets retrieving abstract goal
descriptions given some inputs that are provided by a user, such as input keywords
or logical expressions. Web service discovery attempts to identify suitable abstract
web services that match the discovered goals. Finally, service discovery targets the
discovery of actual services that fit the abstract web service description previously
discovered.

For the service discovery task, three approaches, varying in complexity, are
considered: syntactical matching, lightweight semantic matching, and heavyweight
semantic matching. Syntactical approaches do not vary greatly from WSDL-based
discovery and are based on keyword-based search or basic Natural Language
Processing (NLP) methods. Lightweight semantic matching considers ontologies,
action-object-modelling, and coarse-grained semantic descriptions, very much
in the fashion of the already mentioned OWL-S matchmaking (exact matching,
plugin matching, subsumption matching, etc.). Finally, heavyweight semantic
matching considers detailed service descriptions, with description of capabilities
and states.

22

Service discovery

SWSF

Semantic Web Services Framework (SWSF) [Battle et al., 2005] is an approach
to semantic service description that proposes an ontology called Semantic Web
Services Ontology (SWSO) and modelling language Semantic Web Services Lan-
guage (SWSL) that is employed to define formal characterizations of services.
SWSF proposes two variants for service modelling: using first-order logic or logic
programming, resulting in two different ontologies: First-order Logic Ontol-
ogy for Web Services (FLOWS) and Rule Ontology for Web Services (ROWS),
respectively.

SWSF is similar to OWL-S due to the fact that SWSF proposes three views of
a service: service descriptor, process model, and grounding (in the way of OWL-S
service profile, service process and service grounding). The main difference resides
in the expressiveness of the language employed by SWSF, which is based on first-
order logic, making use of logic predicates and terms to model states. Aspects such
as terms which vary over time are used to model changes in the world.

SAWSDL

SAWSDL [Kopeckỳ et al., 2007] allows mapping a syntactical functional de-
scription in WSDL to a semantic service description such as OWL-S or WSMO.
SAWSDL specification is motivated by the continuous growth in service descrip-
tion frameworks. Instead of defining a language for representing the semantic
models, SAWSDL provides mechanisms to reference semantic entities from within
WSDL annotations.

Although SAWSDL does not define a service model, it introduces some termi-
nology of interest:

• Semantic model. A set of representations that are used to model an area of
knowledge. Ontologies are an example of semantic models.

• Concept. Any element of a semantic model, identified by a URI.

• Semantic annotation. Additional information in a document’s element that
maps such element to a concept of a semantic model.

• Semantics. The set of concepts identified by semantic annotations.

SAWSDL is defined by the principle of enhancing WSDL with annotations
that are agnostic to the semantic model employed. An example of a semantically-
annotated WSDL using SAWSDL is given next:

23

2. STATE OF THE ART

<wsdl:description
targetNamespace="http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order#"
xmlns="http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order#"
xmlns:wsdl="http://www.w3.org/ns/wsdl"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:sawsdl="http://www.w3.org/ns/sawsdl">

<wsdl:types>
<xs:schema targetNamespace="http://www.w3.org/2002/ws/sawsdl/spec/wsdl/order#"

elementFormDefault="qualified">
<xs:element name="OrderRequest"

sawsdl:modelReference=
"http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#OrderRequest"

sawsdl:loweringSchemaMapping=
"http://www.w3.org/2002/ws/sawsdl/spec/mapping/RDFOnt2Request.xml">

<xs:complexType>
<xs:sequence>

<xs:element name="customerNo" type="xs:integer" />
<xs:element name="orderItem" type="item" minOccurs="1"

maxOccurs="unbounded" />
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:complexType name="item">

<xs:all>
<xs:element name="UPC" type="xs:string" />

</xs:all>
<xs:attribute name="quantity" type="xs:integer" />

</xs:complexType>
<xs:element name="OrderResponse" type="confirmation" />
<xs:simpleType name="confirmation"

sawsdl:modelReference=
"http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#OrderConfirmation">

<xs:restriction base="xs:string">
<xs:enumeration value="Confirmed" />
<xs:enumeration value="Pending" />
<xs:enumeration value="Rejected" />

</xs:restriction>
</xs:simpleType>

</xs:schema>
</wsdl:types>

<wsdl:interface name="Order"
sawsdl:modelReference=

"http://example.org/categorization/products/electronics">
<wsdl:operation name="order" pattern="http://www.w3.org/ns/wsdl/in-out"

sawsdl:modelReference=
"http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder#RequestPurchaseOrder">

<wsdl:input element="OrderRequest" />
<wsdl:output element="OrderResponse" />

</wsdl:operation>

24

Service discovery

</wsdl:interface>
</wsdl:description>

As it can be observed, a plain WSDL document is enriched with semantic
annotations. The construct modelReference is employed to indicate a one-to-one
mapping between WSDL elements and semantic concepts. Similarly, the construct
schemaMapping allows associating XML Schema Definition (XSD) elements to
semantic data as one-to-many mappings.

USDL

Unified Service Description Language (USDL) [Kadner and Oberle, 2011] is a
language for describing services. Its follows a more general approach than other
frameworks in the sense that it targets a broad definition of service, and not just
web services. Examples of services that are targeted by USDL are [SAP Research,
2011]:

• Purely human/professional: e.g., project management and consultancy.

• Transactional: e.g., purchase order requisition.

• Informational: e.g., spatial and demography look-ups.

• Software component: e.g., software widgets for download.

• Digital media: e.g., video and audio clips.

• Platform: e.g., middleware services such as message store-forward.

• Infrastructure: e.g., CPU and storage services.

Such generic approach to service description makes that not all aspects of
USDL are applied to all domains. USDL needs to be tailored for the specific
needs of applications, where concepts are adapted and new ones introduced.
USDL takes initiatives such as WSDL as starting point and adds business and
operational information on top. To achieve this, Modules for pricing, legal,
functional, participants, interactions and Service-Level Agreement (SLA) aspects
are defined to extend the service description.

25

2. STATE OF THE ART

2.3.3 Semantic REST services

In contrast with the Web Services architecture, REST services attempt to fit in a
better way the architectural style of the web. Web Services couple applications
they integrate and only use the web as a transport platform, incurring into mis-
matches by violating architectural constraints of REST [Pautasso et al., 2008].
The main differences of REST services in comparison to traditional Web Services
are the following:

• Resource identification through URIs. Every resource in the web has, by
definition, a URI. REST services are web resources (or a set of them) and
therefore their execution endpoints are URIs.

• Uniform interface. Unlike Web Services, REST services are simply web
resources whose possible interactions should be predictable depending on
the HTTP method employed in the HTTP interaction. E.g. get method is
used to retrieve the representation of a resource, while PUT is employed to
update a resource. The semantics of each HTTP method are the same for
every web resource.

• Self-descriptive messages. Resources cannot be accessed, but only their
representations. Additionally, these representations can be retrieved in a
variety of formats, which can be negotiated between client and server using
HTTP request headers.

• Stateful interactions through hyperlinks. As long as interactions with REST
resources are stateless because of architectural decision, states need to be
maintained using techniques such as cookies, session-identified URIs or
hidden form fields.

The number of architectural constraints behind REST is bigger than the
Web Services architecture. Additionally, the pervasiveness of web tools such
as web browsers and the fact that REST follows well-known standards such as
HTTP, XML, URI, or Multipurpose Internet Mail Extensions (MIME) make
that REST services are usually perceived to be simpler than the Web Services
stack. This makes REST an approach recently regarded as more elegant for
application composition than the Web Services architecture. This section reviews
the approaches to provide semantic service descriptions to REST services.

26

Service discovery

WADL

WADL [Hadley, 2009] defines a format for building and publishing RESTful
semantic service descriptions which can be discovered and processed by auto-
matic agents. It attempts to follow an approach similar to WSDL but applied to
REST services. Hence, a document that defines syntactic aspects of the service is
published in order to be discovered by automatic processes.

An example of WADL document is given next [Hadley, 2009]:

<?xml version="1.0"?>
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wadl.dev.java.net/2009/02/wadl.xsd"
xmlns:tns="urn:yahoo:yn"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:yn="urn:yahoo:yn"
xmlns:ya="urn:yahoo:api"
xmlns="http://wadl.dev.java.net/2009/02">
<grammars>

<include
href="NewsSearchResponse.xsd"/>

<include
href="Error.xsd"/>

</grammars>
<resources base="http://api.search.yahoo.com/NewsSearchService/V1/">

<resource path="newsSearch">
<method name="GET" id="search">

<request>
<param name="appid" type="xsd:string"

style="query" required="true"/>
<param name="query" type="xsd:string"

style="query" required="true"/>
<param name="type" style="query" default="all">

<option value="all"/>
<option value="any"/>
<option value="phrase"/>

</param>
<param name="results" style="query" type="xsd:int" default="10"/>
<param name="start" style="query" type="xsd:int" default="1"/>
<param name="sort" style="query" default="rank">

<option value="rank"/>
<option value="date"/>

</param>
<param name="language" style="query" type="xsd:string"/>

</request>
<response status="200">

<representation mediaType="application/xml"
element="yn:ResultSet"/>

</response>
<response status="400">

27

2. STATE OF THE ART

<representation mediaType="application/xml"
element="ya:Error"/>

</response>
</method>

</resource>
</resources>

</application>

As can be observed, a service is modelled as a set of resources. Each resource
contains a set of methods that describe the possible interactions with that particu-
lar resource. For each method, requests and responses are modelled. A request is
modelled as a set of input parameters. Input parameters have a name and a type,
and might have a closed set of allowed values. Also, a method includes the available
responses, which have a type, a MIME type, and a status code. Requests can also
specify any needed HTTP header, while responses allow dealing the errors and
failures during the service execution.

WADL descriptions are syntactic in the sense that no semantic information
is provided, but just primitive types of input parameters. This allows some
basic code generation functionalities client-side, but no advanced discovery or
selection. Input parameters are identified by plain text names that does not convey
their semantics, thus not allowing mediation for composition. On the other
hand, WADL draws concepts from WSDL and applies them to the case of REST
services, where different HTTP methods are employed and non-SOAP responses
are allowed.

MicroWSMO

MicroWSMO is a lightweight revision of WSMO that can be employed to annotate
services directly on HTML pages. Typically, services are documented in web sites
that provide textual descriptions and examples of the services. MicroWSMO
proposes reusing these documentation pages for building service descriptions by
including semantic annotations directly into the HTML documents. For such task,
MicroWSMO uses the reduced revision of WSMO, called WSMO-Lite. The model
behind WSMO-Lite allows describing both RESTful and RESTless web services
in a similar though more lightweight fashion as the full-fledged WSMO standard.
WSMO-Lite does not include goals and mediators, present in WSMO. Besides,
WSMO-Lite uses a simplified model for IOPEs, grouping them into preconditions
and effects, and, unlike WSMO, allows categorizing services using taxonomies.

An example of annotated HTML document by using MicroWSMO is shown

28

Service discovery

next:

<div class="service" id="svc">
<h1>ACME Hotels service API</h1>
<p>This service is a

hotel reservation service.

</p>
<div class="operation" id="op1">

<h2>Operation <code class="label">getHotelDetails</code></h2>
<p>

Invoked using the GET
at <code class="address">http://example.com/h/{id}</code>

Parameters:

<code>id</code> - the identifier of the particular hotel
(lowering)

Output value: hotel details in an
<code>ex:hotelInformation</code> document

</p>

</div>
</div>

As it can be observed in the sample fragment, there are no RDFa annotations,
thus no RDF schema is strictly present in the HTML document. Instead, Mi-
croWSMO relies on using Poshformats (i.e. non-standard Microformats, or the
embedment of particular HTML classes with agreed semantics) for representing
the RDF relations, extending the hRESTS framework, which is detailed later, with
WSMO-Lite data.

A particularization of WSMO-Lite is Resource-Oriented Service Model
(ROSM) [Fischer and Norton, 2009], a tailored version for REST services. ROSM
is thus a WSMO subset that applies concepts from WSMO on a more restrictive
and lightweight model that fits the REST architectural style. The defined model
is similar to WADL, allowing the definition of input parameters and expected
outputs, though RDF is used for the definition of the schema, as Semantic Web
standard in line with Linked Data principles.

hRESTS and SA-REST

Other RESTful approaches are Semantically-Annotated REST (SA-REST) [Sheth
et al., 2007] and hRESTS [Wright State University, 2008, Kopecky et al., 2008],

29

2. STATE OF THE ART

which allow building semantic service descriptions by annotating textual descrip-
tions of services’ APIs with respectively RDFa and Microformats [Microformats
community, 2008].

An SA-REST-enhanced HTML page is a regular HTML document with RDFa
annotations that provide the semantics of the service, as shown in the following
example:

<html xmlns:sarest="http://lsdis.cs.uga.edu/SAREST#">
...
<p about=" http://craigslist.org/search/">

The logical input of this service is an

http://lsdis.cs.uga.edu/ont.owl#Location_Query

object. The logical output of this service is a list of

http://lsdis.cs.uga.edu/ont.owl#Location

objects. This service should be invoked using an

HTTP GET

<meta property="sarest:lifting"

content="http://craigslist.org/api/lifting.xsl"/>
<meta property="sarest:lowering"

content="http://craigslist.org/api/lowering.xsl"/>
<meta property="sarest:operation"

content="http://lsdis.cs.uga.edu/ont.owl#Location_Search"/>
</p>

Similarly, hRESTS use Poshformats, or agreed semantics of HTML annota-
tions, to annotate APIs documentations, as shown in the next example:

<div class="service" id="svc">
<p>Description of the
ACME Hotels service:</p>
<div class="operation" id="op1">

<p>The operation <code class="label">getHotelDetails</code> is
invoked using the method GET
at <code class="address">http://example.com/h/fidg</code>,
with the ID of the particular hotel replacing
the parameter <code>id</code>.
It returns the hotel details in an
<code>ex:hotelInformation</code> document.

</p>
</div>

</div>

30

Service discovery

Both approaches use a similar service model. Essentially, they provide a
schema to represent input and output messages on particular service operations
that are tied to a URI. Also, the HTTP method used in the operation is defined
as part of the model. These properties are included as HTML classes in hRESTS,
and as RDFa properties in SA-REST.

RDForms

RDForms research focus on HTML form description. RDForms [Baker, 2005] at-
tempt to “add to the Semantic Web capabilities similar to HTML forms”. Schemas
for indexable, container and settable operations are defined, which represent
HTTP GET, POST, and PUT methods, respectively.

An example of RDForm is shown next4:

<form id="personform" action="" about="#form1" typeof="pb:RDForm">
<div rel="pb:operation">

<div about="#crud-op1" typeof="pb:CRUDOperationDELETE">

</div>
</div>
<fieldset>

<legend>Person</legend>
<div rel="pb:field">

<div about="#form1.field1" typeof="pb:UpdateableField">
<label rel="pb:key" resource="#form1.field1.key">Name</label>:
<div rel="pb:value">

<div about="#form1.field1.value" typeof="pb:FieldValue">
<input type="text" id="person-name" property="rdf:value"

content="Jason Dunno" value="Jason Dunno" />
</div>

</div>
</div>

</div>
</fieldset>

</form>

RDForms allow defining interfaces to REST resources using RDF by enhanc-
ing the execution forms through the use of RDFa. The proposed model does
not differ greatly from other RESTful approaches to service description. Hence,
the proposed schema is similar to WADL or ROSM, though adding the idea of
enriching HTML forms with semantic annotations.

4http://www.w3.org/wiki/PushBackDataToLegacySourcesRDForms

31

http://www.w3.org/wiki/PushBackDataToLegacySourcesRDForms

2. STATE OF THE ART

OpenSearch

On the specific topic of search services, OpenSearch [A9.com, inc., 2005] is
an approach to the description of search services. By creating an OpenSearch
description document, a search service is published in a similar way as other
standards for service description are applied to services in general.

An example of OpenSearch description is shown next:

<?xml version="1.0" encoding="UTF-8"?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/">

<ShortName>Web Search</ShortName>
<Description>Use Example.com to search the Web.</Description>
<Tags>example web</Tags>
<Contact>admin@example.com</Contact>
<Url type="application/rss+xml"

template=
"http://example.com/?q={searchTerms}&pw={startPage?}&format=rss"/>

<LongName>Example.com Web Search</LongName>
<Image height="64" width="64" type="image/png">

http://example.com/websearch.png</Image>
<Query role="example" searchTerms="cat" />
<Developer>Example.com Development Team</Developer>
<Attribution>

Search data Copyright 2005, Example.com, Inc., All Rights Reserved
</Attribution>
<SyndicationRight>open</SyndicationRight>
<AdultContent>false</AdultContent>
<Language>en-us</Language>
<OutputEncoding>UTF-8</OutputEncoding>
<InputEncoding>UTF-8</InputEncoding>

</OpenSearchDescription>

The description document enumerates the services’ capabilities and configura-
tions. OpenSearch delegates to service providers to build an appropriate RESTful
interface that can be described using OpenSearch. Some services might require
adaptation in order to be described by an OpenSearch description, but this issue is
not addressed. OpenSearch is limited to search services, so it considers fine-grain
aspects such as content encoding, formatting, and type of results.

2.3.4 Other approaches

Many research fields have already researched service discovery [Etzioni, 1996] in
parallel to the development of the web. Research behind Foundation for Intelligent
Physical Agents (FIPA) agents has already analysed the problem of service discov-
ery, developing several protocols for the diverse possible environments [Pirker

32

Service discovery

et al., 2004] [Jun et al., 2000] [Cao et al., 2001]. In pervasive computing, where
services are widespread around ad-hoc networks, service discovery is a research
field [Ratsimor et al., 2004] [Chakraborty et al., 2006]. These approaches differ
greatly because of the RESTless nature of the platform they are based on, i.e. often
middlewares of different kind. Some approaches [Sycara et al., 2004] [Colucci
et al., 2004] [Sidnal et al., 2010] [Neiat et al., 2009] consider semantic web services,
where the web is used more as platform by following the web services architectures
instead of RESTful services. [Khriyenko and Nagy, 2011] considers the RESTful
architecture of the Web and integrates an agent-based framework on it and the
Linked Data initiative, though it does not consider the automatic construction of
the semantic descriptions that are required for these kinds of solutions.

Some research approaches in the current literature also perform service mining
tasks. Wang et al. [2011] mine Programmable Web and build a domain ontol-
ogy out of the keywords available in the textual descriptions of the services. It
helps to validate Programmable Web’s categorization scheme. Blake and Nowlan
[2011] performs an automatic categorization of services using the internals of
WSDL descriptions, and not just the keywords available in the textual descriptions.
Elmeleegy et al. [2008] is a mashup advisor, which also builds a catalogue of
mashup components to exploit in recommendations for mashup development and
ranks components for their use.

2.3.5 Discussion

This section has reviewed the state of the art in service discovery. To sum up,
service discovery involves a set of tasks from service description to the actual
selection of the service through service matching. For these tasks, there are several
techniques that can be employed. In general, most service discovery solutions
found in the literature follow a similar paradigm. A service description model
is proposed, which is employed to build a service description that is advertised
for service consumers to use it. Service registries aggregate descriptions and con-
sumers query services according to some selection constraints to find a desired
service. Whenever these service descriptions are not available, the chain breaks
and no matching can be performed as long as no services are registered. There-
fore, the challenge behind service discovery lies in integrating the task of service
description to the process of service discovery. Hence, research on automated
service description would lead to a service discovery process that does not rely on
the effort of developers on describing services semantically.

33

2. STATE OF THE ART

2.4 Conclusions

As described, there are different approaches for information extraction in web
resources depending on the manual or automatic method, the supervised or unsu-
pervised approach, and the performance of each technique. The main challenges
that have been identified deal with robustness, generalization and introspection
capabilities of the approaches.

In the case of robustness, there are still many approaches that require a layout
that is fixed in time whenever performing screen scraping. In other words, once a
web resource’s representation changes its HTML layout, many wrapper techniques
fail to keep providing appropriate results. Similarly, generalization capabilities
are still a problem, in the sense that most screen scraping techniques require that
extractors are defined ad-hoc for each targeted web resource. An inducted wrapper
for a web resource does not work for other web resources which provide the
same types of contents, as long as HTML layouts are not the same [Kushmerick,
1997]. Finally, fragmentation in extractor techniques and tools lead to a non-
standard representation of wrappers. As mentioned, some approaches even use
programming languages such as JavaScript to represent wrappers. This makes it
not possible to reason about extractors or progressively improve them, hampering
the development of more advanced applications such as focused crawlers or agent-
based scrapers.

Regarding services, several approaches deal with web components of different
kinds, from services to widgets. There are many initiatives to describe services’ in-
terface to allow automation of certain tasks, in the Web Service field [Christensen
et al., 2001] [ESSI WSMO working group, 2004], or in the REST service area with
heavy-weight approaches such as WADL [Hadley, 2009], or more light-weight
approaches such as WSMO-Lite [Vitvar et al., 2007], SA-REST [Sheth et al., 2007]
or hRESTS [Wright State University, 2008]. W3C widgets [Alario-Hoyos and
Wilson, 2010] define a standard for describing widgets. These and other already
mentioned alternatives such as WSMO, SA-REST or WADL are heavy-weight
approaches that provide means to describe every possible service from scratch.

The reviewed approaches for service discovery allow describing the inners
of these components, and they operate at an abstraction level that is lower than
the models proposed in the thesis. As will be seen in the thesis, they will be
used by allowing linking Linked Mashups Ontology (LiMOn) or feature-oriented
descriptions to WSDL/WSMO descriptions. In all of the reviewed approaches it

34

Conclusions

is expected that a developer provides a service description which one published
makes the service discoverable, in contrast to this thesis’ proposal, which attempts
to build these kinds of descriptions to achieve discovery.

35

36

Chapter 3

Discovery framework

This chapter describes the integrated framework for content and service discovery
and extraction. The framework is divided in several levels where discovery of
contents and services is done in a RESTful system such as the Web. The lowest
level is the content discovery level, where contents are extracted out of web pages.
Rules are used in that level to map data from unstructured REST resources to
actual semantic entities. The middle level is the service level, where discovery rules
are employed to map discovered content from HTTP interactions to semantic
service descriptions. The top level is the agent level, where orchestration takes
place by the use of rules that act as plans for crawling and service execution.

37

3. DISCOVERY FRAMEWORK

3.1 Introduction

The phenomenon of Web 2.0 has caused the mushrooming of websites and ap-
plications that allow users producing content without any sort of technical skill.
This has caused the web to be a highly rich source of contents in the so-called
Digital Age thanks to users’ collaboration and other content providers. Also, with
the emergence of mashup technologies, developers are able to combine existing
services and data sources to quickly build new applications, in a similar fashion to
Web 2.0.

This vast amount of information and services available in the web makes it a
platform for development of mashed-up applications with intensive information
usage. The research field of Semantic Web [Berners-Lee et al., 2001] and the
Linked Data initiative [Bizer et al., 2009] have defined techniques and standards
for the semantic representation of information, which have been experiencing an
increasing adoption in the web.

However, there are still plenty of web sites that do not provide appropriate
semantic metadata in the resources they publish. This causes that their services
and contents are only processable by the human users that visit these web sites.
The reasons for this can be various: because of limited knowledge by developers
about Semantic Web standards or because of limited effort that developers can
spend on these tasks.

Also, the so-called deep web contains many web resources that are not discov-
erable by crawlers. The deep web is the subset of the web that is only accessible
behind web forms. It thus requires a different treatment for reaching the informa-
tion and accessing their contents and services, which makes this part of the web
hidden to most automatic agents.

In this chapter, a framework for the discovery of services and contents in the
web is proposed. The framework allows intelligent focused crawling [Chakrabarti
and Dom, 1999] and agents accessing the deep web. Therefore, an agent architec-
ture that uses this discovery framework for goal-oriented discovery of resources
is also described. This agent architecture allows implementing agents that intelli-
gently crawl and use services for retrieving contents in the web that fit some top
goals, usually stated by users.

The chapter first presents a big picture of the framework, and a top-down
overview of each level. Section 3.2 defines the discovery framework which is
followed in the rest of the dissertation. Section 3.3 proposes the agent model that

38

Framework overview
A

ge
nt

Se
rv

ic
e

C
on

te
nt HTTP Requests HTTP Responses

REST resources

HTML XML

RDFJSON
URIParams

HTTP
GET

HTTP
PUT

HTTP
POST

HTTP
DELETE

Human agent Automatic agent

Goals

Plans Beliefs

Service features

Contents

Composition
Execution
Selection
...

Discovery
rules

a ^ b c

Discovery
rules

a ^ b c

BDI agent

Figure 3.1: Discovery framework

builds plans for smart discovery of contents, while sections 3.4 and 3.5 describe
the service- and content-level discovery, respectively.

3.2 Framework overview

The integrated framework for content and service discovery is defined in this
section. We understand discovery as the process of identification and construction
of an element’s semantically meaningful description at some particular level. The
framework is shown in figure 3.3. It is stacked on top of the REST architectural
style [Fielding, 2000], the architectural style the one the World Wide Web is
based on. The framework considers three levels of abstraction on the content and
services that are available on the web. They are listed next from top to bottom:

• Agent level. This layer comprises the orchestration of services for fulfilling a
user goal. Searching blogs to obtain relevant information about a product,
look for the best price and suggest the user which are the best ones is an
example of an orchestrated plan that is executed by an agent (either human
or machine) attempting to reach a particular goal.

• Service level. This layer comprises the services that agents are able to use in

39

3. DISCOVERY FRAMEWORK

the Web, which nowadays vary from search services to booking services,
social networking ones, etc. These services are generally orchestrated on the
higher layer. They make use of contents in the lower layer by exchanging
requests and responses with representations of resources that are present in
the web.

• Content level. This level comprises the requests and responses that are
exchanged between clients and servers when interacting with web resources.
In the REST architectural style, requests consist mainly of a verb and a URI,
optionally with parameters, while responses vary in format, although in the
web it will usually be HTML.

Discovery will take place at these mentioned levels. At the service level, REST
resources would be the discoverable elements to be analyzed, with semantic service
descriptions being obtained. Discovery of data at the content level would produce
meaningful semantically-annotated information.

Therefore, a method to extract semantic descriptions out of unstructured
data at every level of the framework will be described. A uniform approach that
employs first-order logic rules is employed to model discovery rules that allow to
identify features on all levels. The combination of these features will comprise a
semantic description for a discovered element.

In the next sections we will describe the agent architecture that operates at the
orchestration layer and composes plans for fulfilling goals. Also, the techniques
that allow to perform discovery for already existing pieces of contents and services
will be described.

3.3 Agent model

The agent model that is stacked on top of the service level in the discovery
framework is defined in this section. The agent model makes use of the REST
architectural style through the semantically annotated services and contents. As
shown on the general framework in figure 3.3, the agent is designed to perform
the same tasks as a regular, human user of the web.

This problem statement leads to the agent being able to browse the web and
run services just in the same way a human user would, with discovery rules as the
means for extracting semantic descriptions out of regular resource representations.
The agent would attempt to achieve a top level goal in the same way as human

40

Agent model

users, e.g. finding a fact, a place or pictures about a particular person.

Additionally, the agent is able to manage the lower levels’ discovery logic, i.e.
manage service and content discovery rules. Discovery rules can be the result of a
machine learning algorithm performed on supervised data. This supervised data
can be added manually as training data set that is processed in a later stage. Further
on, by introspecting into the discovery rules, the agent can anticipate the content
and services that can be extracted out of resources, thus modifying its behaviour
without interacting with those resources.

3.3.1 Architecture

The agent follows the Belief-Desire-Intention (BDI) pattern, which differentiates
the independent modules that comprise a reactive system that interacts with other
systems. In our case, beliefs are RDF contents that are extracted out of web pages.
The agent has plans that represent the possible actions that it can perform, such
as executing discovered services or visiting links, while the intentions are stacks
of these plans to reach a particular goal. These top-level goals therefore represent
discovery targets, i.e., contents that the agent attempts to add to its knowledge
base.

Thus, both beliefs and goals are sets of RDF triples, while intentions are stacks
of plans that are fired upon the creation or deletion of triples in the beliefs and
goals triple sets. This makes up a naïve adaptation of AgentSpeak’s agent model
[Rao, 1996] to RDF, which results in an agent model that is similar to approaches
that integrate BDI and Semantic Web standards with BDI agents [Laclavık et al.,
2006]. The resulting architecture is shown in figure 3.2.

3.3.2 Plans

As long as the agent makes use of a RESTful architecture, it is able to interact
with resources by exchanging requests and responses. This allows following
hyperlinks and executing services such as web forms. Therefore, the four main
HTTP methods make up the set of actions employed by the agent. Plans are
defined around these actions to specify the possible behaviour of the agent to reach
its goals. They consist of a triggering condition and a set of consequences, either
subplans or actions.

The set of plans can be extended according to different domains in order
to establish domain-specific behaviours, especially upon the presence of certain

41

3. DISCOVERY FRAMEWORK

Plan selection

BeliefsDiscovery
rules

Goals Plans

Plan executionIntentions

action

belief

Web

plan

plan

plan

plan

GET, POST,
PUT, DELETE

plan

trigger
subplans
actions

<subject>
<predicate>
<object>

Figure 3.2: Agent model

services in the considered system. However, a base set of plans is defined here in
order to provide the basic discovery capabilities of the agent.

Focused crawling plan

Whenever a resource’s representation is expected to have contents with triples
that are present in the goal set (trigger), perform a GET on that resource (action).
This way, the agent will crawl the web in a greedy basis looking to fulfil its
top-level goals. This can be done thanks to the content discovery rules in the
knowledge base, which allow anticipating the contents to be found in a resource’s
representation. In AgentSpeak language, this plan is represented as1:

+![x, r d f :t y pe , t] : cont ent_r u l e(y, x) ∧
[y, s c :t y pe , t]
← g e t (x)

(3.1)

Note that, according to the Scraping Ontology [Fernández-Villamor et al., 2011],
which will be introduced in section 3.5, s c :t y pe predicate indicates that, in a
triple < a, s c :t y pe , b >, the HTML fragment a is of type b after the extraction is
performed.

1The syntax [s u b j ec t , p r ed i cat e , ob j ec t] has been used to represent RDF triples, which are
not considered in the AgentSpeak language.

42

Service level

Deep web crawling plan

Whenever a keyword-filtered retrieval resource is expected to provide results that
meet triples in the goal set (trigger), perform a GET on that resource. This allows
using search forms to look for desired contents. The keywords that are entered in
the form is the label of the resource, as a naïve conversion of RDF into natural
language, which is subject to finer grain definition in domain-specific plans. In
AgentSpeak, this plan is represented as:

+![x, r d f :t y pe , y] : [z, ms :has_ f eat u r e ,
ms :Re t r i e val] ∧

[z, ms :has_ f eat u r e ,
ms :Ke ywo r d F i l t e r ed] ∧

[z, ms :ou t p u t s , y] ∧
[x, r d f s :l ab e l , l]
← g e t (z,{(ke ywo r d s , l)})

(3.2)

3.4 Service level

The discovery at service level involves building semantic service descriptions out
of the HTTP interaction data and the discovered semantic contents from the lower
level in the proposed discovery framework. The input service model is therefore
comprisen by the output content model and the HTTP interaction data, i.e. the
involved URI, the HTTP method and the HTTP parameters.

A lightweight service description model that represents the semantics of
discovered services [Fernández-Villamor et al., 2010b] is employed for this task,
and is described in the next section. This service model is used as the output model
for this layer, i.e. the model that discovered elements (in this case, services) use.

3.4.1 Description model

The output service model used for service discovery applies ideas inspired in mix-
ins, Aspect-Oriented Programming (AOP), and Feature-Oriented Programming
(FOP) paradigms to semantic service description, as will be detailed in chapter 5.
These paradigms extend Object-Oriented Programming (OOP) by allowing the
modelling of secondary concerns in an isolated way. Services are modelled in a
similar way in the service level of the framework to facilitate their discovery out
of semantically discovered contents.

43

3. DISCOVERY FRAMEWORK

A service is modelled as a set of features f1, f2, ..., fi that it has. In web appli-
cations, some examples of service features are “performing a retrieval operation”,
“requiring user authentication”, “performing a storage operation”, “handling images”,
or “outputting a set of resources”. This allows reusing feature descriptions in ser-
vices that are different but have one or more features in common. The library of
features comprise the output service model.

The output service model is therefore a vocabulary of terms that can be
extended, each term representing a feature. As the framework follows the REST
architectural style, terms for HTTP GET, POST, PUT or DELETE requests are
part of the vocabulary.

An example of service description is keyword-filtered multiple picture

get, which describes a search service of pictures that are filtered by keywords.
Four terms represent the features that are used in order to define the service:
keyword-filtered, multiple, picture, and get. Because of following the REST
architectural style, at least a term that represents the underlying HTTP method
used has to be included in the description.

An extended service description can be built by combining term definitions.
Definitions can be tied to more than one term. For example, there can be a
definition for get, a definition for picture, but also a definition for picture and
get altogether. Some possible definitions for terms keyword-filtered, picture,
multiple, and get are shown next:

me t hod (x) =GET ∧
s t at u s(x) = 200 ⇒
ms :has_ f eat u r e(x, g e t)

(3.3)

|O u t p u t (x)|> 1 ∧
ms :has_ f eat u r e(x, g e t) ⇒
ms :has_ f eat u r e(x, mu l t i p l e)

(3.4)

∀k , y(k ∈ I n p u t (x) ∧
y ∈O u t p u t (x) ∧
d c :s u b j ec t (y, k) ∧
ms :has_ f eat u r e(x, g e t)) ⇒
ms :has_ f eat u r e(x, ke ywo r d_ f i l t e r ed)

(3.5)

44

Service level

∀y(y ∈O u t p u t (x) ∧
r d f :t y pe(y, f oa f :I ma g e) ∧
ms :has_ f eat u r e(x, g e t)) ⇒
ms :has_ f eat u r e(x, pi c t u r e)

(3.6)

By combining the definitions for a service x with the previously mentioned de-
scription keyword-filtered multiple picture get, an extended description
would be the following:

∀k , y(me t hod (x) =GET ∧
s t at u s(x) = 200 ∧
|O u t p u t (x)|> 1 ∧
k ∈ I n p u t (x) ∧
y ∈O u t p u t (x) ∧
d c :s u b j ec t (y, k) ∧
y ∈O u t p u t (x) ∧
r d f :t y pe(y, f oa f :I ma g e))

(3.7)

The result of wrapping services with the provided semantic feature-based
descriptions is:

• Searchability. Service descriptions can be advertised as Linked Data by
publishing their RDF description, which allows being processed by an
automatic agent.

• Testability. Preconditions and postconditions for each feature can be
checked when executing a service, which allows checking the service’s
correct execution.

• Execution. Thanks to the semantic description, the services have a known
interface which can be used by automatic agents to run the services.

As a feature-oriented description framework, this approach has the following
advantages: (i) it allows the reuse of feature descriptions among different services,
and (ii) it reduces the description task to selecting a set of features that describes
the considered service, given a vocabulary of terms.

45

3. DISCOVERY FRAMEWORK

3.4.2 Service discovery rules

In order to perform discovery, there must exist a mapping between the service’s
feature set and the service input model. To achieve this, feature definitions are
used as service discovery rules. Thus, discovery rules map a set of features f1,
..., fk to a set of conditions, defined using the output content model and the
HTTP interaction data. For example, given the features f1 (“outputting a set of
resources”) and f2 (“handling images”), some discovery rules would just be the
feature definitions shown on equations 3.4 and 3.6.

Discovery rule on equation 3.4 formalizes the feature of term mu l t i p l e by
stating that the service’s output cardinality has to be higher than one. Meanwhile,
discovery rule on equation 3.6 formalizes that all output resources are images, and
is applicable for services that (i) output a set of resources (as of feature f1) and
(ii) handle images (feature f2). Allowing definitions that are activated upon the
presence of more than one feature might be regarded as unnecessary complexity.
However, this serves to resolve the issue of feature interaction, already identified
in feature-oriented programming [Prehofer, 1997].

With these mentioned discovery rule, a service’s features can be identified
after knowing the semantics of the contents involved in the HTTP interaction.
Further details on the service model and the automatic construction of service
discovery rules will be given in chapter 5.

3.5 Content level

A growing amount of data is available to users in the web. Web users can enjoy
plenty of services and information in e-commerce web sites, electronic newspapers,
blogs and social networks. Although this data is available for its consumption by
users, its format is not suited for automated agents and computer programs. This
has favoured the research in several fields such as web content mining [Kosala and
Blockeel, 2000] or Semantic Web [Berners-Lee et al., 2001], that seek manners to
build linked interoperable data that can be automatically processed by software
systems.

Several approaches such as Linked Data initiative [Bizer et al., 2009] are favour-
ing the publication of annotated data in web resources, so that automatic processes
can actually consume this data and perform other operations. Similarly, other
research fields attempt to take advantage of this amount of available information,
such as mashup applications. However, ontologies and applications that expose

46

Content level

their data are not widespread, constraining the Linked Data initiative, mashups
and service composition.

The field of Web Content Mining applies data mining techniques to the
discovery and extraction of information available on the Web. Web Content
Mining comprises several research fields such as Information Extraction or Natural
Language Processing, which research related techniques that are used to extract
data from web documents [Chang et al., 2006].

Approaches to the problem of extracting information out of HTML doc-
uments considers processing either the DOM tree or the resulting rendering
information. The first approach involves defining an extractor or wrapper [Kush-
merick, 1997] [Kushmerick, 2000] that selects the relevant information out of
the DOM tree. The latter is a vision-based approach that attempts to provide a
more general solution to the problem by assuming that similar content types have
similar visual features [Wei et al., 2006] [Cai et al., 2003].

The lowest level of the framework is the content level, where content is
discovered out of unstructured web resources. The next section describes content
level discovery rules.

3.5.1 Semantic Scraping approach

As said, the web is a hypermedia system that follows the REST architectural
style [Fielding, 2000]. When a client accesses a web resource on a server, the
server returns a representation of the resource. Usually, these representations are
formatted in HTML, a language that allows defining the structure of a document
for its rendering on a web browser. HTML documents are structured as a DOM
tree, which defines the logical structure of the HTML document that will be used
for rendering the representation on a web browser. In order to have information
about the resource’s content and not about its rendering structure, Linked Data
proposes using resources’ representations that include metadata, by enhancing
HTML with semantic annotations or by providing RDF representations.

Whenever a resource provides unannotated HTML, a technique that processes
the DOM tree in some way needs to be used to identify the structure of the data
present in the HTML document and build the associated RDF graph. Also, in a
web resource there are DOM fragments that do not provide information, such as
advertisements, headers, footers, or decorative elements, while other fragments
such as posts or comments have valuable information. In our framework, discov-
ery rules will be employed to identify what pieces of information are relevant in

47

3. DISCOVERY FRAMEWORK

Semantic scraping level

Syntactic scraping level

Se
m

an
ti

c
le

ve
l

RDF
Sy

nt
ac

ti
c

le
ve

ls
OWL

RESTful architecture

SPARQLTriple stores

Newspapers
Blogs

Forums

Social networks

XHTML

XPathCSS

Regexps

Trees

RDF
Semantic Web

WWWUser agent

Raw data

HTML

Figure 3.3: Semantic scraping approach

a web resource and to identify what relations are stated in a web fragment. For
instance, a heading in a piece of news might represent the news title. A discovery
rule will use Content Style Sheets (CSS) information, rendering information or
NLP to identify the relevant data in the resource’s representation.

Therefore, the input model that discovery rules use at this level comprise
HTML fragments, which identify relevant pieces of data in a document, and
selectors, which are any mean to identify a fragment inside a document. Usually,
web scrapers use regular expressions or CSS or XPath selectors to achieve these
tasks, while the output of a web browser when rendering a web fragment, which
consists of a set of properties such as typeface, color or dimensions, can also be
used through visual selectors.

On the contrary, the output model is comprisen by the different types of
contents that are available in the web. Ontologies like Semantically-Interlinked
Online Communities Project (SIOC), Friend of a Friend (FOAF) or Dublin Core
(DC) address this issue by defining schemas for the modeling of blog posts, relation-
ships between users or annotation of metadata in publications, thus comprising
the output content model of our discovery framework.

3.5.2 Semantic scrapingontology

An ontology for semantic scraping is proposed in this section. The approach to
using semantics for contents extracted from the web is shown in figure 3.3. The
model considers three levels of abstraction in order to provide an integrated model
for semantic scraping:

48

Content level

• Semantic scraping level. This level defines a model that maps HTML frag-
ments to semantic web resources. By using this model to define the mapping
of a set of web resources, the data from the web is made available as knowl-
edge base to scraping services. This level provides semantics to the syntactic
scraping capabilities of the level below.

• Syntactic scraping level. This level gives support to the interpretation to
the semantic scraping model. Wrapping and Extraction techniques such as
DOM selectors are defined at this level for their use by the semantic scraping
level.

The model is stacked on top of the REST architectural style. The additional
semantics and data mappings that are necessary to allow information scraping on
a RESTful architecture are defined by the upper levels of our framework.

On top of the semantic scraping level there could exist scraping services that
make use of semantic data extracted from unannotated web resources. Possible
services that benefit from using this kind of data can be opinion miners, recom-
menders, mashups that index and filter pieces of news, etc. In the case of the
framework being proposed in this chapter, there would be services that make use
of the semantically annotated contents.

The paradigm behind scraping services has subtle differences from that be-
hind traditional Semantic Web applications or knowledge-based systems. While
annotated data in the Semantic Web allows automatic knowledge extraction and
retrieval by automatic agents, data in unstructured web documents require prior
supervision of some kind to allow information extraction. This implies that when
designing a scraping service, the following steps are required:

• Scraping data identification. Data that wants to be scraped and merged with
other knowledge is identified in this task. Target web sites and resources are
identified for fragment extraction.

• Data modelling. A model to represent the extracted data is defined in this
task. Either existing ontologies might be available or new ones should be
defined. The result from this step is an ontology that fits the data that
needs to be extracted. A bounded context, i.e. a conceptual context where
a domain model has a non-ambiguous meaning, should be identified in
order to separate domain models of similar fields. Methodologies for the
definition of ontologies can be useful for this task.

49

3. DISCOVERY FRAMEWORK

• Extractor generalization. In order to perform massive extractions, enough
samples need to be collected to generalize an appropriate extractor. This
collection of samples needs to be provided to a human administrator or an
automated or semi-automated module. Using this data set, one or more
extractors are defined at the semantic scraping level and serve to provide
additional knowledge to the scraping service.

Let’s consider a movie recommender that requires extracting data from the
Internet Movie Database2. Data about reviews are added to the recommender’s
knowledge in order to enable collaborative filtering of movies. Reviews and
user reviewers are therefore the identified data to scrape. As long as an existing
movie ontology is defined, no ontology modelling would be needed. Also, in case
extractors are built automatically using a machine learning approach, data samples
should belong to the bounded context of cinema and movies.

Semantic scraping

Semantic scraping defines the mapping between web data and semantic web
resources. An RDF model that allows formalizing this mapping has been defined,
and is called the Scraping Ontology3.

Applying the model to the definition of extractors of web resources allows
separating the declarative from the procedural model in the web content extrac-
tion process. This enables implementing technology-independent extractors or
automating certain tasks such as focused and personalized scraping.

The Scraping Ontology allows to reference HTML fragments in RDF and
define web content extractors, being a basis for the programmatic definition of
extractors for screen scraping. This requires bridging the gap between both RDF
and HTML’s data models. HTML is a markup language for documents with a
tree-structured data model. On the other hand, RDF’s data model is a collection
of node triples, defined by a subject, a predicate, and an object. Each node can be
a text literal, a resource (identified by a URI) or a blank node.

A model comprisen of a vocabulary of RDF terms has been defined to rep-
resent HTML fragments and their mapping to RDF resources. This serves as a
model for the discovery framework’s content level. A summary of the model is
shown in figure 3.4. The basic classes of the model are described next:

2http://imdb.com
3http://lab.gsi.dit.upm.es/scraping.rdf

50

http://imdb.com
http://lab.gsi.dit.upm.es/scraping.rdf

Content level

Figure 3.4: Semantic scraping RDF model

Scraper A scraper is an automatic agent that is able to extract particular fragments
out of the web.

Fragment Any element of an HTML document. It serves to represent and
traverse a whole subtree of a document.

Selector A condition that indicates which this element is. Different selector terms
are defined for each selector type. Selectors can be XML Path Language
(XPath) expressions, CSS selectors, URI selectors, etc. Selectors are means
to identify a web document fragment.

Mapping The mapping between a fragment and an RDF resource or blank node.
An identifier is defined to map the fragment to a URI. A predicate between
the parent’s mapped fragment and this is defined to produce an RDF triple.
Also, an RDF class can be assigned to the mapped resource of this fragment.

Presentation The representation of a fragment. This includes HTML attributes
as well as visual parameters such as color, size or font.

The proposed vocabulary serves as link between HTML document’s data and
RDF data by defining a model for scraping agents. With this RDF model, it is
possible to build an RDF graph of HTML nodes given an HTML document, and
provides semantics to syntactic scraping.

51

3. DISCOVERY FRAMEWORK

The objective of this RDF model should not be confused with that of RDFa.
RDFa defines a format for marking up HTML elements to extract an RDF graph.
Our model complements RDFa by allowing RDF graphs to refer to data that is
present in HTML fragments in an unannotated HTML document.

Syntactic scraping

Syntactic scraping comprises the required technologies to extract data from web
resources. Some of the considered scraping techniques are the following:

• CSS selectors. CSSs define the visual properties of HTML elements. These
visual properties are mapped to elements through the use of CSS selectors,
defined through a specific language. Therefore, CSS is one technology that
serves to select and extract data.

• XPath selectors. Similarly to CSS selectors, XPath4 is a different language
for HTML node selection.

• URI patterns. URI patterns allow to select web resources according to a
regular expression that is applied on the resource’s URI. While XPath or
CSS selectors are able to select an element at document level, URI patterns
allow selecting documents, i.e. resources representations, according to the
resource’s URI.

• Visual selectors. Visual information can be used to select nodes. HTML
nodes are rendered with a set of visual properties given by the used browser.
It is common that human users prefer uniform web designs. Web designers
thus make elements of a same kind to be rendered with similar visual prop-
erties to help identification. A visual selector is a condition that combines
several visual properties of an element to identify the element’s class.

Other kinds of selectors that process HTML’s inner text are available as well and
fit into the model. This way, extractions from natural language parsing or text
tokenization are possible.

Selectors at the syntactic scraping level allow to identify HTML nodes. Either
a generic element or an unambiguously identified element can be selected using
these techniques. Their semantics are defined in the upper semantic scraping level,
allowing to map data in HTML fragments to RDF resources.

4http://www.w3.org/TR/xpath/

52

http://www.w3.org/TR/xpath/

Content level

Figure 3.5: Example of semantic scraper

An example of the usage of selectors for a news scraper is shown in figure 3.5.
In this case, a scraper is defined that is able to scrape a set of posts (by using the
SIOC ontology [Breslin et al., 2006]) from a specific URI. A sample mapped RDF
graph is shown in the figure, too.

3.5.3 Content discovery rules

This section introduces content discovery rules, once the Scraping Ontology has
been presented. At the content level, discovery rules allow to identify data in
web resources and map them to the RDF. For this, they use as input model the
Scraping Ontology, thus using selectors to identify the different fragments of data.
The output model is comprised by the different ontologies available in the Linked
Data cloud.

An example of content discovery rule is given next:

∀x, y(u r i(x, h t t p://ny t i me s .com) ∧
pa r ent (x, y) ∧
c s s(y, ”.s t o r y h2 a”))⇒
r d f :t y pe(s i oc :Pos t , y))

(3.8)

This sample rule defines that all DOM tree nodes that satisfy a particular CSS
selector in New York Times home page are posts, according to SIOC ontology
[Breslin et al., 2006].

The main challenge at the content level is defining discovery rules which are

53

3. DISCOVERY FRAMEWORK

robust and generalizable. A robust rule is one that extracts the same data even
with changes in the DOM tree of the web resource. If a rule is not robust, it might
stop working once the layout of a web site is changed by its web administrator on
a redesign stage [Lerman et al., 2003]. A rule that generalizes is one that is valid for
all the web resources that contain the same kind of data. If a rule is only valid for
the web resource (or resources) that it was defined for, it does not generalize across
different resources. The main limitation of wrapper induction is that wrappers
are only valid for the web pages they were designed for [Kushmerick, 1997].
Using NLP and visual selectors as input content model improves generalization
capabilities of the discovery rules [Cai et al., 2003]. This problem will be covered
in more detail in chapter 4.

3.6 Conclusions

Throughout this chapter a framework for the discovery of services and contents
in the web has been proposed. An agent model that fits the discovery framework
is also defined for the implementation of combined services or contents in cases
where discovery is required. With this agent model, an agent is able to perform dis-
covery tasks whenever appropriate and plans thanks to the semantic descriptions
of the discovered elements and the agent’s ultimate goals.

A feature-based service description approach has been introduced as an ap-
proach to simplify service description. These kinds of service descriptions are
simple and allow automating various tasks in order to push service automation in
the semantic web, thus offering uniform interfaces, discoverability, and automat-
ing validation.

Additionally, an RDF model for web scraping has been defined at the content
discovery level. This enables an open framework for web scraping. The tasks
of building an RDF graph out of a web document have been shown. With
this, a semantic screen scraper has been developed. The semantic screen scraper
produces RDF graphs out of web documents and RDF-defined extractors, that
offer interoperable scraping information.

In chapters 5 and 4, the automatic construction of service and content discov-
ery rules, respectively, will be covered.

54

Chapter 4

Content discovery

This chapter describes the automatic induction of content discovery rules. In-
formation extraction out of web pages, commonly known as screen scraping, is
usually performed through wrapper induction, a technique that is based on the
internal structure of HTML documents. As such, the main limitation of these
kinds of techniques is that a generated wrapper is only useful for the web page it
was designed for. To overcome this, in this chapter it is described an algorithm that
generates content discovery rules that can be used to extract data from web pages.
These rules are based on visual features such as font size, elements positioning or
types of contents. Thus, they do not depend on a document’s internal structure,
and are able to work on different sites.

55

4. CONTENT DISCOVERY

4.1 Introduction

The vast amount of information available on the Web turns it into an important
knowledge source for many different domains. Semantic Web standards [Berners-
Lee et al., 2001] and the Linked Data initiative [Bizer et al., 2009] propose the
annotation of web resources with metadata, which allows the processing of web
resources by automated agents. Despite the growth in adoption of standards of
this kind, many web sites still do not provide means to retrieve their contents ac-
cording to a known, structured schema. For example, out of 17 popular electronic
newspapers surveyed1, none of them provide semantic annotations of a Semantic
Web standard.

Examples of applications that make use of web data can be travelling mashups,
which scan web pages for flights, hotels and trains, and provide the best trip plan
according to a user’s preferences. Those flight, hotel and train web sites that
adopted the Linked Data initiative would publish metadata that allows a simple
extraction of these sites’ data. However, in order to get data from other sites that
do not publish appropriate metadata, it would be neccesary to use Screen Scraping
techniques to get access to data that is published in an unstructured way [Chang
et al., 2006] [Kosala and Blockeel, 2000].

Traditional scraping approaches are based on some kind of DOM2 tree process-
ing. Usually, techniques such as tree-to-tree edit distance [Bille, 2005] [Barnard
et al., 1995] [Chen, 2001] and wrapper induction [Kushmerick, 1997] [Kushmer-
ick, 2000] are used to, either manually [Hogue, 2005] or automatically [Crescenzi
et al., 2001], build wrappers that allow extracting data from web resources. The
main limitation of DOM tree processing is that these wrappers are specific to one
web site, and therefore do not show generalization capabilities for extracting data
from other visually similar web sites. Wrappers also require being rebuilt, as part
of a maintenance process, when a web resource layout changes [Lerman et al.,
2003]. Alternatively, other approaches consider processing visual properties of
DOM elements when rendered by a web browser [Wei et al., 2006] [Pembe and
Güngör, 2010]. The advantage of these kinds of approaches is its generalization
across different sites.

This chapter describes a system that performs extraction of Linked Data out

1The surveyed newspapers were New York Times, Wall Street Journal, The Guardian, The
Telegraph, Spiegel, Bild, Frankfurter Allgemeine Zeitung, Le Monde, L’Équipe, ABC, El Mundo,
El País, ADN, 20 Minutos, Público, Marca, and As.

2http://www.w3.org/TR/DOM-Level-2-Core/

56

http://www.w3.org/TR/DOM-Level-2-Core/

Problem statement

of web resources and which shows high generalization capabilities and robustness.
Semantic information in a web resource is a graph that, following Semantic Web’s
standards, can be represented using the RDF [Lassila and Swick, 1999]. Therefore,
extracting RDF data implies building the associated graph out of the information
present in the web page. We propose using first-order logic rules to extract RDF
graphs. To build these rules, we have built an algorithm which follows a specific-
to-general basis. First, the information to be extracted is manually identified in
web pages and with these samples a set of overfitting rules are built. Then, the
algorithm combines and generalizes rules progressively. This supervised first-
order logic classifier makes use of web elements’ visual properties. Therefore, the
knowledge acquired by the classifier generalizes across web sites and is robust to
layout changes on them.

4.2 Problem statement

The Web is a hypermedia system that follows the REST architectural style [Field-
ing, 2000]. When a client accesses a web resource on a server, the server returns
a representation of the resource. Usually, these representations are formatted
in HTML, a language that allows defining the structure of a document for its
rendering on a web browser. HTML documents are structured as a DOM tree,
which defines the logical structure of the HTML document (see Fig. 4.1) that
will be used for rendering the representation on a web browser. In order to have
information about the resource’s content and not about its rendering structure,
Linked Data proposes using resources’ representations that include metadata, by
enhancing HTML with semantic annotations or by providing RDF representa-
tions, such as in Fig. 4.1. Such figure shows the RDF representation of a piece
of news by using SIOC ontology [Breslin et al., 2006] and DC schema [Weibel,
1997], ontologies chosen due to their high adoption and popularity among the
Semantic Web community.

Whenever a resource provides unannotated HTML, a technique that processes
the DOM tree in some way needs to be used to identify the structure of the data
present in the HTML document and build the associated RDF graph. This process
is known as Screen Scraping, and it implies solving the following problems:

• Identifying what pieces of information are relevant in a web resource. Usu-
ally, in a web resource there are DOM fragments that do not provide infor-
mation, such as advertisements, headers, footers, or decorative elements,

57

4. CONTENT DISCOVERY

head

html

body

div divtitle

h1 ptext

text text

HTML

<html>
 <head>
 <title>Newspaper</title>
 </head>
 <body>
 <div class="header">
 <h1>
 Microsoft acquires Skype
 </h1>
 by <a href=
 "http://johntheblogger.com">
 John the blogger
 </div>
 <div class="description">
 <p>After weeks of negotiation,
Microsoft has finally reached an
agreement for buying Skype.</p>
 </div>
 </body>
</html>

<sioc:Post>
 <dc:title>
 Microsoft acquires Skype
 </dc:title>
 <dc:creator
 rdf:about=
 "http://johntheblogger.com">
 <rdfs:label>
 John the Blogger
 </rdfs:label>
 </dc:creator>
 <dc:description>After weeks
of negotiation, Microsoft has
finally reached an agreement for
buying Skype.</dc:description>
</sioc:Post>

http://johntheblogger.com

After weeks of negotiati...

Microsoft acquires Skype

sioc:Post

a

text

text

dc:title

dc:description

dc:creator

rdf:type

Figure 4.1: HTML vs RDF documents

while other fragments such as posts or comments have valuable information.

• Identifying what relations are stated in a web fragment. For instance, a
heading in a piece of news might represent the news title.

The conceptual model behind the process of building an RDF graph out of an
HTML page is shown in Fig. 4.2 and serves as a basis for addressing the problem
of web resource screen scraping. It shows the elements involved in the process
of Screen Scraping in order to familiarize the reader with the process. The figure
shows the relations among these elements and how a scraper requires different
pieces of information to complete the process of converting a web page into a
set of RDF resources. As shown, the main elements involved in the problem of
Screen Scraping are:

Web page The HTML representation that is returned by a web browser when
attempting to retrieve a web resource. Web pages are designed to be used by
human users through a web browser.

Fragment Any web fragment inside a web page, or a web page itself. A web page
fragment usually shows information about one or more concepts, such as a
blog post, a flight, a web result, etc.

Selector Any mean to identify a fragment inside a document. Usually, web
scrapers use regular expressions or CSS or XPath selectors to achieve these
tasks.

DOM element Each of the elements in the DOM tree of an HTML document.

58

Problem statement

Selector

Visual selector

DOM selector

URI selector

XPath selector CSS selector

Fragment

Mapping

ScraperType

Relation

Identifier

RDF Resource

Presentation

Color

Typeface
Position

Dimension

Content

Attribute Tag

Web pageDOM element

Web browseris a

is a

is a

is a is a

contains
selects

maps

interpretsis a

is a

is a

maps to

produces

has some

analyzes

part of
part ofpart of

part of
part of

is a

contains

has has

is a

renders produces

Figure 4.2: Scraping conceptual model

They represent the hierarchical structure of the document, and can be
referenced through the usage of DOM selectors.

Presentation The output of a web browser when rendering a web fragment,
which consists of a set of properties such as typeface, color or dimensions.
This output is used by users to interpret the contents of a web page, and can
be used by visual selectors as well to identify web fragments according to
their visual properties.

Mapping The mapping that exists between a fragment inside an HTML doc-
ument and the RDF resource it represents. A mapping might consist of
stating a predicate about a resource or that a resource has a particular URI.

Scraper An automated process that is able to interpret mappings to produce
RDF data. An RDF document that defines the extraction mappings on web
fragments can be used by the appropriate scraper to extract the data from a
web resource in RDF format.

Several challenges are involved behind the problem of Screen Scraping. The
main difficulties are listed next:

• Identification of data to extract. First, the desired data to be extracted needs
to be defined. Either tools for manual annotation or automated approaches

59

4. CONTENT DISCOVERY

that compare similar pages or analyse documents’ structure are used for this
task.

• Definition of selectors. After the data to extract have been identified, appro-
priate selectors need to be constructed. Either regular expressions, wrappers,
CSS, XPath, or visual selectors can be used. The type and quality of the
defined selector will affect its applicability to other sites.

• Changes in web pages. Whenever a web page’s layout changes, the defined
selectors can be not valid anymore. The consequences are usually badly
extracted data or no extracted data at all. Quality checks and better selectors
help to prevent this from happening.

• Dynamic, JavaScript-intensive web pages. Some web sites change the layout
after page load or after interaction with the user. A solution consists of
executing JavaScript and reproducing the interactions with mocked-up users
to access those data, although overcoming this problem is out of the scope
of this thesis.

Scraping mappings contain the selectors that identify data and their general-
ization capabalities. Therefore, when employing mappings to tackle the problem
of Screen Scraping, the main problem is defining quality mappings that allow a
scraper to extract the data from a web resource. Then, we identify two desire-
able aspects on the definition of a mapping, which are obtaining robustness and
generalization:

• A robust mapping is one that extracts the same data even with changes in
the DOM tree of the web resource. If a mapping is not robust, it might stop
working once the layout of a web site is changed by its web administrator
on a redesign stage [Lerman et al., 2003].

• A mapping that generalizes is one that is valid for all the web resources that
contain the same kind of data. If a mapping is only valid for the web resource
(or resources) that it was defined for, it does not generalize across different
resources. The main limitation of wrapper induction is that wrappers are
only valid for the web pages they were designed for [Kushmerick, 1997].

Therefore, the problem that is addressed in this chapter is building robust and
generalizable extraction mappings that allow scraping web resources. Metrics to
measure robustness and generalization will be given in section 6.2.2.

60

Rule induction for content extraction

Figure 4.3: Conversion of a DOM tree into an RDF graph

4.3 Rule induction for content extraction

In this section, we describe an approach to automatically create mappings for
extracting RDF data from HTML documents while attempting to solve the issues
described above. The approach uses visual features of the elements displayed in
a web browser in a way as shown in Fig. 4.3, which compares the approach of
using wrappers against visual selectors. The figure shows two Spanish news sites
(Abc and El País), which have different layouts but similar looks. When using the
techniques behind wrapper induction, it is required to define a new wrapper for
each different web site, as they are based on the DOM tree structure of a web site,
which is rarely shared among different web sites. Using techniques that are based
on visual features allows mappings to generalize accross different web resources,
as these web resources share similar looks.

As introduced in section 3.5.2, the Scraping Ontology is an RDF schema
that allows defining mappings between HTML elements and the RDF data the
mappings represent [Fernández-Villamor et al., 2011], and is used in this chapter
to represent the RDF mappings. This ontology contains the terms that were
defined in the conceptual model.

61

4. CONTENT DISCOVERY

The mappings defined in this ontology are sequences of fragments with the
RDF data that they represent. An example of the mappings that are considered by
the algorithm is shown next:

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:sc="http://lab.gsi.dit.upm.es/scraping.rdf#"
xmlns:sioc="http://rdfs.org/sioc/ns#">

<sc:Fragment>
<sc:type rdf:resource="http://rdfs.org/sioc/ns#Post"/>
<sc:selector>

<sc:VisualSelector>
<sc:max_height>139</sc:max_height>
<sc:max_relative_x>508</sc:max_relative_x>
<sc:max_relative_y>1084</sc:max_relative_y>
...

</sc:VisualSelector>
</sc:selector>
<sc:subfragment>

<sc:Fragment>
<sc:max_cardinality>1</sc:max_cardinality>
<sc:min_cardinality>1</sc:min_cardinality>
<sc:type

rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal"/>
<sc:relation

rdf:resource="http://purl.org/dc/elements/1.1/title"/>
<sc:selector>

<sc:VisualSelector>
<sc:font_family>serif</sc:font_family>
<sc:max_font_size>24</sc:max_font_size>
...

</sc:VisualSelector>
</sc:selector>

</sc:Fragment>
</sc:subfragment>
...

</sc:Fragment>
</rdf:RDF>

As it can be seen, not only is the output of extraction mappings expressed
in RDF, but also the mappings themselves, as a result of using the Scraping
Ontology. In the previous RDF document, a fragment that represents a news post
(according to SIOC ontology) is defined. The fragment is selected out of a web
resource thanks to a visual selector, for which some visual conditions are defined.
Additionally, this news post has other subfragment, which is also selected thanks
to another visual selector. This subfragment is related to the parent through a title

62

Rule induction for content extraction

relation (according to DC schema).
These mappings can be represented as rules that are applied to web resources.

If the rule succeeds, data is extracted from the web page. Two examples of rules
are the following ones:

wi d t h(x)> 200∧wi d t h(x)< 300∧ f ont_s i ze(x)< 14
⇒ r d f :t y pe(x, s i oc :Pos t)

(4.1)

wi d t h(x)> 200∧wi d t h(x)< 300∧ f ont_s i ze(x)< 14 ∧
pa r ent (x, y)∧ f ont_s i ze(y)> 16∧ f ont_wei g h t (y)> 400

⇒ r d f :t y pe(x, s i oc :Pos t)∧ d c :t i t l e(x, y)
(4.2)

Equation 4.1 shows a rule which states that an HTML fragment x represents a
blog post if some font and size conditions are evaluated as true. The rule shown
in equation 4.2 is a more complex one, and makes a statement about a post by
considering it also has a subfragment that represents a title. If the conditions are
evaluated as true, then RDF triples (i.e. data structures that consist of a subject, a
predicate and an object) are built and thus a post with a title is generated as output.
The rules make use of the already mentioned SIOC and DC ontologies to model
the extracted data.

As seen, rules have a left-hand side with conditions about the visual features
of HTML fragments (e.g., wi d t h(x) > 200 or f ont_s i ze(x) < 14), as well as
structural conditions about how these HTML fragments are organized in the
DOM tree (e.g., pa r ent (x, y)). The right-hand side contains RDF statements
about the HTML fragments involved in the left-hand side. More formally, the
rules have the following structure:

∧

i

ci (xi ∈X)∧
∧

i , j

pa r ent (xi ∈X , x j ∈X)⇒
∧

i

Ti (x1, ..., xN) (4.3)

where:

• X = {x1, x2, ..., xN } is the set of HTML fragments involved in the rule.

• ci (x j) is a condition on attributes of the HTML fragment x j (e.g.
wi d t h(x3)< 300).

• pa r ent (xi , x j) is a binary predicate that states that xi has to be a parent of
x j in the DOM tree (i.e. HTML fragment x j is contained in fragment xi).

63

4. CONTENT DISCOVERY

• Ti (x1, ..., xN) is an statement about the RDF resource represented by xi ∈X
which can involve one or more of the variables xi that are used in the left-
hand side (e.g. r d f :t y pe(x2, s i oc :Pos t) or d c :t i t l e(x2, x3)).

4.3.1 Training attributes and classes

As said before, robustness and generalization are aspects that are desireable to have
in extraction mappings. An RDF mapping can be defined using different selectors.
Selectors such as CSS or XPath might result in extraction mappings that can only
be applied on a reduced set of web resources. The usage of visual selectors allows
extraction mappings to work on different web sites. The algorithm makes use
of several visual features of the DOM tree elements present in a web resource, as
listed next:

• Continuous attributes:

– Positioning (X and Y).

– Width and height.

– Font size and weight.

• Discrete attributes:

– Font family: sans, sans-serif or monospace.

– HTML tag: link, image or other.

The values of these attributes are captured by using a web browser, which
renders web pages according to CSSs and other files, such as images.

The classes of the samples can be any RDF triple. As have been shown
previously, the rule examples used RDF properties such as r d f :t y pe , s i oc :Pos t
or d c :t i t l e , but any other kind of RDF triple could be employed.

4.3.2 Induction algorithm

The algorithm builds a rule set in a specific to general basis, by using overfitting
rules that are combined into more general ones. This decision is taken in order
to reduce the search space; in top-down induction of logical rules [Blockeel and
De Raedt, 1998] all the possible combination of conditions need to be explored,
while in rule combination approaches, such as ours, the search space is reduced to
the possible combinations among similar rules [Domingos, 1995].

64

Rule induction for content extraction

The algorithm requires a supervised dataset as input. There are many tech-
niques that could be used to obtain such supervised database by performing an
extraction from a set of web resources. It can be done by using a manually defined
wrapper, so the typical techniques for wrapper induction can be used for this
purpose. Once this is done, a training dataset is obtained and used as input for the
induction algorithm.

Then, overfitting rules are built out of the results of the supervised extraction.
An example of the overfitting rules is given with after the following training
sample, classified as a s i oc :Pos t :

wi d t h(x) = 100
he i g h t (x) = 200

f ont_s i ze(x) = 12
f ont_t y pe(x) = sans

r d f :t y pe(x , s i oc :Pos t)

(4.4)

As it can bee observed, the sample represents an HTML fragment x which has
some visual properties about size and font. This HTML fragment x is converted
into the following overfitting rule:

wi d t h(x)≥ 100∧wi d t h(x)≤ 100 ∧
he i g h t (x)≥ 200∧ he i g h t (x)≤ 200 ∧

f ont_s i ze(x)≥ 12∧ f ont_s i ze(x)≤ 12 ∧
f ont_t y pe(x) = sans

⇒ r d f :t y pe(x, s i oc :Pos t)

(4.5)

Afterwards, the set of overfitting rules is iteratively reduced by grouping
similar rules into more general ones, and by simplifying rules by generalizing
conditions. A rule r ∗ is considered more general than rule r according to the
following definition:

mo r e_g ene ral (r ∗, r) ⇐⇒ (l h s(r)(x1, ..., xn)⇒ l h s(r ∗)(x1, ..., xn)) (4.6)

We use r h s (r) to denote the right-hand side of a rule r and l h s (r) for the left-hand
side.

The process of generalization is shown in algorithm 1, which accepts a ruleset
R and a set of HTML documents D on which perform the extractions. A

65

4. CONTENT DISCOVERY

generalization operation is considered valid if the resulting ruleset produces a
score as high as or higher than with the previous ruleset. Regarding the score
function, we have used F-score, which will be defined in section 6.2.2, although
other score function could be employed. The algorithm finishes when no more
generalization operations can be performed, returning a new ruleset.

Algorithm 1 Rule generalization algorithm
1: procedure GENERALIZE(R ,D)
2: T ← ;
3: R∗←R
4: repeat
5: if SCORE(R∗,D)≥ SCORE(R ,D) then
6: R ←R∗
7: end if
8: R∗←R
9: for (r1, r2) ∈R ×R do

10: if RH S(r1) = RH S(r2)∧¬((r1, r2) ∈ T) then
11: T ← (r1, r2)
12: P ← {θi ∈ LH S(r1), θi (x, y) = pa r ent (x, y)}
13: l h s∗←

∧

θi∈P
θi

14: for (c1, c2) ∈ LH S(r1)× LH S(r2) do
15: if (c1 = (a(x)> t h1))∧ (c2 = (a(x)> t h2)) then
16: l h s∗← (l h s∗ ∧ (a(x)> mi n(t h1, t h2)))
17: else if (c1 = (a(x)< t h1))∧ (c2 = (a(x)< t h2)) then
18: l h s∗← (l h s∗ ∧ (a(x)< max(t h1, t h2)))
19: else if (c1 = (a(x) = v))∧ (c2 = (a(x) = v)) then
20: l h s∗← (l h s∗ ∧ (a(x) = v))
21: end if
22: end for
23: r ∗← (l h s∗⇒ r h s(r1))
24: R∗←R \{r1, r2} ∪ {r ∗}
25: break for
26: end if
27: end for
28: untilR∗ =R
29: returnR
30: end procedure

This approach is similar to other machine learning techniques that perform
rule pruning to reduce overfitting [Quinlan, 1993]. Our system thus requires a
building subset out of the training dataset during the training phase. This building
dataset is the one that is used to build the set of overfitting rules. Then, the whole

66

Rule induction for content extraction

training dataset is used by the algorithm 1 to generalize the obtained rules.

As said, algorithm 1 progressively merges rules into new, more general ones.
Lines 10–26 attempt to group two rules into a new one whenever two rules share
the same structure. The requirement for this operation is that the two rules share
the same right-hand side. Otherwise, the rules are not grouped and no new rule
is built. We use RH S(r) to denote the set of terms that appear on r h s(r), and
similarly LH S(r) for the left-hand side. If two rules r1 and r2 are to be grouped,
lines 14–22 state that for each of the terms c1, from left-hand side of rule r1, and
c2, from left-hand side of rule r2, are combined into a more general one so that
c1(x)∨ c2(x)⇒ c∗(x). This allows to produce a new rule r ∗ which is more general
than the original rules r1 and r2. I.e., after combining r1 and r2, the following
condition meets:

l h s(r1)(x1, ..., xn)∨ l h s(r2)(x1, ..., xn)⇒ l h s(r ∗)(x1, ..., xn) (4.7)

It can be proved that equation 4.7 implies mo r e_g ene ral (r ∗, r1) and
mo r e_g ene ral (r ∗, r2).

An example of combining two rules is shown using the next ruleset:

r1 = (wi d t h(x)> 100∧wi d t h(x)< 300∧ f ont_s i ze(x)< 14 ∧
pa r ent (x, y)∧ f ont_s i ze(y)> 16

⇒ r d f :t y pe(x, s i oc :Pos t)∧ d c :t i t l e(x, y))

r2 = (wi d t h(x)> 100∧wi d t h(x)< 400∧ f ont_s i ze(x)< 14
⇒ r d f :t y pe(x, s i oc :Pos t))

r3 = (wi d t h(x)> 250∧wi d t h(x)< 400∧ f ont_s i ze(x)< 14 ∧
pa r ent (x, y)∧ f ont_s i ze(y)> 14∧ f ont_wei g h t (y)> 500

⇒ r d f :t y pe(x, s i oc :Pos t)∧ d c :t i t l e(x, y))

(4.8)

Only rules r1 and r3 can be combined because of sharing their right-hand sides.
After combining term by term according to lines 14–22, the resulting rule r ∗ is:

r ∗ = (wi d t h(x)> 100∧wi d t h(x)< 400∧ f ont_s i ze(x)< 14 ∧
pa r ent (x, y)∧ f ont_s i ze(y)> 14

⇒ r d f :t y pe(x, s i oc :Pos t)∧ d c :t i t l e(x, y))
(4.9)

67

4. CONTENT DISCOVERY

The new rule is more general than the previous ones, as the condition from
equation 4.7 is satisfied:

(wi d t h(x)> 100∧wi d t h(x)< 300∧ f ont_s i ze(x)< 14 ∧
pa r ent (x, y)∧ f ont_s i ze(y)> 16) ∨

(wi d t h(x)> 250∧wi d t h(x)< 400∧ f ont_s i ze(x)< 14 ∧
pa r ent (x, y)∧ f ont_s i ze(y)> 14∧ f ont_wei g h t (y)> 500)
⇒ (wi d t h(x)> 100∧wi d t h(x)< 400∧ f ont_s i ze(x)< 14 ∧

pa r ent (x, y)∧ f ont_s i ze(y)> 14)

(4.10)

Afterwards, the algorithm checks the new score with the resulting ruleset. If
the score is as high as the previous one, the new ruleset is kept, otherwise the
ruleset is rolled back. In all cases, a different pair of rules is tried in the next
iteration (in order to achieve this, the already tried rule combinations are stored
in set T). The algorithm finishes when no more rules can be combined.

4.3.3 Wrapper conversion

When a scraper processes a visual mapping, it will obtain a set of RDF resources
which are mapped to the fragments in a particular web resource. In our system,
we will use this intermediate output to induct a wrapper with traditional wrapper
induction techniques. This has the advantages explained next.

First, it improves the results of the visual patterns. Wrapper induction tech-
niques require only a few correctly supervised samples to induct a wrapper [Anton,
2005]. When inducting a wrapper, all extracted data in a list can be extracted even
if not all the samples are marked for extraction during the supervision process.
This lets increase the recall of the visual patterns, as long as all news with a similar
DOM tree will be selected whenever the visual extractor produces an acceptable
amount of data as output.

Finally, wrappers are more lightweight, as they do not require visual features
to be computed. The visual attributes enumerated above require a web browser
to render the web resource and load CSSs and images. By converting the visual
patterns into a wrapper, a web browser is not necessary anymore for using the
mapping.

68

Conclusions

4.4 Conclusions

In this chapter, the induction of content discovery rules has been covered. An
algorithm that performs induction of first-order logic rules to extract data from
unstructured web resources has been described. Such system can be used to extract
data from web sites with an unknown DOM tree structure, thanks to the fact that
it is based on the visual features of the elements shown in the web browser. This
allows extracting semantic information from unstructured web resources without
external supervision, given a previous training stage.

69

70

Chapter 5

Service discovery

This chapter analyzes techniques for service discovery in the web. As said, devel-
opers are able to create new applications by composing already existing services
from third-party vendors. However, the vast amount of choices, technologies
and repositories can make discovering these services a tedious task. The chapter
analyzes two approaches to perform discovery at the service level. Under one
approach, services are discovered by the use of service discovery rules out of the
knowledge provided by the underlying content layer. Under the second approach,
services are found as content in web repositories and discovered as such. For
that, the aspects behind service modelling are analysed and a component model is
proposed.

71

5. SERVICE DISCOVERY

5.1 Introduction

In the current Web, developers enjoy the availability of plenty of services, data
feeds, widgets and other components that can be reused to build new web appli-
cations. This ecosystem of reusable web components comprise elements such
as data feeds of various domains, telco services or desktop and mobile widgets.
Additionally, there is a growing set of tools for the creation of mashups such as
MyCocktail1 or mashArt2 that ease developers the combination of services for
application construction. Also, Programmable Web3, Yahoo Pipes4 or Opera
widgets5 are examples of repositories that include services and widgets of many
different kinds. They can be queried by users in order to search useful applications
and services that they can reuse for mashup composition.

However, because of this mushrooming of web components and mashup
platforms, developers face some difficulties when working in this development
process of mashup construction. First, it is not immediate for a developer to
find the most appropriate component for a mashup she is building, as there are
many of them available and the information might be scattered across various
repositories in the web. Second, components employ different standards and
semantics, thus requiring some study of the documentation by the developer.
And third, the components often need to be adapted for their usage by a specific
mashup platform.

This chapter contributes to the solution of building semantic descriptions of
services through two different approaches. Section 5.2.2 describes a novel approach
called service probing, in which HTTP interactions are the input to service
discovery rules, serving to identify features, which comprise service descriptions.
Section 5.3 raises the fact that the information about several services is already
available in web service registries such as Programmable Web and Yahoo Pipes.
Therefore, services can be regarded as contents in this case, and be described using
the same techniques outlined in section 4. For this, a component model is defined,
which allows to build a metaregistry that aggregates services discovered as contents
in the web.

1http://www.ict-romulus.eu/web/mycocktail
2http://mashart.org
3http://www.programmableweb.com
4http://pipes.yahoo.com
5http://widgets.opera.com

72

http://www.ict-romulus.eu/web/mycocktail
http://mashart.org
http://www.programmableweb.com
http://pipes.yahoo.com
http://widgets.opera.com

Services as REST resources

5.2 Services as REST resources

This section focuses on service discovery by regarding services as REST resources,
which participate in HTTP interactions to provide value to the top, agent level of
the discovery framework. For this task, a novel approach called service probing
will be introduced after detailing the feature-oriented approach behind service
descriptions, which was introduced in section 3.4.1.

5.2.1 Feature-Oriented descriptions

As said in chapter 3, the service model used for service discovery level applies ideas
inspired in mixins, AOP, and FOP paradigms to semantic service description.
These paradigms extend OOP by allowing the modelling of secondary concerns in
an isolated way. FOP [Prehofer, 1997] is a composition model that allows refining
classes through the definition of features, i.e., subclasses with core functionality.
Mixins [Bracha and Cook, 1990], or abstract subclasses, are separate groups
of methods that can be inserted into a class to override the original behaviour,
but which cannot be instantiated on their own. Therefore, mixins serve to
implement features inFOP [Apel et al., 2006]. FOP can be seen as a generalization
of traditional class inheritance in OOP, and is used to develop the so-called
software product lines, i.e. programs that provide different combinations of
features [Lopez-Herrejon, 2005].

AOP [Elrad et al., 2001] similarly proposes separating concerns that cross-cut
various classes or methods, with the logging aspect as the most popular example
of a cross-cutting concern. Code from aspects is injected into specified join points
in classes. This way, by usingAOP, logging commands can be inserted into
appropriate join points in a class without changing the original code of the class.

AOP and FOP are different paradigms despite the existing similarity between
them, as pointed out in [Lopez-Herrejon, 2005], so long as they propose different
methods to combine code (code weaving vs. modification of inheritance chains).
Some efforts try to combine the two approaches by introducing new concepts
such as Multi Mixins, Aspectual Mixins, and Aspectual Mixin Layers [Apel et al.,
2005].

Feature and aspect orientation have inspired other modelling approaches, such
as Feature-Oriented Model-Driven Development (FOMDD) [Trujillo et al., 2007],
in which models are created by composing features. Similarly, Role-Oriented
Programming (ROP) [Steimann, 2000] or Subject-Oriented Programming (SOP)

73

5. SERVICE DISCOVERY

[Harrison and Ossher, 1993] regard separation of object roles and the so-called
subjective perceptions, respectively.

In the service level, the idea of separating features and concerns is employed
to enable discovery at a feature level. A service description is a composition of
features, allowing the reuse of feature descriptions in a similar way as features,
aspects and abstract classes are reused in the previously mentioned paradigms. This
modelling approach, and how is applied to service discovery rules, is described in
this section.

In order to provide a mapping between a service’s feature set and a service’s
formal description, the service level framework includes feature definitions. A
feature definition F is a rule that maps a set of features f1, ..., fk to a set of
conditions. It is activated when the set of features is present in the service’s
feature-oriented description, and produces a formal description. By aggregating
all descriptions from the activated feature definitions, a service formal description
can be obtained.

For example, given a service description F and features f1 (“outputting a set
of resources”) and f2 (“handling images”), some feature definitions can be the
following:

f1 ∈ F ⇒ |O u t p u t |> 1 (5.1)

f1 ∈ F ∧ f2 ∈ F ⇒∀x(x ∈O u t p u t → i ma g e(x)) (5.2)

Feature definition 5.1 formalizes feature f1 by stating that the service’s output
cardinality has to be higher than one. Meanwhile, feature definition 5.2 formalizes
that all output resources are images, and is applicable for services that (i) output
a set of resources (as of feature f1) and (ii) handle images (feature f2). Therefore,
the formal description of a service that is feature-oriented-described by f1 and f2
would be:

(|O u t p u t |> 1)∧∀x(x ∈O u t p u t → i ma g e(x)) (5.3)

It can be observed that feature definition 5.1 is activated by the presence of
one feature in the feature-oriented description. Therefore, that definition serves to
formalize one feature. However, feature definition 5.2 is activated by the presence
of two features in the feature-oriented description.

Allowing definitions that are activated upon the presence of more than one
feature might be regarded as unnecessary complexity. However, this versatility is
justified. Consider feature f3 as “The service stores a resource that is provided as
input”. When using f2 with f1, a postcondition should be set (i.e. “multiple images

74

Services as REST resources

Algorithm 2 Service probing algorithm
1: procedure PROBE(I)
2: S←;
3: repeat
4: S∗← S
5: for f ∈F \ S do
6: val i d ← f a l s e
7: for i nt e rac t i on ∈ I do
8: if l h s(f)(i , S) then
9: val i d ← t r ue

10: end if
11: end for
12: if val i d then
13: S∗← S ∪{ f }
14: end if
15: end for
16: until S∗ = S
17: return S
18: end procedure

will be returned”), but when used with feature f3, a precondition should be set
(i.e. “an image has to be provided as input”). This can be achieved by setting one
definition for f2 and f1 (as shown in definition 5.2), and another definition for f2
and f3, as shown next:

f2 ∈ F ∧ f3 ∈ F ⇒∀x(x ∈ I n p u t → i ma g e(x)) (5.4)

This serves to resolve the issue of feature interaction, already identified in FOP
[Prehofer, 1997]. By describing features semantically, feature descriptions can be
combined to produce a semantic service description.

5.2.2 Service probing

This section describes the approach of service probing, which is employed to
discover services by applying discovery rules at the service level. The main idea
behind the technique is to reason on the HTTP interactions performed on a REST
resource to identify its functionalities, represented as features.

An HTTP interaction x is modelled as a method me t hod (x) (i.e. GET ,
POST , P U T , etc.), a set of inputs I n p u t (x), a set of outputs O u t p u t (x), and
a status s t at u s(x), which, according to the HTTP specification [Fielding et al.,

75

5. SERVICE DISCOVERY

Feature Requires Definition
get - me t hod (x) =GET ∧ s t at u s(x) ∈ {200,300, ..., 307}
multiple get |O u t p u t (x)|> 1
filtered get t ∈ I n p u t (x)∧ y ∈O u t p u t (x)∧ c t a g :t a g g ed (y, t)
image get y ∈O u t p u t (x)∧ f oa f :I ma g e(y)
news get y ∈O u t p u t (x)∧ s i oc :Pos t (y)
post - me t hod (x) = POST ∧ s t at u s(x) ∈ [200,400)
multiple post |I n p u t (x)|> 1
image post y ∈ I n p u t (x)∧ f oa f :I ma g e(y)
news post y ∈ I n p u t (x)∧ s i oc :Pos t (y)

Table 5.1: Sample feature set for service probing

Method Input
1 get c t a g :Ta g (t)∧ r d f s :l ab e l (t , ”b eac h”)
2 get c t a g :Ta g (t)∧ r d f s :l ab e l (t , ”s un”)
3 get c t a g :Ta g (t)∧ r d f s :l ab e l (t , ”hol i day”)

Table 5.2: Requests in service probing sample

2009], indicates the result of the request. Service discovery rules use HTTP
interactions as the input.

With a set of HTTP interactions, service discovery rules can be applied to
determine the features that the service being discovered has. This set of interactions
can be obtained after probing the service, i.e. querying the REST resource with
sets of inputs and storing the resulting HTTP interactions.

The set of tentative inputs to be used on the service can be obtained by
monitoring users via a browser plugin in order to collect full HTTP interactions.
An automated approach after analyzing the domain of the web resource can be
considered, but is out of the scope of the thesis and thus proposed as future work
(see section 7).

Algorithm 2 shows the process of building a service feature-based description
S out of a set of HTTP interactions I with a REST resource through service
probing.

A service description S is iteratively built by selecting features out of the
feature baseF . Lines 6–14 add a feature f to the service description whenever the
left-hand side of a discovery rule is satisfactory. For that, the service description
must already contain the features that the rule requires, and the interaction has to
meet the conditions stated in the rule. If this applies to all the HTTP interactions,

76

Services as REST resources

Status Output
1 200 OK f oa f :I ma g e(y1) ∧ c t a g :t a g g ed (y1, ”t a r i f a”) ∧

c t a g :t a g g ed (y1, ”b eac h”) ∧
f oa f :I ma g e(y2) ∧ c t a g :t a g g ed (y2, ”ocean”) ∧

c t a g :t a g g ed (y2, ”b eac h”) ∧
c t a g :t a g g ed (y2, ”moon”) ∧

f oa f :I ma g e(y3) ∧ c t a g :t a g g ed (y3, ”l i g h t”) ∧
c t a g :t a g g ed (y3, ”woman”) ∧
c t a g :t a g g ed (y3, ”b eac h”)

2 200 OK f oa f :I ma g e(y1) ∧ c t a g :t a g g ed (y1, ”s u mme r ”) ∧
c t a g :t a g g ed (y1, ”s un”) ∧

f oa f :I ma g e(y2) ∧ c t a g :t a g g ed (y2, ”s u mme r ”) ∧
c t a g :t a g g ed (y2, ”s un”) ∧
c t a g :t a g g ed (y2, ” f i l m”) ∧
c t a g :t a g g ed (y2, ”a r c hi t ec t u r e”) ∧

f oa f :I ma g e(y3) ∧ c t a g :t a g g ed (y3, ”s ky”) ∧
c t a g :t a g g ed (y3, ”s un”) ∧
c t a g :t a g g ed (y3, ”back l i g h t”)

3 200 OK f oa f :I ma g e(y1) ∧ c t a g :t a g g ed (y1, ”t r i p”) ∧
c t a g :t a g g ed (y1, ”hol i day”) ∧
c t a g :t a g g ed (y1, ” j a pan”) ∧

f oa f :I ma g e(y2) ∧ c t a g :t a g g ed (y2, ”t r i p”) ∧
c t a g :t a g g ed (y2, ”t rave l ”) ∧
c t a g :t a g g ed (y2, ”hol i day”) ∧

f oa f :I ma g e(y3) ∧ c t a g :t a g g ed (y3, ”hol i day”) ∧
c t a g :t a g g ed (y3, ”e u r o pe”) ∧
c t a g :t a g g ed (y3, ”c r oat ia”)

Table 5.3: Responses in service probing sample

the feature is added to the description. Once there are no more definitions to
try, or no modifications on the resulting description, the loop finishes and the
description S is ready.

An example is given next. Let’s suppose a particular feature set as base knowl-
edge for the service level. The discovery rules for these features are shown in table
5.1.

Let’s consider that a user uses Flickr’s search form to find pictures about
beaches, sun and holidays. The user employs the search terms beach, sun, and
holiday on the input box, which results in different queries with their own HTTP
methods, outputs, and statuses. These HTTP interactions involve pairs of requests
and responses, which, according to the service discovery level (see section 3) can
be translated into semantic contents thanks to content discovery rules.

Therefore, the raw output of the requests and responses of the search form

77

5. SERVICE DISCOVERY

is converted into an RDF graph, and service discovery rules can be applied to
identify features. Tables 5.2 and 5.3 show respectively the requests and responses
of the HTTP interactions.

By checking the conditions for each service discovery rule, service features are
identified, and a semantic, feature-oriented service description is built. Feature
post is not identified because of the HTTP method used. Feature get is identi-
fied, and therefore other definitions with get are considered. Then, multiple,
filtered, and image are identified, as their conditions fit the considered HTTP
interactions. Finally, a filtered image multiple get service is discovered.

This section has shown how to discover services by probing with inputs,
obtaining outputs and checking the conditions they meet. The feature-based
approach allows to define service discovery rules that allow building service
descriptions in this way.

5.3 Services as contents

Usually, services are documented in API pages that allow developers learn about
their usage. These documentation pages are often registered in web sites such as
Programmable Web or Yahoo Pipes. These kinds of web sites act as hubs in a
similar fashion as news aggregators, allowing interested parties to be aware about
services by accessing these centralized aggregators. Furthermore, repositories do
not usually employ Semantic Web standards nor follow Linked Data principles,
thus difficulting automatic processing, discovery or reasoning. This problem is
thus similar to the one of semantic data availability. To sum up, services are served
as contents and exposed in web service repositories, and as such the discovery
methodology applied to contents can be applied to services under these conditions.

Therefore, this section covers how to perform service discovery when un-
derstanding services as contents. For this, an integrated metadirectory of web
components for mashup composition is defined, which aggregates the knowledge
offered in service registries by adding a semantic level. The metadirectory makes
use of Linked Mashups Ontology (LiMOn), a component model that comprises
useful information for querying web services and searching the most appropriate
ones. Additionally, LiMOn reuses other underlying standards, such as WSMO
[ESSI WSMO working group, 2004] or the W3C Widgets standard [Alario-Hoyos
and Wilson, 2010], as low-level grounding description languages that allow web
components to be readily executable. These descriptions are built automatically,

78

Services as contents

when possible, in a discovery phase that has allowed to populate the metadirectory
with actual components from the web.

The section first analyzes the problem of choosing web components when
developing mashups in SOAs and discusses how LiMOn fits in a framework of
component selection. The metadirectory that makes use of LiMOn is described,
as well as the approach that has been followed to populate the metadirectory with
actual web components.

5.3.1 SOA domains

Mashup-Driven Development (MDD) proposes reusing web components to build
new applications. These components vary from a REST service to a widget,
gadget, portlet or even a web application that shares its information as a data feed.
Therefore, when developing an application, developers can choose among a wide
range of available components available to combine them and obtain a new work-
ing system. Then, developers face the problem of choosing the right component
for the right task. First, the component needs to fit the functional requirements
behind the tasks it has to perform in the newly constructed application. E.g. if a
service for geolocation is seeked, a developer first needs to filter out all non-related
services that do not deal with mapping services or geolocation. And second, the
component needs to fit other non-functional requirements, such as trust in the
company behind the component, or certain quality aspects that the component
needs to meet.

Thus, developers need to search for the appropriate component according
to some high-level needs they have. According to the type of component (API,
service, widget...) the developers would have to check one registry or another
(e.g. either a widget repository or some service registry). Also, depending on
the features seeked in the component, some registries would be more appropriate
than others (e.g. some registries might show information about semantics of the
service and others not). And again, according to the features seeked, it would be
necessary to query external sources to fill up the component information (e.g. it
might be necessary to look up a components’ vendor at Wikipedia in order to get
an idea of the component’s trust).

The Software Engineering Institute distinguishes several domains in the man-
agament and development of SOA [Lewis and Smith, 2007]. These domains are
business domain, engineering domain, operations domain and cross-cutting con-
cerns. Each domain maps to an aspect which is relevant in component selection

79

5. SERVICE DISCOVERY

when dealing with SOA:

• The business domain comprises all the consequences that a service orien-
tation has on a given organization, application domain or context. This
includes business aspects such as cost or legal issues when selecting a compo-
nent for its reuse.

• The engineering domain deals with the service-oriented lifecycle. At the
time of selecting a component for reuse, this domain would contain the
technical aspects of a service, i.e. formats, interface, semantic descriptions,
and so on.

• The operations domain deals with the operation, evaluation and optimiza-
tion of service-oriented systems. Namely, in this domain the aspects that
are involved when selecting a component will be Quality of Service aspects,
which determines the evaluation of a component’s performance.

• Cross-cutting concerns include aspects that are orthogonal to all the do-
mains. The main aspects are trust and social aspects, which affect and deter-
mine other aspects in some way or another.

These aspects are detailed and discussed next, along with the references found
in the literature.

Business aspects

Business aspects are any selection criteria that fall into the business domain of
Service-Oriented Architectures. Whenever a decision aspect when selecting a
service can have an impact on a given organization’s structure, it is considered a
business aspect to our understanding.

Cost is the most notable business aspect when selecting a service. Raj and
Sasipraba [2010] understands cost as the economic condition of using a service,
and includes it into a Quality of Service model for service selection. Similarly,
Rehman et al. [2011], Zeng et al. [2009] and Li et al. [2010] define frameworks
for comparison of cloud providers that also include cost as one of the selection
aspects. Although some of these works use a broad definition of cost (involving
non-monetary aspects as well), it can be considered a fundamental business aspect
in component selection.

Legal restrictions are also a business aspect regarding component selection. Very
often components are only usable under certain conditions on a reduced number

80

Services as contents

of countries, which affect the selection process depending on the company’s
activities and targets. Shimba [2010] considers legal issues as one challenge in
cloud computing, enumerating the different difficulties that are encountered
because of countries having different regulations and laws on the topic. The
complexity behind this diverse regulation makes legal restrictions hard to model,
which, as will be seen later, might be the reason why most component registries
dismiss legal restrictions.

The vendor and the possible agreements with the consumer company may
influence the decision of component selection. A company often agree to use
other company’s components under a certain domain. For example, Apple’s
mobile devices started to provide tight integration with Twitter although other
microblogging services were available, after reaching an agreement that benefited
both companies [Eaton, 2011]. Therefore, most times knowing the specific vendor
that provides the service behind a web component is needed prior to taking the
decision to use it. Thus, the vendor is another business aspect to consider regarding
component selection.

Trust aspect

According to Amoroso et al. [1991], software trust is the degree of confidence
that exists that the software will be acceptable for “one’s needs”. This implies that,
after a developer has been convinced about a software component’s specifications,
thanks to some documentation, trust would be the confidence that these specifi-
cations would be met over time. Related subaspects that have been identified are
popularity, maturity, company trust and community trust.

Popularity is an indicative of success of a web component [Mileva et al., 2010].
Success can be understood in several ways, and different indicators can be used
to measure it. A component that is widely used is considered succesful, while
one with many bugs has lack of success. However, a component which lacks
bug reports might also lack community support because of a lack in popularity.
Thus, popularity is a combination of different indicators that convey an active
usage of a big enough community of users. Popularity increases the so-called
trusting-intention [Kutvonen, 2007], or the will to depend on another component
with the involved risks. Therefore, popularity is a relevant metric inside the trust
aspect.

Maturity is another software feature which increases trust. The topic of
maturity is widely covered on the area of Open Source [Polancic et al., 2004]

81

5. SERVICE DISCOVERY

because of the nature behind these kinds of projects – they usually follow an
iterative growth, with frequent releases until they reach some point of maturity
[Raymond, 1999]. The Capability Maturity Model (CMM) [Paulk, 1993] and
the Open Source Software Maturity Model (OSSMM) [Golden, 2005] are models
to improve the software process’s maturity in companies for traditional software
development and Open Source software development, respectively. These models
emphasize the importance of seeking maturity in software.

Company trust is critical factor behind the global trust of component. A
component is more trustworthy if a trustworthy company is behind it. Many
factors are involved in comprising trust on a company, which can vary from
company size to financial equity or customer service. Nguyen et al. [2006]
identifies communication, cultural understanding and capabilities as the three
top factors that determine trust on a software company. Similarly, a survey has
for instance revealed that 75% of users perceive more trust on companies that
use microblogging services such as Twitter [Gershberg, 2010]. All this reveals
communication channels as key factors that determine company trust and thus
the trust aspect.

Quality of Service aspects

Quality of Service in the Internet is traditionally regarded as the combination of
network-imposed delay, jitter, bandwidth and reliability [Ferguson and Huston,
1998]. This is a typically network-level definition that can be extended to the
application level by considering the metrics that a particular vendor offers for their
commercial components. Hu et al. [2005] proposes a decision model of Quality
of Service applied to Web Services that can be extended to components. They
propose a model to select Web Services according to metrics of execution cost,
execution time, reliability and availability. Similarly, Menasce and Almeida [2002]
define Quality of Service as a combination of availability, security, response time
and throughput issues. We will generalize these terms into availability, reliability
and performance.

Availability is the percentage of time a web component is operating [Menasce,
2002]. When applying this definition to complex web components, this availability
depends on the availability of several resources. I.e. in the case of a widget, both
its assets (external scripts and HTML pages) and its services must be available for
the widget’s availability. Zhang and Zhang [2005] point out similar problems in
the domain of mashups. We identify availability as an important aspect when

82

Services as contents

selecting a web component.
Reliability, as a general term in software, is the probability of failure-free oper-

ation of a computer program for a specified time in a specified environment [Musa
et al., 1987]. This definition can be applied to Service-Oriented Architectures
by considering web components as the software elements that are to provide
failure-free operation. Zhang and Zhang [2005] state that a reliable web service
must exhibit correctness, fault-tolerance, testability, availability, performance and
interoperability. Those are a set of requirements that a service must keep in order
to consider it failure-free. Other papers [Majer et al., 2009] consider as well the
problem of reliability in more complex components, such as mashups, which
reuse other services, thus depending on third-parties’ reliability and availability.

We identify the performance aspect as a way to encompass execution times,
responsiveness, and throughput issues, noted as important elements when regard-
ing Quality of Service [Menasce and Almeida, 2002]. Depending on the nature
of a web component, some metrics would make sense and others would not. For
example, the concept of throughput cannot be applied to a web component such
as widget (but it can be to a service), although its user interaction’s responsivity
can be measured in the same way as a web service’s. These kinds of issues are
regarded as performance aspects.

Technical aspects

The technical aspects behind selecting a web component involve all the issues
related to component operation. Several component description standards such as
WSDL [Christensen et al., 2001], WSMO [ESSI WSMO working group, 2004] or
W3C widgets [Alario-Hoyos and Wilson, 2010]model the main characteristics
that involve operation aspects for specific web component types such as services
or widgets. The operation aspects these standards consider can be grouped into a
few areas: interface, dependencies and cross-cutting concerns.

Interface comprises aspects such as conditions that are involved in the commu-
nication with the component. WSMO employs preconditions and postconditions
to model a service’s interface, and offers means to identify formats and protocols
employed in the communication [Lara et al., 2004].

Dependencies include any requirement of external components. Especially,
mashups [Majer et al., 2009] are components that are mainly built out of other
components, such as web services, widgets or data feeds. Awareness about these
dependencies can help to know about indirect requirements or usage restrictions

83

5. SERVICE DISCOVERY

(if, e.g., a client-side mashup requires a geolocation service that is not available in
the user’s country).

Cross-cutting concerns involve non-functional technical aspects such as security,
choreography issues, or required standards. Web Services often group these
aspects in the so-called WS-* standards [Alonso, 2004]. Similarly, WSMO allows
defining non-functional properties for a service in order to specify these kinds
of aspects [Toma and Foxvog, 2006]. An interesting cross-cutting concern in
SOA is discoverability, which measures the extent to which the service, service
consumers expect to look for, is easily and correctly found [Choi and Kim, 2008].
It takes place if a component capabilities are published in one way or another.
In order to allow web components to be found by developers, their capabilities
need to be announced for an agent to discover them. A textual description of
the component’s functionality is a minimum requirement to make a component
discoverable, although a semantic description allows automatic processing.

Support and coverage in existing repositories

In the web, we can find several repositories of components that can be reused
for creating new applications. By taking a glance into these repositories, we can
evaluate the support and coverage of the different aspects that we have identified
for component selection.

A repository will be said to fully support an aspect if it provides appropriate
and complete information related to that aspect. For example, Programmable
Web provides a field to link a component to a WSDL file. A WSDL file is a Web
Service standard description language that allows describing a service’s interface,
among other things. This allows components in Programmable Web to have full
support to the interface aspect.

On the other hand, a repository provides full coverage of an aspect if all of
its components make use of the supported fields for that aspect. For instance,
Programmable Web supports WSDL annotated services by providing a field to
reference a WSDL file. However, most APIs in Programmable Web do not make
use of that field, hence resulting in low coverage of the interface aspect. The metric
of coverage thus represents the actual degree of usage of a repository’s capabilities.

Table 5.4 shows the analysis of support to every aspect on three repositories.
The support that each repository gives to each aspect is marked from 0 points (no
support) to 4 points (full support). We have selected three repositories that are
both heterogeneous and popular. A short description of each of the considered

84

Services as contents

repositories is given next:

• Programmable Web is the most popular directory of mashups and APIs on
the web. It is a collaborative directory where users can provide awareness
of a mashup or an API. There are several fields that the users can fill up to
provide information about a particular component. APIs such as Google
Maps6 and mashups such as Panoramio7 have their own page where users add
information on related APIs and mashups, or any other useful information.

• Yahoo Pipes is a repository of user-built mashups called “pipes”. Each pipe
is created using an editor developed by Yahoo, which allows users to create
new data feeds out of existing ones. Then, pipes appear listed in Yahoo
Pipes’ web site, where users can find, and clone, other pipes and even reuse
them to build new ones.

• Opera Widgets is a repository of widgets that are created by users. Opera
does not provide an editor for this task, and simply allows users to upload
their widgets and publish them in their web site. The web site then provides
a browsing interface so that users can search widgets by category and load
them into their browser.

As said, coverage is a complementary metric that reveals the actual degree of
usage of each aspect. Fig. 5.1 illustrates the coverage for each repository and aspect.
The region inside each graph represents the degree of coverage for each repository.
It is worth noting that both Yahoo Pipes and Opera Widgets are strict repositories
that require all fields to be filled for each component. Programmable Web, on the
other hand, accepts optional information, such as the mentioned case of WSDL
descriptions. As not all APIs in Programmable Web are linked to a WSDL file,
this reduces the values in the technical axes.

5.3.2 Linked Mashups Ontology

In this section, we describe a model that integrates the properties and fields that
are provided by current component repositories in the web. It is called the Linked
Mashups Ontology (LiMOn), for its approach of bringing Linked Data to mashup-
driven development.

6http://maps.google.com
7http://panoramio.com

85

http://maps.google.com
http://panoramio.com

5. SERVICE DISCOVERY

Aspect Subaspect Programmable Web Yahoo Pipes Opera Widgets

Business Cost A field that plainly
indicates whether or
not there are usage
fees is indicated (2
points)

All the “pipes” in the
repository are free,
so cost is implicit (4
points)

All the widgets in the
repository are free,
so cost is implicit (4
points)

Legal issues Links to commercial
and free licenses (1
point)

All “pipes” share
the same license (4
points)

All widgets share
the same license (4
points)

Vendor Vendor is provided (4
points)

Author is shown (3
points)

Author is shown (3
points)

Trust Popularity Developers can rate
APIs and mashups
and the number of
mashups that use
an API is shown (4
points)

Number of “cloned
pipes” are shown,
which is an indicator
of popularity (1
point)

Widget users can vote
up and down widgets
(3 points)

Maturity Addition date of a
component is a naïve
indicator of maturity
(1 point)

Creation date of the
“pipe” can be an indi-
cator of maturity (2
points)

Addition date of a
widget is a naïve in-
dicator of maturity (1
point)

Company trust Vendor and home
page are shown,
but with no trust
indicators (1 point)

Author is shown, but
with no trust indica-
tors (1 point)

Author is shown, but
with no trust indica-
tors (1 point)

QoS Availability No indicators (0
points)

No indicators (0
points)

No indicators (0
points)

Reliability No indicators (0
points)

No indicators (0
points)

No indicators (0
points)

Performance No indicators (0
points)

No indicators (0
points)

No indicators (0
points)

Technical Interface Yes, through a link to
a WSDL service de-
scription (4 points)

Implicitly provided
through an HTML
form and a well-
known uniform
output for every
“pipe” (4 points)

Yes, by sharing wid-
gets the W3C widget
standard (4 points)

Dependencies Mashups are con-
nected to the APIs
they use (4 points)

“Pipes” are connected
with the feeds they
use (4 points)

No information
about dependencies
(0 points)

Cross-cutting
concerns

Information about
SSL usage, category,
tags, plus the infor-
mation available in
WSDL (4 points)

Tags and a textual
description are pro-
vided to categorize a
pipe (2 points)

Only a taxonomy and
a textual description
is provided (2 points)

Table 5.4: Repositories’ support to aspects

86

Services as contents

Figure 5.1: Repositories’ coverage of aspects

With these considerations in mind, we have defined the model presented in
Fig. 5.2. Regarding the technical aspect that was introduced in section 4.2, the
properties listed next have been included in the model.

• A set of properties allow to cover interface aspects. The property description
allows linking to a lower-level component description, such as WSMO, W3C
widgets or WSDL, depending on the nature of the component. The property
endpoint allows to link to the particular URL where the component runs.
Also, the properties of dataFormat and protocol allow to specify how the
data, if any, is exchanged with the component.

• The property uses is employed to link to reused components. For example,
it can be used to indicate which services or data feeds a mashup reuses.

• Some properties address cross-cutting concerns. The property clientInstall-
Required indicates whether or not the web component requires an additional
component installed client-side to work. The property example allows to
reference examples of usage of the component’s API. The properties tag and
category allow to link to tags and categories, respectively, that represent the
functionality of the component. The property api links to the specification
of the component’s programming interface. Finally, the properties authenti-
cation and sslSupport allow to specify how the security over component’s
data transport is performed.

The trust aspect comprises popularity and company trust issues, and includes
the properties listed next:

87

5. SERVICE DISCOVERY

Technical aspect

Trust aspectBusiness aspect

Rating
Integer

Application

Developer key
required
Boolean

API forum
URL

Homepage
URL

Client install
required
Boolean

Authentication
scheme

Data
format

Usage fees

API
URL

Commercial
License

SSL support
Boolean

Example
Literal

Terms &
Conditions
URL

Protocol

Provider
URL

Source
URL

Endpoint
URL

Concept
skos:Concept

Category

Tag
ctag:Tag

Description
WSMO/ROSM
WSDL
W3C Widget
WADL

Widget

Service

Component
API blog
URL

rdf:type

rdfs:subClassOf

rdfs:subClassOf

:uses
rdfs:subClassOf

:describedBy

ctag:tagged

:categorizedBy

:endpoint

dc:source

:provider

:protocol

:termsAndConditions

:example:sslSupport

:commercialLicense

:api

:usageFees

:dataFormat :authentication

:clientInstallRequired

sioc:homepage

:apiForum

:developerKeyRequired

:rating

:apiBlog

Figure 5.2: Linked Mashups Ontology

• The rating property serves as an indicator of popularity. It represents the
rating made by users in repositories to reflect their degree of satisfaction
with a particular component.

• The properties of apiForum and apiBlog fall into the company trust by
providing means to reference support facilities (i.e. forums and blogs) that
the vendor provides to component users. Also, the property provider allows
to identify the vendor of the component, for any company trust issues
involved.

The business aspect comprises costs or legal issues, and is covered by the model
through the following properties:

• The property usageFees is a cost aspect property that link to any cost required

88

Conclusions

when using the component.

• Regarding legal issues, the property termsAndConditions allows linking to a
document that informs about the conditions of usage of the component. The
property commercialLicense links to a commercial license for the usage of
the component, if any. Finally, the property developerKeyRequired indicates
whether or not the component requires creating a developer account prior
to its usage.

• The property provider serves to identify the vendor of the component for
any business issues involved.

Additionally, the source of a component is included as a property. In next
sections, the model will be used to build a metadirectory. This makes it useful to
reference where the component was obtained from, thus requiring a property to
link it to the source repository. Also, regarding the Quality of Service aspect, no
information was found in any repository, so no field was included in the model.

In total, the component repositories of Yahoo Pipes, Programmable Web,
Opera Widgets, iGoogle Gadgets8, AppStore9, Android Market10, and Ohloh11

were analysed to identify relevant properties for the model.

Fig. 5.3 shows the connections between the component model and the ontolo-
gies that have been reused, illustrating how these links can be exploited thanks
to already existing tools. Such tools generally consist of ways of exploiting the
Linked Data graph, either by allowing the identification of new relations between
resources or by providing ways to visualize the data.

In chapter 6, the evaluation of applying this model to discover services from
the web is performed.

5.4 Conclusions

Through this chapter two different approaches to service discovery have been
covered. First, strictly on the service level of the discovery framework, the
discovery process has been shown to be possible thanks to a novel technique called
service probing. With this approach, service discovery rules are applied to sets of

8http://www.google.com/ig/directory
9http://itunes.apple.com/de/genre/ios/id36

10https://market.android.com
11http://www.ohloh.net

89

http://www.google.com/ig/directory
http://itunes.apple.com/de/genre/ios/id36
https://market.android.com
http://www.ohloh.net

5. SERVICE DISCOVERY

Figure 5.3: Connections between LiMOn and other ontologies

HTTP interactions to identify service features and therefore discover services. The
second approach considers the problem where services are already referenced in
the contents of web sites, which is the usual case in web registries and repositories
such as Programmable Web and Yahoo Pipes web sites. In this case, the same
methodology as in content discovery can be applied, and a component model,
LiMOn has been defined for performing content-level discovery of services.

90

Chapter 6

Evaluation

In this chapter, the evaluation of the discovery framework is described. The frame-
work and its different layers have been applied to several scenarios. The content
layer was evaluated in scenarios of security knowledge extraction, news discovery,
and idea management. The service layer was applied to mashup development.
The full framework is used in a scenario of electronic newspapers. An intelligent
agent crawls the web for related news, and uses services and visits links automati-
cally according to its goal. The scenario illustrates how the discovery is achieved
at the different levels and how the use of semantics help to implement agents
that perform high-level tasks. The chapter therefore summarizes the evaluations
performed to validate the proposed framework.

91

6. EVALUATION

6.1 Introduction

This chapter describes the evaluation of the different contributions of the thesis.
The discovery framework has been evaluated on a variety of scenarios. These
scenarios are the result of the definition of different case studies in several research
projects. The main projects are listed next.

ROMULUS (FP7-ICT-2007-1) is a European funded project which researches
into MDD and agile development by defining a unified framework for mashup
development. The Spanish funded project Java sobre Ruedas (FIT-350401-2007-8)
similarly deals with MDD and agile development, and thesis’ contributions have
been also applied on it. The framework was applied at the service level to provide
integration of REST services in mashups.

Contenidos a la Carta (TSI-020501-2008-114) is a Spanish funded project which
researches into the improvement of news processing by the use of mashup devel-
opment techniques. The contributions on content discovery from the thesis were
applied extensively in this project to discover relevant news and build semantic
descriptions for content combination.

OMELETTE (FP7-ICT-2009-5) is a European funded project which researches
into the definition of an open framework for the construction and execution of
telco mashups. The service discovery level of framework was applied extensively
on this project to provide mashup component discovery in order to keep the
database of mashup components of the platform up to date.

Other projects where the discovery framework was used are THOFU project,
which deals with innovation in hotels and tourism, Resulta project (TSI-020301-
2009-31), which deals with the improvement of business collaboration in a web
2.0 basis, and VulneraNET project (TSI-020302-2009-64), which deals with the
provision of software security knowledge. In these cases, the thesis’ contributions
were applied in order to support other research lines.

The chapter’s structure follows the different levels of the framework. Section
6.2 covers content discovery evaluation. Section 6.3 describes the evaluation of
service discovery. Finally, section 6.4 describes the evaluation of the agent level of
the framework.

92

Content discovery

6.2 Content discovery

This section covers the evaluation of the content discovery. A software system
called Scrappy1 was built to perform content discovery. It is an Open Source
Semantic scraper that uses the Scraping Ontology for its mappings and implements
the induction algorithm 1 for building generalizable mappings automatically.

6.2.1 Scraping Ontology

This section covers the evaluation of the Scraping Ontology. The Scraping Ontol-
ogy was used to manually build content discovery rules in several scenarios.

In projects Resulta and THOFU, the Scraping Ontology was employed to val-
idate GI2MO ontology [Westerski et al., 2010], an ontology for Idea Management
[Westerski and Iglesias, 2012] which was employed in these projects. Some web
sites with ideas, such as Ubuntu Brainstorm2, were mined in order to obtain about
28,000 of semantically-annotated ideas for further processing [Poveda-Cardona,
2011].

In project Contenidos a la Carta, the Scraping Ontology was employed to
mine eight electronic newspapers and combine data from different sources. The
ontology served to extract information that is not present in content aggregators
like Really Simple Syndication (RSS) feeds, such as location, comments or the full
body of news.

In project VulneraNET, the Scraping Ontology was employed to automati-
cally build an ontology of software security knowledge by mapping the contents
of The Open Web Application Security Project (OWASP)3 onto semantic enti-
ties. Content was discovered after crawling the website with the defined content
discovery rules.

Project OMELETTE uses the Scraping Ontology to discover services, and is
thus detailed in section 6.3.

The variety of scenarios provides an idea of the flexibility of the ontology
to create mappings for extracting information from the web after applying the
mappings and using Scrappy to extract the data.

1http://github.com/josei/scrappy
2http://brainstorm.ubuntu.com
3http://owasp.org

93

http://github.com/josei/scrappy
http://brainstorm.ubuntu.com
http://owasp.org

6. EVALUATION

6.2.2 Automatic rule induction

This section covers how the rule induction algorithm from section 4.3.2 was
employed to generate content discovery rules.

The system has been evaluated on a set of web pages. It has been trained to
extract news posts with title, description and image by using FOAF [Brickley and
Miller, 2000], DC and SIOC ontologies, chosen because of their high adoption
and popularity. An example of extracted piece of news in RDF is the following:

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/spec/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:sioc="http://rdfs.org/sioc/ns#">
<sioc:Post

rdf:about=
"http://abc.es/20110629/internacional/abci-bolivia-coca-201106291637.html">
<dc:description>La Convencion de Viena considera la hoja de coca un estupefaciente,

pero su masticado es una practica ancestral de los indigenas del pais
sudamericano

</dc:description>
<dc:title>Bolivia denunciara la convencion de la ONU que prohibe el masticado de

coca
</dc:title>
<foaf:depiction

rdf:resource="http://www.abc.es/Media/201106/29/10557169--229x229.jpg"/>
</sioc:Post>

</rdf:RDF/>

In the evaluation, a set of experiments are run to check the performance of
the solution. First, the metrics that will be obtained out of each experiment
are defined. Then, the training and testing datasets which have been used are
described, and, finally, the results are presented and discussed.

Evaluation metrics

In order to evaluate the algorithm, a set of metrics will be calculated out of
each test. Typically, recall and precision are the most common metrics used in
information extraction, and they will be used in the evaluation along with F-score,
a combined metric of precision and recall. These metrics are defined next.

Given a single extraction of a set of data out of a web resource, let n+ be the
number of triples that were extracted right, let n be the number of triples that
were extracted, and let N be the number of triples that should have been extracted.

94

Content discovery

With these variables, the following formulae for precision and recall is obtained:

p r ec i s i on =
n+

n
(6.1)

r ecal l =
n+

N
(6.2)

Precision and recall are separate metrics that provide an idea of the perfor-
mance of an information extraction or retrieval test. Precision indicates the ratio
of results that are correct, while recall indicates the ratio of correct results that are
extracted.

In order to have a global indicator that combines both metrics, F-score metric
is defined. F-score is defined as the harmonic mean of precision and recall, which
lets us write:

F = 2 ·
p r ec i s i on · r ecal l

p r ec i s i on+ r ecal l
(6.3)

As of section 4.2, it is desirable to measure the robustness and generalization
of the system. To do so, the testing data is splitted into a robustness test data and a
generalization test data, so robustness and generalization can be defined as follows.

Rob u s t ne s s is defined as the mean of F-scores on a set SR of DOM-altered
web resources ri :

r ob u s t ne s s =

∑

ri∈SR

F (ri)

|SR|
(6.4)

A DOM-altered web resource is a web resource taken from the training dataset
which has been subject to changes in its DOM tree. This makes traditional
wrapper-based approaches to fail, as they base the extraction on a particular
structure of the DOM tree. Examples of variations performed in the DOM tree
can be renaming CSS classes, removing parent nodes, or relabelling HTML nodes.
These variations affect only the internal structure of the document, while the
visual aspect experiences less changes.

Gene ral i zat i on is defined as the mean of F-scores on a testing set ST of
web resources ri which belong to web sites that were not used at training time.

g ene ral i zat i on =

∑

ri∈ST

F (ri)

|ST |
(6.5)

95

6. EVALUATION

Table 6.1: Training dataset
elpais.es abc.es

sioc:Post 326 122
dc:title 343 126
dc:description 343 123
foaf:depiction 175 56
Total triples 1193 427

Because these resources have completely different DOM trees from the resources
used in the training phase, wrapper-based techniques cannot be applied, as they
would require a new wrapper to be constructed. The approach is based on visual
features, so it will be able to extract data, as for usability reasons web sites often
share similar visual aspects.

Evaluation datasets

The datasets used for the evaluation are home pages of three Spanish newspapers:
Abc4, El País5 and El Mundo6. These web sites have some visual aspects in
common and therefore comprise a suitable dataset for the evaluation.

Wrappers were built manually to obtain the supervised data of these web sites.
Sample home pages from different days for each newspaper were selected and a
set of RDF triples were extracted out of them. Table 6.1 summarizes the data in
the training dataset, while table 6.2 shows some samples with their attributes and
classes. Table 6.3 summarizes the testing datasets.

Abc and El País home pages are used as training datasets, while El Mundo is
used as testing dataset for the generalization test. Regarding the robustness test,
El País newspaper performed a layout redesign on 23r d May, 2011, as of Spanish
elections held the day before, in order to better present the elections’ results. This
affected the performance of the manually constructed wrapper, and therefore
makes it an interesting testing sample for the robustness test.

Results and discussion

Table 6.4 shows the results of the generalization test. As the testing samples
belong to a news site, they share some visual aspects with the training data, so the

4http://www.abc.es
5http://www.elpais.es
6http://www.elmundo.es

96

http://www.abc.es
http://www.elpais.es
http://www.elmundo.es

Content discovery

Table 6.2: Training samples
X Y Width Height Font size Font type ... Triple

x1 118 5552 310 243 N/A N/A ... r d f :t y pe(x1, s i oc :Pos t)
x2 119 5558 310 26 18 serif ... d c :t i t l e(x1, x2)
x3 118 5736 310 28 16 sans-serif ... d c :d e s c r i p t i on(x1, x3)
x4 787 332 300 703 N/A N/A ... r d f :t y pe(x4, s i oc :Pos t)
x5 787 507 284 53 22 sans-serif ... d c :t i t l e(x4, x5)
x6 787 569 300 34 12 sans-serif ... d c :d e s c r i p t i on(x4, x6)
x7 114 1247 390 301 N/A N/A ... r d f :t y pe(x7, s i oc :Pos t)
x8 114 1474 299 26 22 sans-serif ... d c :t i t l e(x7, x8)
x9 114 1509 390 34 12 sans-serif ... d c :d e s c r i p t i on(x7, x9)
x10 114 1258 390 194 N/A N/A ... f oa f :d e pi c t i on(x7, x10)

Table 6.3: Testing datasets
Robustness test Generalization test

elpais.es elmundo.es
sioc:Post 79 529
dc:title 79 546
dc:description 79 545
foaf:depiction 39 223
Total triples 276 1843

97

6. EVALUATION

Table 6.4: Evaluation of generalization
Wrapper Rules

Triples – 1843
Extracted triples – 1423
Correct triples – 1325
sioc:Post precision – 98.07%
sioc:Post recall – 76.94%
sioc:Post F-score – 86.23%
dc:title precision – 98.13%
dc:title recall – 76.74%
dc:title F-score – 86.13%
dc:description precision – 83.60%
dc:description recall – 76.70%
dc:description F-score – 80.00%
foaf:depiction precision – 100.00%
foaf:depiction recall – 36.32%
foaf:depiction F-score – 53.29%
General precision – 93.11%
General recall – 71.89%
General F-score – 81.14%

system managed to extract most pieces of news right. Regarding precision, the
system failed to extract properly some pieces of news that are shown in figure 6.1.
According to the learned patterns, the top text in a piece of news should represent
the title and the lowest one the news description, although in this case the top text
is just a news category. Also, the system could not extract some pieces of news in
the middle column, as their size is smaller than the pieces of news that were used
to learn the patterns, which affected the results of the recall metric.

In the case of the technique of wrapper induction, it requires a new wrapper to
be constructed for each new site. Therefore, generalization results do not include
wrapper induction as long as it does not have generalization capabilities.

Table 6.5 shows the results of robustness test. The system shows top precision
and very high recall. The high precision is achieved because all the news that
appear in the web site have a similar one whose pattern was already learned in the
training phase. Regarding recall, the system managed to extract news that were
published under a new layout, while the manually built wrapper failed to achieve
so.

The tests prove the robustness of the approach, which makes it a suitable tool

98

Content discovery

Figure 6.1: Extraction errors on a new web site

Table 6.5: Evaluation of robustness
Wrapper Rules

Triples 276 276
Extracted triples 196 238
Correct triples 196 238
sioc:Post precision 100.00% 100.00%
sioc:Post recall 68.35% 86.08%
sioc:Post F-score 81.20% 92.52%
dc:title precision 100% 100.00%
dc:title recall 67.50% 86.25%
dc:title F-score 80.60% 92.62%
dc:description precision 100.00% 100.00%
dc:description recall 67.50% 86.25%
dc:description F-score 80.60% 92.62%
foaf:depiction precision 100.00% 100.00%
foaf:depiction recall 91.89% 86.49%
foaf:depiction F-score 95.77% 92.75%
General precision 100.00% 100.00%
General recall 71.01% 86.23%
General F-score 83.05% 92.61%

99

6. EVALUATION

for automatic maintenance of wrappers. Additionally, the system shows good
generalization capabilities, which turns it into a useful tool for the automatic,
unsupervised generation of wrappers in unforeseen web sites. The evaluation
has been performed on a specific domain. In a different domain, it is expected
that the rules would extract those HTML fragments that resemble pieces of news
according to the evaluation performed. Mismatches would only happen in those
cases where fragments visually appear to be pieces of news but which are not
because of their contents.

6.3 Service discovery

This section describes the evaluation of the service level of the discovery frame-
work. The approach of using features to describe services is evaluated on the
domain of picture search to build a metasearch service. Also, service discovery
is evaluated by building a metadirectory that aggregates the services available on
several different repositories from the web.

6.3.1 Service probing

As said, feature-oriented descriptions attempt to simplify the process of defining
service descriptions to favour automatic service consumption in the Semantic Web.
This section defines a vocabulary for describing services that perform retrieval
operations, i.e. search services, and discovers a set of service using service probing.
In order to narrow the scope of the task, only image search services are considered.
These kinds of services attempt to fulfil the user’s goal of finding a particular kind
of image on the web. This work was performed to provide a baseline of search
services for the mashup platform of ROMULUS project.

In order to perform the task of discovering a set of image search services, the
next steps are followed:

1. Identify popular image search services.

2. Collect features across the considered services.

3. Model features through feature definitions.

4. Adapt services to fit the modelled interface.

5. Discover service features for each service using service probing.

100

Service discovery

Service modelling

Google Images, Panoramio, Bing Images and Flickr search are the search services
that are analyzed and modelled. Other image search services are available, but the
decision to choose this set is based on the fact that:

1. Flickr offers capabilities that are not present on the other services, such as
tag search.

2. Panoramio offers additional capabilities that are not present on the rest of
services, such as search by location.

3. Google Images and Bing Images have similar capabilities, but offer a different
interface. This fact could impact on the vocabulary.

After identifying the services that are considered for the modelling task, raw
features from these services are collected. By observing each of these services,
it can be observed that some features define the obvious behaviour of a search
service and are enabled by default, while others require additional configuration
in the service, often accessible through an “advanced search” option. Therefore,
for this task, it was necessary to access “advanced search” and help pages of the
services in order to discover their capabilities.

It is immediate to identify raw features such as “the service returns a set of
images as search result”. However, this raw feature can be split into finer-grained
features, such as “returning a set of results”, “returning an image” and “performing
a retrieval operation”. The combination of these three features matches the
aforementioned raw feature.

Table 6.6 summarizes the features that have been identified in the considered
services. The first column shows raw features that were identified in the services,
while the next column represents the specific finer-grain features that are produced.
The third column is a shorthand term that represents the feature.

The next step is modelling the features, so that feature discovery can be
performed and an extended service description can be produced out of a plain list
of features. This is done by defining features through service discovery rules. An
example is the fact of outputting images: feature image and feature get should set
the condition that the service’s output has to be an image, which can be expressed

101

6. EVALUATION

Raw feature Feature Term

A set of images is returned
to the user as search result

Retrieval operation per-
formed

get

Multiple resources
involved

multiple

Resource represents an
image

image

Images are filtered accord-
ing to a location

Resource is filtered by lo-
cation

location-filtered

Images are indexed from
anywhere in the web

Resource cannot belong
to another domain

local

Images are summarized and
have a thumbnail

Resource is summarized summarized
Resource has a title titled

Images can be searched by
keywords

Resource is filtered by
given keywords

keyword-filtered

Images can be searched by
tags

Resource is filtered by
given tags

tag-filtered

Images can be searched by
dimensions

Resource is filtered by di-
mensions

size-filtered

Images can be searched by
creation or taking date

Resource is filtered by cre-
ation date

creation-filtered

Resource is filtered by
publishing date

publishing-filtered

Images can be selected by
license

Resource is filtered by li-
cense

license-filtered

Images can be searched by
colour and content

Resource is filtered by
colour

colour-filtered

Resource is filtered by
content

content-filtered

Table 6.6: Analysis of detailed features out of raw ones

through the following discovery rule:

y ∈O u t p u t (x)∧ s i oc :I ma g e(y) ⇒
ms :has_ f eat u r e(x, i ma g e)∧ms :has_ f eat u r e(x, g e t))

(6.6)

This feature definition solves the feature interaction between image and get.
Therefore, for each of the identified features, a set of feature definitions that

consider the possible feature interactions are built. The identified feature defini-
tions are shown in table 6.7.

The first column shows the features that are involved in each definition, and
the next two columns show the preconditions and postconditions. These feature
definitions allow producing an extended service description when combining
different features. This service description can be processed to perform operations

102

Service discovery

Feature Conditions
get me t hod (x) =GET ∧ s t at u s(x) = 200
image y ∈O u t p u t (x)∧ f eat u r e(x, g e t)
multiple |O u t p u t (x)|> 1∧ f eat u r e(x, g e t)
summarized y ∈O u t p u t (x)∧ d c :d e s c r i p t i on(y, z)∧ f eat u r e(x, g e t)
keyword-filtered y ∈ I n p u t (x)∧ r d f :t y pe(y, r d f :Li t e ral) ∧

z ∈O u t p u t (x)∧ d c :s u b j ec t (z, y)∧ f eat u r e(x, g e t)
tag-filtered y ∈ I n p u t (x)∧ c t a g :Ta g (y) ∧

z ∈O u t p u t (x)∧ c t a g :t a g g ed (z, y)∧ f eat u r e(x, g e t)
local y ∈O u t p u t (x)∧ d omai n(y) = d omai n(x)) ∧

f eat u r e(x, g e t)
titled y ∈O u t p u t (x)∧ d c :t i t l e(y, z)∧ f eat u r e(x, g e t)
size-filtered y ∈ I n p u t (x)∧ pi c :Si ze(y)∧ z ∈O u t p u t (x) ∧

pi c :s i ze(z, y)∧ f eat u r e(x, i ma g e)∧ f eat u r e(x, g e t)
creation-filtered y ∈ I n p u t (x)∧ r d f :t y pe(y, pi c :M i nC r eat i on) ∧

z ∈O u t p u t (x)∧ d c :dat eS u b mi t t ed (z, j)∧ y < j ∧
f eat u r e(x, g e t)

publishing-filtered y ∈ I n p u t (x)∧ r d f :t y pe(y, pi c :M i nP u b l i s hi n g) ∧
z ∈O u t p u t (x)∧ d c :dat eAcce p t ed (z, j)∧ y < j ∧
f eat u r e(x, g e t)

license-filtered y ∈ I n p u t (x)∧ r d f :t y pe(y, pi c :Li cens e) ∧
z ∈O u t p u t (x)∧ d c :l i c ens e(x, z)∧ f eat u r e(x, g e t)

location-filtered y ∈ I n p u t (x)∧ r d f :t y pe(y, l oc :Locat i on) ∧
z ∈O u t p u t (x)∧ l oc :i nLocat i on(z, y) ∧
f eat u r e(x, g e t)

content-filtered y ∈ I n p u t (x)∧ r d f :t y pe(y, pi c :C ont ent) ∧
z ∈O u t p u t (x)∧ pi c :cont ent (z, y) ∧
f eat u r e(x, g e t)

colour-filtered y ∈ I n p u t (x)∧ r d f :t y pe(y, pi c :C ol ou r) ∧
z ∈O u t p u t (x)∧ pi c :col ou r (z, y) ∧
f eat u r e(x, g e t)

Table 6.7: Specification of features

such as automatic validation (validating conditions), automatic discovery of the
semantics of inputs, or automatic user interface generation, as will be seen later
on.

A system that allows wrapping existing services into services that fit a specific
interface was implemented. In the proposed vocabulary, there are assumptions
such as input types and semantics. In order for the services to fit this interface,
an adaptation has to be performed. For each service, content discovery rules
are defined to transform information into the specific model. This lets using the
existing services with the interface that has been defined in the vocabulary.

103

6. EVALUATION

Method Input
1 get r d f s :l ab e l (x1, ”g ui t a r ”)∧ r d f :t y pe(x2, pi c : Bi g Si ze)
2 get r d f s :l ab e l (x1, ”r ock”)
3 get r d f s :l ab e l (x1, ”b l ue s”)∧ r d f :t y pe(x2, c t a g :Ta g) ∧

r d f s :l ab e l (x2, ”e r i c c l a p t on”) ∧
r d f :t y pe(x3, pi c : RedC ol ou r)

Table 6.8: Sample requests used for service probing

Service probing

Once feature definitions are defined and wrappers for each service are created, the
service probing algorithm can be applied to discover service descriptions. For
such task, according to 5.2.2, a set of input requests for the services are generated
by monitoring the user’s execution of such services. In other words, a user
performs sample searches entering keywords, filtering by the available options
of the services, and these interactions are recorded as samples. A set of sample
requests obtained and used as input for service probing is shown in table 6.8. The
associated outputs for these requests when employing Google Images are shown
in table 6.9.

When executing the algorithm, discovery rules are applied to the sample
HTTP interactions and features are identified. From the supplied subset of samples
shown in tables 6.8 and 6.9, the features get, multiple, image, keyword-filtered, size-
filtered and summarized were identified. Although tags for filtering are provided
on the third request sample, Google Images does not respond to such inputs, and
thus feature tag-filtered is not identified, as expected.

An issue with certain features is the lack of semantic annotations on the output
that reveal some properties such as colour of the images or the type of content (e.g.
is it a picture of faces, or clipart?). This requires additional manual annotation
of outputs in order to obtain suitable results when running the service probing
algorithm.

Table 6.10 shows the discovered services’ capabilities, i.e. the presence of the
identified features on the considered services after running the service probing
algorithm. As anticipated, Google Images and Bing Images share the same capabil-
ities, while Flickr and Panoramio services serve to enrich the vocabulary in order
to cover a wider set of features.

Each service can be executed through a user interface that is generated au-
tomatically by analysing the feature discovery rules. Also, a description of the

104

Service discovery

Status Output
1 200 OK f oa f :I ma g e(y1) ∧ c t a g :t a g g ed (y1, ”g ui t a r ”) ∧

d c :d e s c r i p t i on(y1, ”Gui t a r wal l pa pe r...”) ∧
pi c :s i ze(y1, pi c : Bi g Si ze) ∧

f oa f :I ma g e(y2) ∧ c t a g :t a g g ed (y2, ”g ui t a r ”) ∧
d c :d e s c r i p t i on(y2, ”W i r e l e s s g ui t a r ”) ∧
pi c :s i ze(y2, pi c : Bi g Si ze) ∧

f oa f :I ma g e(y3) ∧ c t a g :t a g g ed (y3, ”g ui t a r ”) ∧
d c :d e s c r i p t i on(y3, ”E l ec t r i c g ui t a r...”) ∧
pi c :s i ze(y3, pi c : Bi g Si ze) ∧

f oa f :I ma g e(y4) ∧ c t a g :t a g g ed (y4, ”g ui t a r ”) ∧
d c :d e s c r i p t i on(y4, ”H e r i t a g e c he r r y...”) ∧
pi c :s i ze(y4, pi c : Bi g Si ze) ∧

f oa f :I ma g e(y5) ∧ c t a g :t a g g ed (y5, ”g ui t a r ”) ∧
d c :d e s c r i p t i on(y5, ”H ow t o p l ay...”) ∧
pi c :s i ze(y5, pi c : Bi g Si ze) ∧

...
2 200 OK f oa f :I ma g e(y1) ∧ d c :s u b j ec t (y1, ”r ock”) ∧

d c :d e s c r i p t i on(y1, ”D u r i n g t he t i me s ...”) ∧
f oa f :I ma g e(y2) ∧ d c :s u b j ec t (y2, ”r ock”) ∧

d c :d e s c r i p t i on(y2, ”T oo ol d t o r ock”) ∧
f oa f :I ma g e(y3) ∧ d c :s u b j ec t (y3, ”r ock”) ∧

d c :d e s c r i p t i on(y3, ”Rock s and s oi l s”) ∧
f oa f :I ma g e(y4) ∧ d c :s u b j ec t (y4, ”r ock”) ∧

d c :d e s c r i p t i on(y4, ”Rock saved my l i f e ...”) ∧
f oa f :I ma g e(y5) ∧ d c :s u b j ec t (y5, ”r ock”) ∧

d c :d e s c r i p t i on(y5, ”I have a r ock ...”) ∧
...

3 200 OK f oa f :I ma g e(y1) ∧ d c :s u b j ec t (y1, ”b l ue s”) ∧
d c :d e s c r i p t i on(y1, ”P iano b l ue s ...”) ∧
pi c :col o r (y1, pi c :RedC ol ou r) ∧

f oa f :I ma g e(y2) ∧ d c :s u b j ec t (y2, ”b l ue s”) ∧
d c :d e s c r i p t i on(y2, ”St r u mmi n g b l ue s ...”) ∧
pi c :col o r (y2, pi c :RedC ol ou r) ∧

f oa f :I ma g e(y3) ∧ d c :s u b j ec t (y3, ”b l ue s”) ∧
d c :d e s c r i p t i on(y3, ”B l ue s j am a r t ...”) ∧
pi c :col o r (y3, pi c :RedC ol ou r) ∧

f oa f :I ma g e(y4) ∧ d c :s u b j ec t (y4, ”b l ue s”) ∧
d c :d e s c r i p t i on(y4, ” piano man p l ayi n g”) ∧
pi c :col o r (y4, pi c :RedC ol ou r) ∧

f oa f :I ma g e(y5) ∧ d c :s u b j ec t (y5, ”b l ue s”) ∧
d c :d e s c r i p t i on(y5, ”B l ue s b r ot he r s”) ∧
pi c :col o r (y5, pi c :RedC ol ou r) ∧

...

Table 6.9: Sample responses obtained when probing Google Images service

105

6. EVALUATION

Term Google Bing Flickr Panoramio
get Ø Ø Ø Ø
multiple Ø Ø Ø Ø
image Ø Ø Ø Ø
location-filtered 7 7 7 Ø
local 7 7 Ø Ø
summarized Ø Ø Ø Ø
titled 7 7 Ø Ø
keyword-filtered Ø Ø Ø 7
tag-filtered 7 7 Ø Ø
size-filtered Ø Ø Ø 7
creation-filtered 7 7 Ø 7
publishing-filtered 7 7 Ø 7
license-filtered 7 7 Ø 7
colour-filtered Ø Ø 7 7
content-filtered Ø Ø 7 7

Table 6.10: Mapping between features and the considered services

service can be obtained by combining the feature definitions. Additionally, when
executing the service adapters, the preconditions and postconditions are checked,
which allows automatic validation of the services. Finally, the service descriptions
are published as Linked Data, as well as the services’ output.

Some additional aspects of the approach are worth mentioning. For example,
both Bing and Google Images allow filtering images by content. Bing allows
image filtering by photographies, illustrations and content filtering by face or
face and shoulders. Instead, Google supports ‘clip art’ filtering, as well as photos,
illustrations and face filtering, but not face and shoulders filtering. Therefore,
although both of them have the capability of filtering images by content type, the
specific feature is slightly different in each of them. In order to reduce complexity,
it has been assumed that both services share the content-filtered feature, and
adapt the input appropriately through the content discovery rules.

The feature-oriented approach allows reusing features across different services,
even in the case that they belong to different domains. Many of the modelled
features can be combined to describe services that do not target image retrieval, but
resource retrieval in general. A video search service would only need to introduce
a new feature (“dealing with videos”) and define a few feature definitions. Similarly,
a document search service is simply a subset of the defined vocabulary (i.e. to
define a web page search service, the image feature should be left out). Storage
services (i.e. those performed with the HTTP POST and PUT methods) would
require more feature definitions, as most definitions interact with get feature.

106

Service discovery

A metasearch service

A metasearch service has been implemented as a case study for the defined vocabu-
lary. This metasearcher aggregates results from the described services (i.e. Google
Images, Bing Images, Flickr and Panoramio). As these services have heterogeneous
features, the problem is not trivial.

The metasearcher works as follows. First, it considers a service description that
includes all the features shown in table 6.6. Then, by analizing the preconditions
that result from combining feature definitions, it identifies required inputs and
their types. With this set of inputs, it builds a user interface that allows executing
the service.

However, as can be observed in table 6.6, no service has all the mentioned
features. The metasearcher will then select matching services according to the
features that are used in each query. In order to do so, the metasearcher validates
preconditions for each feature. If the precondition is not valid, the feature is
considered inactive. Only active features will be considered when filtering services.
Then, the matching services are executed and their results are aggregated.

For example, let’s consider that a user interacts with the metasearcher
by providing some keywords, picking an image size, and clicking the submit
button. Then, location-filtered, tag-filtered, creation-filtered,
publishing-filtered, license-filtered, coloured-filtered and
content-filtered features will be deactivated, as long as their precondi-
tions are not satisfied (as long as their required inputs are not provided).

It is remarkable that the process of detecting the features to deactivate is not
immediate. An insatisfied condition belongs to a feature definition which can
involve many features. For example, if no keywords are passed to the metasearcher,
it has to decide whether to deactivate feature get or feature keyword-filtered,
as both are involved in the definition that requires keywords as input. We consider
that the number of feature interactions is an indicator of the importance of a fea-
ture. Therefore, the employed criteria has been to perform the minimum number
of deactivations of definitions (and thus the minimum number of deactivation of
feature interactions), and an algorithm has been implemented for this purpose.

Also, the activation state of certain features cannot be identified automatically.
This is the case of the local feature and titled feature, which are present only
in Flickr and Panoramio, and do not set preconditions. These features are thus
not considered by the metasearcher for service matching, as their inclusion would
make that only Flickr and Panoramio are able to match the required features.

107

6. EVALUATION

The metasearcher has been implemented as a generic service aggregator, in
which a set of features are selected for service matching and aggregation. This
means that this implementation is independent of the considered features, as the
user interface is built by analyzing a microservice description, and the features
are selected according to the satisfaction of their preconditions. We have also
experimented on aggregating plain search services with same satisfactory results,
allowing to aggregate image results as well as document results. This makes
this implementation an interesting foundation for the definition of an abstract
microservice aggregator based on sets of required features, which however is out
of the scope of this paper.

Discussion

The feature-oriented approach for service description has been used to build a
vocabulary that can be employed to build semantic service descriptions for image
search services in the web. The solution is a small set of terms that illustrates
the feature-oriented approach of the framework and highlights the versatility of
lightweight semantics. The feature-oriented approach has provided a solution that
generalizes well to other search services while it is specific to the targete domain.
The vocabulary has been used to semantically describe a set of services that are
aggregated on a metasearcher.

6.3.2 Services as contents

We propose a semantic service discovery process and description of existing service
repositories, such as Programmable Web and Yahoo Pipes, which are two service
repositories which provide plenty of services that can be reused by developers to
build new web applications. The challenges behind integrating these repositories
involved the problems of defining a common model, identifying relevant data and
integrating and ranking the extracted data.

A metadirectory that makes use of LiMOn has been built. This metadirectory
integrates heterogeneous components that can be potentially used in various web
applications. More specifically, mashup applications, services, and widgets from
the Web are the considered components that will be included into the metadirec-
tory because of the repositories that have been targeted, again Programmable Web,
Yahoo Pipes and Opera Widgets.

In order to make the components addressable by developers, the metadirec-

108

Service discovery

tory stores relevant metadata that can be used by the developers for selecting
components. Additionally, these metadata should be available in the web in order
to make it possible to automate the population of the metadirectory with real
components. Usually, web component repositories usually contain metadata such
as a component’s name, textual description, tags or categorization. Other specific
properties that depend on the nature of the component can also be found, such as
inputs, endpoints, web service dependencies, or underlying formal descriptions
like WSMO or WSDL.

Data harvesting and integration

In this section, we will cover how the metadirectory has been populated with
components from the targeted repositories (i.e. Programmable Web, Yahoo Pipes
and Opera Widgets) and how the data has been integrated.

We have defined a semantic proxy layer on top of the repositories. For each
repository, we have defined the mappings between their HTML contents of their
web resources and the RDF data they provide according to the model defined at
section 5.3.2. To define these mappings we have used the Scraping Ontology7

[Fernández-Villamor et al., 2010b]. This approach lets the system to have an RDF
view of the unstructured data in the source repositories. With that, an automated
agent crawls the source repositories and extracts the RDF data, which are then
stored into the metadirectory.

Once the metadirectory is populated with components from the web, a unified
categorization scheme is seeked in order to provide an homogeneous interface
for querying the metadirectory. This is necessary because of the diversity that is
present in the categorization of the targeted repositories. For instance, compo-
nents retrieved from Programmable Web are already tagged and use their own
categorization scheme. The ones from Yahoo Pipes only have the tags that have
been set by the users. On the other hand, Opera Widgets repository provide
components that are classified under a closed set of categories. Therefore, the
components do not share a common categorization scheme, which limits the
querying capabilities.

To integrate all the categorization schemes, we will define mappings between
the concepts of each taxonomy. This enables querying the metadirectory by using
any of the available categorization schemes without restricting the query to a par-
ticular repository. To achieve this, we will define a new categorization scheme by

7http://lab.gsi.dit.upm.es/scraping.rdf

109

http://lab.gsi.dit.upm.es/scraping.rdf

6. EVALUATION

clustering the components available in the metadirectory. This automatically built
scheme will be mapped to the categorization schemes provided by Programmable
Web and Opera Widgets. Additionally, a mapping between Programmable Web
scheme and Opera Widgets’ will be manually defined.

Automatic categorization

In this section, we will describe how to automatically build a categorization system
that allows users to query the metadirectory. In many cases, components already
belong to a category that was defined in their source repository. As said, both
Programmable Web and Opera Widgets provide some categorization schemes,
with categories such as “Tools”, “Mapping”, or “Sports”. In the case of Yahoo
Pipes repository, only tags are used to categorize each pipe.

Whenever only tags are used to categorize components, we propose the fol-
lowing method to build a categorization scheme based on the most common
tag combinations in the component space. We will use clustering techniques
to identify the most common categories in the space, and thus to define a new
categorization scheme. The resulting categorization scheme will be mapped to
the other schemes in section 6.3.2 to provide a uniform interface for querying the
metadirectory.

To perform the clustering, components are modeled as a vector representing
the tags they have:

a = (a1,a2, ...,an),ai ∈ {0,1} (6.7)

A weighted euclidean distance between a pair of components a and b is used
by the clustering algorithm:

d (a, b) =

√

√

√

√

n
∑

i=1

wi · (ai − bi)
2 (6.8)

The weights for each dimension are adjusted according to the popularity of
the tag. This way, less relevant tags will have less weight in the measuring.

According to 6.7, an example of a simple set of components like the following:

110

Service discovery

f ou r s q ua r e = (ma p pi n g , s oc ial , game s)
g oo g l e ma p s = (ma p pi n g)

f ac e b ook = (s oc ial)
b l ue via = (ma p pi n g , t e l e p hony, g eol ocat i on)

(6.9)

would be represented by the next vectors:

f ou r s q ua r e = (1,1,1,0,0)
g oo g l e ma p s = (1,0,0,0,0)

f ac e b ook = (0,1,0,0,0)
b l ue via = (1,0,0,1,1)

(6.10)

According to the popularity of each tag, the set of weights would be the
following:

W = (0.375,0.250,0.125,0.125,0.125) (6.11)

And thus some sample distances would be as follows:

d (b l ue via, g oo g l e ma p s) =
p

0.1252+ 0.1252 ≈ 0.1768

d (f ou r s q ua r e , f ac e b ook) =
p

0.3752+ 0.1252 ≈ 0.3953

d (f ac e b ook , b l ue via) =
p

0.3752+ 0.2502+ 0.1252+ 0.1252 ≈ 0.4841
(6.12)

With this we can compute the similarity between two components in the
metadirectory. By using this similarity measure, we can perform some clustering
to identify which are the most characteristic sets of components in the metadirec-
tory.

A Sammon mapping has been used to represent the components and clusters
[Sammon, 1969]. The Sammon’s mapping function allows to perform a dimen-
sionality reduction on the component space and map the n-dimensional space
to a bidimensional one while attempting to preserve the distances between the
represented vectors. This allowed us to visually estimate the number of clusters
that were present in the system.

111

6. EVALUATION

Figure 6.2: Mapping detection among categories

Mapping identification

Mappings between categorization schemes are identified automatically using an
algorithm that checks set intersections. Given two categories A and B with
the component sets A and B , respectively, the following mappings are identified
according to the overlap between sets:

• If |A∩B |
max(|A|,|B |) ≥ 0.95, thenA andB are considered equivalent categories.

• If |A∩B |
max(|A|,|B |) ≥ 0.85, thenA andB are considered close categories.

• If |A−B |
mi n(|A|,|B |) ≤ 0.05, thenA is considered a subcategory ofB .

• If |B−A|
mi n(|A|,|B |) ≤ 0.05, thenB is considered a subcategory ofA .

These conditions are illustrated in Fig. 6.2. As shown, Simple Knowledge
Organization System (SKOS) [Miles and Bechhofer, 2008] ontology concepts are
employed to define the mappings between categories. SKOS proposes a schema
for the definition of taxonomies and mappings between them. The relation
s kos :e xac t M at c h is employed for categories that are considered equivalent;
s kos :c l os eM at c h indicates that two categories are very similar and could be
used interchangeably in certain contexts; s kos :na r r owM at c h indicates that the
subject category is a subcategory of the object; s kos :b r oad M at c h states that the
subject category is a supercategory of the object.

This allowed to identify a set of mappings among the different taxonomies.
Fig. 6.3 shows some of the mappings. Opera Widgets repository provides no tags,
so mappings with Programmable Web’s taxonomy were defined manually. As it
can be seen, some categories are defined as sub- or supercategories of others, whilst
others are defined as close or exact matches. In the case of Yahoo Pipes repository,
the previously described method for automatically building a taxonomy was used.
We executed a clustering algorithm to obtain nine different categories. Then, the

112

Service discovery

Figure 6.3: Mapping among the different categorization schemes

resulting categories were applied to Programmable Web’s data. The resulting sets
were compared to the ones that Programmable Web already provides as shown in
this section, which resulted in the identified relations among the categories of the
different taxonomies.

The metadirectory contains 10,194 services, 7,032 mashups and 1,804 widgets,
as of a crawling performed in July 2011 on the mentioned repositories of Yahoo
Pipes, Programmable Web and Opera Widgets.

In order to evaluate the metadirectory, a set of queries have been defined
to check its selection capabilities. Table 6.11 shows the SPARQL Protocol and
RDF Query Language (SPARQL) queries that result for each of the previously
stated queries, along with the resulting components retrieved from the metadirec-
tory. The queries are ones that a developer would make in order to retrieve the
appropriate component for a particular problem:

1. Which free components deal with photos/pictures?. Usually, mashup editors
offer a list of available components organized by categories. This is easily

113

6. EVALUATION

achievable in the metadirectory by filtering components that do not match
a particular category. Without a metadirectory, this would imply visiting
several repositories and browsing the desired category in order to get a list
of suitable components.

2. What mapping services are provided by Microsoft?. Because of business is-
sues, often developers need to select components based on the provider
of the component. Registries such as Programmable Web provide vendor
information but do not allow filtering by vendor.

3. Which APIs are more commonly used by telco mashups?. Occasionally, de-
velopers need insights on component usage in a particular domain. This
query is focused towards telco mashups and the kind of APIs they use. A
query like this, though simple, is not allowed in the repositories where the
components were extracted from.

4. What commercial mapping services are readily usable?. In some cases, compo-
nent repositories only help to provide awareness of a component, i.e. know
that the component exists and is available. This makes that the metadirec-
tory is populated with components with purely general metadata such as
a broad categorization and components with precise semantic description
such as WSMO descriptions. I.e. some components are already runnable
and others do not. Our metadirectory retrieved services from Yahoo Pipes
and transformed the execution forms into WSMO service descriptions.
Also, many components in Programmable Web are linked to their WSDL
file. This make it possible to find readily runnable components in our
metadirectory and filter them in a query.

5. What data sources are more often employed by news mashups?. This query
insights into the sources that are employed in the field of digital news. The
metadirectory allows performing the query among applications present in
different repositories.

6. Which mapping APIs are provided by the most trustable companies?. This
query attempts to select services according to their trust. We will model
trust by employing provider’s number of employees, as an indicator of
company’s size. The query could be reformulated as retrieving all APIs
which belong to the mapping category, sorted by vendor’s number of
employees. The vendor information is retrieved from DBpedia, which

114

Agent level

illustrates the advantage of using LiMOn for linking information on mashup
components.

In comparison with searching multiple repositories manually, the metadirec-
tory enables:

• Accessing information about components that were are originally available
in separate, heterogeneous repositories from the web. As seen, compo-
nent repositories offer information in their own format, which required
extraction and integration in a harvesting task. After that integration, the
metadirectory allows querying through a uniform interface.

• Performing complex queries about these components. Usually, component
repositories such as the ones employed are very limited in their querying
capabilities. Although they offer plenty of information, the offer browsing
functionalities rather than complex search interfaces.

• Using external information that is available in the Linked Data cloud to
complement the information from the source repositories. Information
available in DBpedia or other Linked Data sources can be integrated in
queries to the metadirectory, allowing to extend the queries with data that
is present in other systems.

As a result, the different challenges that developers face when selecting com-
ponents for building a mashup have been summarized. By using LiMOn, several
component repositories have been mined and loaded onto a metadirectory. A
clustering method has been used to integrate the different taxonomies of the reposi-
tories in order to unify the categorization of the metadirectory. The metadirectory
then offers a unified query interface that allows retrieving components through
complex queries, involving components of different nature, and allowing making
use of external data from the Linked Data cloud.

6.4 Agent level

A scenario that makes use of the agent model and the discovery framework has
been defined. A bare-bone implementation of the agent has been developed based
on Scrappy, which was extended with the intelligent agent model. The result is an
agent that is able to address top-level goals for discovering contents and services in
the web and is used in a scenario to validate the proposed framework. The agent

115

6. EVALUATION

Query SPARQL query Results

Which free components
deal with photos/pic-
tures? SELECT ?component

WHERE
{ ?component rdf:type limon:Component;

limon:categorizedBy limon:PhotoCategory;
FILTER NOT EXISTS {

?component limon:usageFees ?fees . } }

Photobucket, TweetPhoto, AOL
Pictures, Lockerz, Pixlr, Mood-
stocks, Fonxvard, Steply, Pixe-
nate, Fishup, Shutterfly, Picmem-
ber, ExposureManager, PicApp,
and 46 more

What mapping ser-
vices are provided by
Microsoft? SELECT ?service

WHERE
{ ?service rdf:type limon:Service;

limon:categorizedBy limon:MappingCategory;
limon:provider <http://www.microsoft.com> . }

Bing Maps

Which APIs are more
commonly used by telco
mashups? SELECT (count(?api) as ?apis) ?api

WHERE {
?mashup limon:uses ?api ;

limon:categorizedBy
limon:TelcoCategory . }

GROUP BY ?api
ORDER BY DESC (?apis)

Twilio (52%), Twitter (5.7%),
Tropo (3.9%), Facebook (3.6%),
other (34.5%)

What commercial map-
ping services are readily
usable? SELECT ?service

WHERE
{ ?service rdf:type limon:Service;

limon:categorizedBy limon:MappingCategory ;
limon:usageFees ?fees ;
limon:describedBy ?wsdl . }

CDYNE IP2Geo, ArcWeb,
Postcode Anywhere, PeekaCity,
ShowMyIP, FraudLabs Mex-
ico Postal Code, FraudLabs
ZIPCodeWorld United States

What data sources are
more often employed by
news mashups? SELECT (count(?api) as ?apis) ?api

WHERE {
?mashup limon:uses ?api ;

limon:categorizedBy
limon:NewsCategory ;

?api limon:categorizedBy
limon:FeedCategory . }

GROUP BY ?api
ORDER BY DESC (?apis)

CNN (2.18%), Google News
(1.36%), NY Times (1.18%), BBC
(1.09%), Yahoo News (0.91%),
others (93.17%)

Which mapping APIs are
provided by the most
trustable companies? SELECT ?api ?provider ?employees

WHERE {
?api limon:categorizedBy omr:mapping ;

limon:provider ?provider .
?dbpcompany dbpedia-owl:wikiPageExternalLink

?provider ;
dbpedia-owl:numberOfEmployees

?employees . }
ORDER BY ?employees

Nokia Ovi Maps (Nokia: 132,430
employees), Ericsson Mobile
Maps (Ericsson: 90,260 em-
ployees), Bing Maps (Microsoft:
89,000 employees), Google Maps
(Google: 24,400 employees),
Yahoo Maps (Yahoo: 13,600
employees), others

Table 6.11: Evaluation of metadirectory’s interface

116

Agent level

RDFRDF

HTML
HTML

Belief
base

HTML

RDF
RDF

Manual
supervision

Feeding phase

a ^ b ^ d e
f ^ g ^ h i

Automatic
induction of
discovery rules

Execution phase

Web

- x User requests
related
resourcesBrowser

Admin

New goal added

Goals

Results are
provided to
user

Agent

RDF
RDF

Triggered plan picks
matching service

plan1

Service

Agent gets keywords
through new plan

plan2goal

word word

Spain

Search

Agent uses
search service

New beliefs
fit goal, task
is finished

Beliefs trigger focused
crawling plans

plan3

Figure 6.4: Agent’s lifecycle and interaction with scenario

is then configured to perform high-level tasks under a scenario that deals with
electronic newspapers.

6.4.1 Description

The scenario addresses the problem of contrasting similar pieces of news when
surfing the web. Electronic newspaper readers often read a same piece of news
in several sources to cross-check the views of the different newspapers, therefore
spending a considerable amount of time searching the web for news. Also, users of-
ten browse news by similar topics, as they represent their own interests. Although
most electronic newspapers provide recommendations to guide users when they
are browsing their web sites, they do not provide outlinks to other newspapers so
that the users can easily contrast different sources and how news are edited.

A contribution to the solution of this problem is using an agent that searches
various electronic newspapers on behalf of the readers. For this purpose, a browser
plugin is developed as a button that triggers the agent’s execution. After clicking
the button, the agent is launched and searches contents that might be useful for
the user.

The main challenges that are addressed in this scenario are:

• Extracting the data from the addressed contents. By following the proposed
discovery framework, discovery rules are used to perform this extraction.
Defining the discovery rules for the information extraction is done semiau-
tomatically thanks to rule induction algorithms.

• Using services for relating the news posts and identifying the recommenda-
tions. According to the discovery framework, the agent can use services by
using feature-oriented descriptions of these services. Services will be used
by the agent according to the plans that are available in the agent’s plan set.

117

6. EVALUATION

Figure 6.5: Browser plugin which shows related news by using the automated
agent

As a result, two stages take place during the agent’s lifecycle:

1. Feeding phase. The agent is provided with a set of HTML pages from the
addressed newspapers which are annotated with the RDF data that their
HTML represent. The agent then inducts discovery rules for extracting
the semantic representation of the newspapers’ resources. Also, service
discovery rules are provided for newspapers search forms and OpenCalais
[Butuc, 2009] service. OpenCalais is used to enrich the semantic descrip-
tions of news posts to identify recommendations. OpenCalais is a service
that returns Linked Data information about a piece of text, returning dis-
ambiguated entities about places or people that are mentioned in the text.

2. Execution phase. A plugin that is installed into the web browser8 allows
launching the agent with the goal of returning services that are related to
the current news post that is being browsed. After clicking the button, the
agent performs its focused crawling and discovers a set of results that are
returned to the web browser, so that the user can review the related news

8In our implementation, the plugin is simply a bookmark that links to a web service which
triggers the execution of the agent.

118

Agent level

Level Rule

Content u r i(x, ”h t t p://ab c .e s”)∧ c s s(x, ”.l ead”)∧ pa r ent (x, y) ∧
c s s(y, ”.head l i ne”)⇒ s i oc :Pos t (x)∧ d c :t i t l e(x, y)

Content wi d t h(x)> 70∧ ...∧ pa r ent (x, y)∧ f ont_s i ze(y)> 12 ∧
s e pa rat i on_y(x, y)> 5∧ ...⇒ s i oc :Pos t (x)∧ d c :t i t l e(x, y)

Content c s s(x, ” f o r m.s ea r c h”)∧ s = at t r (x, ”ac t i on”) ⇒
ms :has_ f eat u r e(s ,{ms :Re t r i e val , ms :Ke ywo r d F i l t e r ed ,

ms :N e ws})
Service me t hod (s) = g e t ∧ s t at u s(s) = 200 ⇒

ms :has_ f eat u r e(s , ms :Re t r i e val)
Service x ∈ I n p u t (s)∧ y ∈O u t p u t (s)∧ c t a g :t a g g ed (y, x) ⇒

ms :has_ f eat u r e(s , ms :Ke ywo r d F i l t e r ed)
Service x ∈O u t p u t (s)∧ r d f :t y pe(s i oc :Pos t , x)⇒

ms :has_ f eat u r e(s , ms :N e ws)
Service x ∈ I n p u t (s)∧ r d f :t y pe(s i oc :Pos t , x)∧ y ∈O u t p u t (s) ∧

cal ai s :s u b j ec t (x, y)⇒ ms :has_ f eat u r e(s , ms :Re l at ed)
Agent +[x, r d f :t y pe , s i oc :Pos t] : [z, ms :has_ f eat u r e , ms :Re l at ed] ∧

[x, s i oc :cont ent , c]→ g e t (z, (b od y, c))
Agent +[x, cal ai s :s u b j ec t , y] : t r ue→+[z, r d f s :l ab e l , y]∧

+![z, r d f :t y pe , s i oc :Pos t]

Table 6.12: Example of rules used in the sample scenario

that the agent found in the newspapers.

These phases are shown in figure 6.4, which illustrates how the agent is managed
and used.

6.4.2 Results

Table 6.12 shows the rules used to configure the agent. As said, it was configured
with content rules to extract newspapers contents, with some content extraction
rules automatically generated using rule induction techniques. One of them is
shown in the table and uses visual features such as font size or width and height.
Additionally, some feature definitions were added to the service-level knowledge
base of the agent. The “related” feature is used to describe OpenCalais service,
which returns related entities about a piece of news. In the case of agent-level rules,

119

6. EVALUATION

Question Result (1–5)

In general, are news related? 3.6 (± 0.49)

Number of newspapers is OK 3.8 (± 0.75)

Number of sections is OK 4.1 (± 0.70)

Number of posts is OK 4.2 (± 0.60)

The agent provides useful information 4.1 (± 0.70)

Is it better to surf with the agent’s help? 3.8 (± 1.54)

Table 6.13: Results of users’ survey

a plan for using OpenCalais service upon news retrieval was defined. A second
rule is defined for using search services to retrieve news for a particular entity,
where a goal for spotting a piece of news is set after an entity’s label.

After the definition of discovery rules and the already present base plans, the
agent was able to mine and discover contents in different newspapers. Additionally,
the agent properly employed OpenCalais to enrich the semantic description of
contents. After retrieving related entities for a piece of news, the agent executes
the newspapers’ search services with these entities to retrieve related news.

To evaluate the agent, we provided users different news posts and the recom-
mendations by the agent in the browser plugin shown in figure 6.5. Users were
then asked to answer different questions about their experience when browsing
the web using the agent. Questions about the number of recommendations, the
quality, the degree of relation with the original post were asked and a rating
between 1 and 5 was obtained for each question.

As can be observed in table 6.13, users are overall satisfied with the agent’s
recommendations. This helps to validate that the agent’s functionality is useful
and that a system that is relevant to users has been built.

The approach has been validated on an environment of newspapers that share
some visual features but which have with very different DOM tree structures. The
performance of the algorithm shows high precision and good recall. After a first
training stage, the system is able to extract data from sites with similar appearance,
as well as keep working even on the event of changes on a web resource’s DOM
tree. This helps in solving the typical maintainability and generalization problems
that exist in wrapper induction techniques. Thus, it is a step forward to solving
the bootstrap problem of Linked Data, i.e., the lack of semantically annotated
data in the Web.

120

Conclusions

6.5 Conclusions

The three levels of the framework have been evaluated in this chapter against
real scenarios as part of different research projects. The content discovery level
was evaluated against several projects, such as Resulta, VulneraNET, THOFU,
or Contenidos a la Carta, showing the flexibility of the Scraping Ontology as
well as the rule induction algorithm. The service discovery level was evaluated
on ROMULUS and OMELETTE projects, where extensive service description
discovery was performed in order to provide a basic set of building blocks for
creating mashups. The project Contenidos a la Carta was used as well for applying
agent model to a news recommender that assists users when browsing the web.

121

122

Chapter 7

Conclusions and future work

This chapter summarizes the conclusions of the thesis. As discussed in the dis-
sertation, the current web faces a chicken and egg problem with the amount of
semantically described contents and services. Although standards for semantic de-
scription of resources are available, often they are not used, which results in a lack
of applications that automate the usage of semantic contents and services. To over-
come this issue, the thesis proposes a unified framework for content and service
discovery, and the main contributions are highlighted and discussed. Additionally,
the research done has allowed to identify potential research lines.

123

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

One of the challenges in the current Web is the efficient use of all the available
information. The Web 2.0 phenomenon has favoured the creation of contents by
average users, and thus the amount of information which can be found for diverse
topics has growth exponentially in the last years. Initiatives such as Linked Data
attempt to build up the envisioned Semantic Web, in which a set of standards
are proposed for the exchange of data among heterogeneous systems. However,
these standards are sometimes not used, and still plenty of web sites require naïve
techniques to discover the contents and services present in them.

Similarly, in the current Internet, several services are published in web applica-
tions by following SOA through either the Web Services architecture or the REST
architectural style. Machine agents can automatically process service descriptions
to perform execution, discovery and composition operations in an automated
way. Again, the lack of semantically described services limits the applicability of
automatic processing. In other words, if no services are semantically described for
their automatic processing, no applications which use this services are developed,
facing a chicken and egg problem that is similar to the one with semantic contents.

In this thesis, a unified framework for discovery of contents and services has
been proposed in order to help the vision of the Semantic Web to gain traction and
overcome the lack of semantically described resources in the web. As described in
this dissertation, the discovery framework allows extracting semantic descriptions
of contents and services in the web, and orchestrating the discovery thanks to an
upper agent level.

The main contributions of the thesis are listed next:

• A unified discovery framework for service and content discovery. The web
follows the REST architectural style, which defines a stateless hypermedia
system with resources with uniform interfaces. The discovery framework is
designed to suit the REST style by defining a content level for the resources
representations, a service level for the actual transformations taking place
in the representations, and an upper agent level for orchestration of the
discovery in the basis of a human user browsing the web.

• A scraping model for content discovery. The Scraping Ontology allows
to represent the mappings between the unstructured elements in a web
document and the RDF resources they represent. With this ontology,
it is possible to define extractors that are interoperable and are not tied

124

Conclusions

to a particular scraper or tool (e.g. PiggyBank Huynh et al. [2007]) for
their interpretation and execution. Additionally, representing extractors
as a transparent structure such as an RDF graph allows reasoning over the
information, e.g., to extract information only from web sites that are likely
to have information about flights. The mappings can be represented as rules,
which result in the discovery rules used at content level.

• An algorithm for induction of content discovery rules. While content
discovery rules, like other approaches like wrappers or scrapers, can be
handcrafted, it is a tedious task that is overcome thanks to automated ap-
proaches such as machine learning. The algorithm for induction of discovery
rules that is proposed in this thesis allows overcoming this problem while
addressing issues such as robustness and generalization of rules. Thanks
to the novel technique of employing visual attributes to represent, the pro-
duced content discovery rules are more resistant to changes in document
layouts than other approaches and are suitable for different web sites.

• A feature-oriented approach to service description. Service description
approaches consist of annotating inputs, outputs, preconditions and post-
conditions of services, which are modelled as functions that transform a
closed universe in a particular way. This approach is formally sound but
describing a service requires a big effort that is usually not taken. To re-
duce description efforts, a feature-oriented approach is proposed in the
thesis, where services are modelled as a set of features. Features are then
the reusable semantically described building blocks that are used to achieve
formal service descriptions after their combination. Feature definitions
can be modelled as rules, which make up the service discovery rules. This
results in a lightweight description framework that reduces efforts when
describing services semantically.

• An algorithm for discovery of services based on input probing. By following
the discovery framework, once the contents from an HTTP interaction
have been extracted, services can be discovered by analyzing the interaction
and by using service discovery rules. For this task, a novel approach called
service probing has been proposed in the thesis in order to achieve service
discovery out of HTTP interactions. The approach is based on probing
services with sets of inputs and applying service discovery rules to identify
sets of features and classify services.

125

7. CONCLUSIONS AND FUTURE WORK

• A service model for service discovery. The current web has a number
of registries, repositories, and API stores which offer plenty of services
available for their reuse. The information available on these repositories
is usually on a higher-level than typical service description frameworks,
which deal with inputs, outputs and formal representations. Therefore, a
higher-level model to semantically represent this information is missing.
After analyzing service repositories, the LiMOn ontology has been defined
in order to allow the representation of the information that is available in
service repositories.

• An agent model for automation of content and service discovery. Often the
problem of discovery involves crawling for a specific resource and visiting
different web sites by following hyperlinks. An agent model that performs
this process has been defined in the thesis. It employs the knowledge stored
in content discovery rules and service discovery rules to perform a focused
crawling for a specific goal. By following the BDI paradigm, an agent which
follows this model can stack plans to target specific contents executing
discovered services whenever appropriate.

7.2 Publications

A set of publications on conferences and journals have been produced during
the development of this thesis. Most of them contain the work presented in
this dissertation, although some contain works on different topics, as a result of
parallel research in diverse projects. The publications are summarized next:

• José Ignacio Fernández-Villamor and Mercedes Garijo. A machine learning
approach with verification of predictions and assisted supervision for a
rule-based network intrusion detection system. In Proceedings of the Fourth
International Conference on Web Information Systems and Technologies, 2008:
This paper proposes an integrated Intrusion Detection System (IDS) based
on induction of decision trees. It serves partly as background for the re-
search on rule induction that is present in the thesis. [Fernández-Villamor
and Garijo, 2008] is a similar paper which was published on a national
conference.

• José Ignacio Fernández-Villamor, Laura Díaz-Casillas, and Carlos Á. Iglesias.
A comparison model for agile web frameworks. In Proceedings of the 2008

126

Publications

Euro American Conference on Telematics and Information Systems, 2008: This
paper defines a methodology for the comparison of agile web development
frameworks, as part of ROMULUS project.

• José Ignacio Fernández-Villamor, Carlos Á. Iglesias, and Mercedes Garijo.
Descripción semántica de aplicaciones web mediante microservicios. In
Proceedings of the Symposium on Telematics Engineering, 2009: This paper in-
troduces a first draft of the feature-oriented approach to service description.

• Carlos Á. Iglesias, Mercedes Garijo, José Ignacio Fernández-Villamor, and
José Javier Durán Martín. Agreement Patterns. In Workshop on Agreement
Technologies (CAEPIA’09), pages 57–68, 2009: This paper proposes first ideas
on agreement patterns which serve as background for the agent model that
has been defined in the thesis.

• José Ignacio Fernández-Villamor, Carlos Á. Iglesias, and Mercedes Garijo.
Microservices: lightweight service descriptions for rest architectural style.
In Proceedings of the Second International Conference on Agents and Artificial
Intelligence, 2010b: This paper defines the feature-oriented approach to
service description from a methodological and theoretical view.

• José Ignacio Fernández-Villamor, Carlos Á. Iglesias, and Mercedes Garijo. A
vocabulary for the modelling of image search microservices. In Proceedings
of the Fifth International Conference on Evaluation of Novel Approaches
to Software Engineering, 2010a: This paper applies the feature-oriented
framework for service description to the domain of picture search services.
These kinds of services were employed to provide ready-to-use services for
mashup composition as part of the ROMULUS project.

• Boni García, Juan C. Dueñas, José Ignacio Fernández-Villamor, Adam
Westerski, Mercedes Garijo, and Carlos A. Iglesias. Romulus: Do-
main driven design and mashup oriented development based on open
source java metaframework for pragmatic, reliable and secure web de-
velopment. In Proceedings of the 14th European Conference on Soft-
ware Maintenance and Reengineering, 2010, Madrid, Spain, March 2010.
CSMR10. URL administrator/components/com_jresearch/files/

publications/20100124_180809.pdf: This paper summarizes the re-
search done behind the ROMULUS project on mashup composition.

127

administrator/components/com_jresearch/files/publications/20100124_180809.pdf
administrator/components/com_jresearch/files/publications/20100124_180809.pdf

7. CONCLUSIONS AND FUTURE WORK

• Carlos A. Iglesias, José Ignacio Fernández-Villamor, David del Pozo, Luca
Garulli, and Boni García. Service Engineering: European research results,
chapter Combining Domain Driven Design and Mashups for Service Devel-
opment, pages 171–200. Springer Verlag, 2010: This book chapter focuses on
MDD by analyzing a use case and following the development methodology
that was researched in the ROMULUS project.

• José Ignacio Fernández-Villamor, Jacobo Blasco-García, Carlos Á. Iglesias,
and Mercedes Garijo. A semantic scraping model for web resources – ap-
plying linked data to web page screen scraping. In Proceedings of the Third
International Conference on Agents and Artificial Intelligence, 2011: This
paper introduces the Scraping Ontology by proposing an semantic proxy
approach on top of the REST architectural style. It was the result of research
in Contenidos a la Carta and OMELETTE projects.

• José Ignacio Fernández-Villamor, Tilo Zemke, Carlos Á. Iglesias, and Mer-
cedes Garijo. A semantic metadirectory of services based on web mining
techniques. In Proceedings of the Association for the Advancement of Artificial
Intelligence 2012 Symposia, 2012b: This paper describes the service model
for discovery that is proposed in the thesis. It summarizes the various tasks
done to build the service registry that is part of the OMELETTE platform.

• Francisco Javier Blanco, José Ignacio Fernández-Villamor, and Carlos Á.
Iglesias. Vulnerapedia: Security knowledge management with an ontology.
In Proceedings of the Fourth International Conference on Agents and Artificial
Intelligence, 2012: This paper describes the evaluation of the Scraping Ontol-
ogy over the discovery of security contents for the construction of a unified
security encyclopedia. It is part of the research done for VulneraNET
project.

• Olexiy Chudnovskyy, Tobias Nestler, Martin Gaedke, Florian Daniel,
José Ignacio Fernández-Villamor, Vadim Chepegin, José Ángel Fornás,
Scott Wilson, Christoph Kögler, and Heng Chang. End-user-oriented telco
mashups: The omelette approach. In Proceedings of the World Wide Web Con-
ference, 2012: This paper summarizes the research behind the OMELETTE
project, and includes research on automatic service discovery and the service
model included in the thesis.

128

Future work

• Tilo Zemke, José Ignacio Fernández-Villamor, and Carlos Á. Iglesias. Rank-
ing web services using centralities and social indicators. In Proceedings of the
Evaluation of Novel Approaches to Software Engineering, 2012: This paper
focuses on research on service ranking. Service ranking is a feature included
in the service registry employed in the OMELETTE project.

• José Ignacio Fernández-Villamor, Carlos Á. Iglesias, and Mercedes Gar-
ijo. First-order logic rule induction for information extraction in web
resources. International Journal of Artificial Intelligence Tools, 2012a: This
paper proposes the algorithm for first-order rule induction that is used in
the discovery framework to build content discovery rules automatically. It
includes the evaluation on the domain of electronic newspapers, as part of
the Contenidos a la Carta project. This publication is to be published in
the International Journal of Artificial Intelligence (ISSN: 0218-2130, impact
factor: 0.330).

7.3 Future work

The research behind this thesis has opened some research lines that deserve focus.
Hence here some future work is proposed for continuing the research work done
in the thesis.

Service domain classification for service probing. In the service probing
algorithm, services are probed with sets of inputs that suit their preconditions.
Although potentially any input can be probed, it is reasonable to probe services
with inputs that provide expected behaviours so that relevant features can be
discovered. A suitable approach is to automatically identify inputs for service
probing out of the web resources’ domain. A service domain can be identified
by using bayesian classifiers on the text surrounding the execution form and the
returned representation. E.g., flight search forms usually involve terms related
to travel, flights, cities or airports. By classifying the domain of the service,
appropriate inputs can be probed instead of monitorizing a user browsing to
obtain valid interactions with services.

Content and service ranking. In addition to discovery, an agent targeting some
goal usually ends up with several options or results that fit the goal. In a search
or discovery problem such as the case study described in this dissertation, an
immediate approach consists of showing results to the user. However, by ranking
discovered resources, users can better identify the most suitable. The problem

129

7. CONCLUSIONS AND FUTURE WORK

behind this ranking function is very broad. There are many different aspects
which can be used to rank contents and services, and also their degree of matching
to the user goal can be taken into account. Some preliminary work on service
ranking has already been undertaken in [Fernández-Villamor et al., 2012b] and
[Zemke et al., 2012].

Extension of the Scraping Ontology with NLP patterns. The Scraping Ontol-
ogy allows mapping elements from unstructured representations of web resources
onto the RDF resources they represent. The current state of the ontology allows
selecting nodes from the DOM tree and some basic selections inside the nodes’
texts. In order to extract content from certain web resources, NLP patterns are
a useful way to target contents otherwise impossible to extract. E.g., API docu-
mentation pages usually contain long textual explanations which include valuable
information such as service parameter names, licenses, or interesting URLs. As
this kind of information is embedded into texts, it belongs to the same DOM
node as other non-relevant data, such as the rest of sentences that surrounds the
targeted data. Similarly, occasionally it is desired to extract entities such as people
names, locations or dates out of plain text. By using NLP it is possible to extract
the actual information precisely. Therefore, the inclusion of NLP patterns into
the Scraping Ontology is proposed as future work. A challenging aspect is the
integration of NLP selectors into the algorithm for content rule induction in
order to build NLP-based content discovery rules automatically.

Construction of an extended base of discovery rules. A broader library of
extensive reusable feature descriptions and content types would enhance output
models at each discovery level. In the thesis, a reduced subset of building blocks has
been shown to solve certain use cases that involved typical elements in the web such
as news posts. Further training sets for the semantic definitions would improve
the generalization of the discovery rules to other scenarios that differ greatly
from the ones considered, thus increasing the agent’s versatility. Additionally,
LiMOn can be extended with a feature orientation. The dissertation describes the
model LiMOn for discovering services as contents, along with a feature-oriented
approach to service description which is applied to discovery through service
probing. Discovery rules that produce LiMOn-described services would leverage
both approaches.

Extension of the agent model. The model can be extended to multiagent sys-
tems in order to allow cooperation between agents with different knowledges (i.e.
different discovery rules in their knowledge bases). This would allow combining

130

Future work

and complementing discovery rules on resources. Negotiation capabilities can be
added in order to allow agents to share hypothesis about web resources and select
the most appropriate discovery rules and plans.

131

132

Bibliography

A9.com, inc. OpenSearch specification. http://www.opensearch.org/

Specifications/OpenSearch/1.1, 2005.

Ben Adida and Mark Birbeck. RDFa Primer - Bridging the Human and Data
Webs. http://www.w3.org/TR/xhtml-rdfa-primer/, 2008.

C. Alario-Hoyos and S. Wilson. Comparison of the main alternatives to the
integration of external tools in different platforms. In Proc. International
Conference of Education, Research and Innovation, ICERI, pages 3466–3476,
2010.

G. Alonso. Web services: concepts, architectures and applications. Springer Verlag,
2004.

E. Amoroso, T. Nguyen, J. Weiss, J. Watson, P. Lapiska, and T. Starr. Toward an
approach to measuring software trust. Published by the IEEE Computer Society,
1991.

T. Anton. Xpath-wrapper induction by generalizing tree traversal patterns. Lernen,
Wissensentdeckung und Adaptivitt (LWA), pages 126–133, 2005.

S. Apel, T. Leich, and G. Saake. Aspectual mixin layers: aspects and features
in concert. In Proceedings of the 28th international conference on Software
engineering, page 131. ACM, 2006.

Sven Apel, Thomas Leich, Marko Rosenüller, and Gunter Saake. Combining
feature-oriented and aspect-oriented programming to support software evolu-
tion. In In AMSE’05, at ECOOP’05, 2005.

Arvind Arasu. Extracting structured data from web pages. In ACM SIGMOD,
pages 337–348, 2003.

133

http://www.opensearch.org/Specifications/OpenSearch/1.1
http://www.opensearch.org/Specifications/OpenSearch/1.1
http://www.w3.org/TR/xhtml-rdfa-primer/

BIBLIOGRAPHY

Mark Baker. RDF Forms. http://www.markbaker.ca/2003/05/RDF-Forms/,
2005.

David T. Barnard, Gwen Clarke, and Nicolas Duncan. Tree-to-tree correction for
document trees, 1995.

S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer,
D. Martin, S. McIlraith, D. McGuinness, et al. Semantic web services framework
(swsf) overview. World Wide Web Consortium, Member Submission SUBM-SWSF-
20050909, 2005.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

P. Bille. A survey on tree edit distance and related problems. Theoretical computer
science, 337(1-3):217–239, 2005.

A. Birukou, E. Blanzieri, V. D’Andrea, P. Giorgini, and N. Kokash. Improving
web service discovery with usage data. IEEE software, pages 47–54, 2007.

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.
International Journal on Semantic Web and Information Systems (IJSWIS), 2009.

M.B. Blake and M.E. Nowlan. Knowledge discovery in services (kds): Aggre-
gating software services to discover enterprise mashups. IEEE Transactions on
Knowledge and Data Engineering, 23(6):889–901, 2011.

Francisco Javier Blanco, José Ignacio Fernández-Villamor, and Carlos Á. Iglesias.
Vulnerapedia: Security knowledge management with an ontology. In Proceed-
ings of the Fourth International Conference on Agents and Artificial Intelligence,
2012.

H. Blockeel and L. De Raedt. Top-down induction of first-order logical decision
trees. Artificial Intelligence, 101(1-2):285–297, 1998.

Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller.
Automation and customization of rendered web pages. Symposium on User
Interface Software and Technology, page 163, 2005. URL http://portal.acm.

org/citation.cfm?id=1095062.

134

http://www.markbaker.ca/2003/05/RDF-Forms/
http://portal.acm.org/citation.cfm?id=1095062
http://portal.acm.org/citation.cfm?id=1095062

BIBLIOGRAPHY

G. Bracha and W. Cook. Mixin-based inheritance. In Proceedings of the European
conference on object-oriented programming on Object-oriented programming sys-
tems, languages, and applications, pages 303–311. ACM New York, NY, USA,
1990.

J.G. Breslin, S. Decker, A. Harth, and U. Bojars. SIOC: an approach to connect
web-based communities. International Journal of Web Based Communities, 2(2):
133–142, 2006.

D. Brickley and L. Miller. Foaf vocabulary specification 0.91. Technical
report, Tech. rep. ILRT Bristol, Nov. 2007. ur l: http://xmlns. com/-
foaf/spec/20071002. html, 2000.

M.G. Butuc. Semantically enriching content using opencalais. EDITIA, 9:77–88,
2009.

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Extracting content
structure for web pages based on visual representation. In Proc.5 th Asia Pacific
Web Conference, pages 406–417, 2003.

J. Cao, D. Kerbyson, and G. Nudd. Use of agent-based service discovery for
resource management in metacomputing environment. Euro-Par 2001 Parallel
Processing, pages 882–886, 2001.

H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology.
SIAM Journal on Applied Mathematics, pages 1073–1082, 1988.

S. Chakrabarti, M. Van den Berg, and B. Dom. Focused crawling: a new approach
to topic-specific web resource discovery. Computer Networks, 31(11-16):1623–
1640, 1999.

Soumen Chakrabarti and Byron Dom. Focused crawling: a new approach to
topic-specific Web resource discovery. Computer Networks, 31:1623–1640, 1999.

D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin. Toward distributed service
discovery in pervasive computing environments. Mobile Computing, IEEE
Transactions on, 5(2):97–112, 2006.

C.H. Chang, M. Kayed, M.R. Girgis, and K.F. Shaalan. A survey of web informa-
tion extraction systems. IEEE Transactions on Knowledge and Data Engineering,
pages 1411–1428, 2006.

135

BIBLIOGRAPHY

Weimin Chen. New algorithm for ordered tree-to-tree correction problem. J.
Algorithms, 40(2):135–158, 2001. ISSN 0196-6774. doi: http://dx.doi.org/10.
1006/jagm.2001.1170.

Si Won Choi and Soo Dong Kim. A Quality Model for Evaluating Reusability of
Services in SOA. Quality, pages 293–298, 2008. doi: 10.1109/CEC/EEE.2008.
55.

E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, et al. Web services
description language (wsdl) 1.1, 2001.

Olexiy Chudnovskyy, Tobias Nestler, Martin Gaedke, Florian Daniel, José Ig-
nacio Fernández-Villamor, Vadim Chepegin, José Ángel Fornás, Scott Wilson,
Christoph Kögler, and Heng Chang. End-user-oriented telco mashups: The
omelette approach. In Proceedings of the World Wide Web Conference, 2012.

Philipp Cimiano, Siegfried Handschuh, Siegfried H, and Steffen Staab. Towards
the self-annotating web, 2004.

Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, M Francesco, Marina
Mongiello, Giacomo Piscitelli, and Gianvito Rossi. An agency for semantic-
based automatic discovery of web-services. Discovery, pages 1–14, 2004.

Dan Connolly. Gleaning resource descriptions from dialects of languages. http:
//www.w3.org/TR/grddl/, 2007.

Valter Crescenzi, Giansalvatore Mecca, Paolo Merialdo, UniversitÃă Roma, Tre
UniversitÃă, Basilicata UniversitÃă, and Roma Tre. Roadrunner: Towards
automatic data extraction from large web sites. In Proceedings of the International
Conference on Very Large Databases, pages 109–118, 2001.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana.
Unraveling the web services web: an introduction to soap, wsdl, and uddi.
Internet Computing, IEEE, 6(2):86–93, 2002.

D.A. D’Mello and VS Ananthanarayana. A review of dynamic web service de-
scription and discovery techniques. In Integrated Intelligent Computing (ICIIC),
2010 First International Conference on, pages 246–251. IEEE, 2010.

Pedro Domingos. Rule induction and instance-based learning: A unified approach.
In Proceedings of the 14th international joint conference on Artificial intelligence,
pages 1226–1232. Morgan Kaufmann, 1995.

136

http://www.w3.org/TR/grddl/
http://www.w3.org/TR/grddl/

BIBLIOGRAPHY

Kit Eaton. Facebook won’t like this apple-twitter union,
2011. URL http://www.fastcompany.com/1783467/

fresh-crispy-apple-twitters-could-deep-fry-facebooks-future.

H. Elmeleegy, A. Ivan, R. Akkiraju, and R. Goodwin. Mashup advisor: A
recommendation tool for mashup development. In Web Services, 2008. ICWS’08.
IEEE International Conference on, pages 337–344. IEEE, 2008.

Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented programming:
Introduction. Commun. ACM, 44(10):29–32, 2001. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/383845.383853.

T. Erl. Service-oriented architecture: concepts, technology, and design. Prentice Hall
PTR Upper Saddle River, NJ, USA, 2005.

ESSI WSMO working group. Web Service Modeling Ontology. http://www.

wsmo.org/, 2004.

Oren Etzioni. Quagmire or Gold Mine? Communications of the ACM, 39(11):
65–68, 1996.

C. Feier and J. Domingue. WSMO primer. DERI Working Draft, Apr, 2005.

P. Ferguson and G. Huston. Quality of service in the internet: Fact, fiction, or
compromise. AUUGN, page 231, 1998.

José Ignacio Fernández-Villamor and Mercedes Garijo. Sistema de detección
de intrusiones con mantenimiento asistido de bases de datos de ataques medi-
ante aprendizaje automático. In Proceedings of the Symposium on Telematics
Engineering, 2008.

José Ignacio Fernández-Villamor and Mercedes Garijo. A machine learning ap-
proach with verification of predictions and assisted supervision for a rule-based
network intrusion detection system. In Proceedings of the Fourth International
Conference on Web Information Systems and Technologies, 2008.

José Ignacio Fernández-Villamor, Carlos Á. Iglesias, and Mercedes Garijo. A
vocabulary for the modelling of image search microservices. In Proceedings of
the Fifth International Conference on Evaluation of Novel Approaches to Software
Engineering, 2010a.

137

http://www.fastcompany.com/1783467/fresh-crispy-apple-twitters-could-deep-fry-facebooks-future
http://www.fastcompany.com/1783467/fresh-crispy-apple-twitters-could-deep-fry-facebooks-future
http://www.wsmo.org/
http://www.wsmo.org/

BIBLIOGRAPHY

José Ignacio Fernández-Villamor, Carlos Á. Iglesias, and Mercedes Garijo. Mi-
croservices: lightweight service descriptions for rest architectural style. In
Proceedings of the Second International Conference on Agents and Artificial Intelli-
gence, 2010b.

José Ignacio Fernández-Villamor, Jacobo Blasco-García, Carlos Á. Iglesias, and
Mercedes Garijo. A semantic scraping model for web resources – applying
linked data to web page screen scraping. In Proceedings of the Third International
Conference on Agents and Artificial Intelligence, 2011.

José Ignacio Fernández-Villamor, Carlos Á. Iglesias, and Mercedes Garijo. First-
order logic rule induction for information extraction in web resources. Interna-
tional Journal of Artificial Intelligence Tools, 2012a.

José Ignacio Fernández-Villamor, Tilo Zemke, Carlos Á. Iglesias, and Mercedes
Garijo. A semantic metadirectory of services based on web mining techniques.
In Proceedings of the Association for the Advancement of Artificial Intelligence
2012 Symposia, 2012b.

José Ignacio Fernández-Villamor, Laura Díaz-Casillas, and Carlos Á. Iglesias. A
comparison model for agile web frameworks. In Proceedings of the 2008 Euro
American Conference on Telematics and Information Systems, 2008.

José Ignacio Fernández-Villamor, Carlos Á. Iglesias, and Mercedes Garijo. Descrip-
ción semántica de aplicaciones web mediante microservicios. In Proceedings of
the Symposium on Telematics Engineering, 2009.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Rfc 2616: Hypertext transfer protocol–http/1.1, 1999. http://www.rfc.
net/rfc2616.html, 2009.

Roy T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, 2000. URL http://www.

ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Florian Fischer and Barry Norton. D3.4.6 MicroWSMO v2 – Defining the
second version of MicroWSMO as a systematic approach for rich tagging.
http://www.soa4all.eu/docs/D3.4.6+MICROWSMO_V2.PDF, 2009.

Boni García, Juan C. Dueñas, José Ignacio Fernández-Villamor, Adam Westerski,
Mercedes Garijo, and Carlos A. Iglesias. Romulus: Domain driven design

138

http://www.rfc.net/rfc2616.html
http://www.rfc.net/rfc2616.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.soa4all.eu/docs/D3.4.6+MICROWSMO_V2.PDF

BIBLIOGRAPHY

and mashup oriented development based on open source java metaframework
for pragmatic, reliable and secure web development. In Proceedings of the
14th European Conference on Software Maintenance and Reengineering, 2010,
Madrid, Spain, March 2010. CSMR10. URL administrator/components/

com_jresearch/files/publications/20100124_180809.pdf.

Michele Gershberg. Consumers say: "in tweets we trust",
2010. URL http://www.reuters.com/article/2010/06/23/

us-retail-summit-tweets-idUSTRE65L6C320100623.

B. Golden. Succeeding with Open source. Addison-Wesley Professional, 2005.

D. Gusfield. Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge Univ Pr, 1997.

Marc J. Hadley. Web application description language. http://www.w3.org/

Submission/wadl/, 2009.

W. Harrison and H. Ossher. Subject-oriented programming: a critique of pure
objects. ACM Sigplan Notices, 28(10):411–428, 1993.

Andrew Hogue. Thresher: Automating the unwrapping of semantic content from
the world wide web. In Proceedings of the Fourteenth International World Wide
Web Conference, pages 86–95. ACM Press, 2005.

J. Hu, C. Guo, H. Wang, and P. Zou. Quality driven web services selection. In
e-Business Engineering, 2005. ICEBE 2005. IEEE International Conference on,
pages 681–688. IEEE, 2005.

D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank: Experience the semantic
web inside your web browser. Web Semantics: Science, Services and Agents on
the World Wide Web, 5(1):16–27, 2007.

Carlos Á. Iglesias, Mercedes Garijo, José Ignacio Fernández-Villamor, and
José Javier Durán Martín. Agreement Patterns. In Workshop on Agreement
Technologies (CAEPIA’09), pages 57–68, 2009.

Carlos A. Iglesias, José Ignacio Fernández-Villamor, David del Pozo, Luca Garulli,
and Boni García. Service Engineering: European research results, chapter Com-
bining Domain Driven Design and Mashups for Service Development, pages
171–200. Springer Verlag, 2010.

139

administrator/components/com_jresearch/files/publications/20100124_180809.pdf
administrator/components/com_jresearch/files/publications/20100124_180809.pdf
http://www.reuters.com/article/2010/06/23/us-retail-summit-tweets-idUSTRE65L6C320100623
http://www.reuters.com/article/2010/06/23/us-retail-summit-tweets-idUSTRE65L6C320100623
http://www.w3.org/Submission/wadl/
http://www.w3.org/Submission/wadl/

BIBLIOGRAPHY

X. Ji. Research on web service discovery based on domain ontology. In Computer
Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International
Conference on, pages 65–68. IEEE, 2009.

Kyungkoo Jun, Krzysztof Palacz, Dan C Marinescu, and West Lafayette. Agent-
Based Resource Discovery. Sciences-New York, 2000.

Kay Kadner and Daniel Oberle. Unified Service Description Language XG Final
Report. http://www.w3.org/2005/Incubator/usdl/XGR-usdl-20111027/,
2011.

O. Khriyenko and M. Nagy. Semantic web-driven agent-based ecosystem for
linked data and services. In The Third International Conference on Advanced
Service Computing, pages 110–117, 2011.

M. Kirchberg, R. Kanagasabai, et al. Review of semantic web service discovery
methods. In Services (SERVICES-1), 2010 6th World Congress on, pages 176–177.
IEEE, 2010.

J. Kopeckỳ, T. Vitvar, C. Bournez, and J. Farrell. Sawsdl: Semantic annotations
for wsdl and xml schema. IEEE Internet Computing, pages 60–67, 2007.

J. Kopecky, K. Gomadam, and T. Vitvar. hrests: An html microformat for describ-
ing restful web services. In Web Intelligence and Intelligent Agent Technology,
2008. WI-IAT’08. IEEE/WIC/ACM International Conference on, volume 1, pages
619–625. IEEE, 2008.

R. Kosala and H. Blockeel. Web mining research: A survey. ACM SIGKDD
Explorations Newsletter, 2(1):1–15, 2000.

Nicholas Kushmerick. Wrapper induction for information extraction, 1997.

Nicholas Kushmerick. Wrapper induction: Efficiency and expressiveness. Artifi-
cial Intelligence, 118(1-2):15–68, 2000.

Lea Kutvonen. Trust Aspects in the Architecture of Interoperable Systems. In
The 2nd international workshop on Interoperability solutions to Trust, Security,
Policies and QoS for Enhanced Enterprise Systems, 2007.

M. Laclavık, Z. Balogh, M. Babık, and L. Hluchỳ. Agentowl: Semantic knowledge
model and agent architecture. Computing and Informatics, 25:419–437, 2006.

140

http://www.w3.org/2005/Incubator/usdl/XGR-usdl-20111027/

BIBLIOGRAPHY

R. Lara, D. Roman, A. Polleres, and D. Fensel. A conceptual comparison of wsmo
and owl-s. Web Services, pages 254–269, 2004.

O. Lassila and R.R. Swick. Resource description framework (RDF) model and
syntax. World Wide Web Consortium, http://www.w3.org/TR/WD-rdf-syntax,
1999.

Kristina Lerman, Steven N. Minton, and Craig A. Knoblock. Wrapper mainte-
nance: A machine learning approach. Journal of Artificial Intelligence Research,
18:2003, 2003.

Grace A Lewis and Dennis B Smith. Proceedings of the International Workshop
on the Foundations of Service-Oriented Architecture (FSOA 2007). Special
report CMU/SEI-2008-SR-011, May 2007. ISSN 0008-543X. URL http://www.

ncbi.nlm.nih.gov/pubmed/21695829.

A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp: comparing public cloud
providers. In Proceedings of the 10th annual conference on Internet measurement,
pages 1–14. ACM, 2010.

R.E. Lopez-Herrejon. Understanding feature modularity in feature oriented pro-
gramming and its implications to aspect oriented programming. In ECOOP2005
PhDOOS Workshop and Doctoral Symposium, Glasgow, Scotland, 2005.

F. Majer, M. Nussbaumer, and P. Freudenstein. Operational challenges and
solutions for mashups–an experience report. In 2nd Workshop on Mashups,
Enterprise Mashups and Lightweight Composition on the Web (MEM 2009), held in
conjunction with 18th International World Wide Web Conference (WWW 2009),
2009.

D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuin-
ness, B. Parsia, T. Payne, M. Sabou, M. Solanki, et al. Bringing semantics
to web services: The owl-s approach. Semantic Web Services and Web Process
Composition, pages 26–42, 2005.

N.O.A. M’Bareck and S. Tata. How to consider requester’s preferences to enhance
web service discovery? In Internet and Web Applications and Services, 2007.
ICIW’07. Second International Conference on, pages 59–59. IEEE, 2007.

D.A. Menasce. Qos issues in web services. Internet Computing, IEEE, 6(6):72 – 75,
nov/dec 2002. ISSN 1089-7801. doi: 10.1109/MIC.2002.1067740.

141

http://www.ncbi.nlm.nih.gov/pubmed/21695829
http://www.ncbi.nlm.nih.gov/pubmed/21695829

BIBLIOGRAPHY

D.A. Menasce and V.A.F. Almeida. Capacity Planning for Web Services: metrics,
models, and methods. Prentice Hall, 2002.

Microformats community. Microformats. http://microformats.org/, 2008.

A. Miles and S. Bechhofer. Skos simple knowledge organization system reference.
W3C Recommendation, 2008.

Y. Mileva, V. Dallmeier, and A. Zeller. Mining api popularity. Testing–Practice
and Research Techniques, pages 173–180, 2010.

M.J. Murphy, M. Dick, T. Fischer, IAO Fraunhofer, and G. Stuttgart. Towards
the" Semantic Grid": A state of the art survey of Semantic Web services and
their applicability to collaborative design, engineering, and procurement. Com-
munications of the IIMA, 8(3):11–24, 2008.

J.D. Musa, A. Iannino, and K. Okumoto. Software reliability: measurement,
prediction, application. McGraw-Hill, Inc., 1987.

H. Namgoong, M. Chung, K. Kim, H.S. Cho, and Y. Chung. Effective semantic
web services discovery using usability. In Advanced Communication Technology,
2006. ICACT 2006. The 8th International Conference, volume 3, pages 5–pp.
IEEE, 2006.

Azadeh Ghari Neiat, Mehran Mohsenzadeh, Rana Forsati, and Amir Masoud
Rahmani. An Agent-based Semantic Web Service Discovery Framework. 2009
International Conference on Computer Modeling and Simulation, pages 194–198,
February 2009. doi: 10.1109/ICCMS.2009.75. URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4797381.

P.T. Nguyen, M.A. Babar, and J.M. Verner. Critical factors in establishing and
maintaining trust in software outsourcing relationships. In Proceedings of the
28th international conference on Software engineering, pages 624–627. ACM,
2006.

Alberto Pan, Juan Raposo, Manuel Álvarez, Paula Montoto, Vicente Orjales,
Justo Hidalgo, Lucía Ardao, Anastasio Molano, and Ángel Viña. The denodo
data integration platform. Very Large Data Bases, page 986, 2002. URL http:

//portal.acm.org/citation.cfm?id=1287369.1287456.

142

http://microformats.org/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4797381
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4797381
http://portal.acm.org/citation.cfm?id=1287369.1287456
http://portal.acm.org/citation.cfm?id=1287369.1287456

BIBLIOGRAPHY

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web
services capabilities. The Semantic WebâĂŤISWC 2002, pages 333–347, 2002.

Y. Park, W. Jung, B. Lee, and C. Wu. Automatic discovery of web services
based on dynamic black-box testing. In Computer Software and Applications
Conference, 2009. COMPSAC’09. 33rd Annual IEEE International, volume 1,
pages 107–114. IEEE, 2009.

Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, and Kunal Verma. Meteor-
s web service annotation framework. In Proceedings of the 13th international
conference on World Wide Web, WWW ’04, pages 553–562, New York, NY,
USA, 2004. ACM. ISBN 1-58113-844-X. doi: 10.1145/988672.988747. URL
http://doi.acm.org/10.1145/988672.988747.

M. Paulk. Capability maturity model for software. Wiley Online Library, 1993.

C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services vs. big’web
services: making the right architectural decision. In Proceeding of the 17th
international conference on World Wide Web, pages 805–814. ACM, 2008.

F. Canan Pembe and Tunga Güngör. A tree learning approach to web document
sectional hierarchy extraction. In Proceedings of the 2nd International Conference
on Angents and Artificial Intelligence, 2010.

M. Pirker, M. Berger, and M. Watzke. An approach for fipa agent service discovery
in mobile ad hoc environments. UbiAgents04, http://www.ift.ulaval.ca/
~{}mellouli, 2004.

G. Polancic, R.V. Horvat, and T. Rozman. Comparative assessment of open
source software using easy accessible data. In Information Technology Interfaces,
2004. 26th International Conference on, pages 673 –678 Vol.1, june 2004. doi:
10.1109/ITI.2004.242703.

Geovanny Poveda-Cardona. Asistente para la creación de consultas semánticas.
aplicación a la fábrica de ideas de proyectos de código abierto ubuntu ideas.
Master’s thesis, Universidad Politécnica de Madrid, 2011.

C. Prehofer. Feature-oriented programming: A fresh look at objects. Lecture Notes
in Computer Science, 1241:419–443, 1997.

143

http://doi.acm.org/10.1145/988672.988747
http://www.ift.ulaval.ca/~{}mellouli
http://www.ift.ulaval.ca/~{}mellouli

BIBLIOGRAPHY

C. Preist. A conceptual architecture for semantic web services. The Semantic
Web–ISWC 2004, pages 395–409, 2004.

J.R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.

R.J.R. Raj and T. Sasipraba. Web service selection based on qos constraints. In
Trends in Information Sciences & Computing, pages 156–162. IEEE, 2010.

A. Rao. Agentspeak (l): Bdi agents speak out in a logical computable language.
Agents Breaking Away, pages 42–55, 1996.

J. Raposo, A. Pan, M. Álvarez, and Á. Viña. Automatic wrapper maintenance for
semi-structured web sources using results from previous queries. In Proceedings
of the 2005 ACM symposium on Applied computing, pages 654–659. ACM, 2005.

O. Ratsimor, D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha. Service discovery
in agent-based pervasive computing environments. Mobile Networks and Ap-
plications, 9(6):679–692, 2004. URL http://www.springerlink.com/index/

HP12N863244M2534.pdf.

Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 1st edition, 1999. ISBN 1565927249.

Zia Ur Rehman, Farookh K. Hussain, and Omar K. Hussain. Towards Multi-
criteria Cloud Service Selection. 2011 Fifth International Conference on In-
novative Mobile and Internet Services in Ubiquitous Computing, pages 44–48,
June 2011. doi: 10.1109/IMIS.2011.99. URL http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=5976164.

D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontology, Applied
Ontology. IOS Press, 2005.

J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transac-
tions on Computers, C-18(5):401-409, May 1969, 1969.

SAP Research. What is USDL and why do we need it. http:

//www.internet-of-services.com/index.php?id=288&tx_ttnews[tt_

news]=218&L=0, 2011.

144

http://www.springerlink.com/index/HP12N863244M2534.pdf
http://www.springerlink.com/index/HP12N863244M2534.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5976164
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5976164
http://www.internet-of-services.com/index.php?id=288&tx_ttnews[tt_news]=218&L=0
http://www.internet-of-services.com/index.php?id=288&tx_ttnews[tt_news]=218&L=0
http://www.internet-of-services.com/index.php?id=288&tx_ttnews[tt_news]=218&L=0

BIBLIOGRAPHY

Amit P. Sheth, Karthik Gomadam, and Jon Lathem. SA-REST: Semantically
Interoperable and Easier-to-Use Services and Mashups. In IEEE Computer
Society, 2007.

F. Shimba. Cloud computing: Strategies for cloud computing adoption. Dublin
Institute of Technology, 2010.

N.S. Sidnal, R.S. Malashetty, and S.S. Manvi. Service discovery using software
agents in semantic web. In Control Automation Robotics & Vision (ICARCV),
2010 11th International Conference on, pages 139–143. IEEE, 2010.

K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding Semantics to Web
Services Standards. In Proceedings of the 1st International Conference on Web
Services , 2003.

G. Spanoudakis, K. Mahbub, and A. Zisman. A platform for context aware
runtime web service discovery. In IEEE 2007 International Conference on Web
Services (ICWS 2007), Salt Lake City, Utah, USA. Citeseer, 2007.

F. Steimann. On the representation of roles in object-oriented and conceptual
modelling. Data & Knowledge Engineering, 35(1):83–106, 2000.

K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan. Dynamic discovery and
coordination of agent-based semantic web services. Internet Computing, IEEE,
8(3):66–73, 2004.

I. Toma and D. Foxvog. Non-functional properties in web services. WSMO
Deliverable, 2006.

Michael Toomim, Steven M. Drucker, Mira Dontcheva, Ali Rahimi, Blake Thom-
son, and James A. Landay. Attaching UI enhancements to websites with end
users. Conference on Human Factors in Computing Systems, pages 1859–1868,
2009. URL http://portal.acm.org/citation.cfm?id=1518701.1518987.

S. Trujillo, D. Batory, and O. Diaz. Feature oriented model driven development:
A case study for portlets. In Proceedings of the 29th international conference on
Software Engineering, pages 44–53. IEEE Computer Society, 2007.

T. Vitvar, J. Kopecky, and D. Fensel. Wsmo-lite: Lightweight semantic descrip-
tions for services on the web. In Proceedings of the Fifth European Conference on
Web Services, pages 77–86. Citeseer, 2007.

145

http://portal.acm.org/citation.cfm?id=1518701.1518987

BIBLIOGRAPHY

J. Wang, J. Zhang, P.C.K. Hung, Z. Li, J. Liu, and K. He. Leveraging fragmental
semantic data to enhance services discovery. In High Performance Computing
and Communications (HPCC), 2011 IEEE 13th International Conference on,
pages 687–694. IEEE, 2011.

Y. Wang and E. Stroulia. Flexible interface matching for web-service discovery.
In Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the
Fourth International Conference on, pages 147–156. IEEE, 2003.

Liu Wei, Xiaofeng Meng, and Weiyi Meng. Vision-based web data records extrac-
tion. In WebDB, 2006.

S. Weibel. The dublin core: a simple content description model for electronic
resources. Bulletin of the American Society for Information Science and Technology,
24(1):9–11, 1997.

Adam Westerski and Carlos Á. Iglesias. Mining sentiments in idea management
systems as a tool for rating ideas. In Large-Scale Idea Management and Delib-
eration workshop. 10th International Conference on the Design of Cooperative
Systems (COOP2012), Marseille, France, April 2012. URL http://www.gi2mo.

org/files/papers/coop2012/opinions_coop2012_paper.pdf.

Adam Westerski, Carlos Á. Iglesias, and Fernando Tapia Rico. A model for
integration and interlinking of idea management systems. In 4th Metadata and
Semantics Research Conference (MTSR 2010), Alcalá de Henares, Spain, October
2010. URL http://www.gi2mo.org/files/papers/mtsr/mtsr2010_gi2mo_

paper.pdf.

E. Wilde and M. Gaedke. Web Engineering Revisited. In Proceedings of the
2008 British Computer Society (BCS) Conference on Visions of Computer Science,
London, UK (September 2008), 2008.

Jeffrey Wong and Jason I. Hong. Making mashups with marmite: towards end-user
programming for the web. Conference on Human Factors in Computing Systems,
page 1435, 2007. URL http://portal.acm.org/citation.cfm?id=1240842.

World Wide Web Consortium. OWL-S: Semantic Markup for Web Services.
http://www.w3.org/Submission/OWL-S/, 2004.

146

http://www.gi2mo.org/files/papers/coop2012/opinions_coop2012_paper.pdf
http://www.gi2mo.org/files/papers/coop2012/opinions_coop2012_paper.pdf
http://www.gi2mo.org/files/papers/mtsr/mtsr2010_gi2mo_paper.pdf
http://www.gi2mo.org/files/papers/mtsr/mtsr2010_gi2mo_paper.pdf
http://portal.acm.org/citation.cfm?id=1240842
http://www.w3.org/Submission/OWL-S/

BIBLIOGRAPHY

Wright State University. HTML Microformat for Describing RESTful Web
Services and APIs. http://knoesis.wright.edu/research/srl/projects/
hRESTs/#hRESTs, 2008.

C. Wu and E. Chang. Searching services on the web: A public web services
discovery approach. In Signal-Image Technologies and Internet-Based System,
2007. SITIS’07. Third International IEEE Conference on, pages 321–328. IEEE,
2007.

G. Ye, C. Wu, J. Yue, and S. Cheng. A qos-aware model for web services dis-
covery. In Education Technology and Computer Science, 2009. ETCS’09. First
International Workshop on, volume 3, pages 740–744. IEEE, 2009.

L. Ye and B. Zhang. Discovering web services based on functional semantics. In
Services Computing, 2006. APSCC’06. IEEE Asia-Pacific Conference on, pages
348–355. IEEE, 2006.

Jin Yu, Boualem Benatallah, Fabio Casati, and Florian Daniel. Understanding
mashup development. IEEE Internet Computing, 12(5):44–52, 2008. ISSN
1089-7801. doi: http://dx.doi.org/10.1109/MIC.2008.114.

Tilo Zemke, José Ignacio Fernández-Villamor, and Carlos Á. Iglesias. Ranking web
services using centralities and social indicators. In Proceedings of the Evaluation
of Novel Approaches to Software Engineering, 2012.

Wenying Zeng, Yuelong Zhao, and Junwei Zeng. Cloud service and ser-
vice selection algorithm research. In Proceedings of the first ACM/SIGEVO
Summit on Genetic and Evolutionary Computation, GEC ’09, pages 1045–
1048, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-326-6. doi:
http://doi.acm.org/10.1145/1543834.1544004. URL http://doi.acm.org/

10.1145/1543834.1544004.

Y. Zhai and B. Liu. Web data extraction based on partial tree alignment. In
Proceedings of the 14th international conference on World Wide Web, pages 76–85.
ACM, 2005a.

Yanhong Zhai and Bing Liu. Extracting web data using instance-based learning.
In Proc. of 6th Intl. Conf. on Web Information Systems Engineering (WISE’05,
pages 318–331, 2005b.

147

http://knoesis.wright.edu/research/srl/projects/hRESTs/#hRESTs
http://knoesis.wright.edu/research/srl/projects/hRESTs/#hRESTs
http://doi.acm.org/10.1145/1543834.1544004
http://doi.acm.org/10.1145/1543834.1544004

BIBLIOGRAPHY

J. Zhang and L.-J. Zhang. Criteria analysis and validation of the reliability of
web services-oriented systems. In Web Services, 2005. ICWS 2005. Proceedings.
2005 IEEE International Conference on, pages 2 vol. (xxxiii+856), july 2005. doi:
10.1109/ICWS.2005.44.

P. Zhang and J. Li. Ontology assisted web services discovery. In Service-Oriented
System Engineering, 2005. SOSE 2005. IEEE International Workshop, pages 45–50.
IEEE, 2005.

Jiehan Zhou, J.-P. Koivisto, and E. Niemela. A survey on semantic web services
and a case study. In Computer Supported Cooperative Work in Design, 2006.
CSCWD ’06. 10th International Conference on, pages 1–7, May 2006. doi:
10.1109/CSCWD.2006.253254.

148

List of Figures

2.1 Example of DOM tree . 8
2.2 Example of tree matching . 8
2.3 Example of multiple tree alignment . 9
2.4 OWL-S elements . 17

3.1 Discovery framework . 39
3.2 Agent model . 42
3.3 Semantic scraping approach . 48
3.4 Semantic scraping RDF model . 51
3.5 Example of semantic scraper . 53

4.1 HTML vs RDF documents . 58
4.2 Scraping conceptual model . 59
4.3 Conversion of a DOM tree into an RDF graph 61

5.1 Repositories’ coverage of aspects . 87
5.2 Linked Mashups Ontology . 88
5.3 Connections between LiMOn and other ontologies 90

6.1 Extraction errors on a new web site . 99
6.2 Mapping detection among categories 112
6.3 Mapping among the different categorization schemes 113
6.4 Agent’s lifecycle and interaction with scenario 117
6.5 Browser plugin which shows related news by using the automated

agent . 118

149

150

List of Tables

2.1 Regular expressions for two equivalent HTML documents 7

5.1 Sample feature set for service probing 76
5.2 Requests in service probing sample . 76
5.3 Responses in service probing sample 77
5.4 Repositories’ support to aspects . 86

6.1 Training dataset . 96
6.2 Training samples . 97
6.3 Testing datasets . 97
6.4 Evaluation of generalization . 98
6.5 Evaluation of robustness . 99
6.6 Analysis of detailed features out of raw ones 102
6.7 Specification of features . 103
6.8 Sample requests used for service probing 104
6.9 Sample responses obtained when probing Google Images service . 105
6.10 Mapping between features and the considered services 106
6.11 Evaluation of metadirectory’s interface 116
6.12 Example of rules used in the sample scenario 119
6.13 Results of users’ survey . 120

151

152

Glossary

hRESTS 29–31

Idea Management 93

JavaScript 10, 12, 34

Linked Data 3, 29, 33, 38, 45–47, 53, 56, 57, 78, 89, 115, 124

METEOR-S 19
Microformats 29, 30
MicroWSMO 28, 29
mixin 43, 73
Mule Enterprise Service Bus 16

OpenSearch 32

parser 7
Poshformats 29, 30

RDForms 31

Scraping Ontology xii, 42, 50, 53, 93, 121, 124, 128, 130
Scrappy 93, 115
Screen Scraping 6, 8, 11
Semantic Web 1, 3, 4, 20, 29, 100, 124
Semantic Web Services 2, 13, 16

153

GLOSSARY

Web Services 2, 13, 14, 16, 26
wrapper 47
WSMO-Lite 28, 29

154

Acronyms

AOP Aspect-Oriented Programming. 43, 73
API Application Programming Interface. xii, xiv, 12,

30, 78, 84, 85, 126, 130

BDI Belief-Desire-Intention. 41, 126

CMM Capability Maturity Model. 82
CSS Content Style Sheets. xi, xiii, 48, 51–53, 58, 60,

64, 68, 95

DC Dublin Core. 48, 57, 63, 94
DOM Document Object Model. 7, 8, 47, 53, 54, 56–61,

63, 64, 68, 69, 95, 96, 120, 130, 149

ebXML Electronic Business using XML. 16

FIPA Foundation for Intelligent Physical Agents. 32
FLOWS First-order Logic Ontology for Web Services. 23
FOAF Friend of a Friend. 48, 94
FOMDD Feature-Oriented Model-Driven Development.

73
FOP Feature-Oriented Programming. 43, 73, 75

GRDDL Gleaning Resource Descriptions from Dialects of
Languages. 11

155

ACRONYMS

HTML HyperText Markup Language. xi, xiii, 3, 6–8, 10,
11, 28–31, 34, 40, 42, 47–52, 55, 57–59, 61, 63, 65,
82, 95, 100, 109, 118, 149, 151

HTTP HyperText Transfer Protocol. 4, 14, 15, 26, 28,
31, 37, 41, 43, 44, 46, 72, 73, 75–78, 90, 104, 106,
125

IOPE Inputs Outputs Preconditions and Effects. 13, 17,
28

LiMOn Linked Mashups Ontology. 34, 78, 79, 85, 88, 90,
108, 115, 126, 130, 149

MDD Mashup-Driven Development. xii, xiv, 79, 92,
128

MIME Multipurpose Internet Mail Extensions. 26, 28

NLP Natural Language Processing. 22, 48, 54, 130

OOP Object-Oriented Programming. 43, 73
OSSMM Open Source Software Maturity Model. 82
OWASP The Open Web Application Security Project. 93
OWL Web Ontology Language. 16, 19, 20
OWL-S OWL Services. 12, 16, 17, 19, 22, 23, 149

QoS Quality of Service. 13, 86

RDF Resource Description Framework. xi, xiii, 1, 10–
12, 20, 29, 31, 41–43, 45, 47, 50–54, 57–59, 61–64,
68, 78, 94, 96, 109, 118, 124, 125, 130, 149

RDFa Resource Description Framework in Attributes.
3, 29–31, 52

REST Representational Stateless Transfer. xi–xiv, 2–4,
6, 12–15, 19, 26–29, 31–34, 37, 39–41, 44, 47, 49,
57, 73, 75, 76, 79, 92, 124, 128

ROP Role-Oriented Programming. 73

156

ACRONYMS

ROSM Resource-Oriented Service Model. 29, 31
ROWS Rule Ontology for Web Services. 23
RSS Really Simple Syndication. 93

SA-REST Semantically-Annotated REST. 29–31, 34
SAWSDL Semantic Annotations for WSDL. 12, 23
SIOC Semantically-Interlinked Online Communities

Project. 48, 53, 57, 62, 63, 94
SKOS Simple Knowledge Organization System. 112
SLA Service-Level Agreement. 25
SOA Service-Oriented Architecture. 2, 79, 80, 84, 124
SOAP Simple Object Access Protocol. 15, 28
SOP Subject-Oriented Programming. 73
SPARQL SPARQL Protocol and RDF Query Language.

113, 116
SWSF Semantic Web Services Framework. 23
SWSL Semantic Web Services Language. 23
SWSO Semantic Web Services Ontology. 23

UDDI Universal Description, Discovery and Integra-
tion. 14, 15

URI Uniform Resource Identifier. 17, 19, 23, 26, 31,
43, 50–53, 59

URL Uniform Resource Locator. 14, 15, 87, 130
USDL Unified Service Description Language. 25

VIPS Vision-based Page Segmentation. 10

W3C World Wide Web Consortium. 19, 34, 78, 83, 87
WADL Web Application Description Language. 2, 12,

13, 27–29, 31, 34
WSDL Web Service Definition Language. 14–17, 19, 22,

23, 25, 27, 28, 33, 34, 83–85, 87, 109, 114
WSMO Web Service Modeling Ontology. 2, 12, 13, 19,

20, 22, 23, 28, 29, 34, 78, 83, 84, 87, 109, 114

157

ACRONYMS

WSMX Web Service Modelling Execution Environment.
20

WSRR Websphere Service Registry and Repository. 16

XML Extensible Markup Language. 11, 13, 14, 19, 26
XPath XML Path Language. 51, 52
XSD XML Schema Definition. 25
XSLT Extensible Stylesheet Language Transformation.

11

158

	Abstract
	Resumen
	Contents
	Introduction
	Motivation
	Objectives

	State of the art
	Introduction
	Screen scraping
	Regular expressions
	Tree matching
	Wrapper induction
	Vision-based approaches
	GRDDL
	Unsupervised approaches
	Discussion

	Service discovery
	Web services
	Semantic Web Services
	Semantic REST services
	Other approaches
	Discussion

	Conclusions

	Discovery framework
	Introduction
	Framework overview
	Agent model
	Architecture
	Plans

	Service level
	Description model
	Service discovery rules

	Content level
	Semantic Scraping approach
	Semantic scrapingontology
	Content discovery rules

	Conclusions

	Content discovery
	Introduction
	Problem statement
	Rule induction for content extraction
	Training attributes and classes
	Induction algorithm
	Wrapper conversion

	Conclusions

	Service discovery
	Introduction
	Services as REST resources
	Feature-Oriented descriptions
	Service probing

	Services as contents
	SOA domains
	Linked Mashups Ontology

	Conclusions

	Evaluation
	Introduction
	Content discovery
	Scraping Ontology
	Automatic rule induction

	Service discovery
	Service probing
	Services as contents

	Agent level
	Description
	Results

	Conclusions

	Conclusions and future work
	Conclusions
	Publications
	Future work

	Bibliography
	List of Figures
	List of Tables
	Glossary
	Acronyms

