
PROYECTO FIN DE CARRERA

Título: Diseño e Implementación de una Arquitectura de Agentes

Basada en Web Hooks

Título (inglés): Design and Implementation of an Agent Architecture Based

on Web Hooks

Autor: J. Fernando Sánchez Rada

Tutor: Miguel Coronado Barrios

Departamento: Ingeniería de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Gregorio Fernández Fernández

Vocal: Mercedes Garijo Ayestarán

Secretario: Carlos Ángel Iglesias Fernández

Suplente: Marifeli Sedano Ruiz

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingeniería de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

PROYECTO FIN DE CARRERA

DESIGN AND IMPLEMENTATION OF AN
AGENT ARCHITECTURE BASED ON WEB

HOOKS

Alumno: Juan Fernando Sánchez Rada

Tutor: Miguel Coronado Barrios

Ponente: Dr. Carlos Ángel Iglesias Fernández

Octubre 2012

Tempus fugit,

quo vadis?

Resumen

Esta memoria es el resultado de un proyecto cuyo objetivo es presentar una arquitectura

para agentes inteligentes basada en eventos, en concordancia con las nuevas tendencias en

la Web de Eventos.

En primer lugar se presenta la motivación del cambio de paradigma propuesto, así como

las tecnologías utilizadas en la actualidad en cada campo (desarrollo y comunicación web

y desarrollo de agentes). Este análisis lleva a la inevitable conclusión de que es necesario

unir ambos campos. Por tanto, se compararán tecnologías que hacen una aproximación a

dicha uni�cación, así como las limitaciones que presentan y los motivos por los que dichas

soluciones no uni�can completamente ambos campos.

Tras esta visión sobre el estado actual, se describe el análisis de requisitos llevado a cabo

para casos de uso típicos de agentes y Web Hooks. Se pretende dar solución a un amplio

rango de usos, por lo que se examinan diversos escenarios en los que se hace uso de diferentes

servicios.

Con los requisitos anteriores en cuenta, se plantea una propuesta de arquitectura genérica,

tanto a nivel externo o de comunicación entre agentes como a nivel interno de organización

de información en las bases de conocimiento. Externamente, consta de una pieza central

que orquesta el intercambio de información entre las diferentes entidades conectadas a ella.

Dichas entidades pueden ser agentes o simples nodos, siendo el único requisito la comuni-

cación mediante el esquema de mensajes de�nido. Internamente, se exponen unas pautas

para el tratamiento de la información recibida. Esta arquitectura, llamada Maia, junto con

las decisiones de diseño se describen en detalle en el correspondiente capítulo del documento.

La arquitectura Maia también ha sido llevada a la práctica en la implementación de

un prototipo que utiliza Node.js, el entorno de JavaScript en servidor orientado a eventos,

para la comunicación entre agentes. Mediante este prototipo se muestran los bene�cios de

la arquitectura en un caso real. Concretamente en el desarrollo de un agente personal para

reserva de trenes que combina acceso a servicios, linked data y razonamiento de sentido

común.

Para acabar, se presentan los retos de futuro así como las posibilidades de expansión y

utilización.

Palabras clave: Agentes, webhooks, Live Web, Web de Eventos, JASON, hook.io,

node.js, JavaScript, Java.

Abstract

This project aims to introduce an event-based architecture for intelligent agents, in

accordance with the new tendencies in the Evented Web.

The reason for this change is that agent communication is no longer suitable for the

inmense amount of data generated nowadays and its nature. At least, not for their use

in evolving scenarios where data sources interact without previous con�guration. This is

exactly what the precursors of the Live Web envision, and it is beginning to show in the new

generation of evented applications, which enable customized interactions and a high level of

communication between di�erent services.

The proposed architecture shown in this document, called Maia, is based on a central

piece or event router, which controls the �ow of information/events to and from the con-

nected entities. These entities can be either event-aware agents or simply data sources and

subscribers. Thus giving a higher �exibility than current technologies and easing the devel-

opment of advanced systems by not requiring the complexity associated with agent systems

in all of the nodes.

To demonstrate the feasibility and capabilities of the Maia architecture, a prototype has

been implemented which is also explained in detail in this document. It is based on the event-

driven I/O server side JavaScript environment Node.js for the event routing components,

and adapted Jason BDI agent platform as an example of a subscribed multi-agent system.

Using this prototype, the bene�ts of using Maia are illustrated by developing a personal

agent capable of booking train tickets and that combines access to services, linked data and

common sense reasoning.

Keywords: Agents, webhooks, Live Web, evented web, JASON, hook.io, node.js,

JavaScript, Java.

Acknowledgement

My belief always was that acknowledgement should be a means to inform the reader

about the context of the text and the writer, the situation that made it possible. It should

not be the place to thank family and friends, as they should receive our gratitude every

single day, and not just for a scienti�c text.

So allow me to thank the Group of Intelligent Systems (a.k.a. GSI) for providing the

best working environment possible, and giving me the opportunity to participate in it.

This thanks extends to every single member of the group that helped, either with technical

support or just being there in the good and bad times. Being in this group for more than

three years now has given sense to being enrolled in this university, as we turn our knowledge

into real applications while learning a lot and having so much fun. I count is as one of the

best things to ever happen to me, and I owe much to many of the members of the sta�,

professors and students.

Among the people in this department, there are some people I have to mention indi-

vidually for several reasons. Firstly, César Monteserín, for this written form of my thesis

is largely based on his previous research on latex templating and has allowed me to focus

almost exclusively on adding content. Your work is amazing, and it keeps surprising me

everyday. Once again, you sustain my belief that shared knowledge and open source is key

to progress. Secondly, to Carlos Ángel Iglesias, for being a guide during these years not only

in work related to the group, but other personal and professional issues. You teach us how

to be real engineers, which may pass unthanked but is never in vain. And lastly, Miguel

Coronado, who patiently helped me through the project that lead to my �nal thesis.

A big thanks should go to EESTEC as well, for helping to blur the boundaries between a

professional career and a personal passion. I probably would not be the professional nor the

person I am today without the experienced gained all around Europe. Most of my gratitude

is to one particular committee, LC Madrid (known as EURIELEC in local level), for their

members lit the spark that kept me passionate about being in this degree and improving

both personally and professionally. From you I learnt most of the good stu� during these

�ve years, and shared most of my time. And I am probably contradicting with you what

I wrote about thanking friends, but we've achieved a unique mix of friends and colleagues

that I will not easily give up to.

And last but not least, my full respect and gratitude to the Open Source community

in all its �avours. It is your spirit that keeps the world turning and progressing instead of

�ghting over patents and legal disputes.

Agradecimientos

A mi familia, independientemente de lo escrito en el apartado anterior. Y es que según

escribía esta memoria, me iba dándo cuenta de que no podía no dedicaros si quiera unas

palabras. Principalmente porque si estoy aquí es por vosotros y vuestro apoyo incondicional

en estos ya veintitrés años de vida. Porque me lo habéis dado todo sin esperar nada a

cambio, pero sabiendo que con la educación que me habéis dado no podría sino darlo todo

por vosotros. Porque esta memoria es la culminación de una andadura que comenzó hace

mucho más de cinco años, y me habéis acompañado a cada paso del camino.

Pero sobre todo porque sé que no entenderéis una palabra de este proyecto de �n de

carrera y aun así estaréis a mi lado en la lectura y os alegraréis incluso más que yo de

que termine esta etapa. Lo cual no deja de ser una muestra más de lo que es el amor

incondicional. Ese que hace que estemos al lado de los que queremos aunque no entendamos

sus acciones o sus sueños, que lo demos todo simplemente por ver a la otra persona feliz,

que da color y sentido a una rutina gris y vacía. Quizá sea poco profesional, pero no puedo

dejar escapar esta oportunidad de dejar constancia de lo mucho que os debo.

A mis abuelos, por si tienen a bien leer este papel. Sé que es difícil que alguien se

preocupe por mí como lo habéis hecho vosotros, y sólo espero haber estado a la altura.

A mi hermana Irene, porque ha sido siempre la cara de mi cruz. Porque sé que no

siempre ha sido fácil convivir conmigo, y sin embargo aprendiste a no quejarte. Quizá no lo

creas, pero por pocas personas me he preocupado como por ti.

Mamá, papá, puede que sea el primer ingeniero de la familia, pero vosotros habéis hecho

algo mucho más grande de lo que la técnica consiguirá jamás: habéis dado la mejor educación

posible a dos hijos que os quieren con locura, pese a no haber tenido siempre los medios

adecuados. Sé que todo lo que soy os lo debo a vosotros, y nunca podré agradecéroslo lo

su�ciente. Y es que tener hijos es sencillo, pero para ser padres hace falta sacri�cio, coraje,

paciencia, tesón... Y vosotros lo tenéis todo.

Hacéis que me sienta orgulloso de vosotros cada día. Sólo espero que hoy podáis estar

un poco más orgullosos de mí. Prometo seguir luchando, y hacerlo por vosotros.

Contents

Resumen VII

Abstract IX

Acknowledgement XI

Agradecimientos XIII

Table of contents XV

Listing XXI

Figures Index XXIII

1 Introduction 1

1.1 Rationale . 1

1.2 Goals . 3

1.3 Structure of the document . 4

2 State of the Art 5

2.1 Historical Background . 5

XV

2.1.1 An inherited Internet . 5

2.1.2 The Cloud . 6

2.1.3 Evolving the Web . 7

2.1.3.1 Web Hooks notion . 7

2.1.3.2 The Live Web . 8

2.1.4 Beyond human capabilities: Agents . 9

2.2 Evented Web . 10

2.2.1 Web Hooks . 10

2.2.2 Node.js . 12

2.2.3 Socket.io . 12

2.2.4 Hook.io . 13

2.3 Jason Agent Platform . 13

2.3.1 Architecture . 14

2.3.2 Detailed Jason perception model . 15

2.3.3 Environment representation by the Model 17

2.3.4 Environment representation levels . 17

2.3.4.1 Customization and limitations 17

2.3.5 SPADE . 19

2.3.5.1 Architecture . 19

2.3.5.2 BDI Model . 21

2.3.5.3 Limitations . 22

2.3.5.4 Customization . 23

2.4 Personal agents . 23

2.5 Personal Agents Taxonomy . 24

2.5.1 Personal resources and information management agents 25

2.5.2 Purchasing and Trading agents . 25

2.5.3 Task and Time management agents . 26

2.5.4 Reminder agents . 27

2.5.5 Recommender and �ltering agents . 27

2.6 Personal agents Behavior . 28

2.7 Personal agents shift to the Cloud . 30

2.7.1 Services on the Cloud . 30

2.7.2 Smartphones, Smart interfaces . 32

2.8 Case studies . 33

2.8.1 CALO . 33

2.8.2 Siri . 34

2.9 Architecture discussion . 35

2.9.1 Agent-component-based architecture 35

2.9.2 Extended BDI architecture . 35

2.9.3 User-focused architecture . 37

2.10 Recommender agents . 38

2.10.1 Social recommendation . 38

2.10.2 The importance of the user's pro�le 39

2.10.2.1 Common Sense Computing Initiative 40

3 Requirements Analysis 45

3.1 Overview . 45

3.2 Use Cases . 45

3.2.1 Birthday Present . 46

3.2.2 Summer Trip . 46

3.2.3 Movie Tickets . 46

3.2.4 Blogging site . 48

3.2.5 Blogging site . 48

3.3 Summary of requirements . 48

4 Architecture 51

4.1 Event-based Agent Architecture . 51

4.2 Messaging and Communication . 52

4.3 Namespaces . 53

4.4 Topology and hierarchy . 55

4.5 Clustering . 56

4.5.1 Treatment of Beliefs . 57

5 Case Study 59

5.1 General description . 59

5.1.1 Intelligent suggestions . 60

5.1.2 Description of the procedure . 60

5.1.3 Requested planning . 61

5.2 Functionalities . 61

5.2.1 Synchronisation with Google Calendar 62

5.2.2 User preferences learning . 62

5.2.2.1 Acquisition from external sources 63

5.2.2.2 Learning from the usage of the system 63

5.2.3 External services . 64

5.2.4 Generation of tasklists . 64

5.2.5 Natural Language Processing . 65

5.3 Agent Network Design . 66

5.3.1 Agents . 67

5.3.2 NLU Agent . 67

5.3.3 Travel Agents . 68

5.4 Agent Implementation . 69

5.4.1 NLU Agent . 70

5.4.2 User Agents . 72

5.4.3 Travel Agents . 74

5.5 Communication with Jason and Hook.io . 75

5.5.1 Data Sources . 75

5.5.2 Messaging and Communicating . 76

5.6 Treatment of external events . 78

5.6.1 Web Service calls . 78

5.6.1.1 Concurrent calls . 78

5.6.1.2 Data representation in Jason system 79

5.6.1.3 Availability of the data received 80

5.6.2 Modelling input events . 81

5.6.3 Percept updating policies . 82

5.6.3.1 Update base on external action execution 82

5.6.3.2 Continuous updating . 82

5.6.3.3 Periodic sampling . 84

6 Conclusion and future work 85

6.1 Conclusions . 85

6.2 Achieved goals . 86

6.3 Future Work . 87

6.3.1 Security . 87

6.3.2 Chaining services using hooks . 87

6.3.3 Better integrate Web Hooks . 88

6.3.4 De�ne an ontology of objects . 88

6.3.5 Interacting with the Kinetic Rule Engine 88

A Installing Node.js and Hook.io 91

A.1 Install node.js . 91

A.2 Install Socket.io . 92

B How to use hook.io hooks 94

B.1 Tips with Hook.io . 96

B.2 Troubleshooting and known bugs . 96

B.3 Further reading . 96

C Excerpts of code 97

C.1 travelAgent . 98

C.2 userAgent . 101

C.3 nluAgent . 104

Bibliography 109

Listings

2.1 JSON template of GitHub postreceive hooks 11

5.1 Excerpt of a JSON message received from the NLU Service. 70

5.2 Except of a JSON message received from the NLU Service. 71

5.3 Excerpt User Agent source code for sending the Travel Agent all the infor-

mation received from the NLU Agent. 72

5.4 Excerpt User Agent source code for sending the NLU Agent the users messages. 72

5.5 Excerpt User Agent source code for sending the Travel Agent all the infor-

mation received from the NLU Agent. 73

5.6 Web service mandatory �elds checker rule . 74

5.7 Simpli�ed plans for �nding a travel (and informing of failure) 74

5.8 Data representation in Jason . 80

B.1 basic hook.io hook template . 95

C.1 travelAgent code . 98

C.2 userAgent code . 101

C.3 nluAgent code . 104

XXI

List of Figures

2.1 Environment and model functionality description. 14

2.2 Jason reasoning cycle environment interaction 15

2.3 On the right the UML Environment class, on the left the Environment get-

Percepts �ow chart. 16

2.4 SPADE's architecture . 20

2.5 Example map of services in the cloud (Source 2008) 31

2.6 Open Cloud Computing Interface Architecture 32

2.7 Smart interface of Siri . 33

2.8 Assistance provided by Siri . 34

2.9 Agent component-base architecture . 35

2.10 Extended BDI agent architecture for proactive assistance as de�ned in CALO 36

2.11 User-focused Agent Architecture . 37

2.12 Some of the nodes and links in ConceptNet 41

2.13 ConceptNet 5 . 42

2.14 An quick example overview of some of the information about the concept

�Towel� in ConceptNet 5 . 43

3.1 Birthday present use case . 46

XXIII

3.2 Summer trip use case . 47

3.3 Movie tickets use case . 47

3.4 Blogging use case . 48

4.1 Excerpt of hook intents ontology . 54

4.2 Internal distribution of nodes within Maia. Events are broadcasted to all

members within the same bus. 56

4.3 Flow of events. Entities can simply send event noti�cations to the Event

Router, or subscribe to be forwarded a certain subset of events. 57

5.1 Avatar used in the browser User Interface . 60

5.2 Work�ow of intelligent suggestion generation 60

5.3 Agent Network Overview . 66

5.4 User Agent and neighbours details . 67

5.5 NLU Agent . 68

5.6 Travel Agent . 69

5.7 Di�erent communication channels. In detail, hooks to external sources. 75

5.8 Interconnection of the di�erent buses and protocols 76

5.9 Architecture using http wrappers. 77

5.10 UML sequence diagram that involves calling a web service. 79

5.11 Update base on external action execution . 83

5.12 Periodic Sampling . 83

5.13 Continuous updating . 84

Chapter 1

Introduction

�Ad initium, ad in�nitum�

1.1 Rationale

This thesis is developed as part of the Web 4.0 project. The Web 4.0 Project proposes a new

model of interaction with the user that is more complete and personalized, not only limited

to showing information but also behaving like a magic mirror that gives concrete solutions

for the user needs. It is an integration layer that represents a major step for the exploitation

of the Semantic Web and its enormous possibilities. Eric Schmidt, CEO of Google Inc., once

said in an interview: "The perfect search engine is the one that only gives one result, which

is exactly what you're looking for". This is the basic principle in Web 4.0.

This new Web will be able to answer questions like "I want to be picked up by a taxi

right now" through the combination of di�erent techniques like:

• Natural Language Understanding (NLU)

• Context information processing: sentiment analysis, geolocation...

• An architecture of intelligent cloud agents that are capable of communicating among

themselves and delegating the answer to the appropriate agent.

• A new model of interaction with the user, not only based on simple lists of results.

Agents will even perform concrete actions by interacting with the mobile terminals

1

CHAPTER 1. INTRODUCTION

the user might be using. For instance, agents could make a call automatically to the

nearest cab company, without direct user interaction, using geolocation.

Among the advantages and possibilities of this new model we could note the following:

• A more e�cient exploitation of the Semantic Web, which is a highly demanded tech-

nology nowadays. Semantic search engines are tools that are being deployed in many

systems. Search engines need new interaction paradigms beyond the keywords based

searching. With the appearance of SIRI and Google now, natural language is becom-

ing the preferred interaction, since it enables voice interaction from mobile phones.

Here semantic representation of the Web is an essential requirement for the scalability

of the solution. The semantic Web and, the open linked data initiatives are approach-

ing this ultimate goal. This high demand will create new needs associated with the

integration with the users. A new type of communication will be needed to represent

information and make accessing it easier for everyone. The possible applications of

these technologies are diverse and could start being deployed nowadays.

• Accessibility. Creating new models of user-machine communication will make it pos-

sible to bring Internet closer to people that can not understand the usage of a browser

and the possibilities behind the Internet nowadays due to its complexity. The aim is

to change the way people access information on the net by improving the paradigm of

ubiquitous computer interaction formulated by Mark Weiser[1].

• Improvement of the user experience through customized agents. By including person-

alized agents that interact with the users and learn from them it is expected to improve

their experience. The agent interacts with the user by o�ering custom content, always

trying to lessen the di�erence between what the users want to �nd and what they

�nally �nd. It will also perform tasks for the user by accessing contextual informa-

tion and communicating to other intelligent agents in the network to o�er advanced

information to the user that would otherwise need to be searched manually.

• Distributed computing of the information based on agents. The intelligent agents are

elements that process information and communicate with each other. For the user the

experience is similar to a centralized system. Each semantic agent will be specialized

in one or several tasks available through an agent directory. As they are specialized,

the requests will be sent to the agent that is more likely to give the right answer to

that precise request. This means a very important saving of computational power.

2

1.2. GOALS

1.2 Goals

In the long term, this project aims to provide an extensible and easy mechanism for commu-

nication between disperse agents by means of web hooks. This includes, but is not limited

to, server modules that need to cooperate to achieve a common goal. In a bigger picture,

this also includes client agents directly connected to the back-end.

Going further into details, the case scenario that will be used is the following: a per-

sonal manager in the cloud, accessible through an Android 1 application or an HTML5 2

site, that will make use of cloud agents to provide the user with information about �ights,

accommodation and restaurants in response to a query in natural language. For this, we

will need the following:

• A communication channel and protocol to connect Clients and Cloud Agent(s)

• A communication channel and protocol to connect Cloud Agents

• A generic and extensible schema for intents and actions

• A scalable platform to deploy Cloud Agents

• To develop all the complex logic needed in every speci�c Cloud Agent

• To de�ne security constraints and authentication methods

Other general aims of this project are:

• To study and extend the current state of the art of Web Hooks and Web Intents

• To explore the capabilities of such technologies for inclusion in intelligent systems

• To explore and exploit the potential of Javascript in server applications (see Node.js

in section 2.2.2)

• To demonstrate the versatility of the given models for communication, beyond pro-

gramming languages or platforms

• To provide a robust and simple bidirectional connection between Java and Javascript

programs

1http://www.android.com
2http://dev.w3.org/html5/spec/

3

http://www.android.com
http://dev.w3.org/html5/spec/

CHAPTER 1. INTRODUCTION

1.3 Structure of the document

In order to make it easier for the reader to go through this document, here is a guideline of

the contents of each chapter and the connection to each other:

• Chapter 1 gives an overview of the context and rationale of this thesis as well as the

relation to the Web 4.0 project.

• Chapter 2 �rst shows the evolution of the technologies related to this thesis, including

the Internet and Agent frameworks. This information helps contextualize this thesis

and understand its importance and reason.

• Chapter 3 shows a series of case scenarios that helped shape the requirements of the

architecture proposed in Chap. 4.

• Chapter 4 explains in details an Agent architecture, both internally and externally. In

this chapter the relationship between components are described, and how the infor-

mation �ows in the system.

• Chapter 5 exempli�es the architecture explained in the previous chapter using Jason

(2.3) and Hook.io (2.2.4), and shows a concrete case scenario for it which requires the

de�nition of certain agents within Jason.

• Chapter 6 sums up the �ndings and conclusions found throughout the document and

gives a hint about future development to continue the work done for this master thesis.

• Finally, the addenda provide useful related information, especially covering the instal-

lation and con�guration of the tools used in this thesis.

4

Chapter 2

State of the Art

�Dicebat Bernardus Carnotensis nos esse quasi nanos, gigantium humeris insidentes.�

� John of Salisbury

2.1 Historical Background

It is certainly impossible to understand the implications and essence of the concepts ex-

pressed in this document without fully understanding the nature of the Internet and its

evolution, especially during recent years. The following sections try to give an answer to

that and to introduce the basis for the rest of the document.

2.1.1 An inherited Internet

Since the birth of the World Wide Web in the form of glowing text in dark screens, we have

seen it take over the world in many �elds. From commerce to personal communications,

including setting up and having meetings, we all have moved a vast part of our activities

to the Internet and more precisely to the WWW. Yet the underlying model has remained

unchanged for the time being: applications are thought and deployed in a client-server

fashion, with the heaviest applications in powerful racks waiting for a request from a client

to diligently answer with the correct data. And this model has worked, limitations and all,

during the past twenty years. But that is about to change if we want the web to evolve and

5

CHAPTER 2. STATE OF THE ART

see a new kind of applications spread.

The reason for the change of model is, ironically, the success of the Internet itself. We

should never forget the beginnings of the Internet that made applications and protocols the

way they are now: relatively static and limited data (from email to a company's public

information) that was shown to the user on-request. Everyday, more and more users and

companies move their activities to the Internet, and experts come up with new ways to

exploit the capabilities of the web, so the �ow of information is increasing quickly, not only

in size but in diversity. The amount of information �owing has become unmanageable for any

user, so we can no longer a�ord manually checking every source any more. To make it even

worse, we not only want all the information, but we want it now. If we combine the inner

client-server nature of the web with the need for immediacy, we end up with innumerable

clients constantly polling a reduced number of servers to fetch new information. And all that

information is �ltered, so it is usually the case that those responses translate into �Nothing

new�. The same applies to server-to-server communications.

2.1.2 The Cloud

Over the past years, the popularity of the Internet has given birth to an overwhelming

number of online services. Nowadays, we can �nd online editors for almost anything we can

imagine: images, videos, audio, documents... The so-called Cloud Services, that make it

possible to work seamlessly in any operating system, as long as it is loaded with a modern

web browser. Moreover, some operating systems like ChromiumOS turn this browser into

their cornerstone. With their the new �everything is in the browser� philosophy, there is

no longer the need for local applications, delegating that task to either client applications

written in JavaScript or server-side applications. This has also fostered the diversity of

devices and terminals with limited processing power but highly connected.

On the other hand, the number of connected devices, those that could be considered

clients in the classical server-client conception of the Internet, has reached the millions,

being one of the leading factors in the transition to IPv6.

However, the services now being deployed are relatively isolated from one another. They

are only interconnected and share information whenever they are provided by the same

entity, limiting the potential combinations. In a way, this resembles the classical Unix

model, in which every tool has a very specialized aim, only in the case of web applications

we lack a connection mechanism like pipes in Unix.

For this reason applications known as mashups came to existence, which put together

6

2.1. HISTORICAL BACKGROUND

di�erent services to o�er a more complex behaviour. The downside of such applications being

that most of the times they were provided by third parties, needing an extra application

server connected to the rest, acting as a proxy to those external services. This behaviour,

though practical and interesting, has several disadvantages that have lead to evolving the

mashup idea into more �exible and younger technologies.

2.1.3 Evolving the Web

To lessen the impact of some of the �aws mentioned before, and to adapt the web to the

modern times and usage, a new paradigm is needed. As there are many di�erent aspects or

problems, there are several approaches that can be used. In particular, two currents will be

covered in this document. The �rst one is a low-level mechanism to add synchronism and

communication between traditional web servers, through web hooks 2.1.3.1. The second one

takes a more ambitious goal and brings the new ideas about events and their importance to

the web, turning it into The Live Web 2.1.3.2.

2.1.3.1 Web Hooks notion

Web hooks are a design pattern for connecting a server and a client. The server instead of

o�ering an API of a server, o�ers an API for registering a URL which will be invoked when

a service is requested. In this way, three kinds of web hooks can be obtained:

Push Those that only inform other parties about an update. For example, the GitHub

example explained in section 2.2.1.

Pipe If the aim is to connect two or more services like one would do with pipes in a Unix

system. An example would be a hook that connects your Flickr and Twitter accounts,

posting a tweet with the tags of your picture and the link; and another hook from

your Twitter account to your Facebook account, to post the same message there and

upload the picture.

Plugin It is possible to program with web hooks in mind and provide an API that allows

other developers to extend your application. As the concept of web hooks evolves, it

is expected to �nd more applications that follow this pattern.

The web hooks allow service providers to expose some of their capabilities to third parties

in a simple way. The underlying idea is to delegate tasks within our code, just as we would

do with local hooks/calls in conventional programming languages. The di�erence is that,

7

CHAPTER 2. STATE OF THE ART

while in local calls a di�erent library will process the given data and return the results,

with web hooks the data may be processed by a totally di�erent entity, in a completely

independent context. Even though this brings several design challenges, it also allows a

�exibility never before known.

Conceptually, web services only have a request-based �input� mechanism: web APIs.

By using the given APIs the user (that may even be other web service) requests the web

application to perform some actions and, most often, it returns some data, e.g. ticket

services, travel reservation, weather forecast services, etc.

To those regular services, APIs are enough. However, Internet is becoming a �real-time�

service, and mobile application have pushed noti�cation systems to the fore. If the users

want to be informed whether the price of the train ticket changed or if there are new tickets

available for the concert, they need to continually check the web service for changes (i.e

real-time services based on APIs require polling)

However, polling is wasteful and unacceptable for applications that integrate a huge

amount of services. Regular web services lack an event-based output mechanism to replace

polling, and this is precisely the role of web hooks, since they propose a simple real-time

event-driven alternative. Feeds represents another approach, but they do not su�ce as the

unique form of output for service integration. Strictly speaking they are based on polling,

and so the user has to request the data. XMPP also provides a mechanism to avoid polling,

and it is an established solution for data streams. However, it is hard to use, heavy weight

and it is not suited for dealing with a large number of channels.

2.1.3.2 The Live Web

The term Live Web [2], also called real-time web, describes a new stage in web evolution

that extends the web 2.0 interactive web. The Live Web is characterised by a new way

of interacting with the web. Instead of simply browsing static web pages or even interact-

ing with a web site or social network, the Live Web uses dynamic streams of information

to present contextual, relevant experiences to users [2]. There are several sources of these

dynamic streams of information a user can be interested to be noti�ed by, such as social

awareness streams, context awareness streams, activity awareness streams and transaction

noti�cations. First, Social awareness streams [3] are an emerging lightweight social com-

munication that helps people to maintain awareness of others. Most of the popular social

8

2.1. HISTORICAL BACKGROUND

network sites such as Twitter 1, Facebook 2 or Foursquare 3 provide noti�cations containing

updates about presence, collaborations or actions. Context awareness streams are receiving

increasing attention in mobile computing since context awareness can enable adaptive ap-

plications, context based services as well as power management [4]. Activity awareness [5]

provides users the ability to be noti�ed about many potential events concerning actions

carried out by collaborations in a work environment, such as pending tasks, tasks ful�lled,

comments, or noti�cations in an approval process. Finally, Transaction noti�cations provide

users an update of a transaction they have started (e.g. booking a �ight or buying a book),

so that users know the status of the transaction and of any impediment (rejected credit

card, delay in shipping, out of stock, etc.).

The risk of overloading the users with noti�cations [6, 5] is evident and more and more

problematic given the increasing online services users are subscribed to. Then, users are

frequently interrupted by noti�cations and as a result, task performance degrades, and

users experience a greater increase in anxiety and annoyance [7].

Thus, there is an emerging class of web applications which require asynchronous pro-

cessing of incoming noti�cations, and di�ers from the requirements of traditional web appli-

cations based on the client-server model. As a result, event-based programming has emerged

as a popular programming paradigm.

In his book, Phil Windley[2] demonstrates the possibilities of The Live Web 2.1.3.2

through a series of examples of web applications that make use of his Kinetic Rules Engine

[8]. The reader is encouraged to take a look at the examples in the code repository and

explore deeper by reading the book.

It is worth mentioning this, despite not having used any of these tools for this project,

as some of the ideas in this document were inspired by either the words of Phil Windley or

the applications available on the git repository.

2.1.4 Beyond human capabilities: Agents

Taking it a step further, we can erase human interaction and understand web hooks as

a means of communicating and interweaving intelligent autonomous computer programs,

or agents. Not only can we allow agents to exchange messages, but also to negotiate the

execution of concrete tasks. BDI agents are meant to mimic user behaviour, but there are

1http://www.twitter.com
2http://facebook.com
3http://foursquare.com

9

http://www.twitter.com
http://facebook.com
http://foursquare.com

CHAPTER 2. STATE OF THE ART

have been few attempts to adapt them to match the needs of the evented web users use

everyday. The architecture described in this document tries to shorten that gap and to

enables agent to make use of the work being done for the web hooks and web applications.

As a result of adapting the traditional agent technology to support web hooks, it will also

be demonstrated how it can also support Live Web requirements. On the one hand, agent

technology can support Live Web requirements thanks to its distributed nature and its ability

to deal with interactions in dynamic and open environments. On the other hand, assistant

agents [9] can help users in reducing the information overload by �ltering, intermediating and

automating the processing of incoming noti�cations and executing transactions on behalf of

their users.

Nevertheless, current agent platforms have not been designed for event processing and

are instead focused on agent-based communications. Consequently, there is a need to bridge

the gap between agent technology and event-driven Live Web.

The underlying motive of this work is to propose an agent architecture that can be

aligned with the event programming architectural style that enables the development of

agents for the Live Web.

2.2 Evented Web

The concepts explained in the previous section (2.1.3) are supported by a series of technolo-

gies that have either made them come true or have proven their concepts and potential right

through a real world implementation.

2.2.1 Web Hooks

As explained in section 2.1.3.1, web hooks are a generalization of hooks in traditional pro-

gramming in the form of user-de�ned HTTP callbacks. This section introduces the technical

details of web hooks.

As an example, let's take the well-known social code versioning hosting service GitHub.

In its website users have an option to set a URL to POST every time they push changes

to their repository. This POST message has some relevant information about the event

(repository update). This information is JSON-encoded like this:

10

2.2. EVENTED WEB

1 {

2 :before => before ,

3 :after => after ,

4 :ref => ref ,

5 :commits => [{

6 :id => commit.id,

7 :message => commit.message ,

8 :timestamp => commit.committed_date.xmlschema ,

9 :url => commit_url ,

10 :added => array_of_added_paths ,

11 :removed => array_of_removed_paths ,

12 :modified => array_of_modified_paths ,

13 :author => {

14 :name => commit.author.name ,

15 :email => commit.author.email

16 }

17 }],

18 :repository => {

19 :name => repository.name ,

20 :url => repo_url ,

21 :pledgie => repository.pledgie.id,

22 :description => repository.description ,

23 :homepage => repository.homepage ,

24 :watchers => repository.watchers.size ,

25 :forks => repository.forks.size ,

26 :private => repository.private?,

27 :owner => {

28 :name => repository.owner.login ,

29 :email => repository.owner.email

30 }

31 }

32 }

Listing 2.1: JSON template of GitHub postreceive hooks

11

CHAPTER 2. STATE OF THE ART

The receiving end is thus integrated in the process by making it fully aware of the new

status of the repository. This example is asymmetric, and the communication is only in

one way. In a more complex scenario the emitting party (in this case, GitHub) could wait

for the response to this POST and act accordingly. However, for such big services like

GitHub it is inconceivable to incorporate this to their work�ow as it is prone to attacks and

vulnerabilities.

2.2.2 Node.js

Node.js [10] is an environment to execute server-side Javasccript based on Google Chrome's

runtime (V8 engine). Due to javascript's event-driven nature, it is the perfect candidate to

implement our web hooks architecture.

Moreover, node.js has a boiling community behind it despite being a very new technol-

ogy4. In addition to the uncountable Javascript sources and code that can be found on

the Internet and that are compatible with node.js or easily adapted, there are libraries for

almost anything one can imagine. This demonstrates the vast possibilities of node.js and

the ease of development using either Javascript or Co�eeScript.

Node.js is community driven, and most of the libraries available are open source. Through

the Node Package Manager (npm)5 there are hundreds of packages that can be installed,

and their dependencies are automatically resolved.

2.2.3 Socket.io

Socket.io [11] is a protocol for message passing in long lived connections between clients and

servers. It is also the client and server libraries that implement the protocol.

Socket.io aims to solve the heterogeneity of available connection methods among modern

browsers by providing a transport-independent layer to establish the connection. One of the

several transports available are websockets, and that leads to the common misconception

that socket.io is a library for websocket connections in node.js. That is not the case, and a

generic websocket client may not be compatible with a socket.io server, and vice versa.

Among the several client and server libraries that provide socket.io compatibility, we will

be using the o�cial libraries for server (node.js) and client.

An interesting feature of socket.io is that in addition to keeping a connection open

4The current stable version is v0.6.13
5http://npmjs.org

12

http://npmjs.org

2.3. JASON AGENT PLATFORM

between client and server, it provides methods to: exchange messages in JSON format,

acknowledge the reception of a message, emit events and broadcast messages. All of this

with the event driven nature of Javascript, which means we can easily �lter messages and

de�ne di�erent methods for each of them.

2.2.4 Hook.io

Built on top of the socket.io library, hook.io [12] o�ers a framework to create and com-

municate sockets. Hook.io hooks are connected to a common channel, so every event is

broadcasted to all the hooks using the same port. In fact, they still follow the Client-Server

paradigm, and the �rst hook.io started (or the �rst one to start listening for connections)

will forward all the events and messages sent to it from each hook to the rest. Additionally,

events follow a hierarchical structure, which allows the creation of �lters for a determined

subset of events, using wildcards. And, what is more important, all these calls are made

asynchronously, as explained in the previous section.

Except for these two basical di�erences from raw Socket.io connections, the Hook.io

connections do not di�er much from them. However, the ability to �lter a range of events

and sending events to all the other users 6 will be key to evolving into a Web Hook model.

The details and the design considerations will be explained later.

The event names are of the form hook::method::foo::bar, being the �rst part auto-

matically added when sending an event (emit(method::foo::bar) results in that name for

the hook hook). To receive it (add it to the reception �lters) in another hook, we can either

use the full name hook::method::foo::bar or any of the wildcarded forms. For example,

hook::** would get any event coming from hook, while *::foo would only receive the foo

events coming from any hook but not foo::bar or similars.

2.3 Jason Agent Platform

Jason [13]is an open source platform for developing and executing BDI agents. It o�ers a

framework to develop and deploy agents, using both Java and AgentSpeak. As shown in

section 5.5 it is possible to customize the standard Jason deployment to suit the needs of the

evented scenario. The following sections contain a deeper explanation of the inner workings

of Jason, which will allow the reader to understand the adaptation process.

6In Socket.io only the server can broadcast

13

CHAPTER 2. STATE OF THE ART

2.3.1 Architecture

The Jason architecture -either centralized, Jade or SACI- uses the Environment class to

represent the simulated environment. That class, stores the information the agent perceives

and provides the programmer some appropriate methods to access and modify that infor-

mation. Usually, an auxiliary class called Model, is involved and it 'truly' represents the

environment. It stores the value the sensors measure (in real time) and o�ers the methods

to access the actuators. The Model class is not included into the Jason architecture, so the

Environment class must provide the methods to capture the information kept in the Model.

Thus, we can say the Environment class, when appropriate, observes the value of the

attributes in the Model class and changes the value of the percepts according to them, i.e.

at the sampling instants it checks the value of the model and updates the percepts.

Figure 2.1: Environment and model functionality description.

As shown in Fig. 2.2, the �rst step in the reasoning cycle is perception, and acting is

the last one. Acting may modify, depending on the action performed, the environment so it

may modify the perception itself.

The perceiving process (perceive) that starts the Jason reasoning cycle, uses the Environ-

ment class to �rst check if the current perception data is correct. If not, it is updated with

the information collected from the model, and provides the Jason agents a list of percepts

to change the beliefs base. The detailed operation of this method is explained in greater

detail below.

During the act step, Jason may execute an internal or external action. Internal actions

cannot modify the environment, although they can modify the beliefs. However, exter-

nal actions can de�nitely modify the environment, the data stored and so the perception.

Speci�cally, the change made in the act process, is performed in the Model class, that will

e�ectively be transferred to the Environment class -and so to the agent perception.

By keeping the model representation and the perception list separated, it is important

to consider which is the best moment to read the model representation, i.e to update the

information stored in the Environment. This matter is faced in the percept updating policies

section 5.6.3.

14

2.3. JASON AGENT PLATFORM

Figure 2.2: Jason reasoning cycle environment interaction

2.3.2 Detailed Jason perception model

In order to study and customize the Jason perception model, is is important to study, in

detail, the operation of the Environment main processes. As far as we are concerned, it

is composed by three di�erent data collections, as shown in the UML model provided in

section 2.3.

• percepts (List<Literal >) stores the general percepts, i.e. those common to all agents,

so they will be transferred the belief base of every single agent de�ned in Jason.

• agPercepts (Map<String,List<Literal�) stores the private percepts, i.e this list of per-

cepts will be transferred to the belief base of the speci�c agent.

• uptodateAgs (Set<String>) keeps the names of the agents whose percepts in Jason

system are up to date. So that when the systems request the percept list for any of

the agents in the list, it will not be provided due to it is not necessary to change it.

This is for performance purposes only.

These lists are accessed and modi�ed through the addPercepts, addPercepts (agName),

clearPercepts and clearPercepts (agName) methods of the Environment class. Calling any

of the methods listed, as well as the e�ect listed in the table 2.1, make the involved agents to

be removed from the list of up-to-date agents, to point out the Jason's belief base percepts

for the agent need to be updated next time the perceive process is executed for the agent

given.

15

CHAPTER 2. STATE OF THE ART

Method Acts on E�ect

addPercepts Global percepts Add percepts

addPercepts (agName) Private percepts Add private percepts

clearPercepts Global percepts Remove all the percepts

clearPercepts (agName) Private percepts Remove all the private percepts

Table 2.1: Perception related methods

The most important method, in the perceiving process, is getPercepts. It is called by

the Jason Architecture to retrieve the perception list from the environment. Its �ow chart

is presented in Fig. 2.3.

Figure 2.3: On the right the UML Environment class, on the left the Environment getPer-

cepts �ow chart.

As can be seen 2.3, getPercepts method checks if the current agent percepts in the belief

base are up to date. In such case, no change is made. Otherwise, it combines the information

of the common percepts and the private percepts to generate the list of percepts suitable

for the agent.

16

2.3. JASON AGENT PLATFORM

2.3.3 Environment representation by the Model

Despite all this, Model class role in the perception process has not been clearly de�ned.

In fact, the model class has never been named in the �gure describing the getPercepts

method 2.3, because it actually does not take part in the process. The information trans-

ferred to the agents is generated, as shown, from the data stored in the Environment class.

However, Environment's information should re�ect that contained in the Model class, since

it keeps the real time information, measured by sensors, from the real environment.

Thus, the Model role -specially when the environment is particularly complex- is to

establish a separation between the real time value represented by its attributes and the

samples taken by the Environment class in the sampling instants.

Moreover, the Model class may provide -and it de�nitely will in this project- a public

interface that can be accessed from external systems, platforms and services. Thereby

external events can modify the Model without interfere in the Environment class.

Hence, we must point out clearly, the Model contains all the information fetched from the

real environment, in real time, and it provides a public interface for external events. On the

other hand, the Environment cannot be accessed from any external systems or even from

the Model. The Environment class -when appropriate, according to the Jason reasoning

cycle- consults the Model to update the percept list that will transfer to the Agent System,

taking a sample of the model at a particular time.

2.3.4 Environment representation levels

At this point, according to the description given, we may see there are three di�erent places

where the information, collected from the environment, is represented in Jason architec-

ture: the Environment class, the Model class and the beliefs base. The table 2.2 gathers,

in summary, the information any of them represents and the way and the time they are

modi�ed.

2.3.4.1 Customization and limitations

As it will be shown in the next chapter 5, Jason allows for certain customization when it

comes to changing the way beliefs are gathered and stored. It is also possible and usual to

de�ne Java methods to perform certain actions not available in AgentSpeak.

However, there are certain limitations associated to the use of AgentSpeak or the static

17

CHAPTER 2. STATE OF THE ART

Environment

representa-

tion level

Where is it

stored?

How is it modi�ed? When is it modi�ed?

Real time

representa-

tion of the

environ-

ment.

In the

model class

By agent external

actions o external

events.

At any time.

Capture

of the en-

vironment

information

taken at a

particular

time.

In the En-

vironment

class

By the addPercepts

and clearPercepts

methods. The En-

vironment itself

accesses the Model

to capture the

information.

Depending on the

sampling policy (see

section 5.6.3).

Available

information

for the

agents

Belief base It is modi�ed by the

Jason architecture.

In the perceive step

of the Jason Reason-

ing cycle. They are

only modi�ed if the

Environment class

indicates they must

be updated.

Table 2.2: Summary of di�erent representation levels

18

2.3. JASON AGENT PLATFORM

typed nature of Java. Some of them are described in the process of adaptation in Chap. 5,

especially in section 5.6.1.2.

2.3.5 SPADE

Simply put, SPADE (Smart Python multi-Agent Development Environment) [14] is an agent

platform based on the XMPP/Jabber technology. This technology o�ers by itself many fea-

tures and facilities that ease the construction of MAS, such as an existing communication

channel, the concepts of users (agents) and servers (platforms) and an extensible communi-

cation protocol based on XML, just like FIPA-ACL. Many other agent platforms exist, but

SPADE is the �rst to base its roots on the XMPP technology.

The SPADE Agent Platform does not require (but strongly recommends) the operation of

agents made with the SPADE Agent Library. The platform itself uses the library to empower

its internals, but aside from that, you can develop your own agents in the programming

language of your choice and use them with SPADE. The only requirement those agents

must ful�l is to be able to communicate through the XMPP protocol. The FIPA-ACL

messages will be embedded in XMPP messages.

2.3.5.1 Architecture

SPADE's framework consists in a server side that provides the XMPP message routing ca-

pabilities (i.e., XMPP server) as well as two main platform components for FIPA's Directory

Facilitator (DF) and Agent Management System (AMS). Other services like a web interface,

and proxies to support other MTS are also present, but are out of the scope of this project.

Once a SPADE platform is deployed, agents connect to it in the usual fashion for XMPP

communications. From that moment on, agents communicate with each other through the

server, using the DF or AMS components whenever they are necessary.

However, the SPADE agent library can be used to implement agents without the need

of a full blown dedicated server. That is especially attractive considering the vast number

of XMPP server available right now, some very popular and in use by millions of people.

When used like this, the aforementioned components can either be connected to the server

as normal agents, or be left out if their services are not necessary.

In the �rst prototypes of this system, di�erent multi agent system platforms were eval-

uated. The most promising of them being SPADE, as it includes the XMPP protocol in its

core and many of its communication features. SPADE also allows connecting to users by

19

CHAPTER 2. STATE OF THE ART

Figure 2.4: SPADE's architecture

using a common XMPP server. However this means losing many of the features provided by

the server side components of the platform. In other words, we are constrained to the capa-

bilities of the SPADE library for stand-alone agents. Even though it should be theoretically

possible to use SPADE's built in XMPP server also for users, it proved to be hard.

Some attractive features in SPADE were also the ability to create communities (under

development), a set of pre-set behaviours (one-shot, �nite-state-machine...), its use of FIPA

and being fully written in Python. But most importantly, it had the XMPP protocol's

advantages: publish-subscribe mechanism to allow push updates, form-data to manage work-

�ow between user, libraries for many programming languages and platforms, etc. It also has

an event-based nature, but unlike our �nal proposal, it relies heavily on authentication

against a server and point-to-point messages. Even though there are some solutions to add

auto discovery and broadcasting/multicasting capabilities, they are not part of the basic

XMPP messaging functionalities, and thus are not supported by all libraries.

Our �nal solution bypasses all those de�ciencies or rough edges for our ad-hoc imple-

mentation and probably for a wider set of uses, while providing both a much more �exible

treatment of events and a rules engine. Unfortunately, security, authentication and limiting

the scope of certain components are aspects that need to be improved to equal the XMPP

alternative as it will be discussed in more details in Chap. 6.

20

2.3. JASON AGENT PLATFORM

2.3.5.2 BDI Model

Michael Bratman's BDI agent model is based on 3 basic elements: Belief, Desire and Inten-

tion (you know, B-D-I).

Believes are entries in the agent's knowledge base. It represents what the agent �knows�

about its environment.

Desires represent that which the agents wishes to achieve. The instantiation of a Desire is

a Goal.

Intentions represent the deliberative state of the agent, that is, what the agent has decided

to do in order to achieve its goals. The Intentions in execution are Plans, that is, a

sequence of actions that the agent can execute in order to ful�l an Intention.

The BDI implemented by SPADE is slightly di�erent. On the author's words: We

have tried to develop a distributed BDI system using Service Oriented Computation (SOC)

together with dynamic compilation of services in SPADE, which we have called Goal Oriented

Computation [14].

This BDI model uses the same basic principles of the classic BDI model from Bratman,

but it introduces a more complex model for the Intentions. In SPADE's BDI model, the

following elements appear:

Belief: An entry of knowledge in the agent's Knowledge Base (KB). You can insert new

knowledge, delete it and make queries to the KB about it.

Goals: SPADE's BDI model does not di�erentiate Desires and Goals, there are only Goals.

When an agent expresses a Goal, it means that the agents wishes to accomplish the

expression contained in such Goal. When a goal is selected for accomplishment, it

becomes active.

Services: Given that SPADE's BDI model is grounded on SOC, it is necessary to include a

Service element into the model. A Service is a method o�ered by the agent to the rest

of the system agents. Services can be composed into a sequence forming the Plans.

Services have in their description both a pre-condition (P) and a post-condition (Q).

The pre-condition P represents a state of knowledge that must be present in order to

execute the Service. The post-condition Q represents the state of knowledge that the

agent will achieve once the Service has been invoked.

21

CHAPTER 2. STATE OF THE ART

Plans: A sequence of Services that work their way to achieve the agent's Goals. Agents

reach their Goals by executing Plans. Such Plans are composed of a sequence of

Services (with their pre-conditions and post-conditions connected) and both a pre-

condition P and a post- condition Q that de�ne the whole Plan. Whenever a Goal

G must be achieved, the agent will look for a Plan whose post-condition Q equals G

and also whose pre-condition P is present as a pre-requisite for the Plan to start. But,

wait for this, the Services composing a Plan's actions do not necessarily belong to the

same agent. There is where the distributed nature of SPADE's BDI model comes into

play.

2.3.5.3 Limitations

For the most part, SPADE is a great platform of choice to build multi-agent systems. It

comes with an integrated server which once properly con�gured makes creating a complex

system a breeze. However, due to a big number of issues and a fundamental di�erence in

approach, SPADE is not a valid solution for the purposes of this project.

To be more precise, here's a list of reasons to discard SPADE for our intents:

Embedded XMPP server Despite being an advantage a priori, the embedded XMPP

server turned out to be incompatible with regular users in an easy way. Even when

the con�guration was done to allow it, errors occurred. A possible solution is to use

any regular XMPP server to connect agents with other users/nodes, but this way most

of the additional features of SPADE were lost.

Subscription persistence Connected to the previous point, subscriptions are reset in ev-

ery execution of the SPADE server, making it necessary to re-subscribe with the old

username and password.

Knowledge Databases even though SPADE can connect to many di�erent databases and

be set to process di�erent query languages, the support is not as advanced as in other

tools like Jason.

Need for subscription Unlike the solutions like hook.io, using SPADE to communicate

agents means subscribing them to a SPADE server and using the FIPA DF features

to �nd other agents with certain capabilities. Although robust, this mechanism forces

nodes to subscribe and expose their capabilities, and to search for other nodes specif-

ically before connecting to them. Although this feature can be mimicked using multi-

user chat rooms in XMPP, it is a fairly complex solution that bypasses many of the

22

2.4. PERSONAL AGENTS

rest of SPADE advantages, making them unnecessary.

Interoperability beyond agents Making SPADE agents exchange information with other

XMPP clients required either to wrap FIPA ACL in XMPP Data-Forms [15], in an ar-

duous process, or communicate using regular IQ stanzas in XMPP, again disregarding

the agent oriented side of SPADE.

XMPP One of SPADE's strengths is at the same time a weakness for our scenario, in which

services are meant to connect easily to one another. Adding an extra layer like XMPP,

especially taking into account the low maturity of some of the advanced features in

the current client libraries, is an ultimate reason not to use SPADE.

2.3.5.4 Customization

As explained before, SPADE is a complete framework more than just a library for agent

creation. Since it is written using Python, all code is available for download and inspection.

This, together with a permissive license, opens the door to any kind of modi�cation. As a

matter of example, during the testing phase of SPADE for this project, a new subscription

method based on regular expressions was added to the agent library. This change was

submitted to the developers, who added it to their following release. After this testing

phase, other changes have been submitted by other developers and there's activity in the

developers mailing list.

Apart from the expansion and license of the code, the behavioural component of every

SPADE agent makes it easy to execute arbitrary python code following certain patterns of

repetition. The code exposed to the programmer follows the evented paradigm, with control

loops behind the curtains to control the acquisition of messages and execution/triggering of

behaviours.

2.4 Personal agents

Bots and agents are designed to develop some particular tasks in a highly e�cient way, hence

the user is released from doing them. Intelligent agents that can aid a human in managing

and performing complex tasks in an o�ce desktop setting. Historically, the nature of those

tasks is repetitive and the nature of the date they work with is well-structured, so the

agents can easily manage it. However, nowadays much more ambitious intelligent agents

are designed. The overall goal is to reduce the amount of e�ort required by the human

to complete the tasks he intends. Agents cover many di�erent topics and are applied to

23

CHAPTER 2. STATE OF THE ART

a-Learning, e-Commerce, e-Health, information searching, travel planning, etc. Intelligent

personal agents are focused on the user, on providing what he needs even before he requests

it, and all about it is done by means of a proactive intelligent context analysis.

Before the rise of Social Networks, a personal agent was understood as a program that

helps the user on organizing its �les and emails, that checks its agenda and reminds him

about upcoming meetings, etc. Social Networks paradigm shifts the concept of user pro�le

to a new level. The behaviour of personal agents is based on user's pro�le, and not only

the pro�le the agent may guess from user's interactions but the pro�le they may read from

the user's social pro�le and his social networks activity. Connectivity is essential, personal

agents connect to the user's agenda, his social network account, his email inbox, even his

current presence and location and behave according to the information they retrieve.

The architecture of personal agents is changing too. Fast evolution of hardware capa-

bilities in conjunction with fast wide area communications and availability of virtualization

solutions is allowing new operational models for information technology. The advent of

Cloud computing resulted in access to a wide range of services and personal agents can feed

from those services to provide the user a better assistance.

Theories of collaborative problem solving clearly relate to the notion of proactive assis-

tance: user�agent collaborative activity can be viewed as one aspect of task management.

For the most part, these theories extend BDI models of agency to incorporate notions of

joint beliefs and commitments. For example, Joint Intention theory [16] formalizes the

communication acts between agents to establish and maintain joint belief and intention.

SharedPlans theory speci�es collaborative re�nement of a partial plan by multiple agents,

handling hierarchical action decomposition and partial knowledge of belief and intention.

There has been some recent work on agent technologies to aid people with cognitive

disabilities in managing their daily activities [17, 18]. These systems monitor a person's

actions to understand what he is doing, and interact when appropriate to provide reminders,

situationally relevant information, and suggestions to aid in problem solving.

2.5 Personal Agents Taxonomy

When classifying personal agents into a �xed taxonomy it is needed to point out the criteria

to be used. As ordering the agents based on their architecture is not the objective of this

document, and cataloging them according to the resources they use is not big deal, the

following taxonomy is made according to the task they develop. As shown in the use cases

24

2.5. PERSONAL AGENTS TAXONOMY

description, those Multi Agent Systems tagged as Personal Agent Systems perform many

di�erent tasks in many di�erent scenarios. Besides, systems do no consist of a single agent

performing just one task, but of many di�erent agents that communicate to achieve a big

set of complex goals.

According to the task they perform, Personal Agents can be classi�ed into �ve main

categories described below. Some authors suggest an additional category named Decision-

making Agents [19] that help user to take a decision. However, this category is too general

since some other categories could be classi�ed as decision-making.

2.5.1 Personal resources and information management agents

Personal Information Management (PIM) [20] refers to users' activities in acquiring, organ-

ising, retrieving, and processing information in their personal spaces. This category includes

all those agents that handle personal resources. This is done in three ways:

• Taking care of the user's items that tend to be shared, such as books, CDs, DVDs or

even toys, so that the user knows who's borrowed or given them back. This includes

collection management.

• Organising Files, Web bookmarks and email [20]

• Keeping track of commercial transactions, providing the user with detailed information

about his budget, debts and investments.

2.5.2 Purchasing and Trading agents

Buying agents's objetive is assisting the user in the shopping process by showing the user

the best item to purchase, according to the search criteria he has achieved. To do so, they

perform an exhaustive search in many shopping portals so they �nd the best price, because

in many cases the cheapest match is the best option. Moreover, a user pro�le is developed

to select the items to be presented as the best option, as recommendation systems do. Thus,

in some cases being a trustworthy seller or providing a fast delivery may take precedence

over price. However, purchasing agents do not make decisions, as the user prefers to select

which item to buy. They simply present the user with a set of carefully selected items to

choose from.

In this category, travel agents are the most common example, since the price of the trip

is the prevailing factor when travelling, as opposed to other kinds of sale.

25

CHAPTER 2. STATE OF THE ART

On the other side, we �nd the trading agents. This is a more specialised kind of agent,

which does not need to deal such a segregated market as the former type. Nonetheless,

they have to face the inner complexity of the stock market, and come up with the best

investments.

Di�erent approaches are being studied right now, being the latest those that involve

social networks and by means of data mining try to guess the future changes in the market.

2.5.3 Task and Time management agents

This section covers two key areas: time management and task management. Time man-

agement [21] refers to the process of helping a user manage actual and potential temporal

commitments. Task management [21] involves the planning, execution, and oversight of

tasks. These tasks may be personal in that they originate with the user, or they derive from

her responsibilities.

The aim of this type of agents is to get the most out of the user's time, relieving the user

of routine tasks. Theoretically, these agents organise the tasks and duties of the user in order

to make him more e�cient. Task management agents fetch information about every task -its

deadline, the priority, the workload...- and use optimization algorithms to generate possible

schedules. Usually, this process has access to the personal network of the user group. If so,

it can be analysed and the valuable data is used to improve the performance of the agent.

Despite being the most common, they have not been successfully implemented yet. This

is due to the large number of factors taken into account when planning the schedule, the

need for such planning to change based on contingencies that may arise, and the most

important: people have their own standards for judging and scheduling [19]. For example,

one may prefer to perform smaller and easier tasks at �rst and fail to perform important

tasks because they tend to be bigger and more di�cult.

A critical point in every user's working agenda are meetings, since they are very im-

portant and common events. Therefore, many time management personal agents focus on

managing commitments and collaborative decision making [22]. They are designed to en-

hance user participation in a meeting through mechanisms that track the topics that are

discussed, the participants' positions, and any resultant decisions, providing tools that im-

prove decision making.

As shown with the examples given, personal task manager may also fall into this category,

as they handle the own user's agenda or adapt the agendas of a group of people: working

group, the members of a family...

26

2.5. PERSONAL AGENTS TAXONOMY

Recently, social task networks[23] have been proposed as a social approach to task man-

agement, taking into account that tools such as to-do items usually show relationships among

users' tasks, their social network and web resources.

2.5.4 Reminder agents

Those that check the user's calendar in order to remind him about important events. Some

di�erent implementations of this type of agents may be found according to the nature of

the events they work with. Google Calendar is a great example of reminder agent since it

tracks all the meetings, task deadlines and in general every event the user introduces and

allows him to set custom alerts for each of them.

Other implementations make use of arti�cial intelligence techniques to determine what

action should be performed, depending on the nature of the event. For instance, a meeting

alert usually noti�es the user some time before it starts, to guarantee he is attending, while

birthdays are noti�ed some days before so that the user has enough time to buy a present.

Besides, depending on the locations of both user and event, the reminder will appear soon

enough to allow the user to attend the meeting on time. This may cause the reminder

to come out some days before the event if it involves long-distance traveling. For all this,

intelligent personal agents require collaboration with many other personal agents in order

to track the user's current location, to estimate the driving time...

Reminder agents are not classi�ed as time managements agents since they are not re-

sponsible for structuring the work and meetings in the user's calendar but just for monitoring

it and reporting about important events. In fact, Time Management Agents generally im-

plement Reminder agents' tasks.

2.5.5 Recommender and �ltering agents

Recommender agents are an important and widespread type of agents. Their work is to

study personal preferences to make decisions on that basis in order to get user's satisfaction.

The key issue in making recommendations is extracting the user's pro�le [24]. These agents

appear on the Internet associated with other di�erent agents, since almost all types of

agents mentioned above use a recommender agent as well for some purpose. Some di�erent

recommender agents according to their application domain are e-commerce, e-mail �ltering

or web, movie, travel and news recommenders...

The di�erence, if any, between the recommender and �ltering agents is that the latter

27

CHAPTER 2. STATE OF THE ART

do their work without the user noticing. While recommender agents make suggestions to

the user while he's sur�ng the Internet or buying in a e-commerce store, �ltering agents just

select the information to be displayed, discarding the presumably unimportant data. It is

important to notice that �ltering agents do not display additional information to the user,

but they convert the information the user requests based on its pro�le. This is the case

of e-mail spam �lters, or the modern intelligent �lters that sort e-mails according to their

importance.

Within �ltering agents, intelligent �ltering metasearch agents [25] can be particularly

interesting for the Web4.0 project. This kind of agents carries out the following tasks:

(i) integration of data sources, which involves selecting the potentially relevant sources

and integrating the result sets; (ii) rating of the obtained integrated result set; and (iii)

optimisation of the result set. In order to rate the result set, di�erent �ltering strategies

can be combined, such as content based rating based on the similarity between the user

query and the documents, determining if the document �ts with a domain relevant to the

user, determining if the document matches individual user preferences based on last rated

documents or collaborative �ltering and spam �ltering.

2.6 Personal agents Behavior

Proactive behavior is also seen as an essential characteristic of autonomous and semi-

autonomous agents [26]. As said, the goal of personal agents is helping the user on completing

a task. Agents may aid him directly by performing tasks on his behalf or in conjunction with

him [27], and indirectly through actions such as providing context for her work, minimizing

interruptions, and o�ering suggestions and reminders [28].

Consider a Personal Agent for Task Management, the following list includes some of the

selected possible activities that an assistive agent might perform on behalf of its user to

support task management in an o�ce setting. We divide the list into four categories: Act

directly, Act indirectly, Collect information, and Remind, notify, ask:

• Act directly

� Perform the next step or steps of a shared task

� Perform or prepare for future steps of a shared task now

� Initiate the �rst step of a shared or agent task

� Suggest (shared) tasks the agent can take over and perform

28

2.6. PERSONAL AGENTS BEHAVIOR

� establish a learning goal (i.e., to learn new capabilities)

• Act indirectly

� Suggest a user task be delegated to a teammate, or that the user o�er to take on

the task of a teammate

� Suggest a meeting be rescheduled

� Suggest a lower-priority task be postponed to free resources

� Suggest a task be promoted or demoted in priority

� Suggest (better) ways to achieve a (shared) task

� Anticipate failures of (shared) tasks and look for ways to reduce the failure like-

lihood or the impact of failure

• Collect information

� Gather, summarize information relevant to a user or shared task

� Monitor the status of tasks delegated to a team-mate

� Monitor and summarize resource levels and commitments

� Analyze possible consequences/requirements of a (shared) task

• Remind, notify, ask

� Remind of upcoming deadlines and events

� Remind of the user's next step in a shared task

� Ask for feedback or guidance from user

� Ask for clari�cation or elaboration of a (shared) task

� Monitor and �lter incoming messages

Proactive behavior for an agent may be split into two types. The �rst type, which we

call task-focused proactivity, involves providing assistance for a task that the user either is

already performing or is committed to performing; assistance takes the form of adopting or

enabling some associated subtasks. For instance, Task-focused proactivity behavior collects

background information in support of a scheduled meeting.

The second type of proactive behavior, which we call utility-focused proactivity, involves

assistance related to helping the user generally with her set of tasks, rather than contributing

directly to a speci�c current task. An example of this type occurs when and assistant takes

the initiative to recommend transferring a paper review task in response to the detection

29

CHAPTER 2. STATE OF THE ART

of high workload levels. This action is triggered not by a motivation to assist with any

individual task on the user's to-do list, but rather in response to a higher-level motivation

(namely, workload balancing).

Consequently, when an agent with Proactive Behavior performs a task without having

been instructed to do so the e�ciency the user perceives is clearly superior. Apparently, the

assistant completed its task instantly, even when it lasted quite some time. On the other

hand, it is possible that the work done by the agent is not valuable, but its availability

without having been requested gives a certain added value.

The point is to guess what user needs, depending on the context: you live your life, and

the agent thinks/works in the meantime [29].

A proactive assistive agent must have an explicit model of user desires, in addition to

current user goals and plans, as well as a theory that de�nes how those can be furthered by

actions that the agent is capable of performing.

2.7 Personal agents shift to the Cloud

People are used to living in the Cloud [30], as it provides what the users need: access to

their stu� in any place where they have access to the Internet. Web mailbox took the �rst

step towards this ubiquity, its use spread to most of the users as its storage capacity got

increased. Subsequently, the storage of �les, photos, videos, and then the o�ce-documents

of all kinds shifted to the cloud. Online editor like GoogleDocs [31] also allow "editing in

the cloud" and within a collaborative environment. Shops, games and services also became

ubiquitous. Finally the processing capacity has also become ubiquitous, the cloud is the

most powerful computer you have [30].

2.7.1 Services on the Cloud

The Cloud environment can be addressed in several forms IaaS (Infrastructure as a service),

PaaS (platform as a service), AaaS (application as a service), etc. Whatever the term used,

it refers to the services. The Cloud hosts thousands of services and the agents must be able

to access and use them. As shown in Fig. 2.5 the available services available cover di�erent

appliance �elds such as storage, search, weather forecast, billing, etc.

When the service provider is getting some pro�t from furnishing the service, he pays

special attention on making the service available. The normal way is to o�er a private API

30

2.7. PERSONAL AGENTS SHIFT TO THE CLOUD

Figure 2.5: Example map of services in the cloud (Source 2008)

31

CHAPTER 2. STATE OF THE ART

for accessing the service whose terms of use are clearly established. The API connectivity

ampli�es the power of services. The term private means that the API is de�ned by the

service provider, that reserves the right to change it. This is a potential impediment to the

development of systems that make use of all the services in the cloud, having to make an

adapter for each API.

Within this landscape, OCCI (Open Cloud Computing Interface) [32] consists on a

boundary API that acts as a service front end o�ering a clean, open speci�cation and API

for cloud services. Those services that provides a OCCI can be easily accessed by a common

OCCI client (as shown in Fig. 2.6).

Figure 2.6: Open Cloud Computing Interface Architecture

2.7.2 Smartphones, Smart interfaces

Thanks to the paradigm of cloud, personal agents no longer need to be run on machines

with processing capacity. Instead, they can focus on delivering better interface features,

improved user experience. In addition to the library of available services, this is the best

improvement the cloud o�ers to personal agent systems. Smart phones are the new com-

puters. Their main task is to communicate with the user, to potentate his expressiveness

and to understand correctly what he requests. Smartphones provide multiples capabilities

compared to a conventional PC.

• Being wireless devices, they will be available for the user to employ them in the right

moment he needs them. All of it without sacri�cing the Internet connection.

• Their processing capacity is comparable to one-decade-old computers. However, they

focus on the interface, so they are not supposed to evaluate complex algorithms. Hence

the available power is more than enough.

32

2.8. CASE STUDIES

• They are equipped with multiple sensors, displays and devices (multi-touch screen,

GPS, accelerometer, multiple cameras, etc.) to provide an enhanced user experience.

The aim is to achieve a high degree of �uency in the interaction with the user. This

involves a bunch of technologies that are not fully available nowadays. Speech recognition

and natural language understanding are two examples. However, this only slightly slows the

progress towards achieving personal assistant.

Figure 2.7: Smart interface of Siri

2.8 Case studies

This section introduces two well-known examples of personal assistants. CALO, the Cog-

nitive Assistant that Learns and Organizes2.8.1, and the personal assistant Siri 2.8.2 are

probably the most advanced personal agent at the present time. The way they approach

to the solution is quite di�erent. CALO focus on the proactive way, so it suggests the user

information and actions even when him does not request CALO's assistance. Siri is centered

on the Smart Interface, on providing the user what he exactly wants, taking care over the

user experience.

2.8.1 CALO

CALO [33, 34, 35] was the most ambituous arti�cial intelligence project in US history. It

lasted �ve years and brought together more than 300 researchers from 25 top university and

commercial research institutions.

CALO provided six high-level functions [34]:

33

CHAPTER 2. STATE OF THE ART

• Organising and priorising information from available sources (web, email, PIM, etc.).

• Preparing information artifacts. Assessment on creation of new documents based on

previous documents.

• Mediating human communications. Provide asssitance in human meetings.

• Task management. Automatisation of routine tasks.

• Scheduling and reasoning in time. Learn preferences and schedule task completion.

• Resource allocation. As part of task management, learn to acquire new resources.

2.8.2 Siri

Siri [36, 37] is a virtual assistantsoftware developed by Tom Gruber and derived from the

SRI's CALO project [33].

Siri is focused on helping users to complete tasks in their online lives, particularly in

the mobile context. Siri is limited by design, it is scoped to a few vertical domains such

as booking dinner reservations, buying movie tickets, getting local information, or �nding

things to do in the area (Fig. 2.8).

Figure 2.8: Assistance provided by Siri

The main purpose of Siri is shifting the interaction paradigm for the web from search

to assistance [37]. The search engine interaction requires the user to express their intent as

search keywords, and it returns a set of links to matching information sources. Instead, the

assistance paradigm requires the user to express their intent in a conversation, as a request

or goal statement, and the assistant requests more information if needed and guides the user

through the process of exploring options and making a choice.

The main innovations of Siri are [37] a conversational interface which an interactive

dialog, semantic auto-complete and service delegation.

34

2.9. ARCHITECTURE DISCUSSION

Figure 2.9: Agent component-base architecture

2.9 Architecture discussion

As features, capabilities and functionalities, the architecture of the personal agent systems

is evolving over the past years. The concept of architecture that is most widespread is

task-focused architecture, but this trend is moving towards a user-focused architecture.

2.9.1 Agent-component-based architecture

A few years ago, the popularity of multi-agent platforms such as JADE [38] unleashed a

rapid increase in multi-agent systems. Architecture of these systems are focused on the

component (Fig. 2.9). The mayor issue that arises from this architecture is how to handle

multiple of a particular agent or component. There may be cases when we want to create a

generic set of agents everyone can use, multiple agents needs the same agent-component and

we do not want dozens of identical agent-components running at the same time, a speci�c

vendor requests a speci�c capability or a speci�c vendor wants to sell a new improved agent

or agent-component. This architecture had to handle the resolution and discovery of these

capabilities [18].

There are even patents protecting this architecture [39].

2.9.2 Extended BDI architecture

The triumph of the architecture of CALO (Fig. 2.10) is it introduces the concept of proactive

behavior, a step towards arti�cial intelligence. CALO agent focuses not only on solving the

tasks marked for the user but to �nd out what other tasks that can help to solve, and acts

accordingly, making suggestions, providing information, etc.

35

CHAPTER 2. STATE OF THE ART

Figure 2.10: Extended BDI agent architecture for proactive assistance as de�ned in CALO

Fig. 2.10 depicts proactive goal generation in an extension of the delegative BDI agent

architecture. As usual in a BDI formulation, the agent's base-level cognition reasons about

how to realize Adopted Goals as intentions. Multiple forms of meta-cognition are depicted

to the right. In addition to the usual BDI meta-cognition over aspects such as agent con-

trol�for example, over goal selection� it adopts proactive goal generation and �ltering, an

extension to the prior delegative BDI model. A personal assistive agent can be thought of

as holding an overarching meta-desire of being a helpful assistant to its user. One desire

might be to learn (although one could construe this as the agent bettering itself in order to

become a better assistant). Indeed, in principle, the majority of an assistive agent's desires

� or at least goals that might arise from them�can be considered as consequences of the

overarching high-level meta-desire.

Candidate Goals (CGs) are created through two mechanisms. At the base level, they

arise from the agent's motivations to achieve tasks delegated by the user. At the meta-

level, CGs are generated proactively as depicted, as a result of deliberation over a theory of

proactivity.

36

2.9. ARCHITECTURE DISCUSSION

2.9.3 User-focused architecture

The architecture proposed in Siri [36] represents a change of concept. In functionalities

design, Siri proposes a user-centered system and this extends to architecture design. While

other agent systems focus on execution of tasks to achieve goals, the user-centric architecture

focuses on the interaction with the user, understand their desires and then fed into the

system and act in consecuence. The user experience becomes important, hence the system's

intelligence is based on promoting the expression of the user. As mentioned before, terminals

become Smart as focused on user interaction.

As Tom Gruber points out in [40] the assistant paradigm for human-computer interaction

focus in task completion, intent understanding via conversation in context and learns and

applies personal information.

The architecture centered on the used (Fig. 2.11) distinguishes how the intelligence lies in

two elements: the smart terminal, which focuses on the user and transmits the information

obtained / deduced intelligence in the cloud. The latter plan the resolution of the task, you

understand, sorts and �nd a solution that perfectly �ts the user's request. This is awarded

of the services that are available in the Cloud so it used them when needed.

Figure 2.11: User-focused Agent Architecture

37

CHAPTER 2. STATE OF THE ART

2.10 Recommender agents

In the personal agents taxonomy given in section 3, Recommender agents were declared as

part of the classi�cation. However, its importance transcends since many implementations of

other kind of personal agents use a recommender agent internally. Therefore, it is important

to go deeper in the study of recommender agents.

2.10.1 Social recommendation

Usually, the social recommendation methods collect ratings of items from many individuals,

and use nearest-neighbor techniques to make recommendations to a user concerning new

items. However, there are many factors which may in�uence a user in his preferences, thus

ideally one would like to model as many of these factors as possible in a recommendation

system.

There are two general approaches to this problems. The �rst is the called social-�ltering

methods [41, 42], in these the user of the systems provides ratings of some items and the

systems make informed guesses about what others items the user may like. And the second

is called content-based �ltering [43] , in this case the system accepts information describing

the nature of an item, and based on a sample of the user's preferences. In both cases, the

objective is to learn a function that can take a description of a user and an item and predict

the user's preferences concerning the item.

One of the most important issues today is the use of social data as context for making

recommendations. As the social web is heavily used it could provide a better understanding

of a user's interest and intentions. The proposed system gathers information about users

from their social web identities and enriches it with ontological knowledge.

Before entering into the issue which we note are the various categories of social recom-

mendation: collaborative is a kind of social recommender compare with traditional content-

based approach, recommendations from friends can be online or o�ine, recommendation

using social data as input by example social relationship, social network, social tagging...

and recommender over social media. The latter utilizes friend of friend an usage data to

make intelligent recommendations based on actions and interactions. Thanks a social me-

dia recommendation API we can build superior media applications, add social relevance to

existing applications, platforms or sites and expand our understanding of our user's social

context.

The context encompasses a set of interest from user pro�le, which are extracted from the

38

2.10. RECOMMENDER AGENTS

user's social web interactions and tagging activities. Dealing with context is accompanied

by issues like, making the system fully understand the context of the task in hand without

tedious e�orts by the user �nding and retrieving the desired data automatically, usually

involving the integration of data from the di�erent sources to draw useful conclusions without

breaching security and privacy issues.

2.10.2 The importance of the user's pro�le

To make a good recommendation is necessary to consider the following points [44]: De�ne

a generalized context model of user interest that serves as interpretation of user's intention

and assist during recommendation or searching processes, this model is built initially by

capturing user's social-web data, mostly tagging activities.

To generate and maintain the user pro�le, the system needs relevant information about

the user's interests. When users interact with a computer, they provide a great deal of

information about themselves. Successful interpretation of these data streams is necessary

for computers to tailor themselves to each individual's behavior, habits and knowledge.

As for the interaction of the user with these applications, the system can gather relevance

feedback to learn his tastes, interests and preferences.

To develop a support system which can assist in providing brief and precise, then our

system will identify and relate user's pro�les across di�erent social networks which has the

capability of returning a set of URIs for a particular user. This will be ensured by gathering

the public ally available information about user's tagging activities, important information

about user's interest without requiring any help from them.

Furthermore as shared vocabularies and thesauri to model the user's interest domain.

It will be achieved by linking tags used by a user, to meaningful concepts in the above

mentioned ontologies. To conceptualize tags we tend to remove or minimize the vocabulary

gap, the concept-tags can now more easily be mapped to more domain speci�c ontologies in

order to support domain speci�c recommendations.

The system must have an architecture that intends to model user interest based on the

user's social-web pro�les, this is utilized in recommending cultural heritage resources that

might be of interest for the user. In this case the frequency of use of certain tags indicates

the interest of the user form the bases of the assumptions [45].

User interest pro�le modeling to enrich the set with the most related concepts in the

domain. The resulting set of the concepts is added to the system as user's interest pro-

�le. The underling recommender system utilizes his interest model form making relevant

39

CHAPTER 2. STATE OF THE ART

recommendations to the user.

Finally the recommender system will query this data to see how it improves the recom-

mendation process and will also provide an interface to query the linked data over the web

to suggest interesting things related to the cultural heritage that are present on the open

linked web.

2.10.2.1 Common Sense Computing Initiative

The Common Sense Computing Initiative is a project intended to provide computers with

the knowledge that we usually consider common sense. Such knowledge is usually known by

everybody but hardly stated in knowledge databases, thus being of special interest the addi-

tion of common sense reasoning to computer programs to provide them a level of intelligence

granted for human beings but rarely found on computers. [46]

Common sense is a large amount of knowledge shared by all humans which makes them

able to understand each others. By granting computers the ability of common sense reason-

ing, we can make them understand human needs and behaviours, instead of relying solely

on the user understanding software and adapting to its usage. Through this understanding,

computers and software could foresee users' needs or actions even before they realize about

them themselves.

This initiative comprises mainly two projects: OpenMind Common Sense - A system

created to gather common sense knowledge from users; and ConceptNet - a database repre-

senting this knowledge. For our project, only the latter is relevant.

ConceptNet

ConceptNet [47] provides a formal representation for all the data gathered by the Open

Mind Common Sense system. While assertions inserted into the later are stated in free-form

natural language, computer applications would need a formal representation in order to be

able to use reasoning methods on that common sense data.

In this direction, ConceptNet represents all the data in the form of a semantic network.

Concepts such as objects or actions are nodes in the network, and the common sense in-

formation on them is represented as links between them. The system uses a limited set of

possible relations, which has proven to be enough to represent the knowledge from Open

Mind Common Sense and signi�cantly eases the task of using the data in computer software.

Fig. 2.12 shows a small example of some of the nodes and relations existing in ConceptNet

40

2.10. RECOMMENDER AGENTS

Figure 2.12: Some of the nodes and links in ConceptNet

ConceptNet o�ers several public APIs that anyone can use to add common sense rea-

soning to computer projects. These APIs have varied through the di�erent versions of

ConceptNet, usually o�ering not only a raw access to the semantic network but also some

reasoning methods already implemented, such as �nding the context of an action or mak-

ing analogies. In the fourth version of ConceptNet, the reasoning tools was taken out and

specialised into Divisi, an independent project also part of the Commonsense Computing

project at the MIT Media Lab. Divisi, as any other reasoning method applied on Con-

ceptNet, can infer additional relations that are not stated in the network, but that are also

common sense knowledge.

ConceptNet 5

At the time of this writing, ConceptNet is already in its �fth version. Several changes have

been made to the system, as well as several new sources of data have been included in the

data acquisition procedures. Thus, the knowledge base has not only grown beyond the limits

of the former ConceptNet 4 database, but has also been signi�cantly enriched through other

changes.

Originally, ConceptNet's semantic network was a graph in which nodes represented con-

cepts and links (or edges) gave information on their relation. While this still applies to

ConceptNet 5, the network has grown to become a hypergraph. In other words, edges can

now act as nodes and have other edges pointing to them. We can have edges about edges

which not only provides a much larger network, but a much richer one. Thus, relations will

have additional information from which we can infer its accuracy, reliability or justi�cation.

41

CHAPTER 2. STATE OF THE ART

Figure 2.13: ConceptNet 5

Furthermore, relations are no longer limited to the speci�ed set we had in previous

versions. While it keeps being advisable to stick up to normalised sets when possible,

additional relations can be created at convenience. In this direction, the fact of treating

relations as nodes themselves comes in handy as a way of counterfeiting increased data

sparsity or analogous relations which could indeed become a drawback on the quality of the

network.

While previous versions of ConceptNet expressed nodes and relations exclusively using

English language, ConceptNet 5 aims to represent also interlingual knowledge. For this

purpose, a new type of relation �TranslationOf� has been added to the set of basic relations.

This way, all the relations existing between English terms are automatically reachable from

their translations through their �TranslationOf� edges, being very handy for non-English or

multilingual applications. Furthermore, the translated nodes can be very useful themselves,

in order to �nd the best translation of a word in a given context. As we mentioned before,

any node can be an edge in ConceptNet 5. Having di�erent language nodes could become

a problem when being used to state relations. However, basic abstract notions such as

�MadeOf� are still used in their English form to mean the same across all languages, and

other language-speci�c edges can still be used in an interlingual context if the appropriate

�TranslationOf� edges exist.

Furthermore, the acquisition procedures for the common sense statements have also

42

2.10. RECOMMENDER AGENTS

Figure 2.14: An quick example overview of some of the information about the concept

�Towel� in ConceptNet 5

43

CHAPTER 2. STATE OF THE ART

signi�cantly changed since the �rst versions of ConceptNet. While initially relying uniquely

on the Open Mind platform, and in users actively teaching things to the system, ConceptNet

5 also gathers knowledge from several RDF sources such as DBPedia [48] and even from

general purpose websites using ReVerb [49] to extract relational knowledge from wikipedia

and other sources.

44

Chapter 3

Requirements Analysis

�Laudem virtutis necessitati damus.�

�Marcus Fabius Quintilianus (Quintilian)

3.1 Overview

It is important to perform a requirements analysis to make sure the �nal solution will be

adequate for real life applications, and to broaden the variables taken into consideration,

making it less likely to miss a key aspect in the design process.

3.2 Use Cases

Given the versatility of the system in pursue, there are a countless number of scenarios in

which we can take advantage of the combination of social networks and online services. To

illustrate this, we will cover some signi�cant examples that could be interesting.

In the following sections four cases will be presented. The �rst three inside the scope

of the Web 4.0 project (i.e., related to intelligent personal agents), and a fourth one that

exempli�es the use of the new paradigm in a typical web service.

45

CHAPTER 3. REQUIREMENTS ANALYSIS

3.2.1 Birthday Present

Jane Doe is an average user of the application. One day, she is noti�ed of the upcoming

birthday of her mother. In addition to that, it o�ers her the option to look for possible

presents. When Jane accepts the proposal, the client application queries the cloud agent for

suggestions. Those suggestions will be based on the data available in Jane's social network.

Based on the available data, the agent may suggest new books, trips, movies or a revenue.

Figure 3.1: Birthday present use case

3.2.2 Summer Trip

John Doe, Jane's brother, decides to try the application too. In this case, he decides to

use it to plan his annual summer trip. First, he queries the application for cheap �ights

to Bahamas in July. After querying the application, and receiving a list of the best o�ers

found, John chooses a �ight. Right after that, it is saved as a future plan, and the agent

provides a list of TO-DOs for his trip: pack-up, get vaccinated, check passport, etc. As

John completes these tasks, he can cross them, or he can even delete them if he does not

�nd them necessary.

3.2.3 Movie Tickets

Mary Major decides to occupy her Saturday night watching a movie in the theatre. For

that, she uses the application, asking for movies of her taste to watch in her area after

16:00. The application then gives her the list of cinemas and movies currently being shown

in each of them, �ltered by genre and cast according to her and her friends' likings in social

networks and previous uses of the application. In addition to the list, she can ask for more

information about any of the movies (plot, cast, IMDB rating, et cetera). After making

46

3.2. USE CASES

Figure 3.2: Summer trip use case

up her mind, Mary can then add that movie to her TO-DO list, and optionally share it on

social networks or by email. Later, when she want to get to the cinema, she can go back to

her TO-DO list and select the information of the cinema. The location will then show in an

embedded map.

Finally, she can rate the movie in the application and share that rating online, deleting

it from her list.

Figure 3.3: Movie tickets use case

47

CHAPTER 3. REQUIREMENTS ANALYSIS

3.2.4 Blogging site

In this case, a user is registered to a blogging platform. In this platform, there are many

bloggers that post about di�erent topics. Since there are many posters and the activity is

very high, the platform o�ers the users the possibility to subscribe to certain topics. What

makes this service di�erent from the existing ones is that the topic selection is based on

semantic analysis of both users' request and bloggers' entries. Once the users have subscribes

to a certain topic, they receive a noti�cation every time a new post has in common with

their subscriptions.

Figure 3.4: Blogging use case

3.2.5 Blogging site

With these scenarios, the endless possibilities of the agent application should have been

shown. Not only for querying information, but also for generating it and �ltering or modi-

fying it, o�ering a customized experience and a bidirectional service.

3.3 Summary of requirements

After analysing the previous use cases, some clear requirements seem to stand out:

• The architecture must allow the connection of heterogeneous end-points

• Language agnostic, the �nal system will likely incorporate di�erent languages and the

corresponding design must allow for this

48

3.3. SUMMARY OF REQUIREMENTS

• Compliance with current web protocols, including HTTP

• Low latency, to achieve a real-time user experience and process a big amount of infor-

mation live

• Pro-activity, not limiting the behaviour to the typical reactive nature of the Web

• Simplicity, to make the development of new components easy as fast, since the strength

of the system relies on the quantity and quality of its available external connectors

• Openness, for the same reasons as the previous point

• Easy connection to third parties, both to reach other services and to allow connections

from users

• Loose de�nition of actions and objects

• Flexible topology

• Adaptability, to evolve as web technologies and user needs change

• High connectivity between elements

Nevertheless, this list is not as extensive and formal as the usual requirements analysis

results. This is mostly due to the ever-changing and evolving nature of the technologies

involved, as well as the novelty of the �eld. Despite this, it can and should be taken as a

solid guideline for the design and development of the desired architecture.

49

CHAPTER 3. REQUIREMENTS ANALYSIS

50

Chapter 4

Architecture

�Knowing how things work is the basis for appreciation, and is thus a source of civilized

delight.�

�William Sa�re

4.1 Event-based Agent Architecture

Based on the requirements identi�ed in the previous section, a preliminary set of design

criteria can be extracted for agent architectures. These criteria are especially interesting for

those systems whose purpose is acting as personal assistants in the live web.

1. Event centric. In the Live Web, events must become �rst class citizens[50], and this

change allows for a simpli�cation of data sources. Not only can we communicate agents

by means of events, but also acquire information seamlessly from plain modules that

follow the same protocol. This may also apply to other agent communication protocols

as long as the data source is adapted.

2. Open and Homogeneous interface for processing events. All external events are treated

in the same fashion, which eases the process of developing new nodes to interact with

the existing ones, especially those that only serve the role of data sources.

3. Event subscription and �ltering capability. There are two problems in an event-centric

system: starvation, as a result of an absence of incoming events; and �ooding, which

51

CHAPTER 4. ARCHITECTURE

makes impossible to tell useful information from noise. Subscription addresses the �rst

problem in those situations in which broadcasting is not an option (probably to avoid

�ooding), and e�ective �ltering tools and methods prevent the e�ects of an excess of

information.

4. Real-time processing capabilities. Outdated information is of no use in real-time ap-

plications. Because of this, the process of analysing and handling information have to

be almost instantaneous.

5. Smooth transition. In order to attract developers and o�er a good experience to users,

it is important to provide a good level of compatibility with existing technologies and

services. It is also important to lessen the possible negative e�ects of the change of

paradigm in the user.

There are two basic additions to a generic BDI multi agent system to follow the Maia

principles. However the nature of the changes, which result in a complete change in the way

of understanding agent communication, are deep and need to be understood thoroughly to

make use of the advantages it o�ers.

The �rst one, following a top-down approach, a�ects the way agents communicate with

each other. All communication is done asynchronously using events as de�ned in this context

(see Section 4.2). What makes the Maia approach special is that fact that agents are adapted

to the existing tendencies in online data sources rather than following ad-hoc solutions

to gather information. Information passing is useless unless something is done with that

information. That is the second requirement, how events are handled internally by the

agents or agents platforms. As explained in the following section, events follow a �xed

structure which makes them easy to treat and include within the knowledge databases.

4.2 Messaging and Communication

The cornerstone of communications within Maia are event messages. An event can be

either informative or a request, in the sense that it may inform of an action performed or

of an intention to trigger an action in a remote entity. This di�erence can be inferred by

the context or by using a special namespace. The basic components of any event are the

following:

Sender Unique identi�er of the sending entity. It is recommended to prepend or append

the identi�er of the bus it is connected too if the scenario allows for shared messages

52

4.3. NAMESPACES

between them. This operation can be performed on the �y by the Event Exchanger,

making it transparent to the sender.

ID Unique identi�er of the event for the speci�ed entity (sender).

Timestamp Time of the original emission. This makes time reasoning possible and prevent

side e�ects of asynchronous communications.

Name Which describes the event, and is the only required �eld. Ideally, it will not only

consist of a basic string, but of a complete namespace. This allows for a complex

processing of the events and an advanced �ltering for triggers. It is highly advisable to

use an already existing naming convention, especially if there are tools available that

use it. For an example of an implementation, see Hook.io's in Section 2.2.4.

Payload For any kind of non-trivial event, we will need more information about the entities

involved in the event, or the parameters if it is a request. In FIPA-ACL this is the

equivalent of the content, but this is a simpler approach as it mixes agents and plain

modules to external web services that communicate in the same manner.

Callback Due to the asynchronous nature of event-driven communication, there is a need

to specify a callback function to execute whenever there is data to return, or just to

acknowledge the reception of the event. The actual method for acknowledgement is up

to the designer. A working solution is to send an event with a special namespace (as

explained in the next section) used only for this purpose, appending the original Sender

identi�er. The payload of that acknowledgement event will contain the returned data

to be used in the callback function back in the origin.

4.3 Namespaces

The �nal goal for the name of the events is to make them descriptive and related to the

nature of the action to be taken (either informative or inquisitive). Events can be understood

as actions (verbs) performed or requested from one party to another. Since these actions

may or may not be triggered due to the nature of our communication, we refer to them as

intents. In Maia, events are de�ned as nodes of a taxonomy that de�nes and relates the.

This brings up several advantages, the main one is that we de�ne an ontology of intents,

so every item in the ontology has a set of properties that de�ne the action to be taken and

the response given. Thus we can �lter not only by class but by properties, and we can also

reason using them.

53

CHAPTER 4. ARCHITECTURE

Figure 4.1: Excerpt of hook intents ontology

The �gure 4.1 shows ans excerpt of the ontology de�ned.

Given the advantages of hooks and webhooks, using them is the best choice for imple-

menting intents. Intents can be de�ned as events that are triggered, what make the hooks

that are registered to those events activate and perform a certain action such as retrieving

some information, or even triggering some other events.

Node.js and hook.io are perfectly suitable to develop massive event architectures, since

their prepared for event �ltering and great at scalability. And hook.io inherits namespaces

from eventemitter21. With a little modi�cation, mostly by setting a schema for these names,

it is possible to obtain both a strong de�nition and an already working technology to support

it. Thus, intents are modelled as events in the format given:

somehook::someotherhook::get_info::travel::train::fares

Where, the �rst element is the hook that emitted the event. It can be used to trace

the message to its origin and should always be added at the beginning once the message

is sent. The second element is the potential receiver of the action, should there be any, or

* if it can be any hook that can react to the intent in question. The third element in the

namespace is the name of the intent, and traversing down the nodes of the taxonomy we

1https://github.com/hij1nx/EventEmitter2

54

https://github.com/hij1nx/EventEmitter2

4.4. TOPOLOGY AND HIERARCHY

append the subsequent elements. Fourth, and �fth elements represent the scope, and last

elements are typically the properties. So, in the example given, the intent is attempting to

retrieve information about fares of trains. Any other important information to complete the

intent successfully is included in payload data.

In hookio, events, these intents are transmitted through a common bus. Hooks listen

to the information in the bus, so they get triggered when particular events are transmitted,

those for whom the hook is registered. Thus, registering a hook for a event is a lightweight

process since the emitter does not have to send the event to all the registered hook, but to put

is on the bus and it will get broadcasted. Hence, using hooks promote service auto-discovery.

Elements in the event name can be �ltered, so those relevant to determine what hook

should be interested in processing the intent must be included. For instance, a hook that can

retrieve information about train and coach fares may listen to events that match the name

::::get_info::travel::*::fares . So it does not �lter by emitter or travel type. Any

intent relative to travel, whatever type it is, e.g. srchook::*::get_info::travel::coach::fares,

will be processed by the hook given.

Similarly, when the intent srchook::*::get_info::travel::*::fares is emitted the

�srchook� wants all the hooks that can fetch information about any means of transport fares

to process the intent.

4.4 Topology and hierarchy

As we learned from the evolution of the internet in section 2.1.3, the success of the Internet

and all its supporting protocols was based mostly on the simplicity of their design. There

are many examples of how complex technologies have failed to root on developers because

they were either so intricate the learning curve was too steep, or they were so �ne tailored

and heterogeneous that applications grew di�cult to extend, develop and upgrade to allow

new uses. To mitigate this e�ect and allow for fast adoption and development, the Maia

architecture is meant to be as simple as possible, whilst providing an elegant solution for

most cases.

The key feature that shapes the proposed architecture and drives its design is, as already

stated, events. All messages are passed in the form of events, broadcasted to all the members

connected to the shared bus and forwarded by the event router to all subscribed nodes, as

seen in Fig. 4.2. There may, or may not be, shared events between the several buses,

depending on the subscriptions.

55

CHAPTER 4. ARCHITECTURE

Entities can be BDI agents, plain modules or agent platforms, as long as they use the

same protocol and events convention. This provides a high �exibility and separates the

transport mechanism from the logic of the agents.

Figure 4.2: Internal distribution of nodes within Maia. Events are broadcasted to all mem-

bers within the same bus.

As mentioned before, not all event are sent to all the entities in the platform, as each

entity may have di�erent interests. In Maia, there is at least a central piece that orchestrates

the exchange of events, and we will refer to it as event router or simply router. This event

router handles events and the way they are forwarded to each entity. To simplify this

mechanism, there are two basic ways entities can be arranged: in the same bus/hub, or

in two separate buses. The di�erence lies in the scope of the events shared, any entity can

subscribe to any event sent to its bus, while events in other buses are inaccessibly by default.

Depending on the speci�c con�guration of the Event Router, they may or not be accessible

at one given point in time.

When compared to other solutions like XMPP, used in SPADE, it is easy to spot many

similarities. For example, the presence of a central node that every other node connects to

and serves as a message router. These similarities are not coincidental and �nd their basis

in the previous analysis of current technologies and their advantages. There are, however, a

big number of changes that will be presented in the following sections.

4.5 Clustering

With Maia, nodes are loosely coupled, which allows for a higher �exibility than in other

architectures. All the information is contained within the message, including emitter and

sender, which are included as strings in the name of the event. This makes routing events

as easy as parsing event names and applying certain rules. Moreover, nodes are agnostic to

56

4.5. CLUSTERING

Figure 4.3: Flow of events. Entities can simply send event noti�cations to the Event Router,

or subscribe to be forwarded a certain subset of events.

the central router as described in the previous section. Thus, the routing complexity can

be as complicated as possible, or as simple as can get, and the only changes will be in the

routers. Connected nodes are only in�uenced by this in the sense that they have access to

a higher or smaller range of events from more or less sources.

Di�erent layers of nodes can be connected to each other (by means of their routers),

without needing to change the actual nodes/agents within any of them. Of course, security

issues arise that require for more elaborate mechanisms, but the �exibility and simplicity of

the base solution is undeniable.

What is more, in the total absence of a router, nodes can still exchange messages as long

as they are connected to the same bus. This behaviour mimics that of the Internet Protocol,

but providing it a looser nature.

4.5.1 Treatment of Beliefs

Apart from the modi�cations and adaptations needed to comply with the communication

mechanism explained in the previous section, there must be a rearrangement of the inner

working of the agent and the way it processes its information. The sole structure of events

gives a hint of the proper way to store them, but we will go through the basic aspects as

generally as possible.

Firstly, every event has a source, which should be treated as the source of information,

as is the case in any common multi agent platform. Beliefs should be tagged this way when

possible, or stored in a separate knowledge database.

Secondly, events are bound to a speci�c time, which should be relevant for almost any

57

CHAPTER 4. ARCHITECTURE

possible application that makes an intensive use of events. Having references to the time

events were generated permits removing old events, reasoning according to time constraints

and correlating events in time. Since the systems we are aiming to design are likely to receive

a high amount of information, it is advisable to set a strong policy on the persistence of

incoming events.

Thirdly, it is important to note that every agent should subscribe only to the subset of

events that is relevant to its functioning. If necessary, more agents will be created to handle

di�erent sources or events when they are correlated. This way, the amount of irrelevant

information will be lower, and handling information using several smaller databases is more

e�cient than storing and processing all the information in the same point. Moreover, it

follows the criteria of agent design, using di�erent agents for di�erent tasks.

58

Chapter 5

Case Study

�Di�cile est tenere quae acceperis nisi exerceas�

� Pliny the Elder

5.1 General description

To demonstrate the capabilities of the architecture described in Chap. 4 a personal agent

was developed. The aim of this agent is to assist the user in the organisation of leisure

activities. This prototype was built using Jason, as well as several di�erent services which

work as data sources and which are further described in this document.

The idea of this prototype can be extended and used to organise every kind of event,

from business trips to dinners, depending on the amount and characteristics of the data

sources accessible. For this prototype, the scope is limited to travel of any kind. Therefore,

our system will be able to assist the user in the task of organising travels, from the moment

of choosing the date to the time to pack the luggage.

The system has two main working methods. The �rst and most interesting, in which

the system can anticipate the travel opportunities or needs the user will have, and suggest

suitable plans in advance. The second one is quite similar, but is the user who requests

travel organisation actively.

59

CHAPTER 5. CASE STUDY

Figure 5.1: Avatar used in the browser User Interface

5.1.1 Intelligent suggestions

The main functionality of the system is the ability to produce autonomous suggestions,

based on several parameters to �nd the plans which have higher chances of being appealing

to the user.

The procedure for obtaining suggestions can be seen in Fig. 5.2. The triggering event

can be a calendar modi�cation, a timed signal, or a user-activated event, depending on

the system. For demonstration purposes, in this prototype this procedure will be manually

triggered.

Figure 5.2: Work�ow of intelligent suggestion generation

5.1.2 Description of the procedure

In order to build appropriate suggestions, the following variables are taken into account:

• Available dates

• Preferences

60

5.2. FUNCTIONALITIES

• Transport availability

In �rst place, it obtains a list of suitable days for the user to travel. This information

is fetched directly from a calendar source. In order to make further discrimination between

dates, a score has been added to each day, which computes from the free subsequent days.

This way, if the user has a whole week o�, Monday would get a score of 6, Tuesday a score of

5 and so on, thus prioritizing Monday as the day to organise plans, allowing making longer

trips.

The second step is to get a list of places where the user is likely wanting to travel to.

This is deeply described under section 5.2.2. The user preferences are stored as a list of

places and scores, which is dynamically modi�ed as the user makes plans.

The third step is to get the best o�ers for travels to the chosen destinations. This is

obtained through web scraping, as described in section 5.2.3

With these parameters, suitable plans are built and presented to the user, which can

select one of them and proceed with further assistance, as described in section 5.2.4

5.1.3 Requested planning

The functionality o�ered by this mode is quite the same as for �Intelligent recommendations�.

The di�erence is that suggestions here are not automatically generated as described in section

5.1.1 but using a query from the user as parameter.

The destination and dates are chosen by the user, entering a query in natural-language

format, and the best o�ers for transport are presented by the system. Right now, the

cheapest option is chosen, regardless of time, but other algorithms can be used.

Optionally, the user can specify a threshold or budget for the trip. Should the cheapest

fare not comply with this requirement, the user is noti�ed and is asked to raise this value

to obtain results.

This way of organising events allows us to re�ne the preference database, as described

in section 5.2.2

5.2 Functionalities

This section contains a deep description of the functionalities present in the prototype system

and their implementation.

61

CHAPTER 5. CASE STUDY

5.2.1 Synchronisation with Google Calendar

In order to obtain the most suitable dates to organise trips, the system can connect to the

user's Google calendar and retrieve their free days.

This connection is made through a simple REST wrapper, but can be integrated easily

whichever way is required by the platform in which we want to install the application. For

instance, if we want to develop an interface for android devices, we could connect this to

the device's calendar instead to a Google calendar directly. For prototype purposes, Google

Calendar and a REST wrapper were chosen. However, this choice is irrelevant, as the

availability information is normalised by whichever system is chosen.

Thus, the knowledge base will contain a list with the days in which the user is freely

available to make plans. In order to make further discrimination between dates, a score

has been added to each day, which computes from the free subsequent days. This way, as

explained before, if the user has a whole week o�, Monday would get a score of 6, Tuesday a

score of 5 and so on, thus prioritizing Monday as the day to organise plans, allowing making

longer trips.

Weekends are not computed in this direction, unless they are manually marked by the

user in the calendar. The reason is that the inclusion of weekends on the knowledge base

would result on many possibilities to take into account, and would generate much �noise� in

the suggestions, as people usually do not want to travel every weekend. However, users can

actively request a plan for the weekend if so they desire.

5.2.2 User preferences learning

One of the parameters used for the generation of intelligent suggestions (sect. 5.1.1) is the

user preference of destinations. This information can be obtained from a vast variety of

sources, such as social networks or user-entered information. Furthermore, what is really

interesting is having the system progressively adjust these preferences, according to the plans

being accepted by the user. Thus, apart of gathering information from the available sources,

the system can learn from its own suggestions, and �ne-tune these preferences for future

suggestions.

Using whichever means to obtain the user preferences, the places are entered in the

knowledge base of our agent. This information is built in the form of a �ranking�, having

a list which relates the places with a score, calculated by the number of times the place

appears on the used source.

62

5.2. FUNCTIONALITIES

There are several ways to gather information, some of the analysed are the following:

• Friends' location through social networks

• �Liked� destinations on social networks

• Information on previously visited places through other sources

• Learning from the usage of the system

5.2.2.1 Acquisition from external sources

After the analysis of the possibility of gathering this information from social network and

other location-based services, it was discovered that this task happened to be much more

complex than expected, mostly due to the complexity of the services' APIs, or to the re-

strictions imposed by the services for privacy reasons.

As the objective of this project was not to exercise these aspects, it was decided to

focus on the intelligent part of this feature and avoid putting a high amount of e�ort in

gathering further data sources. Therefore, the acquisition from external data sources in

our prototype is simulated through mock systems and not truly connected to Facebook

or other data sources. However, this is irrelevant for the functionalities of our system,

as it does not matter whether the information obtained is hard-coded or really obtained

through whichever system. It is the following stages the ones which really matter, in terms

of intelligent systems studies. This is a key factor of this programming paradigm: once

modelled as external sensors, the nature of the data sources are no longer important as long

as they populate the agents with the appropriate perceptions.

5.2.2.2 Learning from the usage of the system

Besides having a �pre-loaded� or directly obtainable source of preferences, it was decided to

focus on the adjustment or �ne-tuning of this information.

This is achieved by modifying our knowledge base every time the user accepts one sug-

gested plan. When the user accepts travelling to a proposed destination, we can infer that

the user has some preference of some kind for that place. Whether it is for business needs,

family a�airs or just preference, we can assume the user is likely travelling to this destination

again for the same reasons.

63

CHAPTER 5. CASE STUDY

Whenever the user travels to a place, this site is saved to the knowledge database, and

given a �score�. The score is increased every time a place is revisited by the user, inferring

that the reasons to visit it are either strong or likely to happen again. Later, places with

higher scores are more likely to be suggested again over others with low scores.

5.2.3 External services

In order to provide actual information about transport, available destinations, prices, etc.

we need to connect our system with external services providing this information.

As this is not the objective of this project, the connection has been limited to a single

service: the website of a Spanish train company - Renfe. This website is accessed through

Scrappy - a web scraper which obtains train information such as pricing, times or destina-

tions. The addition of extra sources is a signi�cantly tedious task, as usually each of them

have their peculiarities and a new approach has to be made for each of them.

5.2.4 Generation of tasklists

Planning and execution of all our activities is strongly driven by common sense. You know

you can go on a long trip on holidays, that playing tennis requires a racket, or that you

can only ski if there is snow. Furthermore, the whole process of organisation of any speci�c

activity also relies in a vast amount of common sense statements. For instance, the fact of

needing to pack your luggage before going to the beach for a week, is common sense, or

going even further, the list of items that you are likely going to need when travelling to the

beach falls into this category as well.

However, in spite of being common sense (which is allegedly owned by everyone) some

of the tasks can be usually forgotten or not taken into consideration by most people. Is

not uncommon to forget bringing a towel or sunscreen to the beach, while everybody would

agree those things are clearly needed there... It is common sense!

The usage of common sense reasoning is of very high help in these �elds, as most of the

times, the knowledge about the prerequisites to perform an action or organise a successful

event is only common sense knowledge. In other words, through the usage of common sense

reasoning, the system can understand the needs of the user rather than just saving reminders

set by the user or give information as response to a user-entered query. The system aims to

pro-actively help in the organisation of these tasks instead of being a mere calendar and a

source of information.

64

5.2. FUNCTIONALITIES

Description of the procedure

As mentioned before, common sense reasoning can help our system to understand the basic

nature of the activity the user is planning, such as organising a meeting or going to the beach,

and could hence infer common basic tasks such as getting a projector or buying sunscreen.

We can not, however, aim to provide further aid regarding more complex aspects of the

activity, such as those related to the topic of the meeting or the speci�c geographic location

of the beach we are travelling to in our example, as that is not common sense knowledge.

One of the most relevant projects in this direction is being developed by the Software

Agents Group of the MIT Media Lab: Anticipating User Tasks Using Commonsense Rea-

soning [51, 52]. For this project, a subset of the nodes and relations of ConceptNet was built

into LifeNet [53], gathering only those nodes related to actions and their temporal related

links. In order to get the appropriate suggestions for tasks related with the activity being

organised, we can follow time-related relations such as �has prerequisite� or �has subevent�.

We can expect that all the previous tasks needed for the organisation are classi�ed into one

of said two categories, but of course not all the nodes with those relations are going to be

tasks that we should suggest to the user. For instance, the node �Go to the beach� can have

the subevent �sunbathe� while no task can be inferred from it.

The method followed in the aforementioned project to discern between possible tasks

to suggest and any other related events, is to look for verbs whose meaning can indicate a

necessary action, such as �buy�, �bring� or �get� [51]. Using this criterion the system returns

valid suggestions in most of the cases.

For our project, we plan to do a similar usage of ConceptNet to create a to-do list for

user's activities. The latest features added to ConceptNet, as well as its increased complexity

in form and content is still to be analysed, as these will tentatively open new possibilities in

the reasoning methods on the common sense knowledge.

5.2.5 Natural Language Processing

To process the query from the user, the tool Unitex is used. More speci�cally, we use a set

of custom dictionaries containing cities, currencies and companies, to tag certain keywords.

And, more importantly, a Unitex graph is used to identify the relevant structures and convert

the results into an xml format that the agent will understand. In this graph, we have the

basic structures for requesting information about travels or asking for advice, and some

conversions are also performed to translate some words like the name of the months into

digits and tokens that the agent can process.

65

CHAPTER 5. CASE STUDY

As with the rest of the modules, the interaction with Unitex is made through a wrapper.

This wrapper was developed especially for this scenario, and includes code in python. In

contrast with other parts already mentioned, it was decided not to simulate this functionality

by replacing it with a mock-up because the results achieved with this method are much more

versatile. Once the barrier of making the wrapper made to work is passed, modifying the

behaviour via the Unitex graph is an easy task. Moreover, this feature is closer to the

object of study than connecting to the API of a social network, and thus it was considered

a priority.

5.3 Agent Network Design

One of the goals with this prototype is to develop a Network of Agents that cooperate to

achieve the goals the systems identi�es. In general terms, this will be understanding what

the user asks, using natural language, giving assistance and trying to perform that task if

the system's capabilities allow it to do so. These capabilities are de�ned by those of the web

services the system is able to use. Using a web service, for the MAS system means making

a request, either by using an API given by the service provider or scrapping a web page,

and understanding and classifying the data received to be used by the system.

The �gure 5.3 shows the di�erent agents that compile the Agent Network designed to

assist the user for the prototype system. That �gure is drawn using the Prometheus notation

for Agent Networks [54].

Figure 5.3: Agent Network Overview

66

5.3. AGENT NETWORK DESIGN

As shown in Fig. 5.3, there are three di�erent type of agents, plus the Hermes back-end.

Each has di�erent capabilities so they can cooperate to achieve their assignments. Similarly,

they react with di�erent events so the information the system gathers is distributed among

the agents.

5.3.1 Agents

The user agents within Jason are responsible for interacting with the user. They capture

the information the client sends to the system, i.e. the messages in natural language the

users texts in the User Interface and the context information the client may send the system

to inform of its capabilities, current state and even some positioning information. They

also present the user the results of the execution of the tasks so the user can validate the

decisions.

Figure 5.4: User Agent and neighbours details

In a normal multi-user scenario, each user would have a single user agent. For this

prototype, there are only single-user capabilities and so a single user agent is used. Again, it

is a simpli�cation that does not a�ect the �nal results or the objective of this thesis, which

is to show the capabilities of the proposed architecture.

5.3.2 NLU Agent

The NLU Agent is responsible for processing the natural language messages that the user

types on the client interface. They are received as part of messages sent by the User Agents,

67

CHAPTER 5. CASE STUDY

and the NLU Agent sent them back a set of messages with the literals it was able to extract

from the message.

Figure 5.5: NLU Agent

The NLU Agent has tree main capabilities:

• It can access the API of the NLU System, so after each request it fetches a JSON

object with a prede�ned structure and the data. The information of the JSON object

is transformed into literals and added to the NLU Agent list of percepts.

• It processes the received information: �lters those percepts that are empty, i.e. have

no information, and annotates them with the particular domain they belong to (this

is travel, business, revenue, etc.)

• Finally it prepares a set of messages and sends them to the proper User Agent that

requested them.

5.3.3 Travel Agents

The Travel Agents are responsible for �nding a journey -or a combination of them- that

matches the criteria established by the user. Travel Agents use particular web services,

such as travel search engines and train and �ight companies web services, as source for the

retrieving the travel information.

As a matter of scalability, each Travel Agent is entrusted with a di�erent web service,

so new data sources can be plugged or unplugged dynamically.

68

5.4. AGENT IMPLEMENTATION

Figure 5.6: Travel Agent

The Travel Agents has four main capabilities:

• They access the travel web services, either by using its API or scrapping its web page.

• As Travel Agents have the speci�cation of the web service the work with, they can

check if any additional information is needed. This capability is particularly important

as far as di�erent web services need di�erent input parameters, even although they

may provide the same information.

• When the information provided is not enough, Travel Agent may negotiate with the

User Agent the missing information.

• Once the journey -or journeys- information is obtained, the Travel Agent brings to-

gether all that information into a set of messages, each of them containing the infor-

mation of a particular journey, that will be set to the User Agent.

5.4 Agent Implementation

The actual agent con�guration needed for this prototype is fairly simple, yet it demonstrates

the capabilities of the infrastructure. It consist of the following:

UserAgent responsible of initiating a conversation with the users and acting as a mediator

between them and the rest of the users. It is this agent which keeps track of user

preferences and past trips as well.

69

CHAPTER 5. CASE STUDY

NLUAgent which connects to the NLU service and fetches all relevant information for the

next steps. It is capable of understanding the intention of the message and calling the

appropriate agent.

TravelAgent which performs the appropriate search according to the user criteria or in-

forms the userAgent of any problem or lack of information.

These agents are developed using a particular implementation of the declarative language

Agent Speak called Jason. This is supported by the agent platform of the same name, that

allows the developer to choose a centralised infrastructure or a distributed one like JADE

or SACI (although for the matter of agent development this is not relevant).

In the Jason platform, each agent is described by a source �le -written in Agent Speak-

that contains all the plans and goals descriptions of a BDI agent. Jason lets the programmer

de�ne additional external actions so he can deal with any library he needs. This is done

in the Environment class associated to the MASs system. To be more precise, this does

not need to be done in the Environment class, as long as the de�nition class were correctly

instantiated in the environment.

5.4.1 NLU Agent

As explained, the NLU Agent has to transform the JSON object received into a set of beliefs.

Lets consider the JSON object shown in List.5.1.

{" domains ": {

"travel ": {

"dates": {

"return ": 2012-03-31,

"depart ": 2012 -03 -29

},

"price": {

"currency ": EUR ,

"max": 250,

"min": null

},

"queries ": [],

"locations ": {

"to": "barcelona",

70

5.4. AGENT IMPLEMENTATION

"from": "madrid"

},

"number ": "1",

"time": {

"return ": 10:00,

"depart ": 19:00

},

"type": [

{ "vehicle ": null ,

"providers ": [],

"type": "train",

"business ": null

}

]

}

},

"query_id ": 123af87eb ,

"queries ": []}

Listing 5.1: Excerpt of a JSON message received from the NLU Service.

Processing this JSON data will produce the set of beliefs listed in List. 5.2.

location(from , madrid)

location(to, barcelona)

date(daparture , 29, 03, 2012)

date(return , 31, 03, 2012)

time(departure , 10, 00)

time(return , 19, 00)

price(max , 250)

currency(eur)

type(train)

~scales

Listing 5.2: Except of a JSON message received from the NLU Service.

71

CHAPTER 5. CASE STUDY

Before being sent to the User Agent, these beliefs are annotated with the query_id and

the domain, so the User Agent may deal with di�erent queries.

location(from , madrid) [query (123 af87eb), domain(travel)]

location(to, barcelona) [query (123 af87eb), domain(travel)]

date(daparture , 29, 03, 2012) [query (123 af87eb), domain(

travel)]

date(return , 31, 03, 2012) [query (123 af87eb), domain(travel)]

time(departure , 10, 00) [query (123 af87eb), domain(travel)]

time(return , 19, 00) [query (123 af87eb), domain(travel)]

price(max , 250) [query (123 af87eb), domain(travel)]

currency(eur) [query (123 af87eb), domain(travel)]

type(train) [query (123 af87eb), domain(travel)]

~scales [query (123 af87eb), domain(travel)]

Listing 5.3: Excerpt User Agent source code for sending the Travel Agent all the

information received from the NLU Agent.

5.4.2 User Agents

The code for the User Agent in the source code is simple. The excerpt shown in List. 5.4 is

all the code needed to send the NLU Agent the user messages received. It checks whether

the query is properly tagged, and if it is not, it generates a new random query id to uniquely

identify a query.

+user_msg(Msg) : not query(_)

<- .random(Query);

+query(Query);

sendNLU(Query , Msg).

+user_msg(Msg) : query(Query)

<- sendNLU(Query , Msg).

Listing 5.4: Excerpt User Agent source code for sending the NLU Agent the users

messages.

72

5.4. AGENT IMPLEMENTATION

The excerpt shown in List. 5.5 is used for sending the Travel Agent the pieces of data

about the user's request. As soon as it receives the information it is sent to the Travel

Agent, who will save them until it has enough data.

+price(Terms , Price)[query(Query), domain(travel)] : true

<- .send(travelAgent , tell , price(Terms , Price)[query(

Query)]);

.print(" Percibido: price ",Terms , " ", Price).

+date(Terms , Day , Month , Year)[query(Query), domain(travel)]

: true

<- .send(travelAgent , tell , date(Terms , Day , Month , Year)

[query(Query)]);

.print(" Percibido: date ",Terms , " ", Day , " ", Month ,

" ", Year).

+time(Terms , Hours , Minutes)[query(Query), domain(travel)] :

true

<- .send(travelAgent , tell , time(Terms , Hours , Minutes)[

query(Query)]);

.print(" Percibido: time ",Terms , " ", Hours , " ",

Minutes).

+location(Terms , Place)[query(Query), domain(travel)] : true

<- .send(travelAgent , tell , location(Terms , Place)[query(

Query)]);

.print(" Percibido: location ",Terms , " ", Place).

+type(Terms)[query(Query), domain(travel)] : true

<- .send(travelAgent , tell , type(Terms)[query(Query)]);

.print(" Percibido: type ",Terms).

Listing 5.5: Excerpt User Agent source code for sending the Travel Agent all the

information received from the NLU Agent.

Additionally, when it notices it has received all the information available, it sends the

73

CHAPTER 5. CASE STUDY

Travel Agent a message to ask it to achieve the �nd travels goal.

5.4.3 Travel Agents

Each travel agent contains a set of rules, de�ned according to the web service speci�cation,

that tells the agent when the data to �ll in all the mandatory inputs of the form is available.

In List. 5.6, a sample rule is shown.

canFindTravel(Query) :- location(from ,_)[query(Query)] &

location(to,_)[query(Query)] &

date(departure ,_,_,_)[query(Query)].

Listing 5.6: Web service mandatory �elds checker rule

List. 5.7 shows simple set of plans to call the web service when needed data is available.

@findTravel1

+! findTravel(Query) : not canFindTravel(Query)

<- .print("Not enough data").

@findTravel2

+! findTravel(Query) : canFindTravel(Query)

<- ?location(to, To);

?location(from , From);

?date(departure , Day , Month , Year);

findTravel(From , To, Day , Month , Year).

@findTravelFailure

-!findTravel(Query) : true <- !findTravel(Query).

-!findTravel(Query) : errorMsg(Msg)

<- .print(" Problema al encontrar viajes:", Msg);

!findTravel(Query).

Listing 5.7: Simpli�ed plans for �nding a travel (and informing of failure)

74

5.5. COMMUNICATION WITH JASON AND HOOK.IO

5.5 Communication with Jason and Hook.io

This section clari�es some of the concepts about the architecture explained in chapter 4 and

puts them in context. For this prototype we will go through the process of implementing the

communication architecture using Jason as the agent platform and Hook.io and Socket.io to

provide two separate communication buses. For this purpose, it will necessary to perform

certain modi�cations to the vanilla Jason installation.

Figure 5.7: Di�erent communication channels. In detail, hooks to external sources.

5.5.1 Data Sources

Every agent within Jason has its own knowledge database, which is populated by data from

the di�erent connectors.

To be able to actually modify the perceptions of the agents, a custom Jason Environment

is needed, along with an ad-hoc model for this scenario. By modifying the basic Jason

Environment one can not only to control the sources through which new information is

added, but the life cycle of such information.

More precisely, the custom model follows the data inbox concept, the same as regular

mailboxes. All information received by the agent is volatile, and will be discarded after it is

fetched. Should the agent �nd the information interesting or necessary in the future, it will

save it as beliefs in its permanent knowledge database.

Using these data inboxes it is incredibly easy to integrate Java code and agents in

75

CHAPTER 5. CASE STUDY

Figure 5.8: Interconnection of the di�erent buses and protocols

AgentSpeak. One can call the appropriate function from within a Java method to send

information to a certain agent, and create a wrapper function to allow our agents to call

any Java method, which will probably return data by sending it to its data inbox.

There is a whole section describing the inner working of Jason in section 5.6.1.2.

5.5.2 Messaging and Communicating

While it is be useful to use this kind of model to add a list of web scrappers to fetch in-

formation from the web and an http server to communicate with the users (as illustrated

in Fig. 5.9) , it is not as interesting as connecting it in a generic way that allows for easy

incoming and outgoing connections. This, in addition to the bene�ts of event-based com-

munications, makes making our Jason instance a node in a bigger platform like Hook.io a

natural choice.

As seen in Fig. 5.8, the clients use Socket.io to connect to the back end, while the server

components use a common hook.io channel. Thus a gateway or translator is needed. There

are several reasons to follow this model instead of trying to unify it using a single hook.io

bus, but the main important ones are:

76

5.5. COMMUNICATION WITH JASON AND HOOK.IO

Figure 5.9: Architecture using http wrappers.

Security: Hook.io hooks are interconnected and adding the clients as well would mean that

any client connected can see and tamper with the messages sent between modules of the

backend. Separating both buses prevents users from reading all the events broadcasted

in the hub.

Overhead: In an ideal scenario, where we would want to have a big number of users

connected to the system, having all their messages and events forwarded to all the

hook.io instances would mean a high overhead.

Asymmetry: While server modules will most probably be connected most of the time,

clients need not be.

Robustness: By separating the back end from the front end we e�ectively decrease the

chances of having a failure both in the client and the server side. Of course, a single

point of failure is introduced for the client side (the gateway), but none of the other

server functions would be a�ected by its failure.

There is another reason, purely technological, and it is that Hook.io is a new technology

and there is not any suitable implementation in other languages.

For this last reason, Jason is also connected to the Hook.io hub using a Socket.io shim

(embedded in the Hermes Server), instead of making Jason the central piece, until there

is a mature implementation in Java. In this case, this disadvantage was turned into an

advantage by allowing a pure Socket.io-to-Socket.io communication between the end users

and the Jason agents. This prevents �ooding the hub with user messages, as well as allowing

77

CHAPTER 5. CASE STUDY

some kind of connection even in the event of a failure in the main hub. Moreover, it falls

under the possible con�gurations of the proposed architecture, with more than a single hub.

5.6 Treatment of external events

The scenery proposed in this project does not �t the closed world assumption, i.e. it considers

that external events may interact with the model, and so the agents may sense the changes

they cause. It involves redesigning some modules of the Jason architecture, due to it has

not been developed to explicitly support data importation.

This has two important e�ects: on the one hand, the need to change the architecture so

it listens to external events; and on the other hand, the need to adapt it to let the agents

correctly perceive their e�ects -at the particular point of the Jason reasoning cycle.

5.6.1 Web Service calls

Web service calls can be modelled as external actions in Jason. They may be performed

using the functionalities SACI and JADE platforms o�er, but they can also be made from

the Model class.

Web service calls, as external actions in general, modify the information stored in the

model with the data get in response to the service request. However, they cannot be modelled

as simple sensors, because the data provided is not sustained over time, and therefore some

mechanisms to ensure it is received by the agents must be developed. This will be discussed

in the next sections.

5.6.1.1 Concurrent calls

Jason architecture has been developed to bear with execution of concurrent external actions,

so it can deal with those whose execution time lasts more than what it is normal for a single

action; either because it depends on some external resource or because its computational

complexity is too high. Thus, Jason is prepared to concurrently run di�erent external

actions, so the reasoning cycle never stops.

This is the case of web service calls: once they are waiting for response they yield the

processor to other processes until they get the requested data. Jason architecture, internally

works associating the execution of actions -internal and external- to intentions. So one could

say the execution of an intention consist on a sequential execution of the actions that belong

78

5.6. TREATMENT OF EXTERNAL EVENTS

to the intention. Every time an external action is carried out, Jason architecture change

the context so it keeps on the execution a of di�erent intention. When the execution of the

external action ends, the intention is marked as resumable, so the architecture can resume

its execution. If necessary, Jason architecture may carry out as many steps -relative to other

intentions- until the execution of the external action ends.

The �gure 5.10 shows the UML sequence diagram that explains the execution steps taken

by the Jason architecture when calling a web service.

Figure 5.10: UML sequence diagram that involves calling a web service.

The proposed design means an important advantage, due to agents can complete their

plans, by resuming intentions, even if they involve long idle intervals, without loosing the

context.

5.6.1.2 Data representation in Jason system

The design of Jason architecture and language was not developed taking into account the

needs of including external data into the platform. It is de�nitely prepared to cope with

sensors and long execution time tasks -as mentioned before. However, to represent the

information read by the sensors, the designer of the system must choose a format, and

develop the code that is needed to translate that measurements into Jason believes with the

given format. This forces the designer to know, in advance, all the possible states of the

environment sensors, and this is not always acceptable. Sometimes it simply cannot know

it, specially when working with external events and web services whose response does not

�t a standardization.

Let's consider a web service that provides the weather forecast in Madrid. At some point,

the forecast is sunny, and one hour later it is partly cloudy. We need to have a glossary that

embraces all the possible terms to describe weather forecasting. What is more di�cult is

79

CHAPTER 5. CASE STUDY

to have a dictionary that contains all the possible locations, so some rules must be used to

transfer that information into the belief base. The representation is as follows:

forecast(madrid , time (18 ,00), wheather(sunny)).

forecast(madrid , time (19 ,00), wheather(partly_cloudy)).

Listing 5.8: Data representation in Jason

Jason supports string handling, however strings cannot be treated as literals to use all

the capabilities of Jason reasoning engine, i.e. in Jason string are just textual messages for

the user. Thus, the following translations were made to put the information into the belief

base as literals:

• In Jason, words that start with a capital letter are variables, so the input is put into

lowercase.

• Jason does not accept white-spaces in literals, so they are replaced by '_'.

• A speci�c format is used to represent the time, splitting the time into hours and

minutes values, since Jason cannot work with punctuation marks.

Although the translations made may be obvious, it is important to establish some rules

so every programmer knows them to avoid misunderstanding. For instance, there no reason

to user whitespace replacement by '_' instead of using camel case to represent white-spaces,

it is just a matter of agreement.

The main di�culty is trying to reverse the process and obtain the original expression in

its exact format. Due to some of the rules mentioned before does not have a reverse rule

that uniquely returns the original expression from the adapted terms.

In those cases, where the User Interface is important, one may consider using a so called

translation service -either an agent or an auxiliary module- that lets the system undo the

transformation; not using rules but retrieving the correspondence from a temporal database

that stores the original expressions translated.

5.6.1.3 Availability of the data received

Data received from web services cannot be processed as sensors data, it has some singularities

that make us adapt the architecture to treat them properly. Although, the way it is put into

80

5.6. TREATMENT OF EXTERNAL EVENTS

the Jason system is by representing it as percepts -with all the considerations of formatting

agreed in section 5.6.1.2-, the data received received from web services are not e�ect of

sensor detection or measurement. The date received is e�ect of the request made to the web

service, thus the availability of that information does not follow the same rules as physical

or state information measured by sensors.

The main di�erence is, as they do not represent a physical state, its availability by

the sensors, which normally indicate that a perception is no longer available when they

stop detecting it. Web service data is information received that, therefore, must be removed

from agent perception as soon as that agent received them. Since, unlike what happens with

sensors (where whether a perception does not lasts enough to be processed by the involved

agents it means that the perception is not relevant) the information has been requested by

the agent and the architecture must ensure it receives it.

The solution proposed is building, in the Model class, a service-data inbox that stores

the incoming data. So that, the data is stored according to the agent that will receive them.

Once the agent has accepted them, they will be removed from the data inbox -as someone

remove a letter from the mailbox. As they are de�ned as part of the private perception, i.e.

that perception that is particular of any single agent, it will only be removed from the inbox

when the perceiving agent is the addressee of the data. Thus, it guarantees the information

is correctly received, regardless the delivery may be delayed.

On the other hand, as it is explained before, the updating protocol de�ned in the Environ-

ment class must take into account the special nature of the serviceDataInbox, to guarantee

the agents e�ectively receive the information it stores.

5.6.2 Modelling input events

By taking into account the considerations made about the availability of the data from web

services and the solution proposed, we can consider modelling two di�erent kind of external

events. Those that modify the state or the representation of physical objects, in the Model,

whose e�ect will be perceived by the agents until it is changed or removed. And those that

can be modelled as noti�cations or external messages -to particular agents or to the group-

that will be included in the serviceDataInbox as mentioned.

Once the approach is de�ned, we must bear in mind that those attributes of the Model,

including the serviceDataInbox, that can be modi�ed from the outside may be accesses

simultaneously by some di�erent sources, and the information may get corrupted. Hence,

the model must provide synchronizes method to assure the integrity of the data.

81

CHAPTER 5. CASE STUDY

5.6.3 Percept updating policies

We call percept updating policies -or protocols- to the di�erent mechanisms by which the

Environment class captures the representation of the environment from the Model class and

updates its own percepts.

In a �rst approach, we may be tempted to update the environment whenever any data

changes in the model. However, if some particular situations this proposition may cause

problems. Lets consider a high-accuracy temperature sensor, the value it measures is con-

tinuously changing due to its high precision. That means the sensor is changing the value

that represents the temperature in the model every short period of time. Let also consider,

incoming noti�cations as mentioned in previous sections, the policy we should use is di�erent

in both cases.

There are di�erent suitable updating policies depending on the nature of the data in-

volved.

5.6.3.1 Update base on external action execution

Update base on external action execution, is the easiest and most used way in simulated

environments on Internet Jason examples involves updating the Environment percepts after

every execution of an external action. This policy assumes the system respond to the closed

world assumption, so the Model can only be modi�ed by external actions executed inside the

Jason architecture. Applying this method when the assumption is not met, the architecture

cannot guaranty the percepts transferred to the agents were correct.

5.6.3.2 Continuous updating

Continuous updating policy means re�ecting every single change made in the Model in the

Environment class as soon as it occurs. The objection of this policy lies on situations where

the changes in the model are ful�lled very fast. In this cases it becomes very ine�cient.

Moreover, in most of the cases, this frequency is not required, e.g. in the high accuracy

temperature sensor environment, the small changes should not be re�ected in the model

because they are not relevant, temperature change at a certain speed, and this de�nes the

relevant variation frequency. Furthermore, the implementation of this updating protocol

happens to let the Model change the Environment -or at least inform it- what is against the

main design of Jason architecture.

82

5.6. TREATMENT OF EXTERNAL EVENTS

Figure 5.11: Update base on external action execution

Figure 5.12: Periodic Sampling

83

CHAPTER 5. CASE STUDY

5.6.3.3 Periodic sampling

Periodic sampling policy means updating the Environment perception capturing the Model

data only when it is necessary. Either because something has changed in the model or

because of the execution of an external action that requires updating the percepts. To do

so, the model must provide some testing methods that indicate if the update must be done.

Figure 5.13: Continuous updating

84

Chapter 6

Conclusion and future work

�It is always wise to look ahead, but di�cult to look further than you can see.�

� Winston Churchill

6.1 Conclusions

By following a simple set of rules, in the new paradigm exposed in this master thesis, it is

possible to achieve modern systems that combine the potential of intelligent agent systems

and the interconnection and limitless applications of the modern web.

Moreover, we can make good use of the existing technologies, as it has been shown. The

more important shift is in the way we understand agents and agent communication.

Following the event oriented programming paradigm and using the simple set of rules

de�ned for Maia, working with multiple data sources was a breeze. Partly due to the agility

provided by Node.js and using Javascript for both server and client sides.

There is a growing community of developers that are following these principles, even if

it is only by means of using Javascript for their projects. This fact is reassuring, and means

that the continuity of the new ideas discussed in this document is guaranteed.

It is impossible to know how the Web, or more generally the Internet, will evolve. How-

ever, it is clear that more and more services and applications are embracing the evented

paradigm, at least in the way of simple web hooks. Because of this, it is quite easy to en-

85

CHAPTER 6. CONCLUSION AND FUTURE WORK

vision a new Internet, as described in The Live Web book [2]: services interacting without

previous consensus, unimaginable interactions between applications, new sources of infor-

mation like DVRs or home appliances...

6.2 Achieved goals

This document started with a set of goals to be achieved with this master thesis. To wrap

up, here is a summary of the �nal outcomes:

• A communication channel and protocol to connect Clients and Cloud Agent(s). Ex-

amples were given of both hook.io and socket.io working, which gives more than one

channel and protocol. The protocol de�ned for Maia, consisting of the event and

namespace de�nition, can also be used with any other technology.

• A communication channel and protocol to connect Cloud Agents. The same as previous

point. One of the advantages of the proposal in this document is how simple the

communication mechanism is. For details, read Chap. 4.

• A generic and extensible schema for intents and actions. Although it has not been the

key outcome, an extensible ontology was created as described in Sec. 4.3 that describes

intents and actions.

• A scalable platform to deploy Cloud Agents. See Chap. 5 for an example implemen-

tation using a modi�ed Jason instance as the agent platform.

• To develop all the complex logic needed in every speci�c Cloud Agent. See Sec. 5.3.

• To de�ne security constraints and authentication methods. Some guidelines are intro-

duced in Sec. 6.3.1.

As for the more general aims of this project:

• To study and extend the current state of the art of Web Hooks and Web Intents

• To explore the capabilities of such technologies for inclusion in intelligent systems

• To explore and exploit the potential of Javascript in server applications (see Node.js

in section 2.2.2)

• To demonstrate the versatility of the given models for communication, beyond pro-

gramming languages or platforms

86

6.3. FUTURE WORK

• To provide a robust and simple bidirectional connection between Java and Javascript

programs.

6.3 Future Work

There are many lines that can be followed to continue this work. Some compromises were

made to achieve a working prototype that could show the potential of the new design

paradigm, so some aspects were abandoned for the sake of simplicity and speed.

Now that the concept has been proven to work and be very promising, it is time to

continue growing both the architecture and the developed tools to give a more solid solution

to a wider range of scenarios. In the following sections some �elds of study or improvement

are presented to the reader.

6.3.1 Security

One of the main aspects to improve from a pragmatic point of view is the security of the

information being exchanged and the scope in which it is visible. The explained hierarchy

based on hubs is just a practical �rst approach to limiting these problems, but it is important

to apply more advanced security policies and authentication of entities. This is especially

important if the information being shared is con�dential or if not all the parties in contact

are trusted, which is likely to happen in open endpoints on the internet.

It would be advisable to apply the same simplicity principles applied during the original

design and implementation described in this document. There is a handful of simple solutions

for authentication and limiting scopes for Web applications which can be applied or ported

easily to Maia.

6.3.2 Chaining services using hooks

More important from the research side is to go one step forward in our de�nition of events and

the propagation of plans using them. As previously said, everything being sent is an event,

in the form of an intention or a change of information. This idea can be further expanded

to allow the propagation of plans within an agent system using the Maia architecture.

There are some di�erent approach for chaining services using hooks. The easiest consist

on using to handlers for returning data to the emitter hook so it orchestrates the composition

87

CHAPTER 6. CONCLUSION AND FUTURE WORK

based in the data received. The second design consist on using events to communicate

between services and the agent platform.

This last approach, implies developing a communication protocol so the events emitted

are used as messages passed between actors involved. In addition to the complexity add to

the development process, using events to communicate among agents and services it is not

a good practice, since the hook/events where designed for being used programmatically, not

for being part of a communication protocol. Thus it is more convenient to use callbacks to

return the resulting data to the emitter, so it can process it.

6.3.3 Better integrate Web Hooks

Right now, all the connectors to web services are ad-hoc solutions, and have been �ne

tailored for their use in this scenario. Developing a standard connector to translate regular

web hooks into Maia event emitters and receivers. Having such a compatibility layer would

make it possible to build rich applications that integrate both services that expose web hooks

and services built using Maia nodes.

6.3.4 De�ne an ontology of objects

Standardizing namespaces and creating an ontology of actions is not su�cient in the long

term, as more and more services begin to use events to communicate to each other. In the

end, it is necessary to also provide a de�nition of the payload, or objects to be passed.

With the already existing ontology of intents, it should be trivial to add an extensible

format of objects and make an ontology of it as well.

6.3.5 Interacting with the Kinetic Rule Engine

It would be interesting to use either the Javascript library to connect with a Kinetic Rule

Engine (KRE) [2], or the one written for Node.js [55].

Even though these are only client libraries, and a Kinetic Rule Engine must be running

also, the potential combination of Maia events and the processing capabilities of the KRE

is really promising.

Another approach could be to port the KRE to Javascript, adding the many advantages

of Node.js (see Sec. 2.2.2). But this task would be much more complex. However, given the

rapid evolution and changes in Node.js it may be justi�ed, should the technologies related

88

6.3. FUTURE WORK

to the Kinetic Rule Language evolve and be adopted by a wider audience. The combination

would be a really powerful tool, example of the blossoming technologies on the Internet that

are leading to an evented web.

89

CHAPTER 6. CONCLUSION AND FUTURE WORK

90

Appendix A

Installing Node.js and Hook.io

This tutorial goes through the process of writing a simple mailer hook capable of sending

email alerts to your users. It covers the whole process, from installing node.js and hook.io

0.8.7 in Ubuntu 11.10 to running your test hook.

A.1 Install node.js

To install node, you can either compile the sources or use the binaries available in the ppa

repository. We will cover the installation using the ppa repository as it's easier and will keep

our installation updated e�ortlessly.

First of all, we add the ppa repository:

$ sudo apt-get install python-software-properties

$ sudo add-apt-repository ppa:chris-lea/node.js

$ sudo apt-get update

Now, we install the node.js package, and npm (nodejs package manage) so we can install

node modules easily later:

$ sudo apt-get install nodejs npm

Or, if you want to compile Node C++ modules:

91

APPENDIX A. INSTALLING NODE.JS AND HOOK.IO

$ sudo apt-get install nodejs-dev

You can now test your node.js installation. For this, open a new �le called �helloworld.js�

with the following code:

1 #!/bin/env node

2 var http = require('http');

3

4 http.createServer(function (req , res) {

5 res.writeHead (200, {'Content -Type': 'text/plain'});

6 res.end('Hello World\n');

7 }).listen (1337, "127.0.0.1");

8

9 console.log('Server running at http ://127.0.0.1:1337/ ');

And run it with:

$ node helloworld.js

Now click the link in the terminal, or open your browser and go to:

http://127.0.0.1:1337/

Congratulations! You ran your �rst node.js application!

A.2 Install Socket.io

If you installed npm, installing hook.io is a piece of cake. But if you're using Ubuntu 11.04+,

you will need to install some avahi dependencies or you'll get nasty errors in compile time:

$ apt-get install libavahi-compat-libdnssd-dev

Once the dependencies have been installed, we carry on with the real installation:

$ sudo npm install hook.io -g

92

http://127.0.0.1:1337/

A.2. INSTALL SOCKET.IO

The -g option causes npm to install hook.io globally, in the appropriate folder in /usr/lib.

Without it, the module will be downloaded and installed in the current working directory.

Later, you will need to install it locally, but �rst let's install it this way so you can use the

hook.io tools from the command line.1

If everything went well, now you can test your hook.io by launching your �rst hook:

$ hookio

This instance will act as the server hook, as explained before. Now every instance of

hookio launched will connect to the �rst one on port 5000. To make it more interactive, you

can launch hookio with a read-eval-print loop:

$ hookio --repl

Once connected, you will be able to write to a node console. To send your �rst event,

write:

$ hook.emit(�foo�,�bar�)

Which sends the foo event with bar as data/payload. If you go back to the �rst instance

you executed, you should see the log of the foo event. However, if you have more instances

open, you won't see any sign of the event in your log. Do not worry, I'll show you how to

subscribe to events in the following chapter.

1For more information, visit:

https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

93

https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

Appendix B

How to use hook.io hooks

the power of the developed architecture comes from the ability to easily add data sources and

endpoints. the simplest way is by using hooks, leaving all agents design aside. Listing B.1

shows the basic skeleton to get started with two simple hooks that communicate with each

other. It does the following:

• Create a new hook (hookA) named a.

• With the method on, bind a callback function with the speci�ed event �lter. In this

case, print event and data every time any hook (*) sends the sup event.

• Start the hook. This method tries to �nd any other hook instance using the default

port and connects to it. Otherwise, it becomes accepting incoming connections on

that port.

• Create another hook (hookB) named b.

• As soon as the new hook is ready, it will emit the event sup, using dog as data.

• Start b. Since a was started �rst, this will make b connect to it. This action will lead

to a chain of events that will end with a printing b's original event and data.

94

1 #!/env/nodejs

2 var hook = require('hook.io').hook;

3

4 var hookA = new Hook({

5 name: "a"

6 });

7

8 hookA.on('*::sup', function(data){

9 // outputs b::sup::dog

10 console.log(this.event + ' ' + data);

11 });

12

13 // Hook.start defaults to localhost

14 // it can accept dnode constructor options (for remote

connections)

15 // these hooks can be started on different machines /

networks / devices

16 hookA.start();

17

18 var hookB = new Hook({

19 name: "b"

20 });

21

22 hookB.on('hook::ready', function (){

23 hookB.emit('sup', 'dog');

24 });

25

26 hookB.start();

Listing B.1: basic hook.io hook template

95

APPENDIX B. HOW TO USE HOOK.IO HOOKS

B.1 Tips with Hook.io

Here is a list of useful things to take into consideration when developing a hook.io hook.

• Once emitted, event names are prepended their origin hook's name. For that reason,

you have to use on(�*::event�,...) instead of just on(�event�,...)

• Your server hook should have no methods at all, use a vanilla hook

• Follow the node.js convention: the main js in /bin/index.js, the libraries in /lib/,

and a package.json. This will make it easier to upload your hook for use with npm.

B.2 Troubleshooting and known bugs

Hook.io is a new technology, not even in its 1.0 version, so the number of bugs and feature

requests is incresing. You can see the full list in their github page1, but I'll give you a short

list of the main problems I encountered:

• If you can't install hook.io using the npm version in the repositories, try installing the

latest version as root:

$ curl http://npmjs.org/install.sh | sh

• Disconnecting/killing the server instance will make the clients enter a loop.

• It's not possible to remove a wildcard event once added with hook.on

• All the hooks have to use the same hook.io version or you'll get an error

• You can't emit using a �lter of the form foo::* as it will raise an exception

B.3 Further reading

For more information about hook.io and how to set it up, please visit:

• http://www.nodebeginner.org/

• http://ejeklint.github.com/2011/09/23/hook.io-for-dummies-part-1-overview/

1https://github.com/hookio/hook.io/issues

96

http://www.nodebeginner.org/
http://ejeklint.github.com/2011/09/23/hook.io-for-dummies-part-1-overview/
https://github.com/hookio/hook.io/issues

Appendix C

Excerpts of code

This section contains some of the code of the Jason Agents that are part of

the prototype explained in Chap. 5.

For more information and code to modify Jason (see 2.3) to connect to

Socket.io (see 2.2.3) visit the SOJA project in GitHub:

https://github.com/balkian/SOJA

For information about the hook.io and socket.io event router Hermes, visit:

https://github.com/balkian/Web4.0

A set of use examples can be found in:

SparQl full demo https://github.com/balkian/Hook.io-Sparql-Demo

Spotlight hook https://github.com/balkian/Hook.io-Spotlight

Mailer hook https://github.com/balkian/Hookio-Mailer

All of which use the Web 4.0 Hook.io (see 2.2.4) hook class de�ned in this

GitHub repository:

https://github.com/balkian/hook.io-web40

97

https://github.com/balkian/SOJA
https://github.com/balkian/Web4.0
https://github.com/balkian/Hook.io-Sparql-Demo
https://github.com/balkian/Hook.io-Spotlight
https://github.com/balkian/Hookio-Mailer
https://github.com/balkian/hook.io-web40

APPENDIX C. EXCERPTS OF CODE

C.1 travelAgent

1 // Agent travelAgent skeleton

2 //

3 // 'findTravel ' external action is provided. The exact format

4 // of the action is as follows:

5 //

6 // findTravel(Queryid , From , To, Day , Month , Year)

7 //

8 // where the Queryid is a number that may be used

9 // to identify the the results of a particular call.

10 // this external action always successes. When the data

11 // is processed it includes the beliefs in the agent

12 // belief -base. The format

13 // of the beliefs is as follows:

14

15 // journey(<From >, <To>, <Departure >, <Arrival >,

16 // <Fare >)[query(Queryid)]

17 // journey(madrid , barcelona , time (11 ,00), time (14 ,30),

18 // fare(FName , FPrice))[query (12345)]

19

20 /* Store results */

21 @storejourney1

22 +journey(From , To, Departure , Arrival , fare(FName , FPrice))[

query(Query)]

23 : true

24 <- .print(journey(From , To, Departure , Arrival , fare(FName

, FPrice)));

25 +journey(From , To, Departure , Arrival , fare(FName , FPrice

)).

26

27 @findtrip

28 +! find_trip[source(nluAgent)]

29 : true

30 <- .print(" Finding trip");

31 ?location_to(To);

98

C.1. TRAVELAGENT

32 ?location_from(From);

33 ?day(D);

34 ?month(M);

35 .date(YY,MM,DD);

36 if ((MM+1) > M) {

37 findTravel (12345 , From , To, D, M, YY+1);

38 }

39 if ((MM+1) < M) {

40 findTravel (12345 , From , To, D, M, YY);

41 }

42 if ((MM+1) == M) {

43 if (DD > D) {

44 findTravel (12345 , From , To, D, M, YY+1);

45 }

46 if (DD <= D) {

47 findTravel (12345 , From , To, D, M, YY);

48 }

49 }

50 .wait (500);

51 .findall(viaje(FPrice , F, T, Departure , Arrival , Fare),

52 journey(F, T, Departure , Arrival , fare(Fare , FPrice)

),

53 Journeys);

54 .max(Journeys , Cheapest);

55 Cheapest = viaje(CPrice , CFrom , CTo , CDeparture , CArrival

, Name);

56 !check_price(CPrice);

57 .send(userAgent , achieve ,

58 show(CFrom , CTo , CDeparture , CArrival , fare(Name ,

CPrice)));

59 .print("Done !");

60 .abolish(_[source(_)]).

61

62 -!find_trip[source(nluAgent)]

63 : true

64 <- .send(userAgent , achieve , fail);

99

APPENDIX C. EXCERPTS OF CODE

65 .abolish(_[source(_)]).

66

67 /* +? location_to(To): not location_to(_)

68 <- .print("No to");

69 -doable(yes);

70 ?missing_message(MM);

71 -missing_message(MM);

72 .concat(MM ,"Hacia?",MM);

73 -+missing_message(MM).

74 +? location_from(From): not location_from(_)

75 <- .print("No From");

76 ?missing_message(MM);

77 .concat ("Desde?",MM,MM);

78 -+missing_message(MM);

79 -doable(yes).

80

81 +?day(Day): not day(_)

82 <- .print("No day");

83 ?missing_message(MM);

84 .concat ("Dia?",MM,MM);

85 -+missing_message(MM);

86 -doable(yes).

87

88 +?month(Month): not month(_)

89 <- .print("No month");

90 ?missing_message(MM);

91 .concat ("Mes?",MM,MM);

92 -+missing_message(MM);

93 -doable(yes).

94

95 +? doable(_): not doable & missing_message(MM)

96 <- .print("Not doable ");

97 .send(userAgent , achieve , send_user(MM));

98 .remove_plan(find_trip[_]). */

99

100 +! check_price(Price): not price(_)

100

C.2. USERAGENT

101 <- .print("No price limit").

102

103 +! check_price(Price): price(Max) & Max > Price

104 <- .print("Price");

105 .print(Price);

106 .print("Limit");

107 .print(Max);

108 .print("The price is under the limit").

109 -!check_price(Price): price(Max)

110 <- .print(Max);

111 .print(Price);

112 .send(userAgent , achieve , send_user ("Maybe you should

113 consider spending a bit more ."));

114 .remove_plan(find_trip[_]).

Listing C.1: travelAgent code

C.2 userAgent

1 // Agent userAgent skeleton

2 //

3 // Messages from the user are expressed as beliefs with the

4 // format:

5 //

6 // user_msg (" message string here")

7 //

8 // 'sendUser ' external action is provided. It can be used to

9 // send a literal or a string to the user.

10 //

11 // sendUser(<literal >|<string >)

12 //

13 // When the literal has the specific format

14 //

15 // journey(From , To, Departure , Arrival ,

101

APPENDIX C. EXCERPTS OF CODE

16 // fare(FName , FPrice))

17 //

18 // the client prints the data in a special format , as

19 // it recognizes it as a journey.

20 //

21 /* Initial beliefs and rules */

22 //

23 // user_msg (" Sugiere algo").

24 // user_location(madrid).

25 // user_msg (" Quiero un tren de Madrid a Barcelona

26 // por 60 euros el 27 de Julio").

27 /* Initial goals */

28 //

29 /* Plans*/

30

31

32 +user_msg (" Gracias ") : lastjourney(From ,City ,Start ,End ,fare(

Name ,Price))

33 <- findTasks(City);

34 .wait (500);

35 .findall(D,task(F,D),

36 Tasks);

37 .concat ("Vas a ",City ,", no olvides: ",Tasks ,Y);

38 !send_user(Y);

39 -user_msg (" Gracias ").

40

41

42

43

44 @msg_thanks

45 +user_msg (" gracias ") : lastjourney(From ,To,Start ,End ,fare(

Name ,Price))

46 <- !send_user ("De nada").

47

48 +user_msg (" gracias ") : true

49 <- !send_user ("No hay anterior viaje").

102

C.2. USERAGENT

50

51 @msg

52 +user_msg(Msg) : true

53 <- .send(nluAgent , tell , query(Msg)).

54

55

56 +user_location(Location) : true

57 <- .print(" Location is ",Location);

58 .send(nluAgent ,tell ,user_location(Location)).

59

60 @senduser

61 +! send_user(Msg) : true

62 <- sendUser(Msg);

63 .abolish(_[source(_)]).

64

65 @show_journey

66 +!show(From , To, Start , End , fare(Name , Price))

67 : true

68 <- .print("Last JOURNEY:", lastjourney(From ,To,Start ,End ,

fare(Name ,Price)));

69 sendUser(journey(From , To, Start , End , fare(Name , Price))

);

70 -+lastjourney(From ,To,Start ,End ,fare(Name ,Price));

71 !updateTrips(To).

72

73 +! updateTrips(To): trips_to(To,N)

74 <- .print("YOU ALREADY WENT THERE");

75 Nn = N+1;

76 -+trips_to(To,Nn).

77

78

79 +! updateTrips(To): true

80 <- .print("The user hasn 't been there .");

81 +trips_to(To ,0).

82

83 +task(For ,Do): true

103

APPENDIX C. EXCERPTS OF CODE

84 <- .print(">",tasks(For ,Do));

85 +task(For ,Do).

86

87 @fail_nlu

88 +!error

89 : true

90 <- sendUser (" Parlez vous francais? Do you speak English ?")

;

91 .abolish(user_msg[source(_)]).

92

93 @no_match

94 +!fail

95 : true

96 <- sendUser ("No hay resultados. Lo siento ");

97 .abolish(user_msg[source(_)]).

Listing C.2: userAgent code

C.3 nluAgent

1 // Agent nluAgent skeleton

2 //

3 // A sample plan has been given. The format of the triggering

4 // event is optional , since it depends on the message send by

5 // the userAgent (defined by the programmer)

6 //

7 // In order to develop the multi -agent system before the

graphs

8 // of the unitex module , a plan like 'demo_msg ' may be used.

9 // That plan uses the 'sendNLU ' external action is provided.

10 //

11 // It must be used to send data to the unitex module. The

12 // format of the action is as follows:

13 //

104

C.3. NLUAGENT

14 // sendNLU ("msg to nlu")

15 //

16 // This external action always succeeds. When the data is

17 // processed it includes the beliefs in the agent belief -base

18 //

19

20 /* Plans */

21

22 @demo_msg

23 +! demo_msg(Msg , Queryid)[source(Ag)] : true

24 <- .send(Ag, tell , location_from(madrid));

25 .send(Ag, tell , location_to(barcelona));

26 .send(Ag, tell , departure_date (8 ,5 ,2012));

27 .send(Ag, tell , num_people (3)).

28

29 @demo_nlu

30 +! demo_nlu : true

31 <- sendNLU (" Quiero un viaje para 3 personas de Madrid a

Valencia ").

32

33 +! ask_agent: true

34 <- .print(" Asking the agent");

35 .send(travelAgent , achieve , find_trip);

36 .abolish(_[source(_)]).

37

38 @query_nlu

39 +query(Msg): true

40 <- .print("Told to query");

41 -query(Msg);

42 sendNLU(Msg);

43 .wait (500);

44 +finished.

45

46 +finished: not query_type(suggestion)

47 <- !ask_agent.

48

105

APPENDIX C. EXCERPTS OF CODE

49 +finished: user_location(Location)

50 <- .print(" Sugerencia ");

51 .print(" Location:", user_location(Location));

52 findHolidays;

53 .wait (500);

54 .findall(holiyad(R,Y,M,D),

55 holiday(M,D,Y,R),

56 Holidays);

57 .min(Holidays , Best);

58 Best = holiyad(Rep ,Year ,Month ,Day);

59 .print("Rep:",Rep);

60 .print("Year:",Year);

61 .print("Month:",Month);

62 .print("Day:",Day);

63 .print(" Location:",Location);

64 -query_type(suggestion);

65 -+month(Month);

66 -+day(Day);

67 -+year(Year);

68 -+location_from(Location);

69 -+location_to(valencia);

70 -+price (1000);

71 -+finished.

72

73

74

75 +query_type(suggestion): true

76 <- +query_type(suggestion).

77

78 +location_from(From): not query_type(suggestion)

79 <- .send(travelAgent ,tell , location_from(From)).

80

81 +location_to(To): not query_type(suggestion)

82 <- .send(travelAgent ,tell , location_to(To)).

83

84 +number_people(N): not query_type(suggestion)

106

C.3. NLUAGENT

85 <- .send(travelAgent ,tell , number_people(N)).

86

87 +price(P): not query_type(suggestion)

88 <- .send(travelAgent ,tell , price(P)).

89

90 +day(D): not query_type(suggestion)

91 <- .send(travelAgent ,tell , day(D)).

92

93 +month(M): not query_type(suggestion)

94 <- .send(travelAgent ,tell , month(M)).

95

96 +holiday(D,M,Y,R): true

97 <- .print(">",holiday(D,M,Y,R));

98 +holiday(D,M,Y,R).

Listing C.3: nluAgent code

107

APPENDIX C. EXCERPTS OF CODE

108

Bibliography

[1] MarkWeiser. Some computer science issues in ubiquitous computing. Commun. ACM, 36(7):75�

84, July 1993.

[2] P.J. Windley. The Live Web: Building Event-Based Connections in the Cloud. Course Tech-

nology, 2011.

[3] Mor Naaman, Je�rey Boase, and Chih-Hui Lai. Is it really about me?: message content in

social awareness streams. In Proceedings of the 2010 ACM conference on Computer supported

cooperative work, CSCW '10, pages 189�192, New York, NY, USA, 2010. ACM.

[4] Hans W. Gellersen, Albrecht Schmidt, and Michael Beigl. Multi-sensor context-awareness

in mobile devices and smart artifacts. Mobile Networks and Applications, 7:341�351, 2002.

10.1023/A:1016587515822.

[5] L. Ardissono, G. Bosio, and M. Segnan. An activity awareness visualization approach supporting

context resumption in collaboration environments. In International Workshop on Adaptive

Support for Team Collaboration, pages 15�25, 2011.

[6] T. Gross, W. Wirsam, and W. Graether. Awarenessmaps: visualizing awareness in shared

workspaces. In CHI'03 extended abstracts on Human factors in computing systems, pages 784�

785. ACM, 2003.

[7] B.P. Bailey, J.A. Konstan, and J.V. Carlis. The e�ects of interruptions on task performance,

annoyance, and anxiety in the user interface. In Proceedings of INTERACT, volume 1, pages

593�601. IOS Press, 2001.

[8] Kinetic rules engine. https://github.com/kre/Kinetic-Rules-Engine/.

[9] M. Luck, P. McBurney, and C. Preist. Agent technology: enabling next generation computing

(a roadmap for agent based computing). AgentLink/University of Southampton, 2003.

[10] Website of node.js. http://nodejs.org/.

109

https://github.com/kre/Kinetic-Rules-Engine/
http://nodejs.org/

BIBLIOGRAPHY

[11] Website socket.io. http://socket.io/.

[12] Github repository of hook.io. https://github.com/hook.io/.

[13] O�cial website of the jason project. http://jason.sourceforge.net/.

[14] Miguel Escrivá Gregori, Javier Palanca Cámara, and Gustavo Aranda Bada. A jabber-based

multi-agent system platform. In Proceedings of the �fth international joint conference on Au-

tonomous agents and multiagent systems, AAMAS '06, pages 1282�1284, New York, NY, USA,

2006. ACM.

[15] Xep-0004: Data forms. http://xmpp.org/extensions/xep-0004.html.

[16] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artif. Intell.,

42:213�261, March 1990.

[17] Karen Zita Haigh, Liana M. Ki�, Janet Myers, Valerie Guralnik, Kathleen Krichbaum, John

Phelps, Tom Plocher, and David Toms. The independent lifestyle assistant tm (i.l.s.a.): Lessons

learned, 2003.

[18] Karen Zita Haigh, John Phelps, and Christopher W. Geib. An open agent architecture for

assisting elder independence. In Proceedings of the �rst international joint conference on Au-

tonomous agents and multiagent systems: part 2, AAMAS '02, pages 578�586, New York, NY,

USA, 2002. ACM.

[19] I. Ohmukai, H. Takeda, and M. Miki. A proposal of the person-centered approach for personal

task management. 2003 Symposium on Applications and the Internet, 2003. Proceedings., pages

234�240, 2003.

[20] Julita Vassileva. A review of organizational structures of personal information management.

Management, pages 1�19, 2008.

[21] Karen L. Myers, Pauline Berry, Jim Blythe, Ken Conley, Melinda T. Gervasio, Deborah L.

McGuinness, David N. Morley, Avi Pfe�er, Martha E. Pollack, and Milind Tambe. An intelligent

personal assistant for task and time management. AI Magazine, 28(2):47�61, 2007.

[22] M. Indiramma and K.R. Anandakumar. Collaborative decision making framework for multi-

agent system. In Computer and Communication Engineering, 2008. ICCCE 2008. International

Conference on, pages 1140 �1146, May 2008.

[23] Yolanda Gil, Paul Groth, and Varun Ratnakar. Social task networks: Personal and collaborative

task formulation and management in social networking sites. In Proceedings of the AAAI Fall

Symposium on Proactive Assistant Agents, 2010.

[24] Miquel Montaner. A Taxonomy of Recommender Agents on the Internet. Arti�cial Intelligence

Review, pages 285�330, 2003.

[25] Andreas Lommatzsch, Martin Mehlitz, and Jérôme Kunegis. A multi-agent framework for

personalized information �ltering. In Proceedings of German e-Science 2007 (GES'07). Max

Planck Digital Library / German e-Science Conference, 2007.

110

http://socket.io/
https://github.com/hook.io/
http://jason.sourceforge.net/
http://xmpp.org/extensions/xep-0004.html

BIBLIOGRAPHY

[26] Donald A. Norman. How might people interact with agents. Commun. ACM, 37:68�71, July

1994.

[27] Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action. ARTIFICIAL

INTELLIGENCE, 86(2):269�357, 1996.

[28] Mary Czerwinski, Eric Horvitz, and Susan Wilhite. A diary study of task switching and inter-

ruptions. In Proceedings of the SIGCHI conference on Human factors in computing systems,

CHI '04, pages 175�182, New York, NY, USA, 2004. ACM.

[29] Tom Gruber. Intelligence at the interface: Semantic technology and the consumer internet

experience, 2009.

[30] Tom Gruber. The perfect storm: Bringing itelligence to the interface, 2009.

[31] Google docs. https://docs.google.com/.

[32] Occi: Open cloud computing interface. http://occi-wg.org/.

[33] Sri calo web site. https://pal.sri.com/Plone/framework.

[34] Wikipedia entry for calo. http://en.wikipedia.org/wiki/CALO.

[35] Neil Yorke-Smith, Shahin Saadati, Karen L. Myers, and David N. Morley. Like an intuitive and

courteous butler: a proactive personal agent for task management. In Carles Sierra, Cristiano

Castelfranchi, Keith S. Decker, and Jaime Simão Sichman, editors, AAMAS (1), pages 337�344.

IFAAMAS, 2009.

[36] Siri web site. http://siri.com/.

[37] Nora Spivack. How siri works. interview with tom gruber, cto of siri, January 2010.

[38] Java agent development framework. http://jade.tilab.com/.

[39] Christopher A. Miller, Wende L. Dewing, Karen Z. Haigh, David C. Toms, Rand P. Whillock,

Stephen V. Geib, Christopher W.and Metz, Rose Mae M. Richardson, Stephen D. Whitlow,

John A. Allen, Lawrence A. King, John A. Phelps, Victor A. Riley, and Peggy Wu. System

and method for automated monitoring, recognizing, supporting, and responding to the behavior

of an actor. Number 20040030531. February 2004.

[40] Tom Gruber and Adam Cheyer. Siri: A virtual personal assistant, 2010.

[41] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending and evaluat-

ing choices in a virtual community of use. In Proceedings of the SIGCHI conference on Hu-

man factors in computing systems, CHI '95, pages 194�201, New York, NY, USA, 1995. ACM

Press/Addison-Wesley Publishing Co.

[42] Upendra Shardanand and Pattie Maes. Social information �ltering: Algorithms for automating

"word of mouth". In Proceedings of the SIGCHI conference on Human factors in computing

systems, pages 210�217. ACM Press, 1995.

111

https://docs.google.com/
http://occi-wg.org/
https://pal.sri.com/Plone/framework
http://en.wikipedia.org/wiki/CALO
http://jade.tilab.com/

BIBLIOGRAPHY

[43] Michael Pazzani, Jack Muramatsu, and Daniel Billsus. Syskill & webert: Identifying interesting

web sites. In In Proceedings of the Thirteenth National Conference on Arti�cial Intelligence,

pages 54�61. AAAI Press, 1996.

[44] Salma Noor and Kirk Martinez. Using social data as context for making recommendations:

an ontology based approach. In Proceedings of the 1st Workshop on Context, Information and

Ontologies, CIAO '09, pages 7:1�7:8, New York, NY, USA, 2009. ACM.

[45] Xin Li, Lei Guo, and Yihong Eric Zhao. Tag-based social interest discovery. In Proceeding of

the 17th international conference on World Wide Web, WWW '08, pages 675�684, New York,

NY, USA, 2008. ACM.

[46] H Lieberman, H Liu, P Singh, and B Barry. Beating Common Sense into Interactive Applica-

tions. AI Magazine, 25(4):63�76, 2004.

[47] H Liu and P Singh. ConceptNet � A Practical Commonsense Reasoning Tool-Kit. BT Tech-

nology Journal, 22(4):211�226, 2004.

[48] Christian Bizer and Freie Universität Berlin. DBpedia Querying Wikipedia like a Database.

World Wide Web Internet And Web Information Systems, pages 1�13, 2007.

[49] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying Relations for Open Infor-

mation Extraction. Network, pages 1535�1545, 2011.

[50] S. Tarkoma. Distributed event dissemination for ubiquitous agents. In 10th ISPE International

Conference on Concurrent Engineering (CE-2003), pages 105�110. Citeseer, 2003.

[51] Henry Lieberman, Alexander Faaborg, Jose Espinosa, and Chris Tsai. A Calendar and To-Do

List with Common Sense. Technical report, MIT Media Laboratory, 2004.

[52] Jose Espinosa and Henry Lieberman. EventNet: Inferring Temporal Relations Between Com-

monsense Events. In Alexander Gelbukh, Álvaro De Albornoz, and Hugo Terashima-Marín,

editors, MICAI Fourth Mexican International Conference on Arti�cial Intelligence, volume

3789 of Lecture Notes in Computer Science, pages 61�69. Springer, 2005.

[53] William Williams. LifeNet : A Propositional Model of Ordinary Human Activity. Learning,

2003.

[54] Lin Padgham and Michael Winiko�. Prometheus: A methodology for developing intelligent

agents, 2002.

[55] Kinetic rules engine for node.js. https://github.com/kynetx/kynetx-node.

112

https://github.com/kynetx/kynetx-node

	Resumen
	Abstract
	Acknowledgement
	Agradecimientos
	Table of contents
	Listing
	Figures Index
	Introduction
	Rationale
	Goals
	Structure of the document

	State of the Art
	Historical Background
	An inherited Internet
	The Cloud
	Evolving the Web
	Web Hooks notion
	The Live Web

	Beyond human capabilities: Agents

	Evented Web
	Web Hooks
	Node.js
	Socket.io
	Hook.io

	Jason Agent Platform
	Architecture
	Detailed Jason perception model
	Environment representation by the Model
	Environment representation levels
	Customization and limitations

	SPADE
	Architecture
	BDI Model
	Limitations
	Customization

	Personal agents
	Personal Agents Taxonomy
	Personal resources and information management agents
	Purchasing and Trading agents
	Task and Time management agents
	Reminder agents
	Recommender and filtering agents

	Personal agents Behavior
	Personal agents shift to the Cloud
	Services on the Cloud
	Smartphones, Smart interfaces

	Case studies
	CALO
	Siri

	Architecture discussion
	Agent-component-based architecture
	Extended BDI architecture
	User-focused architecture

	Recommender agents
	Social recommendation
	The importance of the user's profile
	Common Sense Computing Initiative

	Requirements Analysis
	Overview
	Use Cases
	Birthday Present
	Summer Trip
	Movie Tickets
	Blogging site
	Blogging site

	Summary of requirements

	Architecture
	Event-based Agent Architecture
	Messaging and Communication
	Namespaces
	Topology and hierarchy
	Clustering
	Treatment of Beliefs

	Case Study
	General description
	Intelligent suggestions
	Description of the procedure
	Requested planning

	Functionalities
	Synchronisation with Google Calendar
	User preferences learning
	Acquisition from external sources
	Learning from the usage of the system

	External services
	Generation of tasklists
	Natural Language Processing

	Agent Network Design
	Agents
	NLU Agent
	Travel Agents

	Agent Implementation
	NLU Agent
	User Agents
	Travel Agents

	Communication with Jason and Hook.io
	Data Sources
	Messaging and Communicating

	Treatment of external events
	Web Service calls
	Concurrent calls
	Data representation in Jason system
	Availability of the data received

	Modelling input events
	Percept updating policies
	Update base on external action execution
	Continuous updating
	Periodic sampling

	Conclusion and future work
	Conclusions
	Achieved goals
	Future Work
	Security
	Chaining services using hooks
	Better integrate Web Hooks
	Define an ontology of objects
	Interacting with the Kinetic Rule Engine

	Installing Node.js and Hook.io
	Install node.js
	Install Socket.io

	How to use hook.io hooks
	Tips with Hook.io
	Troubleshooting and known bugs
	Further reading

	Excerpts of code
	travelAgent
	userAgent
	nluAgent

	Bibliography

