UER Technique: Conceptualisation for
Agent Oriented Development

Carlos A. Iglesias
Departamento Ingenieria de Sistemas Telematicos, Universidad Politécnica de Madrid
E.T.S.I. Telecomunicacién, Ciudad Universitaria s/n, 28040 Madrid (Spain)

Mercedes Garijo
Departamento Ingenieria de Sistemas Telematicos, Universidad Politécnica de Madrid
E.T.S.I. Telecomunicacién, Ciudad Universitaria s/n, 28040 Madrid (Spain)

ABSTRACT

The problem of conceptualisation is the first
step towards the identification of the functional
requirements of a system. This article pro-
poses two extensions of well-known object oriented
techniques: UER (User-Environment-Responsibility)
technique and enhanced CRC (Class-Responsibility-
Collaboration) cards. UER technique consists of (a)
looking for the users of systems and describing the
ways the system is used; (b) looking for the objects
of the environment and describing the possible inter-
actions; and (c) looking for the general requirements
or goals of the system, the actions that it should carry
out without explicit interaction. The enhanced CRC
cards together with the internal use cases technique
is used for defining collaborations between agents.
These techniques can be easily integrated in UML
(Unified Modelling Language) [2], defining the new
notation symbols as stereotypes.

Keywords: Agent Oriented Software Engineering,
multi-agent systems modelling, autonomous agents
modelling, environment cases, goal cases

1. INTRODUCTION

The problem of conceptualisation is the first step
towards the identification of the functional require-
ments of a system. One of the most extended tech-
niques for getting a first idea of the system is the Use
Case technique [5]. The technique consists in identi-
fying the possible users of the systems, and the possi-
ble user goals, describing ways of achieving these user
goals, that are called use cases. Usually, different use
cases can be combined with the relationships extends
(if a use case is an extension of another one) or uses
(if a use case is a part of another one). This tech-
nique is very simple and intuitive and has been very
successful for requirements elicitation and validation.

This technique can be used for conceptualising a
multiagent system, as described in [4]. Nevertheless,
autonomous agents are distinguished because they do
not need a user that supervises their execution. So,

while with use cases we have to answer the question
“How is used my system?”, we could ask ourselves for
other requirements of our system such as: “When and
how my system act and react to the environment?’
(environment cases) and “What are the goals of the
system? (responsibility or goal cases). This article
introduces these new concepts in the conceptualisa-
tion phase and the corresponding techniques and no-
tations.

In order to conceptualise an agent-based system,
two general techniques are proposed: the new UER
cases technique (section 2), that deals with the iden-
tification of use, reaction and goal cases of an agent
or a multiagent system, and the enhanced Class-
Collaboration-Responsibility Cards technique (sec-
tion 3) that deals with the identification of respon-
sibilities, plans and collaborations of an agent. Both
techniques are complementary. the UER technique
can be used for both autonomous or multiagent sys-
tems (for identifying use, reactive and goal cases of
the whole system). The enhanced CRC cards are only
used for conceptualising multiagent systems, since
they guide the definition of collaborative scenarios.

2. UER TECHNIQUE

The UER (User-Environment-Responsibility) tech-
nique proposes the combination of user, environment
and responsibility-driven analysis for conceptualising
a system from an agent-oriented perspective. This
technique can be used for conceptualising a particu-
lar autonomous agent or the general requirements of
a multiagent system.

User-Centered Analysis. The potential users
(called actors) of the system are identified, together
with their possible tasks or functions. The result of
this analysis is the set of use cases. This analysis an-
swers the question: How are the possible uses of the
multiagent system?

Environment-Centered Analysis. Agents can be sit-
uated in an environment, and this environment needs
to be modelled. In particular, we are interested in
modelling how the system can act and react to this

CUVIIOIIHICHIL. L LTooulb UL Lills allalysls Lo LG st VL
reaction cases. This analysis answers the question:
How the multiagent system has to react to the envi-
ronment?

Responsibility-driven Analysis. In contrast with
usual software systems, multiagent systems can act
proactively. The user can desire that the system has
some responsibilities, that is, the user can assign some
goals or responsibilities to the system and the system
carries out these responsibilities without a direct de-
mand. This analysis answers the question: What are
the goals of the system? The main difference of goal
cases from the user cases, is that the uses cases show
how the system gives an answer to a user request,
while the goal cases show how the system behaves
when some condition is fulfilled.

User-Centered Analysis

A use case [5], [6], [7] describes the possible interac-
tions or uses of a user with the system. System users
are called actors, and represent external entities of
the system. Use cases can be combined, pointing out
if a use case extends or uses a previous use case.

User-Centered Analysis consists of the following
steps [5], [6], [8], [7]:

o Identify the actors. It is specially relevant to iden-
tify the roles played by the actors. Each role is con-
sidered a different actor. There are two general kinds
of actors: human actors (round head) and software
actors (square head), as shown in Fig. 1.1
o Identify the use cases. This process can be carried
out by answering the following questions [5], [7]:

— What are the main tasks or functions carried out
by each actor?

— What system information is acquired, produced
or changed by each actor?

— Does any actor inform about external changes in
the system environment?

— What information is needed by each system actor?

— Does any actor desire to be informed about unex-
pected changes?

o Group the use cases if they are variations of the
same subject (for example, 'move a heavy stone’,
‘move a light stone’).

e Determine the interactions of each identified use
case.

o Describe the use cases, using both a graphical no-
tation [3], [2], [7] and textual templates.

o Consider every possible exception that can happen
during the interactions and how this affects to the use
cases.

o Look for relationships among the use cases: extract
common parts and point out if a use case adds the
interactions of another use case (relationship “uses”)
or adds information contained in another use case (re-

1This distinction is used for describing later the interactions, using an
agent communication language based on speech acts or not.

1AUIVLLeLLL CALCLIUDS L EREAUHRUAN A=)) 43 Udt Lasdstt Lall
also inherit the general interaction of an abstract use
case with the ‘relationship “instantiates”.

e Describe the interactions of each scenario, using
MSC (Message Sequence Chart) notation [3]. MSC
has been selected because is a standardised formal
description technique with a textual and graphical
grammar. Some of the relevant features for our pur-
poses are the availability of a language (HMSC, High
Level MSC) for defining the phases of the interaction,
and the definition of operators for expressing alterna-
tives, exceptions and concurrence in the same dia-
gram. Sequence and collaboration diagrams do not
allow to express these issues in such an easy way, but
can also be used.

Environment Centered Analysis

The goal of environment centered analysis is to
identify the relevant objects of the environment and
the possible actions and reactions of the agent. This
will be later used for agent sensor modelling.

Environment Centered Analysis consists of the fol-
lowing steps:

o Identify objects of the environment. This objects
are shown in the use case diagram as clouds (Fig. 1).
This symbol can be defined in UML as an stereotype.
o Identify the possible events coming from each ob-
jects and establish a hierarchy if possible.

o Identify the possible actions each agent can carry
out on the environment objects.

o Describe (in natural language) the reaction cases
coming from interaction with the environment. De-
scribe in detail each possible scenario. Think if there
are several scenarios coming from the same reaction
case, and if every scenario is autonomous (it is only
managed by the agent that receives the stimuli) or
cooperative (it is managed in cooperation with other
agents).

o Group related reactive cases with the relationships
“uses”, “extends”, “includes” or “instantiates”. For
example, “avoid obstacle” can group different scenar-
i0s for avoiding an obstacle depending on its nature,
and can be avoided in an autonomous way (e.g. just
going to the left of the obstacle) or in a cooperative
way (e.g. asking for help to move it).

e Describe the reactive goal: its name, the activa-
tion condition (e.g. a wall very close), the deactiva-
tion condition and the successful and failure condition
(when the reaction has been effective or not).

Goal Driven Analysis

Goal driven analysis deals with the definition of
requirements of the system, that should be fulfilled
without the direct interaction with the user.

Goal Driven Analysis consists of the following
steps:

o Identify responsibilities (goals) of the system that

ltoyuilc sULLHC AL ulUll. DU UL LT 1L be UL ISV Y 1115
these goals are:

— Look for non functional requirements, such as
time requirements (e.g. *Give an answer before 5 min-
utes’) or security requirements (e.g. 'Buy a product
in a secure way’). Sometimes the agent needs to carry
out special actions to achieve these goals.

— Describe when some internal variable of the agent
can reach a not desired value and some action should
be carried out. For example, high/low temperature,
too many processes, etc.).

— Describe undesired states, possible failures of the
system that should require action to be avoided.

o Describe the proactive goal: its name, its type (per-
sistent, priority, etc.), the activation condition (e.g.
no fuel or idle), the deactivation condition and the
successful and failure condition (when the plan has
been effective or not).

o Group related goals using the relationships “uses”,
“extends”, “includes” or “instantiates”.

D ::Robot

e

R1::Robot =
stone
O
. /
<<includes>>

/
Plan not Avoid
to collide out of fuel

Fig. 1. Robot UER cases

Operator

Example

In order to illustrate the technique, we can con-
sider a ‘robot world” where there are a set of robots
that transport boxes from one place to another. The
robots need fuel to run and should not be blocked
by stones. Human operators can order the robots to
move one box from an origin to a destination or to
stop a task.

User-Centered Analysis. In this case, the fol-
lowing actors (Fig. 1) can be identified: another robot
that helps the robot to move a heavy box and a hu-
man operator that sets the mission of the robot (e.g.
move a box from one position to a destination).

After some analysis, the use case SetMission can
be further refined as shown in Fig. 2. The general
case SetMission consists of asking for a mission, that
is accepted or refused. SetMission is a generalisation
of the possible missions: TransportBor and Count-
Boxes. The use case TransportBox can be included by
the case FindAndTransportBox, where the user just
establishes the number of a particular box and where

v shovdlitl pe Uclivol o,

TransportBox

/ <<include>>

FindAndTransportBox

Fig. 2. Relationship between use cases

Once the actors and use cases have been deter-
mined, they are described with textual templates and
MSCs as a graphical notation. For example, Fig. 3
shows the interactions of the use case SetMission.
The operator requests to carry out a mission and the
robot can give two alternative answers, to accept or to
refuse the mission. The messages of the MSC follow
the syntax <speech-act> (<content>).

msc SetMission
Operator ::Robot

I e

request (mission, par)

alt deny(reason)

agree()

Fig. 3. Scenario of the use case

Environment-Centered Analysis One environ-
ment object can be identified: the stone, that the
agent detect, count and can move. The relevant at-
tributes of the stone for the agent are its position, its
number and its weight. The agent needs sensors to
detect that there is a stone and not to collide with 1t,
so this is the main reaction case: Detect. When an ob-
stacle is detected, the reaction case the agent should
try not to collide (reaction case Avoid Collision), that
includes the detection of the stone. Several scenarios
can be thought for avoiding the collision: the agent
decides to avoid the obstacle, for example going to the
left (reaction case AvoidObstacle), decides to stop be-
cause there is no way out (reaction case Stop), decides
to move alone the obstacle (reaction case MoveAlone)
or decides to ask for help to other agent to move the
box (reaction case AskHelp?.

2As the reader probably has observed, AskHelp was previously defined

<<include>> \

AvoidCollision

wlete}
AvoidObstacle @

Fig. 4. Relationship between reaction cases

Goal Driven Analysis

Two requirements (goals) have been identified: the
robot should not collide with the stones or robots and
the robot should not get out of fuel.

The first requirement (goal case Plan not to collide)
is similar to the reaction case AwoidQObstacle. The
difference is that we want that the robot try to avoid
an obstacle even when it does not receive any stimuli
from the sensors. For example, if the robot can select
two alternative paths to transport a box, the selection
can take into account the position of the rest of the
robots that could eventually collide with it.

The second requirement (goal case Avoid out of
fuel) can be further refined as shown in Fig. 5. This
goal case can be activated when an indicator of out
of fuel 1s activated, being a kind of “internal reaction
case”. Another possible scenario is that the robot can
go to the fuel station when is idle to avoid being out
of fuel (goal caseGo Station if idle).

Avoid
out of fuel

IR

Indicator Go Station
out of fuel if idle

Fig. 5. Relationship between goal cases

After identifying the cases, it is needed to describe
the different scenarios and attributes of each case. For
example, the goal Go Station if idle 1s a persistent
goal whose activation condition is being low of fuel
and being idle. The deactivation condition can be to
receive an order while achieving the goal. The goal is
achieved if the tank of fuel is filled and fails in other
case. Another alternative could be to maintain this
goal active even if there is an ongoing order but the
fuel station 1s close. These two policies need to be
tested on the environment.

as a use case; but the roles are interchanged. As a use case, the robot
received the petition and now it is the initiator of the petition.

2. LNAAINUEL Ao baRUo AL LIV ERINALS Vol
CASES

The well known CRC (Class Responsibility Col-
laboration) cards [1], [9] technique provides a method
for organising the relevant classes for modelling a sys-
tem. This technique was initially used [1] for teaching
object fundamentals in a collaborative environment.
The technique consists of filling cards. Each card has
a class name and two columns. The left column shows
the responsibilities of the class, that are the tasks the
class can perform or knowledge it has, and the right
column show the classes that collaborate to achieve
these tasks or obtain this knowledge.

This technique can be easily modified from an agent
perspective. A CRC is filled for each agent role,
describing its class. Each CRC is divided into five
columns (table T): goals assigned, plans for achieving
these goals, knowledge needed to carry out the plans,
collaborators in these plans, and services used in the
collaboration. The back side of the CRC is used for

annotations or extended description of the front side.

Internal use cases are also based on RDD [9] and
its CRC (Class Responsibility Collaboration) cards.
Taking as input the use cases of the conceptualisation
phase and some initial agents, we can think that each
agent “uses” other agent(s), and can use these agents
with different roles. We look for such an agent in
our agent-library for reusing, combining in this way
the top-down and bottom-up approach. The external
use cases coming from the actors of the multiagent
system are decomposed in use cases that are assigned
to agent roles of the system.

4. CONCLUSIONS

This article has proposed several techniques that
can be used for conceptualising a system from an
agent perspective.

UER technique considers three perspectives for
conceiving the system: studying the 'uses’ of external
actors, studying the interactions with the objects of
the environment, and studying the responsibilities or
goals of the system. This technique can be used for
concelving a particular agent or the requirements of
a multiagent system.

This article also proposes an agent-oriented version
of CRC cards that can be used in conjunction with
the use cases techniques. These techniques deal with
finding collaborations between agents in a multiagent
system and provide a method for agent reusability.

These techniques have the advantage of be-
ing easily integrated in the current object-oriented
CASE tools using UML and are integrated in
a wider agent-oriented methodology called MAS-
CommonKADS [3].

Lo ~r R AL . LUV

| Goals | Plans | Knowledge | Collaborator| Service |

Maintain fuel | Go FS if idle FS Ontology | FS Clerk
Go FS if Fuel | FS Ontology | FS Clerk

Indicator On

Ask For Fuel
Ask For Fuel

TABLE I

EXAMPLE OF AGENT ORIENTED CRC CARrD. FS: FUEL-STATION

5. ACKNOWLEDGEMENTS

This research is funded in part by the Spanish Gov-
ernment under the CICYT projects TIC91-0107 and
TIC94-0139.

The authors would like to thank the students that
are applying the methodology for many suggestions
and comments.

6. REFERENCES

[1] Kent Beck and Ward Cunningham. A labora-
tory for teaching object-oriented thinking. In
OOPSLA’89 Conference Proceedings, New Or-
leans, Louisiana, USA, October 1989.

[2] Tvar Jacobson Grady Booch, James Rumbaugh.
The Unified Modeling Language User Guide. Ad-
dison Wesley, 1998.

[3] Carlos A. Iglesias, Mercedes Garijo, José C.
Gonzalez, and Juan R. Velasco. Analysis
and design of multiagent systems using MAS-
CommonKADS. In AAAT’97 Workshop on Agent
Theories, Architectures and Languages, Provi-
dence, RI, July 1997. ATAL. (An extended ver-
sion of this paper has been published in INTEL-
LIGENT AGENTS IV: Agent Theories, Architec-
tures, and Languages, Springer Verlag, 1998.

[4] Carlos A. Iglesias, Mercedes Garijo, José C.
Gonzalez, and Juan R. Velasco. Analysis
and design of multiagent systems using MAS-
CommonKADS. In M. Wooldridge, M. Singh, and
A. Rao, editors, INTELLIGENT AGENTS IV:
Agent Theories, Architectures; and Languages,
volume 1365, pages 313-329. Springer-Verlag,
1998. (A reduced version of this paper has been
published in AAAI’97 Workshop on Agent Theo-
ries, Architectures and Languages.

[6] I. Jacobson, M. Christerson, P. Jonsson, and
G. Overgaard. Object-Oriented Software Engi-
neering. A Use Case Driven Approach. ACM
Press, 1992.

[6] Roger S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, 4th edi-
tion, 1996.

[7] James Rumbaugh. Getting started. using use
cases to capture requirements. JOOP Journal
of Object Oriented Programming, pages 8-23,
September 1994.

[8] James Rumbaugh. OMT: The development

model. JOOP Journal of Object Oriented Pro-
grammaing, pages 8-16, 76, May 1995.

[9] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. De-

signing Object-Oriented Software. Prentice-Hall,
1990.

